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1 Introduction

Proteins are the essential building blocks of all forms of life. They can be found in all
living organism, and play a key role in many different functions of life. Understanding
the function of proteins is a crucial task in bioinformatics. One approach to gain a
better understanding of proteins is homology prediction, where sequence similarities of
known proteins might give information about common ancestors they diverged from.

This report investigates the use of profile Hidden Markov Model (pHMM) in protein
family classification. In detail, the common approach using only the primary structure
to build a pHMM and score sequences against it, will be extended to make use of
secondary structure information. In particular cases in which protein homology is not
well represented by sequence similarity in certain parts of the protein, stability with
respect to secondary structure is expected to increase the classification quality.

The following Chapter 2 gives an overview about relevant areas of bioinformatics,
needed for this paper. These include topics, such as protein composition, secondary
structure determination, and pHMM. In Chapter 3, the implementation of various
methods in the software package HMModeler is described. Based on the theoreti-
cal background, the steps from a Multiple Sequence Alignment (MSA), determining
secondary structure, building a pHMM and score sequences against it, are covered.
Chapter 4 evaluates the implementation based on various datasets. Finally, Chapter 5
concludes this paper.
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2 Selected Background Information

Bioinformatics covers a wide range of scientific fields, especially biology, chemistry
and computer science. This chapter gives a short introduction in certain areas of
bioinformatics, needed as basic understanding for the methods used in later chapters.

2.1 Proteins

Proteins play a key role in almost all biological activity. Proteins are large biological
polymers composed of one or more chains of amino acids held together by spatial bonds
called peptide bond. The material described in this section can be found in greater
detail in [1, 4].

2.1.1 Amino Acids

Amino acids are the basic building blocks of proteins. Each amino acid consists of
a central α carbon bound to a carboxyl group (COOH), an amino group (NH2), a
hydrogen atom, and a distinct side chain (or R group). Variation in the chain defines
the 20 common amino acids found in protein molecules. For instance, if the side
chain contains just one hydrogen atom, the amino acid is Glycine, while the side chain
CO2OH forms the amino acid Serine. Table 2.1 list the 20 common amino acids found
in proteins with their assigned three-letter abbreviations and one-letter symbols, as
defined in [5].

Amino acid Abbreviation Symbol Amino acid Abbreviation Symbol
Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Methionine Met M
Aspartic acid Asp D Phenylalanine Phe F
Cysteine Cys C Proline Pro P
Glutamic acid Glu E Serine Ser S
Glutamine Gln Q Threonine Thr T
Glycine Gly G Tryptophan Trp W
Histidine His H Tyrosine Tyr Y
Isoleucine Ile I Valine Val V

Table 2.1: The 20 common amino acids of proteins with their three-letter abbreviation and one letter
symbols [5].

Two amino acids can form a dipeptide through a covalent chemical bond through
cleavage of a water molecule (H2O) from the carboxyl group of one amino acid and
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the amino group of another. The resulting CO−NH bond is called peptide bond (see
Figure 2.1).
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Figure 2.1: Dipeptide forming from the condensation of two amino acids.

These bonds can extend into peptide chains with a size up to several thousand amino
acid residues. Sequences with up to 50 residues are generally referred to as peptides, for
longer sequences, the term polypeptide or protein is used. By convention, the reading
direction of a polypeptide chain is defined from the N- to C-terminus, where N-terminus
refers to the free amino group at one end, and C-terminus to the free carboxyl group
at the other end of the chain.

2.1.2 Protein Structure

The shape of a protein is critical to its function. As proteins typically has a stable
three-dimensional structure, dictated by its amino acid sequence. Protein structure is
divided into four hierarchical levels: primary, secondary, tertiary, and quaternary.

The primary structure is represented by the linear sequence of amino acids within
a polypeptide connected by peptide bonds, where each element corresponds to one of
the 20 amino acids described in section 2.1.1. The primary structure of a polypeptide
can be determined from protein sequencing methods, such as spectrometry.

The secondary structure is defined by the local folding patterns of a region of the
protein over a short range of amino acids in a polypeptide. The secondary structure
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Figure 2.2: The four levels of structure in Proteins [1]

is mainly dependent by its primary structure, which is stabilized by hydrogen bonding
due to interaction between the atoms of the backbone. The two most common spatial
formations are the α-helix and the β-sheet, connected by irregular segments, referred
to as loops or coils.

The α-helix folds by twisting the polypeptide chain into a right handed coiled structure,
with the side chains positioned on the outside of the helix where they are free to interact
with the surrounding.

The β-sheet is composed of two or more stretched polypeptide segments, also called
β-strands, next to each other and held together by hydrogen bonds. The side chains
in β-sheets alternate above and below the plane of the strands. Due to the direction of
polypeptides, β-sheets can be differentiated into antiparallel β-sheets when the strands
run in the opposite direction and parallel β-sheets when they run in the same direction
[4].

If the tertiary structure is available, the secondary structure can (almost trivially)
be computed from the former. Otherwise, it has to be predicted from the primary
structure. Methods for secondary structure determination are explained in section 2.4.

The tertiary structure is defined by the coordinates of all atoms in the protein
relative to each other and represents the complete three-dimensional structure of the
entire folded polypeptide chain. The tertiary structure of a protein is determined by
experimental methods such as X-ray crystallography and Nuclear Magnetic Resonance
(NMR).

The quaternary structure represents complex protein structures made up of multiple
polypeptide chains.
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2.1.3 Protein Homology

Two proteins are homologous when they share common evolutionary ancestors. Of-
ten homologous proteins with similar biological functions have a similar sequence and
structure, at least in some crucial regions. Differences occur due to mutations in the
sequence, such as substitutions, insertions, and deletions of single amino acids. The
degree of homology is determined by metrics, such as the similarity of two sequences.
High sequence similarity between two sequences is an indication of them having the
same ancestor, whereas the probability of them originating independently of each other
increases with less similarity. As the structural fold of a protein is crucial to its func-
tion, regions that are critical to its function are better conserved than irregular loops.
A way to model and describe protein homology is to use MSAs, see Section 2.3.1.

2.2 Protein Databases

Over time, more than 1,600 databases containing bioinformatic data have been created
[6]. These databases can be categorized into primary and secondary databases. Pri-
mary databases are filled with sequence or structure data derived from experimental
results by researchers, whereas secondary databases are composed of data derived from
primary databases and organized with additional knowledge, such as family classifica-
tion.

The following sections detail the protein structure database the Protein Data Bank
(PDB), and the secondary database the Structural Classification of Proteins (SCOP),
as they are used in the current study.

2.2.1 Protein Data Bank

In 1971, the Brookhaven National Laboratory established the PDB as primary database
for the three-dimensional structures of proteins, nucleic acids, and complex structures.
Since 2003, the PDB is managed by multiple organizations around the world by the
worldwide PDB (wwPDB) organization1.

The data in the PDB is mostly derived by methods like X-ray crystallography and
Nuclear Magnetic Resonance spectroscopy. Protein structures are stored in the PDB-
file format as three-dimensional position of each atom together with additional data,
like temperature factor and amino acid residues, among others. Each entry published
in the PDB has a unique, four-character identifier (PDB ID) [7].

1Worldwide PDB: https://www.wwpdb.org/

https://www.wwpdb.org/
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Currently, the PDB contain over 130,000 structures2 and grows by ~10% in size an-
nually [8]. However, compared to more than 90 million sequences in the TrEMBL
Protein Database3, three-dimensional structures are available for only a small number
of proteins.

2.2.2 Structural Classification of Proteins

The SCOP classifies proteins with known structures from the PDB according to their
evolutionary, functional, and structural relationships. Each protein in the SCOP is
classified in a hierarchical system with the four main levels: family, superfamily, fold,
and class [9].

• Family describes proteins with obvious evolutionary relationships due to high
sequence similarity over the protein, or with low sequence similarity but high
structural and functional similarity.

• Superfamily describes families with low sequence similarity, where, based on
structural or functional features, a common evolutionary origin is probable.

• Fold describes superfamilies with high structural similarities, based on a similar
arrangement of secondary structures and their topological connections.

• Class describes folds according to the appearance of their secondary structure,
such as proteins with α-helices only.

The convention for describing protein classification is
Class.Fold.Superfamily.Family. In this convention, the class is described
as an alphanumerical letter, while the fold, superfamily, and family are described
using numbers. For example, hemoglobin with the scop identifier (sid) D1A3NA_
is classified as a.1.1.2, belonging to the family globins (2), the superfamily and fold
globin-like (1), and under the class α-helices only (a).

Until version 1.73 of the SCOP, all protein structures were manually classified. With an
increasing number of protein structure publications and the subsequent growth of the
PDB, manual classification became too slow to classify all new proteins. Therefore,
in later versions and with the introduction of Structural Classification of Proteins-
extended (SCOPe), automated processes were introduced [10].

2PDB - Yearly Growth of Total Structures: https://www.rcsb.org/pdb/statistics/
contentGrowthChart.do?content=total

3TrEMBL Statistics: https://www.ebi.ac.uk/uniprot/TrEMBLstats

https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total
https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total
https://www.ebi.ac.uk/uniprot/TrEMBLstats 
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2.3 Profile Hidden Markov Model

This section will focus on the main parts of pHMM. More background, especially
regarding the fundamentals of Hidden Markov Models (HMMs) such as Markov chains
can be found in [2].

2.3.1 Multiple Sequence Alignment (MSA)

Two sequences can be compared by a pairwise sequence alignment, where the residues
of both sequences are directly compared to each other, allowing to use gap positions
between the residues. Two protein-sequences are very similar when they have many
match-states and only a few gaps. Sequences with high similarity are also very likely
to be homologous and display a structural and evolutionary conservation.

A multiple sequence alignment compares three or more sequences to each other. Figure
2.3 shows a MSA built up from 15 sequences from the same superfamily, see Section
2.2.2.

Figure 2.3: 15 sequences from the SCOP superfamily g.37.1 aligned to an MSA

Functionally important residues in a sequence are assumed to remain stable over gen-
erations, and are less likely to mutate. Therefore, highly conserved regions, with high
similarities over the columns of the MSA, are indicated to be functionally important.

There are different approaches for generating an MSA, based on manual annotation
by expert knowledge, or automatic methods based on structural information, see [2,
Chapter 6].
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2.3.2 Profile Hidden Markov Model

A pHMM is a stochastic model, based on Markov chains, especially used in bioinfor-
matics to model a MSA and capture its degree of structural conservation. Figure 2.4
shows the structure of a pHMM, which uses three different types of hidden states for
each column of the MSA. These are match state Mk, delete state Dk and insert state
Ik.

Di

Ii

Begin Mi End

Figure 2.4: Structure of a pHMM with match, insert and delete states, adapted from [2].

Match state Mk is described by a distribution, trained with the symbol frequency in
column k of the MSA. Each representative column in the MSA model matches one
state. Gaps in the MSA influence the insertion and deletion states.

Insertion states model genetic insertions of additional symbols in a sequence that do
not show in the majority of the sequences of a family of proteins in the MSA. They
occur when there are many gaps in a column, typically above 50%. They allow for
inserting the symbols in the MSA for those sequences that do not show gaps. Insertion
states have a self-transition to cover repeated insertions over multiple columns. Instead
of the actual symbol frequency of the MSA column, the emission probabilities can be
set to a background probability, based on a general frequency of the symbols, as a few
residues in the column might not be a representative.

Deletions allow a sequence to skip over a match state without emitting a symbol,
and model situations of genetic deletions where a certain sequence has one or more
positions fewer than the other proteins in a family modeled by the MSA. Deletions are
silent states without emitting symbol probabilities. Self-transitions are not allowed for
deletions, however gaps over multiple columns are modeled as a sequence of deletion-
states, allowing different transition probabilities over multiple gap-positions.
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2.3.3 Decoding and Scoring

In a fully defined pHMM any sequence can be represented by a matching score, by
multiplying the transition and emission probabilities along the path. Due to the insert
and delete states, many different paths can form the same sequence. To find the best
suited path for the specific sequence, dynamic programming approaches are used, such
as the forward-algorithm or the viterbi algorithm.

The forward algorithm calculates the overall probability as sum for each individual
state of the pHMM. The viterbi algorithm calculates the probability for the most
likely sequence of states by using the maximized path over the pHMM.

To prevent an underflow, caused by multiplication of many probabilities in the range of
0-1, a logarithmic scale is used to calculate the raw-score. However, those raw-scores are
heavily dependent on the overall sequence length, as longer sequences generate smaller
scores, and are thus difficult to compare. Therefore, the scores can be normalized using
correction methods such as null models, either the simple null model or the reversed
sequence null model. The simple null model uses a simplified one-state HMM with
a specific residue composition, based on general occurrence frequencies of the amino
acids, and scores the sequence against it. The reversed sequence null model uses the
original pHMM and scoring algorithm, but inverses the direction of the used sequence.
The final score without length dependency is calculated by subtracting the null model
score from the raw score in the logarithmic scale.

2.4 Secondary Structure Estimation

The fundamentals of protein prediction, relevant for this work, are discussed by Mayer
in [11]. First of all, secondary structure determination method Dictionary of Secondary
Structures in Proteins (DSSP), then the two secondary structure prediction approaches
Profile Network from HeiDelberg (PHD) and MetaSSPred will be discussed.

2.4.1 The Dictionary of Secondary Structures in Proteins

The DSSP is a method by Kabsch and Sander, described in [3], to determine the
secondary structure of a protein based on the atomic coordinates of proteins. It uses
pattern recognition in hydrogen bonding and specific geometric features to assign one
of eight secondary structures (see table 2.2) to each residue in a protein. These eight
types can be grouped into three major components helix: (H, G, I), strand (B, E) and
loop (T, S, C).
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Symbol DSSP secondary structure
H α-helix

α(H) G 310 helix
I π-helix

β (E) B
E

residue in isolated β bridge
extended strand

T hydrogen bounded turn
L(C) S bend

C loop or irregular

Table 2.2: Structure types determined by DSSP [3]

Helices are recognized as repetitive turn-sequences of hydrogen bonds. The α-helix is
the most common helix-type with hydrogen bonds four residues apart. The 310-helix
and π-helix are variations with hydrogen bond distances of three and five residues,
respectively. The two types of beta strands are stretched polypeptide chains arranged
for repeating hydrogen bonds with other strands. Short turns supported by hydrogen
bounds reverses the overall direction of the polypeptide chain. Bends are regions,
with an angle at least 70◦ from one residue to the residue after next. All other non-
identifiable residues are marked as loop or irregular, whereas in generated DSSP-files
C is a blank position.

2.4.2 PHD

The secondary structure prediction method PHD, introduced in [12] by Rost and
Sander, is the first method which predicted secondary structure with an accuracy
greater than 70% from the primary structure only.

The Profile Network from HeiDelberg uses three steps to predict the secondary struc-
ture. In the first step, PHD examines evolutionary information by obtaining an MSA
from homologous sequences. The probability for each amino acid in the MSA is fed
into a two-level feedforward neural network system, previously trained through back-
propagation with proteins of known structures. In the first level, for each position in
the sequence, a sliding window of 13 consecutive amino acids is fed, and the likeli-
hood of the central residue being a helix, sheet, or loop is returned. The independently
trained second level receives the output from the first level and return new probabilities
for the same three major secondary structure elements. The highest value determines
the secondary structure. A reliability index is set with the difference of the two highest
values. The final step is a filter to remove obvious errors, like helices shorter than 3
residues long.
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Secondary structure prediction with PHD is available online with the PredictProtein
web server4 or locally through the Debian Linux package PROFPhd. The expected
accuracy for the three major secondary structure types is, on average, 76% [13].

2.4.3 MetaSSPred

MetaSSPred is a secondary structure prediction method, developed in the Bioinformat-
ics & Machine Learning Lab5 at the University of New Orleans, see [14]. MetaSSPred
is available as Linux based standalone software package6.

MetaSSPred combines three binary Support Vector Machines (SVMs), one for each
secondary structure element. The SVMs make use of 33 features, extracted from the
primary structure. Each SVM predict for one secondary structure element, if a residue
belongs or not belongs to the secondary structure, and returns a probability for it. The
secondary structure class with the highest probability is assigned to the amino acid.
In an additional step, the output from the SVMs is combined with the output of the
secondary structure predictor SPINE X [15].

4https://www.predictprotein.org/
5http://biomall.cs.uno.edu/
6http://biomall.cs.uno.edu/software/

https://www.predictprotein.org/
http://biomall.cs.uno.edu/
http://biomall.cs.uno.edu/software/
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3 Implementation

This chapter covers the implementation based on HMModelers workflow. First, pro-
cessing input data, including secondary structure determination, is described. This is
followed by a description of adapting the pHMM, and finally of the scoring-algorithms.
However, this section focuses on the modifications made in HMModeler, more informa-
tion on HMModeler with its not mentioned implementations can be found in [16, 17, 11].

3.1 HMModeler

HMModeler is a software package for protein classification jointly developed by re-
searchers at Salzburg University of Applied Sciences and the University of Salzburg.
While HMModeler was designed as extension for UCSF Chimera1, the current version
runs independently with its own Graphical User Interface (GUI). The core of HM-
Modeler is written in Python while time-consuming algorithms are also implemented
with faster C++ libraries. The web based GUI communicates with the core system vie
RESTful web services. HMModeler is platform independent and runs both on Windows
and Linux operating systems. HMModeler uses the Smith-Watermann style variant of
pHMM, shown in figure 3.1. This variant is used for local alignments, by using flanking
states with transitions from the begin to each match state as start model, and from
each match state to the end state as end-model.

Di

Ii

Mi

FBBegin

Q

FE End

Q

Figure 3.1: Smith-Waterman variant of a pHMM, adapted from [2].

1UCSF Chimera https://www.cgl.ucsf.edu/chimera/

https://www.cgl.ucsf.edu/chimera/
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The GUI allows skilled experts to introduce prior information about the protein family
targeted at into the HMM. In particular, the user can interactively define parts of the
protein with increased or decreased insertion and deletion probabilities. The user can
also modify the extent to which the emission probabilities in the single model columns
of the pHMM are extracted purely from given multiple sequence alignments, or are,
alternatively, determined from a-priori distributions. Finally, the user can define so-
called expert sets that override other estimation methods and set the possible emissions
in certain model states to an explicit set of amino acids. Currently, the software uses
only the primary structure for building the pHMM, and scores sequences against it
with the viterbi and forward algorithm, see [11, 16, 17].

3.2 Input Data

First, HMModeler takes an MSA as input to train its pHMM. HMModeler can process
files in the Stockholm file format, uploaded by the user or referenced by a project-ID
from the Multiple Structure Alignment Server Pirates2.

The Stockholm format is a markup-format for MSA, where each sequence can be
annotated with additional features, such as the corresponding secondary structure for
each amino acid residue. The definition of the Stockholm format can be found at [18].

Figure 3.2 shows the implemented workflow for determining the secondary structure.
All sequences in the MSA are read. If there is no structure information provided for
one or more sequences, the secondary structure is fetched from the PDB Database or
predicted using the MetaSSPred method, as described in section 2.4.3.

Seq1:
MSA

Seq2:

Seq3:

PDB

DSSP

Align

MetaSSPred

✓

x

Seq1:
MSA

Seq2:

Seq3:

PDB

DSSP

Align

MetaSSPred

✓

x

Figure 3.2: Workflow for processing input data and determination of secondary structure.

The secondary structure from sequences corresponding to 3D-data in PDB are calcu-
lated using the DSSP-program (see section 2.4.1). The extracted structural information
must be aligned with the original sequence, considering the exact gap positions and
possible differences in the overall sequence length. The Needleman-Wunsch algorithm,

2Multiple Structure Alignment Server Pirates: https://biwww.che.sbg.ac.at/pirates

https://biwww.che.sbg.ac.at/pirates
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described in [2, p. 19–21], is used for this task. Needleman-Wunsch is a dynamic
programming approach for global sequence alignment that calculates the optimal path
through a scoring matrix using match, mismatch, and gap penalties. The derived se-
quences, linked to their corresponding secondary structure, are aligned with the original
sequence. Provided the original sequence from the MSA matches the aligned sequence
from PDB, the structure is used.

If there is no match in PDB or the alignment fails, the secondary structure is predicted
with MetaSSPred. For each sequence that has to be predicted, a Fasta-formatted file
with gaps removed in the sequence is generated in the input directory of MetaSSPred
and processed by the software. Finally, the predicted secondary structure is aligned to
the sequence with the Needleman-Wunsch algorithm.

3.3 Training the HMM

Based on the MSA, which now includes both primary and secondary structures, the
transitions and emission distribution are assigned to the pHMM. These are calculated
by the frequencies across sequences for each column in the MSA, according to (3.1),
where akl is the transition probability from state k to l, and (3.2) for the emission
probability ek(a) of the symbol a at state k.

akl = Akl∑
l′ Akl′

(3.1)

ek(a) = Ek(a)∑
a′ Ek(a′) (3.2)

To prevent overfitting by symbols with a probability of zero, it is important to add
some background frequency like a small non-zero prior probability pc(a) to each symbol,
see (3.3). The simplest approach is the Laplace smoother, by adding a hypothetical
observation in form of one pseudocount to each emission and transition.

ek(a) = Ek(a) + pc(a)∑
a′ Ek(a′) + ∑

pc(a′) (3.3)

The implementation for the emission probabilities were extended by calculating the
primary structure with 20+1 symbols to generate two additional matrices, one with
3+1 symbols for the secondary structure and another with 84 symbols containing mixed
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probabilities from the other two sets. The additional symbol for the primary and sec-
ondary structures were added to cover a wider set of sequences in the test-database
(see Section 4.1), where single residues or structure elements in sequences can be un-
known and therefore marked with the letter ’X’. As the symbol ’X’ stands for all other
symbols in the set, the probability will be set to 1, which equals to the sum of all other
probabilities.

The transition probabilities only rely on the gap positions of the MSA, therefore no
modifications in the current implementation of HMModeler are needed. Moreover, the
functional emission probability implementation for the primary structure remains the
same.

The emission probabilities for the secondary structure are calculated by using the three
common types helix, strand and loop. To prevent zero probabilities, a prior-probability
can be set by the user over HMModelers GUI.

Using both probability sets, the original primary structure implementation and the
new secondary structure probabilities, a weighted emission frequency set that covers
both primary and secondary probabilities is generated.

Mayer discussed the emission probability weighting for the use with pHMM in [11].
Following his research three different implementations are explained next.

3.3.1 Linear Weighting

Mayer discussed in [11] the problem with the different length of the two alphabets, as
the primary structures involve 20 amino-acids symbols, whereas the secondary structure
only involves three symbols. Therefore he recommended the approach in (3.4), where
the mixed emission probabilities ek(p, s), are weighted by their symbol-length with 20
amino acids for the primary probability ek(p), and the three structure symbols in ek(s).

ek(p, s) = 20
20 + 3 · ek(p) + 3

20 + 3 · ek(s) (3.4)

However, the most convenient approach for mixing two probabilities by a simple mul-
tiplication as in (3.5) will also be implemented and tested.

ek(p, s) = ek(p) · ek(s) · k (3.5)
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As mentioned in Section 3.4, where a threshold can be used to define if the scoring
process uses the mixed or the primary probability, the additional factor k is introduced
for scaling the resulting mixed probability. With this factor, the impact between a
column in the pHMM where the mixed probability is used, and columns that prioritize
the primary probability can be reduced. For example, if k is set to three, the size of the
secondary structure alphabet, and the probability ek(s) = 1

3 , the secondary structure
would have no impact on the resulting probability.

3.3.2 Weighting by Shannon

In [11], Mayer introduces weighting the two emission-probabilities by the amount of
information in each column using the Shannon theorem, defined in [19] as

H = −
N∑

i=1
pilogbpi (3.6)

where the entropy H is the negative sum over the probability of each possible outcome
pi multiplied by the logarithm of the same probability. If one single probabilistic result
of an event has the probability of 1, the entropy is 0. In this case, there is no uncer-
tainty. Conversely, if all probabilistic results have equal probability, the uncertainty
is maximal with an entropy of logb(N), where N is the number of possible outcomes.
The logarithmic base b is usually 2 as the common use is digital communication, or, in
other cases, the natural logarithm e.

Figure 3.3 show the entropy as a function for a binary event with probabilities p and
q = 1 − p with a natural logarithm and logarithmic base of 2. The maximum entropy
occurs when p = q = 0.5.

The lower the entropy, the higher the degree of information and thus the relevance for
the mixed probability. The rate of information I will be determined by subtracting the
entropy H from the maximal possible entropy logb(N):

I = logb(N) −H (3.7)

With the degree of information for both, the primary structure I(p) and secondary
structure I(s) the probabilities will be weighted as follows:
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Figure 3.3: Entropy H for an event with two possible outcomes, with natural logarithm (red) and
normalized logarithm with base 2 (blue) [19]

ek(p, s) = I(p) · ek(p) + I(s) · ek(s)
I(p) + I(s) (3.8)

In contrast to the natural logarithm for both the primary and secondary structure,
as recommended by Mayer, the normalized logarithm with a base equal to the cor-
responding alphabet size will be used. Without the normalization both probabilities
would not be equally weighted, as the maximum entropy for the primary structure
would be ln(20) = 2.9957 and for the secondary structure ln(3) = 1.0986.

For programming languages, which does not support non standard logarithmic bases,
any logarithmic equation with base a can be converted to any other base b, by dividing
through the logarithm with the same base a, with the argument set to the new base b:

logb(x) = loga(x)
loga(b) (3.9)

3.4 Scoring Sequences

HMModeler calculates nine different types of scores, listed in Table 3.1, using the viterbi
and forward algorithm, and variations using the simple null model and the reversed
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sequence null model, see Section 2.3.3.

Score types Description
Viterbi score V (s)
Forward score F (s)
Simple null model N(s)
Reverse viterbi null model V (s−1)
Reverse forward null model F (s−1)
Simple corrected viterbi score V (s) −N(s)
Simple corrected forward score F (s) −N(s)
Reverse corrected viterbi score V (s) − V (s−1)
Reverse corrected forward score F (s) − F (s−1)

Table 3.1: Scores calculated by HMModeler

Only the algorithms for the viterbi score and the forward score must be adapted for
the use of the secondary structure. The reversed null models use the same algorithm
but with the sequence reversed, and the simple null model uses a one state HMM with
general background distribution based on the primary structure that will continue to
be used.

As described in Section 3.3, the mixed emission probabilities ek(p, s) are generated
based on the primary structure probabilities ek(p) and secondary structure probabilities
ek(s). However, with the aim of using only the primary structure instead of the mixed
probabilities for regions in the MSA where the primary structure is highly conserved, a
threshold can be set. If the highest emission probability in the primary structure is set
below the threshold, the mixed probabilities are used, otherwise only the probabilities
for the primary structure are used:

ek(m) =

ek(p) if max(ek(p′)) > threshold

ek(p, s) otherwise
(3.10)

The resulting probability ek(m) will be used in the viterbi equation for the transition
to the match-state V M

j :

V M
k (k) = log ek(m) +max



V M
k−1(i− 1) + log aMk−1Mk

V I
k−1(i− 1) + log aIk−1Mk

V D
k−1(i− 1) + log aDk−1Mk

V F B
k−1(i− 1) + log aF BMk

(3.11)
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The other viterbi equations remain unchanged; as for insertion states in (3.12), a
background probability q(p) based on the primary structure alphabet will be emitted,
and the silent deletion states in (3.13) do not emit any symbol.

V I
k (k) = log q(p) +max


V M

k (i− 1) + log aMkDk

V I
k (i− 1) + log aIkDk

V D
k (i− 1) + log aDkDk

(3.12)

V D
k (k) = max


V M

k−1(i− 1) + log aMk−1Dk

V I
k−1(i− 1) + log aIk−1Dk

V D
k−1(i− 1) + log aDk−1Dk

(3.13)

The same modification applies to the match state in the forward algorithm in (3.14),
which is similar to the viterbi algorithm, except instead of using the max transition
state, it sums up all transition states.

FM
k (i) = log ek(m) + log[aMk−1Mk

exp(FM
k−1(i− 1))

+ aIk−1Mk
exp(F I

k−1(i− 1))

+ aDk−1Mk
exp(FD

k−1(i− 1))

+ aF BMk
exp(F F B

k−1(i− 1))]

(3.14)
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4 Tests and Result

In the previous chapter, the implementation in HMModeler was described. In this
chapter these changes will be discussed by the testing the different methods that were
used.

4.1 Dataset

The ASTRAL SCOP 1.73 sequence database1 filtered to entries with less than 40%
sequence similarity to each other was used. This specific version was used because it is
the last complete manual curated version. The secondary structure for each sequence
in the database was collected using DSSP. The database contains 9,540 sequences.

A set of 69 MSA based on the same Astral SCOP 1.73 database was provided by
the Department of Molecular Biology at the University of Salzburg.2 Each MSA is
built up from 15 homologous sequences from the same superfamily. For the MSAs, the
secondary structure from DSSP is also used.

4.2 Evaluation

The methods used in the previous chapter were tested with varying parameters on
all 69 datasets. To keep this Section compact, only the relevant tests and results for
specific methods will be presented.

For the first part of this section, mainly the MSA representing the SCOP superfamily
c.67.1 will be used. The superfamily c.67.1 from the class alpha and beta proteins
(a/b) represents pyridoxal phosphate-dependent transferase, proteins involved in the
biosynthesis of amino acids dependent on pyridoxal phosphate, the active form of
vitamin B6. The MSA with 15 sequences is 500 columns long, while its pHMM has
a length of 384 match-states, as the remaining 116 columns have more than 50%
gaps and therefore fo not represent a match state. In the SCOP database used, 60
out of the 9,540 sequences are classified as belonging to the superfamily c.67.1.
Unless otherwise stated, the method and parameters used for the scores, including the
secondary structure is M2_025_1_5, the exact configuration will be described later in
this section.

1Astral SCOP 1.73 https://scop.berkeley.edu/astral/ver=1.73
2Department of Molecular Biology: https://biwww.che.sbg.ac.at/

https://scop.berkeley.edu/astral/ver=1.73
https://biwww.che.sbg.ac.at/
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Figure 4.1 shows the change of the scores for the different scoring methods generated
by HMModeler. A scatter-plot is used to visualize the variation for each sequence,
with the old method, using only the primary structure, on the horizontal axis. On the
vertical axis, the difference between the same score and the new score that includes
secondary structure information is displayed. Scores from sequences with the same
superfamily, as the MSA used to build the pHMM, are marked as red circles, while all
other scores are represented by blue circles. The left figures show the scores related
to the viterbi scoring method, the right figures show the forward method. The top
figures, representing the plain scores, show the improvement, as the superfamily scores
increase noticeably more than the other scores. However, as the plain scores are also
influenced by the sequence length, the reverse scores used for compensation are shown
in the second row. The simple null model is not included in the figures as it still only
uses the primary structure, therefore there is no change in the scores. The four figures
at the bottom show the final scores, corrected using the null models.

The average changes for the scores in figure 4.1, divided into the superfamily c.67.1
and the other scores, are listed below. The improvements from the plain viterbi and
forward score are strongly compensated in the reverse corrected scores, as the new
reversed scores adjust similarly to the plain scores.
Vi t e rb i Score Super fami ly : +72.7664

Other : +21.8893
Forward Score Super fami ly : +71.0713

Other : +25.1106
Reversed V i t e rb i Super fami ly : +53.9577

Other : +21.3254
Reversed Forward Super fami ly : +64.7312

Other : +24.6887
Simple Corrected V i t e rb i Super fami ly : +72.7664

Other : +21.8893
Simple Corrected forward Super fami ly : +71.0713

Other : +25.1106
Reverse Corrected V i t e rb i Super fami ly : +18.8087

Other : +0.56383
Reverse Corrected Forward Super fami ly : +6.34041

Other : +0.42186

Listing 4.1: Average change for MSA c.67.1 scored against the SCOP database using primary structure
only to including secondary structure.
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Figure 4.1: Comparison between scores with and without secondary structure information as scatter
plot, with the score using only primary structure on the horizontal axis and on the vertical axis the
difference from the primary structure score to the score including secondary structure information.
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Figure 4.2 shows scatter plots with the simple corrected scores on the horizontal axis,
and the reverse corrected scores on the vertical axis, generated from the original score
with the primary structure only on top, and with secondary structure information
below. For both approaches, viterbi and forward scoring, the improvements using the
secondary structure are obvious, as the separation between the superfamily scores and
the others increases.

Figure 4.2: Scatter-plots of the corrected scores with and without secondary structure information.

This combination was used to evaluate the different weighting methods and their pa-
rameters described in Section 3.3, by scoring all 69 MSA against the SCOP database
with different settings. The following five configurations will be explained in more
detail.

• M1_025_1 uses the weighting approach in (3.4), with a pseudo count of 1 for
the secondary structure emission probabilities, and a threshold of 0.25 for the
highest primary structure emission probability.

• M1_025_3 uses the same approach as above, except with a pseudo count of 3.

• M2_025_1_3 uses the weighting approach in (3.5), also with a threshold of 0.25
and a pseudo count of 1. The scale factor k is set to 3.
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• M2_025_1_5 uses the same parameters as M2_025_1_3 except with a scaling
factor of 5.

• M3_100_5 uses the Shannon approach in (3.8) with a pseudo count of 5 for
generating the secondary structure emission probabilities, and a threshold of
100% resulting in always using the mixed probabilities for scoring.

For example, with the MSA c.67.1, the threshold of 0.25 for the first four approaches
results in 272 columns where the highest emission probability is below the threshold;
therefore the mixed probabilities are used, containing both the primary and the sec-
ondary structure. For the other 117 columns of the pHMM only the emission probabil-
ities for the primary structure is used. For the last method, using the shannon entropy,
it has been found that the best results are archived using the mixed probabilities only.

The different methods over the MSAs are compared in Matlab as listed in 4.2 by gener-
ating an Receiver Operating Characteristic (ROC) curve. A ROC curve compares the
True Positive Rate (FPR) against the False Positive Rate (TPR) for varying thresh-
olds of a classifier and is used to compare the quality of classifiers. The TPR measures
the proportion of positives that are correctly classified as such, while the FPR specify
negatives that are wrongly classified as positives, see [20, p. 34–35].

For each method and MSA the function fitcsvm trains a binary support vector machine
classifier from hmmScores, containing the two dimensions for the reverse corrected and
the simple corrected score and the classes indicating if the score relates to the tested
superfamily or not. The function fitPosterior calculates the posterior probabilities for
all scores, allowing perfcurve to generate the ROC curve.

1 mdlSVM = fitcsvm(hmmScores,classes,’Standardize’,true);
2 mdlSVM = fitPosterior(mdlSVM);
3 [~,score_svm] = resubPredict(mdlSVM);
4 [X,Y,T,AUC] = perfcurve(hmmScores,score_svm(:,mdlSVM.

ClassNames),’true’);
5 plot(X,Y)

Listing 4.2: Matlab implementation for generating the ROC curve.

Figure 4.3 shows the generated ROC curve for the superfamily c.67.1 using the
methods described above, and the original score using only the primary structure listed
as AA. As an optimal classifier would be a rectangular graph with 100% TPR at 0%
FPR, the improvement of the new methods using secondary structure information is
obvious.
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Figure 4.3: ROC curve for the MSA c.67.1.

For comparison of the different methods, the ROC curves can be ranked with the Area
under the curve (AUC) score. The AUC score combines the whole ROC curve into one
number in the range 0-1 and is calculated by the integral of the curve.

Table 4.1 provides an overview of the selected methods for the MSA. However, the
table list only 54 MSA, as those with a variation of the AUC-score below 1% were
filtered out. The Column AA lists the AUC score using only the primary structure.
The highest AUC score for each MSA is highlighted in green, while all scores below
the original method are highlighted in red. Summarizing the table, it can be said that
except for a few scores, the secondary structure information improves the quality of
the homology detection. For all MSAs the original score was improved by at least one
method including the secondary structure. The best results were archived with the
method M2_025_1_5, with only one score below the original score and 28 with the
highest rank.
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MSA AA M1_025_1 M1_025_3 M2_025_1_3 M2_025_1_5 M3_100_5
a.1.1 0.981660 0.999138 0.998953 0.992644 0.997789 0.997729
a.118.1 0.658467 0.753259 0.705426 0.746692 0.829864 0.644325
a.118.8 0.955319 0.984824 0.985946 0.986001 0.973027 0.977937
a.121.1 0.949624 0.995763 0.995616 0.996995 0.997438 0.983587
a.25.1 0.841495 0.937043 0.932680 0.941242 0.957709 0.937543
a.26.1 0.874773 0.983614 0.985158 0.969954 0.985943 0.964079
a.39.1 0.952474 0.981193 0.982275 0.959055 0.979121 0.948074
a.4.1 0.943772 0.955631 0.952671 0.969682 0.964489 0.918509
a.4.5 0.855347 0.926711 0.925392 0.908424 0.929695 0.916563
b.1.18 0.792153 0.817677 0.807238 0.815779 0.838481 0.802811
b.1.2 0.969961 0.995894 0.995995 0.981565 0.993793 0.997062
b.121.4 0.773631 0.967558 0.966336 0.866694 0.992417 0.953042
b.122.1 0.848138 0.845948 0.848089 0.845584 0.851564 0.779058
b.18.1 0.761240 0.930155 0.936215 0.817449 0.866927 0.929784
b.29.1 0.696135 0.960870 0.951270 0.849528 0.983448 0.940179
b.40.4 0.562231 0.645208 0.670961 0.429999 0.629892 0.567447
b.55.1 0.911226 0.979285 0.980650 0.928991 0.959427 0.957248
b.6.1 0.908563 0.960192 0.966695 0.937017 0.955909 0.957878
b.60.1 0.930032 0.984104 0.984360 0.970134 0.990348 0.978497
b.82.1 0.825039 0.938847 0.919801 0.866187 0.955782 0.912086
c.1.10 0.873501 0.874392 0.869802 0.872605 0.940730 0.872855
c.1.8 0.771208 0.928515 0.936675 0.773840 0.930788 0.945124
c.1.9 0.776061 0.984452 0.987866 0.849370 0.953804 0.968480
c.14.1 0.922587 0.973523 0.978553 0.895141 0.937373 0.943031
c.2.1 0.832922 0.877777 0.878921 0.830226 0.874660 0.849042
c.23.16 0.953418 0.984812 0.985529 0.946551 0.970777 0.979098
c.23.1 0.982697 0.997496 0.996486 0.996668 0.998236 0.994347
c.26.1 0.948562 0.976133 0.976961 0.960779 0.965373 0.976807
c.26.2 0.762557 0.851986 0.846126 0.772616 0.903719 0.878536
c.3.1 0.873175 0.889879 0.884945 0.874121 0.900278 0.855394
c.37.1 0.566633 0.770514 0.705588 0.633610 0.667131 0.721070
c.47.1 0.758197 0.851974 0.840596 0.832694 0.889318 0.819083
c.52.1 0.715274 0.687619 0.689950 0.728182 0.729150 0.689523
c.55.1 0.841824 0.890524 0.888007 0.872467 0.879920 0.896231
c.55.3 0.661511 0.724718 0.730029 0.744568 0.827794 0.709007
c.56.5 0.932965 0.975813 0.976139 0.931577 0.988535 0.970057
c.66.1 0.691936 0.792542 0.805687 0.763836 0.828851 0.826081
c.67.1 0.965279 0.999527 0.999741 0.995230 0.993875 0.999198
c.68.1 0.840345 0.954716 0.955924 0.896890 0.953844 0.942945
c.69.1 0.769510 0.951124 0.954956 0.886816 0.945654 0.938550
c.94.1 0.786186 0.885272 0.891178 0.822099 0.910171 0.838730
d.108.1 0.842174 0.985350 0.985038 0.890820 0.959551 0.956787
d.129.3 0.770835 0.906587 0.886342 0.779488 0.887589 0.929245
d.14.1 0.800006 0.820208 0.828362 0.813029 0.884111 0.847360
d.144.1 0.970321 0.980958 0.968966 0.968810 0.985371 0.979926
d.15.1 0.820850 0.841818 0.836339 0.938692 0.945802 0.819712
d.153.1 0.904484 0.963789 0.964523 0.911099 0.941617 0.949044
d.169.1 0.914845 0.984066 0.986238 0.949115 0.987850 0.936318
d.17.4 0.917448 0.997716 0.997654 0.949466 0.988231 0.996565
d.3.1 0.781971 0.922669 0.914309 0.795772 0.889263 0.920976
d.32.1 0.943212 0.988796 0.991518 0.974388 0.983423 0.983284
d.38.1 0.927538 0.975666 0.971828 0.955195 0.986411 0.971640
d.58.4 0.923971 0.939588 0.928825 0.936412 0.951180 0.935353
d.81.1 0.803026 0.821645 0.809739 0.798990 0.823598 0.824889
d.92.1 0.747920 0.791525 0.794027 0.803710 0.833569 0.819239
g.39.1 0.984596 0.982233 0.982742 0.988260 0.983897 0.966715

Table 4.1: AUC scores for different scoring methods compared to the original Method in column AA
using primary structure, the highest score for each MSA is marked green, and red marked scores are
below the original Method.
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5 Conclusion

This paper shows methods for protein homology detection with pHMM using secondary
structure information. The key tasks were to determine secondary structure informa-
tion from a primary structure, build a pHMM using both primary and secondary struc-
ture information, and extend the scoring methods to make use of secondary structure
information. Those steps have been implemented in the software package HMModeler.

The secondary structure information is determined by the PDB database, where avail-
able, or predicted using MetaSSPred. Building the model for the pHMM was extended
by three different methods for generating the emission probabilities for the primary
and secondary structure, and an additional set merging both probabilities. The viterbi
and forward algorithm used for aligning sequences against the pHMM was extended by
an additional threshold, which defines if the mixed probabilities are used or just the
primary structure. The implementation was tested using the ASTRAL SCOP database
and a set of 69 MSAs representing different superfamilies in the database. The tests
show a general improvement when using secondary structure information.

This report will be used as base for the ongoing master’s thesis with the title “Expert
Tuned Profile Hidden Markov Models for Primary and Secondary Structure Based Ho-
mology Prediction in Bioinformatics“ at the Salzburg University of Applied Sciences1.

1https://www.fh-salzburg.ac.at/
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