
PROJECT REPORT

Privacy-preserving Security Architecture
for Smart Grids and Metering

submitted to the
Marshall Plan Scholarship Foundation

submitted by:
Stephan Stadlmair, BSc

Supervisor: FH-Prof. DI Mag. Dr. Dominik Engel
Supervisor: Prof. Dr. Stephen B. Wicker

Ithaca, October 2017

Details

Keywords: Smart Grids
Security
Privacy
Cryptograhy
Architecture

Academic Supervisor: FH-Prof. DI Mag. Dr. Dominik Engel
Academic Supervisor: Prof. Dr. Stephen B. Wicker

Abstract

This project report introduces a smart grid architecture, which takes security and pri-
vacy aspects into account. First, the exact place of the architecture in the overall smart
grid context is defined via analyzing an existing model. Afterwards the boundaries of
the architecture are identified, legally and technically. Then fitting technologies are
assessed, which can form the basis of the mentioned architecture. These steps pave the
path to adapt the technologies for the usage in the smart grid architecture. Technologies
presented include Blockchain Technology, Authenticated Encryption with Associated
Data, Multi Resolution Representation of Load Data and Aggregation of data based
on their privacy relevance. This architecture is then explored and a Proof of Concept
implementation is discussed, which introduces useful frameworks and technologies for
applying the architectural approaches. Afterwards, gaps that have to be filled for real
world applications are presented.

ii

Contents

Details ii

Abstract ii

Table of Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Related Work 4

2.1 Smart Grids and Demand Response Systems 4

2.2 Privacy Recommendations for the Smart Grid 5

2.3 Virtual Power Plants . 6

2.4 Cryptographic Primitives . 7

2.4.1 Symmetric Cryptography . 7

2.4.2 Asymmetric Cryptography . 7

2.4.3 Hybrid Cryptography . 8

2.4.4 Hash functions . 9

2.5 Relevant Cryptographic and Privacy Concepts 9

2.5.1 Haar Wavelet . 9

2.5.2 Merkle Trees . 10

2.5.3 Hash-Based Message Authentication Code 11

2.5.4 Certificates . 11

2.5.5 Public Key Infrastructure . 12

2.5.6 Homomorphic encryption . 13

iii

2.5.7 Blockchain . 14

2.5.7.1 Consensus Mechanisms 16

2.5.7.2 Smart Contracts . 18

3 Design Constraints 19

3.1 The Smart Grid Architecture Model . 19

3.2 Simplified SGAM Model . 20

3.3 Legal Requirements . 21

3.3.1 Requirements in the European Union and Austria 22

3.3.2 Requirements in the United States 22

3.4 Technical Requirements . 23

3.4.1 Existing Energy Grid Infrastructure 23

3.4.2 Requirements Imposed by the Infrastructure 24

3.4.3 Smart Grid Data Streams . 25

3.4.4 Communication Interfaces . 26

4 Security and Privacy Aware Architecture 27

4.1 Architecture Building Blocks . 27

4.1.1 DPKI . 27

4.1.2 Authenticated Encryption . 28

4.1.3 Multi Resolution Conditional Access 29

4.2 Proposed Architecture . 30

4.2.1 Security . 31

4.2.1.1 Computationally Weak Clients 32

4.2.1.2 Architecture Configuration 34

4.2.1.3 Securing of Data Transmission 35

4.2.2 Privacy . 36

5 Proof of Concept 39

5.1 Computational Environment . 39

5.2 Architecture parts . 40

5.2.1 Blockchain based DPKI . 40

5.2.2 Authenticated Encryption with Associated Data 43

5.2.3 Multi Resolution Conditional Access 44

5.2.4 Aggregation . 44

5.3 Discussion . 44

iv

6 Conclusion 46

Bibliography 50

List of Abbreviations 55

Appendix 57

A Proof of Concept Code 58

v

List of Figures

2.1 Hybrid Cryptography example . 8

2.2 Merkle Tree example . 10

2.3 Block example . 14

3.1 SGAM framework [1] . 20

3.2 Interfaces . 26

4.1 Proposed grid architecture . 30

4.2 Merkle Path . 35

4.3 Different levels of wavelet transformation 37

5.1 Communication in Proof of Concept implementation 40

6.1 Proposed inter domain communication 49

vi

List of Tables

2.1 Execution time of encryption of wavelet transformed load curves. (400
curves with 100 encryptions each) [2] 13

3.1 Adopted parts of the architectures. 21

3.2 Architectural parts to be covered technically 21

4.1 Encryption with AEAD . 28

4.2 Blockchain size simulation results . 33

4.3 Block field description . 34

vii

1

Introduction

Energy grids in prior times just had to satisfy the demand of all the customers in the

grid. Therefore, central power plants were the ideal fit and the energy was distributed

over the network, coordinated by central entities, overlooking the demand of the partic-

ipators. The added bidirectional communication of Smart Grids enhances possibilities

inside the grid significantly. Through this, integration of so called prosumers [3] is

possible. The grid is then able to handle decentralized production, where usually no

influence on the grid operators’ side is possible. With a Smart Grid in place, much more

fine grained control is given to those in charge of the grid stability and communication

and coordination can happen from the nuclear power plant to the household, if desired.

Another benefit arises through the possibility to quickly react to unforeseen events, like

energy shortages or natural influences, e.g. harsh weather conditions, affecting power

generation.

Besides all these benefits, certain disadvantages must be addressed. As there are new

ways of communication introduced, this communication can be misused internally and

externally. Internal misuse would be the usage of consumption data inside eligible orga-

nizations, like grid operators, for unauthorized purposes, e.g. targeted advertisement.

Those internal misuses are more privacy related concerns. External misuse refers to

attacks from outside, e.g. to gain control over parts of the power grid. Both have to be

prevented on every level of the Smart Grid and the architecture itself must be resilient

against these attacks.

To address the previously mentioned attack vectors, the emerging area of Smart Grids

needs to have a proper security and privacy architecture in place. Several stakeholders

1

1. Introduction 2

with different needs are present, as well as a heterogeneous infrastructure [1]. This

infrastructure ranges from computationally weak clients, like Advanced Metering In-

frastructure (AMI), to servers in power plants. The Grid Operator needs to have a

security and privacy aware architecture for connecting all of the participators, to create

broad acceptance of the customers and to install a grid, which is able to withstand even

harsh conditions like partial failures of the grid infrastructure. Therefore, a thorough

assessment of possible technologies has to happen, especially with certain respect to

how they can benefit from each other.

Privacy risks are implied by the usage of smart metering infrastructure. Very fine

grained access to the habits and the used appliances of a household can be derived

from the load data, as proven in [4]. Most of the technologies, which will be discussed

for the application in the proposed Smart Grid architecture, are well known outside

of the smart grid area, but have not been assessed in combination and have not been

applied to the Smart Grid.

On the security side, the use of Blockchain Technology [5] as a distributed solution for

providing identities of participating grid devices like AMIs is proposed. This is done

in contrast to usual certificates, which depend highly on Certificate Authorities (CA)

[6], like in usual public key infrastructures [7]. Adoptions have to be made for tackling

all the requirements in the grid as good as possible. For instance the grid operator is

responsible for maintaining grid stability and therefore has a much higher incentive to

just have trustworthy devices present in the grid as all the other participators. This can

be seen in contrast to Blockchain applications like Bitcoin1, where every participator

is equal. It is assessed how other approaches from the Blockchain Technology context

can be used and fit into the concept of a security and privacy aware architecture for

the Smart Grid. These include Smart Contracts and Simplified Payment Verification

[5]. Together with Authenticated Encryption with Associated Data (AEAD) [8] this

approach forms the security basis for the architecture.

In terms of privacy, this report proposes a multi resolution approach introduced by

Engel and Eibl in [2], to have several resolutions of load data in place. Those are

1http://www.bitcoin.org

1. Introduction 3

encrypted separately and can be decrypted on a need to know basis by other partici-

pators, with a household’s informed consent in a way like [9] proposes. Furthermore,

aggregation is discussed on a neighborhood aggregator level, as introduced in [10]. It

is examined if homomorphic encryption is a viable solution [2], or if a usual symmetric

approach should be chosen, taking the overall circumstances into account.

The report is structured as follows: First related work will be introduced. The goal is

to clarify the boundaries of this thesis. In there, basic technological concepts will be

assessed.

Afterwards models and legal requirements for setting up Smart Grid architectures

are introduced. This is needed to clarify which properties the architecture has to

have and to connect the architecture with existing models displaying the Smart Grid

conceptually.

Technical and legal requirements with certain respect to European Union, United States

and Austrian legislation are analyzed. Following this and based on the already assessed

basic technologies, a look at advanced technology concepts for the actual architecture

is done. These concepts are advanced enough to form specific parts of the architecture,

although special attention is necessary to connect them and make them benefit from

each other. With these technologies set, an architecture is proposed, covering security

and privacy, incorporating all affected parties in a modern Smart Grid environment.

Afterwards a Proof of Concept (PoC) implementation is done. Finally, it is clarified

where room for improvement exists and what should be taken into account, especially

if one wants to implement such a system in an environment more sophisticated than a

PoC.

A special emphasis will be put on the distinguishing aspects of this architecture, to

specify why such a system is needed and where it differs from existing approaches like

[10].

2

Related Work

This section covers all basic technologies which will be used in this thesis. It also

introduces Smart Grids, why they are useful and where a privacy and security aware

architecture would fit.

2.1 Smart Grids and Demand Response Systems

To create a privacy and security aware architecture, it must be clarified in which envi-

ronment this takes place. The Smart Grid is a development in the area of power grids

where bidirectional communication between a utility/grid operator and the consumer

is enabled. Today the flow of energy is unidirectional, from big power plants to lots

of small consumers. As the amount of local producers is increasing (e.g. solar panels),

bidirectional communication is necessary to coordinate energy distribution. This is

required to ensure stability of the grid as consumers are not under the direct influence

of a utility and too much of decentralized power production could severely influence

grid behavior. By the help of these systems, consumer behavior can be influenced via

pricing incentives to produce or consume energy at times where the overall grid and

other producers can benefit. Therefore there is no direct need of collecting data tightly

coupled to the customer [10]. This communication includes a variety of different types

of data discussed in Section 3.4.3, which originate from either the utility/grid operator

or the household. All of them have different needs in terms of security and privacy.

Control signals for devices can and should be treated differently as for instance billing

4

2. Related Work 5

information of a specific customer.

2.2 Privacy Recommendations for the Smart Grid

With these data flows in place, security and privacy play an important role. Although

different, all of these flows need a certain level of protection. Communication from

utility/grid operator side should be secured at least to ensure Confidentiality, Integrity

and Availability (CIA) [11], together with the extended property of Authenticity from,

e.g. control signals for a nuclear power plant or pricing information distribution to the

households as those influences consumer behavior and the grid load.

When the consumer comes into play, privacy has to be taken into account. It is

crucial to protect consumer data from unwanted targeted advertisement, or even worse

robbery, because someone is able to identify when residents are at home, which is

possible as shown in [4]. To take privacy into account, the proposed privacy framework

of [10] is used. It comprises five parts:

1. Provide Full Disclosure of Data Collection: To act accordingly, a proper

description of the collected data must be provided. Optimally combined with the

granularity when it was collected and how long it will be stored. Doing so should

be required with a proper enforcement in place. This should not be revocable

and intelligibility must be taken into account as well, to make the customer feel

confident about the ownership of the data.

2. Require Consent to Data Collection: A user should give consent to the

collection, as it creates a certain amount of awareness of what data is collected.

To be useful, this should be displayed to the user before the usage of a technology,

like the herein proposed Smart Grid architecture, takes place. As changes in the

technological basis may occur, a user should be informed properly with an opt-in

mechanism in place, to ensure that a consumer understands the changes taking

place.

3. Minimize Collection of Personal Data: This comes into play when data is

concerned, which reveals personal information about the consumer. Collection

2. Related Work 6

of this data must be inevitably connected with the successful operation of the

respective technology, which means that if a service is not running correctly, no

data collection should take place. Furthermore, the processing of data should be

done as close as possible to the place of collection.

4. Minimize Identification of Data with Individuals: Data collected from a

device should be anonymized, if a direct connection to a consumer is not strictly

necessary. Furthermore there should be a different storage for functional and

billing information to not be able to get access to both of them, or to make it as

difficult as possible for a possible attacker.

5. Minimize and Secure Data Retention: There should be a direct link of the

collected data to a specific use-case, which is already in place. Storage of data

should only be done if necessary and secured. If a security breach occurs and

data is stolen, the consumers should be notified as soon as possible, to enable

them taking countermeasures. It should also be ensured that data stored cannot

be reused in a way not complying to the rules set up formerly.

This serves as the basis of the architecture proposed in this thesis and is kept in mind

for design decisions and the selection of technologies used.

2.3 Virtual Power Plants

To be able to suggest the usage of a smart grid architecture, an area has to be found

where it is applicable, especially initially, where an application to the whole of the

energy grid is not useful. A step by step approach should be favored, to ensure proper

implementation, as well as the possibility to have incremental adoption of the system.

Therefore risks are minimized and even a smaller scale test environment is possible to

convince other parties, like customers and authorities. This would align with the self

healing approaches of Smart Grids and adds a layer of resilience. To enable that, the

concept of a Virtual Power Plant is presented [12].

A Virtual Power Plant is a combination of several distributed renewable resources,

2. Related Work 7

which act like an independent power plant. It is able to interact with the energy market

and has a variety of adjustable parameters to fit well into the grid. A characteristic is

the big number of included devices with the need to coordinate their communication.

These are coordinated by distribution system operators and are connected to the rest

of the grid via an interface [12].

2.4 Cryptographic Primitives

In this section, technologies and concepts will be discussed, which form the foundation

of more advanced technologies investigated in Section 2.5, utilized and combined in the

proposed architecture in Section 4.2.

2.4.1 Symmetric Cryptography

To transmit information in a secure manner and to ensure the confidentiality, encryp-

tion is used. Therefore a message M is encrypted with a key K, using an encryption

process E to create a cipher C. The same key K can then be used by the other partic-

ipating party in this communication, to decrypt the message with the process D. This

leads to the following equation for symmetric encryption and decryption (Equation

2.1):

M = D(E(M,K), K) (2.1)

A common representative of this class of ciphers is the Advanced Encryption Standard

(AES) [13]. AES is a blockcipher with 128-bit block length and variable key length,

which is usually denoted as AES-{keylength}, e.g. AES-256. The main advantage is

that these ciphers are fast compared to e.g. asymmetric ciphers [14] [15].

2.4.2 Asymmetric Cryptography

Instead of sharing the same key for decryption and encryption, in asymmetric cryptog-

raphy a public and a private key are generated. These are connected via mathematic

properties, which are defined in the underlying algorithm. The public key KPUB is

2. Related Work 8

shared with every participator in the network and can be used for encrypting a mes-

sage M . Afterwards this can be sent to the party, which holds the private key KPRIV .

Only this secretly kept private key is able to decrypt the encrypted message (Equation

2.2):

M = D(E(M,KPUB), KPRIV) (2.2)

Besides the benefits of asymmetric cryptography, these algorithms need longer key

lengths [16] to maintain the same level of security and tend to be slower. A common

approach is Elliptic Curve Cryptography (ECC), which has the advantage of a smaller

key sizes while maintaining the same level of security [14].

2.4.3 Hybrid Cryptography

To enable the symmetric fast approach of encryption, the symmetric key can be ex-

changed via asymmetric cryptography. Therefore, the exchange can happen on an

untrusted network, but further encrypted information exchange can use the benefits of

fast symmetric encryption as shown in Figure 2.1 with first a public key transmission to

send the symmetric (session) key. Afterwards faster symmetric encryption, especially

with fewer key size, is possible. Combining symmetric and asymmetric approaches like

Figure 2.1: Hybrid Cryptography example

that form hybrid crypto-systems [14].

2. Related Work 9

2.4.4 Hash functions

Hash functions are special mathematical functions which map a given input to a certain

output with a fixed size. In cryptography this is used to uniquely identify inputs

without having the input itself in place. For instance, in modern applications hash

values of passwords are stored instead of passwords, so even if the stored values get

stolen, no real passwords can be found. The big advantage of these functions is that

one cannot get back to the input with just the output given. A very important property

of cryptographic hash functions is their resistance against collisions. This means that

two different inputs do not lead to the same output and ensure the ability to uniquely

identify a certain input in a non predictable way [14]. A well known member of the

family of cryptographically secure hashes is the Secure Hash Algorithm-2 (SHA-2) with

variable hash length as described in [17].

2.5 Relevant Cryptographic and Privacy Concepts

As the basis of used technologies is now set, we can go further and define the concepts

which are used in the building blocks for the architecture.

2.5.1 Haar Wavelet

The Haar Wavelet can be used to reduce the resolution of a discrete signal. In doing so,

each application of the wavelet reduces the amount of data by half. The main benefit

in using the Haar Wavelet is its lossless property. To perform this transformation,

only basic operations are necessary, which is especially an advantage when having an

environment like the Smart Grid, with lots of weak devices like smart meters, in place.

It splits a signal in a high pass and a low pass band, where the high pass is used to

reconstruct the original signal [2].

The following steps are performed:

1. Saving the difference of X2i and X2i+1 which forms the high band Hi.

2. Calculating the average between X2i and X2i+1 which forms the low band Li.

2. Related Work 10

To reconstruct the signal these steps are necessary:

1. To compute X2i perform 1
2
Li − 1

2
Hi

2. For creating X2i+1 calculate Hi + X2i

Those operations are performed very efficiently and maintain the same average of values

[2].

2.5.2 Merkle Trees

A useful application for hash functions are Merkle Trees [18]. An example for such a

tree is shown in Figure 2.2.

Figure 2.2: Merkle Tree example

As shown in the picture everything starts with a set of documents and their respective

hash values, created with a function like SHA-256. Then two of those are combined

2. Related Work 11

and hashed again until a single hash value is formed. This final value is called Merkle

Root. An important property of such a tree is the ability of verifying if a document and

therefore its hash, is included in the tree without actually having all the documents in

place. This enables a device to not be in the need of trusting another one, by comparing

the actual Merkle Root and the calculated one by recalculating the Merkle Tree with

the received and probably questionable data.

2.5.3 Hash-Based Message Authentication Code

A Hash–Based Message Authentication Code (HMAC) [19] is a method to ensure

message integrity. Besides usual cryptograpic hash functions, this approach uses a

secret key as well to increase security. Therefore, HMAC can withstand attacks, which

would be successful on the used hash function alone.

It is applied to a message m as follows [19] (Equation 2.3):

HMAC(K,m) = H((K ′XORopad)||H((K ′XOR ipad)||m)) (2.3)

This means that there is a cryptographically secure hash function H applied to a key

K ′ padded with zeros and XOR with opad (0x5c repeated until the hash functions

block length is reached), chained together with the hash of the key XOR with another

value ipad (0x36 repeated until the hash functions block length is reached) with the

message m.

2.5.4 Certificates

A digital certificate is used to connect a public key to a certain identity. It usually

consists of several identifying parameters about the certified party, in combination with

its specific public key [20]. Other information, like expiration date, used ciphers and

more is included as well. These certificates are usually signed by a trusted Certifcation

Authority (CA). Certificates can be self signed, but commonly they are signed by a CA

especially in applications which are Internet-based. The certificates which are used to

verify these CAs are called Root Certificates and are pre-installed on modern computer

2. Related Work 12

systems, which introduces a variety of trust issues [21]. First a CA is a single authority,

which can be forced by public authorities to act in unforeseen ways, or even worse be

hacked. The pre-installation by manufacturers on systems is as well problematic as

they could not act as desired and agreed (e.g. installing root certificates other than

the usual ones).

2.5.5 Public Key Infrastructure

A Public Key Infrastructure (PKI) is a cryptographic system, which ensures message

confidentiality and integrity. This is done through public key cryptography as briefly

described in Section 2.4.2. The infrastructure ensures that a public key in a network

is pinned to an identity. There are CAs in place which ensure this [7]. It is possible to

set them up in different topologies to form trust models. Examples for these are:

1. Direct Trust is the simplest one and probably the closest to the actually targeted

solution of this thesis. It describes that every participator holds every certificate

of all parties. This can be cumbersome in terms of keeping all the nodes up

to date. There is no need for a CA, as all the entities are able to keep track

of the certificates by themselves [7], [22], [23]. Several unresolved questions are

open with this approach. For instance how to handle weak clients with low

computational power or limited storage abilities.

2. Hierarchical Trust has CAs in place to ensure the integrity of certificates. It

works with a tree structure set up to increase performance. All the inner nodes

are CAs and the leaves are the actual devices to verify. The root of this tree is

a Root CA, which is universally trusted. This makes an architectural approach

like Hierarchical Trust prone to attacks, as it is just necessary to capture the root

CA for being able to impersonate all the devices identified by its certificates. [7],

[22], [23].

3. Mesh Trust is an approach where each participating CA is certified by each

other. This keeps the trust path short, but lacks in terms of scalability. A

2. Related Work 13

benefit is the decentral approach, so it is very robust against attacks [7], [22],

[23].

4. Federated Trust is a combined approach between the Hierarchical and the

Mesh Trust model. This is done via the introduction of domains, which could be

defined by regional borders, or per company influence area. These are connected

via bridge CAs, but those again form single point of failures and can introduce

significant speed issues [7], [22], [23].

None of the well-known approaches is flawless and a new way of managing certificates

in the Smart Grid domain is desirable.

2.5.6 Homomorphic encryption

Homomorphic encryption is a way of encrypting data in a way to be able to perform

certain operations in the encrypted domain as well. This could be addition or multi-

plication for instance. The big advantage of using such an approach is that the need

for decryption would vanish. Therefore operations on datasets can be performed in

untrusted environments as well. On the other hand encryption following e.g. Paillier

cryptosystem [24], is computationally very expensive, although it is not fully homo-

morphic, meaning that only certain operations are possible in the encrypted domain,

in this case addition. Especially compared with common symmetric ciphers like AES

and following the assumption that 1024 modules have to be used for sufficient security

in place. The following table (2.1) shows the results of Eibl and Engel from [2], where

they applied it to load curve data:

AES PAI-1024
Exec. time 1.91 85,355
Std. dev 0.03 133

Table 2.1: Execution time of encryption of wavelet transformed load curves. (400
curves with 100 encryptions each) [2]

It can be seen that Pailler, which is a not fully homomorphic cipher (which are faster

than fully homomorphic ones) is slower than AES by the factor of 44,688 in this ap-

plication, where load curves with 96 values are used. This could still be an acceptable

2. Related Work 14

time for certain applications, but must be kept in mind.

2.5.7 Blockchain

The Blockchain as emerging technology forms the basis of distributed systems like the

cryptocurrency Bitcoin1 [5]. Its main advantage is the ability of coordinating a highly

distributed network for storing data, or even executing programs (Smart Contracts) in

a distributed way, as for instance in Ethereum2 together with vanishing the need for

trusting the other participating nodes and therefore creating a ”trustless” environment.

A Blockchain comprises several blocks, which are linked together via the hash of the

previous block. The structure of a block as it exists in, e.g. Bitcoin is shown in

Figure 2.3.

Figure 2.3: Block example

A block has a header with information important for the chain itself. This comprises

a version, the hash of the previous block and the Merkle Root Hash, as discussed

1https://bitcoin.org/
2https://ethereum.org/

2. Related Work 15

in Subsection 2.5.2. There is as well a timestamp included and a nBits field, which

adjusts the difficulty of the mining process. This is necessary to adapt to different

computational power available in the grid dynamically, as in a Blockchain application

like Bitcoin, the number of participants and therefore computational power can change

quickly. The Nonce field is used to adjust the hash-value of the block during the mining

process [5].

The body is made of smaller information chunks which need to be saved. This can be

any information, in case of Bitcoin these are the transactions. During designing such a

Blockchain it should be kept in mind to limit the stored information as much as possible,

to limit the size of the overall chain, as it has to be stored on each participating device

if there are no measurements like Simplified Payment Verification (SPV) or similar

in place. A consideration could be to save just hashes (or HMACs) and deliver the

plaintext from a central storage only on a need to know basis.

Different operation modes for a Blockchain exist, depending on the level of equality in

the environment [25]:

1. Public Blockchains let every participator of the Blockchain vote for the incor-

poration of new Blocks. This must be coordinated through some sort of consensus

mechanism which is discussed in Subsection 2.5.7.1. All the entries are publicly

readable and every participator has the same rights.

2. Consortium Blockchains have dedicated nodes of specific entities in place,

which are responsible for incorporating new blocks. Coordination in terms of a

consensus mechanism has to happen if this approach is used, but only for the

entities eligible to vote. The possibility to read the chain might remain public.

3. Private Blockchains are under the supervision of a single entity. This single

entity decides if a new block is incorporated or not. It might also be not publicly

readable and usual applications are within an organizations boundary.

Which one to choose is highly dependent on the actual use case. Public Blockchains

qualify for situations where there is no physical representation of the stored good (e.g.

Bitcoin) and a big number of participators with equal rights is desired. By design there

2. Related Work 16

can’t be a single entity which controls what is going on in the chain, so equality in

real world as well as in the Blockchain domain is a necessity. Configuration should be

thought through very well too, as changes afterwards are very hard to enforce if not

explicitly planned.

Consortium Blockchains have their benefits when certain entities have to maintain a

physical representation, like an energy infrastructure. They also fosters collaboration

without being limited to company borders as deciding nodes in the chain can be sup-

plied by all of the participators.

Private Blockchains come into play if there is exactly one entity, like an insurance,

which wants to be sure that only certain entries are added and wants to verify those,

but wants to maintain a public readability of those entries.

2.5.7.1 Consensus Mechanisms

As a Blockchain is a highly decentralized system, if it is used with a public or consortium

approach as discussed in the previous chapter, coordination of the participators has

to take place. There are several possibilities available how such a coordination can be

done.

The first ones discussed are those available for the Public Blockchain:

1. Proof of Work is a mechanism where the amount of accomplished work deter-

mines if a node of a chain is allowed to add a new block to the chain. This is

usually done through a cryptographic puzzle. The protocol supplies for instance

a desired hash puzzle like ”it should end with ’aa’”. Because of the unpredictabil-

ity of hashes, the nodes have to brute force the value. The first which finds the

value is allowed to add the block. A disadvantage is the usage of energy used to

determine a fitting hash, as computation can get resource intensive, if the diffi-

culty is set accordingly. Proof of Work is sometimes called mining, especially in

the Bitcoin context and as reward the protocol gives the ”miners” the respective

currency of the chain to create an incentive for mining and foster block creation

[5].

2. Related Work 17

2. Proof of Stake on the other hand focuses on participators with the highest stake

of the overall good, as it can be assumed that those parties have the greatest

incentive to have the chain up and running in a trustworthy way. Therefore a

pseudo random process is used where the participators are weighted with their

respective wealth. In the context of Bitcoin this would be the Bitcoins itself, so

wealthier nodes are more probable to be chosen. This has the great advantage

of no unnecessarily used energy, but fosters monopolization as a party gotten

lots of stake once might not want to share it again. This again could lead to a

shortage of money in the system and harm trade or other services built on top of

the chain. A further requirement is that there is a currency in place, which the

participators desire to have [26].

The next ones apply for Consortium Chains and partially for Private Blockchains:

1. Proof of Authority requires entities to be in the possession of certain private

keys to sign blocks. There is no coordination happening, so it is a viable solution

for private chains. It is not very resistant to the failure or malicious behavior of

nodes, as a single node could simply incorporate new blocks on it’s own behalf

[25].

2. An alternative is the Practical Byzantine Fault Tolerance (PBFT) Consen-

sus. Initially there is a leading Validation Node defined. This one is responsible

for broadcasting a ”to be made” decision to all of the other participators. The

decision is made, if more than 2/3 of the participators agree e.g. appending a

new block to the chain [27].

3. A further alternative is Delegated Proof of Stake Consensus (DPOS) which

is comparable to PBFT but not all participators are eligible to vote, just selected

witnesses which are chosen leading nodes called Stakeholders. Witnesses are

reelected on a daily basis. The algorithm ensures that every witness voted at

least once before a new witness-selection-process starts [28].

The approach used depends very much on the actual application. Where Proof of

Authority qualifies very well for private chain applications, PBFT and DPOS are more

2. Related Work 18

viable for at least somehow distributed chains. A voting process with PBFT gets

increasingly expensive in terms of contacting all the nodes with increasing number of

the participators. DPOS might be a solution viable for arbitrary chain sizes.

2.5.7.2 Smart Contracts

Smart Contracts are applications that can be executed on the Blockchain by partici-

pating nodes, which qualifies them as distributed programs [29]. Their logic is often

oriented on real contracts, e.g. to pay a certain amount of currency if certain events

occur, like an insurance. On public Blockchains they might be brought in by every

participating party, in Private or Consortium Chains a dedicated group of nodes might

have the reserved ability of creating such contracts. They usually need fuel to be ex-

ecuted, which e.g. is called ”Gas” in Ethereum, which is directly connected to the

actual currency of the chain. Therefore it is ensured that the computational power of

the chain is not exploited. Outcomes of Smart Contracts are publicly readable.

3

Design Constraints

To be able to set up an appropriate architecture for smart grids, which takes security

and privacy into account, the affected parts have to be defined. Existing architectural

models will be assessed and the parts which are affected by security and privacy will

be identified. Afterwards legal requirements in the European Union, the United States

and Austria will be analyzed. Interconnections between the different architectural parts

will be shown and the types of data streams, which have to be handled, are listed. This

will help to establish a common view on where the different architectural technologies

have to be placed and to distinguish when they are appropriate and when they are not.

3.1 The Smart Grid Architecture Model

The Smart Grid Architecture Model (SGAM) is a 3-dimensional architectural model

for the smart grid, which is shown in Figure 3.1 and proposed in [1].

The dimensions in the figure are defined as follows:

Domains: This is where the different sites involved in the grid are defined. They

must be considered for the architecture on a general level. Also the different

computational abilities on each level must be taken into account.

Zones: These are used for adding the concept of power system management and are

describing data flow aggregation towards the market. As this understanding

19

3. Design Constraints 20

Figure 3.1: SGAM framework [1]

of data flow and management is different from the one this thesis is going to

address, the zones are conceptually and intentionally left out for this proposed

architecture.

Interoperability Layers: Herein relies the definition of cross-cutting concerns be-

tween the SGAM-Basis-elements which are defined via the Domains and Zones.

Those are used to define the interaction between different systems and are from

inherent importance for the definition of a privacy and security aware architec-

ture.

This model tackles every single aspect of the smart grid and might not be optimal for

an architecture with a foremost technical focus. Therefore a reduction of complexity

happens in the next section, to be able to focus just on the most relevant parts of this

architectural approach.

3.2 Simplified SGAM Model

As the SGAM acts as a basis for the proposed architecture of this thesis, some adaption

has to be done to fit for the needs of focusing on privacy and security. As mentioned

3. Design Constraints 21

beforehand, especially the zones can be left out as they don’t provide required informa-

tion. In Table 3.1 the relevant parts from SGAM are displayed and described. Those

parts, where a special emphasis is put on in the thesis, are marked bold.

Third party
(Extension to
SGAM)

Generation Transmission Distribution Distributed
Energy
resources
(DER)

Customer
Premis

Component
layer

Services for
the customer
(optimizing
energy usage,
rented charg-
ing stations
etc.)

Power plant,
Grid operator

Grid, trans-
former

Neighborhood
aggregator,
Substation
transformer

E-Mobility, so-
lar, wind

Smart me-
ter and
household in-
frastructure.

Comm. layer Here the communication between the different devices of the grid takes place and it is the main part
of this thesis. Table 3.2 specifies the technologies which will be assessed to form a suitable Smart
Grid Architecture

Information
layer

Can be seen as predefined, as this is expected to be required by stakeholders. Must be considered in terms being
able to be carried via the communication layer.

Function
layer

Will not be discussed in detail in the thesis. Just for verification purposes of the underlying use-cases.

Business
layer

Also important as here are the regulatory requirements located.

Table 3.1: Adopted parts of the architectures.

As the supporting parts of SGAM have been identified, it is possible to transform

the remaining parts into a framework for setting up a privacy and security aware

architecture. The information present in the business layer will be addressed in Section

3.3. Table 3.2 covers the Communication Layer of the SGAM Model and shows the

technologies which will be assessed through this thesis and if and where they are a

good fit for a privacy and security aware Smart Grid architecture.

Architectural overview
Level Devices Security Privacy

Household AMI
PKI based on Blockchain,
Authenticated Encryption
with Associated Data (AEAD)

Data aggregation in Smart Meters

Multi resolution
conditional access

Neighborhood Aggregator Aggregation on neighborhood level
Grid operator Server

Utility Server
3rd party Server

Table 3.2: Architectural parts to be covered technically

To begin, legal requirements in the European Union, Austria and the United States

are addressed.

3.3 Legal Requirements

There are several legal requirements in place in different countries regarding energy

grids. This Section discusses the implications in the European Union, the United

States and Austria on a high level and how they affect the architectural decisions.

3. Design Constraints 22

3.3.1 Requirements in the European Union and Austria

The European Union created a recommendation for implementing and rolling out of

Smart Metering systems [30]. Therein the member states are required to install such

intelligent energy networks. Privacy is a clearly addressed concern within the recom-

mendation. There is as well regulated, that after a data breach a notification within

24 hours has to happen to inform the affected customers. This underlines the necessity

of having a security aware architecture in place to prevent such events.

In this document common minimum requirements are also listed, which include a 15

minutes data reading interval. Aligned with this EU recommendation, in Austria the re-

quirements for grid operators and utilities are regulated by the ”Elektrizittswirtschafts-

und organisationsgesetz” [31]. This law states that a grid operator has to ensure grid

access. Furthermore certain quality requirements have to be met. If those quality cri-

teria cannot be matched, the grid operator is eligible to disconnect certain parts of the

grid to maintain stability. This is especially important when cooperation with other

European grid systems comes into play. If stability cannot be ensured by any reason,

claims for damages may occur. This puts special emphasis on a decentralized approach

in terms of the underlying architecture.

Concerning smart meters (intelligent metering), it is stated that power consumption in-

formation must be made available for the customer. Thereafter the law is very specific

about the handling of more fine grained metering information. This more specific infor-

mation (referred to as 15 minutes interval data) should be available for the customer

and must not be submitted to, or requested by the grid operator or utility without

the consent of the customer, unless it is directly coupled to maintain grid stability

and just for that purpose. Afterwards it has to be deleted and the access has to be

recorded. The customer has to give explicit consent for any other usage. Usually just

consumption data on a daily basis should be transmitted [31].

3.3.2 Requirements in the United States

The U.S. has similar regulations in place as stated in [32] (Federal Regulation and

Development of Power). There the grid operators and energy providers are as well

3. Design Constraints 23

forced to deliver power in a constant and reliable manner. The law is not as specific

as it is a federal law and meant to be applicable for the whole of the U.S. in contrast

to state level jurisdiction. In New York state a development plan is on its way to set

up a smart grid in the state [33], where a Smart Meter is defined as a Device which

has at least the ability to track consumption in 15 minute intervals, therefore a more

fine grained resolution can be expected. The current state of this is a bill and not yet

a law. Dates in the document refer to mid of 2018 for an expected implementation.

3.4 Technical Requirements

Several technical requirements are given in terms of grid components and data which

is sent and used in the grid. The following subsections will address those requirements

and explain the certain implications set up by them.

3.4.1 Existing Energy Grid Infrastructure

As seen in Table 3.1 there is a number of different devices out in the Smart Grid. Those

are initially shown in Figure 3.1. In this section only those which have an impact on

security and privacy related topics are taken into account. Assumptions which can be

basically done about them are:

1. AMI: Lots of them exist in the grid as every participating household has to have

one. Those are very limited devices in terms of performance, but must be taken

into account as they are forming the majority of the network.

2. Neighborhood Aggregator/Substation transformer: Those devices are re-

sponsible for aggregation usage data of customers out in the field and cannot be

trusted in most cases [10].

3. Power Plants / Grid operator: These are trusted places under the direct

control of grid operators and utilities.

3. Design Constraints 24

4. 3rd party companies: Those are untrusted but it can be assumed that they

have an incentive to keep the infrastructure up and running.

As we can see from the prior listing, the main bottleneck are the AMIs on household

level as untrusted device.

3.4.2 Requirements Imposed by the Infrastructure

As shown in Table 3.2 there are several different architectural parts which have to be

taken into account. All of them imply certain constraints in terms of computational

power in the smart grid, which will be discussed here in contrast to the trustworthiness

in Subsection 3.4.1.

1. AMI Advanced Metering Infrastructures are in every participating household

and therefore out of physical reach of grid operators and utilities. It must be

ensured that those devices are tamper-proof, especially when they are responsible

for aggregating billing data. Furthermore it can be assumed that those devices

are especially computationally weak and will form the majority of the network.

2. The Aggregator is a device located in neighborhoods and owned by the grid op-

erator. Computationally better equipped than an AMI it is possible to executed

more complex operations and store more data there.

3. The hardware of the Grid Operator and the Utility has virtually no boundaries

and can be made fit to the needs of a possible architecture. Also those devices

under direct control of the operator can be seen as trustworthy.

4. Servers of Third Parties should only be allowed to have access to data where

either the user has given consent, or no privacy issue at all is in place. Execu-

tion of critical computational tasks should be omitted. Besides that, the same

infrastructural assumptions for grid operators and utilities can be made.

3. Design Constraints 25

3.4.3 Smart Grid Data Streams

To be able to discuss how to secure communication in a Smart Grid, a distinction

between the different data types occurring in the grid must be done. It is proposed by

Wicker and Thomas in [10] to differentiate between four types of data in a Smart Grid:

1. Pricing information: This is neither confidential nor introduces privacy issues

as pricing information is just sent from the utility to the consumer to affect its

behavior. Nevertheless integrity is a crucial part, as altered pricing could have

an impact on consumer behavior.

2. Billing: To be able to bill people for their exact energy usage, their exact con-

sumption must be known. Although this would reveal a lot of privacy concerning

information, it is not necessary to transmit this fine grained data to the utility.

Wicker and Thomas suggest to aggregate this kind of data already in the Smart

Meter and just transmit the price weighted information to the utility. Confiden-

tiality and integrity must be ensured during transmission.

It is crucial to have tamper-proof devices as Smart Meters in place, to be sure

billing works as expected.

3. Control Signals: When having a Demand Response System in place, one capa-

bility is to send control signals to devices for optimizing the energy usage in the

grid. As this communication is unidirectional and only from the utility to the

household, no privacy issues are exposed. But as devices are controlled by that

signals, integrity and confidentiality must be ensured.

4. Consumption data: Most of the benefits of a Smart Grid depend on the re-

trieved consumption data. Prediction of price models or grid balancing are tasks

which are just possible due to the usage of this fine grained data. Therefore it

is essential to have some measurements in place for protecting the consumers

privacy as well as to ensure data integrity and data confidentiality.

This distinction is crucial in terms of defining measurements for their protection as

cryptographic tools can be time and resource intensive. Their application should be

thought through very well and focus on the necessary parts.

3. Design Constraints 26

3.4.4 Communication Interfaces

In order to setup a meaningful architecture, all possible interfaces between participators

of a smart grid must be identified. This is done in Figure 3.2

Figure 3.2: Interfaces

It can be seen, that there happens a communication from AMIs to neighborhood ag-

gregators and furthermore to the grid operator and the utility. AMIs are able to

communicate with third parties as well, without a grid operator or a utility involved.

Therefore all the security and privacy measures must be in place and working already

at the level of a household. The application of the proposed architecture would fit very

well in Virtual Power Plant environments, like those described in Section 2.3, which

are connected to the rest of the grid via well defined interfaces to enable controlling

and to operate independently of the the grid, if necessary.

4

Security and Privacy Aware

Architecture

After pointing out the benefits of the mentioned concepts and why a Smart Grid is able

to take advantage of them, a propose will be presented how to combine them into a

meaningful architecture, which fulfills the confidentiality, integrity and authentication

requirements [11]. Furthermore it tackles privacy concerns of the consumers.

4.1 Architecture Building Blocks

In this section all the underlying technologies are discussed, which are needed to form

the proposed architecture for the Smart Grid. These are more specific for architectural

use than the ones discussed in Section 2.4 and Section 2.5 and comprise of them.

4.1.1 DPKI

Through using the abilities of the Blockchain, it is possible to set up a new way of

storing identity information of a X.509 certificate [20] inside a then decentralized PKI

[34] and inside the blocks of the chain. A common PKI relies heavily on Certification

Authorities (CAs), as they have control over root certificates and possess their private

keys. With this set, there are several single points of failure in terms of every single

CA. If it is possible for a hacker or governmental organization to infiltrate a CA,

27

4. Security and Privacy Aware Architecture 28

authenticity can no longer be ensured in the network. Through the approach of saving

identity information in the Blockchain, the participants can take advantage of the

several benefits provided.

First of all, the identity information is automatically copied to every participant of

the chain. Therefore there is no need for a central CA, as every node is able to prove

the authenticity of communication peers. Even if large portions of the network fail, it

would not affect the communication abilities. Furthermore a very decentral approach

is fostered. The majority of the network decides over the trustworthiness of nodes

[34]. Every node is able to verify the identity of all the other participators as each

node possesses all the information or at least can verify it by the help of Blockchain

mechanisms like Simplified Payment Verification, which is introduced in [5].

To be sure to have the right communication counterpart in place, it is crucial to have

a proper incorporation mechanism set up, especially if one is not facilitating a Public

Blockchain as the basis for the DPKI.

4.1.2 Authenticated Encryption

Authenticated Encryption [35] is a technique to encrypt and authenticate at the same

time. This is different to the approach used by a common PKI (decentralized or not)

because it initially only provides confidentiality and authentication but no integrity as

a hash function must be applied to the message in different steps. Another benefit

arising from this is the gain in terms of speed. As the following results of a Python1

implementation show (Table 4.1), Authenticated Encryption is much faster than asym-

metric encryption by using 2048 bit RSA keys.

Time [s]
Encryption rounds AEAD RSA

10 0.019 1.070
100 0.222 10.631

Table 4.1: Encryption with AEAD

Therefore it is suggested to use the underlying PKI for symmetric key exchange and to

1www.python.org

4. Security and Privacy Aware Architecture 29

use Authenticated Encryption for further communication to have a hybrid cryptosys-

tem [7] in place.

There are different operation modes available for Authenticated Encryption, which

have been assessed in [36]. Based on the recommendations in this resource CCM,

which is basically Cipher Block Chaining (CBC) with a Message Authentication Code

(MAC), is proposed as the preferred operation mode as computational power is a scarce

resource in Smart Grids and CCM uses few resources. This mode is memory efficient

and provides the possibility to attach associated data (AEAD).

By the help of this associated data it is possible to have information attached to the

encrypted data which is not encrypted, like a header. Only the integrity is ensured

which has benefits in terms of routing or further processing of the data.

4.1.3 Multi Resolution Conditional Access

By the help of Multi Resolution Conditional Access as proposed in [2], it is possible

to split the load data into different resolutions by the usage of, for instance the Haar

Wavelet. Afterwards these resolutions can be encrypted separately and access to them

can be provided on a need-to-know basis by the owning entity of the load data, which

is usually a household in the context of a Smart Grid. This provides several benefits

in terms of privacy as the desired load data resolutions for service providers can be

adjusted at will. Therefore the customer knows, which parties are able to see which

details of their energy consumption.

As described in [2] the transformation is not resource intensive and would therefore

just add a very small footprint to the overall time needed for preprocessing load data

at consumer level. This is especially beneficial because of the huge advantages in terms

of privacy.

4. Security and Privacy Aware Architecture 30

4.2 Proposed Architecture

After assessing possible usable technologies in the context of Smart Grid, this section

combines them into an architecture as shown in Figure 4.1. The different participa-

tors in there are interacting with each other through the previously defined interfaces.

Main initial application for such an architecture would be a Virtual Power Plant as

discussed in Section 2.3. This forms a closed system with clearly defined interfaces to

other participators of the energy grid. Therefore this would be a good fit for every new

architectural approach, especially because both systems are designed to be applicable

incrementally. The herein proposed solution fits well for such a system as it is designed

to interact with a big number of participators.

Figure 4.1: Proposed grid architecture

4. Security and Privacy Aware Architecture 31

4.2.1 Security

The basis of the proposed architecture will be formed by a DPKI, which uses a Con-

sortium Chain approach as discussed in Section 2.5.7. The main reason to do so is

that there is no trust needed within the whole Smart Grid when using a DPKI. There

is no CA in place, which could act unforeseen. Even if the majority of the grid fails, if

just two nodes remain, they still would be able to verify the authenticity of the other

device. Speed is increased too, as no verification request must be sent to a CA which

might be located elsewhere. This makes a DPKI a much better fit as a common PKI.

The Consortium Chain approach is necessary as the grid operator or the utility, who-

ever is in charge of maintaining the infrastructure, has a much higher need to secure

the physical infrastructure as well as the transmitted data, because those are forced

by law to do so. This is presented in Section 3.3. It is highly recommended to set up

elliptic curve cryptography as the asymmetric cipher as it ensures greater security than

for instance RSA with fewer bits used for the key as shown in [16]. The huge number

of expected devices enforces a strong emphasis on optimization in every aspect of the

architecture.

Therefore there will be Validator Nodes in place which are responsible for changes like

adding or removing trustworthy devices to and from the grid. Furthermore no public

mining process or similar will take place. This is necessary as not every aspect of the

power grid can vanish in favor of digital representations and Proof of Work algorithms

are not viable.

Different security levels of incorporation should be set up. An approach could consist

out of the following two integration strategies:

1. Option A is for devices with high and medium security requirements. The

process would consist out of the following: The Validation Server creates an

asymmetric registration keypair. A transmission of the public key to the bearing

device is initiated. Here a differentiation between medium and high security

devices can happen. This should be done either in person (high security) or

via a established TLS connection (medium security) prior to the communication.

This key is then used to encrypt the public key of the device and sent back to the

4. Security and Privacy Aware Architecture 32

Validation Server. This one forwards the key and further transmitted information

about the device to the consortium of the Validator Nodes, to initiate a voting

process.

2. Option B is reserved for devices with low security concerns. Therefore a registra-

tion process like with Domain Validated Certificates is used [37]. The Validation

Server tells the bearing device to create a specific directory to ensure control over

the device itself. This is then checked by the Validation Server. The bearing

device is requested to sign a certain value as well, to ensure the possession of the

corresponding private key. Afterwards the information is sent to the consortium

chain validators for voting.

This approach ensures to have a balance between importance of the device and admin-

istrative effort in place to verify the trustworthiness.

After having a new device ready for voting, a decision can be made via DPOS as dis-

cussed in Section 2.5.7.1. Therefore several identity information submitted via Option

A or B are collected to form a new block. This block is then handed over to the voting

mechanism, which takes place according to DPOS. If the result of the voting is positive,

the block is signed by the according devices and incorporated into the chain. Mirroring

of identity information happens then across the participating devices.

4.2.1.1 Computationally Weak Clients

As one can see in Table 4.2 the resulting Blockchain can reach a significant size, es-

pecially when it should be saved on devices like Smart Meters. The actual amount of

devices to be managed should be considered even bigger.

The implementation was done using Python 3.6 2, without any special library and a

data structure which can be seen in Table 4.3. Verification is done by simply processing

every block and measuring this time, like a Validation Node would do.

2https://www.python.org/

4. Security and Privacy Aware Architecture 33

Identities Blocks Block Ids Size (KB) Header (KB) Verif. time (s)
1,000 10 100 643 3 0.053
1,000 100 10 665 23 0.054

10,000 100 100 6,422 23 0.508
10,000 1,000 10 6,647 226 0.524

1,000,000 1,000 1,000 639,899 226 43.167
1,000,000 10,000 100 642,149 2,256 43.747
1,000,000 100 10,000 639,674 23 43.614

Table 4.2: Blockchain size simulation results

The saved header information is pretty much equal to the one in Bitcoin Blocks, except

the parts needed for mining which are skipped. The saved identity information is close

to the one saved in X.509 certificates [20].

As we can see, the overall size of the Blockchain header is very much dependent on

how much identity information is stored per block. A good threshold should be chosen

to ensure block creation can take place at sufficient speed but as well keeps the header

size low.

Performance of the chain on computationally weak clients is directly coupled to the

size of the overall header. The steps to be performed for identity verification in such

clients are the following [5]:

1. At first the weak clients (e.g. a smart meter) download the header of the chain

without the identity information of the blocks.

2. The client wants to verify if a certain identity is part of the Blockchain and

therefore a trustworthy communication counterpart. It requests the block in

which the identity is stored from a node, which has the whole Blockchain (to

lookup the corresponding header), together with the Merkle Path of the identity.

This looks like Figure 4.2. The Merkle Path would be all hashes marked with

blue color. ID4 is the one to be verified and already in possession of the client

as well as the green marked Merkle Root. Via hashing of ID4 and hashing this

together with H3 and so on, the client should be able to construct a Merkle Root

matching the one it already possesses. If that is the case, the client knows the

identity is valid and can initiate data exchange.

4. Security and Privacy Aware Architecture 34

Header
Version Version of header information
Time Creation time of the block

Previous Block Hash Double SHA-256 hash of previous block

Merkle Root Hash
Root hash of the Merkle Tree formed by the
identity entries of this block

Identity Information
Id UUID which uniquely identifies an entity in the grid

Version Version of identity information used

Serial Number

Used to refer to explicitly this identity entry and
all related things like e.g. logging. This
field should be at least unique in combination with the
issued Validation Node.

Algortihm The algorithm used to generate the keypair

Validity Period
Signals how long this identity information is valid
and when a new one is necessary. This should be chosen
with care as this affects the chain length.

Issuer Which Validation Node created this entry

Subject

More identifying information regarding
the identified subject. This should be a hash
of some textual information saved at other places,
as space is crucial.

Subject Public Key Public key for this entity

Revoked
A boolean flag to determine if this
entry is used to revoke this entry.

Table 4.3: Block field description

4.2.1.2 Architecture Configuration

The configuration of the Blockchain should be saved in Smart Contracts [34]. Saving

other configurations of the architecture, like used ciphers, is possible as well. This

enables the benefit of a constant ability to adapt for changing needs, e.g. broken

ciphers, which can be changed for the whole Blockchain or the overall architecture.

Smart Contracts could be executed in the same way as a voting takes place. With the

signature of the majority of Validator Nodes in place, coordinated through using DPOS,

security or privacy relevant technologies can be exchanged. This ensures resistance

against future attacks and is able to work within the boundaries of a Consortium

Chain.

4. Security and Privacy Aware Architecture 35

Figure 4.2: Merkle Path

4.2.1.3 Securing of Data Transmission

As there are only trusted devices in place, the transmission of data is the next thing in

the architecture to secure. As discussed in Section 3.4.3 there will be four major types

in the grid. The only application for low security integration of devices is the pricing

information and every device which is just concerned by that. The confidentiality of

the data is not crucial, but ensuring the integrity and securing this data streams with

just HMAC as described in Section 2.5.3 is suggested. HMAC has better security in

place as just hashing the data and encryption of the data is not necessary.

Households transmit data either to third parties, which are part of the DPKI as well

if desired, for achieving some service or to a neighborhood aggregator. If the device or

organization is out of the context of the DPKI for the Smart Grid, communication can

take place via common TLS connections or HTTPS. The DPKI does not limit such

a hybrid approach if one endpoint identity is not part of the Blockchain. To ensure

confidentiality and integrity inside the Blockchain-wide communication for every data

except pricing information, Authenticated Encryption with Associated Data (AEAD)

is used.

AEAD has the big advantage to include unencrypted information where just the in-

tegrity is ensured, which makes it superior to a usual approach with just AES or a

4. Security and Privacy Aware Architecture 36

similar symmetric cipher in place. This enables the network to gain processing speed,

as no resource intensive decryption has to be done every time information has to be

processed or routed, which is especially a benefit in this Smart Grid context. Benefits

in terms of security are as well in place as there is no necessity to decrypt information

at other places than the receiver. To be sure to have a secure transmission in in the

grid, a symmetric cipher like AES with at least 128-bit key-length should be used.

4.2.2 Privacy

Besides security, privacy is the second major part of the proposed architecture. To the

best knowledge of the author there are two approaches available in the grid to ensure

privacy and both are used in this architectural approach. First there is Multi Resolu-

tion Conditional Access to access load data. The second option is secure aggregation.

Multi Resolution Conditional Access fits very well together with Authenticated En-

cryption with Associated Data to ensure privacy aspects of the grid. As proven in

[2] there happens a lossless sub-sampling of the energy consumption by usage of the

Haar-Wavelet as discussed in Section 2.5.1. The different resolutions are thereafter

encrypted with different keys, which can be achieved by the usage of Authenticated

Encryption and sent over the network. Detailed unencrypted meta-information can be

attached via the according property of AEAD, which enables enhanced aggregation at

the level of the aggregator. The constant split of data into high and low pass data to

create different resolutions would form a structure as shown in Figure 4.3. Access to

the highpass parts of the data can then be protected via different keys as proposed in

[9].

Aggregators can then decide based on the not encrypted but integrity ensured header

information, which encrypted information should be aggregated. To aggregate the

data, decryption is required if no homomorphic cipher is used. To use a homomorphic

approach (even partially like a Pailler Cryptosystem as described in [2]), it must be

weighted if such a big delay in terms of processing time is acceptable. At least from a

legal perspective it would be viable, as the defined resolution therein is 15 minutes.

4. Security and Privacy Aware Architecture 37

Figure 4.3: Different levels of wavelet transformation

Because the aggregator has knowledge about the level of detail included in the en-

crypted load data via the header information, just the packets relevant for privacy can

be identified. This enables another speed advantage. One can think about special

marking of information packets if aggregation should be strictly prohibited. This could

be necessary for certain use-cases specifically designed for one household e.g. there is a

third party attached in the line after the aggregator, which is a specific service provider

for that household.

If this aggregator is not a trusted device, the approach using homomorphic encryption

for transmission of the respective data to the aggregtor should be thought through.

The Smart Meter in the household would therefore decide if a specific resolution is

prone to a privacy infringement. Based on the contextual privacy of this resolution

(e.g., is the sleep-cycle to a certain degree inferable? [4]), AES could be omitted and

replaced with homomorphic ciphers such as Paillier Cryptosystems as stated in [2].

Herein Engel and Eibl show as well, that encryption done with this approach, together

with a 1024 bit module, leads to an enormous increase in terms of processing time.

Therefore it is proposed to use this approach very selectively. Another aspect which

should be taken into account is that encrypted load data could be altered. This is

possible through the homomorphic property of Pailler Cryptosystems and integrity

should be always ensured by attaching signed hashes of the actual encrypted data or

by the use of HMACs.

After aggregation a household looses control over their respective data as no clear

distinction is given anymore. This control is given to the grid operator or the utility,

4. Security and Privacy Aware Architecture 38

whoever is responsible (and required by law). Afterwards a transmission to the grid

operator, utility or third party is possible. These parties are enabled to decrypt the

respective information with the resolution they need and can simply decrypt just those

junks as they have again access to the unencrypted header information via AEAD.

Furthermore they can be given access to just those junks, which enables selective

security to take place. This is another big advantage of using multi resolution data.

5

Proof of Concept

To proof the viability of the architecture, which was introduced in Section 4.2, a Proof

of Concept implementation is presented in this Section and analyzed. First the used

environment is described and justified. Afterwards the actual code which is responsible

for the different parts of the architecture will be assessed. In the end possible improve-

ments will be covered and steps are introduced, which would be needed for a real world

application. Some parts of the code are omitted and marked with comments. The full

code is available in Appendix A.

5.1 Computational Environment

To implement the different parts of the architecture, the programming language Python

in version 3.6 1 is chosen. Python is a programming language with a considerably big

community [38] and therefore lots of libraries are available to tackle different tasks. An-

other reason to choose this language is because it can be run on a variety of platforms,

ranging from embedded devices to web servers, which enables a coherent development

environment. This is especially helpful in the context of smart grids as a wide spectrum

of computational power is present, ranging from low power AMIs to dedicated servers.

All the implementations are done on a standard Windows 10 Home PC with 16GB of

RAM and an Intel i7 5500U processor with 2.4 GHz.

1www.python.org

39

5. Proof of Concept 40

5.2 Architecture parts

Each of the following subsections covers the implementation of one of the architectural

parts and introduces the used libraries and how they connect to the other parts of

the architecture. Communication happens through a REST-interface between com-

mon nodes and validator nodes, which have different targets. Figure 5.1 pictures this

situation.

Figure 5.1: Communication in Proof of Concept implementation

5.2.1 Blockchain based DPKI

In this Proof of Concept the library flask2 in version 0.12.1 is used to setup participating

validator and client nodes as web servers. Both of them use a shared library, which

supplies methods to work with RSA encryption in a convenient way in the whole

project. At first the listing for the initial common node setup is shown:

2http://flask.pocoo.org/

5. Proof of Concept 41

1 app = Flask(name)

2 app.config[’id’] = id

3 keyPair = dpki.getRSAKeypair()

4 app.config[’privKey’] = keyPair["privKey"]

5 app.config[’pubKey’] = keyPair["pubKey"]

Listing 5.1: Initialization of a participating node

The code for setting up a server is created with the ability to start multiple instances

simply through calling the above method several times. When the port number is

specified, this is even possible on the same machine. The supplied id should be unique

in the overall network to identify the node. Afterwards a RSA-keypair is created with

the previously mentioned helper library. Those keys are then saved in the configuration

of the specific server for later usage.

1 data = {}
2 data["nodeid"] = app.config["id"]

3 #Other common X.509 fields omitted

4 data["encryptedKey"] = dpki.encryptPubKeyWithRegKey

5 (app.config[’pubKey’], reqData[’regkey’]).hex()

6 data["revoked"] = False

7

8 json data = json.dumps(data)

9

10 requests.post(reqData[’valUrl’]+"/api/register",

11 data=json data)

Listing 5.2: Initiate the registration of a client

In Listing 5.2 we can see the method which is called for initiating the registration

process at a known validator node. Therefore a POST request has to be sent (in this

case via a GUI), which supplies the url of the validator node via ’valUrl’ in the body

of the request and the registration public key in ’pubKey’, to encrypt public keys of

the devices. Afterwards a JSON object is created to submit the specified identification

data for the new chain participator. A client node shares the same initial startup as

the common node, as it is a superset in terms of functionality.

1 data = request.get json(force=True)

2 #File opening amd reading skipped

3 entryToValidate = {}
4 entryToValidate["nodeid"] = data["nodeid"]

5 #Other common X.509 fields omitted

5. Proof of Concept 42

6 entryToValidate["publicKey"] = dpki.

7 decryptPubKeyWithRegKey

8 (regprivkey, bytes.

9 fromhex(data["encryptedKey"])),

10 entryToValidate["revoked"] = data["revoked"]

11

12 candidatePath = "candidates/"+data["nodeid"]+’.json’;

13

14 #Saving data in files skipped.

Listing 5.3: Endpoint for registering a new bearing candidate

Listing 5.3 shows the method which gets activated by a registration request. Following

the information extraction and decryption from the JSON, the identifying information

is saved to a shared folder, ready for initiating a voting process.

1 #Load all the bearing candidates from pool

2 for filename in glob.glob("candidates/∗.json"):
3 partialContent = open(filename, ’r’)

4 .read().replace("\n","")
5 newBlockContent.append(partialContent);

6

7 #Lines for loading old chain files omitted

8

9 newBlockHeader["version"] = "1"

10 newBlockHeader["time"] = str(datetime.now())

11 newBlockHeader["previousBlockHash"] =

12 hashlib.sha256(prevHash.encode("utf−8"))
13 .hexdigest()

14 #Placeholderoperation as it is just needed for

15 #weak clients which are not monitored in this test

16 newBlockHeader["merkleRootHash"] =

17 hashlib.sha256(b’Hello World’).hexdigest()

18

19 newBlock["header"] = newBlockHeader

20 newBlock["content"] = newBlockContent

21

22 blockchain.append(newBlock)

23 blockchainheader.append(newBlockHeader)

Listing 5.4: Create a block and add it to the chain

The shown code Listing 5.4 is responsible for forming a new block. Loading existing

data from files is omitted in this listing. In this Proof of Concept it is triggered by a

5. Proof of Concept 43

POST-Command. In a real world application this would happen automatically after a

threshold value of bearing devices is reached. This threshold should be chosen carefully

as it has an immediate effect on the header size and therefore how fast verification can

happen on weak clients as shown in Subsubsection 4.2.1.1. On the other hand it affects

incorporation speed of new devices and how fast they are available for communication.

A specific voting process is skipped in this example as it would very much depend on

the requirements of the company actually implementing the architecture. Afterwards

it is checked if a local copy of the Blockchain exists and if not, a new one is created.

An extra file for just the headers of the chain is created to make exchange easier.

Afterwards all candidates are read and appended to the according files. The header

created is a valid one, just the Merkle Root is a mock implementation as it is not used

in this PoC.

5.2.2 Authenticated Encryption with Associated Data

In Python there is a library available (python-aead)3, which handles the AEAD ap-

proach through AES cipher with 128 bit in combination with SHA-256 for integrity

checks. It is used in this implementation to encrypt slices of load data with different

resolutions. To identify those afterwards, specific header information can be added.

1 cryptor = AEAD(AEAD.generate key())

2 ct = cryptor.encrypt(bytes(body, "utf−8"),
3 bytes(header, "utf−8"))
4 cryptor.decrypt(ct, bytes(header, "utf−8"))

Listing 5.5: Apply AEAD to the data

The listing above shows how this can be performed using the supplied library. At first a

helper method is called to generate a secure key. Afterwards the bytes of the body are

encrypted and the header information is attached as unchangeable data. Decryption

can happen in the same way with a properly initialized cryptor object (in terms of the

key) and when the according unaltered associated data is in place.

3https://github.com/Ayrx/python-aead

5. Proof of Concept 44

5.2.3 Multi Resolution Conditional Access

To perform a multi resolution conditional access approach, a basic Haar-Wavelet im-

plementation is done. Because of the simplicity of the Haar-Wavelet in this application

a self created implementation is done, without relying on a third party library. The

according code can be seen in the following listing:

1 ...

2 bands.lowband = [];

3 bands.highband = [];

4 for (i, item) in enumerate(values):

5 if (2∗i+1) > (len(values)−1):
6 return bands;

7

8 highband = values[2∗i] − values[2∗i+1];
9 lowband = values[2∗i] + highband;

10

11 bands.lowband.append(lowband);

12 bands.highband.append(highband);

Listing 5.6: Basic Haar Wavelet implementation

As one can see, at first there is an object created to hold the respective values of the

high and the low band. Verification happens through testing if the average value stays

the same. Afterwards those values are processed by the AEAD algorithm and can be

sent to an aggregator from a client.

5.2.4 Aggregation

As aggregation in this context is simply averaging of values, a specific implementation

is skipped. It makes especially few sense to implement this without a real world

application, missing a solid basis for a decision if aggregation should happen.

5.3 Discussion

This Proof of Concept is reduced to a very basic set of functionality to ensure a focus on

the most important parts. Things like SPV and Smart Contracts, as well as aggregation

5. Proof of Concept 45

have been omitted to lower complexity and especially implementation of aggregation

is, in terms of programming, not demanding, but needs a solid basis of decision rules

when performed and when not. Extending it to have the mentioned parts would be

the next step. In terms of Blockchain technology, building upon a blueprint basis like

Hydrachain4 or Hyperledger Fabric5 is very much recommended, as those have industry

backing and a considerable amount of supporters in the open source community, which

can be seen on their respective Github pages.

4https://github.com/HydraChain/hydrachain
5https://github.com/hyperledger/fabric

6

Conclusion

A lot of research has been done focusing on certain subareas of Smart Grids, like specific

technologies to secure parts of this new communication layer in energy networks. To

the best knowledge of the author, little research has been done related to the overall

interplay and viable combinations of a broader group of technologies.

The overall goal is to provide an architectural approach with a broader group of tech-

nologies which is in line with all identified requirements with special respect to privacy

and security. Combining privacy and security preserving measures gives valuable in-

sight in setting up an architecture, which can be applied in a real world scenario. The

proposed architecture incorporates security as well as privacy preserving aspects and

uses state-of-the-art technology to comply with technological as well as with legal re-

quirements, together with taking several participating devices like AMIs, third parties

and aggregators into account. Additionally several legal documents for the United

States and the European Union were screened and restrictions, which are implied by

the used technologies were assessed. Possible interconnections were shown to create a

well fitting architecture out of existing components. These components all have proven

their applicability in industry and daily usage in other environments, but to the best

knowledge of the author not in this combination.

A Proof of Concept implementation has shown the viability of the proposed architec-

ture and how all the approaches can be implemented using the Python programming

language. This is especially a good fit, because it is wide spread and available for a

big amount of devices ranging from embedded ones to fully fletched servers creating a

46

6. Conclusion 47

heterogeneous environment.

A further new aspect of this work is the usage of blockchains as a distributed identity

storage. Through using this technology and the inherent decentral approach therein, it

is possible to add further stability and reliability to the grid. The Blockchain itself has

proven itself in a broad range of applications, with Bitcoin1 and Ethereum2 as their

probably most popular representatives. This combined with the opportunity to get

rid of CAs and added benefit in terms of SPV and Smart Contracts enables further

possibilities for the Smart Grid. Especially as there is no single point of failure left

in the system, at least if the implementation of the architecture utilizes more than

one validation server. Afterwards no further connection is necessary to any validation

instance if a full node is concerned. The only exception would be if a certificate gets

invalid, for instance if a private key gets exposed. Identity checks can be performed by

each participator of the network on its own, so it gets extremely hard for an attacker to

control bigger portions of the network. Therefore the grid benefits from a remarkable

improvement in terms of resilience against failures, as every single node has gained a

new level of independence.

A weak client can contact any trusted full node, regardless if validation or usual client,

to request advice and follow the SPV approach, so weak clients need at least a trust-

worthy device to communicate with. There is no full trust required as the client can

verify the information of the other node via its Merkle Root. If the hash does not match

the expected outcome, the client could simply contact another participator and send

an alert elsewhere. Areas of improvement would be the usage of faster homomorphic

ciphers as for instance the Pailler-Cipher to be able to have a quicker communication

in place. Nevertheless using Pailler would be possible because of the suspected trans-

mission time of 15 minutes per household in the United States, the EU and Austria.

With AES-128 and SHA-256, widely acknowledged standards are in place, as well as

their combination to AEAD. Asymmetric cryptosystems like ECC should be enforced

for having the best speed benefits present, while using the smallest possible key size.

The security of the DPKI in place is highly dependent on the amount of Validation

Servers available. The more the better for the system, as it is secure as long as the

1www.bitcoin.org
2www.ethereum.org

6. Conclusion 48

decision threshold of DPOS (usually 2/3 of the witnesses) is made up of trustworthy

devices. The incorporation process is another improvable section, but has to deal with

the same shortcomings as every initial identity verification known from issuing common

certificates for HTTPS communication in the Internet.

The most likely real world application for the architecture is inside a virtual power

plant (VPP). This emerging infrastructures were defined recently and can be seen as

a power plant from the outside world. As those are new and smaller scaled than the

overall grid, they can act as an optimal Proof of Concept area for first real world ap-

plications.

Because of the decentral approach of the Blockchain, it would be possible to extend

the network easily. Even if there is no big global or network wide Blockchain desired.

Similar to a Federated Trust Model, the Virtual Power Plants could form Blockchain

Domains by themselves and could then cross certify them. A possible approach for

doing so would be to submit the blockchain header from domain to domain (or from

VPP to VPP). This would even be possible across each domain of a grid because of the

considerably small size of the different header files. Whenever inter-domain commu-

nication is desired, a communication endpoint of another domain could seek support

from any full node of the initiating domain to verify a blockchain entry. This is as

secure as many full nodes are available per domain. Figure 6.1 illustrates that inter

domain approach.

A viable architectural approach has been proposed which takes all known stakeholders

into account and is ready to be used. Performance and legal requirements were taken

into account as well as technical ones.

6. Conclusion 49

Figure 6.1: Proposed inter domain communication

Bibliography

[1] J. Bruinenberg, L. Colton, E. Darmois, J. Dorn, J. Doyle, O. Elloumi, H. Englert,

R. Forbes, J. Heiles, P. Hermans et al., “Cen-cenelec-etsi smart grid coordination

group smart grid reference architecture,” CEN, CENELEC, ETSI, Tech. Rep,

2012.

[2] D. Engel and G. Eibl, “Multi-resolution load curve representation with privacy-

preserving aggregation,” in Innovative Smart Grid Technologies Europe (ISGT

EUROPE), 2013 4th IEEE/PES. IEEE, 2013, pp. 1–5.

[3] G. Ritzer and N. Jurgenson, “Production, consumption, prosumption the nature

of capitalism in the age of the digital prosumer,” Journal of consumer culture,

vol. 10, no. 1, pp. 13–36, 2010.

[4] M. Lisovich and S. Wicker, “Privacy concerns in upcoming residential and com-

mercial demand-response systems,” IEEE Proceedings on Power Systems, vol. 1,

no. 1, pp. 1–10, 2008.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. [Online].

Available: https://bitcoin.org/bitcoin.pdf

[6] C. Ellison and B. Schneier, “Ten risks of pki: What you’re not being told about

public key infrastructure,” Comput Secur J, vol. 16, no. 1, pp. 1–7, 2000.

[7] J. A. Buchmann, E. Karatsiolis, and A. Wiesmaier, Introduction to public key

infrastructures. Springer Science & Business Media, 2013.

[8] P. Rogaway, “Authenticated-encryption with associated-data,” in Proceedings of

50

https://bitcoin.org/bitcoin.pdf

Bibliography 51

the 9th ACM conference on Computer and communications security. ACM, 2002,

pp. 98–107.

[9] C. D. Peer, D. Engel, and S. B. Wicker, “Hierarchical key management for multi-

resolution load data representation,” in Smart Grid Communications (SmartGrid-

Comm), 2014 IEEE International Conference on. IEEE, 2014, pp. 926–932.

[10] S. Wicker and R. Thomas, “A privacy-aware architecture for demand response sys-

tems,” in System Sciences (HICSS), 2011 44th Hawaii International Conference

on. IEEE, 2011, pp. 1–9.

[11] M. E. Whitman and H. J. Mattord, Principles of information security. Course

Technology Ptr, 2011.

[12] D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system inte-

gration of distributed energy resources,” IET Renewable Power Generation, vol. 1,

no. 1, pp. 10–16, 2007.

[13] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media, 2013.

[14] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C.

John Wiley & Sons, 2007.

[15] Y. Kumar, R. Munjal, and H. Sharma, “Comparison of symmetric and asymmetric

cryptography with existing vulnerabilities and countermeasures,” International

Journal of Computer Science and Management Studies, vol. 11, no. 03, 2011.

[16] J. Lopez and R. Dahab, “An overview of elliptic curve cryptography,” 2000.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

37.2771

[17] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Secure hash standard

(shs),” Federal Information Processing Standards (FIPS) Publications (PUBS),

2015.

[18] R. C. Merkle, “Protocols for public key cryptosystems,” in Security and Privacy,

1980 IEEE Symposium on. IEEE, 1980, pp. 122–134.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2771
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2771

Bibliography 52

[19] H. Krawczyk, R. Canetti, and M. Bellare, “Hmac: Keyed-hashing for message

authentication,” 1997. [Online]. Available: http://dl.acm.org/citation.cfm?id=

RFC2104

[20] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,

“Internet x.509 public key infrastructure certificate and certificate revocation list

profile,” Internet Requests for Comments, RFC Editor, RFC 5280, May 2008.

[Online]. Available: https://tools.ietf.org/rfc/rfc5280.txt

[21] Microsoft Corporation. Microsoft trusted root certificate: Program requirements.

Accessed: March 28th, 2017. [Online]. Available: https://technet.microsoft.com/

en-us/library/cc751157.aspx

[22] T. Baumeister, “Adapting pki for the smart grid,” in Smart Grid Communications

(SmartGridComm), 2011 IEEE International Conference on. IEEE, 2011, pp.

249–254.

[23] NIST Smart Grid, “Introduction to guidelines for smart grid cyber security,”

Guideline, Sep, 2010. [Online]. Available: https://www.nist.gov/sites/default/

files/documents/smartgrid/nistir-7628 total.pdf

[24] P. Paillier, “Public-key cryptosystems based on composite degree residuosity

classes,” in International Conference on the Theory and Applications of Cryp-

tographic Techniques. Springer, 1999, pp. 223–238.

[25] V. Buterin. On public and private blockchains. Accessed: March

28th, 2017. [Online]. Available: https://blog.ethereum.org/2015/08/07/

on-public-and-private-blockchains/

[26] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-

of-stake,” self-published paper, August, vol. 19, 2012. [Online]. Available:

https://peercoin.net/assets/paper/peercoin-paper.pdf

[27] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” Operating

Systems Review, vol. 33, pp. 173–186, 1998. [Online]. Available: http:

//people.eecs.berkeley.edu/∼kubitron/cs162/hand-outs/BFT.pdf

http://dl.acm.org/citation.cfm?id=RFC2104
http://dl.acm.org/citation.cfm?id=RFC2104
https://tools.ietf.org/rfc/rfc5280.txt
https://technet.microsoft.com/en-us/library/cc751157.aspx
https://technet.microsoft.com/en-us/library/cc751157.aspx
https://www.nist.gov/sites/default/files/documents/smartgrid/nistir-7628_total.pdf
https://www.nist.gov/sites/default/files/documents/smartgrid/nistir-7628_total.pdf
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://peercoin.net/assets/paper/peercoin-paper.pdf
http://people.eecs.berkeley.edu/~kubitron/cs162/hand-outs/BFT.pdf
http://people.eecs.berkeley.edu/~kubitron/cs162/hand-outs/BFT.pdf

Bibliography 53

[28] D. Larimer, “Delegated proof-of-stake consensus,” Bitshares, Tech. Rep.,

2014, accessed: March 28th, 2017. [Online]. Available: https://bitshares.org/

technology/delegated-proof-of-stake-consensus/

[29] N. Szabo, “Formalizing and securing relationships on public networks,” First

Monday, vol. 2, no. 9, 1997. [Online]. Available: http://ojphi.org/ojs/index.php/

fm/article/view/548/469

[30] European Commission, “Commission recommendation,” Official Journal of the

European Union, vol. 148, 2012.

[31] Austrian National Council, “Elektrizitätswirtschafts- und organisationsge-

setz,” 2010. [Online]. Available: https://www.ris.bka.gv.at/GeltendeFassung/

Bundesnormen/20007045/ElWOG%202010%2c%20Fassung%20vom%2028.03.

2017.pdf

[32] U. S. Government, “United states code,” Federal Regulation and Development of

Power, 2011. [Online]. Available: https://www.law.cornell.edu/uscode/text/16/

chapter-12

[33] T. A. Felix W. Ortiz, William Colton. Assembly bill a4223. [Online]. Available:

https://www.nysenate.gov/legislation/bills/2017/A4223

[34] C. Allen, A. Brock, V. Buterin, J. Callas, D. Dorje, C. Lundkvist, P. Kravchenko,

J. Nelson, D. Reed, M. Sabadello, G. Slepak, N. Thorp, and H. T.

Wood. (2015,) Decentralized public key infrastructure. [Online]. Available:

http://www.weboftrust.info/downloads/dpki.pdf

[35] D. Maimut and R. Reyhanitabar, “Authenticated encryption: Toward next-

generation algorithms,” IEEE Security & Privacy, vol. 12, no. 2, pp. 70–72, 2014.

[36] P. Svenda, “Basic comparison of modes for authenticated-encryption (iapm,

xcbc, ocb, ccm, eax, cwc, gcm, pcfb, cs),” 2016. [Online]. Available:

https://www.fi.muni.cz/∼xsvenda/docs/AE comparison ipics04.pdf

[37] Lets Encrypt. Let’s encrypt - how it works. Accessed: March 29th, 2017. [Online].

Available: https://letsencrypt.org/how-it-works/

https://bitshares.org/technology/delegated-proof-of-stake-consensus/
https://bitshares.org/technology/delegated-proof-of-stake-consensus/
http://ojphi.org/ojs/index.php/fm/article/view/548/469
http://ojphi.org/ojs/index.php/fm/article/view/548/469
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20007045/ElWOG%202010%2c%20Fassung%20vom%2028.03.2017.pdf
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20007045/ElWOG%202010%2c%20Fassung%20vom%2028.03.2017.pdf
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20007045/ElWOG%202010%2c%20Fassung%20vom%2028.03.2017.pdf
https://www.law.cornell.edu/uscode/text/16/chapter-12
https://www.law.cornell.edu/uscode/text/16/chapter-12
https://www.nysenate.gov/legislation/bills/2017/A4223
http://www.weboftrust.info/downloads/dpki.pdf
https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf
https://letsencrypt.org/how-it-works/

Bibliography 54

[38] Stackoverflow. Developer survey results 2016. Accessed: June 15th, 2017.

[Online]. Available: https://insights.stackoverflow.com/survey/2016

https://insights.stackoverflow.com/survey/2016

List of Abbreviations

AEAD Authenticated Encryption with Attached Data

AES Advanced Encryption Standard

AMI Advanced Metering Infrastructure

CA Certification Authority

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

DER Distributed Energy Resource

DPKI Decentralized Public Key Infrastrucure

DPOS Delegated Proof of Stake

ECC Elliptic Curve Cryptography

MAC Message Authentication Code

NILM Non-Intrusive Load Monitoring

PBFT Practical Byzantine Fault Tolerance

PKI Public Key Infrastructure

POC Proof Of Concept

RSA Rivest, Shamir and Adleman

SGAM Smart Grid Architecture Model

55

List of Abbreviations 56

SHA Secure Hash Algorithm

SPV Simplified Payment Verification

VPP Virtual Power Plant

Appendix

Herein supporting information is provided for this thesis, for reference and clarification

purposes.

57

A

Proof of Concept Code

This Chapter contains the code necessary for setting up the Validation Server and

different clients in a DPKI with certain respect to the Smart Grid as Python imple-

mentations. At first the code of the DPKI helper script is shown which has some basic

methods for handling operations in the DPKI environment:

1 import os.path

2 from cryptography.hazmat.backends import default backend

3 from cryptography.hazmat.primitives import serialization

4 from cryptography.hazmat.primitives.asymmetric import rsa

5 from cryptography.hazmat.primitives.asymmetric import padding

6 from cryptography.hazmat.primitives import hashes

7 import re

8

9 def hasChain(id):

10 return os.path.isfile(id+"/chain.json")

11

12 def encryptPubKeyWithRegKey(pubKey, regKey):

13

14 #Workaroud to get the library to load the keys

15 regKey = regKey.replace("−−−−−BEGIN PUBLIC KEY−−−−−", "")

16 regKey = regKey.replace("−−−−−END PUBLIC KEY−−−−−", "")

17 regKey = re.sub("(.{64})", "\\1\n", regKey, 0, re.DOTALL)

18 regKey = "−−−−−BEGIN PUBLIC KEY−−−−−\n" + regKey

19 regKey = regKey + "\n−−−−−END PUBLIC KEY−−−−−"
20

21 encryptionKey = serialization.load pem public key

22 (bytes(regKey,’utf−8’), backend = default backend())

23

24 encryptedKey = encryptionKey.encrypt(

25 bytes(pubKey,’utf−8’),
26 padding.OAEP(

27 mgf=padding.MGF1(algorithm=hashes.SHA1()),

28 algorithm=hashes.SHA1(),

29 label=None

30)

31)

32

58

A. Proof of Concept Code 59

33 return encryptedKey

34

35 def getRSAKeypair():

36 return getDefinedRSAKeypair(2048)

37

38 def getLongRSAKeypair():

39 return getDefinedRSAKeypair(4096)

40

41 def getDefinedRSAKeypair(length):

42 keypair = rsa.generate private key(

43 public exponent=65537,

44 key size=length,

45 backend=default backend()

46)

47 keys = {}
48 keys["privKey"] = keypair.private bytes(

49 encoding=serialization.Encoding.PEM,

50 format=serialization.PrivateFormat.TraditionalOpenSSL,

51 encryption algorithm=serialization.NoEncryption()

52).decode("utf−8").replace("\n", "")

53

54 keys["pubKey"] = keypair.public key().public bytes(

55 encoding=serialization.Encoding.PEM,

56 format=serialization.PublicFormat.SubjectPublicKeyInfo

57).decode("utf−8").replace("\n", "")

58

59 return keys

60

61 def decryptPubKeyWithRegKey(regPrivKey, encryptedPubKey):

62 #Workaroud to get the library to load the keys

63 regPrivKey = regPrivKey

64 .replace("−−−−−BEGIN RSA PRIVATE KEY−−−−−", "")

65 regPrivKey = regPrivKey

66 .replace("−−−−−END RSA PRIVATE KEY−−−−−", "")

67 regPrivKey = re

68 .sub("(.{64})", "\\1\n", regPrivKey, 0, re.DOTALL)

69 regPrivKey = "−−−−−BEGIN RSA PRIVATE KEY−−−−−\n"
70 + regPrivKey

71 regPrivKey = regPrivKey

72 + "\n−−−−−END RSA PRIVATE KEY−−−−−"
73

74 private key = serialization.load pem private key(

75 bytes(regPrivKey,’utf−8’),
76 password=None,

77 backend=default backend()

A. Proof of Concept Code 60

78)

79

80 decryptedKey = private key.decrypt(

81 encryptedPubKey,

82 padding.OAEP(

83 mgf=padding.MGF1(algorithm=hashes.SHA1()),

84 algorithm=hashes.SHA1(),

85 label=None

86)

87)

88

89 return decryptedKey.decode("utf−8").replace("\n", "")

Listing A.1: DPKI helper script

The following script is used to setup a client in the DPKI environment:

1

2 from flask import Flask

3 from datetime import datetime

4 from flask import render template

5 from flask import request

6 import requests

7 import dpki

8 import json

9

10 def start common node(portNumber, id):

11 app = Flask(name)

12 app.config[’id’] = id

13

14 keyPair = dpki.getRSAKeypair()

15

16 app.config[’privKey’] = keyPair["privKey"]

17 app.config[’pubKey’] = keyPair["pubKey"]

18

19 @app.route(’/’)

20 @app.route(’/home’)

21 def home():

22 """Renders the home page."""

23 return render template(

24 ’index.html’,

25 title=’Home Page for node ’ + app.config[’id’],

26 year=datetime.now().year,

27)

28

29 @app.route(’/contact’)

A. Proof of Concept Code 61

30 def contact():

31 """Renders the contact page."""

32 return render template(

33 ’contact.html’,

34 title=’Contact’,

35 year=datetime.now().year,

36 message=’Your contact page.’

37)

38

39 @app.route(’/about’)

40 def about():

41 """Renders the about page."""

42 return render template(

43 ’about.html’,

44 title=’About’,

45 year=datetime.now().year,

46 message=’Your application description page. ID: ’

47 + app.config[’id’]

48 + " and the public key is "

49 + app.config[’pubKey’]

50)

51

52 @app.route(’/backend/initiateregistration’, methods = [’POST’])

53 def initiateregistration():

54

55 reqData = request.get json(force=True)

56 data = {}
57 data["nodeid"] = app.config["id"]

58 data["version"] = "version"

59 data["validity"] = "1.1.2020"

60 data["issuer"] = "Cornell"

61 data["subject"] = "A smart device"

62 data["encryptedKey"] = dpki

63 .encryptPubKeyWithRegKey(app.config[’pubKey’],

64 reqData[’regkey’]).hex()

65 data["revoced"] = False

66

67 json data = json.dumps(data)

68

69 r = requests.post(reqData[’valurl’]

70 +"/api/register", data=json data)

71

72 return r.text

73

A. Proof of Concept Code 62

74 app.run(host=’localhost’, port = portNumber)

Listing A.2: Common Node in Python

This script is the corresponding code for setting up a validator node:

1

2 """

3 The flask application package.

4 """

5

6 from flask import Flask

7 from datetime import datetime

8 from flask import render template

9 from flask import request

10 from datetime import datetime

11 import hashlib

12 import dpki

13 import json

14 import os, shutil

15 import glob

16 import time

17

18 def start common validator(portNumber, id):

19 app = Flask(name)

20 app.config[’id’] = id

21

22 keyPair = dpki.getRSAKeypair()

23

24 app.config[’privKey’] = keyPair["privKey"]

25 app.config[’pubKey’] = keyPair["pubKey"]

26

27 @app.route(’/’)

28 @app.route(’/register’)

29 def register():

30 """Renders the home page."""

31 return render template(

32 ’index.html’,

33 title=’Register Page for validator ’ + app.config[’id’],

34 id=app.config[’id’],

35 genesisValidator = app.config[’id’]

36 == "68162d43−4d41−43b7−b8aa−f22325ff10b2"
37)

38

39 @app.route(’/contact’)

40 def contact():

A. Proof of Concept Code 63

41 """Renders the contact page."""

42 return render template(

43 ’contact.html’,

44 title=’Contact’,

45 message=’Your contact page.’,

46 id=app.config[’id’],

47 genesisValidator = app.config[’id’]

48 == "68162d43−4d41−43b7−b8aa−f22325ff10b2"
49)

50

51 @app.route(’/setup’)

52 def setup():

53 """Renders the about page."""

54 return render template(

55 ’setup.html’,

56 title=’Setup’,

57 id=app.config[’id’],

58 message=’Setup for ’ + app.config[’id’],

59 genesisValidator = app.config[’id’]

60 == "68162d43−4d41−43b7−b8aa−f22325ff10b2",
61 chainExists = dpki.hasChain(app.config[’id’])

62)

63

64 @app.route(’/api/register’, methods = [’POST’])

65 def apiregister():

66 regprivkey=""

67 data = request.get json(force=True)

68

69 #Grab private key for registration:

70 with open("bearer/private/" +

71 data["nodeid"] + ".txt", ’r’) as myfile:

72 regprivkey=myfile.read().replace(’\n’, ’’)

73

74

75

76 entryToValidate = {}
77

78 entryToValidate["nodeid"] = data["nodeid"]

79 entryToValidate["version"] = data["version"]

80 entryToValidate["validity"] = data["validity"]

81 entryToValidate["issuer"] = data["issuer"]

82 entryToValidate["subject"] = data["subject"]

83 entryToValidate["publicKey"] = dpki.

84 decryptPubKeyWithRegKey(regprivkey,

85 bytes.fromhex(data["encryptedKey"])),

A. Proof of Concept Code 64

86 entryToValidate["revoced"] = data["revoced"]

87

88 candidatePath = "candidates/"+data["nodeid"]+’.json’;

89

90 if not os.path.exists(os.path.dirname(candidatePath)):

91 os.makedirs(os.path.dirname(candidatePath))

92

93 with open(candidatePath, ’w+’) as outfile:

94 json.dump(entryToValidate, outfile)

95

96 return "Registered for voting"

97

98 @app.route(’/api/generateKeypair’, methods = [’POST’])

99 def generateKeypair():

100 """Renders the about page."""

101 data = request.get json(force=True)

102

103 keyPair = dpki.getLongRSAKeypair()

104

105 pubKeyFile = "bearer/public/" + data["bearerId"] + ".txt"

106 if not os.path.exists(os.path.dirname(pubKeyFile)):

107 os.makedirs(os.path.dirname(pubKeyFile))

108

109 with open(pubKeyFile,"w+") as f:

110 f.write(keyPair["pubKey"])

111

112 privKeyFile = "bearer/private/" + data["bearerId"] + ".

txt";

113

114 if not os.path.exists(os.path.dirname(privKeyFile)):

115 os.makedirs(os.path.dirname(privKeyFile))

116

117 with open(privKeyFile,"w+") as f:

118 f.write(keyPair["privKey"])

119

120

121 return keyPair["pubKey"]

122

123 @app.route(’/api/formblock’, methods = [’POST’])

124 def formblock():

125 #Skip voting procedure for now as

126 #we assue that every blockshould be created

127

128 #Prepare filepath

129 chainpath = "chain"+app.config["id"]+"/chain.json";

A. Proof of Concept Code 65

130 chainheaderpath = "chain"+

131 app.config["id"]+"/chainheader.json";

132

133 if not os.path.exists(os.path.dirname(chainpath)):

134 os.makedirs(os.path.dirname(chainpath))

135 if not os.path.exists(os.path.dirname(chainheaderpath)):

136 os.makedirs(os.path.dirname(chainheaderpath))

137

138 #Be sure the file exists

139 open(chainpath, ’a’).close()

140 open(chainheaderpath, ’a’).close()

141

142

143 newBlockContent = []

144 for filename in glob.glob("candidates/∗.json"):
145 partialContent = open(filename, ’r’)

146 .read().replace("\n","")
147 for x in range(0, 10000):

148 newBlockContent.append(partialContent);

149

150

151

152 with open(chainpath) as data file:

153 try:

154 blockchain = json.load(data file)

155 except ValueError:

156 blockchain = []

157

158 with open(chainheaderpath) as data file:

159 try:

160 blockchainheader = json.load(data file)

161 except ValueError:

162 blockchainheader = []

163

164

165 if len(blockchain) == 0:

166 prevHash = "Hello"

167 else:

168 prevHash = str(blockchain[−1])
169

170 newBlockHeader = {}
171 newBlockHeader["version"] = "1"

172 newBlockHeader["time"] = str(datetime.now())

173 newBlockHeader["previousBlockHash"] = hashlib

174 .sha256(prevHash.encode("utf−8")).hexdigest()

A. Proof of Concept Code 66

175 #Placeholderoperation as it is just needed

176 #for weak clients which are not monitored in this test

177 newBlockHeader["merkleRootHash"] = hashlib

178 .sha256(b’Hello World’).hexdigest()

179

180 newBlock = {}
181 newBlock["header"] = newBlockHeader

182 newBlock["content"] = newBlockContent

183

184 for x in range(0, 100):

185 blockchain.append(newBlock)

186 blockchainheader.append(newBlockHeader)

187

188 with open(chainpath, ’w’) as outfile:

189 json.dump(blockchain, outfile)

190

191 with open(chainheaderpath, ’w’) as outfile:

192 json.dump(blockchainheader, outfile)

193

194 #shutil.rmtree(’candidates’)

195

196 return "Block formed, and candidates cleaned"

197

198 @app.route(’/api/validate’, methods = [’POST’])

199 def validate():

200 #read every entry and check for

201 start time = time.time()

202 #data = request.get json(force=True)

203 #id = data["validatorId"]

204 #key = data["validatorPubKey"]

205

206

207 chainpath = "chain"

208 +app.config["id"]+"/chain.json";

209 with open(chainpath) as data file:

210 try:

211 blockchain = json.load(data file)

212 except ValueError:

213 blockchain = []

214

215 for block in blockchain:

216 for information in block["content"]:

217 informationJ = json.loads(information)

218 if informationJ["publicKey"] == ""

A. Proof of Concept Code 67

219 and informationJ["revoced"] ==

False:

220 pass

221 #just go through to simulate search

222

223

224

225 return "−−− %s seconds −−−"
226 % (time.time() − start time)

227

228 app.run(host=’localhost’, port = portNumber)

Listing A.3: Validator Node in Python

With this code segment, AEAD was compared to RSA:

1

2 from aead import AEAD

3 import time

4 from cryptography.hazmat.backends import default backend

5 from cryptography.hazmat.primitives import serialization

6 from cryptography.hazmat.primitives.asymmetric import rsa

7 from cryptography.hazmat.primitives.asymmetric import padding

8 from cryptography.hazmat.primitives import hashes

9 import re

10 import sys

11

12 plainText = "...."

13 additionalData = "...."

14 times = 99

15

16 print("Data size " + str(sys.getsizeof(plainText))

17 + "Bytes")

18 print("Header size " + str(sys.getsizeof(plainText))

19 + "Bytes")

20

21 #Performing AEAD

22 start = time.time()

23 for x in range(0, times):

24 cryptor = AEAD(AEAD.generate key())

25 ct = cryptor.encrypt(bytes(plainText, "utf−8"),
26 bytes(additionalData, "utf−8"))
27 cryptor.decrypt(ct, bytes(additionalData, "utf−8"))
28 end = time.time()

29 print("Elapsed time for AEAD [s]: " + str(end − start))

30

A. Proof of Concept Code 68

31

32 #Performing RSA

33 start = time.time()

34 for x in range(0, times):

35 privkey = rsa.generate private key(

36 public exponent=65537,

37 key size=2048,

38 backend=default backend()

39)

40

41 pubkey = privkey.public key();

42

43 ciphertext = pubkey.encrypt(

44 (plainText + additionalData).encode(’UTF−8’),
45 padding.OAEP(

46 mgf=padding.MGF1(algorithm=hashes.SHA1()),

47 algorithm=hashes.SHA1(),

48 label=None

49)

50)

51

52 plaintext = privkey.decrypt(

53 ciphertext,

54 padding.OAEP(

55 mgf=padding.MGF1(algorithm=hashes.SHA1()),

56 algorithm=hashes.SHA1(),

57 label=None

58)

59)

60

61 end = time.time()

62 print("Elapsed time for RSA[s]: "

63 + str(end − start))

Listing A.4: AEAD vs. RSA

The next listing shows the complete Haar implementation together with verification

steps of identifying the same average:

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 class Object(object):

5 pass

6

7 def applyHaar(values):

A. Proof of Concept Code 69

8 bands = Object();

9 bands.lowband = [];

10 bands.highband = [];

11 for (i, item) in enumerate(values):

12 if (2∗i+1) > (len(values)−1):
13 return bands;

14

15 highband = values[2∗i] − values[2∗i+1];
16 lowband = values[2∗i] + highband;

17

18 bands.lowband.append(lowband);

19 bands.highband.append(highband)

20

21 mu, sigma = 1, 0.25 # mean and standard deviation

22 s = np.random.normal(mu, sigma, 50)

23 plt.plot(s)

24 plt.title(’Haar Wavelet example − Input ’

25 + str(sum(s) / float(len(s))))

26 plt.ylabel(’kwh’)

27 plt.xlabel(’time[s]’)

28 plt.show()

29

30 bands = applyHaar(s);

31

32

33 plt.plot(bands.lowband)

34 plt.title(’Haar Wavelet example − After Haar transform ’

35 + str(sum(s) / float(len(s))))

36 plt.ylabel(’kwh’)

37 plt.xlabel(’time[s]’)

38 plt.show()

Listing A.5: Haar wavelet

	Details
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Smart Grids and Demand Response Systems
	Privacy Recommendations for the Smart Grid
	Virtual Power Plants
	Cryptographic Primitives
	Symmetric Cryptography
	Asymmetric Cryptography
	Hybrid Cryptography
	Hash functions

	Relevant Cryptographic and Privacy Concepts
	Haar Wavelet
	Merkle Trees
	Hash-Based Message Authentication Code
	Certificates
	Public Key Infrastructure
	Homomorphic encryption
	Blockchain
	Consensus Mechanisms
	Smart Contracts

	Design Constraints
	The Smart Grid Architecture Model
	Simplified SGAM Model
	Legal Requirements
	Requirements in the European Union and Austria
	Requirements in the United States

	Technical Requirements
	Existing Energy Grid Infrastructure
	Requirements Imposed by the Infrastructure
	Smart Grid Data Streams
	Communication Interfaces

	Security and Privacy Aware Architecture
	Architecture Building Blocks
	DPKI
	Authenticated Encryption
	Multi Resolution Conditional Access

	Proposed Architecture
	Security
	Computationally Weak Clients
	Architecture Configuration
	Securing of Data Transmission

	Privacy

	Proof of Concept
	Computational Environment
	Architecture parts
	Blockchain based DPKI
	Authenticated Encryption with Associated Data
	Multi Resolution Conditional Access
	Aggregation

	Discussion

	Conclusion
	Bibliography
	List of Abbreviations
	Appendix
	Proof of Concept Code

