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Abstract

Intelligent energy networks, a special type of cyber-physical systems, rely on state
estimation in order to determine whether the power grid is operating properly, or
not. An invalid state estimate can have a huge impact on the stability of the grid
and can cause severe socioeconomic damage. False Data Injection Attacks (FDIAs)
display a prominent threat to the operation of power systems, especially when carefully
constructed to bypass the traditional Bad Data Detector (BDD). Therefore, an Intrusion
Detection System (IDS) has to be in place to prevent FDIAs from going unnoticed. A
major limitation of current approaches is that only coarse-grained attack detection is
performed. In order to take effective mitigation actions, it would be more beneficial
to detect whether any critical subset of state variables is under attack or not. In this
thesis, two state-of-the-art machine learning algorithms are investigated for subset level
detection of FDIAs. Furthermore, the trade-off between performance and subset size is
investigated. The proposed detection algorithms are evaluated by simulating FDIAs on
the IEEE 30-bus system using real-world load data for measurement construction.
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Chapter 1

Introduction

The area of cyber-physical systems has evolved drastically in recent years, leading to a
massive increase in complexity [1]. According to Lee [2], cyber-physical systems have
the potential to revolutionize Information Technology (IT) development over the next
few decades, entirely changing the way how humans physically interact with the digital
world.

One special type of cyber-physical systems are intelligent energy networks, also known
as smart grids. A smart grid consists of an Advanced Metering Infrastructure (AMI),
multiple power plants and substations, as well as communication networks to communi-
cate sensor reading, control information and distributed power generation. In contrast
to the traditional power grid, where the main purpose is to transfer energy from a
few central generators to a varying number of customers, the smart grid extends this
functionality by allowing a two-way flow of both electricity and information [3].

The upgrade from a traditional power grid to a smart grid requires careful consideration
of secure infrastructures and architectures [4]. Whenever new and highly sophisticated
systems of large capacity are introduced, vulnerabilities have to be taken into consider-
ation and must not be neglected. Thus, cyber-physical threats will be present and have
to be dealt with.

In a smart grid, all data from the communication network is processed at Supervisory
Control and Data Acquisition/Energy Management Systems (SCADA/EMSs) to con-
tinuously monitor the operating conditions of the grid. One major functionality of a
smart grid is state estimation, which is used to convert meter measurements into a
single system state using power flow models [5]. The resulting state estimate is then
used as a basis for various tasks, such as topology processing, electricity pricing and
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load shedding. It is thus needless to say, that the correctness of the state estimate is of
major importance for the stability of a smart grid.

1.1 Problem Statement and Objectives

As already mentioned, the correctness of the state estimate is utterly important for the
operation of a smart grid. In order to protect the state estimation against attacks, a
secure architecture must be deployed implementing concepts for prevention, detection
and resilience [6].

In recent years, several works have been published, proposing methods for both detection
of attacks, protection against attacks and creation of different types of attacks. The
problem with only implementing a protection-based approach is, that protection can
never be 100% secure at all times and therefore attacks may bypass the implemented
protection scheme. In order to mitigate this possibility, the implementation of a second
layer of defense featuring a detection-based approach, is important.

The recent increase in the popularity of machine learning led to various works considering
different machine learning-based algorithms and settings in order to detect attacks.
A major limitation of the current approaches is, that detection methods only classify
whether a grid is under attack or not. In order to take effective mitigation actions,
it would be more beneficial to detect whether any of the critical state estimation
variables are under attack or not. Moreover, many works hardly describe the details
of the generation of attacks, making it difficult to reproduce and verify the results.
The same applies to the documentation of simulations and machine learning models.
Although there already exist a few surveys on defense methods against attacks on state
estimation, to the best of the author’s knowledge no survey summarizing the large
amount of research works up to the time of writing this thesis, is available.

The need for a solution to these problems leads to the objectives of this thesis, which
are defined below.

• Extensive literature survey. A literature survey, investigating all different
types of attacks and defense methods, will be given. The objective of the literature
survey is to break down the large amount of research works available in the area
of attacks on state estimation and its corresponding defense methods in the power
grid into clearly defined categories. Additionally, all latest works up to the time
of writing will be considered.
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• Test framework. A clear and concise test framework is needed in order to
generate reproducible data sets and clearly document simulations. One major
component of the test framework will be the aforementioned data generator,
which will allow the generation of both measurement data as well as attacks,
featuring different attack strategies and energies. The test framework will be
implemented according to the concepts of object-oriented programming, making
it easily maintainable and extendable.

• Subset level. An algorithm will be presented that allows the construction of
attacks on a subset level by partitioning the state variables into the required
number of subsets and introducing errors into a few of them as specified by the
input of the algorithm. The proposed methods will allow the detection of attacks
on a subset level of state estimation variables.

• Machine learning-based detection methods. State-of-the-art machine learn-
ing models will be proposed for the detection of attacks on state estimation,
especially with regard to subset level detection. Due to the naturally occuring
temporal dependencies in the data, a special focus will be on Recurrent Neural
Networks (RNNs) using Long Short-Term Memory (LSTM) units. The perfor-
mance of the models in detecting attacks will be evaluated by varying the number
of subsets, the strength of attacks and different preprocessing methods.

• Implementation is open source. All software that is developed in the context
of this thesis will be made public under an open-source license model.

1.2 Description of the Remaining Chapters

Chapter 1 outlines the motivation and objectives of this thesis, gives a general intro-
duction and an overview of the remaining chapters.

All background, except of machine learning related background, is defined in Chapter
2. This chapter starts off by outlining cyber-physical systems with a special focus
on privacy and security and highlights a specific type of cyber-physical systems, the
so-called intelligent energy networks. Basic terminology used in the power grid and
the concept of both state estimation and False Data Injection Attacks (FDIAs) are
defined. The purpose of this chapter is to form a solid basis for the remaining parts of
this thesis.
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An extensive literature review, including all major works to the best of the author’s
knowledge up to the time of writing, is found in Chapter 3. Research works investigating
both the construction of FDIAs, the detection of FDIAs and the protection against
FDIAs are considered. Machine learning-based detection methods are covered in more
detail.

Chapter 4 starts by outlining the concept of machine learning, introducing basic
terminology and different machine learning schemes. The supervised learning models
Support Vector Machines (SVMs), Neural Networks (NNs) and Recurrent Neural
Networks (RNNs) are investigated, due to the use of these models in the practical part
of this thesis. Different types of preprocessing methods, as well as performance metrics
with a special focus on imbalanced classes, are highlighted.

In Chapter 5, an overview of the proposed test framework and its individual components,
is given. The practical generation of data sets based on real-world load data is described.
Furthermore, the construction of attacks targeting all state estimation variables or only
subsets of state estimation variables are explained. Different types of attack strength
are considered and analyzed.

Chapter 6 represents the practical part of this thesis, containing all conducted experi-
ments. First, the experimental setup and the proposed machine learning models are
described. FDIAs with different types of attack strength and energy are evaluated
and conclusions are drawn. To increase performance, multiple preprocessing methods
are cross-validated on the proposed models and the best methods determined. Each
proposed model and its best performing preprocessing model is then evaluated on
detecting attacks targeting different numbers of subsets.

Finally, Chapter 7 contains a summary of this thesis. The main achievements are
discussed and connections to the main objectives, that were defined in Chapter 1, are
drawn. This thesis concludes by discussing possible future work and new problems that
can be defined based on the research findings in this thesis.



Chapter 2

Background

This chapter gives an overview of the background required for the understanding of
the remaining part of this thesis. First, cyber-physical systems are investigated with a
focus on security and the construction of secure architectures. A special type of cyber-
physical systems, the intelligent energy networks, known as smart grids, are highlighted.
Subsequently, basic terminology used in the power grid is defined and the concept of
state estimation introduced. Static state estimation for both AC and DC power flow
models is explained. The need for a BDD is emphasized and a specifically fatal type
of attacks on state estimation, the so-called False Data Injection Attacks (FDIAs) are
mentioned. Concrete examples are given throughout the entire chapter.

2.1 Cyber-Physical Systems

Technology is constantly finding its way into more and more areas of everyday life.
The World-Wide Web (WWW) made it possible to connect both devices as well as
human beings from all over the world, improving collaboration, sharing ideas and
working together more efficiently and faster. Technological progress such as the wireless
communication revolution, the possibility to manufacture highly powerful sensors and
chips at low cost and the improvement in energy storage technology, paved the path for
a new generation of systems, the so-called cyber-physical systems.

Cyber-physical systems bridge the gap between the physical world and the cyber-
world, allowing physical systems to be controlled, monitored and integrated by a
computing environment. According to Lee in [2], cyber-physical systems have the
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potential to revolutionize IT development over the next few decades, improving and
enabling applications in medical systems, transport and autonomous systems such
as autonomous driving, energy, safety, public infrastructures and more. Jazdi [7]
investigated the influence of cyber-physical systems in the context of Industry 4.0,
where automated systems can help to improve both efficiency as well as security of
certain manufacturing processes. Although bridging the gap between physical and
digital systems enables new functionality, it must not be forgotten to also consider both
security and privacy when drafting and implementing such new systems. As stated by
Cardenas et al. in [8], cyber-physical systems require additional, fundamentally different
security considerations compared to traditional IT systems. One example for a major
challenge is the process of patching software and the frequent installation of updates
in control systems. Due to the fact that taking a system offline could require several
months of preparation, upgrades have to be scheduled carefully. Another challenge is
dealing with the vast amount of legacy systems that are usually still present in large
industrial control installations. On the positive side, however, network dynamics in
control systems are usually simpler, thus making it easier to install network intrusion
detection systems due to a more static topology.

The next section discusses a special type of cyber-physical systems, namely the smart
grid. As stated by Baheti et al. [9], smart grid and renewable energy research is in high
public interest. One of the major goals in this field is the reduction of energy costs
by improving energy efficiency. The authors also forecasted that electricity demand is
expected to increase by more than 75% until 2030.

2.1.1 Smart Grid

Energy is a vital part of our modern society and its absence can lead to severe socio-
economic damage. As described in [10], economic growth and energy consumption
rise proportionally. Moreover, power plants based on renewable energy such as solar
power, wind, water and biomass, are deployed more frequently, thus causing a dynamic
behaviour of power flow in the power grid [11]. In addition to dynamic generation,
electric vehicles and ever more sophisticated charging processes are creating dynamic
demands. To ensure stability in the power grid, the balance between supply and demand
has to be maintained at all times. In order to cope with these upcoming challenges,
a new type of grid, namely the smart grid, has formed. Whereas the purpose of the
traditional power grid was to transfer energy from a few central generators to a varying
number of customers, the smart grid enhances this functionality by enabling a two-way
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flow of both electricity and information [3]. This enhancement makes it possible to
construct more dynamic, distributed and automated energy delivery networks. One key
feature of smart grids is that they will be self-healing [12]. In the case of a transmission
line interruption, power flow can be automatically redirected and adjusted, therefore
preventing a power outage.
According to Fang et al. [3], the smart grid can be divided into the following three
fundamental systems, which give a high-level overview of the smart grid from a technical
point of view:

1. Smart infrastructure system. The smart infrastructure system is the base
layer of the smart grid, providing an infrastructure for energy, information and
communication flow. The first component, the smart energy subsystem, consists
of advanced electricity generation, delivery and consumption, whereas the task
of the smart information subsystem is to provide advanced metering, monitoring
and management information. One major component of the smart information
subsystem is the AMI [13], which gathers all necessary information and data
from the smart grid by use of smart meters and sensors. The latter, the smart
communication subsystem, is responsible for a reliable communication connectivity
between the devices in the smart grid.

2. Smart management system. The smart management system provides core
management services and functionalities. By implementing new complex and
sophisticated management applications and algorithms, this system can allow the
smart grid to become even more intelligent.

3. Smart protection system. The smart protection system addresses grid infras-
tructure failures due to various reasons, such as user errors, natural disasters
or cyber-physical attacks. Both privacy as well as security aspects have to be
taken into consideration, when developing applications for the smart protection
system. Moreover, IDSs and Intrusion Prevention Systems (IPSs) are part of this
fundamental building block. Because the focus of this thesis is on security and
protection, the smart protection system will be investigated in more detail below.

To avoid power outages which may lead to severe socioeconomic damage, protection is
of utmost importance. An example is given by Moslehi et al. in [14], who stated that
the annual cost of outages in the United States in 2002 was estimated to be around
79 billion dollars, whereas the total retail revenue was 249 billion dollars. Another
example of the past is the cascading blackouts incident on the East Coast in 2003,
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which caused around 50 million people to be without power for up to several days [15].
Due to the complex nature of a smart grid, a smart protection system needs to account
for numerous different attack vectors in order to provide protection for all parts of the
smart grid.

Fang et al. [3] differentiated between the following two parts in smart protection systems:
i) system reliability and failure protection and ii) security and privacy.

System reliability refers to the ability of a system to operate under specified conditions
for a predetermined amount of time. One concept that may have an impact on reliability
is distributed generation, which has been investigated in several works. In [16], Chen
et al. introduced the concept of microgrids to minimize the likelihood of cascading
failures and effectively utilize distributed generation sources. The reliability of the
measurement system, which is used to monitor the operating conditions of the smart
grid, is important as well.

When it comes to failure protection, it is both necessary to protect (i.e., prevent) the
system from becoming faulty, as well as being able to identify and diagnose a failure
and recover once a failure occurred. At this point the self-healing aspect of the smart
grid comes into view again. In [17], Chertkov et al. developed a concept based on
worst configuration heuristics to predict weak points of the power grid that need to be
protected. In [18], Tate et al. made use of Phasor Measurement Units (PMUs), which
are becoming increasingly widespread, in order to detect line outages and estimate the
pre-outage flow on the outaged line. By dividing the power grid into smaller islands,
the previously mentioned microgrids, Rahman et al. [19] proposed an architecture that
allows the smart grid to become more resilient and enables the normal operation within
a microgrid even during an outage.

Another major research area in the smart grid is security and privacy. On one hand the
advanced infrastructure enables the use of better methods to defend against attacks,
but on the other hand makes the system more vulnerable. Security and privacy have to
be considered both in information metering and measurement as well as information
transmission. One popular target for attackers are smart meters. If a smart meter
is compromised, it may be easy for an attacker to manipulate meter readings. On a
small scale, this could be exploited to communicate a lower energy consumption to the
system operator [20]. In [21], Anderson et al. gave an example with much more impact,
where they assumed, that an arbitrary city installs millions of smart meters with bad
security design, which are controlled by a single head-end. An attacker that is able
to compromise the head-end may send a command to the smart meters, instructing
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Table 2.1 Estimated maximum latency per communication type [22].

Maximum Latency Communication Type
<4ms Protective relaying
Sub-seconds Wide area situational awareness monitoring
Seconds Substation and feeder supervisory control and data acquisition (SCADA)
Minutes Monitoring noncritical equipment and marketing pricing info
Hours Meter reading and longer-term pricing info
Days/Weeks/Months Collecting long-term usage data

them to disconnect the power supply and change the crypto keys to some value that
is only known to the attackers. Both examples illustrate the impact of attacks on
cyber-physical systems such as the smart grid and the necessity for proper security
and privacy implementations. Baumeister [12] stated that the most important security
objective of the smart grid is availability, followed by integrity and confidentiality. The
security objective availability is broken down into more detail in Table 2.1, where the
maximum allowed latency per communication type is displayed, as specified by the
National Institute of Standards and Technology (NIST) [22].

Baumeister [12] split smart grid security into five categories, which he also used as
classification for research work in this area. The five categories are outlined below:

1. PCS security. Process Control Systems (PCSs) are used to monitor and control
physical aspects of the smart grid. Due to the fact that PCSs have not been
connected to the internet in traditional power networks, security was not of major
concern. This needs to be changed when it comes to a smart grid. The most
important objectives of a PCS are availability and integrity, because a working
and available PCS is the most important requirement for a functioning electric
power system. Due to the added overhead when implementing confidentiality, this
security objective is of least importance. Although different kind of PCSs exist, the
most commonly used is the Supervisory Control and Data Acquisition (SCADA)
system.

2. Smart meter security. Smart meters are electronic versions of the traditional
power meters that communicate energy usage back to the energy suppliers at
regular intervals. Due to the fact that they are installed at a customer’s site, it
is harder to enforce security because physical access to the smart meter can be
gained easily. Tampering smart meters for monitory gain is a prominent attack
vector. McDaniel et al. stated in [20], that energy amounting to approximately
six billion dollars was stolen from the U.S. electric power system. Confidentiality
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and integrity are the most important security objectives in this area. Equally
important is the privacy aspect. Methods to estimate personal information based
on power usage information have already been developed [23].

3. Power system state estimation security. State estimation is used to model
the current state of the power system in order to make decisions and take
appropriate actions. Correct state estimation is needed to take correct mitigation
actions in case of power outages. Similar to PCS security, availability and integrity
are the most important security objectives, whereas confidentiality is neglected
due to the additional communication overhead. In practice, state estimation is
implemented as a module in PCSs, which are usually equipped with an additional
BDD that filters out incorrect and faulty measurements. It has been shown
however, that there exist specific attacks that can bypass this BDD [24]. In later
parts of this thesis, different attacks and corresponding detection and protection
schemes are investigated.

4. Smart grid communication protocol security. The purpose of this area is
to develop and implement security requirements for the communication protocols
used in smart grids. As mentioned previously in this section, many different
devices need to interact with each other to transmit metering, monitoring and
management information. The security objectives depend on the type of devices
that are communicating. As stated by Lu et al. [25], it is important to ensure
network availability, data integrity and information privacy. They proposed an
authentication protocol design and intrusion detection for a more secure and
private information transmission.

5. Smart grid simulation for security analysis. The last section includes smart
grid simulation. The physical power grid cannot be modified arbitrarily, thus
simulation methods are used to develop and test different algorithms and methods
and analyze security aspects. One major challenge is the creation of a simulation
that is as close to the real-world behaviour of smart grids as possible. Another
challenge is that specific components may act similar in the simulation, but have
unpredictable behaviour in real-world smart grids, which are hard to model in
the simulation.
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Figure 2.1 Structure and configuration of an electric power system [5].

2.2 Power Grid

Before introducing the concept of state estimation, basic terminology and methodology
used in power grids must be defined. This section provides an overview and concludes
by showing how a power grid can be transformed into a graph-based representation,
which is oftentimes required in order to apply graph-theoretical concepts.

The basic structure and configuration of an electric power system, as usually implemented
by utility companies all over the world, is illustrated in Figure 2.1 [5].

As stated in [5], the transmission network is used to transfer power from the power
generators to the distribution network. To minimize losses during power transmission
due to lossy transmission lines, electricity that is generated by the power generators
in the range of several kilovolts, typically 6 to 20 kV, is immediately transformed to
voltages in the range of several hundred kilovolts. Large end-consumers are connected
directly to the transmission network, whereas small customers are connected to the
distribution network. In both cases, voltage transformers are used to convert the high
voltages in the transmission network to smaller voltages. Voltages in the distribution
network, usually around 15 or 20 kV, are lower in order to be less dangerous due to the
use in urban areas. In order to maintain stability in the power grid, it has to be ensured
that the frequency is kept at a fixed value (e.g., 50 Hertz in the European power grid)
and only deviates within a specified range. This frequency must be maintained at all
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Figure 2.2 IEEE 30 bus test case [27].

times in the entire power grid, ranging from generators at power generation plants up
to computers and coffee machines of end-consumers.

As mentioned previously in Section 2.1.1, new algorithms and concepts are often tested
using simulations of the power grid. Due to the fact that exact models of the power
grid are often hard to obtain for researchers, the University of Washington created a
Power Systems Test Case Archive [26], containing different power flow test cases. These
test cases are broadly used in various research works as basis for simulations. It is
further beneficial to use similar power flow test cases, as the performance of different
algorithms can be compared against each other. All power flow test cases are available
in different standardized data formats. Figure 2.2 [27] displays the broadly used IEEE
30 bus test case, which represents a portion of the American Electric Power System as
of December, 1961. This test case will also be used later in this thesis.

By analyzing Figure 2.2, it can be seen that the electric network consists of a set of
branches and buses, whereby each branch is connected to two terminal buses, which
may be again connected to one or more different branches in the network. If one of
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the terminal buses is connected to ground, the corresponding branch is referred to as
shunt branch. Regarding the previously mentioned power flow test cases, all electrical
parameters of the branches and buses are known and documented. In [28], all available
parameters of the power flow test cases are found, according to the IEEE Common
Data Format.

Another important concept in electric systems is the power flow problem. As described
in [5], the power flow problem is defined as finding the steady-state operating point of
the electric power system. It is the most basic tool for security analysis during the daily
grid operation for power grid providers. By continuously calculating the steady-state
operating point using measurements in the power grid, the power grid provider can
easily identify unacceptable voltage deviations and component or branch overloadings.
Knowledge of load or generation at all buses, except the reference bus, is required. As
mentioned by Wood et al. [29], for the ease of computational complexity, power flow
studies rely on a single-phase per-unit representation of the power grid instead of the
usual three-phase Alternating Current (AC) network. This is only possible when the
system is operating in a balanced mode, meaning that the current of all phases is shifted
by ±120° and the voltage is the same.

It is often beneficial to convert the power grid model to a graph-based representation.
This is done by replacing the branches with either undirected or directed edges and
the buses with nodes. Considering the power grid as a graph enables the use of graph-
theoretical approaches, which can help in more efficiently finding solutions to problems
such as topological observability analysis [30] or the identification of weak spots [17], as
mentioned earlier in Section 2.1.1. Additional benefits of displaying the power grid as a
graph will be discussed in Chapter 3.

2.3 State Estimation

State estimation in the power grid dates back until 1970 when it was first introduced
by Schweppe in [31]. Since then it has become a core functionality for supervisory
control and planning in electrical power grids [32], usually being implemented in SCADA
systems. State estimation has a long history in transmission networks, while further
applications and developments are still under research. As mentioned by Huang et al.
[32], research during the last four decades was mainly focused on static state estimation.
This was due to the fact that monitoring systems were only able to take non-synchronized
measurements every few seconds (e.g., 2-4 seconds) and state estimation was run only
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every few minutes. Because of that limitation, this type of state estimation is considered
to be static and not dynamic.

As technology progressed, more sophisticated measurement technologies such as the
Phasor Measurement Unit (PMU) were developed and their applicability for state
estimation investigated. PMUs are synchronized to a Global Positioning System (GPS)
clock and allow a more timely view of the dynamics of a power grid. Zhou et al. in [33]
mentioned, that PMUs can be used to measure the system state instead of estimating it.
One difficulty of this approach is the large number of PMUs that have to be deployed,
thus several authors such as Zhou et al. [33] and Phadke et al. [34] investigated the
advantages of utilizing PMUs to improve the results of state estimation.

Although this thesis will focus on static state estimation, it must be mentioned that
other concepts of state estimation, which might play an important role in a smart grid
that is becoming ever increasingly dynamic [32], were proposed too. An example for a
dynamic state estimation architecture is forecasting-aided state estimation, which not
only relies on all measurements taken as a single snapshot at a specific time, but also
provides a recursive update of the state estimate to track changes that occur during
normal system operation. Multiarea state estimation tries to reduce computational
complexity by dividing one large area into several smaller ones, providing several
local solutions for several small areas which are then combined into one global state
estimate. Another active research area is distribution system state estimation, where
state estimation is applied to the distribution network of the power grid which poses an
inherently different nature than the transmission network.

In previous parts, different types of state estimation architectures were discussed. The
next part explains the concept of static state estimation in the power grid and gives a
formal introduction.

A smart grid consists of an AMI, multiple power plants and substations as well as
communication networks to communicate sensor readings, control information and
distributed power generation. All data from the communication network is then
processed at SCADA/EMS to continuously monitor the operating conditions of the
power grid. Figure 2.3 illustrates the relationship between the single elements of a
SCADA/EMS.

Data is collected by Remote Terminal Units (RTUs) and, more recently, Phasor Data
Concentrators (PDCs). The topology processor keeps track of the current topology
of the power grid. To be able to perform state estimation, the network has to be
observable, which is determined by the observability analysis component. The bad-data
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Figure 2.3 Elements of a SCADA/EMS [32].

processor removes faulty or incorrect measurements prior to state estimation. State
estimation is then used to convert meter measurements, that are often redundant by
nature, into a single system state using power flow models.

The system state of the power grid can be entirely described by the voltage magnitudes
and phase angles at every bus and the topology and impedance of the entire system
[32]. The following list gives an overview of the most common types of measurements
in a power grid, as illustrated in [5]:

1. Real and reactive power flows measured at buses.

2. Net real and reactive power injections measured at buses.

3. Voltage magnitudes measured at buses.

4. Current magnitudes (i.e., ampere flows) measured at buses.

The formal solution to a state estimation problem differs when considering either an
AC or a Direct Current (DC) network. Next, static state estimation in AC networks is
described followed by static state estimation in DC networks. A short example using a
three bus system for DC state estimation is given.
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2.3.1 AC State Estimation

Considering an N -bus power grid, the state vector consists of n = (2N − 1) state
variables, resulting in a vector of form x = [θ2, . . . , θN , |V1|, . . . , |VN |]T , where θi are the
phase angles and Vi the voltage magnitudes at the buses. θ1 is the phase angle of the
reference bus which is known and usually set to zero radians. To be able to estimate
the state x, a set of measurements z = [z1, . . . , zm]T has to be obtained. If m > n, that
is the number of measurements is larger than the number of state variables, the system
is overdetermined and a solution can be found. The relationship between the state
vector and the vector of measurements is given by the following system of nonlinear
equations [31]:

z = h(x) + e (2.1)

where hi(x) is the nonlinear function relating measurement i to the true state vector x

and e = [e1, . . . , em]T is the vector of measurement errors. The measurement errors are
usually considered to be independent, normally distributed and with an expected value
of zero. The following statement summarizes these characteristics:

Cov(e) = E[e · ET ] = R = diag{σ2
1, σ2

2, . . . , σ2
m} (2.2)

In the traditional approach by Schweppe in [31], a Weighted Least Squares (WLS)
estimator is used to estimate the state vector x̂ from the measurement equation in
2.1. Because the measurement errors are considered to be normally distributed, the
WLS estimator is equivalent to a maximum likelihood estimator. The remainder of this
section outlines the approach of solving the AC state estimation problem. The proof
and mathematical details are omitted for brevity, but can be found in [31].

The WLS estimation problem can be formulated as follows:

J(x) = argmin
x

m∑
i=1

[zi − hi(x)]2
σ2

i

(2.3)

which can be rewritten to a more compact form by placing all hi functions and zi

measurements in a vector:
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J(x) = argmin
x

[z − h(x)]T W [z − h(x)] (2.4)

where W is a diagonal matrix whose elements are reciprocals of the meter errors σ2
i . The

elements of W can be thought of as weights assigned to individual meter measurements.
To find a solution to the optimization problem in Equation 2.4, the following optimality
conditions have to be satisfied:

∂J(x)
∂x

= 0 =⇒ HT (x)W [z − h(x)] = 0 (2.5)

where

H(x) = ∂h(x)
∂x

(2.6)

is the m× n Jacobian matrix of the first-order partial derivatives of h(x) with regard
to x.

Because Equation 2.4 is nonlinear due to the AC state estimation, the solution cannot
be found in closed form but has to be obtained in an iterative approach. The most
common way is to apply the Newton-Raphson (NR) iterative process, as described
in [31] and [35], to improve the estimate x at every iteration k and converge to the
solution. The equation that needs to be solved at every iteration k is given by:

G(xk)∆xk = HT (xk)W [z − h(xk)] (2.7)

where xk describes the value of x at each iteration k and

G(x) = HT (x)WH(x) (2.8)

is known as gain matrix. Before the process is repeated, the estimated state vector is
updated:

xk+1 = xk + ∆xk (2.9)

Equation 2.7 is also known as normal equation.
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After each iteration, the norm of the residual ||z− h(xk)||2 is evaluated. Once the norm
of the residual falls below a predefined value, that is for some δ > 0, ||z−h(x(j))||2 ≤ δ,
the process is terminated and the estimator is considered to be converged.

If x̂ defines the converged state estimation vector, the vector of measurement residuals
after WLS state estimation is given by the following equation:

r = z − ẑ = z − h(x̂) (2.10)

There exist several methods to reduce the computational complexity of solving the
normal equation. One of them is dividing the problem into the active and reactive
subproblem, which leads to the decoupled estimators, as described by Garcia et al. in
[36] and Wang et al. in [37]. Another option is to utilize the sparseness of the matrices
G and H and implement better suited iterative solutions, such as the Krylov subspace
methods [32].

At the beginning of the iterative process, the state vector x is usually initialized using
a flat voltage profile, i.e., Vi = 1 p.u. (per unit) and θi = 0.

2.3.2 DC State Estimation

According to Monticelli in [38], state variables can be defined as any set of variables that
fulfill the following two characteristics: i) state variables describe the system entirely,
meaning that when all state variables are known, all other remaining variables can be
derived using the network model equations; ii) if any of the state variables is removed
from the set, the property in i) does not hold. Although the author stated that any
measurement variable can be used as a state variable, voltage magnitudes and reactive
power flows usually are of little concern in DC state estimation. Thus, only phase
angles at the buses are considered as state estimation variables, similar to Liu et al. in
[24]. The following list summarizes the criteria for DC state estimation [39]:

• The linear DC approximation model for the measurement equations is used.

• All system branches have an impedance of 1.0j p.u. and all bus voltage magnitudes
are close to 1.0 p.u..

• The state vector consists of only phase angles, that is x = [θ2, . . . , θN ], where θ1

is the phase angle of the reference bus and is set to zero radians as usual.
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• Voltage angle differences between branches are small, such that sin(δθ) ≈ δθ.

• Only real, as opposed to real and reactive, measurements are considered.

• All shunt elements and branch resistances are neglected.

Due to the aforementioned criteria, the nonlinear function in Equation 2.1 can be
rewritten into the following linearized measurement model:

zA = HAAθ + eA (2.11)

where zA includes real power flows and power injections measured at buses, HAA is
a function relating the measurements to the state estimation variables consisting of
branch reactances only, and eA is the vector of measurement errors, as already described
in AC state estimation.

Because of these assumptions, the functions h(x) in Equation 2.4 are now linear, too.
Thus, a solution to the optimization problem can be found in closed form as opposed
to the iterative approach in AC state estimation. By satisfying the conditions stated in
Equation 2.5, the solution is given by:

x̂ = (HT WH)−1HT Wz (2.12)

Mathematical proof and numerical details on how to solve the optimization problem
are omitted for brevity, but can be found in [29]. It has to be noted, that Equation 2.12
only holds true, when the system is overdetermined, that is m > n. When the system
is completely determined, the estimation problem reduces to the simplified form

x̂ = H−1z (2.13)

When the system is underdetermined, that is m < n, the closed-form solution leads
to a different objective. In state estimation, underdetermined systems are usually not
solved, but pseudo-measurements are added to the measurements in order to make the
system completely determined or overdetermined.

In addition to the estimate of the vector, an estimate ẑ of the measurement vector can
be obtained by:
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Figure 2.4 Topology of the 3 bus system [29].

ẑ = Hx̂ (2.14)

The vector of residuals is defined as:

r = z − ẑ = z −Hx̂ (2.15)

Next, a simple state estimation problem with redundant measurements using a 3-bus
system, similar to the one described in [29], is given.

Consider the 3-bus system illustrated in Figure 2.4, where flow meters are placed on each
branch. The number of measurements is m = 3. The state variables are represented by
the phase angles at the buses except the reference bus, i.e., x = [θ2, θ3]T , resulting in
n = 2. Because of m > n, the DC state estimation problem is overdetermined and can
be solved in closed form. Let’s assume that bus 3 is the reference bus with a known
phase angle set to zero radians, i.e., θ3 = 0. The branch reactances, given a 100 MVA
base, are per unit and defined as follows:

X12 = 0.4, X13 = 0.8, X23 = 0.5

In order to derive the measurement matrix H, the measurements have to be written
as a function of the state variables θ1 and θ2. Because θ3 is assumed to be zero, this
results in the following set of equations:
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M12 = f12 = 1
0.4(θ1 − θ2) = 2.5θ1 − 2.5θ2

M13 = f13 = 1
0.8(θ1 − θ3) = 1.25θ1 − 1.25θ3 = 1.25θ1

M32 = f32 = 1
0.5(θ3 − θ2) = 8θ3 − 8θ2 = −2θ2

(2.16)

H can now be constructed using the previously determined coefficients:

H =


2.5 −2.5
1.25 0

0 −2


The matrix of meter errors R and the corresponding matrix W is:

R =


σ2

M12

σ2
M13

σ2
M32

 =


0.0001

0.0001
0.0001



W = R−1 =


10000

10000
10000



Since everything is written in per unit, the measurements have to be written in per unit
as well. This is achieved by dividing the measurement value by the base load, which is
100 MVA in this case. Populating Equation 2.12 with the given values results in the
following least-squares estimate of θ1 and θ2:
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x̂ =


 2.5 1.25 0
−2.5 0 −2



10000

10000
10000


−1 

2.5 −2.5
1.25 0

0 −2




−1

×

 2.5 1.25 0
−2.5 0 −2



10000

10000
10000


−1 

0.62
0.06
0.37


=

 0.0571
−0.1886



Now that the state estimation variables are obtained, the power system is completely
describable and power flow in each transmission line as well as net generation or load
at each bus can be calculated. Calculating power flows using the state variables results
in the following:

M12 = 61.4MW, M13 = 7.14MW, M32 = 37.7MW

The deviation (e.g., M12 is 0.62 instead of 0.6) is due to the slight errors in the
measurements that were assumed during state estimation.

As could be seen, static state estimation is used to convert redundant and sometimes
defective meter measurements into a single, consistent system state. The next section
introduces standard methods to deal with bad data such as incorrect and faulty
measurements.

2.3.3 Bad Data Processing

Meters in a power grid may be analogue or digital and may contain measurement
errors according to their accuracy. Moreover, meter readings may be subject to noise
when being transmitted via the telecommunication channels to the central management
location. Sometimes, even meter connections may be changed without report of
those changes to the supervisory system, thus yielding unexpected results. All those
measurement errors occur naturally and have to be accounted for. As stated in [5],
accuracy and reliability of the state estimator depend on the quality of the measurements.
In order to obtain correct results, bad measurements have to be filtered out prior to
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state estimation. This is usually done by a so-called bad-data processor. In the case of
WLS state estimation, bad data is processed after state estimation by analyzing the
measurement residuals. In general, it is distinguished between bad data detection and
bad data identification, whereby the former detects if bad data is present and the latter
classifies which measurements are faulty. Moreover, it has to be noted, that bad data
detection and identification is only possible when redundant measurements exist. If
m = n, there are no redundant measurements and the removal of a single measurement
would render the system unobservable.

Different bad data processing methods exist. Two of the more prominent methods for
detecting and identifying bad data after the WLS state estimation, the χ2 test and
the Largest Normalized Residual (rN

max) test as described in [40], are discussed in more
detail below. The former is strictly used for bad data detection, whereas the latter can
also be used for bad data identification. Both methods are applicable to AC as well as
DC state estimation. Additionally, there exist methods that deal with bad data during
the state estimation process, as described by Merrill et al. in [41].

Bad Data Detection

The χ2 test is based on the assumption that an index J(x̂) follows a Chi-square
distribution with m − n degrees of freedom, when meter errors are assumed to be
normally distributed and no bad data is present. The computed value of J(x̂) is then
compared to a constant calculated from the Chi-square distribution. If J(x̂) exceeds the
calculated value, it is assumed that bad data is present. Equations 2.10 and 2.15 show
the calculation of the measurement residuals. The χ2 test can then be summarized by
the following procedure:

1. Solve the state estimation problem and compute the objective function J(x̂):

J(x̂) =
m∑

i=1

[zi − hi(x̂)]2
σ2

i

where x̂ is the estimated state vector of size n × 1, m the total number of
measurements, hi(x̂) the estimated measurement i, zi the true measured value of
measurement i and σ2

i the variance of the measurement i.

2. Determine the constant χ2
(m−n),p by looking up the value from the χ2 distribution

table, given the probability p and the degrees of freedom m− n.
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3. Test if J(x̂) ≥ χ2
(m−n),p. If yes, bad data is assumed to be present by a probability

of p. If not, it is assumed that the measurements are free of bad data.

Bad Data Identification

dThe Largest Normalized Residual (rN
max) test gives the advantage that bad data cannot

only be detected, but also identified. By normalizing the residuals it can be shown, that
the largest residual corresponds to the bad data if a single bad measurement is present
in the measurement set. This also applies to multiple bad measurements, if none of
them interact with each other. The procedure of detecting and identifying single or
multiple non-interacting bad data is described as follows:

1. Solve the state estimation problem and obtain the measurements residual vector
ri ∈ Rm according to Equation 2.10 in the case of AC state estimation or Equation
2.15 in the case of DC state estimation.

2. Compute the normalized residuals:

rN
i = |ri|√

Ωii

, i = (1, . . . , m)

where Ωii is the iith element of the residual covariance matrix Ω.

3. Find the largest element rN
k among all rN

i , i = (1, . . . , m).

4. If rN
k is larger than a predefined threshold c, the kth measurement is assumed

to be bad data. Remove the measurement from the measurement set and repeat
with step 1. Else, stop, no more bad data will be suspected. According to [10], c

is usually chosen to be 3.

Classification of Bad Data

Bad data can exist as either single bad data or multiple bad data. Single bad data is
present, if and only if exactly one measurement in the set of measurements is faulty.
Otherwise, multiple bad data is present, which can furthermore be divided into non-
interacting and interacting as well as conforming and non-conforming bad data. To be
able to distinguish between the aforementioned types, the residual sensitivity matrix S

is needed. Following, only the calculation of S based on the linearized DC measurement
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model is defined, because it is sufficient for the remaining part of this thesis. The
derivation is omitted for brevity but can be found in [10].

S = (I −K) = (I −H(G)−1HT W )
= (I −H(HT WH)−1HT W )

(2.17)

The following listing summarizes the effectiveness of the rN
max test with regard to the

different types of bad data:

• Single bad data. When single bad data is present, the test will correspond to
the bad measurement.

• Non-interacting multiple bad data. It is said that measurements i and k are
non-interacting when Sik ≈ 0. In this case, the test is able to identify both faulty
measurements sequentially, i.e., one bad data per iteration.

• Interacting, non-conforming multiple bad data. If Sik is very large, it is
said that both measurements are interacting. The test is still able to detect bad
data correctly, if the errors in measurements i and k are not consistent with each
other.

• Interacting, conforming multiple bad data. In this special case the test
may fail to identify either of the both.

It has to be noted, that the rN
max test only gives good and reliable results when

the measurement residuals are not strongly correlated. One approach to tackle the
issue of strongly correlated measurement residuals is to use the Hypothesis Testing
Identification (HTI) method, as elaborated by Mili et al. in [42] and [43], who tried to
distinguish between good and bad measurements by estimating the measurement errors
directly, instead of relying on the derived measurement residuals.

2.4 False Data Injection Attacks

In Section 2.3, the concept of state estimation and its importance for modern utility
companies was explained. Moreover, traditional bad data processing was investigated,
outlining two prominent methods for both bad data detection and bad data identification.
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This section introduces a specific type of attacks, namely the False Data Injection
Attacks (FDIAs), targeting state estimation in electric power grids. The first one to
come up with FDIAs was Liu et al. in [24], who showed that there exist specific scenarios
where carefully constructed structured attacks can bypass the traditional BDD. The
authors focused on constructing and testing FDIAs on state estimation using the DC
power flow model. In general, research works in this area are divided upon the DC and
AC power flow model, whereby some authors focus only on one area and others on both.
The differences in assumption regarding those two power flow models were explained
earlier in Section 2.3.

Although there already existed a variety of methods to detect and identify bad data, Liu
et al. [24] were able to construct an attack that bypasses all of those approaches. Despite
the variation in implementation of bad data detection and identification methods, they
all rely on the same mathematical concept: comparing the normalized measurement
residuals to a specific threshold, i.e., ||z −Hx̂|| > λ. This property can be exploited in
a way to bypass all approaches based on this method. Liu et al. grouped FDIAs into
the following two attack goals and attack scenarios:

G1 Goal I - Random false data injection attacks. Using random FDIAs, the
attacker tries to find any attack vector that leads to a wrong state estimation.
This one is usually easier to construct.

G2 Goal II - Targeted false data injection attacks. When constructing targeted
FDIAs, the attacker aims to find an attack vector that introduces an error into
specific (targeted) state estimation variables. Although this attack is harder to
construct, it might potentially cause more damage.

S1 Scenario I - Limited access to meters. In this scenario, the attacker is limited
to a specific amount of meters. This might be due to physical constraints (e.g.,
video camera surveillance) or other means of protection. Meters in substations
may be harder to access than meters of end-consumers.

S2 Scenario II - Limited resources available to compromise meters. The
attacker is limited in its resources (e.g., computational power) to compromise only
k out of m meters. In this scenario, the attacker may also be interested in finding
the minimum number of meters that need to be compromised, given the limited
resources available.

Next, the basic principle of constructing FDIAs is outlined, whereas the specific con-
struction of FDIAs with regard to the previously listed goals and scenarios is omitted



2.4 False Data Injection Attacks 27

for brevity, but can be found in [24]. Different types of attacks with regard to certain
constraints, objectives and applications will be discussed in Chapter 3.

Let z = (z1, . . . , zm)T be the vector of original measurements and za = (za1, . . . , zam)T

the vector of observed measurements that may contain malicious data. The vector of
observed measurements can be constructed by adding an attack vector a = (a1, . . . , am)T

to the vector of original measurements as follows: za = z + a. In order to construct an
attack vector that can bypass the traditional bad measurement detection, the attacker
must know the power grid topology and must know the measurement matrix H. With
regard to Liu et al. in [24] the attack vector can then be constructed according to the
following theorem:

THEOREM 3.1 [24]. Suppose the original measurements z can pass the bad
measurement detection. The malicious measurements za = z + a can pass
the bad measurement detection if a is a linear combination of the column
vectors of H, that is, a = Hc.

Let the malicious vector of state variables x̂bad be as follows:

x̂bad = (HT WH)−1HT Wza = (HT WH)−1HT W (z + a)
= x̂ + (HT WH)−1HT Wa

(2.18)

Based on THEOREM 3.1, it can then be proven that the l2-Norm of the measurement
residuals of the original measurements is the same as the l2-Norm of the measurement
residuals of the malicious measurements, if a = Hc, where λ is the detection threshold
(proof omitted for brevity):

||za −Hx̂bad = ||z −Hx̂|| ≤ λ (2.19)

The nonzero vector c reflects the error that is introduced to the state estimation variables
x̂bad, that is x̂bad − x̂ = c.

This basic method of constructing FDIAs is also used in the practical part of this
thesis. Thus, for better understanding, an example using real values built on the already
defined 3 bus system depicted in Figure 2.4, is given. For clarity, the variables are
summarized again below.
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Let the vector of original measurements, as specified in Section 2.3.2, be z = [0.62, 0.06, 0.37]T .
The measurement matrix H and the matrix of the corresponding meter errors W is
given as follows:

H =


2.5 −2.5
1.25 0

0 −2

 , W =


10000

10000
10000


Performing DC state estimation, this results in the state estimation vector x̂ =
[0.0571,−0.1886]T . The state estimation variables represent the phase angles at buses 1
and 2 in radians. Keep in mind that the full topology and the matrices H and W are
known to the attacker and that the attacker can tamper meter measurement from all
m meters.

The attacker now wants to introduce an error of 0.2 radians to θ1 and 0.4 radians to θ2,
thus c = [0.2, 0.4]T . Next, the attack vector a can be constructed, which is then added
to the set of original measurements z, resulting in the set of malicious measurements za.

a = Hc =


2.5 −2.5
1.25 0

0 −2


0.2
0.4

 =


−0.5
0.25
−0.8



za = z + a =


0.62
0.06
0.37

 +


−0.5
0.25
−0.8

 =


0.12
0.31
−0.43


Below, the result of DC state estimation according to Equation 2.18 using the malicious
set of measurements is shown. As can be seen, subtracting the original state estimation
vector x̂ from the malicious state estimation vector x̂bad gives the vector of errors c.

x̂bad =
0.2571
0.2114

 , c = x̂bad − x̂ =
0.2571
0.2114

−
 0.0571
−0.1886

 =
0.2
0.4


As can furthermore be seen, the values of za are different from the values of z. However,
calculating the l2-norms as specified in Equation 2.19, gives the same result for both
the correct measurements as well as the attacked:
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||za −Hx̂bad|| = 0.0146
||z −Hx̂|| = 0.0146

This shows that the traditional BDD methods described in Section 2.3.3 are not able
to detect the malicious measurements and the FDIA could be executed successfully.

Based on these findings, additional approaches were considered and developed by several
authors who tried to tackle this shortcoming in traditional BDDs. Chapter 3 will give
an overview on the state-of-the-art and investigate the works in more detail.



Chapter 3

Related Work

In the previous chapter, state estimation and its importance for the modern power
grid was explained. Moreover, the concept of bad data processing was discussed and
it was shown that there exists a specific type of attack, the False Data Injection
Attacks (FDIAs), that can bypass the traditional Bad Data Detector (BDD).

Although practical implementations in this work mainly deal with the detection of
FDIAs, this chapter gives a thorough investigation of related work in the areas of FDIA
construction, detection and prevention, because all of these areas are being actively
researched at the time of writing and proposed approaches often overlap between these
areas. A special focus is on methods that utilize machine learning or deep learning
in order to detect FDIAs. Furthermore, limitations of current detection methods
are discussed. This chapter concludes by discussing the scope of this work and the
improvements over the state of the art with regard to the detection of FDIAs.

Tables 3.1, 3.2 and 3.3 give an extensive overview of all related work, sorted by the
year of publication, that has been considered and investigated by the author of this
thesis. A division upon distinct categories is attempted to the author’s best efforts by
utilizing the already existing classification works of He et al. [44] and Liang et al. [45].
The findings in those classification works are enhanced according to the current state
of the art at the time of writing and changes in classification are made. It has to be
noted that a strict classification into research works that investigate either construction,
detection or prevention of FDIAs is difficult, because many works cover all of the three
areas in one research paper. Some authors may start by considering a specific attack
scenario, for example a subset of measurements that is already protected, then continue
with formulating an attack that is also constructible in case of that specific scenario
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and conclude with an improved detection or protection scheme or both. Many works
furthermore contain only slight improvements over already existing methods, leading
to a huge amount of different works available at the time of writing. When several
works describe the same concept with only slight differences between one another, all
works are referenced, but the main concept is described only once. Some works may
appear in only one category while others are classified into several. In general, the
main contribution of a work is used in order to determine the corresponding category
or categories.

3.1 Attacks on State Estimation

Before going into the details of detection and protection schemes, different types of
attacks have to be discussed. As mentioned by Liang et al. [45], if an attacker knows
the entire system topology, it is straightforward to construct the attack vector a = Hc

and launch a successful FDIA. In practice, however, the attacker is usually limited
due to certain constraints, incomplete information or other shortcomings. Thus, as
can be seen in Table 3.1, attacks on state estimation can furthermore be divided into
three major categories: the construction of valid FDIAs, application researches on the
impacts of attacks on state estimation and the construction of different types of attacks
against state estimation.

3.1.1 Construction of Valid FDIAs

In their preliminary version from 2009, Liu et al. [51] were the first to introduce FDIAs
on DC state estimation under the assumption that the attacker has gained full access
to the power system configuration. In 2011, they extended their work to the full version
[24], that, since then, triggered numerous researchers to investigate the construction of
different FDIAs as well as protection and detection methods.

Under the AC Power Flow Model

Rahman et al. [48] were one of the first to investigate the construction of FDIAs
specifically targeting the nonlinear AC power flow model. They motivated their research
by stating that AC state estimation is widely used in the power industry and therefore
equally important, if not more important, than the simplified version of DC state
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Table 3.1 Related work on attacks on state estimation.

Research Categories Related Works

Construction of
valid FDIAs

Under the AC power
flow model

Hug et al., 2012 [46]; Jia et al., 2012
[47]; Rahman et al., 2013 [48]; Liang et

al., 2016 [49]; Liu et al., 2017 [50]

Under certain
constraints

Liu et al., 2009 [51]; Bobba et al., 2010
[52]; Dan et al., 2010 [53]; Sandberg et

al., 2010 [54]; Kim et al., 2011 [55];
Kosut et al., 2011 [56]; Liu et al., 2011
[24]; Sou et al., 2011 [57]; Ozay et al.,
2013 [58]; Deka et al., 2014 [59]; Deka
et al., 2014 [60]; Hendrickx et al., 2014
[61]; Liu et al., 2014 [62]; Yang et al.,
2014 [63]; Hao et al., 2015 [64]; Liang
et al., 2016 [49]; Deng et al., 2017 [65];

Yang et al., 2017 [66]

With incomplete
information about

topology

Esmalifalak et al., 2011 [67]; Rahman
et al., 2012 [68]; Kekatos et al., 2014
[69]; Liu et al., 2015 [70]; Yu et al.,

2015 [71]; Liu et al., 2017 [50]
With topology
being falsified

Kim et al., 2013 [72]; Jia et al., 2014
[73]; Rahman et al., 2014 [74]

Based on PMU
measurements Deng et al., 2017 [75]

Application researches
on the impacts
of attacks on

state estimation

Load redistribution
attacks

Yuan et al., 2011 [76]; Yuan et al., 2012
[77]

Economic attacks

Xie et al., 2010 [78]; Xie et al., 2011
[79]; Jia et al., 2011 [80]; Choi et al.,

2013 [81]; Esmalifalak et al., 2013 [82];
Jia et al., 2014 [73]; Rahman et al.,

2014 [74]; Yan et al., 2016 [83]; Kang et
al., 2018 [84]

Attacks on
contingency analysis Kang et al., 2018 [84]

Different types
of attacks

Detectable attacks Kim et al., 2014 [85]; Gul et al., 2017
[86]

Jamming attacks Deka et al., 2015 [87]; Deka et al., 2016
[88]

Game-theoretic
approaches

Esmalifalak et al., 2013 [82]; Wei et al.,
2018 [89]
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estimation. In addition to the construction of FDIAs in DC state estimation, not
only offline data about the grid topology is needed, but also online data, which makes
the construction of the attack more complex. The authors considered attacks for two
scenarios, where the attacker has either perfect or imperfect knowledge about the
states of the system. Hug et al. [46] proposed a method for constructing FDIAs. Their
method, however, requires the attacker to also know the estimated values of specific
state variables, which is information that is not easy to obtain. In [49], Liang et al. also
proposed an FDIA on AC state estimation and studied the impact on both AC as well
as DC state estimation by taking into account the physical consequences of FDIAs.

Under Certain Constraints

Finding sparse attack vectors is motivated by the fact that the attacker only wants
to manipulate as few measurements as possible in order to successfully launch an
FDIA. By minimizing the number of attacked meters, the risks and costs can be
greatly reduced. In other words, minimizing the number of attacked meters means
finding an attack vector a that has the minimum number of nonzero elements. As
shown by Yang et al. [63], however, the problem of finding the least-effort attack for
an arbitrary measurement matrix H can be transformed to the Minimum Subadditive
Join problem, which is NP-hard. Thus, various solutions have been proposed based on
different concepts.

Although finding the sparsest unobservable data attack problem is NP-hard in general,
Hendrickx et al. [61] stated that they have been the first to come up with a polynomial
time solution for the case when the network is completely measured. In [24], Liu et al.
developed a scheme based on heuristics. Although it is fast when the matrix H is sparse,
it can be very slow for a more general matrix H. Another downside of this approach is,
that it cannot guarantee the construction of a even if it exists and it cannot guarantee
the construction of the sparsest attack vector. Kim et al. [55] proposed a direct l1

relaxation approach based on optimizing the l1 norm, which is known to promote
sparsity. One disadvantage, however, is that the solution may not be the sparsest attack
vector, because of the relaxation from l0 to l1. Kosut et al. [56] developed the notion of
a strong attack regime and a weak attack regime. The first is given, when the attacker
has access to a sufficient number of meters to launch an unobservable attack. In the
latter, the attacker does not have access to enough meters and the attacks can be
detected. By strictly applying graph theory, the authors developed a polynomial time
algorithm to determine the minimum number of tampered meters in order to launch an
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unobservable attack. Ozay et al. [58] and Liu et al. [62] developed attacks by exploiting
the sparse structure of the system. Several authors, such as Deka et al. [59, 60], also
developed algorithms to find the sparsest attack vector by formulating the problem as
an optimization problem under the assumption that a few of the measurements are
protected. In [64], Hao et al. developed a greedy search algorithm in order to find the
sparsest attack vector. In one of the more recent works from 2017, Yang et al. [66]
proposed an effective greedy algorithm based on the reduced row echelon form and
demonstrated the efficiency of the algorithm.

With Incomplete Information About Topology

In contrast to the case, where the entire system topology is known, Esmalifalak et al.
[67] proposed a method for constructing FDIAs without prior knowledge of the power
grid topology based on linear independent component analysis. By just observing the
power flow measurements, they were able to estimate both the system topology as well
as the power states and utilize that information to construct malicious attacks that do
not trigger the traditional BDD. Additionally, instead of concentrating on getting the
entire network information, Liu et al. [70] proposed an attack method that focuses on a
local region. They showed that no information about the non-attacked region is needed.

By collecting both offline and online data, Rahman et al. [68] mathematically charac-
terized FDIAs from both the attacker’s, as well as the grid operator’s point of view.
According to them, they were the first to investigate the construction of FDIAs with
line admittance uncertainty. In [69], Kekatos et al. exploited the correlation between
Locational Marginal Prices (LMPs) and the economic dispatch problem, in order to
reconstruct the grid matrix from the LMPs. The LMP is used to reflect the electricity
price at a particular node or location. A very similar approach of constructing FDIAs
without knowing the power grid topology, the so-called blind FDIAs, were obtained by
Yu et al. [71], where they utilized principal component analysis approximation methods
in order to compose the attacks.

With Topology Being Falsified

In contrast to the manipulation of state estimation, Kim et al. [72] were one of the first
to investigate attacks on the network topology of a smart grid. By launching a topology
attack, the attacker tries to bypass both the bad data and topology error detectors in
order to falsify the estimated topology in the control center. If successful, this can lead
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to serious consequences. A grid under stress, for example, may appear as normal or
a normal grid may appear under stress, causing unnecessary load shedding and other
costly actions. The authors furthermore investigated impacts on both the AC and the
DC power flow model.

Based on PMU Measurements

In [75], Deng et al. distinguished between physical attacks and cyber attacks. Physical
attacks directly target the power system components in order to cause power outages
or trigger cascading failures whereas cyber attacks include the already known FDIAs
that target the SCADA/EMS system. When speaking of Coordinated Cyber-Physical
Attacks (CCPAs), cyber attacks are utilized in order to mask or hide physical attacks.
Although the increased installation of PMUs improves situation awareness for the grid
operator, it also makes the grid more vulnerable to attacks. In their work, the authors
investigated the construction of CCPAs based on PMU measurements, developed two
different FDIAs to mask physical attacks and proposed corresponding countermeasures.

3.1.2 Application-Specific Research

In addition to the construction of valid FDIAs, several authors investigated the impacts
of attacks on state estimation such as load redistribution attacks, economic attacks and
attacks on contingency analysis.

Load Redistribution Attacks

Load Redistribution (LR) attacks, a special type of FDIAs, are attacks where only load
bus injection measurements and line power flow measurements are attacked in order to
mislead the Security-Constrained Economic Dispatch (SCED) module. Yuan et al. [76]
were the first to come up with this type of attacks. In [76] and [77] they investigated
the impact of LR attacks on two different attacking goals: the immediate attacking goal
and the delayed attacking goal. They furthermore developed the most damaging LR
attack and proposed a corresponding protection scheme. Their proposed LR attack can
lead to immediate load shedding or even delayed load shedding, potentially physically
damaging the power system.
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Economic Attacks

Another incentive for an attacker is to generate profit by manipulating electricity prices
and electricity pricing. In 2010 and 2011, Xie et al. in [78] and Xie et al. [78] examined
the impact of FDIAs on electricity markets and pricing. The main objective of the
attacker is to buy virtual power at a lower price, manipulate the LMPs through FDIAs
and then sell virtual power at a higher price. They showed that by combining FDIAs
and virtual bidding, financial profit can be generated for the attacker. Jia et al. [80]
proposed an optimal attack strategy for influencing revenues in electricity markets
by considering congestion patterns which affect the LMP the most. In [81], Choi et
al. investigated the impact of system topology errors on real-time electricity market
prices. Due to the fact that the Optimal Power Flow (OPF) routine relies on both the
topology processor and the state estimation, Rahman et al. [74] investigated the impact
of topology attacks on the OPF routine and subsequently the economic operation. Yan
et al. [83] examined the impact of FDIAs in the case of blackouts and analyzed and
simulated these scenarios from a high-level point of view.

Attacks on Contingency Analysis

In one of the more recent works from 2018, Kang et al. [84] considered a new class
of FDIAs on contingency analysis through state estimation. They showed that by
manipulating contingency pairs of transmission line flows, the LMPs of real-time power
markets can be manipulated.

3.1.3 Different Types of Attacks

In addition to FDIAs, usually also referred to as stealthy attacks or hidden attacks,
there exist additional types of attacks that affect state estimation despite triggering the
BDD. Moreover, several works investigated game-theoretical approaches in order to
model both attack and defense of FDIAs.

Detectable Attacks

Detectable data attacks or data integrity attacks work by initially failing the bad data
detection, but succeeding once the BDD removed the bad data. In [85], Kim et al.
constructed a detectable attack where they showed that when focusing on the bad data
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identifier, the cardinality of the detectable attacks can be reduced by more than 50%
compared to the cardinality of hidden attacks. They furthermore showed that, although
studying the attack based on the DC power flow model, the state estimate was also
perturbed when launching the attack against the nonlinear AC power flow model. Gul
et al. [86] furthermore enhanced the aforementioned approach by designing attacks that
solely consist on re-ordering of the measurement vector, given two different scenarios
based on AC state estimation.

Jamming Attacks

Another concept of manipulating the state estimate is to prevent the state estimator from
receiving a particular measurement. This adversarial action is known as jamming and
has been investigated by Deka et al. [88]. In [87], they stated that detectable attacks,
in comparison to stealthy attacks, have lower costs and a wider feasible operation
region. They furthermore developed a polynomial time approximate algorithm for
the construction of the attack vector. In [88], they investigated jamming in the
context of both generalized stealthy data attacks as well as generalized detectable data
attacks. When developing the framework, the authors considered an attacker capable
of performing the following three actions: 1) jamming; 2) injection of data in insecure
measurements; and 3) jamming of secure measurements.

Game-Theoretic Studies

Additionally, several works applied game theoretical approaches to model both the
construction of FDIAs as well as the defense against FDIAs. Esmalifalak et al. [82]
modeled attacking and defending the measurements as a zero-sum game between the
attacker and the defender and investigated the impact on electricity prices. They also
showed that the attacker is specifically able to lower the prices. Wei et al. [89] proposed
a stochastic game model that simulates the interactions between a malicious attacker
and a defender.

In response to all these different kinds of attacks and threats, lots of efforts have been
made to develop efficient countermeasures. As mentioned by Chaojun et al. [90], research
can be specifically classified into the following two categories: i) protection-based and
ii) detection-based. In the next two sections, both categories are investigated in more
detail.
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Table 3.2 Related work on protection against attacks on state estimation.

Categories Related Works

Protect a set of basic measurements

Bobba et al., 2010 [52]; Dan et al.,
2010 [53]; Bi et al., 2011 [91]; Kim et
al., 2011 [55]; Hug et al., 2012 [46]; Bi
et al., 2014 [92]; Deka et al., 2014 [59];
Deka et al., 2014 [60]; Yang et al., 2014
[63]; Anwar et al., 2015 [93]; Hao et al.,

2015 [64]; Wickramaarachchi et al.,
2016 [94]

PMU-based protection methods Kim et al., 2011 [55]; Deng et al., 2017
[75]; Yang et al., 2017 [66]

Other protection methods and applications Hug et al., 2012 [46]; Talebi et al., 2012
[95]; Deng et al., 2017 [65]

3.2 Protection-Based Approaches

In this section, protection-based approaches are investigated for both AC as well as DC
state estimation. A more general overview is found in Table 3.2.

3.2.1 Protect a Set of Basic Measurements

In 2010, Sandberg et al. [54] proposed two security indices for state estimators in order
to provide the power grid operator with a tool to identify sparse data manipulation
patterns by locating power flows whose measurements are easy to manipulate. Based on
those security indices, Dan et al. [53] developed three algorithms to obtain both perfect
and partial protection against FDIAs with respect to a limited budget for protection.
Bobba et al. [52] developed an algorithm based on brute-force search, to find a basic set
of measurements that needs to be protected such that no undetectable FDIA can be
launched. They furthermore state that the number of measurements that needs to be
protected is the same as the number of unknown state variables in the state estimation
problem. Because this could lead up to several hundred in a large scale power system,
this would end up being a costly task. When Milosevic et al. [96] and Esmin et al.
[97] determined that it is sufficient to only protect the part of state estimates that are
considered to be critical to maintain normal system operations, Bi et al. [91] developed
an algorithm that determined the number of measurements that need to be protected in
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order to secure only this specific subset of state estimation variables. Consequentially,
not all measurements had to be protected but only the subset. Later on, Kim et al. [55]
developed a generalized framework to construct sparse FDIAs when only a subset of
measurements is protected. Based on that framework they proposed an algorithm that
identifies key measurements in this subset, that, when protected, lead to an increase in
the minimum number of meters that the attacker has to compromise, thus increasing
the difficulty for the attacker.

Next, several authors proposed graph-theoretic approaches in order to find a set of
measurements that needs to be protected to make the construction of FDIAs unfeasible.
Deka et al. [59, 60] proposed a graph-theoretic approach based on the max-flow min-cut
theorem to determine the optimum number of measurements that need to be tampered
to make an FDIA possible. Furthermore, they discussed a polynomial-time solvable
algorithm to solve this problem under different conditions. Bi et al. [92] carefully
selected meter measurements that need to be protected to make an FDIA unfeasible
by solving a variant Steiner tree problem in a graph. In [94], Wickramaarachchi et
al. utilized the approach of Bi et al. [92] to show that the protection scheme of Deka
et al. in [59] and [60] does not hold true in every scenario. They identified a class of
attack vectors, where attacks, constructed from this class of attack vectors, cannot
be defended against using the protection scheme from Deka et al. Following, they
proposed an enhanced protection scheme based on a minimum Steiner tree. Hao et
al. [64] also developed a graph-theoretic protection scheme and proposed an algorithm
to efficiently construct and detect highly sparse undetectable attack vectors. Yang et
al. [63] considered the scenario where the attacker wants to find a set of meters that,
when compromised, cause maximum damage. Based on that, they then proposed a
protection-based defense scheme that identifies the critical sensors that need to be
protected in order to defeat such attacks.

3.2.2 PMU-based Protection Methods

One disadvantage of PMUs is the high capital cost, making a large scale deployment
difficult. Thus, several authors investigated the optimal placement of PMUs as well as
the impact of using PMUs for protection in general. In [55], Kim et al. developed a
greedy algorithm for determining buses on which PMUs should be placed, such that the
total number of PMUs is minimized. Deng et al. [75] investigated the impact of PMUs
on the feasibility of FDIAs in general. In one of the more recent works from 2017,
Yang et al. [66] developed a greedy-based algorithm for determining the optimal PMU
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placement to defend data integrity attacks while maintaining system observability. The
authors hereby improved the work of Kim et al. [55] by enhancing their own method
from 2014 [63].

3.2.3 Other Protection Methods and Applications

Talebi et al. [95] proposed a dynamic reconfiguration of the power grid into several
microgrids to make it impossible for the attacker to launch a synchronized FDIA . Hug et
al. [46] investigated protection against FDIAs in the context of AC state estimation and
examined the differences between protecting AC and DC state estimation. Moreover,
they introduced analytical techniques for vulnerability analysis of state estimation.
In [65], Deng et al. addressed the problem of financial cost that is associated with
ultimately protecting a set of smart meters. They proposed an algorithm to find a
least-budget defense strategy.

3.3 Detection-Based Approaches

In addition to protection-based methods, many authors investigated methods in order
to detect attacks on state estimation. This mitigates two drawbacks of protection-based
methods. First, redundancy is not reduced, because all measurements can be used
instead of only the secured and protected ones. Second, because of the fact that
protection cannot be secure 100% of the time, attacks can also be detected in cases
where the protection-based approaches fail. As shown in Table 3.3, detection methods
are classified into three categories, whereby major attention is drawn towards machine
learning-based approaches.

3.3.1 General Detection Methods

One of the first authors proposing a detection-based defense scheme was Kosut et al.
[98] in 2010. The authors proposed a detector based on the Generalized Likelihood
Ratio Test (GLRT) to detect FDIAs even when the BDD was failing. Their proposed
detector also tries to identify the meters that originated the attack. They furthermore
showed, that conventional bad data can clearly be separated from bad data occuring
from a malicious attack. Liu et al. [62] interpreted the detection problem as a matrix
separation problem and proposed an approach that separates nominal power grid states
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Table 3.3 Related work on detection of attacks on state estimation.

Research Related Works

General detection methods

Kosut et al., 2010 [98]; Huang et al., 2011 [99];
Bhattarai et al., 2012 [100]; Liu et al., 2013 [101];
Liu et al., 2014 [62]; Manandhar et al., 2014 [102];
Yang et al., 2014 [63]; Chaojun et al., 2015 [90];

Chen et al., 2015 [103]; Hao et al., 2015 [64]; Li et
al., 2015 [104]; Yu et al., 2015 [105]

Distributed detection methods Pasqualetti et al., 2011 [106]; Talebi et al., 2012
[95]; Sedghi et al., 2013 [107]

ML-based detection methods

Ozay et al., 2012 [108]; Chakhchoukh et al., 2016
[109]; Yan et al., 2016 [110]; Esmalifalak et al.,

2017 [111]; Foroutan et al., 2017 [112]; He et al.,
2017 [113]; Wang et al., 2017 [114]; Ayad et al.,

2018, in press [115]; Wang et al., 2018 [116]

from anomal ones. One downside of these approaches is, that they are not able to
detect bad data in measurements that fit the distribution of historical measurements.
In response to this, Chaojun et al. [90] addressed this issue by proposing a detector
based on the Kullback-Leibler Distance (KLD), which calculates the distance between
two probability distributions and is therefore able to detect false data that comes from
the same distribution.

Huang et al. [99] proposed an adaptive cumulative sum (CUSUM) algorithm that is
able to perform sequential detection, also known as Quickest Detection (QD). Instead
of using a fixed-sample size, sequential detection operates on sequential data, thus
being more suitable for real-time monitoring. In order to use the CUSUM algorithm,
the probability distribution before and after the attack has to be known. To fulfill
this requirement, the authors assumed a Gaussian distribution with fixed mean and
covariance for the state vector prior to the attack and also assumed that the malicious
data is small and positive in magnitude. This makes the detection method unsuited for
large attacking data. In [104], Li et al. proposed an improved CUSUM-type algorithm
based on the Generalized Likelihood Ratio (GLR) that is robust to arbitrary state
variables and arbitrarily injected data.

Hao et al. [64] introduced a detection method based on the principal component analysis
problem, which is shown to identify both real measurements and attacks also in the case,
where only partial observations can be collected due to noise. In [102], Manandhar et
al. improved the traditional χ2 test based BDD by proposing an euclidean detector that
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continuously monitors the difference between the estimated values and the measured
values and thus detects if an FDIA is present, or not.

Bhattarai et al. [100] and Yu et al. [105] added a secure watermark to real-time
measurement readings to make it possible for the utility to detect the presence of an
adversary. Bhattarai et al. stated that this technique can effectively detect any false
manipulation of the measurement readings at low cost.

3.3.2 Distributed Detection Methods

In [106], Pasqualetti et al. proposed two distributed methods for state estimation and
FDIA detection. They assumed that multiple control centers are coordinating between
each other. Talebi et al. [95] partitioned the grid into a group of microgrids, which
are coordinating between each other and are thus able to detect coordinated attacks
under specific circumstances. Liu et al. [101] proposed a detection scheme named
adaptive partitioning state estimation, which divides the large system into several
smaller subsystems in order to improve the sensitivity for bad data. They furthermore
showed that their detection scheme is applicable to AC state estimation. Sedghi et al.
[107] proposed a decentralized detection scheme based on a Markov graph of bus phase
angles. They stated that their detection scheme is successful regardless of the size of
the attacked subset.

3.3.3 Machine Learning-Based Detection Methods

Influenced by the increasing popularity of machine learning in recent years, several
authors utilized machine learning techniques to detect attacks on state estimation. This
section gives an overview of the state of the art and emphasizes the importance of not
only constructing the models but also evaluating the models. Equally important is the
generation of attacks and data, which should be documented and designed carefully. A
quick overview of all related and investigated works can be found in Table 3.4. As to
the author’s best knowledge, there is no public real-world data set containing FDIAs
available. Fortunately, the simulation of different types of attacks according to the
literature in Section 3.1, is possible.

In [111], Esmalifalak et al. proposed two machine learning algorithms to detect stealth
attacks on DC state estimation. The first method utilizes supervised learning to
train a distributed SVM with a Gaussian kernel whereas the second approach takes



3.3 Detection-Based Approaches 43

Table 3.4 Detailed classification of machine learning-based detection methods

Related Work AC /
DC Proposed Methods Compared

Methods Metrics Test-
case

Ozay et al., 2012
[108] DC kNN, SVM, SLR SVE Acc, Prec,

Rec, F1

9, 30,
57,
118

Chakhchoukh et
al., 2016 [109] AC DRE SVM, AD Rec 118

Ozay et al., 2016
[117] DC

Perceptron, kNN,
SVM, SLR, S3VM,
decision and feature

level fusion algorithms

Rec 118

Yan et al., 2016
[110] AC SVM, kNN, ENN Acc, Prec,

Rec
9, 57,
118

Esmalifalak et
al., 2017 [111] DC Distributed SVM, AD F1 118

Foroutan et al.,
2017 [112] DC Mixture Gaussian

Distribution SVM, MLP, AD F1, ROC 118

He et al., 2017
[113] DC CDBN architecture SVM, ANN Acc, ROC 118,

300
Wang et al.,
2017 [114] AC Margin Setting

Algorithm Acc 6

Ayad et al.,
2018, in press

[115]
DC RNN

Acc, Prec,
Sensitivity,
Specificity

30

Wang et al.,
2018 [116] AC Deep learning based

ISE

Persistence
method, BP,
Shallow SVM

Acc,
MAPE

9, 14,
30,
188

Yu et al., 2018
[118] AC

Wavelet transform
feature extracting,
RNN with GRU

KLD, Kalman
Filter, Sparse
Optimization

Acc, FP,
FN

118,
300

advantage of unsupervised learning by classifying points as anomalies that do not
obey a fitted multivariate Gaussian distribution. In both cases, the authors applied
Principal Component Analysis (PCA) for preprocessing and showed that normal data
and tampered data tend to be strictly separated in a projected space. They showed
that by only keeping two of the principal components, 99% of the variance could be
retained. In their paper they used the F1 score as performance metric and evaluated
the model by computing F1 on the cross-validation set. In addition to the unsupervised



3.3 Detection-Based Approaches 44

method, they proposed a semi-supervised approach, where the output labels are used
to learn the best threshold for the unsupervised method.

Chakhchoukh et al. [109] used an unsupervised machine learning technique called
density ratio estimation [119] to detect stealthy attacks on AC state estimation. They
showed improved performance over the distributed SVM and the Gaussian model from
Esmalifalak et al. [111]. As performance metric, recall was used.

Ozay et al. [108] investigated three supervised learning algorithms which observe the
power system in order to construct a training data set that is then used to detect
attacks on future data. They modeled the detection problem as a supervised binary
classification problem and used k-nearest Neighbor (kNN), SVM and Sparse Logistic
Regression (SLR) algorithms to detect the attacks. Ozay et al. [117] extended the
aforementioned work by conducting a detailed analysis of the three supervised learning
algorithms and additionally proposed semi-supervised and online learning settings for
kNN, SVM and SLR. They furthermore examined decision- and feature-level fusion
algorithms and showed that these types of algorithms are more robust to changes in
system size and data sparsity. The authors evaluated all algorithms on simulations and
used precision, recall and F1 as performance metrics.

Yan et al. [110] also investigated supervised learning based detectors based on the
following algorithms: SVM, kNN and Extended Nearest Neighbor (ENN). They
evaluated their methods on both balanced as well as imbalanced data sets. In comparison
to [117], the authors constructed the attack vectors in the state variable space instead
of the measurement space. Moreover, in contrast to Yan et al., the authors in [117] only
considered attacks with different degrees of sparsity, while the energy of attack vectors
was not considered.

Foroutan et al. [112] utilized a semi-supervised learning approach based on mixture
Gaussian distribution. They evaluated their model on minimum energy residual attacks
and sparse attacks [98, 61] and showed superior performance over already existing
methods. Chosen approaches for comparison were SVM, Multi-Layer Perceptron (MLP)
and anomaly detection based on a multivariate Gaussian distribution.

He et al. [113] utilized deep learning for detection of FDIAs by proposing an extended
Deep Belief Network (DBN) architecture. They compared their model to an SVM with
a Gaussian kernel and an Artificial Neural Network (ANN) with one hidden layer and
25 hidden units and showed that it outperforms both of the compared models.
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Wang et al. [114] proposed a data analytical method based on data-centric paradigm
employing the Margin Setting Algorithm (MSA). By comparing their model to an SVM
and an ANN, they showed that they achieve better performance. They furthermore
stated that MSA is a relatively new machine learning algorithm and that they have
been the first to apply MSA for the detection of FDIAs.

Wang et al. [116] devoted their research to the investigation of cyber-attack modeling of
AC grids and corresponding defense mechanisms. They applied a deep learning based
Stacked Auto-Encoder (SAE) to extract nonlinear and non-stationary features from
the electric load data. These features can then be used to improve the accuracy of
electric load forecasting, which narrows down the width of intervals of state variables
and thus increases the chance for detection. They showed that SAE in combination
with their proposed Interval State Estimation (ISE) based defense mechanism is 100%
effective against the anomalies introduced by their chosen attacks. They considered
both stealthy attacks as well as attacks with incomplete information about topology.
It has to be stated, that their attacks did not directly introduce an error to the state
estimate, but aimed to overload a given line by manipulating least measurements.

Ayad et al. [115] proposed a detection scheme based on RNNs. In their approach, they
limited the number of previous output states that are used to predict the current output
to five because of gradient explosion. The authors did not make any comparisons to
other machine learning-based approaches.



Chapter 4

Machine Learning

This chapter starts by outlining the concept of machine learning, as well as different
learning schemes and basic terminology. Supervised learning methods such as SVM and
NN are investigated in more detail. A special focus is placed on RNNs, which are well
suited for data sets that do not only feature spatial dependencies, but also temporal
ones. LSTM units are investigated to improve the performance of an RNN for learning
long-range dependencies. Different types of preprocessing methods and performance
metrics are outlined with a focus on imbalanced classes.

4.1 Introduction to Machine Learning

The term machine learning can be defined in multiple ways and is closely related
to a broad range of fields in computer science, like pattern recognition and artificial
intelligence. According to Alpaydin in [120], machine learning is a way of programming
computers to optimize a specific performance criterion using example data or data from
past experience. For many tasks there exist specific algorithms to find a solution. For
example, filtering an array of strings based on a certain pattern. For other problems,
however, no unique algorithm or solution can be found. Examples are hand-written
digit recognition or classifying whether an email is spam or not. In these cases, given
that data is available, knowledge can be extracted from the data and utilized to train
machine learning models in order to output solid and useful approximations.

Basic terminology and concepts are explained by referring to the example of hand-
written digit recognition, loosely based on the example of Bishop in [121]. The goal is
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Figure 4.1 Set of hand-written digits [121].

to build a machine that takes a vector s as input and outputs the actual displayed digit
0, . . . , 9. The input data consists of N 26× 26 pixel images s1, . . . , sN . In Figure 4.1,
an example for each of the hand-written digits can be seen.

In addition to the input vector s, each sample of the input data includes a target vector
y, containing the actual digit of the image. This type of true information is also known
as ground-truth data. In order to perform learning and being able to determine the
performance of the model after learning has finished, input data is divided into three
sets, namely the train, validation and test data set. Training data is used to train
the machine learning model, which results in the determination of a set of parameters
that allow the best possible classification. After the model has been trained, an image
from the validation data is used as input, whereby the model generates an output ŷ(x),
linking to one of the digits 0, . . . , 9. This is repeated for all images in the validation
data set. Based on the fact, that both the real target as well as the predicted target of
each image of the validation data set are available, performance measurements on how
well the model performs on new examples, can be calculated. The term generalization
refers to how well a model performs on examples, that were not used during training.

This type of learning, where input data consists of both the input vectors as well
as the corresponding labels, is denoted as supervised learning. In the above case of
hand-written digit recognition, where the goal was to assign the input vector to one or
more categories, the produced output is used to solve a so-called classification problem.
Outputs of regression problems on the other side consist of one or several continuous
variables. An example would be the determination of the price of a house, given the
area, the number of residents and the number of rooms. Another type of learning is
unsupervised learning, where no label is supplied to the input vector and the goal may be
to group the data into several different clusters based on similarities or dissimilarities.

Depending on the type of raw data, preprocessing, also known as feature extraction, must
be applied, or not. This can be the case when dimensionality has to be reduced, raw
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data is noisy or simply consists of different ranges of values (e.g., one feature contains
the number of residents in the size of one to ten and another feature represents the area
of the house in the size of hundreds of square meters). When preprocessing data, it has
to be taken into consideration that no important information is lost.

Another key component in machine learning is model selection. Choosing a model that
is too simple for the given data can result in a high bias problem (underfitting), whereas
a highly complex model, that resembles the data perfectly, may result in a high variance
problem (overfitting). Models with a high variance problem tend to generalize badly
to new data. In general, model complexity should be high enough to capture enough
information in the data to successfully differentiate between different classes to a high
degree, but should be kept as simple as possible. This behaviour is also known as
Occam’s razor [122], who stated that, when in favor of several well performing models,
the simplest one should be chosen.

For visualization purposes, consider an input data set s = (s1, . . . , sN )T of size N , where
the corresponding labels y = (y1, . . . , yN)T are sampled from the function sin(2πs)
including a small level of random noise following a Gaussian distribution. The goal is
to train a model using the training data, in order to make correct predictions of the
target ŷ for new values s of the input variable. A polynomial function of order M is
used as a model, where w = (w0, . . . , wM) represents the parameters that need to be
trained and sj the polynomial function:

ŷ(s, w) = w0 + w1s + w2s
2 + . . . + wMsM =

M∑
j=0

wjs
j (4.1)

Functions, such as the polynomial function, are considered to be linear and are therefore
part of the so-called linear models. In order to be able to evaluate the performance of
the model after each iteration over the training data, an error function (i.e., cost or loss
function) has to be defined. One commonly used error function in machine learning is
the residual sum of squares (RSS):

E(w) = 1
2

N∑
n=1
{ŷ(sn, w)− yn}2 (4.2)

The factor 1
2 is included for ease of later computation. The function will be zero if, and

only if, all of the predicted values ŷ(sn, w) are equal to the target values yn.
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Figure 4.2 Plots of polynomials of varying order M shown as red curves, blue dots
representing the input data and the green line displaying the original sine function [121].

The objective of training the model using training data is to find a set of parameters w

that minimize the error function. Because the parameters w in Equation 4.1 are linear
and the error function is a quadratic function of the parameters, the derivatives of the
error function with respect to the parameters are also linear. Thus, a unique solution,
denoted by w∗, can be found in closed form. A different method of finding solutions
would be the use of iterative optimization algorithms such as gradient descent, which
will be covered later in Section 4.3 when discussing neural networks. The generalization
ability of the model can then be evaluated by making predictions using the test data
and calculating the error with regard to the targets of the test data. When it comes to
the choice of M , the goal is to find a model that is neither causing a high bias nor a
high variance problem. An example is given in Figure 4.2, where M = 3 tends to be
the best representation of the original function, whereas M = 0 and M = 1 are causing
a high bias problem and M = 9 is fitting all points perfectly, but is reconstructing the
shape of the original sine function badly.

A more general definition of an error function is the root mean square (RMS) function,
defined in Equation 4.3, which includes the size of the data set N , thus giving error
values independent of the size of the data set.
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Figure 4.3 Plot of ERMS evaluated on independent test sets for varying values of M [121].

ERMS(w) =
√

2E(w)/N (4.3)

As mentioned previously, one way of measuring the generalization ability of a model
is to make predictions on the validation data. In Figure 4.3, models with varying
polynomial order (M = 0, . . . , 10) were trained using the training data set of size 10.
Moreover, the error ERMS was evaluated on a validation data set of size 100 that has
been generated with new random noise values in the targets. As can be seen for M = 9,
the training set error reaches zero because the model is predicting each point correctly,
whereas the generalization error becomes very large. This is due to the fact that the
model is reproducing the shape of the original sine function badly, as already shown in
Figure 4.2.

So far, basic machine learning terminology was defined and the difference between
underfitting and overfitting demonstrated by use of a simple model consisting of a M

order polynomial function. Next, common concepts to avoid overfitting are investigated.

In the previous example, the training set consisted of ten data points. Thus, the 10-order
polynomial model was able to reconstruct the training set perfectly, but achieved a
very bad result on data it has not yet seen before. This is due to the fact that the
model adjusted better to the Gaussian noise in the data than to the underlying sine
function. One way to avoid overfitting is the use of more samples in the training data.
An example can be seen in Figure 4.4.
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Figure 4.4 Avoid bad generalization by using more data points in the training data set [121].

This approach, however, is not feasible when no additional data can be obtained for a
specific problem. In that case, a different technique called regularization can be used.
Regularization introduces a new parameter λ to the error function that introduces a
penalty to each of the parameters w, preventing them from growing too large. The
simplest form of regularization used in an error function is given by the following
equation:

Ẽ(w) = 1
2

N∑
n=1

(
ŷ(sn, w)− yn

)2
+ λ

2 ||w||
2 (4.4)

where ||w||2 = w2
0 + w2

1 + . . . + w2
M . It has to be noted, that w2

0 is usually excluded from
the regularization term in order to not falsify the result. Because the model builds on a
polynomial function, the solution to the minimization problem of the error function
can again be found in closed form. The impact of regularization on generalization
is illustrated in Figure 4.5, where the root mean square error function with different
regularization parameters was evaluated for the training and the validation data set.

4.2 Support Vector Machines

From a geometrical point of view, the concept of a Support Vector Machine (SVM) can
be described by considering the case of a simple binary classification task [123]. Given
a training data set DT r, where one sample si consists of m features and Y = {0, 1}, the
goal is to find an element w ∈ Rm with ||w||2 = 1 and a real number b ∈ R, such that
(w, b) forms an affine linear hyperplane that completely separates the samples in the
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Figure 4.5 Plot of ERMS for various ln(λ) using the polynomial model of order M = 9 [121].

data set D into the two groups {(si, yi) ∈ D : yi = 1} and {(si, yi) ∈ D : yi = 0}. One
way of finding the maximum margin hyperplane is to minimize ||w||2.

If the data set D can not be entirely linearly separated, the input data S can be mapped
into a different feature space, also known as Hilbert space H0, by a nonlinear map Φ(si).
One disadvantage of this mapping is that the hyperplane ends up in a very high or
infinite-dimensional space, making the SVM more prone to overfitting. To counteract
this problem, slack variables ξi ≥ 0 can be introduced, resulting in the so-called soft
margin SVM. This results in the following quadratic optimization problem:

minimize 1
2wT w + C

N∑
i=1

ξi for w ∈H0, b ∈ R, ξ ∈ RN

s.t. yi(wT Φ(si) + b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(4.5)

where C is a modifiable positive regularization parameter. Because Equation 4.5 usually
needs to be solved in a high or infinite-dimensional space, the Lagrange approach is
utilized to convert the problem into the following dual program:
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maximize
N∑

i=1
αi −

1
2

N∑
i,j=1

yiyjαiαjΦ(si)T Φ(sj)

over α ∈ [0, C]N

s.t.
N∑

i=1
yiαi = 0;

(4.6)

where α is the Lagrange multiplier.

This notation allows to replace the inner product Φ(si)T Φ(sj) in Equation 4.6 with any
kernel function k(si, sj) that satisfies the following condition:

k(si, sj) = Φ(si)T Φ(sj), si, sj ∈ S. (4.7)

In this work, the nonlinear Gaussian radial basis function is used as a kernel for the
SVM:

k(si, sj) = e−λ||si−sj ||2 (4.8)

where λ is the width of the kernel. Both C and λ denote hyperparameters that have to
be adjusted accordingly when training the model in order to achieve a well performing
SVM.

In the case of multilabel classification, the problem can be viewed as d binary classifica-
tion problems. This approach is also known as one-vs-the-rest classification [121].

4.3 Neural Networks

As shown by McCulloch et al. [124] in 1943, the nowadays widely used term neural
networks is motivated by the concept of how information is processed in biological
systems.

This section first introduces the multilayer perceptron, also known as feed-forward neural
network, which is one of the most widely used types of neural networks according to
Bishop [121]. Following, a variation called the Recurrent Neural Network is investigated,
especially suited for modelling sequential data with temporal dependencies. In order
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Figure 4.6 A feed-forward neural network. The feed-forward computation is performed from
left to right, requiring D input values and resulting in K output values. The type of the

output is dependent on the output activation function [121].

to counteract gradient flow problems during Backpropagation Through Time (BPTT),
LSTM units are introduced as well.

4.3.1 Feed-Forward Neural Networks

As already mentioned in the previous section, SVMs are based on linear combinations
of fixed nonlinear basis functions. In contrast to SVMs, NNs consist of a set of basis
functions, such that each one is a nonlinear function of a linear combination of its
inputs [121]. The coefficients of the linear combination represent adjustable parameters,
also known as weights, which are adjusted during the training phase of a NN.

Consider the illustration in Figure 4.6, displaying a fully connected NN with three
layers. A NN can be described by a set of neurons, also known as units or nodes, that
are connected with each other by the use of directed edges. A NN might consist of
several layers. The first layer is usually referred to as input layer, the last layer as
output layer and the layer(s) in between as hidden layer(s).

The computation of the output of each neuron is determined in two steps. Let s1, . . . , sD

be the input variables to the neuron and j = 1, . . . , M the number of linear combinations.
First, a linear combination of inputs sj and weights wji is computed for each neuron,
also known as net activation or incoming activation and denoted as aj. Following, a
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Figure 4.7 Sigmoid activation function.

bias bj, often also denoted as wj0, is added and the output zj is computed using an
appropriate activation function h(·) which is dependent on the task. The weight w

(1)
ji

denotes the directed edge to neuron j from neuron i. The following equation shows the
calculation of the net activation for each single neuron:

aj =
D∑

i=1
w

(1)
ji si + w

(1)
j0 (4.9)

Each activation then gets transformed to an output by a nonlinear activation function
h(·):

zj = h(aj) (4.10)

The choice of activation function is highly dependent on the application of the neural
network and the underlying data set. As stated in [125], multiclass classification usually
uses a softmax output activation function, whereas in the case of binary and multilabel
classification sigmoid is used. The sigmoid activation function σ(z) = 1

1+e−z used in
this work is shown in Figure 4.7.

The feed-forward propagation is successively executed, starting at the input layer up to
the last layer. The following equation illustrates the computation of the overall network
functions using a sigmoid output layer activation function and the architecture of the
NN displayed in Figure 4.6:
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ŷk(s, w) = σ
( M∑

j=1
w

(2)
kj h

( D∑
i=1

s
(1)
ji + w

(1)
j0

)
+ w

(2)
k0

)
(4.11)

where k ∈ RK and K denotes the number of output neurons.

Backpropagation

In order to achieve a well-performing NN, the weights and biases have to be adjusted
after each feed-forward propagation. The performance of the NN can be determined by
an error function that computes the error between the targets and the predicted output
values. Similar to the choice of the activation function, the error function is highly
dependent on the output type, such as binary classification, multiclass classification or
regression.

Consider a training data set S = {s1, . . . , sN} with N observations. The following
equation shows a commonly used error function known as sigmoid cross entropy loss,
adapted to multilabel classification, where i = 1, . . . , |d| denotes the labels:

loss(ŷ, y) = 1
|d|

|d|∑
i=1
−(yi log(ŷi) + (1− yi) log(1− ŷi)) (4.12)

Given the error function, the goal is to adjust the weights and biases such that the error
is minimized. When choosing an error function that is convex, such as the error function
in Equation 4.12, a method known as gradient descent can be applied to minimize the
error function and find a local or global minima. In the context of NNs, this process of
minimizing the error function through gradient descent is known as backpropagation or
error backpropagation. The details are omitted for brevity, but can be found in [121,
Chapter 5].

4.3.2 Recurrent Neural Networks

Measurement data used for state estimation is collected at several time intervals and is
therefore temporal in nature. Recent research has shown that RNNs are well suited for
sequential data [125].

A simple RNN consists of an input layer, a hidden layer (i.e., state or memory) and an
output layer. At time t, input to the network is denoted as s(t), output as ŷ(t) and h(t)
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Figure 4.8 The left side shows an RNN in folded form and the right side in unfolded form.

gives the hidden node values. The relationship between input, hidden layer and output
is given by the following set of equations:

h(t) = σ(W hss(t) + W hhh(t−1) + bh)
ŷ(t) = σ(W yhh(t) + by)

(4.13)

where W hs, W hh and W yh denote the weight matrices and bh and by the bias terms.

Figure 4.8 displays an RNN in both folded and unfolded form. As can be seen, the
hidden state is forward propagated through the entire network for as many timesteps, as
specified. It has to be noted, that the hidden state may consist of not only one hidden
node, but several hidden notes and even several hidden layers. As shown later, the
hidden nodes can be replaced by specific units, such as Gated Recurrent Unit (GRU)
units or LSTM units to improve the performance for learning long-range dependencies.

Similar to the feed-forward NN, the weights and biases of the RNN are adjusted through
backpropagation. However, due to the temporal component, the process is slightly
different and is referred to as Backpropagation Through Time (BPTT). The details of
BPTT are omitted for brevity, but can be found in [126].

Consider a data set consisting of 1000 sequential data points, where each data point
comprises 41 features. Thus, the data set is of size 1000× 41. In the case of BPTT, the
RNN can be unfolded across all 1000 timesteps and the 1000 input values are forward
propagated, resulting in 1000 output values. Subsequently, the error function is used to
compute the error and backpropagation to calculate the new gradients that are being
backpropagated from the 1000th timestep up to the first one. As can be seen, due
to the span of 1000 timesteps and the structure of a simple RNN, the gradients are
subject to many modifications and are therefore prone to either vanish or explode. One
solution to this problem is truncated BPTT, where the data set is split into several
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chunks (e.g., of size 10, resulting in a data set of size 100 × 10 × 41) and BPTT is
applied separately to each chunk of data. A different solution is to modify the structure
of hidden states, such that gradients can flow easily without being subject to a large
number of modifications. One of these concepts can be realized using LSTM units,
which are investigated next.

4.3.3 Long Short-Term Memory Units

Because simple RNNs are subject to either vanishing or exploding gradients, LSTM
cells [127] can be used to overcome this gradient backflow problem and learn long-range
temporal dependencies. This is achieved by creating a cell state that makes it easy for
information to flow through and not being subject to large modifications.

In one of the first and most prominent works, Hochreiter et al. [127] proposed an LSTM
unit embodying a Constant Error Carousel (CEC) which ensures a constant error flow.
In addition to the unit itself, also known as memory cell, two gates, the input gate and
output gate, were introduced.

Gers et al. [128] enhanced the aforementioned memory cell by suggesting an additional
forget gate, which enables the cell to specifically remember or forget information. This
allows the cell to reset memory blocks, when content is not needed anymore.

In addition to the exchange of the hidden state h(t), also the cell state cs(t) is exchanged
between adjacent LSTM cells. A modern LSTM with forget gates can be described by
the following set of equations:

g(t) = φ(W gss(t) + W ghh(t−1) + bg)
i(t) = σ(W iss(t) + W ihh(t−1) + bi)

f (t) = σ(W fss(t) + W fhh(t−1) + bf )
o(t) = σ(W oss(t) + W ohh(t−1) + bo)

cs(t) = g(t) ⊙ i(t) + cs(t−1) ⊙ f (t)

h(t) = φ(cs(t))⊙ o(t)

(4.14)

where W -terms are the weight matrices, b-terms the biases, g(t) is the input run through
a tanh activation function, i(t), f (t), o(t) are the input, forget [128] and output gates,
cs(t) is the internal state and ⊙ indicates an element-wise multiplication.



4.4 Preprocessing 59

4.4 Preprocessing

This section gives an overview of the considered preprocessing methods in this thesis.
The performance of different methods is investigated in Section 6.3.

Consider an input data set S = {s1, . . . , sN} comprising N samples with m features.
The four investigated preprocessing methods are defined as follows:

Standardization:

Using standardization, all features f ∈ Rm are standardized to have zero mean and
unit variance, according to the following equation:

f ′ = f − µ(f)
σ(f) ∀f ∈ Rm (4.15)

where µ(f) denotes the mean of the feature vector and σ(f) the standard deviation.

Normalization:

Scaling a vector to unit norm is referred to as normalizing the vector by its Euclidean
length. This can either be done per feature or per sample:

Feature normalization:

f ′ = f

||f ||
∀f ∈ Rm (4.16)

Sample normalization:

s′ = s

||s||
∀s ∈ RN (4.17)



4.5 Imbalanced Classes and Performance Metrics 60

Min-Max normalization:

Min-max normalization is defined as rescaling each feature vector to the range [0, 1]
according to the following:

f ′ = f −min(f)
max(f)−min(f) ∀f ∈ Rm (4.18)

Which method to use for which data set highly depends on the particular data set itself.
In general, cross-validation can be applied to determine the appropriate preprocessing
method. When it comes to preprocessing of training, validation and test data, it must
be ensured that first the data sets are split, then preprocessing is applied to the training
set and the necessary preprocessing parameters are extracted. Only then the validation
and test set are preprocessed with these exact same preprocessing parameters, that
have been extracted from the training set.

4.5 Imbalanced Classes and Performance Metrics

Especially in the case of intrusion detection, where attacks are usually the exception,
the data set might contain a lot more normal data points than abnormal ones. In
such a scenario and when modeling the problem as a binary classification problem, the
data set is said to have imbalanced classes. This class imbalance has to be taken into
consideration when defining performance metrics for the classifiers. In this section,
performance metrics are defined under consideration of class imbalance. The importance
of well chosen performance metrics is illustrated by the example of only using accuracy
as means to measure the performance and having a data set with two highly imbalanced
classes. To get started, basic terminology [129] is defined.

Consider a binary classification problem, where (P) positive defines an attack and (N)
negative no attack. When both the actual and the predicted targets are known, the
following metrics can be defined:

• True positive (TP): The predicted target is classified as positive and the classifi-
cation is correct. E.g.: The measurement is classified as an attack and there was
an attack.
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• True negative (TN): The predicted target is classified as negative and the classifi-
cation is correct. E.g.: The measurement is classified as no attack and there was
no attack.

• False positive (FP) or Type I error: The predicted target is classified as positive,
but the classification is false. E.g.: The measurement is classified as attack, when
in reality there was no attack.

• False negative (FN) or Type II error: The predicted target is classified as negative,
but the classification is false. E.g.: The measurement is classified as no attack,
when in reality there was an attack.

The true positive rate is defined as the true positives TP divided by the total number
of positives TP + FN and the false positive rate as the false positives FP divided by the
total number of negatives FP + TN.

Accuracy represents a metric that defines the proportion of true results out of the total
number of results and is defined as follows:

accuracy = TP + TN
TP + TN + FP + FN (4.19)

A common way to display all of these metrics in a single plot is to use a confusion
matrix.

Now that basic terminology and accuracy are defined, the problem of only choosing
accuracy as metric, can be illustrated. This example is furthermore used in the
remaining part of this section to motivate different performance metrics. Consider a
data set comprising 50 000 samples and the corresponding binary classification result
as illustrated in Table 4.1.

Table 4.1 Data set with highly imbalanced classes and the classification result.

Metric Count
P 1000
N 49 000

TP 100
TN 49 000
FP 0
FN 900
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By relating to the previously defined terminology, it can be seen that the data set
consists of more non-attacks than attacks. When computing the accuracy according
to the previous equation, the result is 98.2%. One might think, by only looking at
the accuracy, that this classifier is performing very well. When looking at the attacks,
however, it can be seen that only 100 out of 1000 attacks have been correctly detected.

Moreover, a classifier could be constructed that simply classifies every sample as not
attacked. Although that classifier is very simple and not sophisticated at all, the
resulting accuracy would be 49 000

50 000 = 98%. This emphasizes the need for meaningful
performance metrics in the case of highly imbalanced classes.

Two more commonly used performance metrics are recall and precision, which are
defined as follows:

precision = TP
TP + FP (4.20)

recall = TP
TP + FN (4.21)

In words and relating to the attack detection example, precision would be defined as a
metric of how many of the detected attacks actually were attacks, and recall as how
many of all attacks were actually detected. In the example above, precision would
be 100%, because out of all 100 classified attacks, 100 were actually attacks. Recall,
however, would be only 10%, because out of all 1000 attacks, only 100 attacks were
actually detected. This definition of precision and recall leads to the so-called F1 score,
which is the harmonic mean between the both. The F1 score is applicable for imbalanced
classes, when applied correctly, and defined as follows:

F1 = 2 · precision · recall
precision + recall (4.22)

The resulting F1 score in the attack detection example would be 0.18%, showing that
the classification result is not as good as accuracy represents it.

Another well-suited performance metric for imbalanced classes, used in this work, is
the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC). ROC
curves feature the true positive rate on the Y axis and the false positive rate on the X
axis. The ideal point, a false positive rate of zero and a true positive rate of one, is
exactly in the top left corner, which would maximize the area under the curve. The
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Figure 4.9 Receiver operator characteristic and area under curve for the attack detection
example consisting of highly imbalanced classes as shown in Table 4.1.

worst result for the area under curve is 0.5. Figure 4.9 displays ROC and AUC for the
attack detection example with the classification result shown in Table 4.1.

In the case of multilabel classification, each performance metric is calculated individually
per class. The overall performance metric is then obtained by computing the arithmetic
mean of all individual metrics, which is also known as macro-averaging [130].



Chapter 5

Test Framework and Data
Generation

In previous chapters, the background regarding static state estimation, false data
injection attacks and different supervised machine learning algorithms was established.
Moreover, a thorough literature research on state of the art works presented already
existing methods and approaches.

In this chapter, an overview of the proposed test framework and its individual compo-
nents is given. Next, the generation of data sets based on real-world load data from
the New York Independent System Operator (NYISO) [131], is discussed. Both the
construction of measurement data and FDIAs are explained. Because one of the major
contributions of this work is the analysis of FDIAs on a subset of state estimation
variables, the construction of such attacks and the corresponding labels are investigated.
Additionally, various types of attack strength are considered and analyzed. This chapter
concludes with an overview of additional data generator features.

5.1 Test Framework

One major contribution of this work is the proposed test framework and data generator.
The framework itself is divided into several different components according to the
concept of object-oriented programming [132]. A high level overview of all components
and their interfaces is given in Figure 5.1.
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Figure 5.1 Test framework.

Table 5.1 gives an overview of the software used for the implementation of the test
framework and the versions in particular.

The individual components of the test framework are described in more detail below.

MeasurementGenerator

The MeasurementGenerator features two interfaces. As can be seen in Figure 5.1, load
data is required in order to generate the measurements. More information is found in
Section 5.2.1.
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Table 5.1 Used software and the corresponding versions.

Software Version
Matlab R2017a
MATPOWER 6.0
Python 3.6.5
Pip 10.0.1 (Python 3.6)
Keras 2.1.6
Matplotlib 2.2.2
Numpy 1.14.3
Pandas 0.23.1
Scikit-learn 0.19.1
Tensorflow-gpu 1.4.1

DataGenerator

In order for the DataGenerator to actually generate data, both the measurements gener-
ated by the MeasurementGenerator and the configurations provided by the DataConfig
are needed. The DataGenerator is used for the construction of FDIAs, described in
more detail in Section 5.2.2. Additional features, definable via the DataConfig, are
described in Section 5.2.3.

DataAnalyzer

The DataAnalyzer receives the data as input and outputs a detailed analysis. Several
different metrics are available and can easily be extended.

TrainConfig/TestConfig

The TrainConfig/TestConfig is the main construct holding all required information
for the execution of automated model training and testing. As mentioned previously,
the software is constructed in a modular way, making it easy to add extensions or
implement modifications.

The main difference between TrainConfig and TestConfig is, that the TrainConfig
contains data, analysis and results for both training as well as validation. The TestConfig
only contains data, analysis and result for testing. In addition, the TestConfig contains
the ID of a previously trained model, on which the test data should be evaluated.

The following list gives a more detailed explanation of the different objects comprised
within the TrainConfig and TestConfig:
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• ModelConfig: The ModelConfig includes all relevant information needed by the
Model component, in order to construct, train and test the corresponding model.
For each ModelConfig there must be a complementing Model implementation.

Three different ModelConfigs are available: 1) Tensorflow implementation of an
LSTM RNN, 2) Keras implementation of an LSTM RNN and 3) Scikit implemen-
tation of an SVM. Due to the modularity of the test framework, an additional
model, such as a Tensorflow implementation of an SVM, can be easily added.

• TrainResult/TestResult: After training or testing a specific model, the result can
be stored within the DataConfig component.

• TrainData/ValidationData/TestData: This configuration includes all the relevant
information in order to generate the data, needed by the DataGenerator.

• DataAnalysis: After data generation, the data can be analyzed by the DataAna-
lyzer and the result stored within this component.

One major advantage of storing all relevant information and configuration in one place
is the ease of dumping everything to a CSV file.

In practice, it is advisable to generate a list containing multiple TrainConfigs. Consider
the case, where someone wants to execute tests automatically, such as evaluating
different types of attack energy as explained in Section 5.2.2. In such a case, a list
containing several TrainConfigs can be specified and each item processed successively.
The following enumeration shows how such an automation looks like:

1. Select the first TrainConfig in the list.

2. Generate both the training and validation data set based on the DataConfigs
specified in the TrainConfig.

3. Analyze both the training and validation data set and store the results in the
TrainConfig.

4. Construct and train the model according to the specified ModelConfig and validate
the trained model on the generated validation data set.

5. Save the training and validation results in the TrainConfig.

6. Dump all the information and configuration of the TrainConfig to a CSV file.

7. Optionally, create diagrams displaying training performance, or in case of Tensor-
flow, save the training and validation history to a Tensorboard.
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8. Continue with the next TrainConfig in the list.

5.2 Data Generation

To be able to train supervised machine learning algorithms, labeled data, also known
as ground-truth data, is needed. As discussed in Section 2.3, the system state of a
power grid is estimated from a set of measurements collected from various sensors in
the transmission network. In this thesis, the proposed algorithms are evaluated on the
IEEE 30-bus system. For some examples, the IEEE 118-bus system is considered as
well. Details about the topology and system parameters can be found in [26].

5.2.1 Construction of Measurements

Before being able to estimate the state from the measurements, the measurements have
to be obtained. In simulations, this is usually done by either collecting or generating
load data for all load buses in the system, adapting the generation to match the total
load and then running an algorithm that solves the power flow problem and determines
the steady-state operating point of the electric power system. If the algorithm finds a
solution, the entire power grid can be described completely and all power flows can be
determined, such as real and reactive power flow in branches, real and reactive power
injection at buses and phase angles at buses. The toolbox used in this thesis to solve
the power flow problem is MATPOWER 6.0 [39], implemented in Matlab. After solving
the power flow problem, the resulting measurements can be used to obtain the state
estimate. For better understanding, the following listing shows the steps needed to
generate the measurement data:

1. Determine or specify the load for every load bus in the system.

2. Adapt the generation of all generators to match the total load.

3. Run the power flow algorithm to solve for the steady-state operating point.

Next, the data generation is illustrated by referring to the IEEE 30-bus system. The
same methodology, however, can be applied to the IEEE 118-bus system as well. By
analyzing the IEEE 30-bus system one can see that the total number of buses is divided
upon one reference bus, 24 load buses and five generator buses. This means that a load
has to be specified for every load bus. One common way used in literature for load
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generation in a network is to sample load from a uniform distribution in the range of
[0.9L0 − 1.1L0], where L0 is the base load. Some authors [112] argue, that it is more
difficult to detect attacks, when the load data is based on a uniform distribution instead
of real-world load data, because changes within a day cannot be significantly clustered.
In this thesis, however, load data is based on real-world load data from power grid
providers, due to the fact that the goal is to stay as close to real-world scenarios as
possible.

The data used in this thesis is the load data provided by NYISO. It can be freely obtained
on their homepage [131] and contains the load of 11 load buses in the transmission
network, collected at five minute intervals since May 2001. Because in this data set
only 11 buses are available and there exist 24 load buses in the IEEE 30 bus system,
load data must be replicated, whereby it must be ensured that every bus in the IEEE
30 bus system matches the same bus in the data set for all samples. This guarantees
that the distribution of each load bus does not get mixed up between several buses in
the data set.

An excerpt of the data file, showing the names of the 11 load buses and the corresponding
load (specified in Megawatt (MW)), can be seen in Listing 5.1.

Listing 5.1 Excerpt of the NYISO load data.
1 "Time Stamp " , " Time Zone " , "Name" , "PTID" , " Load "
2 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "CAPITL" ,61757 ,1227 .7
3 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "CENTRL" ,61754 ,1745 .2
4 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "DUNWOD" ,61760 ,586 .8
5 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "GENESE" ,61753 ,1024 .8
6 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "HUD VL" ,61758 ,992 .4
7 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "LONGIL" ,61762 ,2170 .1
8 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "MHK VL" ,61756 ,940 .2
9 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "MILLWD" ,61759 ,343 .5

10 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "N.Y.C. " , 6 1761 , 5100 . 8
11 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "NORTH" ,61755 ,823 .8
12 "01/02/2013 0 0 : 0 0 : 0 0 " , "EST" , "WEST" ,61752 ,1685 .4

According to the IEEE 30-bus system, the bus CAPITL is assigned to bus 1, 12 and
23. Because 11 buses cannot be replicated exactly upon 24 buses, the remaining
(11 · 3)− 24 = 9 samples are discarded. Subsequently, due to this replication, the time
interval between samples is not five minutes anymore, but 15 minutes. For this thesis,
data of the years 2013-2017 (5 years) is chosen. After replication for the IEEE 30-bus
system, this results in a data set containing 172 996× 24 samples with a time interval
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of 15 minutes. For the IEEE 118-bus system, which consists of 64 load buses, the data
set contains 86 273× 64 samples with a time interval of 30 minutes.

Now that the load data is replicated, the total generation must be adapted to match
the total load by distributing the increase or decrease in generation upon all available
generator buses. Moreover, before running the power flow algorithm, the load at every
load bus must be scaled by the baseMVA of the power system, which is determined by
taking the max value of all load buses. If lb ∈ Rk represents the load at k load buses,
each load is scaled according to the following equation:

lbi = lbi

baseMVA ∀i ∈ {1, . . . , k} (5.1)

Again, this is conducted for every sample. Next, the power flow algorithm can be run.
Because in this thesis the focus is on DC state estimation, the DC power flow algorithm
is run, which considers only real power flows and injections as opposed to real and
reactive. For this task, the method runcpf of the MATPOWER toolbox is used which
returns load parameters of the entire network including the real phase angles at the
buses, which can later be used to validate the resulting phase angles of the static state
estimation. The interested reader is referred to the MATPOWER user’s manual [133]
for a detailed explanation of the results of the DC power flow algorithm.

Now that the real phase angles of the buses and the real power flows in the branches are
known, state estimation can be conducted. For clarity, the specific steps are summarized
in the listing below:

1. Choose a number of measurements, such that m > n.

2. Construct the measurement matrix H, which is constant across all samples per
power system.

3. Define matrix of meter errors W .

4. Estimate the system state according to Equation 2.12.

5. Validate the results by calculating the difference between the real phase angles
from the power flow algorithm and the estimated phase angles from the static
state estimation.

After running the DC power flow algorithm, the result contains the real power flow in
branches from, for example, both bus 1 to bus 2 as well as bus 2 to bus 1. However,
because branch resistances and reactive measurements are neglected, both power flows
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are the same. Moreover, after running the DC power flow algorithm the measurements
have to be scaled again according to Equation 5.1 and according to the baseMV A,
which is part of the result. In order to construct matrix H, only the real power flow
in one direction of the 41 branches in the IEEE 30-bus system is considered. The
measurement matrix H is then constructed according to the example given in Section
2.3.2. Because the state variables consist of all phase angles except the reference bus,
i.e., 29 state variables, the measurement matrix is of size 41 × 29. The meter errors
are assumed to be 0.0001 for every measurement. Given this information, the state
estimate can be computed for each sample.

For practical uses, an algorithm get_state_vars_with_load is implemented in Matlab,
which receives as input the CSV files containing the load data from NYISO, a scalar
representing the meter errors which are the same for all measurements and a string
specifying the IEEE bus system. The algorithm is able to handle arbitrary IEEE bus
systems, performs bus replication, solves the power flow problem, computes the state
estimate and returns the following results:

Per data set:

• Measurement matrix H

• Matrix of meter errors W

Per sample:

• Scaled measurements used for static state estimation (i.e., real power flow in one
direction of all branches).

• Real phase angles obtained by the power flow algorithm.

• State estimation variables consisting of the phase angles at all buses except the
reference bus.

• Difference between real phase angles and estimated phase angles.

Table 5.2 shows the output for four phase angles of one sample in radians where it
can be seen that the difference between the real and the estimated phase angle is very
small. This indicates that the state estimation is working as expected. Moreover, by
examining the measurement matrix H, it can be seen that the matrix is extremely
sparse with only 80 non-zero elements out of 1189. The largest phase angle out of all
samples is 0.3435 rad or 19.68°.
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Table 5.2 Real phase angles, estimated phase angles and the difference between both for four
different buses of one sample.

Bus Real phase angle / rad Estimated phase angle / rad Difference / rad
2 0.0145 0.0145 −4.8572× 10−17

10 0.0796 0.0796 −4.1633× 10−17

20 0.0343 0.0343 6.2450× 10−16

30 -0.1452 -0.1452 −2.7756× 10−17

5.2.2 Construction of FDIAs

One of the major contributions of this thesis is the consideration of FDIAs targeting a
subset of state estimation variables. In this section, both the construction of subset
level FDIAs as well as the creation of corresponding class labels is explained. The
creation of FDIAs targeting all state variables are not explained explicitly, because such
attacks can easily be obtained by setting the number of subsets to one.

FDIAs can be constructed using the DataGenerator component of the test framework
described in Section 5.1.

Construction of Subset Level Attacks

As discussed in Section 2.4, c controls the error that gets introduced to the state
estimation variables when constructing the attack vector in the form a = Hc and adding
it to the original measurements z, such that za = z + a. In case the attacker wants to
introduce an error to specific state variables, only the corresponding fields of c must be
populated.

Let d denote the number of chosen subsets that all state variables x ∈ Rn should be
divided upon and di ∈ {1, . . . , d} the subset at the ith position. Additionally, atk ∈ Rd

serves as a vector of indices describing which subsets should be attacked and which not,
with 1 representing an attack and 0 representing no attack.

Algorithm 5.2 generically describes the construction of state variable subsets and attacks,
given the total number of state variables n, the number of subsets d, the vector of
attack indices atk and the attack value C. The algorithm first checks if the set of state
variables can be divided exactly upon d subsets or not and determines the appropriate
subset sizes. After subset size determination, the vector of attack indices atk indicates
whether the subset should be attacked or not. In the case of an attack, the attack value
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1: procedure construct_subsets(d, n, atk, C)
2: b←

⌊
n
d

⌋
3: c1:n ← 0
4: r ← n mod b
5: if r = 0 then
6: for i← 1, d do
7: if atki = 1 then
8: c(i∗b)−(b+1):i∗b ← C
9: end if

10: end for
11: else
12: for i = 1, d do
13: if atki = 1 and i = d then
14: c(i∗b)−(b+1):(i∗b)+r ← C
15: else if atki = 1 then
16: c(i∗b)−(b+1):i∗b ← C
17: end if
18: end for
19: end if
20: return c
21: end procedure

Figure 5.2 Algorithm for the construction of c with given number of subsets d, state variables
d, attack index atk and attack value C.

C gets introduced to the subset of state variables. After successful construction of c,
the attack vector can be generated according to Section 2.4.

It has to be noted that C and c are not identical. c always represents a vector of the
same size as the number of buses, whereas C can represent either a scalar or a vector.
In the case of a scalar, the value of C gets introduced to the vector c by populating the
fields that should be attacked, resulting in the same value for each populated field. In
the case of a vector, C must be the same size as c. It must furthermore be ensured,
that in the case of a scalar, C is not zero and in the case of a vector there exists at
least one non-zero element in each attacked subset of c. Section 5.2.2 discusses the
construction of C with regard to the energy of the attack in more detail.

Definition of Class Labels

From a machine learning point of view, the aforementioned detection problem of FDIAs
can be modeled as a binary classification problem. To be able to train supervised
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machine learning algorithms, the data has to be labeled. Let the data set D consist of
a set of samples S = {s1, . . . , sN} comprising N observations of measurement vectors z

with m features and a set of labels Y = {y1, . . . , yN}. It has to be noted, that in case
of a time series data, every sample si ∈ S corresponds to a particular timestep t, such
that si = s(t) ∀ i, t ∈ {1, . . . , N}.

In the simpler case of classifying the data as either attacked or not attacked, the
corresponding class labels would be defined as follows:

yi =

0, if ai = 0
1, if ai ̸= 0

(5.2)

In the case of subset level detection, the class label is directly correlated to the vector
of attack indices atk:

y = atk (5.3)

Thus, yi ∈ Rd ∀ i ∈ {1, . . . , N}. Each subset is considered to be independent of all other
subsets. Because of the fact that more than one subset can be attacked at a given
time, the output has to be considered as multilabel classification instead of multiclass
classification. With multilabel classification, more than one class can be positive for a
given output, whereas multiclass implies that at most one class can be positive.

Listing 5.2 gives an example of the labels of five samples where the number of subsets
is 10 and each row is representing one sample and each column one subset. As can
be seen, samples two and three are not attacked at all, whereas in the other samples
five out of 10 subsets are attacked. These parameters can be explicitly specified when
constructing the data set as described in Section 5.2.3.

Listing 5.2 Class labels of five samples with ten subsets.
1 [ 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 ]
2 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
3 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
4 [ 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 ]
5 [ 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 ]
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Energy of FDIAs

The first factor introduced in order to vary the attack strength is P , which denotes the
fraction of attacked samples si ∈ {s1, . . . , sN} out of all samples N .

Second, the parameter C, as depicted in Algorithm 5.2, determines the error that gets
introduced to the state estimation variables. As previously mentioned, C can either
be a scalar or a vector. In the simple case of a scalar, C has to be large enough to
cause an impact on state estimation, such as C = 0.2, but must not be unnecessarily
big, such as C = 20000. When C is unnecessarily big, the FDIA will still bypass the
traditional BDD but will more easily trigger more advanced detection methods and will
be detected nonetheless when resulting in phase angles smaller than −360° or larger
than 360°.

In a more advanced case and as typically used in several FDIA studies [110, 117], C can
be defined as a vector that is constructed by multiplying a scalar A with a Gaussian
based on the mean and variance extracted from the measurement vector z. Thus, for a
given vector of measurements z ∈ Rm with a given scalar A, the vector C ∈ Rn can be
constructed as follows:

Ci = AN (µ(z), σ2(z)) ∀i ∈ {1, . . . , n} (5.4)

By use of this notation, A can be used to scale the strength of the attack.

5.2.3 Additional Concepts

This section introduces a method for the construction of three-dimensional data sets
out of two-dimensional data sets. Moreover, features and settings of the DataGenerator
are introduced.

Extracting Batches Using a Sliding Window

In contrast to an SVM that expects input data in the form of (samples × features),
from now on referred to as 2D data set, the RNN introduces the temporal component,
thus expecting input data in the form of (samples× timesteps× features), from now on
referred to as 3D data set. This shape of input data is achieved by extracting batches of
size k (i.e., timesteps) from the two-dimensional data set using a sliding window of size
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k that is successively moved over the data set. The label then represents the existing
or not existing attacks in the last time step of the sample consisting of k time steps.
Figure 5.3 illustrates this concept. Considering a 2D data set with N samples, after
applying the sliding window method the constructed 3D data set consists of N − (k− 1)
samples.

Figure 5.3 Illustration of the sliding window concept with a window of size 16 using output
labels consisting of one subset.

DataGenerator Features

The DataGenerator features all previously explained concepts as well as additional ones.
An overview of the available features is given in the listing below:

• Specify different numbers of subsets ranging from one up to the total number of
state estimation variables.

• Specify how many subsets out of all subsets should be attacked and with what
probability.

• Specify the attack energy with a specific value in case of a scalar or A in case of
constructing FDIAs based on the distribution of the original measurements. When
choosing the construction based on the distribution of the original measurements,
the mean can either be specified according to the original measurements or set to
a different value.

• Specify the number of timesteps in case of the construction of a 3D data set.

• P

• Alternatively to P , one can manually specify which timesteps out of all timesteps
should be attacked and how many of them. For example, when specifying 16
timesteps, it can be defined that timesteps 5 and 8 get attacked every time, or that
they get attacked by a specific probability. It can furthermore be defined, that
out of all 16 timesteps, each time 4 timesteps get randomly chosen and attacked.

• Specify different preprocessing method.
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• Construct a 2D or a 3D data set.



Chapter 6

Experimental Results

In the previous chapters, the theoretical background, which is needed for the under-
standing of the experiments in this chapter, was established. This chapter starts by
outlining the experimental setup and the proposed models in specific. Next, FDIAs with
different types of attack strength and energy are investigated in detail and conclusions
are drawn. Multiple preprocessing methods are cross-validated on the proposed models
and the best preprocessing method for each model is determined. Additionally, the
correlation between preprocessing methods and attack energies is investigated. This
chapter concludes by evaluating the performance of the proposed models on FDIAs
targeting different numbers of subsets.

6.1 Experimental Setup and Proposed Models

In this section, the proposed models and data sets are described. If not stated otherwise,
the tests are conducted based on the models described in this section.

All experiments are evaluated on the IEEE 30-bus test system. For the RNN, a 3D
data set of size 172 962 × 16 × 41 is used. The number of 16 timesteps is chosen via
cross-validation and represents a time frame of four hours. For the SVM, a 2D data
set of size 10 000 × 41 is used. Both data sets are split into 70% training and 30%
validation data. In the case of test data, a new 3D data set of size 172 962× 16× 41 is
constructed for the RNN and a 2D data set of size 10 000× 41 for the SVM.

In the case of data sets, where the number of subsets is larger than one, the number of
attacked subsets out of all subsets is

⌈
d
2

⌉
. The performance metrics stated throughout
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this chapter are always determined by evaluating the proposed model on the validation
data set and not the training data set.

SVM

Scikit-learn in Python is used to implement the SVM with a radial basis function
kernel. The hyperparameters C and λ are determined using a grid search method in a
user-defined interval. The best performing parameters are C = 10 000 and λ = 0.1.

RNN

Figure 6.1 Recurrent neural network with a many-to-one architecture.

The used RNN reflects a many-to-one architecture, as illustrated in Figure 6.1. As can
be seen, the label, and therefore the error, is only applied to the last time step out of
the k time steps (16 in this case). As error function, sigmoid cross entropy loss adapted
to multilabel classification is used, as shown in Equation 4.12.

The RNN consists of one dense input layer of size m, two stacked LSTM layers of size
200 and one dense output layer of size d. Dropout of 30% is applied to the non-recurrent
connections in order to avoid overfitting. The RNN is implemented in Python using
TensorFlow. Different methods for stochastic gradient-based optimization have been
evaluated and Adam [134] is chosen. Moreover, the learning rate starts at a predefined
value and decreases over time by a given decay value of 0.93. Training is stopped, when
the training cost is below 0.001 for two epochs or when the validation cost did not
increase by 0.001 for two epochs. The maximum number of epochs, when training is
stopped nonetheless, is 200. The chosen batch size is 256.

All hyperparameters, such as number of hidden layers, size of hidden layers, batch
size and more are chosen using cross-validation. The details, however, are omitted for
brevity.

The SVM is trained on a notebook with an Intel i5-5300U@2.3 GHz CPU and 8 GB
RAM and the RNN on an NVIDIA PNY Tesla K40c GPU with 12GB GDDR5 RAM.
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6.2 Analysis of Different FDIAs

In this section, a simple analysis of FDIAs constructed with different attack energies
and numbers of subsets is conducted. Due to the fact that the data sets consist of
more than three dimensions, Principal Component Analysis (PCA) is performed for
dimensionality reduction and the first two principal components are plotted showing
both normal and attacked measurements. Moreover, it is evaluated how many principal
components are needed to obtain 90% of the explained variance.

In Section 6.2.1, only attacks that introduce an error to all state variables are considered
and evaluated with different attack energies. In Section 6.2.2, the impact of varying the
number of subsets is investigated.

6.2.1 Analysis of FDIAs Targeting all State Variables

As mentioned in Section 5.2.2, C can either be a scalar or a vector. Four variations
of attack energy are considered, covering both cases of introducing a smaller (i.e.,
mean(C) = 0.0024) and larger (i.e., mean(C) = 0.24) error to the state estimation
variables. Both A1 and A3 as well as A2 and A4 have been determined such that they
are similar in terms of attack energy. The four variations are listed below:

A1: C = 0.24

A2: C = 0.0024

A3: Ci = 10N (µ(z), σ2(z)) ∀i ∈ {1, . . . , n}

A4: Ci = 0.1N (µ(z), σ2(z)) ∀i ∈ {1, . . . , n}

In order to evaluate the impact of FDIAs on original measurements, the data sets are
not preprocessed. An evaluation of different preprocessing methods can be found in
Section 6.3.

All data sets are constructed based on the IEEE 30-bus test case. P is set to 0.5,
resulting in a data set that has as many attacked as non-attacked measurements.

As a first investigation, the impact of attacks is examined by comparing boxplots for
each measurement for both original as well as attacked measurements, as shown in
Figure 6.2. Figure 6.2a shows the original measurements, Figure 6.2b measurements



6.2 Analysis of Different FDIAs 81

(a) Original, untampered measurements.

(b) A1, i.e., c = 0.24. (c) A3, i.e., A = 10.

Figure 6.2 Boxplot of original and attacked measurements, illustrating the impact of FDIAs
with different attack energies on the original measurements.

after adding FDIAs using the attack energy in A1 and Figure 6.2c measurements after
adding FDIAs using the attack energy in A3.

It can be seen that the original measurements span a range of -1.5 to 1.0. Constructing
FDIAs with the attack energy scheme in A1 largely influences the first two measurements,
resulting in a clear difference from the original measurements. As seen earlier, the
attack vector is based on a linear combination of the measurement matrix H and the
introduced error c, i.e., za = z + Hc. In the case of A1, the range of the attacked
measurements is very close to the range of the original measurements. In the case of
A3, however, the attacked measurements become large, with values greater than 1000
and smaller than −1000. This is due to the fact, that C in A3 is based on the assumed
normal distribution of the original measurements, which has a mean of 0.244 and a
standard deviation of 4.62 in the case of this data set. Combined with the large values
in the measurement matrix H, such as values in the range of 50, the multiplication
factor A = 10 and the large standard deviation in the original measurements, attacked
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measurements in A3 are much larger than the original measurements. On the other
side, although, attacked measurements in A3 are based on the same distribution as the
original measurements, which makes them harder to be detected when data sets are
transformed to a similar range of values. This behaviour is investigated when evaluating
the proposed detection methods in Section 6.4.

As a second means of evaluation, descriptive statistical values, the histogram of the first
two principal components and a scatter plot showing the first two principal components
is given for each data set.

Table 6.1 Mean value of C, max and min value of z, explained variance of the first two
principal components and the minimum required number of principal components such that
the sum is ≥ 90% for FDIAs targeting all state variables with four different attack energy

schemes.

FDIA mean(C) / rad max(z) / p.u. min(z) / p.u. PC1 PC2 #PCs|∑ ≥ 90%
A1 0.24 1 -4.34 99.33% 0.58% 1
A2 0.0024 1 -2.58 84.3% 9.4% 2
A3 0.24 1367.25 -1519.81 40.6% 19.16% 9
A4 0.0024 13.54 -15.46 40.3% 19.19% 9

Table 6.1 gives an overview of the mean value of C, the maximum and minimum value
of z, the explained variance of the first two principal components and the minimum
required number of principal components such that the sum is ≥ 90%. As can be seen,
the mean value of C in the cases of A1 and A2 corresponds exactly to the specified
scalar. In the cases of A3 and A4 the mean value of C depends on the distribution
of the actual measurements. It has to be noted, that C represents the actual error
introduced to the state estimation variables prior to the normalization of the data
sets. It can furthermore be seen, that the smaller the introduced error is, the more
principal components are needed to account for 90% of the variance. Likewise, more
principal components are needed when c is constructed based on the distribution of the
measurements, in contrast to a fixed scalar. As already seen previously, the values of
the measurements in A3 and A4 span a much larger range than in A1 and A2.

Figures 6.3 and 6.4 show histograms displaying the distribution of the first two principal
components for all four attack scenarios. Although not all principal components
represent a meaningful amount of explained variance, e.g., Figure 6.3b only represents
0.58%, all histograms are displayed for the sake of completeness. It can be seen, that
in the case of A1 and A2, the attacked measurements comprise a more narrow range
of values than in the case of A3 and A4, where the attacked measurements are based
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on the distribution of the original measurements. It is furthermore shown, that when
the error is large, such as in A1, it is easier to distinguish attacked measurements from
normal measurements than when the error is small. It has to be noted, however, that in
the case of A3 and A4, the first two principal components only comprise about 60% of
explained variance. This leads to the suggestion, that when building machine learning
models for the detection of attacks, not only the first two principal components should
be used as features. Another meaningful investigation would be the impact of different
preprocessing methods on the distribution of the first two principal components. This
research, however, is omitted for brevity, but an investigation of different preprocessing
methods on the performance of the proposed methods can be found in Section 6.3.

(a) A1, i.e., C = 0.24, PC1. (b) A1, i.e., C = 0.24, PC2.

(c) A2, i.e., C = 0.0024, PC1. (d) A2, i.e., C = 0.0024, PC2.

Figure 6.3 Distribution of attacked and normal measurements with C based on a fixed scalar.

In addition to the histograms, scatter plots showing the first two principal components,
displaying attacked and normal measurements, can be seen in Figure 6.5.

As already illustrated in Figure 6.3a, it can also be seen in Figure 6.5a that attacked
measurements and non-attacked measurements can be clearly separated. Figure 6.5b
shows that when the error gets smaller, normal and attacked measurements are highly
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(a) A3, i.e., A = 10, PC1. (b) A3, i.e., A = 10, PC2.

(c) A4, i.e., A = 0.1, PC1. (d) A4, i.e., A = 0.1, PC2.

Figure 6.4 Distribution of attacked and normal measurements with C based on the
distribution of the measurements.

overlapping. One general conclusion that can be drawn is, that, when either the
introduced error gets very small or FDIAs are constructed based on the distribution
of original measurements, either the number of features must be increased or the
complexity of the proposed classification models. It can be seen well, that in the case
of Figure 6.5b, 6.5c and 6.5d and when using only two principal components, a simple
clustering algorithm such as kNN does not suffice to distinguish between attacked and
non-attacked measurements. In that case, either more features or a more complex
model is needed.

6.2.2 Analysis of FDIAs Targeting Subsets of State Variables

A similar comparison in terms of comparing histograms of the first two principal
components as in the previous section is difficult when the number of subsets increases,
because the number of histograms and scatter plots increases as well and a comparison
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(a) A1, i.e., C = 0.24. (b) A2, i.e., C = 0.0024.

(c) A3, i.e., A = 10. (d) A4, i.e., A = 0.1.

Figure 6.5 Scatter plots showing the first two principal components of both attacked and
normal measurements with different attack energies.

becomes confusing. Thus, in this section, different numbers of subsets are investigated
according to the following defined metrics:

• Explained variance of the first principal component.

• Number of principal components needed, such that the sum is ≥ 90%.

Figure 6.6 displays the aforementioned metrics for the attack energy schemes A1 and
A2. As can be seen, the amount of explained variance of the first principle component
decreases when the number of subsets increases. Although the decrease fluctuates,
the trend can be clearly seen. At the same time, the minimum required number of
principal components such that the sum is ≥ 90% increases, which is to be expected.
Interestingly, the amount of explained variance for the first principal component when
investigating the attack energy schemes A3 and A4 stays around 40% and the minimum
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required number of principal components such that the sum is ≥ 90% is 9, regardless of
the number of subsets. Thus, the plots have been omitted.

(a) A1, i.e., C = 0.24. (b) A2, i.e., C = 0.0024.

Figure 6.6 Explained variance of the first principal component (decreasing line) and the
minimum required number of principal components such that the sum is ≥ 90% (increasing

line) for different numbers of subsets.

This concludes the analysis of different FDIAs. In the next sections, the performance
of the proposed models and different preprocessing methods will be investigated.

6.3 Evaluation of Different Preprocessing Methods

In this section, both the SVM and RNN are evaluated on different preprocessing
methods with data sets containing FDIAs with different attack energies.
This section contains an extensive evaluation, leading to conclusions not only concerning
preprocessing methods, but also confirming the conclusions that were drawn in Section
6.2, when evaluating different data sets.

In order to cover all ranges of attack energies, preprocessing methods and numbers of
subsets, the following variations of attacks are investigated:

• Preprocessing: None, standardization, feature normalization, sample normal-
ization and min-max normalization.

• Attack energies: All four attack energies A1, A2, A3 and A4 as defined in
Section 6.2.1.

• Attack strengths P : 0.05, 0.1, 0.3 and 0.5

• Numbers of subsets d: 1, 10, 20, 29
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This results in 5 · 4 · 4 · 4 = 320 variations for each SVM and RNN, resulting in 640
variations in total. Due to the available test framework, all tests can be defined and
executed automatically.

As a first evaluation, all preprocessing methods are evaluated for both SVM and RNN
separately for both types of attack energies based on either the scalar or the distribution
of the original measurements. This results in the evaluation of 20 different variations,
whereby each variation considers all four numbers of subsets and all four attack strengths.
Figure 6.7 shows the results of this evaluation in terms of averaged F1 score of all tests,
grouped by the type of attack energy for both SVM and RNN.

It can be seen, that using standardization the RNN outperforms the SVM for both
types of attack energy, whereas the SVM outperforms the RNN when using sample
normalization and min-max normalization. The overall best performance is achieved
using standardization and RNN as model. It can furthermore be seen, that FDIAs
based on a scalar are easier to detect than FDIAs based on the distribution of the
original measurements. This can be confirmed by computing the average of all F1 scores
in Figure 6.7b, resulting in 0.573 and of all F1 scores in Figure 6.7a, which gives 0.831.

(a) Attack energy based on a scalar. (b) Attack energy based on the distribution
of the original measurements.

Figure 6.7 Averaged F1 score over all tests, grouped by the type of attack energy and the
proposed model.

Figure 6.8 shows a comparison of all five preprocessing methods, when grouping all
tests into groups corresponding to the five preprocessing methods and computing the
average F1 score. It can be seen, that overall standardization performs best.

Although no preprocessing results in a solid performance as well, no preprocessing cannot
be chosen, because in practice values may span different ranges, therefore resulting
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Figure 6.8 Average F1 score of all tests grouped into the five preprocessing methods.

in ranges that the specified model was not trained for. Thus, preprocessing must be
applied.

Relating to all previously shown experiments, the following conclusions can be drawn:

• FDIAs constructed based on a scalar are easier to detect than FDIAs constructed
based on the distribution of the measurements.

• The best performing preprocessing method for SVM is min-max normalization.

• The best performing preprocessing method for RNN is standardization.

• The overall best performance is achieved using standardization as preprocessing
method and RNN as model.

• The FDIAs which are most difficult to detect are the ones constructed with the
attack energy defined in A4.

6.4 Evalution of Different Numbers of Subsets

In this section, the performance of both SVM and RNN on FDIAs with an attack
energy as defined in A4 will be evaluated on different numbers of subsets and attack
strengths P . As preprocessing methods, the best performing methods are chosen, which
is min-max normalization for the SVM and standardization for the RNN.



6.4 Evalution of Different Numbers of Subsets 89

Figure 6.9 shows the F1 score of both RNN and SVM with regard to FDIAs on different
numbers of subsets, evaluated on four different attack strengths 0.05, 0.1, 0.3 and 0.5.
As numbers of subsets, 1, 4, 8, 12, 16, 20, 24, 28 and 29 are chosen.

(a) P = 0.05. (b) P = 0.1.

(c) P = 0.3. (d) P = 0.5.

Figure 6.9 Comparison of the F1 score of both RNN and SVM with regard to different
numbers of subsets, evaluated on four different types of attack strength P .

As can be seen, the RNN outperforms the SVM on all four different attack strengths,
except in the case of a high number of subsets (d = 28 and d = 29) evaluated on the
data set containing very few attacks (P = 0.05). The good performance of the RNN
can be explained by temporal dependency, that is additionally captured by the RNN. In
addition, the RNN is trained on more samples than the SVM. It can moreover be seen,
that it is easier to detect attacks when the data sets are balanced, such as P = 0.5,
compared to data sets containing only a few attacks, such as P = 0.05. Additionally, as
expected, it is harder to detect attacks when the number of subsets increases.

In order to not only depend on one performance metric, Figure 6.10 displays the same
evaluation as Figure 6.9, using the AUC score of the ROC as performance metric instead
of the F1 score, where a similar result can be seen.
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(a) P = 0.05. (b) P = 0.1.

(c) P = 0.3. (d) P = 0.5.

Figure 6.10 Comparison of the AUC score of both RNN and SVM with regard to different
numbers of subsets, evaluated on four different types of attack strength P .

In addition to the F1 score and AUC score, the training time is evaluated and the results
are displayed in Figure 6.11. The training of models and when the training is stopped
was already investigated in Section 6.1. Although it has to be taken into consideration,
that training for SVM and RNN is performed using different implementations and a
different hardware, two interesting conclusions can be drawn by looking at the results
in Figure 6.11. First, it can be seen that the training time increases proportionally with
the number of subsets. Secondly, the training time of the SVM rises rapidly when the
data sets get more balanced, whereas the training time of the RNN is constant.
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(a) P = 0.05. (b) P = 0.1.

(c) P = 0.3. (d) P = 0.5.

Figure 6.11 Comparison of the training time of both RNN and SVM with regard to different
number of subsets, evaluated on four different types of attack strength P .



Chapter 7

Conclusions and Outlook

In this chapter, the thesis is summarized and the main achievements are discussed. The
objectives specified in Chapter 1 are mapped to their corresponding outcomes. This
chapter concludes by discussing possible future work.

7.1 Summary

In this thesis, an approach to enhance the current existing research works concerning
the detection of FDIAs targeting state estimation in the smart grid, was presented. The
overall objective was to investigate the detection of FDIAs targeting a subset level of
state estimation variables using machine learning models. Moreover, the need for well
documented and reproducible research works in the area of attacks on state estimation,
was highlighted.

First, the background regarding cyber-physical systems, smart grids with a specific
focus on secure infrastructures, state estimation and attacks on state estimation was
given. The need for bad data detection was emphasized. The thesis continued with a
survey analyzing almost all of the existing works on defense against attacks targeting
state estimation, providing a state-of-the-art overview of the major works in this area
up to the time of writing. The survey not only considered defense methods, but also
the construction of attacks, different kinds of attacks and incentives for the attacker.

Subsequent to the literature survey, which already mentioned machine learning-based
detection approaches, an introduction to machine learning and an explanation of the
major concepts was given. Prominent supervised learning algorithms such as SVMs,
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NNs and RNNs were investigated, highlighting the advantages and disadvantages of
each one.

Moreover, a test framework allowing the generation of attacks based on real-world load
data, was proposed. In addition to the generation of attacks, the test framework also
featured a completely automated scheduling of tests utilizing both SVM and RNN as
supervised learning models. Due to the fact that the test framework was composed with
regard to the main principles of object-oriented programming, such as maintainability
and code re-usability, additional supervised learning models can be implemented easily.
The framework furthermore ensures that all simulations are documented accordingly,
resulting in simulations that can be easily reproduced and are well documented.

In the last part of this thesis, experiments were conducted investigating the performance
of the proposed models, in specific SVM and RNN, with regard to different types of
attacks, attack strengths and numbers of subsets. The major focus was on the detection
of attacks targeting a subset level of state estimation variables, which is one of the
major contributions of this thesis.

7.2 Main Achievements

At the beginning of this thesis, main objectives were identified in Chapter 1. In this
section, it is first mentioned how each one of those objectives is connected to their
corresponding outcome. Finally, the main achievements are summarized.

• Extensive literature survey. An extensive literature survey, considering all
major works to the best of the author’s knowledge up to the time of writing,
was created. Research works were broken down into several distinct categories
and tables showing a summary of all the relevant works, were created. Both
the construction of different types of attacks, the detection of attacks and the
protection against attacks was considered.

• Test framework. A test framework was implemented with regard to the concept
of object-oriented programming. The framework allows for the generation of
data sets containing different types of attacks, the usage of various machine
learning-based models and a scheduler for an automated execution of tests.
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• Subset level. The construction of attacks on a subset level of state estimation
variables was both theoretically considered as well as practically implemented as
part of the test framework.

• Machine learning-based detection methods. As part of machine learning-
based detection methods, the supervised learning algorithms Support Vector
Machine (SVM) and Recurrent Neural Network (RNN) were theoretically in-
vestigated and implemented as part of the test framework. By use of the test
framework, the performance of both models was evaluated on various different
data sets, including attacks targeting different numbers of subsets with varying
attack strengths. It was furthermore shown, that the performance of the machine
learning-based detection methods decreased when the number of subsets increased,
which was to be expected. Additionally, the proposed machine learning-based
detection methods performed better than the current state-of-the-art machine
learning-based detection methods.

• Implementation is open source. The software for the test framework is
provided as a prototypical implementation1 and made open source under the MIT
license model2.

The solution presented in this thesis addresses two different kinds of stakeholders.
Researchers can take advantage of the proposed test framework for an automated
conduction of tests, that are well documented at the same time. This ensures that
simulations conducted in future research works are reproducible and well documented,
increasing the quality of the entire experiments section. In addition, utility companies
can use this research to improve the security of their state estimation process and the
power grid in general. For example, the grid operator may want to focus on state
variables corresponding to buses with a large number of incident branches, because
failure of these buses has a high potential of leading to a cascading failure of the
entire grid. In a different case, the provider might have alraedy secured a set of basic
measurements and wants to specifically monitor state variables not associated with this
set of protected measurements.

1https://github.com/binarygraka/se-test-framework
2https://opensource.org/licenses/MIT

https://github.com/binarygraka/se-test-framework
https://opensource.org/licenses/MIT
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7.3 Future Work

This thesis should be viewed as a basis for ongoing future research in the area of the
detection of FDIAs targeting state estimation in the smart grid. It must be ensured,
that the results in research works are reproducible and that the generation of attack
data is clearly documented.

As future work, the concept of subset level detection can be extended to AC state
estimation and investigated with regard to this context as well. Moreover, RNNs
based on LSTM units can be evaluated with regard to attacks utilizing the temporal
dependency in the data, such as replay attacks. Subset level detection can also be
evaluated on sparse FDIAs and other types of attacks such as economic attacks. In
addition, larger bus systems, such as the 118-bus system, can be investigated with
regard to the performance of detecting subset level attacks on state estimation.

The implementation of the supervised machine learning-based algorithm SVM can be
implemented in Tensorflow, offering a better 1:1 comparison to the RNN that was
already implemented in Tensorflow. Due to the implementation in Tensorflow, the SVM
could also be trained on a GPU and the number of samples in the training data set can
be increased to the number of samples that are used for the RNN. With regard to the
RNN, auxiliary variables and target replication can be investigated in order to improve
the detection performance. The prototypical implementation of the test framework will
be enhanced by an appropriate documentation.
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