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Abstract

This research presents a conceptual workflow for the appropriate processing of high-spatial resolution
small unmanned aircraft system (sUAS) data for hydrologic modeling of floodplains during flooding
events. A digital surface model (DSM) and co-registered orthophoto mosaic of a stretch of the Drau
River in southern Austria is generated using structure-from-motion. Next, a digital terrain model (DTM)
is approximated from the generated DSM to within a reported vertical root-mean-square error (RMSE)
of 4.65 cm. Two generally-accepted metrics of surficial roughness, horizontal and random roughness,
are used to determine spatially-varying values of Manning’s n coefficient across the observed floodplain.
A distributed two-dimensional hydrologic model of a river channel and simulated floodplain is
performed using two-dimensional hydraulic modeling software. The effectiveness of each roughness
metric at multiple pixel resolutions to model significant variations in reported maximum velocity, water
surface elevation, and maximum depth during a flood event is tested in a controlled sensitivity analysis.
Results indicate that accuracy in hydrologic modeling is impacted by scale. However, pixel resolution is
not necessarily a reliable indicator of precise estimation of velocity, depth, and water surface elevation.
We conclude by emphasizing the importance of context in hydrologic modeling scenarios to effectively
meet the needs of end users.
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1. Introduction

Unpredictable environmental events can have profound effects on a variety of infrastructural networks.
As societies modernize, infrastructure interdependence extends to all corners of human-occupied space
(Chou and Tseng, 2010; Leavitt & Kiefer, 2006; Ouyang, 2014; Robert, Senay, Plamondon, and Sabourin,
2003). This expansion of interdependence increases the odds of cascading effects of failure, rendering
processes of public health and safety, economic stability, and quality of life subject to the resilience of
manmade systems at an array of scales.

Therefore, understanding the resilience and interdependence of critical infrastructure systems (CIS) in
terms of planning and decision support is crucial. While a substantial body of research focuses on this
field, accessing to high quality data presents a fundamental problem in fully modernizing resilience
measures globally (Ouyang, 2014). Access to relevant topological data necessary to model critical
infrastructure can be limited by reasons ranging from confidentiality and privacy issues to antitrust rules
or reluctance toward sharing (Robert, Senay, Plamondon, and Sabourin, 2003).

The research presented in this paper focuses on water transport as a discrete yet important component
in critical infrastructure systems (CIS) (Ouyang, 2014). Furthermore, we seek to develop a holistic
hydrologic and flood-prediction model using only aerial imagery derived from unmanned aerial systems
(UAS). The primary benefit of using UAS imagery is cost effectiveness in comparison to potentially-
prohibitive data acquisition methods, such as LiDAR. This cost benefit can have implications in terms of a
wider user pool and social equity for underprivileged communities.

Understanding the behavior of water across CIS can help support the resilience of communities and
resource networks in responding to flood events and in managing economic processes. Lopez et al.
(2017) utilized satellite-based soil moisture data to develop hydraulic models of underrepresented world
regions and they concluded that in situ data collection is still required to produce ideal results. In
recognizing the limitation of obtaining robust and accurate datasets, this research leverages the
increased modern availability of UAS for high-spatial resolution aerial imagery acquisition and structure-
from-motion (SfM) techniques to accurately model channels and overland flow across floodplains.
Overland flow is associated with sediment and pollutant transport and is an efficient driver of erosion
and infrastructure damage (Zhang, Liu, Li, and Liang, 2016). The transport of water therefore has clear
implications in the resilience of CIS.

Numerous workflows exist in the utilization of UAS in acquisition and photogrammetric modeling of
landforms and the criteria for hydraulic modeling are clearly defined by the functional requirements of
modeling software. The aim of this research is to unite these two concepts into one roadmap by
presenting a workflow to conceptualize a theoretical floodplain using UAS acquired data. It will include
UAS-based high-spatial resolution aerial data acquisition, SfM digital terrain model (DTM) estimation
from a digital surface model (DSM), and calculation and sensitivity analysis of two roughness indices in a
distributed 2D hydrologic model.

2. Background

The acquisition and utilization of UAS data for earth resources monitoring is not new, and contemporary
workflows for hydrologic modeling using high-spatial resolution aerial imagery do exist as well. In recent
years, UAS has emerged as an important platform for collecting high-spatial resolution aerial imagery.
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These aerial images have been used to observe and model temporal variations in river stages
(Niedzielski et al.,2016), support ecohydrology (Vivoni et al., 2014), and study the runoff behavior of
water across impervious surfaces (Tokarczyk et al., 2014). Langhammer et al. (2017) present a coupled
model of UAV imagery and an automated sensor network to develop a hydrodynamic flood model
across variable terrain. This research, however, is positioned to decouple UAS data from other data
sources, including sensor networks and LiDAR, to model the effect of topographic variability on hydraulic
flux in terms of roughness, pooling, and absorption or overland flow.

Mathematical models of hydraulic behavior in channels and across floodplains are used by a diverse
array of researchers and decision-makers to typify and predict a diverse array of flow scenarios. It relies
on quantifying the known behavior of water at various levels of turbidity and temperatures as it
interacts with the pedosphere — the outermost skin of the earth upon and through which water, energy,
and nutrients are exchanged. Naturally, the role of the pedosphere in hydraulic flux is a crucial and well-
studied factor in hydrologic modeling, but the computational capabilities of established mathematical
models are subject to technologic limitations (Clark et al., 2017). The rising dominance of UAS in local-
scale environment surveying campaigns presents both a wealth of information-rich datasets and a new
set of problems pertaining to the ability of existing models to use such detailed and enormous amounts
of information. Indeed, UAS are more accessible than light detection and ranging (LiDAR) or ground
survey systems in terms of cost efficiency and ease of use, but their inherent ability to capture discrete
and small-scale variations in radiometric resolution and elevation of earth’s surface has not been well-
explored in system-wide hydraulic models.

Along with accurate DTMs of a given study area, one of the most important considerations in hydrologic
models is roughness, which has been quantified in many ways, at times leading to debate among
experts (Zhang et al., 2016). Surficial roughness is dependent on land cover type and relative variation in
height across space. Differences in land cover type that affect roughness can be captured by
deterministic models of flow, such as the Darcy-Weisbach friction factor or the Manning coefficient
(Taconet and Ciarletti, 2007), which categorize observable characteristics of land use or land cover and
assign a constant coefficient based on empirical observation of channels and floodplains (Chow, 1959)
or vegetative density (Copeland, 2000; Freeman et al., 1998).

Zhang et al.(2016) provide a detailed discussion of hydrologic modeling as it pertains to overland flow
pointing to limitations inherent in characterizing roughness in distributed hydrologic models. Because
roughness is dependent on physical system characteristics, such as boundaries, flow velocity, water
depth, and properties of excess overland infiltration that are by their very nature environmentally-
dependent, holistic representation of overland and channel flow is limited by the sheer magnitude of
contributing factors ( Clark et al., 2017). Despite this innate constraint, a wealth of studies aimed at
modeling these factors provide a basis upon which further modeling paradigms can develop. These
studies have been classified into three types (Zhang et al., 2016). The first assume that roughness affects
volume, velocity, and flood peaks during runoff. The second type models roughness as spatially-varying
according to land use and land cover (e.g. Luo et al., 2017). Finally, the third type considers spatial
variability of roughness on a cell-by-call basis.

The quantification of roughness has roots in the 19*" century. Manning’s equation was developed by
Irish engineer Robert Manning in 1889 as an alternative to the then-common Chezy equation. It is



designed to quantify uniform flow in an open channel as a function of the channel velocity, flow area,
and slope as follows:

Q=VA= (%) AR3S (1)

Where Q is the flow rate in cubic meters per second, V is velocity in meters per second, A is area in
square meters, n is the roughness coefficient, R is the hydraulic radius in meters, and S is the slope in
meters per meter. Chow (1959) published a comprehensive table of n values that typifies the coefficient
for various channel and land cover characteristics along a spectrum ranging from minimum to maximum
values for each type. Roughness is still commonly represented in terms of Manning’s n in computational
hydraulic models, including the U.S. Army Corps of Engineers Hydraulic Engineering Center River
Analysis System (HEC-RAS) and the iRIC Project.

However, because flow velocity and direction are dependent on water depth, there have been
numerous attempts to characterize small-scale roughness to model hydrologic processes across tilled
soil for agricultural purposes (Allmaras et al., 1966; Govers et al., 2000; Kamphorst et al., 2000; Marzahn
and Ludwig, 2009; Marzahn et al., 2012). The consensus of these studies is that water pooling in interrill
regions of farm catchments and small-scale variation in roughness affects system-wide flow. These
studies present a solid foundation in understanding the most apropos methods for developing dynamic
hydrologic models that respond to anthropogenic action and weather influences. Prior to advanced
high-resolution photogrammetric or laser scanning techniques, roughness was described by two primary
indices: random roughness (Allmaras et al., 1966; Currence and Lovely, 1970) and tortuosity (Boiffin,
1984; Taconet and Ciarletti, 2007).

According to Allmaras (1966), random roughness is essentially the standard error of measured heights
across a surface. Marzahn, Rieke-Zapp, and Ludwig (2012) compute random roughness (s) for a micro-
scale DEM of tilled soil as the standard deviation of the heights (Z) to a reference height (Z):

Z?=1(Zi—z)2

s(cm) = —

(2)
Therefore, random roughness can effectively conceptualize the variation of a topographic position of
each measured value or pixel in a DEM.

Characterization of surface roughness for tilled soil has traditionally understood roughness to be
isotropic, or directionally-dependent. In order to capture the parallel structure of rills in ploughed soil,
random roughness and tortuosity (Boiffin, 1984; Taconet and Ciarletti, 2007) were typically described as
a relationship between horizontal and perpendicular measurements of height values across a surface.
Anisotropy of roughness has been observed as scale increases (Blaes and Defourny, 2008) and
researched at the watershed level (Zhang and Liu, 2017). However, Marzahn, Reike-Zapp, and Ludwig
(2012) demonstrate that roughness is anisotropic even at small scales and is therefore captured in a
more robust way by omnidirectional spatial autocorrelation of height values. They proposed fitting a
theoretical variogram (¥) of height values across space to the observed variogram (7) to determine the
distance at which the autocorrelation function (ACF) tapers off exponentially — this value was shown to
effectively represent the relationship between height values across planar space. This implies a logical
relationship between directional dependence of roughness and spatial variation of land cover as
demonstrated by Zhang, Liu, Zhang, Liu, and Wang (2018).



Furthermore, it has been conclusively demonstrated that overall surface roughness is inherently scale-
dependent (Davidson et al., 2000; Marzahn and Ludwig, 2009; Taconet and Ciarletti, 2007; Verhoest et
al., 2008). Taconet and Ciarletti (2007) introduced an approach to measure relative accuracy in the
selection of an optimal DSM size. However, this method is limited by the antiquated assumption that
roughness is isotropic. To address this limitation, Marzahn, Reike-Zapp and Ludwig (2012) proposed the
relative elementary area (REA) which utilizes a moving window to smooth elevation values to a
threshold where accuracy between a theoretical and observed model of roughness is maximized.

Current attempts to model roughness across variable terrain rely on detailed land cover and land use
classification and application of established Manning’s n values. Dorn et al. (2014) explored the utility of
LiDAR, volunteered geographic information (i.e., OpenStreetMap), and CORINE land cover datasets
along with object based image analysis (OBIA) for roughness parametrization to capture overland during
theoretical flood scenarios. However, there is little research into the methods of using established
roughness indices to inform the selection of Manning’s n coefficient based on their listed ranges.

3. Study Area

Data was acquired on November 4, 2016, over the Drau River near Obergottesfeld in Carinthia, Austria.
The Drau River through the Obergottesfeld Valley is part of the first EU-sponsored LIFE Project aimed at
monitoring restoration of riparian habitat and wetland areas along its bank. Extensive railroad
development, channel realignment, and reduced gravel and sediment dredging throughout the 19"
century exacerbated erosion along the banks of the river, threatening both ecological services and
agriculture (Lebensader Obere Drau, 2011). The dynamic history of varied use and continued monitoring
of this stretch of the river make it a good proxy for many modern managed rivers worldwide.

There are many farms along the Drau which grow a variety of crops, including corn, wheat, peas, and
alfalfa. These farms rely on predictably frequent rain events and efficient overland flow and seepage,
though there is growing concern over the last two decades that climate change is redistributing
precipitation patterns and groundwater recharge (Auer et al., 2011). The Drau River, which spans Italy,
Austria, Slovenia, Croatia, and Hungary, is one of the largest tributaries of the Danube. Significant
flooding along the Drau River, while uncommon in modern times, is not unheard of — large water
releases from Austria in 2012, for example, led to a disruptive flood event in Slovenia that damaged
homes and farms in its path (“Drava River Floods Hundreds of Homes,” 2012).

Specifically, the study area (Figures 1 and 2) is an approximately 1.4-kilometer-long tract along the Drau
River adjacent to Obergottesfeld. The primary landcover types in the scene are early growth agriculture,
senesced and dispersed evergreen vegetation, bare soil in the form of roads and footpaths, silt deposits
along riverbanks, exposed rock, and open water. For use as a proof-of-concept model and to alleviate
computational requirements, the scene was significantly subset to 268 by 107 meters (which
corresponds to 40 tiles of 1024 x 1024 pixels) that were representative of the primary landcover types in
the overall scene.



Figure 1: Study area map.
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4. Methods

4.1. Overview of Conceptual Model/Structure

This research presents a conceptual workflow for the use of high-spatial resolution UAS aerial imagery in
hydrologic modeling. It focuses primarily on data post-processing and hydrologic modeling in a
computational environment. Figure 3 demonstrates the general structure of the proposed workflow.

Figure 3: Proposed workflow.
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This conceptual workflow is designed to manage UAS-acquired high-spatial resolution aerial imagery for
its use in 2D hydrologic models, specifically HEC-RAS. Upon completion of post-processing these data, an
artificial floodplain is simulated using a theoretical hydrograph with a logarithmic shape peaking at
1339.598 cubic meters per second (cms). This peak flow was determined to sufficiently inundate the
entire study area.

The most rudimentary requirements to conduct 2D hydraulic modeling are elevation and roughness
layers and a mesh across which water flux is approximated. We predicted a DTM from a digital surface
model (DSM) derived by SfM of aerial imagery using tools available in the ArcGIS Spatial Analyst
extension to a degree of accuracy within 4.65 cm root-mean-square error spatial variation from a LiDAR
DTM. A three-band red-green-blue (RGB) digital orthophoto of the scene was classified through a series
of remote sensing vegetation indices and K-means unsupervised classification to inform spatial
variability of Manning’s n roughness coefficients which were then calibrated two common roughness
indices: random and horizontal roughness. A sensitivity analysis compares each roughness index at
multiple pixel resolutions, revealing the most statistically-significant measure of roughness to be scale-
dependent, with trends indicating that horizontal roughness with smaller pixel size tend to predict
variance of water surface elevation and maximum water depth, but that maximum velocity is harder to
pin down.

4.2. UAV Mission

4.2.1. Acquisition Setup
Data sampling was conducted using a Bramor ppX (Figure 4) developed by the Slovenian company, C-
Astral Aerospace Ltd. Autonomous navigation, gliding, takeoff, and landing was managed by Procerus



Technologies’ Kestrel autopilot system. A total of 838 images with 70% overlap and 70% sidelap were
captured using a Sony a6000 RGB sensor.

Figure 4: CUAS pilot Melanie Erlacher launching Bramor ppX UAS.

4.3. Data Processing

Digital orthophotography and the digital surface models (DSMs) were generated using Agisoft
PhotoScan (Version 1.4) software. Agisoft is a robust photogrammetry tool that uses epipolar
constraints from a set of stereo images to establish the exterior orientation of input imagery — a process
now commonly referred to as structure-from-motion (SfM) (Agisoft LLC, 2018; Marzahn et al., 2012). By
associating imagery to ground control points (GCPs), the three-dimensional (3D) structure of objects and
elevation values was calibrated using SfM. Digital orthophotos are then mosaicked into a continuous
scene co-registered to the DSM.

4.4,  DTM Approximation

It is necessary to accurately model the surface upon which water flows. However, the generation of
these models from four-band aerial imagery may understandably be limited by the presence of
vegetation which precludes the reflection of electromagnetic radiation from the sub-canopy surface.
LiDAR is an effective technique to address this, as light pulses from active sensors effectively pass
through the gaps between vegetation, resulting in staggered rates of return to a sensor whereby more
accurate models of topographical structure may be developed. However, the high cost of LiDAR
acquisition can be prohibitive in certain modeling scenarios.

The proposed DTM approximation method relies on commonly-available GIS hydraulic algorithms
designed to fill data sinks in DTM. Typically, the Fill function in ArcMap is used to identify individual
pixels or small groups of pixels with height values that vary drastically from those of their immediate
neighborhood. It can be used to remove peaks or depressions that generally result from spurious digital



number (DN) values in a raster surface. A threshold value of maximum or minimum elevation values can
also be specified in the fill tool to define the point at which those values may be truncated.

The first step of the workflow is to invert the DSM so that the maximum and minimum values are
swapped — like flipping an egg carton upside-down. This process will allow the Fill tool to interpret
superficial features such as vegetation as precipitous sinks in the model and remove those depressions.
A DSM is inverted using the following equation:

DSM; = [(DSM — DSMpgy) X 11+ DSMpiy,  (3)

Where DSM; is the inverted surface, and DSMmax and DSMpin are the minimum and maximum values of
the model, respectively. This new inverted surface was the input raster in the Fill tool. No limits were
specified to truncate input elevation values in the tool dialog, but rather, standard deviations of
elevations were manually removed to ensure that z limits were restricted to sinks as opposed to peaks.
Standard deviations of elevation were removed incrementally to ensure that only superficial features
(vegetation) were removed. The results of this sensitivity analysis are discussed later.

4.5.  Roughness Calculation

Roughness is commonly defined in terms of Manning’s n coefficients, which are derived from empirical
mathematical observation of characteristics of in-channel and overland flow. Each coefficient is
expressed as a range of values (Chow, 1959). The current research focuses on employing two metrics of
roughness quantification — horizontal and random roughness — to inform discrete values within those
proscribed ranges.

4.5.1. Land Cover Classification

To effectively capture the land cover variation within the scene, a classification scheme was employed
using Erdas Imagine (v. 2015). The RGB digital orthophoto was used as the training set for a K-Means
unsupervised classification into 36 unique classes with 10 iterations and a convergence threshold of
0.95. K-Means is an algorithm that iteratively clusters pixels based on their spectral characteristics. It will
continue to cluster pixels in the scene until either the clustering process repeats or the user-specified
maximum number of iterations has been reached.

Initial K-Means classification within these parameters did not effectively distinguish between soil, rock,
or vegetation that was submerged in the river channel from features along the floodplain, resulting in an
untenable degree of overlap to be considered accurate. To alleviate this, the river channel was manually
digitized and extracted from the entire scene prior to the final classification process. The 36 clusters
were reclassified into three simple land cover classifications: healthy vegetation, woody biomass or
sparse vegetation, and bare soil. Open water, which was manually-digitized, comprised the fourth class.

4.5.2. Horizontal Roughness

Horizontal roughness quantifies the spatial autocorrelation of elevation values across an elevation
surface. Based on methods detailed by Marzahn et al. (2012), the autocorrelation length, /, was
determined for each of the four classes. The initial step is to convert the DSM of the entire scene to
points, of which there are more than 40 million. To minimize the computational burden and processing
time, the DSM point layer was then subset to 1% of the input points randomly — approximately 410,000
points. Class information was then extracted to each point and four unique point classes were



generated from this attribute extraction. Following Marzahn et al. (2012), the points were further subset
to 10,000 points per class using an absolute value to randomly select a specific amount per class.

The semivariance between point pairs at which point autocorrelation drops exponentially was calculated
using the global Moran’s | statistical test of spatial autocorrelation as follows: 5.593 meters for open
water, 6.2747 meters for healthy vegetation, 3.8351 meters for woody biomass and sparse vegetation,
and 6.0616 meters for bare soil.

A theoretical variogram with an exponential shape was then calculated for each class based on the

concept that autocorrelation drops precipitously in terms of elevation-based roughness (Blaes and

Defourny, 2008; Davidson et al., 2000; Marzahn, Rieke-Zapp, and Ludwig, 2012), and is fitted to the
experimental variogram, which is defined as:

7(h) = =T lZ0a) — 20 + B2 (4)

Where 7(h) is the variogram, n is the number of points observed, and Z(x;) — Z(x; + h) defines the
spatial relationship between point pairs (Webster and Oliver, 2007).

Next, the ACF (p(h)) is calculated based on the following ratio:
shy =11 5
p(h) o) (5)
Where 7(h) is the semivariance distance between two points and (o) is the major range of the

semivariogram, or the distance along the semivariogram where the sill tapers off exponentially (Webster
and Oliver, 2007).

Each measurement of ACF per class was then used to inform the range of values in the Manning’s n
lookup table per Chow (1959). Manning’s n values for each classified land cover from the study area
were assigned the following classes: clean bottom channel with brush on sides for open water, range
from 0.04 to 0.08; medium to dense brush in summer for healthy vegetation, range from 0.07 to 0.16;
scattered brush and heavy weeds for woody biomass and sparse vegetation, range from 0.035 to 0.07;
and floodplain with no crop for bare soil, range from 0.02 to 0.04. Discrete values were applied
according to the equation:

nNp = [ﬁ(h)(nmax - nmin)] + Nnin (6)

Where ny, is the discrete n value, g(h) is the ACF, n,,4, is the maximum value in the listed range, and
Nynin IS the minimum value.

4.5.3. Random Roughness

The random roughness metric characterizes roughness of a surface in terms of local variation of
elevation values across a surface. As such, it can be used to simply apply a roughness value per pixel
within each derived class. The relationship between each pixel is expressed in terms of standard
deviations of elevation across the entire surface.

The standard deviation of each pixel relative to its immediate neighborhood in a 3 x 3 moving window
was calculated using the topographic position index (TPI) (Jenness, 2013). TPl is a tool that classifies
landscape into a topographic position at different scales and into different classes of landforms. The



topographic position of a pixel is the difference between a cell’s elevation value and the average
elevation values of the neighboring cells. It can be expressed in terms of elevation units (meters or feet)
or standard deviations.

Next, the standard deviation surface, which ranges in values from -2.67 to 2.53, was added to the
original DSM, creating a standard deviation height surface. An elevation error raster surface was then
generated according to the equation:

Yt (zi-2)?

n-1

S = (7)
Where z; is the standard deviation height and Z is the reference height (mean value of the original
DSM).

The values from the standard deviation surface were then associated with each of the four classes by
relating class information from the thematic raster layer to the random roughness surface. Finally, to
associate the random roughness values to Manning’s n coefficients, they were normalized to a range
from 0 to 1 and multiplied by the same four ranges as in the horizontal roughness step. Each pixel in the
scene was then represented by a floating value somewhere between the proscribed n coefficient.
However, HEC-RAS can only handle up to 256 integer values, so random roughness was reclassified to a
range from 0 to 255 and the raster was converted to integer format.

4.6. Hydrologic Modeling

To assess the degree to which scale in terms of pixel size affects the results of hydraulic modeling, a
series of simulations were run using both horizontal and random roughness layers at pixel sizes ranging
from 2 cm to 100 cm. Simulations were conducted using HEC-RAS version 5.0. HEC-RAS is a publicly-
available software developed by the U.S. Army Corps of Engineers that allows end users to conduct one-
dimensional (1D) steady flow simulations, and one- and two-dimensional (2D) unsteady flow
simulations. It also enables water temperature and quality analysis through simulations of sediment
transport.

Every scenario under which roughness was calibrated in the sensitivity analysis remained static
regarding all other model inputs. The environments utilized are described in the following sections.

4.6.1. Map Layers

Map layers in the HEC-RAS modeling software are similar in structure and function to a GIS
environment. Terrain is modeled accordingly from an elevation raster whereby elevation values are
rendered in three dimensions. The DTM generated prior to building the hydraulic model remained
unchanged during the sensitivity analysis.

4.6.2. Geometries

Geometric inputs in the hydrologic analysis include vector-based data which, when interpreted in the
modeling process, serve as a set of topological rules that enable or restrict flow of water across the
raster surface. These topological rules are essentially determined by the nature of a mesh structure. A
mesh is initially defined by the 2D flow area to be computed in the modeling procedure. It is comprised
of a cell center, cell faces, and cell face points. The cell center is the computational point where the
water surface elevation is calculated for each cell. It is not necessarily the centroid of the cell, which
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varies according to the structure of cell faces — the delineated boundaries of any computational cell. Cell
faces are typically straight lines but may be multipoint line features. Finally, cell face points are the
nodes either at cellular junctions or at the extent of the 2D flow area. Features are defined according to
the names of each cell face point (U.S. Army Corps of Engineers, 2016).

The smallest possible mesh size to be used in conjunction with the input data frame was one meter by
one meter. The 2D flow area was defined as a rectangle with cell centers corresponding exactly to each
cell centroid. Cross-sectional boundary conditions were drawn across the nodes corresponding with the
upstream and downstream portions of the Drau in the scene to model the inflow and outflow,
respectively. No break lines of additional features were drawn.

4.6.3. Unsteady Flow Approximation

Hydrographs plot river discharge in volume units over time and are used to display change in river flow
during observable events. Storm hydrographs tend to peak after a rainfall event with the rising limb of
inundation representing a waterway’s response to increased flow discharge. Peak discharge is the point
at which flows begin to decrease into the recessional decay limb.

A theoretical hydrograph was developed to simulate a flash flood event with sufficient magnitude to
overtop the riverbanks and inundate adjacent farmland. The average base flow of the Drau is two cubic
meters per second (m3s?) (Achleitner and Rauch, 2006). The theoretical hydrograph reports flow in m3s?
at the inflow location every 10 minutes. The first three reported flow levels represent the average base
flow and then increase along a logarithmic function to 1383 m3s™, at which point a potentially-
destructive flood was simulated. As a point of reference, flooding along the Drau in northern Slovenia
reported flows of up to 3100 m3s™ (“Drava River Floods Hundreds of Homes,” 2012). Decay of water
levels in the theoretical hydrograph occurred exponentially quicker than the rising limb so that the

behavior of pooling water could be observed in each model iteration.

To isolate the relationship between roughness parameterization and hydraulic behavior during a flood
event, the only dynamic variable in each iteration is roughness. Each roughness index — random and
horizontal — was modeled at pixel resolutions ranging from 2 cm (the original pixel size) to 100 cm in
increments of 14 cm. A stable model of uniform roughness (n = 1) was performed as a baseline against
which sensitivity could be assessed.

To reduce approximation error in modeling, relatively simplistic parameters were set and applied
uniformly across all model iterations during the sensitivity analysis. To wit, the DTM generated from the
DSM, the mesh drawn as a simple rectangle structure of 27664 one meter square cells (the smallest
possible size), river inflow and outflow boundary conditions drawn as straight linear cross sections, and
the same theoretical flash flood hydrograph remained unchanged in all tests. Figure 5 displays a sample
of the two-dimensional mesh over the two centimeter horizontal roughness surface.
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Unsteady flow data for each simulation was based on the above mesh, where the outflow boundary
condition line is defined by normal depth, which is derived based on channel slope approximated from
aerial imagery as 0.0063°. The hypothetical flash flood flow hydrograph (Figure 6) defined the inflow
boundary condition. The data time interval by which flow in cubic meters per second was measured is
10 minutes. A total of 130 measurements were calculated in each scenario.

Figure 6: Hydrograph of hypothetical flash flood scenario used in all simulations.
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The simulation was tested a total of 17 times under the following conditions: horizontal and random
roughness at 2cm, 16cm, 30cm, 44cm, 58cm, 72cm, 86cm, and 100cm, and one control condition of
uniform roughness (n = 1) across the entire scene. Measurements of water surface elevation (WSE),
maximum depth, and maximum velocity were taken at 30-second computational intervals in an
unsteady flow analysis.
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To generate the roughness layers with down-sampled pixel resolution, cells were resampled in the HEC-
RAS mapper, which derives raster values per cell based on nearest neighbor sampling. Four classes of n
values were input into each measurement of horizontal roughness and 256 classes were used for each
random roughness surface. Every roughness layer was loaded into one central RAS Mapper document
and selected individually in the document’s geometry properties for each respective simulation. The n =
1 simulation was automatically calculated by deselecting all roughness layers in the model.

5. Results

Nearly every stage of the hierarchical workflow presented in this paper incorporates a degree of
accuracy estimation or sensitivity analysis prior to proceeding onto the next step. Each of these
procedures is described in detail below.

5.1. DTM Validation

The minimum value of the filled raster is 568.8800659 meters and the standard deviation is
1.589983289 meters. We find that truncating the uppermost limits of elevation in the approximated
surface increased accuracy in terms of RMSE compared to an existing LiDAR dataset of the study area.
The threshold of error was identified through a sensitivity analysis. Six new rasters were calculated to
raise minimum elevations to limits defined by one quarter, one half, one, two, three, and four standard
deviations less than the original minimum value.

An existing LiDAR dataset was obtained from the Carinthia GIS service, KAGIS, a clearinghouse and
repository of geospatial data of the Austrian state of Carinthia. After sub-setting the LiDAR dataset to
the study area it was apparent that a conflicting geoid was utilized in the data acquisition and
requisition, resulting in elevation values approximately 9.828 meters below those of the UAS data. While
it is generally untenable to correct geoidal variation by adding a constant discrete value to all elevations,
the curvature of the globe and geoid did not appear to affect elevation variation across the scene at the
observed resolutions. A random stratified sample of 15 points classified as bare soil confirmed this. The
one-meter pixel resolution of the LiDAR dataset was resampled to mirror the two-centimeter resolution
of the UAS scene using the nearest neighbor interpolation technique, whereby no new values were
approximated.

After the six filled raster datasets were inverted back to normal, the root-mean-square error (RMSE) was
calculated between each individual scene and the resampled and geoid-corrected LiDAR scene. The
filled DSM with one standard deviation truncation demonstrated the best fit with a RMSE of 1.767
pixels, or 4.65 cm. Figure 7 is a plot of RMSE related to each input in the sensitivity analysis.
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Figure 7: Plot of root-mean-square error of variation between estimated digital terrain model (DTM)
and LiDAR DTM
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5.2.  Roughness

Two indices of roughness are evaluated in this study: random roughness, which quantifies roughness per
pixel in a given scene, and horizontal roughness, which quantifies roughness per class in a given scene. A
sensitivity analysis of each roughness metric at different pixel resolutions allows a user to select the
most appropriate one as informed by the pixel resolution of the available imagery. As mentioned above,
the first step in quantifying either index is to classify land cover. This section will detail the accuracy
assessment of that classification and the sensitivity analysis of random and horizontal roughness.

5.2.1. Accuracy of K-Means Classification

Each metric relied on an initial land cover classification procedure —in this case the K-Means learning
algorithm was employed. A set of 256 randomly-stratified sample points was used in the accuracy
assessment, which was used to compare the classification raster to visual assessment of the original
orthophotography. A 2cm x 2cm vector grid was overlaid on the scene to help distinguish between pixels
at transition zones between classes. The overall reported classification accuracy is 85.64% with an
overall Cohen’s kappa coefficient of 0.7797. An accuracy matrix reporting user’s and producer’s accuracy
between classes and per-class kappa coefficients is provided in table 1.
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Table 1: Accuracy matrix of K-Means classification.

Reference Classified Number Producer's User's

Class Totals Totals Correct Accuracy Accuracy Kappa
Unclassified 0 0 0 - - -
Healthy Vegetation 54 60 53 98.15% 88.33%  0.8363
Woody Biomass/Sparse
Vegetation 89 75 71 79.78% 94.67%  0.8987
Bare Soil 45 53 37 82.22% 69.81%  0.6031

Totals 188 188 161

Overall Classification Accuracy = 85.64%

Close observation of between-pixel disagreement reveals that shadows produced in the interrill regions
of ploughed land and beneath senesced vegetation were increasingly misappropriated as vegetation.
Furthermore, substantial bright light reflection from senesced vegetation was often misclassified as bare
soil. More careful classification procedures or OBIA would be effective measures to absorb these errors.

5.2.2. Horizontal Roughness

Overall spatial variation of horizontal roughness was dependent on distribution of classified land cover.
It is important to consider the observation window size in conceptualizing roughness (Marzahnet al.,
2012). In order to accurately portray roughness per class in the theoretical variogram, the
representative elementary area (REA) for each was calculated using moving window kriging at different
sizes. The window size corresponding with the lowest RMSE of variogram fit for each class was then
selected. Table 2 lists Manning’s n values calculated for each class in relation to the autocorrelation
length and derived REA of each theoretical variogram and Figure 8 plots RMSE per moving window size.

Table 2: Manning’s n values derived per representative elementary area (REA) moving window kriging.
Open Water
Window Size (m) y(h) 7(o0) RMSE p(h) n
0 0.5593 12.04188 0.28141 0.953554 0.078142
10 0.5593 0.197222 0.416231 -1.83589 -0.03344
15 0.5593 7.343327 0.198264 0.923836 0.076953
50 0.5593 11.52016 0.273007 0.95145 0.078058
64  0.5593 12.13111 0.278603 0.953895 0.078156
100 0.5593 12.13111 0.280161 0.953895 0.078156

Healthy
Vegetation
Window Size (m) y(h) 7(c0) RMSE p(h) n
0 6.2747 23.06426 0.265952 0.727947 0.135515
10 6.2747 25.59698 0.124961 0.754866 0.137938
15 6.2747 24.59151 0.186984 0.744843 0.137036
50 6.2747 11.52016 0.273007 0.455329 0.11098
65 6.2747 23.43694 0.24529 0.732273 0.135905
100 6.2747 12.13111 0.280161 0.482759 0.113448
(Table continues.)
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Table 2: Manning’s n values derived per representative elementary area (REA) moving window kriging
(continued).
Woody Biomass
Window Size (m) y(h) 7(c0) RMSE p(h) n
0 3.8351 37.61563 0.296559 0.898045 0.066432
10 3.8351 39.15367 0.111601 0.90205 0.066572
15 3.8351 38.22346 0.188819 0.899666 0.066488
50 3.8351 37.61563 0.286374 0.898045 0.066432
65 3.8351 37.61563 0.287896 0.898045 0.066432
100 3.8351 37.61563 0.291524 0.898045 0.066432

Bare Soil
Window Size (m) y(h) 7(o0) RMSE p(h) n
0 6.0619 38.2245 0.226267 0.841413 0.036828
10 6.0619 39.15474 0.106897 0.845181 0.036904
15 6.0619 28.77409 0.08608 0.789328 0.035787
50 6.0619 38.53209 0.218206 0.842679 0.036854
65 6.0619 38.53209 0.218376 0.842679 0.036854
100 6.0619 12.13111 0.280161 0.500301 0.030006

Figure 8. Root-mean-square error of variogram fit per moving window size.
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5.2.3. Random Roughness

Because the observation window of standard deviations of z-values per pixel in the DTM was specifically
the immediate neighborhood (3 by 3 pixels), no sensitivity analysis was performed on the modeling of
random roughness.
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5.3.  Hydrologic Modeling Sensitivity Analysis

To assess the variation in plots of WSE, maximum depth, and maximum velocity, all values were

normalized from 0 to 100 and tested in a single factor analysis of variance (ANOVA). In this instance, the
null hypothesis states that the plots generated from spatially-varying descriptions of surficial roughness
are not significantly different than the n = 1 model. Each ANOVA demonstrated that the null hypothesis

can be rejected in all three instances (the P-value approached or equaled 0 in all tests).

Next, to rule out the assumption that the n = 1 model was the main source of statistical variation,

another set of ANOVA tests were conducted with it excluded (i.e. 15 degrees of freedom). However, the

results indicate that the sources of variation do indeed lie somewhere within the scalar
parameterization of roughness. Specifically, WSE had a P-value of 0.0044, maximum depth of 0, and
maximum velocity of 0 — indicating extended statistical dissimilarity among the sets.

Figure 9: Roughness layers producing statistically-significant results of WSE, maximum water depth,

and maximum velocity, in hydrologic modeling.
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A series of two-sample t-Tests assuming unequal variances were conducted between the n = 1 model
and each roughness scale model, iteratively. Figure 9 demonstrates every roughness layer associated
with statistically significant results in the modeling process. A significant and unpredictable level of
variation within and among groups was demonstrated. The strongest variance in WSE was predicted
with the 2cm horizontal model, and the worst was the 16cm random model. An overall trend
demonstrates that smaller pixel size is a stronger predictor of variance of WSE, with horizontal
roughness typically outperforming random roughness. There was only one model for which the null
hypothesis could be rejected in terms of maximum depth quantification — 16cm random roughness
(Figure 10). Results were generally quite scattered, particularly among horizontal roughness models. A
slight trend indicates that smaller pixel size is a stronger predictor of variance of maximum depth among
random roughness models. The strongest predictor of statistical variance of maximum velocity modeling
was the 16cm horizontal roughness model, and the worst predictor was the 2cm random roughness
model. Furthermore, there is no clear trend associated between pixel size and maximum velocity.

Figure 10: Significance of pixel resolution on WSE quantification.
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Figure 11: Significance of pixel resolution on maximum depth quantification.
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Figure 12: Significance of pixel resolution on maximum velocity quantification.
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6. Discussion

In this paper a proof-of-concept structure for utilizing high-spatial resolution imagery obtained from a
UAS platform to develop a distributed 2D hydraulic model of a river channel and simulated floodplain is
proposed. A DSM is generated by employing the photogrammetric technique of SfM, and from this DSM
a DTM is estimated using common GIS tools to within a reported RMSE of 4.65 centimeters. The
effectiveness of two roughness metrics — horizontal and random roughness — to capture spatial variation
of roughness as it relates to Manning’s n coefficient and quantitative outputs in a simulated unsteady
flow scenario using HEC-RAS modeling software was compared. Results indicate that accuracy in
hydraulic modeling is affected by scale. However, spatial resolution is not necessarily a reliable indicator
of precision across different metrics, specifically WSE, maximum depth, and maximum velocity. Each of
these metrics should be considered in a contextually-sensitive manner that is determined by the user
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based on the need to determine principles of structural stability of static and dynamic water catchment
and flood control systems, water quality by means of particle and sediment transport, and more.

Spatial resolution also appears to have negative impacts on classification schemes, namely that
differentiation between underwater features and those along the floodplain is limited. This suggests
that OBIA as the classification paradigm in hydraulic modeling ought to be explored in future work. SfM
and other photogrammetric or scanner-based (laser, SAR, etc.) 3D models that are becoming
increasingly available can help facilitate more accurate object-based classification.

Regarding the DTM approximation, the fill technique does provide a solid foundation for future work.
However, the toolset available in most GIS products is only sensitive to threshold values along the z-axis,
while it might be useful to consider spatial properties of depressions as they occur along the x-y plane.
Further research into applying data from a classification into zonal fills is also warranted. Furthermore,
understanding classification as it relates to points along the DSM can help isolate sources of error in
approximation of a DTM whereby error is likely occurring with greater frequency along pixels associated
with vegetation.

Understanding the spatial variability of roughness in terms of Manning’s n coefficients of channel
conductivity and physical characteristics of elevation values is typically regarded as two separate
endeavors. By relying on established scientific principles of both, this research aims to fuse the two to
facilitate the inclusion of more precise metrics of spatial variability in existing hydraulic modeling
packages. However, users must be aware of the levels of uncertainty that are introduced and
compounded in such a process. Accuracy and accountability in data collection, classification schemes,
statistical analysis, and pixel resampling, should be approached with care to ensure defensible results.

In sum, the results of the proposed proof-of-concept model indicate that users of hydrologic modeling
software must exercise care when making claims regarding the accuracy of results. Referring to
complexity by way of different scenarios, resilience is also context-dependent. These hydraulic models
simulate flash floods along a stretch of the Drau lined with levees. The impact of a flash flood on a
system with diverse levels of flood protection will vary greatly and have many different implications on
processes of system or infrastructure interdependence and human equity. Researchers and practitioners
must maintain situational awareness when developing models that they are adequately responsible for
the complexity of the modeled system and are forthright in error approximation and reporting.

7. Conclusion

This research explores the most effective methods of utilizing aerial imagery derived from a UAS to
conduct flood modeling. A sequential workflow with built-in error approximation and sensitivity analysis
is presented. Proceeding from a UAS mission for data collection, the workflow covers data processing,
the approximation of a DTM, generation of a roughness surface, and hydrologic modeling. A DSM is
generated using SfM photogrammetric scene reconstruction in Agisoft PhotoScan (version 1.4). Because
a DTM is typically required for hydrologic modeling in vegetated areas, one is approximated by using
readily-available GIS modeling tools and raster math. Finally, two indices of roughness are calculated
and compared in a sensitivity analysis of hydrologic model outputs. The results of the analysis indicate
the most appropriate basic parameters to produce statistically-significant flood models given the spatial
resolution of available imagery.

20



Spatially-varying models of roughness in hydraulic modeling are both possible and relatively
straightforward — the implications of which can be extended to more complex geometric inputs in the
hydraulic modeling process, for example more detailed break lines and grid cells with complex
structures, such as bridge or building foundations, weirs, dams, culverts, and depression or storage
areas. Care must be taken in more complex modeling scenarios to ensure that input environments are
as representative of reality as possible to ensure accurate model measurements.

8. Future Work and Outlook

A limiting factor in the development of precise dynamic hydrologic models based on high-resolution UAS
data is the ability of computational systems to handle robust datasets. Future work ought to focus on
modeling longer stretches of channel and associated floodplains, both to examine the feasibility of
modern computer technology in handling the necessary data, and to explore the results of a larger array
of spatial variability.

The real-world implications derived from the sensitivity analysis portion of the current research hinges
on the reported accuracy of the HEC-RAS modeler. May, Lopez, and Brown (2000) demonstrated that
surface water models in open channel scenarios have relatively high accuracy (1.2% validation error),
but that accuracy diminishes precipitously as slope increases. Conversely, the U.S. Army Corps of
Engineers identifies user input error in defining tolerances as a direct influencer of model precision (U.S.
Army Corps of Engineers, 2016). Parameters relating to structural impedances to flow and cross-
sectional modeling of hydraulic gradients are often-overlooked variables which can lead to further
reduction in validity (Thomas and Williams, 2007). Rigorous model design is necessary to reduce the
number of “free” parameters as possible that require external calibration (Refsgaard, 1997). Therefore,
relatively simplistic parameters were set and applied uniformly across all model iterations during
sensitivity analysis. This calls for a systematic analysis of the inclusion of more parameters in the
modeling process coupled with a statistical evaluation similar to the one presented in this paper.
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10. Appendix 1 — Roughness Layers
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