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1 2-body problem with square well potential:

1.1 Behavior of the scattering length a

Calculate s-wave scattering length analytically and demonstrate that a diverges
when you get a new bound state by increasing well depth V0 or width rc:

Considering the problem as a spherically symmetric problem, we have to solve
the Schrödinger equation in spherical coordinates representation:(

−1

2m
∇2 + V (r)− E

)
ψ(r, θ, φ) = 0, (1)

substituting the ansatz ψ(r, θ, φ) = Rl(r)Ylm(θ, φ) in the equation 1:(
1

r2
∂r(r

2∂r)−
l(l + 1)

r2
+ 2m(E − V (r))

)
Rl(r) = 0, (2)

where we have used the fact that the solution for the angular part include the
eigenvalues −l(l + 1). With the usual substitution of the ansatz R(r) = χ/r, it is
obtained a more convenient representation of the Schrödinger equation:(

∂2
r + 2m

(
E − V (r)− l(l + 1)

2mr2

))
χl(r) = 0 (3)

The combination of the terms V (r) + l(l+1)
2mr2

are called the “effective potential”.
The square well potential V (r) can be mathematically represented as V (r) =
−V0Θ(R − r), being Θ(R − r) the Heaviside step function is illustrated in the
figure 1, with R the extension of the well.

V0

R

E

r

λ

Figure 1: Well Potential in Spherical Coordinates
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We are interested in the s-wave scattering length (l = 0), so the equation is
simplified as: (

∂2
r + 2m (E + V0Θ(R− r))

)
χl(r) = 0, (4)

this equation has the general solution for r > R:

χ(r) =
i

(2π)3/22k
(e−ikr − η0e

ikr) =
eiδ0

(2π)3/2k
sin(kr + δ0), (5)

and for r < R,

χ(r) = a0 sin(k0r). (6)

As usual, we need to supply the requirement of the continuity of the wave
function and its derivative at r = R.

eiδ0

(2π)3/2k
sin(kR + δ0) = a0 sin(k0R)

eiδ0

(2π)3/2k
cos(kR + δ0) = a0 cos(k0R). (7)

After doing the division between these two equations, the result is:

δ0 = arctan

(
k

ki
tan(k0R)

)
− kR. (8)

Now, in the limit of vanishing energies, such a way that E is close to zero, the
Schrödinger equation will looks like :

(∂2
r + 2mE)χl = 0, (9)

so definitely the solution will be of the form:

χ(r) = c0(r − a), (10)

where c0 and a are constants. Also, we can get this result doing the expansion for
small k in the sin function of the equation 5:

χ(r) = c1

(
r +

δ0

k

)
+O(k), (11)

so, comparing the equations 10 and 11 we notice that for very small k, the O(k)
will be negligible and the constant a will be defined as:

a = − lim
k→0

δ0

k
, (12)
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The length scale a is the scattering length, and in the limit of very low energies
(E ≈ 0) , the target scatters as if it were a scattering area of 4πa2. a also sets
the length scale when the wave function vanishes (different to the point in r = 0).
In addition a has an important aspect because this quantity can assume infinitely
large, positive or negative values; for studying these aspects we return to the result
in the equation 12 but using the result of the well potential in the equation 8 [1]:

a = − lim
k→0

1

k

(
arctan

(
k

k0

tan(k0R)

)
− kR

)

≈ − lim
k→0

1

k

(
k

k0

tan(k0R)− 1

3

(
k

k0

tan(k0R)

)3

...− kR

)

= −tan(k0R)

k0

+R, (13)

V0

R
r-a

Figure 2: Negative scattering length

As we see, if k0R ≈ π/2, the scattering length becomes infinity, where k0 is

directly related with V0

(
k0 =

√
2m(−V0)

)
. Initially we can consider that k0R <

π/2 but not that small. So the solution in the potential region, takes the increasing
part of the function sin(k0R) and it has to match with the external function in
an increasing slope, as it is shown in the figure 2. Doing the extrapolation of
the linear solution we can see the intersection with the horizontal axis, this is the
origin of the negative scattering length.
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V0

R
ra

Figure 3: Positive scattering length

When we get more closer to π/2 , the scattering length will take more negative
values until −∞, where a divergence occurs. Then we will get positive scattering
length as you can see in the figure 3. This behavior is repeated again each π/R
times. The general behavior of a versus k0 is shown in the figure 4, where a
sequences of divergences in +∞ and −∞ are displayed.

-15 -10 -5 5 10 15
k0

-2

-1

1

2
a

Figure 4: Behavior of the scattering length a vs k0, when R = 1

Although the mathematical explanation is given, the physical point of view is
more interesting because we can show the existence of bound states. Bound states
are wave functions of finite spatial support and discrete spectrum, each divergence
indicates a new bound state. Then, when k0 (which depends on V0) increases and
a is positive we can get a bound state. The k0 axis is going to be divided in ranges

that goes from
(

π
2R

+ nπ
R
< k0 <

π
2R

+ nπ
R

+ (n+1)π
R

)
for n integer. In that way, the

first range belongs to the first bound state, the second to a second bound state
and so on. In summary: a singularity a→ −∞ of the scattering length indicates
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the scattering wave states and a singularity a→∞ of the scattering length signals
the appearance of a zero energy bound state.

2 Quasiparticles (polarons)

The basic problem of a particle or an impurity moving and interacting with the
environment has given the quantum explanation of several many body problems.
Usually the Fröhlich Hamiltonian describes the motion of the impurity which is
coupled with a boson system. The classical picture assumes that the bosons are
phonons in a polar solid. This particle exert force upon the ions, which respond
and move. The quantum nature of the phonons makes these forces occur in discrete
units, and the ions motion, in the classical or quantum picture, in imaging as a
polarization of the material around the particle. Of course the polarization affects
the motion and energy of the particle [2].

3 HNC and Euler Equation

In the last decades, the confinement of ultra-cold systems have opened the research
of new phenomena of theoretical interest. In that way, the interaction between the
particles has an important influence on the quantum effects of the system. The
interactions in turn depend on several parameters as the density, the potential
strength or the scattering length. In this report I will introduce the study of an
impurity in a bose system applying the hypernetted-chain Euler Lagrange method
for the calculations of the ground state energy and correlation functions. This
method has been used in the explanation of systems with two-body correlations
and strong interactions[3]. We will present the basic theory [3, 4] of the HNC and
the principal equations implemented in the code.

3.1 Bulk Liquid

3.1.1 Wave function

As usual, when the interactions between the particles become stronger, pertur-
bation theory is no more applicable, we have to look for a different and more
efficient method. Hence, we will us a variational approach that is able to de-
scribe the ground state until with three-body correlation functions and with the
symmetry following the statistics of the bosons. Initially the Hamiltonian for a
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strongly-interacting quantum many-body system is:

H = − h̄2

2m

N∑
i=1

~∇2
i +

∑
i<j

v(|~ri − ~rj|) (14)

The ground-state wave function for a system of N identical boson with coordi-
nates ~r1, ...~rN is written as a variational ansatz of the Jastrow-Feenberg form:

ψ(~r1, ...~rN) = exp
1

2

(∑
i<j

u2(~ri, ~rj) +
∑
i<j<k

u3(~ri, ~rj) + ...

)
(15)

This function is able to describe the interactions for different ranges, as we
demand that this function has the following properties:

1. For small ri− rj the wave function is reduced to an effective two-body wave
function.

2. For large ri − rj the particles i and j are no longer correlated.

The most important component of the variational wave function is the two-
body function u2(~ri, ~rj), which describes both the short and long range correla-
tions between pairs of particles. For the low density systems under consideration
here an important aspect of the variational theory is the optimization of the cor-
relations. The correlation functions are determined by the minimization of the
energy-expectation value:

δ

δun

[
〈ψ0|H|ψ0〉
〈ψ0|ψ0〉

]
= 0, n = 2, 3. (16)

3.1.2 HNC and Euler Equation

The additional information needed to solve these equations is the connection be-
tween the correlation functions and the physically observable distribution func-
tions. This connection is provided by the hypernetted chain (HNC) equations [5].
These equations are derived diagrammatic analysis of the two-body distribution
function g(r) in terms of the two-body correlation function. The analysis leads to
the HNC relationships

g(r) = exp[u2(r) +N(r) + E(r)], (17)
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where E(r) represents an infinite series of “elementary” diagrams which can be
expressed as multi-dimensional integrals involving g(r). The sum of nodal dia-
grams N(r), can be expressed in momentum space. Introducing the dimensionless
Fourier transform:

f̃(k) = ρ

∫
ddrf(r)ei

~k.~r, (18)

where d denotes the dimensionality of the system, and the static structure function:

S(k) = 1 + ρ

∫
ddrei

~k.~r[g(r)− 1], (19)

introducing the function Ñ(k) as:

Ñ(k) =
(S(k)− 1)2

S(k)
=

X̃2(k)

1− X̃(k)
(20)

where X̃(k) is called the “direct correlation function” or the “non-nodal func-
tion”:

X̃(k) = S(k)− 1− Ñ(k). (21)

The level of the HNC approximation is defined by the choice of E(r); e.g.
HNC/0 neglects the elementary diagrams altogether, note that triplet correlations
can be implemented through a modification of the definition of “elementary dia-
grams”. The combination of the HNC equations 17 and the Euler equations 16 are
generally referred to as the hypernetted-chain Euler-Lagrange (HNC-EL) theory.
The correlation energy can be written as :

E = Er + Ek + Ee + E3 (22)

where

Er
N

=
ρ

2

∫
ddr

[
(g(r)− 1)v(r) +

h̄2

m
|∇
√
g(r)|2

]
, (23)

Ek
N

= −1

4

∫
ddk

(2π)dρ
t(k)(S(k)− 1)Ñ(k), (24)

Ee
N

= −1

4

∫
ddk

(2π)dρ
t(k)(S(k)− 1)Ẽ(k), (25)

here, t(k) = h̄2k2

2m
and E3 is the contribution from triplet correlations. This term

can be expressed in terms of the three-body correlation function u3(~r1, ~r2, ~r3) and
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the three-body distribution function. In this study we omit Ee and E3 because
they do not bring a new physical message.

The Euler-Lagrange equation can be conveniently written in coordinate space
for the radial distribution function as:

− h̄
2

m
∇2
√
g(r) + [v(r) + wind(r)]

√
g(r), (26)

where the “induced interaction” is

w̃ind(k) = −t(k)[S(k)− 1]− 1

2
t(k)

[
1

S2(k)
− 1

]
= −t(k)[S(k)− 1]− Ṽp−h(k). (27)

The coordinate space formulation of the Euler equation 26 includes the boson
Bethe - Goldstone equation, which sums the dominant diagrams in the strong-
coupling limit. An alternative formulation of the Euler equation 26 can be given
in momentum space in terms of the structure factor S(k),

S(k) =

[
1 +

2

t(k)
Ṽp−h(k)

]−1/2

. (28)

This equation is formally identical to the boson RPA expression for the struc-
ture factor. The HNC-EL theory supplements the RPA with a microscopic theory
of the particle-hole interaction

Vp−h(r) = g(r)v(r) +
h̄2

m
|∇
√
g(r)|2 + [g(r)− 1]wind(r) (29)

Equations 27, 28 and 29 can be solve iteratively for g(r) and S(k); they follow
directly by carrying out the variation of the energy, equations 23 and 24, with
respect to the pair distribution function g(r). Of course, since the HNC equations ,
equations 17-20 provide a unique relationship between the pair correlation function
u2(r) and the pair distribution function g(r), we can also think of the Euler-
equation as a variation with respect to g(r):

δE

δg
(r) = 0 (30)

This will be important in view of the connection between the optimization
condition and density functional theory.
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3.1.3 Connection to parquet diagram theory

The formula 28 is readily identified with a boson RPA expression for the density
-density response function:

χRPA(k, ω) =
χ0(k, ω)

1− Ṽp−hχ0(k, ω)
=

2t(k)

h̄2ω2 − ε2(k)− iη
. (31)

with the response function of the non-interacting boson system:

χ0(k, ω) =
2t(k)

h̄2ω2 − t2(k)− iη
. (32)

Then, it is seen that the static structure function S(k) obtained from the Euler
equation is identical to the one coming from the RPA expression

S(k) =

∫ ∞
0

−dh̄ω
π
Fmχ

RPA =

[
1 +

4m

h̄2k2
Ṽp−h(k)

]−1/2

, (33)

where Fm denotes the atomic form factor. Thus, the only quantity that can not
immediately be understood in terms of Feynman perturbation theory is the induced
interaction. “local parquet theory” localizes this interaction as follows:

• Begin with the RPA expression 31 and 33. Define an effective local two-body
interaction Veff (r) such that the 2-body approximation for S(k) with that
local two-body interaction is the same as the RPA expression:

χ(2)(k, ω) = χ0(k, ω) + χ0(k, ω)Ṽeff (k)χ0(k, ω)

S(2) = −
∫ ∞

0

−dh̄ω
π
F (2)
m χ(2)(k, ω) = 1− Veff (k)

t(k)
(34)

• Demand that S(2)(k) = S(k). This defines the static effective interaction

Ṽeff (k) = t(k)(S(k)− 1) (35)

We can think of the static effective interaction as an approximation for the
dynamic effective interaction

Ṽeff (k) =
Ṽp−h(k)

1− Ṽp−h(k)χ0(k, ω)
(36)

Ṽeff (k) = Ṽeff (k, ω̄), (37)
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which gives

h̄2ω̄2 = − t2(k)

1 + 2S(k)
(38)

comparing this with the equation 27 shows that,

Ṽeff (k) = Ṽeff (k) + ω̃ind(k). (39)

Since we must identify Ṽeff (k) with the local approximation of the set of
particle-hole irreducible diagrams, and Ṽeff (k) as the local approximation of
the set of all two body vertices, we must identify the induced interaction as
a local approximation of the set of all particle-hole reducible diagrams.

• In principle, the Bethe Goldstone equation should look like

− h̄
2

m
∇2φ(r, ω) +

[
v(r) + ω(r, ω)

]
φ(r, ω) = 0, (40)

i.e. it is an energy dependent equation. If the particle - hole interaction can
be approximated by a local interaction, then

wind(k, ω) =
Ṽp−h(k)χ0(k, ω)Ṽp−h(k)

1− Ṽp−h(k)χ0(k, ω)
(41)

The dictum of “local parquet theory” is the to replace wind(k, ω) ≈ wind(k, ω̄)
such that the Bethe-Goldstone equation gives the same S(k). The question
the Green‘s function people will normally ask is that how justified these
approximation are and suggest different ones that are basically justified that
they are doable, but without clear physical motivation. The quantitative
motivation why exactly there approximations are the best is given by the
fact that one can also evaluate the energy with Monte Carlo methods.

3.1.4 Exact relationships

It is evident from equation 28 that the condition Vp−h(0+) > 0 is a condition
for the existence of solutions of the Euler equation. In the phenomenological
interpretation of the RPA one can identify

mc2 = Vp−h(0+) (42)
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where c is the speed of sound. On the other hand, the hydrodynamic com-
pressibility KT is obtained by differentiating the chemical potential with respect
to density

mc2 =
d

dp
ρ2 d

dρ

E

N
(43)

The diagrammatic analysis of the HNC-EL equation reveals, however, that the
microscopic 42 definition and the hydrodynamic definition 43 are identical only in
an exact theory. This calls for some phenomenological modifications.

3.1.5 Connection to density functional theory

The use of the pair-distribution function as a variational function is analogous to
using the one-body density in density functional theory. In fact, following the line
of arguments leading to the Kohn - Hohenberg theorem for the one -body density.
two statements can be made:

1. The kinetic energy T depends only on g(r) and not on v(r) and

2. The total energy has a minimum equal to the ground state energy at the
physical ground state distribution function, in other words the ground state
distribution function can be obtained by the variational principle in the equa-
tion 30.

The proof parallels exactly the proof given by Levy for the original Kohn-
Hohenberg theorem and does not need to be repeated here. There is, however, an
important corollary: Following the above, the total energy can be written as

E = T + V (44)

where

V =
ρ

2

∫
d3rv(r)g(r), (45)

is the potential energy and T the kinetic energy whose form is yet unspecified,
but it is known that T is a functional of g(r) and not of v(r). Replacing in equation
45 v(r) by λv(r) and differentiation with respect to λ gives

dE

dλ
=
ρ

2

∫
d3rv(r)gλ(r) +

∫
d3 δE

δgλ(r)

dgλ(r)

dλ
(46)
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the second term in equation 46 vanishes, and hence the result for the energy
from the coupling constant integration

E =
ρ

2

∫ 1

0

dλ

∫
d3rv(r)gλ(r) (47)

is the same as the energy functional. However, the above derivation also shows
that equation 47 is true not only for the exact ground state, but also for any
approximate energy functional , as long as the pair distribution function is obtained
by minimizing this approximate energy functional. This holds, therefore, for the
HNC energy functional.

3.2 Single Impurity

3.2.1 Wave Function

Generally, we label background systems coordinates with a super/sub-script B, and
impurity coordinate with a super/sub-script I. The impurity carries the coordinate
r0. The fact that there is only one foreign particle makes it possible to use the “old”
solution for the background wave function ψ(r1, ..., rN) and multiply that function
with the correlation functions between the impurity and background. Since we are
dealing with low density systems there is, unlike in the helium liquids, no need for
triplet correlations:

ψI(r0, r1, ..., rN) = exp
1

2

[
N∑
j=1

uIB(r0, rj)

]
ψ0(r0, r1, ..., rN) (48)

The one particle density for the impurity is defined by integrating over all the
background coordinates in the wave function,

ρI(r0) =
1

N0

∫
d3r1...d

3rN |ψI(r0, ..., rN)|2 =
1

Ω
; (49)

it is equal to one over the total volume, Ω, of the system, which includes
the impurity particle. Similarly, to obtain the impurity-background two-particle
density, one integrates over all the other except one background coordinate.

ρI(r0, r1) =
N

N0

∫
d3r2...d

3rN |ψI(r0, ..., rN)|2, (50)

where N0 is the normalization integral

N0 =

∫
d3r0...d

3rN |ψI(r0, ..., rN)|2. (51)
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The radial distribution function between the impurity and background particles
is defined by

ρIB(r0, r1) = ρI(r0)ρB(r1)gIB(r0, r1) (52)

Note that ρB(r1) in equation 52 is the pure background density:

ρB(r1) = N

∫
d3r2...d

3rN |ψ(r1, ..., rN)|2∫
d3r1...d3rN |ψ(r1, ..., rN)|2

=
N

ΩB

(53)

3.2.2 HNC and Euler Equation

The chemical potential of the polaron can be written as:

µIHNC =

∫
d3r0d

3r1ρ
IρB

[
gIB(r0, r1)V IB(|r0 − r1|)

+
h̄2

2mI

|∇0

√
gIB(r0, r1)|2 +

h̄2

2mB

|∇1

√
gIB(r0, r1)|2

]

−1

2

∫
d3k

(2π)3ρB
h̄2k2

4
[SIB(k)]2

SBB(K)− 1

SBB(k)

(
1

mI

+
1

mB

+
1

mBSBBk

)
(54)

The variation of the chemical potential with respect to the impurity-background
distribution function is a straight forward exercise. We first calculate:

0 =
1

2

δµI

δ
√
gIB(r0, r1)

= −

(
h̄2

2mI

∇2
0 +

h̄2

2mB

∇2
1

)√
gIB(r0, r1)

+[V (|r0 − r1|) + wIBI (r0, r1)]
√
gIB(r0, r1) (55)

The last term in equation 55, wIBI (r0, r1), is the phonon induced interaction.
This term originates from the last part of the HNC approximation 54 for the
chemical potential. It is most conveniently written in momentum space as:

wIBI =
−1

2

SIB(k)(SBB(K)− 1)

SBB(K)

(
tI(k) + tB(k) + ε(k)

)
(56)

where we denote the kinetic energies by

tI(k) =
h̄2

2mI

k2, tB(k) =
h̄2

2mB

k2 (57)
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and the background excitation mode in Feynman approximation by

ε(k) =
h̄2

2mB

k2

SBB(k)
(58)

The Euler equations are most conveniently solved iteratively in momentum
space; a few manipulations are required for that purposes. We multiply the whole
equation 55 with

√
gIB(r0r1) and introduce the particle-hole interaction, which

gives the direct interaction between particles:

V IB
p−h(r0, r1) = gIB(r0, r1)V (|r0 − r1|) +

h̄2

2mI

|∇0

√
gIB(r0, r1)|2 +

h̄2

2mB

|∇1

√
gIB(r0, r1)|2 + (gIB(r0, r1)− 1)wIBI (r0, r1) (59)

With this notation, the two-particle Euler equation in momentum space has
the form:

SIB(k) = −2
V IB
p−h(k)SBB(k)

tI(k) + ε(k)
(60)

3.2.3 Connection to Parquet diagrams

The connection to parquet theory goes in exactly the same was as above: The
RPA for the impurity - background response function is

χIB(k, ω) = χII0 (k, ω)Ṽ IB
p−h(k)χBB0 (k, ω) =

4tI(k)V IB
p−h(k)tB(k)

((ω − iη)2 − t2I(k))((ω − iη)2 − ε2(k))
(61)

which gives 61 through

SIB(k) = −
∫ ∞

0

dω

π
FmχIB(k, ω) (62)

Now do the same as above

• Define a local effective interaction

χ
(2)
IB(k, ω) = −χII0 (k, ω)Ṽ IB

eff (k)χII0 (k, ω) (63)

giving

S
(2)
IB(k) = −

∫ ∞
0

dh̄ω

π
Fmχ

(2)
IB(k, ω) =

2V IB
eff (k)

tI(k) + tB(k)
(64)
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• Demand S
(2)
IB(k) = SIB(k). This gives

Ṽ IB
eff (k) = Ṽ IB

p−h(k)SBB(k)
tB(k) + tI(k)

ε(k) + tI(k)
(65)

Note again that

Ṽ IB
eff (k) = Ṽ IB

p−h(k) + ω̃
IB(k)
I (66)

• We can again think of this as taking the energy dependent effective interac-
tion

Ṽ IB
eff (k, ω) =

Ṽ IB
p−h(k)

1− Ṽ BB
p−h(k)χBB0 (k, ω)

(67)

at an average frequency

Ṽ IB
eff (k, ω) = Ṽ IB

eff (k, ω̄) (68)

which gives

h̄2ω2 =
tB(k)tI(k)ε(k)

tB(k) + tI(k) + ε(k)
(69)

3.2.4 Exact relationships

Equation 49-53 determine the volume integral:∫
d3r1g

IB(r0, r1) = ΩB (70)

The volume occupied by one 4He particle, vB = ΩB/N is different from the
volume vi = Ω−ΩB occupied by the impurity particle. This difference has conse-
quences for the sequential relation for the impurity radial distribution function of
equation 52: ∫

d3r1ρ
B(r1)[gIB(r0, r1)− 1] = − vI

vB
= −β (71)
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Here we have introduced the volume excess factor β, which is an important
experimental parameter. The impurity structure function is the Fourier transform
of the radial distribution function

SIB(k) = ρB
∫
d3rei

~k.~r[gIB(r)− 1] (72)

and its value at the origin,

SIB(0+) = −β (73)

It is given by the sequential relation 71. In the definitions 49 and 53 we have
already made the assumption that our system is homogeneous, which makes it
possible to take the Fourier transform with respect to the relative coordinate alone.
From now we shall ignore the coordinate argument in the density factors. The
volume excess factor is a measurable quantity and when it is well determined, like
for the 3He impurity, it can be used to calculate the impurity chemical potential
by integrating the equation

β = ρB(P )
dµI

dP
(74)

over the pressure. These two relations can be used as a check of consistency of
the theory in a similar manner as the thermodynamic compressibility can be used
as a check of consistency of the theory in a similar manner as the thermodynamic
compressibility can be used to test the consistency of the slope of the structure
function in the long wave length limit.

3.3 Impurity-Impurity Interaction

The wave function of two impurities, located at r0 and r′0 is:

ψII(r0, r
′
0; r1, ..., rN) = exp

1

2

[
uII(r0, r

′
0) +

N∑
j=1

[uIB(r0, rj) + uIB(r′0, rj) +

uIIB(r0, r
′
0, rj)] +

1

2

N∑
j,k=1,j 6=k

[uIBB(r0, rj, rk) +

uIBB(r′0, rj, rk)]
]
ψ0(r1, ..., rN). (75)

The situation for the two impurity case differs from the above ones because the
wave function 75 can only lead to an effective impurity-impurity potential deter-
mining the impurity-impurity correlation function uII(r0, r

′
0). This is exactly the
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quantity we want because it gives us the information on the configuration. Its form
has, in HNC approximation, been first derived by Owen [6]; adding “elementary
diagram” and “triplet correlation” corrections, the effective interaction is

Veff (r) = V (II)(r) + wind(r) + Ve(r), (76)

where V (II)(r) is the bare interaction between the two impurities, Ve(r) the
correction from ”elementary” diagrams and triplets, and wind(r) is the induced
originating from phonon exchange and higher-order processes. The induced po-
tential can depend only on background and single-impurity quantities.

Jastrow-Feenberg theory provides a prescription for calculating the induced
potential mediated by the density fluctuation background, i.e. phonon exchange
[6]:

w̃ind(r) = Ṽind(k, w̃(k)) = − h̄
2k2

4m

[
SIB(k)

S(k)

]2[
2
m

mI

S(k) + 1

]
(77)

One can interpret this term from linear response theory: The full interaction
between two polarons is strictly speaking energy dependent, it is the sum of the
induced and the bare interaction,

Veff (r, w) = VII(r) + Vind(r, w) (78)

where

Ṽind(k, w) = ṼIB(k)χ(k, w)ṼIB(k) + Ṽe(k) (79)

and χ(k, w) is the density-density response function of background, V IB
p−h is the

particle-hole potential, and Ṽe(k) consists of contributions from triplets and ele-
mentary diagrams. The HNC-EL result is obtained by taking the density-density
response function at an average imaginary frequency that is chosen according to
the localization rules of parquet-diagram theory.

If one looks at the phonon exchange of weakly bound polarons pairs, one might
therefore argue that it is better to take w = 0 which leads to a slightly different
effective interaction

w̃ind(k) = Ṽind(k, w = 0) = − h̄
2k2

4m

[
SIB(k)

S(k)

]2[
m

mI

S(k) + 1

]
(80)

We will see, however, that there is little difference between the predictions of
these two procedures for calculation the induced interaction.
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4 Lennard-Jones and Pöeschl-Teller Potential

4.1 Lennard-Jones Potential

At substantially low T, most inert gases form solids at ambient pressure, they
crystalize in close-packed structures (CCP or HCP). What is the binding force
that holds an inert gas crystal together? The general form of the potential is
giving by:

φ(r) = −A
r6

+
B

r12
= 4ε

[(
σ

r

)12

−

(
σ

r

)6]
, (81)

also known as the Van der Waals interaction. This interaction contains a weak
attractive term and a strong short-range repulsive term. For understanding this
terms we need to realized what is the “source” of the Lennard-Jones potential, due
to that inert gas has no monopole or dipole potential (the charge distribution of
inert gas atoms is spherical), also the electron wave function has a negligible and
repulsive wave function overlap and the chemical hybridization is also negligible.

We can concentrate first on the dispersion force (the attractive term), this is
due to the so called the London dispersion force. Although the overall electron
density of an atom is spherical, there is always a fluctuating (instantaneous) dipole
moment ~p1 on one atom 1 at any given time.

The fluctuating dipole generates an electric field on atom 2 located at position
~r

~E(~r) = −3r̂(~p1.r̂)− ~p1

r3
(82)

This electric fiend induces a dipole moment ~p2 in atom 2 proportional to the
field:

~p2 = α~E = α
3r̂(~p1.r̂)− ~p1

r3
(83)

where α is the polarizability of atom 2. The interaction energy between the
two dipoles is then

~p1.~p2 − 3(r̂.~p1)(r̂.~p2)

r3
(84)

since

~p2 = α
3r̂(~p1.r̂)− ~p1

r3
≈ − 1

r6
(85)

which allow us to get the dispersion term (r−6).
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In the another hand, the (repulsive) 1/r12 term come from the repulsion of
electrons when their wave functions overlap, which is a consequence of the Pauli
exclusion principle (it is not the only reason). In addition the exponent 12 is
phenomenological. Other empirical forms for the repulsive potential are also used
in literature. The two parameters, ε and σ, measure the strength of the attractive
interaction and the radius of the repulsive core. Fig 5.

Figure 5: Lennard Jones Potential

4.1.1 Scattering Length for the Lennard Jones Potential

J. Pade in his work of 2007 [7], calculated the mathematical expression for the
scattering length of a general modified Lennard-Jones interaction potential of the
form or the equation 86:

V (r) = u

[(
r0

r

)2n−2

−

(
r0

r

)n]
(86)

where the s-wave scattering length was presented. Due to nowadays it is suffice
just use the scattering length for describing all the scattering dynamics and it does
not depend on the interaction potential, which, in this report, we show that this
is not true.

The exponent n in the equation 86 can be adapted depending the model. For
example n = 6 will be use in this project. But it is used also with n = 4 for
the interaction between an atom and an ion, n = 6 for neutral atoms and n =
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7 for the Casimir-Polder potential between two neutral polarizable atoms. The
potential is zero at r = r0 and achieves its minimum vmin = −u n−2

2n−2
( n
n−2

)
n

n−2 at

rmin = (2n−2
n

)
1

n−2 r0. For more details of the process, to get the expression for the
scattering length we can go to the reference [7]. The final expression will looks like
(x = r0

√
u):

ascatt = r0

(
2x

n− 2

) 1
n−2 Γ(−x+n−1

2n−4
)Γ(n−3

n−2
)

Γ(−x+n−3
2n−4

)Γ(n−1
n−2

)
(87)

For the case of n = 6, the behavior of the scattering length is shown in the
figure 6

Figure 6: Scattering length ascatt/r0 in dependence of the variable x = r0

√
u for

the case n = 6. The dashes lines mark the positions of the poles (from Ref. [7])

The properties of this expression are the following:
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1. It is well-known that the constant cross section limit at zero energy is valid
only for the potentials falling off faster than r−3. The scattering length goes
to infinity when n→ 3+.

2. Apart from the multiplicative factor r0, the scattering length depends on two
parameters only, namely n and x. In particular, this holds for the position
of the poles and zeros. This fact allows for quite precise calculation in the
case if scattering lengths are available for different isotopes.

3. Poles and zeros of the scattering length are given by the poles of Γ(−x+n−1
2n−4

)

and Γ(−x+n−3
2n−4

), respectively. Poles of ascatt occur at

xpole = (2n− 4)Nb + n− 1; Nb = 0, 1, 2, ...

where Nb denotes the number of bound states; there are Nb bound states for
(2n− 4)(Nb − 1) + n− 1 < x < 2n− 4)Nb + n− 1. Zeros at ascatt occur at

xzero = (2n− 4)M + n− 3; Nb = 0, 1, 2, ...

4. The relative proportion of positive and negative values of ascatt is given by
n−3
n−2

and 1
n−2

. For n = 6, positive values occur three times more often than
negative ones.

5. If x happens to lie in the neighborhood of a pole, any minor uncertainty in
the shape of the potential can easily provoke big changes in the scattering
length. On the other hand, this means that in this situation, the potential
parameters may be fixed very precisely even if the scattering length is known
with a modest degree of accuracy.

4.2 Binding energy as a function of the strength interac-
tion for the Bipolaron problem

As an introduction to the model and the code that calculate the energies in the
ground states using the (HNC-EL) theory, initially I reproduced the behavior of
the bound energy as a function of the wave number of the bipolaron 1 for two
bosonic impurities with m = mB. In the Fig 7 the results of Camacho-Guardian
et al. are shown [8]. In the part (a) of this plot, there is a cartoon that illustrate
the Bose polarons forming a bipolaron as a consequence of the phonon mediated
interaction. In (b) the binding energy is represented as a function of the impurity
boson interaction strength for two bosonic impurities with m = mB. The red solid

1Bipolarons are two quasiparticles, the so-called polarons that form a bound state much
smaller than the average distance between the unbound polarons.
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belongs to the case when nBa
3
B = 10−6 (nB = ρ = 0.0001) and nBa

3
B = 10−5

(ρ = 0.001). (c) It shows the corresponding inverse size σ−1 = ξB
√
〈r2〉 of the

bipolaron wave function.The arrows indicate the critical values of strength to form
a bound state.

Figure 7: (a) Creation of bipolarons due to the mediated interaction. (b) Binding
energy EBP of the bipolaron as a function of the interaction strength. (c) σ−1 of
the bipolaron wave function. (from [8])

Using the code and the same values we reproduced these results for the case
of ρ = 0.001 (black points), ρ = 0.0001 (red points) and ρ = 0.0002 (green points)
as is shown in the figure 8, which indicates good qualitative agreement with the
results of the paper [8], because we will show that the behavior of the binding
energy depend on more than just the scattering length .
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Figure 8: Binding energy against the scattering length (1/kna). Black points
correspond to ρ = 0.001, red points are for the density ρ = 0.0001 and green points
represent ρ = 0.0002
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Figure 9: Pöschl-Teller Potential example for ρ = 1 and V0 = 50

4.3 Pöeschl-Teller Potential

The Pöschl-Teller Potential described in the equation 88, -named after the two
physicists Herta Pöeschl and Edward Teller- represents a short-range, attractive
well potential, which in particular for the description of systems for diatomic
molecules. In figure 9, we present the plot for some values of the constant ρ = 1
and V0 = 50 as an example.

V (x) = − V0

cosh2(x/ρ)
, (88)

With the definitions of cosh(x):

cosh(x) =
1

2
(ex + e−x), (89)

studying the limit behavior of Pöschl-Teller Potential we get:

lim
x→±∞

(
− V0

cosh2(x/ρ)

)
= lim

x→±∞

(
− 4V0

e2x + e−2x + 2

)
= 0 (90)

also,

lim
x→0

(
− V0

cosh2(x/ρ)

)
= − V0

cosh2(0)
= −V0 (91)
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Then now,

− cosh2(x/ρ) = −(1/4)(ex/ρ + e−x/ρ)2 (92)

at the position x = 0 there is a global maximum, the Pöschl-Teller Potential
also has a minimum. The parameter V0 of the Pöschl-Teller Potential reflects the
depth of the potential well at the position x = 0. The minimum goes to zero as well
as the limit to infinity showed in the equation 90. The parameter ρ characterize the
range of the potential. Specially small values of ρ reflect short range interactions,
as it is summarize in the Figure 10. Taken from [9].

Figure 10: Pöschl-Teller Potential example for different values of ρ and V0 = 50

4.3.1 Scattering Length for the Pöschl-Teller Potential

The analytical expression for getting the scattering length using the Pöschl-Teller
Potential is given by:

ascatt = rc

(
−1

V0

+
π

2 tan(πV0/2)
+ γ + pg

)
(93)

where γ is the euler‘s constant and is equal to

γ = 0.577215664901532860606512090082402431042...

and pg is given by
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Table 1: Values a and rc using Lennard-Jones potential. Here different combina-
tions of V and r were calculated for getting the same scattering length a.

pg =
d log Γ(V0 + 1)

dV0

4.4 Single impurity

Use Lennard-Jones 10-6 and Pöschl-Teller Potential as implemented in vbare.f90;
they are both characterized by a strength parameter V0 and width parameter rc,
to be set in the command file. Let the background density be ρ = 10−3, 10−4, 10−5

and 10−6.

4.4.1 Negative scattering length a

We choose different V0 and rc in the two potentials such that a is the same and
compare gI(r) and SI(k) for a between −0.5 and −∞. How negative can you go
with a until gI(r) and SI(k) depend not just on a (i.e. non-universal behavior.)?

First, we used the Lennard Jones potential. For negative values of scattering
lengths (scattering states) and using the equation 87 with n = 6, we get the
different combinations of V0 (or u) and rc (or σ) such a way that we get the same
scattering length. As an example, I used the combinations shown in Table 1.

The second column show the maximum value that x and r can take depending
on the divergences in the behavior of the scattering lengths. The idea again, is not
go into bound states or divergences, just scattering states. g(r) and S(k) will be
calculated for several values of the scattering lengths as is shown:

In the Figure 11 I present the behavior of S(k) and g(r), except in Figure 11(a)
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Figure 11: Plots of g(r) and S(k) for ρ = 0.001 using two values of V0: 4 and 24
in the Lennard-Jones potential. The green plot of g(r) corresponds to V0 = 4 and
the yellow g(r) corresponds to the combinations using V0 = 24.
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Figure 12: Plots of g(r) and S(k) for ρ = 0.0001 using two values of V0: 4 and 24
in the Lennard-Jones potential, except in the part (a) where r2g(r) is shown for
V0 = 20 and V0 = 4. The green plot of g(r) corresponds to V0 = 4 and the yellow
g(r) corresponds to the combinations using V0 = 24.

where r2g(r) is shown. Here we used the Lennard-Jones potential in a density of
ρ = 0.001 and V0 = 4 and V0 = 24 which gave me a difference of the values of
rc ≈ 1.3 (better shown in Table 1) for all the scattering lengths. We can observe
that for all the scattering length there is a remarkable difference in the correlation
function g(r) for values in the range of r <≈ 5. Except for a = −50 and a = −1.

For results in the Figure 12, I used four of the same scattering length but
in this case I am using a smaller density ρ = 0.0001. We can observe a similar
behavior but for smaller scattering lengths, the differences between g(r) are more
remarkable for larger range of r.

For results with smaller density ρ = 0.00001 in Figure 13, we can observe that
a larger maximum is getting when we use a larger strength of V0 and while we
decrease the value of the scattering length. Also I could say that the difference
between the correlation functions can start around r > 6 in general, and that while
the density gets smaller values, the system is not affecting the interaction between
the impurity and the particle of the system.

Figure 14 show results for smallest density ρ = 0.000001. We see the same
behavior but in this case the maximum is more remarkable if we compare between
same scattering length plots but different densities. The system is not affecting
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Figure 13: Plots of g(r) and S(k) for ρ = 0.00001 using two values of V0: 4
and 24 in the Lennard-Jones potential, except in the part (a) where r2g(r). The
green plot of g(r) corresponds to V0 = 4 and the yellow g(r) corresponds to the
combinations using V0 = 24.
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Figure 14: Plots of g(r) and S(k) for ρ = 0.000001 using two values of V0: 4 and
24 in the Lennard-Jones potential, except in the part (a) where r2g(r) and V0 = 4
and V0 = 20. The green plot of g(r) corresponds to V0 = 4 and the yellow g(r)
corresponds to the combinations using V0 = 24.
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Table 2: Values of rc and V using the Pöschl-Teller Potential

the behavior of the impurity and the results show a two-particle behavior.
Now, using the Pöschl-Teller Potential, and getting the combinations of V0 and

rc using the equation 93 we get the following results (We observe that the value
of V0 can be just between 0 and 2, before getting the divergence that will guide us
to bound states):

Using the Pöschl-Teller Potential, this time we only plotted r2 ∗ g(r). As we
can see for the density ρ = 0.001 in Figure 15 there are some differences between
the plots that are calculated for the same scattering length. Also, it is important
to see that g(r) has different behavior using the same scattering length, which it
is displayed in the plots (c) and (d) that, for the same scattering length (−39),
the behavior of g(r) differs for two combinations of V0 and rc. For smaller density
ρ = 0.0001 in Figure 16, we get a similar behavior, but the peaks take larger values
as we observed for the Lennard-Jones Potential.

4.4.2 Positive scattering length a

Using the mathematical expression 87 for getting the values of V0 and rc for positive
a, in the Table 3 are shown the combinations of V0 and rc in order to testing the
behavior of g(r) with the scattering length.

The results for a positive, using the Lennard-Jones potential, display a similar
behavior when the g(r) does not depend only of the scattering length, also depend
of V0 and rc. We observe an increasing peak in the function g(r) when the density is
small but the physical character of having a positive scattering length, which could
allow bound states, do the comparison and the generalization a little difficult.
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Figure 15: Plots of r2g(r) for ρ = 0.001 using the Pöschl-Teller Potential.
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Figure 16: Plots of r2g(r) for ρ = 0.0001 using the Pöschl-Teller Potential.
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Table 3: Values of the combinations of V0 and rc using the Lennard-Jones Poten-
tial, for getting the a‘s (positive)
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Figure 17: Values using positive scattering length and the Lennard-Jones poten-
tial for ρ = 0.001
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Figure 18: Values using positive scattering length and the Lennard-Jones poten-
tial for ρ = 0.0001

5 Triplet Correlations

We use the Pöschl-Teller Potential with a given choice of rc and compare the results
for chemical potential, gI(r) and SI(k) with and without triplet correlations for
the same three densities; start again with a = −0.5 and decrease a towards −∞
as long as possible. Caution: the HNC-EL iterations may not converge as you go
to larger |a|.

I got triple correlations just for small density and a = −4. Probably this part
requires more testing.
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Figure 19: Values using positive scattering length and the Lennard-Jones poten-
tial for ρ = 0.00001.
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(c) ρ = 0.00001, a = −4
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Figure 20: Correlations of a = −4 and for different densities using Lennard-
Jones potential. Green plots consider correlations while the purple shows results
without correlations, all for the value V0 = 4.
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6 Conclusions

1. As expected, for a negative scattering length, the correlation function g(r)
shows a peak that increases with increasing | − a|, which means that the
probability of dispersion between the impurity and the particle is larger.
This was observed for both types of potential , the Lennard- Jones Potential
and Pöschl-Teller Potential.

2. The results for S(k) and g(r) corresponding to low densities obey the behav-
ior of two interacting particles. This can be seen, for example, in the plots
for the Lennard-Jones potential in a = −25: the density ρ goes from 0.001
to 0.000001 and the peaks of g(r) take approximately the values 8, 10, 70
and 140 respectively. This was observed for the two potentials.

3. Using the Lennard-Jones potential, we were able to study the behavior of
g(r) for positive and negative scattering lengths. The peaks for negative
scattering lengths increase with the increasing of |−a|; in the another hand,
the peaks of g(r) decrease using positive increasing scattering length a, which
also correspond to the situation of get away from a bound state as was
illustrated in the Figure 3.

4. It would be possible to establish a range from where only depends on scatter-
ing length. This is because from the results, the values in the g(r) function
has not a remarkable difference after some point. For example, using the
Lennard-Jones Potential, g(r) start being independent close to r = 18, ex-
cept for the case when the density is ρ = 0.001, the function shows an
independence close to r = 8. For positive a, g(r) shows an independence
around the value r = 20. Considering the Pöschl-Teller Potential although I
plotted r2g(r), this function shows an independence after r ≈ 150.

5. There is not a relevant response in the inclusion of triplet correlations for
the system with one impurity using the code, the results that I got only
corresponds to small scattering length a. This part probably needs more
exploration.
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