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Abstract 
Traditional photogrammetry is developing into a digital parallel that is less restricted by imaging 
requirements. The results of this digital revolution are high quality, spatially dense, colorized 3D point 
clouds. SfM-MVS is a new paradigm in the geosciences and represents a significant advancement in 
photogrammetry, surveying, and spatial modeling capabilities. Geomorphological processes including 
erosion, chemical and physical weathering, ecological condition and influence, and natural disasters 
shape the surface of the Earth. Modeling these phenomena in 3D provides a valuable opportunity for 
understanding environmental processes. Remote sensing data have become a major source for change 
detection studies because of their high-temporal resolution, digital format suitable for image 
processing, synoptic view, and wider selection of spatial and spectral resolution 
 
Error propagation in photogrammetric 3D scene reconstruction techniques has a direct effect on the 
ability of change detection techniques to accurately quantify change. The current methods for creating 
accurately geo-located models are by surveying ground control and introducing this point data into the 
reconstruction process, or by providing a high accuracy, and high precision photocenter location 
through the use of RTK or ppK geotags in the imagery used for the SfM-MVS process.  
 
Initial concepts that GCP based correction provided a more accurate model for change detection might 
not be the case. In the context of accurately evaluating change, the ppK/RTK methods for spatially 
constraining a 3D model might perform better than introducing survey data. The initial reported 
accuracies for each DEM where within the demonstrated range of high spatial accuracies relevant to 
the rasters for which they were calculated. Varying the introduced GCPs has a definite effect on the 
rasters, and despite the RMSE accuracies suggesting that the rasters are accurate, the evaluation of 
change could be significantly affected if the introduced GCPs are not consistent. In the situation where 
the GCPs are effected by the change, i.e., mass wasting following a flood or fire, the change evaluation 
is less likely to be accurate. It appears that survey data can increase the accuracy of a model relative to 
the actual physical locations when compared to RTK/ppK data but the ability to repeat the distribution 
of error might be challenged if a GCP used initially is no longer available. While introducing survey 
data might increase the relative accuracy of a spatial data product, an accurate quantification of the 
change in repeat scene reconstructions might be more achievable when using ppK/RTK tagged imagery 
in the SfM-MVS process. The unexpected insights from this investigation have spurred a series of 
questions that will need to be addressed.  
 
 
 
 
 
 
 
  



 
Photogrammetry is the art, science, and technology of obtaining reliable information about physical 
objects and the environment using photographic images and patterns of recorded radiant 
electromagnetic energy and other phenomena (Derived from the ASPRS definition). A modern 
implementation of photogrammetric methods is known as Structure from Motion - Multi-View Stereo 
(SfM-MVS) whereby a scene is digitally reconstructed in 3 dimensions (3D) using overlapping images 
collected from various viewpoints. The advancements in this process, as it applies to the geosciences 
and photogrammetry, are derived from advancements in computer vision, a discipline of computer 
science [1].  
 
SfM-MVS is a new paradigm in the geosciences and represents a significant advancement in 
photogrammetry, surveying, and spatial modeling capabilities [2]. The SfM-MVS sequence produces a 
spatially accurate, colorized 3D point cloud, that can also be georeferenced if given the requisite input 
information. This is a unique dataset; traditional photogrammetry produces a 2D color image, and 
LiDAR produces a non-colorized 3D point cloud. Traditional photogrammetry is developing into a 
digital parallel that is less restricted by imaging requirements. The results of this digital revolution are 
high quality, spatially dense 3D point clouds.  
 
Geomorphological processes including erosion, chemical and physical weathering, ecological condition 
and influence, and natural disasters shape the surface of the Earth. Modeling these phenomena in 3D 
provides a valuable opportunity for understanding environmental processes [3]–[10]. 
 
Financial and methodological constraints on traditional techniques for collecting spatial data -- such as 
photogrammetry, traditional topographic surveys, differential GPS surveys, LiDAR scanning, laser 
scanning, and total station surveys -- prevent wide scale collection of new 3D datasets [2]. SfM-MVS 
has an advantage over these traditional methods in both cost and ease of data collection [11]. This 
advantage has caused a widespread proliferation of the use of SfM-MVS in the geosciences by 
personnel who are not necessarily experienced in photogrammetry or remote sensing [8]. The SfM-
MVS process is often contained in a software package acting as a black box of algorithms. Error 
propagation within the implementations of these algorithms is not well defined across available 
commercial or open source options. This combination of novel technology and unknown effects of 
accuracy introduces potentially un-acknowledged errors as well as capability and application 
roadblocks. 
 
Physical environmental conditions as well as the physical nature of the subject matter will affect the 
accuracy of the SfM-MVS products. Some well documented challenges in the SfM-MVS workflow 
involve texture and color contrast of the subject matter, lighting conditions, orientation of the image 
set, and the camera used to collect the imagery [12]–[15].  Because the SfM workflow looks for feature 
correspondence between images, if the features move relative to each other between sequential image 
captures, the least squares regression cannot resolve the position of the keypoint that has been 
identified across the images. This problem is encountered frequently when the images contain tree 
canopies or water bodies. A slight breeze can cause tree canopies to move enough such that the tops of 
trees fall completely out of the model. Running water or movement on the surface of water bodies also 
causes holes in the point cloud [12], [16]. 
 
High numbers of images can quickly require computational architectures beyond a traditional 
workstation’s capabilities, even high-end processing-oriented servers, to produce a 3D point cloud in a 
timely fashion [17], [18]. Datasets containing greater than 500 images of high spatial resolution 



imagery can take a very long time to process. Spatially accurate 3D models have a very high use value 
but the time required to generate them is a substantial limiting factor in the potential applications [19]–
[23]. Time sensitive decisions in disaster response, defense intelligence, and infrastructure management 
applications would benefit if spatial data was available within the critical response window [24]. 
 
RPAmSS Project 
This collaboration project between the Department of Geoinformation and Environmental 
Technologies at Carinthia University of Applied Sciences (CUAS) in Austria and the Department of 
Geography at the University of New Mexico in the USA has a specific photogrammetrically oriented 
research focus linked to the RPAmSS (“New Environmental Robotic Services with a Remotely Piloted 
Aircraft multi Sensor System for Environmental Monitoring”) project at CUAS. RPAmSS has been 
funded by Austrian Research Promotion Agency (FFG) within the 7th call of the COIN - Cooperation 
and Networks funding line. This cooperative R&D project has the major goal to develop, apply and 
quantitatively assess the capabilities of a civil, low-cost unmanned aerial multi-sensor system for the 
fast and high-resolution capture of multidimensional environmental data. In this project, the capabilities 
of a holistic Remotely Piloted Aircraft multi Sensor System (RPAmSS) for long term monitoring of 
dynamic river environments and weather phenomena were investigated. Another important focus is the 
development of new and innovative services based on high quality validated multidimensional RPAS 
data on demand for long-term monitoring and change detection. 
 
Unmanned Aerial System Platform BRAMOR ppK  
 
We use the professional fixed-wing BRAMOR 
ppK (post processing kinematic) UAS of the 
Slovenian UAS manufacturer C-Astral platform for 
high resolution data capture for this research. The 
UAS has an endurance of up to 3 hours and is 
equipped with the high-quality autopilot system 
Kestrel manufactured by Lockheed Martin. 
Mission planning is done by C-Astral’s flight 
planning software Geopilot. Sensor is a Sony 
Alpha 6000 (25 MP) RGB camera which is 
triggered by the autopilot distance based as defined 

in the mission plan with a 70% image overlap in 
flight direction and also a 70% overlap between the flight lines. Positional accuracy was improved in a 
post processing correction procedure within Geopilot software using BRAMOR log file together with 
RINEX reference data provided on a commercial basis by the Austrian Positioning Service APOS. 
 
Technical Details of the BRAMOR ppK UAS are: 
 
Dimensions 
Wingspan: 230 cm 
Length: 96 cm 
Central module length: 67 cm 
T/O Weight: 4.7 kg 
 
 

Figure 1: Bramor ppK sUAS in Carinthia, Austria. 



Features 
100% Autonomous 
Automatic parachute landing 
Orography capable flight planning with GSD maintenance over slopes, hills and valleys 
Safe catapult launch 
Wind resistance: up to 55 km/h 
Compatible with RINEX Base data 
 
ppX Specifications 
UAV location accuracy down to 0.6 cm 
Onboard survey grade L1&L2 GNSS receiver 
GPS, Glonass, Beidou, Galileo ready 
 
Project Test Site – Gail LIFE Nature Conservation project 
In recent years different EU-funded LIFE projects have been performed by the Austrian Federal 
Ministry of Agriculture, Forestry, Environment and Water Management in NATURA 2000 protected 
sites at the rivers Gail and Drau. Those project sites are not only of importance in the sense of the 
Habitats Directive but additionally have a relevance for the Birds Directive as migratory birds use the 
areas for resting. In addition, the Water Framework Directive can be applied to those project areas 
because they include dynamic rivers. Being surrounded by agricultural fields these LIFE project sites 
cover all of the four presented legal regulations that ask for monitoring in the EU and demonstrate 
comparability as both of them have the same legal characteristics. Therefore, the LIFE project site at 
the river Gail was chosen as study site in the present project. In the following its natural characteristics 
are described in detail. 
 
The selected project site is the area of the Gail LIFE Nature Conservation project performed by the 
Austrian BMLFUW. Simultaneously this project site is accounted for an important NATURA 2000 site 
in Carinthia. The test area is located in the Gailtal east of Hermagor and in between Pressegger See and 
Nötsch in Carinthia. The project site has a total area of 83 ha and is located at an altitude of 580-600 m 
above the Adriatic Sea. The directly adjacent floodplain areas are represented by calcareous, sandy and 
silty soils and loamy and sandy soils while the soils far away from the river Gail are predominantly 
formed as fen soils rich in humus and lime-free transitional peat bogs. The river Gail traverses the 
project site as potentially meandering and braided river. In the project site the river is regulated with a 
trapezoidal- or duplicate trapezoidal profile. Through the reduction of the outflow’s cross-sectional 
area the discharge capacity gets restricted and therewith the danger of flooding caused by the bursting 
of the dam increases. The fauna of the project site is comparatively well explored and with an amount 
of at least 35 species with high conservation value after the Habitats Directive the NATURA 2000 site 
is one of the most important protected areas in Carinthia. Additionally, the project site is used by 
migratory birds as a resting place and therewith reaches supra-regional significance. 
 
Economic Relevance 
The rapid proliferation of UAS, particularly SUAS, and their growing use for mapping and monitoring 
of a variety of phenomena is putting change detection at the front of the ‘art of the possible’. sUAS 
enable the deployment of large numbers of sensors. Coupled with the collection of hyper-spatial 
resolution imagery, the growing use of SUAS for mapping and monitoring has resulted in a data flood 
that requires an understanding of the error propagation inherent in the SfM-MVS process. Automated 
techniques (e.g., SfM-MVS and automated change detection) for converting collected image data into 
high level information products, useful for decision support, has the potential to be extremely valuable 



if the reliability of these change detection products was known. As the use of sUAS for monitoring a 
wide variety of phenomena (e.g., pipelines, roads, environmental condition, agriculture, critical 
infrastructure) expands, so too will the need for rapid, automated generation of high-level information 
products that characterize 3D shape and detect spatiotemporal change. This requires rapid processing 
for 3D feature extraction, change detection, and delivery of change intelligence products to a central 
monitoring station. 
 
The number of SUAS in operation is projected to increase by an order of magnitude or more by the 
U.S. Department of Transportation (USDOT), the Federal Aviation Administration (FAA), and by 
market analysis companies in the private industry. The agricultural SUAS market alone is expected to 
grow from $673M to $2.9B between 2015 and 2021, according to Zion Research [25]. The report notes 
that the growing reliance on automation to increase efficiency, mitigate labor costs, and produce 
analyses that result in greater yields, have all drawn farmers to this technology. As airspace restrictions 
on sUAS loosen, industry, government, and defense organizations will begin to adopt SUAS for myriad 
mapping and monitoring applications including hazard response, critical infrastructure (e.g., pipelines, 
electric grid, roadways) monitoring, and time-sensitive science applications. As SUAS use proliferates, 
the applications will require automated processing routines like change detection from SfM-MVS 
products, and they will need them to be rapidly and readily available for integration into decision 
support systems. 
 
SfM-MVS 
SfM-MVS is a computer vision technique built on 
photogrammetric theory whereby the 3D geometry 
of a scene is reconstructed using redundant 2D 
imagery. When a scene is viewed from different 
perspectives, the relative change in position of 3D 
objects is directly constrained by the change in 
position of the imaging sensor. By identifying 
features known as keypoints, then matching these 
features across images, we can create a set of 
tielines whose lengths change covariantly with the 
changes in camera position, and are a function of 
the 3D structure of the scene being imaged [26].  
 
 
The creation of a spatially accurate dense point cloud representation of a physical scene can be broken 
into 9 steps. 
 

1. Extract features in the images [27] 
2. Pairwise matching to calculate the fundamental matrix [23] 
3. Select and verify the initial pair of images [28] 
4. Triangulation of 3D points from initial pair 
5. Bundle Adjustment to reduce error of 3D points [29] 
6. Add image initial pair, triangulate and store new points to the model 
7. Repeat Bundle Adjustment every few images 
8. Repeat steps 6 and 7 until entire block has been reconstructed 

 

Figure 2: SfM works because the relative position of 3D 
features changes reliably with a change in viewer perspective. 



The result at this point is a sparse point cloud and highly constrained camera positions including x,y,z, 
and pitch, roll, and yaw information [1], [30]. 
 
The MVS step (step 9) follows this process and uses the highly-constrained camera locations and 
orientations to increase the density of the point cloud by reconstructing the features between the points 
generated during SfM reconstruction. This is usually accomplished by using several processes 
(algorithms) that leverage depth maps, convex hulls, and silhouette extraction to densify the sparse 
point cloud that resulted from the SfM [31]. 
 
The result is a colorized point cloud with a density that can exceed those produced by terrestrial laser 
scanners. SfM-MVS can generate point densities above 10,000 points per square meter given the 
requisite input imagery resolution and processing parameters [2].   

 
SfM-MVS has an advantage over traditional methods such as traditional photogrammetry, traditional 
topographic surveys, differential GPS surveys, LiDAR scanning, laser scanning, and total station 
surveys, in both cost and ease of data collection [11]. 
 
SfM in the Geosciences 
SfM-MVS is a new paradigm in the geosciences and represents a significant advancement in 
photogrammetry, surveying, and spatial modeling capabilities [2]. 
 

Traditional photogrammetry is developing into a digital 
parallel that is less restricted by imaging requirements. The 
results of this digital revolution are high quality, spatially 
dense, colorized 3D point clouds [32].  
 
Geomorphological processes including erosion, chemical 
and physical weathering, ecological condition and 
influence, and natural disasters shape the surface of the 
Earth. Modeling these phenomena in 3D provides a 
valuable opportunity for understanding environmental 
processes [5], [33].  
 
Financial and methodological constraints on traditional 
techniques for collecting spatial data -- such as 

photogrammetry, traditional topographic surveys, 
differential GPS surveys, LiDAR scanning, laser scanning, 
and total station surveys -- prevent wide scale collection of 
new 3D datasets [2]. SfM-MVS has an advantage over these 
traditional methods in both cost and ease of data collection 
[11]. 

 
Physical environmental conditions as well as the physical nature of the subject matter will affect the 
accuracy of the SfM-MVS products. Some well documented challenges in the SfM-MVS workflow 
involve texture and color contrast of the subject matter, lighting conditions, orientation of the image 
set, and the camera used to collect the imagery [12], [13]. 
 

Figure 3: Digital Surface Model or DSM generated 
using Structure from Motion - Multiview Stereo. 



Because the SfM work-flow looks for feature correspondence between images, if the features move 
relative to each other between sequential image captures, the least squares regression cannot resolve the 
position of the keypoint that has been identified across the images. This problem is encountered 
frequently when the images contain tree canopies or water bodies. A slight breeze can cause tree 
canopies to move enough such that the tops of trees fall completely out of the model. Running water or 
movement on the surface of water bodies also causes holes in the point cloud [16], [34]. 
 
SfM-MVS Step by Step 
To understand how advancements may be made in the applications of SfM-MVS to the geosciences, 
we must first understand the workflow. The creation of a spatially accurate point cloud representation 
of a physical scene can be broken into 9 steps. 
 
Feature Detection 
Feature detection starts by identifying common points of features on several different images acquired 
from different perspectives.  
 
Fundamentally, the challenge is extracting descriptions of points in a way that allows for correct 
identification and correspondence between these points across a series of images. The goal is to match 
a point to itself in every photograph that contains it. Early techniques matched image statistics or 
looked for corners but did not perform well in wide baseline matching [35], [36]. Wide baseline 
matching requires the use of feature points, or sets of pixels that are invariant to changes in scale and 
change covariantly with the transformation (affine invariant). Feature types and region detectors are 
discussed and compared by Mikolajcyk et al. 2005 [37].  
 
One of the most widely used feature type and detectors is the Scale Invariant Feature Transform (SIFT) 
object recognition system, developed and patented by David Lowe [23], [38], [39]. SIFT is not an ideal 
photogrammetry solution because it is not fully affine invariant. For photogrammetric purposes, affine 
invariance is very important because matching happens on relatively planar features under large view 
changes. Lowe suggests that a combination of SIFT and other feature types be used for best results and 
will probably be used in future implementations [23]. This was Mikolajcyk’s conclusion as well [15]. 
 
Improving the feature detection process might be 
possible. For datasets consisting of a very large 
number of photos the time required to identify all 
of the features in each photo is substantial. One 
possibility to improve this step is to restrict the 
features to those that have a very high probability 
of being included in the sparse point cloud and 
limiting the number of features per photo to an 
acceptable threshold at which accuracy of the 
sparse cloud and camera positions is high enough 
to maintain an accurate dense cloud. Tenting of 
vertical features in the dense point cloud may be 
an initial indicator that the sparse cloud was 
created with too few keypoints per photo.  
 

Figure 4: Example of keypoint correspondence between two images of 
the same content from different perspectives. 



Keypoint Correspondence 
After keypoints have been located within each image, correspondence between keypoints in different 
images needs to be determined. One method for this, and the one implemented by SIFT is the 
approximate nearest neighbor (ANN) method.  The distance-ratio criterion has been shown to remove 
90% of erroneous matches while discarding less than 5% of correct matches [23]. The number of 
keypoints is usually very large. Anecdotally, 240 images have generated about 1.3 billion keypoints 
when a set of photos is processed using the ultrahigh setting in Agisoft. 
 
One of the opportunities to expedite the SfM-MVS process is by accelerating the correspondence filter 
stage. Keypoint descriptors are usually complex, and may be highly dimensional (SIFT produces 
keypoints with 128 dimensions). One efficient solution has been the k-dimensional trees, or k-d trees. 
The k-d trees solution is a binary tree algorithm that space-partitions multidimensional data for a 
nearest neighbor calculation [40]. Anytime data is parsed spatially, many options for accelerating the 
process arise. One such possibility is the advantage that arises from the modern computing architecture 
of GPUs. This step in SfM-MVS is well suited to test GPU optimizations.   
 
Keypoint Filtering 
To ensure that only correct correspondences remain, a filter is applied to remove erroneous matches. 
Random sample correspondence (RANSAC), and maximum likelihood sample correspondence 
(MLESAC) are two methods to filter outliers. Both methods provide robust, fast, and accurate results 
[41], [42]. MLESAC improves on RANSAC by using a log-likelihood of the fitted solution. The 
RANSAC process uses the fundamental matrix created by specifying the relationship between two 
images. Using an 8 (or more) point algorithm [43], the solution to the fundamental matrix constrains 
the 3D locations of the correctly identified keypoints [44], [45].  
 
Finally, the keypoints that pass the filtering process are organized into tracks or bins. A minimum of 
two keypoints located in three images is required to make a track. Where the same keypoint occurs 
twice in an image, the track is considered inconsistent. Maps of consistent tracks are made and the 
connectivity of the images is known.  
 
Again, advancements in this process have opened the door to grid computing solutions. A promising 
option is to divide the parameter space into cells. This technique has previously been limited by 
computing capabilities [30]. 
 
Triangulation 
During triangulation, the 3D geometry (or structure) of a scene and the different camera poses (i.e. 
motion) is simultaneously estimated [46]. The feature correspondences found previously are used to 
construct scene structure and intrinsic and extrinsic parameters of the cameras. Optimizations of this 
step in projective geometry are a major focus in computer vision fields of study. The methods for 
reconstructing these parameters are linear algebra problems including matrix multiplication, matrix 
transformation and Singular Value Decomposition (SVD) [1], [47]. 
 
Intrinsic camera parameters are defined by the 3x3 upper triangular matrix 𝑘. Additional algorithms 
correct for shutter type, lense focal length, and other optical distortions. The open source MicMac 
software incorporates 5 radial distortion corrections, which may be one of the best available. 
Commercial software is less forthcoming about this but the consensus is MicMac performs very well in 
this regard [13]. 
 



After the camera and scene parameters have been reconstructed, a jointly optimal 3D structure and 
viewing parameter is produced through a Bundle Adjustment [48]. This process minimizes error in the 
fitting function. This is done simultaneously with singular value decomposition (SVD). Adjustments to 
this process can handle scenarios when not all points are visible in all frames. Sequential methods can 
use smaller computing architectures to process data sets larger than the computer’s RAM capacity. 
These methods are also easily parallelizable and lend themselves more readily to optimization through 
new computing methods. 
 
When the camera platform is fitted with an RTK GPS, and the photocenter locations are known to 
within a centimeter of the actual locations, this data can be used to constrain the reconstruction and will 
result in a model that is geolocated. This is an important advancement, as spatially accurate and 
geolocated data can be generated without the requirement of setting foot in the area of interest (AOI).  
 
Initial parameter values are derived from an initial pair of images and are used in a non-linear 
parameter optimization portion of the bundle adjustment. The initial pair should have many matches 
and a large baseline. Multiple approaches to creating the initial pair exist; options are usually chosen 
using information available in the metadata found in the EXIF header of the images [1], [45]. The main 
goal of initialization is to minimize error in the initial pair. This provides an optimality criterion for a 
nonlinear least squares problem solved using a two-frame bundle adjustment. Bundle adjustment 
originated from photogrammetry in the 1950s. A bundle refers to the bundle of light rays connecting 
camera centers to 3D points and adjustment refers to the minimization of the reprojection error [49]. 
 
A third camera is added to the scene, and the bundling process is repeated, for any points common to 
this camera and the existing model. This process continues until every photo has been added to the 
model and adjusted to fit the parameters. Quadratic or LM algorithms can be used to minimize the cost-
functions associated with the optimizations if the computational requirements exceed an acceptable 
threshold. 
 
The goal is to minimize error across the entire reconstruction. The result is a sparse point cloud 
representing the subject matter surface and reconstructed camera poses. Most projects will follow this 
with the MVS processes to generate a dense point cloud of the research area. 
 
Geocorrection and Optimization 
After the sparse point cloud is generated, it can be scaled and georeferenced. This is generally done 
only if the input imagery is not accurately geotagged or if the desired output requires a high degree of 
geospatial accuracy. With the increasing accuracy of RTK units to geotag photocenters, this step is less 
often required. Currently, the outputs of RTK informed SFM-MVS products can generate a map with 
an accuracy of 4cm. 
 
Errors can propagate through the SfM sequence and create non-linear deformations of the final model. 
Using accurately surveyed ground control in the reconstruction can help constrain the output and a 
second optimization can be run after tagging features with known, accurate geolocations [2]. 
 
Clustering for MVS 
The MVS process builds a depth map for each image and merges the separate reconstructions. This 
allows a high degree of parallelization but contributes to noisy and redundant depth maps. To solve this 
problem, many of the best-performing (quality-wise) MVS algorithms reconstruct the scene geometry 
globally [50]. While this method is accurate and clean, the increase in image number rapidly increases 
the computational expense. Specifically, the RAM requirements will limit the number of images that 



can be merged simultaneously. The solution to this problem is to split the images into large chunks. 
Furukawa 2010 details a preprocessing step known as clustering views for MVS (CMVS), which 
clusters images into manageable chunks and then runs each chunk individually [32]. The sparse point 
cloud from SfM is used to produce overlapping image clusters of manageable size such that at least one 
cluster reconstructs each 3D point. The separate chunks are then aligned into a single dense point 
cloud.  
 
MVS 
Dense point clouds are generated from the MVS process, 
building upon the sparse point cloud generated from SfM. The 
goal of MVS is to provide a complete 3D scene reconstruction. 
Relative to SfM, the point clouds can show at least a two order-
of-magnitude increase in point density. There are many versions 
of the MVS algorithm, there are four main categories into which 
these algorithms are divided [31]. 
 

1. Voxel based methods – based on 3D volume within each 
voxel grid. These are simple but limited in accuracy by 
the voxel grid size. 

2. Surface evolution-based methods – Deformable 
polygonal meshes are iteratively evolved to minimize a 
cost function. Built on hull models, accurate, but difficult 
for large scenes. 

3. Depth map merging methods – compute individual depth maps for each image and merge them. 
This is the process clustering facilitates, works well in crowded scenes, and avoids the need to 
resample on a 3D domain.  

4. Patch based methods represent scenes with collections of small patches. This method does not 
require initialization, and is simple and effective. Patched-based MVS (PMVS) has three steps: 

• Match features 
• Expand patches 
• Filter incorrect matches 

 
The MVS image matching algorithms provide point clouds with densities comparable to terrestrial 
laser scanners (TLS). TLS systems can cost upwards of $200,000 and do not provide color information.  
MVS point clouds are colorized, creating a product referred to as a photorealistic 3D model. 
 
The SfM-MVS process is derived from computer vision algorithms and has high use value for the 
geosciences [13], [51], [52]. An evaluation of potential sources of error within the SfM-MVS workflow 
will contribute to the development of a time sensitive remote sensing technology that has substantially 
higher use value than the existing available technology. 
 
 
Ground Control Points Effect on Digital Surface Models 
 
Ground Control affects the accuracy of a DSM resulting from the SfM MVS Process. When evaluating 
change in geomorphological features like channel shape or profile the placement of these GCPs is 

Figure 5: multiple approaches to MVS are 
demonstrated in this image from Furukawa, et 
al. 2005. 



important. The use of GCPs on the Shoulders, slopes, and 
toe of the channel have varying levels of control over the 
resulting DSM Here, 5 different sets of the available 
GCPs were used to evaluate the difference in the RMSE 
and the location of resulting difference when toe, slope, 
or shoulder GCPs are used or withheld [53]. The results 
include RMSE calculations and difference rasters 
showing the location of the effect of the GCP choices.  
 
A subset of images from a manned aircraft collection in 
Albuquerque, New Mexico was used to build 5 
independent sparse point clouds. The ‘align photos’ step 
in Agisoft PhotoScan is the SfM portion of the SfM-MVS 
process. Five separate sparse point clouds, or chunks, 
were created with this align photos step. Then, a unique 

subset of GCPs were introduced to each chunk during the orthocorrection step prior to the MVS 
process and subsequent DEM creation.  
 
The first raster constructed used a subset of GCPs containing at least one point in each category. This 
DEM was considered to be the control against which the other rasters were compared to. This raster 
was constructed by using GCPs 2, 7, 8, 9, and 10. 
 
The remaining four rasters where generated using different subsets of GCPs as described in the Table 
1. Subsequently, the rasters 1 through 4 where subtracted from 0-Control to visually evaluate the 
variance distribution across the DEMs. Root Mean Square Error (RMSE) was calculated for each raster 
and is presented in Table 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6: Area in Albuquerque, New Mexico containing 
the subset of images used for this project. 

Figure 8: GCP Locations used in correction and accuracy 
evaluation. 

Figure 7: Extent of model constructed using 13 images from manned 
aircraft in Albuquerque, NM. 



 
 
Table 1. Control and Check points used for each model. 

Raster Number Name GCPs used for Correction GCPs used for RMSE 
0 Control 2,7,8,9,10 1,3,4,6 
1 No Channel 1,2,6,9,10 3,4,7,8 
2 No Slope 1,6,8,10 2,3,4,7,9 
3 No Shoulder 2,4,8,9 1,3,6,7,10 

4 No Slope or Channel 2,3,4,8,9 1,6,7,10 

 
The initial reported accuracies for each DEM where within the demonstrated range of high spatial 
accuracies relevant to the rasters for which they were calculated [54]. The lowest (most accurate) 
horizontal RMSE is 3.1 cm on the control raster, while the highest (least accurate) RMSE calculated is 
5.6 cm on the No Shoulder raster. The orthophoto rasters used to calculate these RMSE values have 
spatial resolutions of 7cm. Vertical accuracies range from 17.5 cm for the No Channel raster to 36.2 cm 
for the No Shoulder raster. The DEMs used to calculate the vertical RMSEs are all 15cm spatial 
resolutions.  
 
Table 2: Ground Control Points. This table shows the location and designation information for the ground control used for 
orthocorrection of the sparse point clouds. GCP number 5 and 11 are withheld altogether, GCP 5 is not visible in the 
imagery and GCP 11 is only in two of the photos making it insufficient for use.  

GCP ID LAT LONG ELEV Location 

1 35.19258793 -106.6592136 1541.676117 Shoulder 

2 35.19253269 -106.6592983 1538.972559 Slope 

3 35.19237988 -106.6593014 1533.682258 Channel 

4 35.19245026 -106.6593665 1534.090158 Channel 

5 35.19237649 -106.6597734 1533.876881 N/A 

6 35.19219087 -106.6600416 1543.002757 Shoulder 

7 35.19203511 -106.6602158 1542.71291 Shoulder 

8 35.19267765 -106.6597646 1534.470053 Channel 

9 35.19310151 -106.6600477 1539.321839 Slope 

10 35.1934887 -106.660303 1544.448501 Shoulder 

11 35.19450938 -106.6618758 1541.213749 N/A 

 
Table 3: RMSE Table. Accuracies, as evaluated by the survey control points withheld from each model. Generally, these 
RMSE values would be accepted as accurate considering the spatial resolution of the raster products they are evaluating.  

Summary	Table	
RMSE (in Meters) 

Raster Name Easting Northing Horizontal Elevation 
Control 0.022015 0.031178949 0.031178949 0.187513705 

No Cannel 0.01719 0.068422999 0.053245857 0.174967603 
No Slope 0.0267711 0.037045049 0.049289147 0.177827655 

No Shoulder 0.015990569 0.049876161 0.05570369 0.362074449 

No Slope or Channel 0.031984 0.012948639 0.045476799 0.222805994 



 
Difference rasters were 
generated by subtracting the 
Control Raster from each of 
the test rasters. While the 
immediate vicinity of the 
GCPs the rasters show a 
high degree of similarity but 
the distribution of the 
differences is visible. Raster 
3, No Shoulder, is 
substantially different from 
the other rasters but this is 
most likely caused by the 
lack of GCPs on the bench, 
outside of the shoulder 
region. 
 
Varying the introduced 
GCPs has a definite effect 

on the rasters, and despite the RMSE accuracies suggesting that the rasters are accurate, the evaluation 
of change could be significantly affected if the introduced GCPs are not consistent. In the situation 
where the GCPs are effected by the change, i.e., mass wasting following a flood or fire, the change 
evaluation is less likely to be accurate.    
 
Change Detection 
 
In remote sensing applications, changes are considered as surface component alterations with varying 
rates [55]. Essentially, change detection is the process of identifying differences in the state of an object 
or phenomenon by observing it at different times, which involves the ability to quantify temporal 
effects using multi-temporal datasets [56]. Remote sensing data have become a major source for 
change detection studies because of their high-temporal resolution, digital format suitable for image 
processing, synoptic view, and wider selection of spatial and spectral resolution [55], [57], [58]. The 
fundamental framework of change detection is using multi-temporal remote sensing data to 
qualitatively analyze the temporal effects of phenomenon and quantify the changes [55]. Change 
detection techniques by using multi-temporal remote sensing data helps in understanding landscape 
dynamics [59].  
 
Error Propagation 
 
One source of error propagation in the SfM process stems from the non-deterministic techniques used 
in the generation of the sparse point cloud and camera position estimation. SfM uses MLE, ANN, and 
RASNAC which will generate slightly different results every time a dataset is processed. The variance 
of these techniques has not been evaluated in the context of geomorphological change detection and is 
the focus of this investigation.  
 
Error propagation in the SfM-MVS process directly impacts the ability of these techniques to 
contribute to understanding change from repeated scene reconstructions over time. Detecting change in 

Figure 9: Difference Rasters. These rasters were created by subtracting the control DSM from 
the rasters 1 through 4. Clockwise from top left: 1, 2, 4, 3. 



digitally reconstructed models relies on the ability of these models not to show change where there isn’t 
any. Because of the non-deterministic portions of the SfM process, some change will exist even if the 
exact same imagery is used. By evaluating the variance in SfM when identical inputs are used, it is 
possible to understand the potential error, and subsequently the potential reliability, of a time series to 
accurately show change. 
 
 
Methods for Camera Position Error Propagation Evaluation 

Question: 
How much variance in estimated camera positions occurs when repeating 
the SfM process on the exact same set of images? 
 
Process: 
To better understand the error propagation in a digital reconstruction 
sequence, the SfM step will be evaluated apart from the MVS step, and 
evaluated for variance in the camera positions that result. Because the 
camera positions are used in the dense cloud generation, any variance in 
their estimated locations will contribute to subsequent error in the final 3D 
product.   
 
To bound the investigation such that the most accurate (i.e., minimum 
variance) results were achieved, only PPK tagged imagery was used, and 
every setting in PhotoScan was set to the strictest option. 
 
Jupyter Notebook was used for the data analysis. The Pandas library for Python makes the investigation 
of iterated results very easy. The python code used to generate the data herein is included as Appendix 
II.  
 
UAS and GNSS Data: 
This project uses aerial imagery collected from an sUAS. Images were collected with a C-Astral 
Bramor sUAS described above. This imagery is representative of traditional UAS collected methods, 
using a fixed wing aircraft and a nadir pointing digital camera. The imagery has a ground sample 
distance of about 1cm. The subject matter of the imagery is a riparian ecosystem and wetlands in 
Southern Austria. The UAS is outfitted with a PPK GNSS receiver that has provided photocenter 
locations accurate to 0.06 cm.   
 

Figure 10: Camera Positions from SfM. Blue planes represent the orthometric position of the camera sensor when the image was 
collected. Black lines are the normal vector to the sensor and describe the orientation. This investigation examines the consistency of the 
estimated position and orientation of a set of photos when run through the SfM process multiple times. 

Figure 11: Euler Angles. Six 
measurements define the position 
and orientation of an object in 3D 
space. 



CUAS Dataset C-Astral 
Austria Dataset C-Astral 

● Austria UAS Test Site  
● size (Gb):  
● Number of Input Photos: 15 
● Location:  
● GSD:  
● Sensor:  
● input image number:  

 
Processing Workflow Outline 
 

1. Start new PhotoScan project  
2. Run PhotoScan python script 

a. Create new chunk 
b. Load photos 
c. Match and align chunk (SfM) 

3. Repeat step two, 30 times 
4. Export Camera Positions for each of the 30 Chunks (Manual) 

 
Analysis Workflow Outline 
 
Using a python program to loop the SfM process, 30 point clouds were generated from the same set of 
input imagery. After this process, the camera position estimation files were exported from the agisoft 
project. Two runs failed, and were removed from the project. The resulting 28 text files contain the 
iterated results used in the evaluation of variance. The basic workflow for the portion of work done in 
the Jupyter Notebook follows: 
 
Step 1 

1. Load required python libraries 
2. Write the function to parse the text files that PhotoScan exports 
3. Write the function to concatenate the results of the parse function into a single dataframe 
4. Group dataframe by unique camera (15 groups of 28 runs) 
5. Calculate the variance 
6. Write the variance dataframe to CSV file for inclusion in this report (Table 1) 

 
Step 2 

1. Create 4 DEMs from runs 1 - 4 (Dense Cloud → DEM) 
2. Difference DEMs to show variance in rasters 

 
 
 
 
 
 
 
 
 
 
 



Results 
 
Initial results returned from the iterated processing in Agisoft PhotoScan where so small that the 
framework of the question had to be re-evaluated. The variance in estimated camera position and 
orientation constructed by the SfM process is extremely small. The variance in the X position of each 
photo ranges from a minimum of 0.8 mm to a maximum of 1.0 mm. The variance in the reconstructed 
Y position ranges from a minimum of 0.02 mm to a maximum of 0.03 mm. The estimated Z values are 
an order of magnitude smaller ranging from a minimum of 8.1 nanometers to 0.497 micrometers. Both 
of these values are arbitrarily small such that the Z position can be considered null.  
 
Similarly, the orientation as described by the Euler angles are arbitrarily small, and can probably be 
held as not varying between runs as well.   
 
Table 4: Variance in estimated positions for each camera. Each value in Table 4 represents the variance contained in 28 
values for that particular metric. Each value is smaller than the accuracy of the position information returned from the ppK 
data by an order of magnitude. These variances suggest that the error propagation in the SfM process is mostly due to other 
portions of the process. SfM returns almost identical values almost every time. 

Variance in Estimated Camera Positions 
28 Iterations on 15 images to evaluate the variance in estimated camera position. Meters and Euler Angles 

Camera Number  X  Y  Z  Omega  Phi  Kappa 

0 0.00094300000 0.00002440000 0.00000007530 0.00000220000 0.00000171000 0.00000048800 
1 0.00098400000 0.00003140000 0.00000005940 0.00000161000 0.00000029300 0.00000050700 

2 0.00097400000 0.00002770000 0.00000002050 0.00000202000 0.00000029100 0.00000049800 

3 0.00097300000 0.00002950000 0.00000000810 0.00000179000 0.00000052100 0.00000049400 
4 0.00096800000 0.00002910000 0.00000007010 0.00000182000 0.00000096300 0.00000055300 

5 0.00089900000 0.00003270000 0.00000027400 0.00000194000 0.00000403000 0.00000047500 
6 0.00096000000 0.00003180000 0.00000032400 0.00000169000 0.00000037300 0.00000046600 

7 0.00091700000 0.00003160000 0.00000011400 0.00000240000 0.00000136000 0.00000050400 

8 0.00096100000 0.00002510000 0.00000023800 0.00000212000 0.00000209000 0.00000047700 
9 0.00101000000 0.00003190000 0.00000049700 0.00000103000 0.00000200000 0.00000049200 

10 0.00101000000 0.00002980000 0.00000024600 0.00000114000 0.00000179000 0.00000046000 
11 0.00101000000 0.00003280000 0.00000010800 0.00000108000 0.00000113000 0.00000043800 

12 0.00099900000 0.00003250000 0.00000012700 0.00000115000 0.00000070200 0.00000042100 
13 0.00094200000 0.00003330000 0.00000011200 0.00000098700 0.00000056100 0.00000049300 

14 0.00093800000 0.00003450000 0.00000007920 0.00000119000 0.00000099700 0.00000055000 

Min 0.00089900000 0.00002440000 0.00000000810 0.00000098700 0.00000029100 0.00000042100 
Max 0.00101000000 0.00003450000 0.00000049700 0.00000240000 0.00000403000 0.00000055300 

Ave 0.00096586667 0.00003054000 0.00000015684 0.00000161113 0.00000125407 0.00000048773 

 



Upon examination of the incredibly small variances in the estimated camera positions, further 
investigation was warranted into the variance of the resulting rasters. As seen in the previous section, 
very accurate rasters built from the same imagery may still show internal variances beyond what is 
considered acceptable. An evaluation of this same types of variances are seen in Figure 12.  

 
The difference rasters presented in Figure 12 where created by building 4 DEMs from different SfM 
runs, and subtracting the first one from the remaining three. As seen in Figure 12, the variances are 
almost non-existent.  
 
The spatial distribution of variance in the brief examination of the DEMs created for the Austria dataset 
shows that the only variance evident so far is near the edges of the model. The interior portions show 
almost no difference between each respective run on the same imagery 
 
Figure 13 is an examination of the spatial data products generated from the imagery originating in 
Austria collected by the Corinthian University of Applied Sciences. 

Figure 12: Difference rasters for 4 DSMs that came from the CUAS data. each raster has the same style applied, i.e., the same color 
represents the same value in all three rasters. The fourth raster is an orthoimage showing the extent of the AOI. 



  

Figure 13: Examples of the orthoimage and DEM created during the repeated processing of the Bramor ppK sUAS in Carinthia, Austria. 
Top left is a subset of the orthophoto, top right is the DEM, and bottom is a zoomed in view of a portion of the orthophoto in the top left. 



Discussion 
 
Error propagation in photogrammetric 3D scene reconstruction techniques has a direct effect on the 
ability of change detection techniques to accurately quantify change. The current methods for creating 
accurately geo-located models are by surveying ground control and introducing this point data into the 
reconstruction process, or by providing a high accuracy, and high precision photocenter location 
through the use of RTK or ppK geotags in the imagery used for the SfM-MVS process.  
 
Initial concepts that GCP based correction provided a more accurate model for change detection might 
not be the case. In the context of accurately evaluating change, the ppK/RTK methods for spatially 
constraining a 3D model might perform better than introducing survey data.  
 
It appears that survey data can increase the accuracy of a model relative to the actual physical locations 
when compared to RTK/ppK data but the ability to repeat the distribution of error might be challenged 
if a GCP used initially is no longer available.  
 
While introducing survey data might increase the relative accuracy of a spatial data product, an 
accurate quantification of the change in repeat scene reconstructions might be more achievable when 
using ppK/RTK tagged imagery in the SfM-MVS process. 
 
Future Work  
The unexpected insights from this investigation have spurred a series of questions that will need to be 
addressed. Particularly, a more controlled ground survey in a test area where we can collect a repeat 
data set where controlled volumetric change was generated to simulate erosion or mass movement. A 
well-controlled experiment of this kind will yield the change detection insights that can answer the 
question of what method is better performing for accurate change detection, GCP or RTK/ppK. 
 
Lastly, the error propagation in SfM-MVS needs to be evaluated in a non-black-box environment 
where different parameters can be adjusted and the resultant variance evaluated. One potential method 
for evaluating the ability of Agisoft PhotoScan to reconstruct models or to evaluate the error 
propagation in the context of the fact it is a black box would be to repeat the looped iteration of point 
cloud generation using low, medium, and high settings and compare the variances between these sets of 
point clouds and camera reconstructions.  
 
Plans to evaluate the utility of point clouds in further context related to neural net and machine learning 
techniques is also expected. The ability of point clouds to provide multi-dimensional data including 
shape and color has the potential to increase the ability of object identification when paired with 
modern processing techniques. The imagery from this research project will be useful in these projects 
as well. Further change detection related inquiry will benefit from the insight gained during this 
project. The use of Agisoft PhotoScan for change detection will be further explored by collecting repeat 
imagery of controlled, inflicted change where geomorphological features can be altered for in-situ 
controlled volume information to test change detection accuracy from SfM products and techniques.  
 
 
 
 
 



Bibliography 
 
[1] R. Hartley and A. Zisserman, Multiple View Geometry 

in Computer Vision. Cambridge: Cambridge 
University Press, 2004. 

[2] J. L. Carrivick, M. W. Smith, and D. J. Quincey, 
Structure from Motion in the Geosciences. Chichester, 
UK: John Wiley & Sons, Ltd, 2016. 

[3] D. Jakes, “Process geomorphology, Leo F. Ritter, 
William C. Brown Company Publishers, Dubuque, 
Iowa, U.S.A. 1978. No. of pages: 603. Price: U.S. 
$22.95. ISBN 0 697 05035 1,” Earth Surf. Process., 
vol. 5, no. 2, pp. 203–204, Apr. 1980. 

[4] N. Micheletti, J. H. Chandler, and S. N. Lane, 
“Investigating the geomorphological potential of freely 
available and accessible structure-from-motion 
photogrammetry using a smartphone,” Earth Surf. 
Process. Landforms, vol. 40, no. 4, pp. 473–486, Mar. 
2015. 

[5] C. H. Hugenholtz et al., “Geomorphological mapping 
with a small unmanned aircraft system (sUAS): 
Feature detection and accuracy assessment of a 
photogrammetrically-derived digital terrain model,” 
Geomorphology, vol. 194, pp. 16–24, Jul. 2013. 

[6] M. M. Ouédraogo, A. Degré, C. Debouche, and J. 
Lisein, “The evaluation of unmanned aerial system-
based photogrammetry and terrestrial laser scanning to 
generate DEMs of agricultural watersheds,” 
Geomorphology, vol. 214, pp. 339–355, 2014. 

[7] L. Javernick, J. Brasington, and B. Caruso, Modeling 
the topography of shallow braided rivers using 
Structure-from-Motion photogrammetry, vol. 213. 
Elsevier B.V., 2014. 

[8] M. J. Westoby, J. Brasington, N. F. Glasser, M. J. 
Hambrey, and J. M. Reynolds, “‘Structure-from-
Motion’ photogrammetry: A low-cost, effective tool 
for geoscience applications,” Geomorphology, vol. 
179, pp. 300–314, 2012. 

[9] F. Clapuyt, V. Vanacker, and K. Van Oost, 
“Reproducibility of UAV-based earth topography 
reconstructions based on Structure-from-Motion 
algorithms,” Geomorphology, vol. 260, pp. 4–15, 
2016. 

[10] P. Tarolli, “High-resolution topography for 
understanding Earth surface processes: Opportunities 
and challenges,” Geomorphology, vol. 216. pp. 295–
312, 2014. 

[11] I. Colomina and P. Molina, “Unmanned aerial systems 
for photogrammetry and remote sensing: A review,” 
ISPRS J. Photogramm. Remote Sens., vol. 92, pp. 79–
97, 2014. 

[12] M. A. Fonstad, J. T. Dietrich, B. C. Courville, J. L. 
Jensen, and P. E. Carbonneau, “Topographic structure 
from motion: A new development in photogrammetric 
measurement,” Earth Surf. Process. Landforms, vol. 
38, no. 4, pp. 421–430, 2013. 

[13] M. Jaud, S. Passot, R. Le Bivic, C. Delacourt, P. 
Grandjean, and N. Le Dantec, “Assessing the accuracy 
of high resolution digital surface models computed by 
PhotoScan?? and MicMac?? in sub-optimal survey 
conditions,” Remote Sens., vol. 8, no. 6, 2016. 

[14] P. Barry and R. Coakley, “Field accuracy test of RPAS 
photogrammetry,” Int. Arch. Photogramm. Remote 
Sens. Spat. Inf. Sci. - UAVg2013, vol. XL-1/W2, pp. 

27–31, 2013. 
[15] K. Mikolajczyk et al., “A comparison of affine region 

detectors,” Int. J. Comput. Vis., vol. 65, no. 1–2, pp. 
43–72, 2005. 

[16] L. Wallace, A. Lucieer, Z. Malenovsk???, D. Turner, 
and P. Vop??nka, “Assessment of forest structure 
using two UAV techniques: A comparison of airborne 
laser scanning and structure from motion (SfM) point 
clouds,” Forests, vol. 7, no. 3, p. 62, Mar. 2016. 

[17] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald, 
“Review of stereo vision algorithms and their 
suitability for resource-limited systems,” J. Real-Time 
Image Process., vol. 11, no. 1, pp. 5–25, 2016. 

[18]  a Irschara and V. Kaufmann, “Towards fully 
automatic photogrammetric reconstruction using 
digital images taken from UAVs,” Proc. Int. Soc. 
Photogramm. Remote Sens., vol. XXXVIII, no. 
October 2015, pp. 65–70, 2010. 

[19] H. Kopetz, Real-Time Systems. 2011. 
[20] H. Kopetz, “Real-Time Systems,” Real-Time Syst., p. 

338, 2011. 
[21] N. D. Molton, A. J. Davison, and I. D. Reid, “Locally 

Planar Patch Features for Real-Time Structure from 
Motion,” Bmvc, p. 90.1-90.10, 2004. 

[22] R. Kalarot and J. Morris, “Comparison of FPGA and 
GPU implementations of real-time stereo vision,” 2010 
IEEE Comput. Soc. Conf. Comput. Vis. Pattern 
Recognit. - Work. CVPRW 2010, pp. 9–15, 2010. 

[23] D. G. Lowe, “Distinctive image features from scale 
invariant keypoints,” Int’l J. Comput. Vis., vol. 60, pp. 
91–11020042, 2004. 

[24] C. D. Lippitt, D. A. Stow, and L. L. Coulter, Time-
Sensitive remote sensing. New York, NY: Springer 
New York, 2015. 

[25] Zion Research, “Agriculture Drone Market (Fixed 
Wing, Rotary Blade, Hybrid, Data Management, 
Imaging Software, and Data Analysis) for Field 
mapping, Variable Rate Application (VRA), Crop 
Scouting, Crop Spraying, Livestock, Agriculture 
Photography and Other Applications:” 2016. 

[26] Y. Furukawa and C. Hernández, “Multi-View Stereo: 
A Tutorial,” Found. Trends® Comput. Graph. Vis., 
vol. 9, no. 1–2, pp. 1–148, 2015. 

[27] Y. Sun, L. Zhao, S. Huang, L. Yan, and G. 
Dissanayake, “L2-SIFT: SIFT feature extraction and 
matching for large images in large-scale aerial 
photogrammetry,” ISPRS J. Photogramm. Remote 
Sens., vol. 91, pp. 1–16, 2014. 

[28] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust 
wide-baseline stereo from maximally stable extremal 
regions,” Image Vis. Comput., vol. 22, no. 10 SPEC. 
ISS., pp. 761–767, 2004. 

[29] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. 
Fitzgibbon, “Bundle Adjustment — A Modern 
Synthesis,” in Vision Algorithms ’99, vol. 34099, 
2000, pp. 298–372. 

[30] P. H. S. Torr and A. Zisserman, “MLESAC: A New 
Robust Estimator with Application to Estimating 
Image Geometry,” Comput. Vis. Image Underst., vol. 
78, no. 1, pp. 138–156, 2000. 

 
 



[31] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and 
R. Szeliski, “A Comparison and Evaluation of Multi-
View Stereo Reconstruction Algorithms,” 2006 IEEE 
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. - 
Vol. 1, vol. 1, pp. 519–528, 2006. 

[32] Y. Furukawa and J. Ponce, “Accurate, dense, and 
robust multiview stereopsis,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 32, no. 8, pp. 1362–1376, 
Aug. 2010. 

[33] M. W. Smith, J. L. Carrivick, and D. J. Quincey, 
“Structure from motion photogrammetry in physical 
geography,” Prog. Phys. Geogr., vol. 40, no. 2, pp. 
247–275, 2016. 

[34] A. M. Cunliffe, R. E. Brazier, and K. Anderson, 
“Ultra-fine grain landscape-scale quantification of 
dryland vegetation structure with drone-acquired 
structure-from-motion photogrammetry,” Remote Sens. 
Environ., vol. 183, pp. 129–143, 2016. 

[35] A. Baumberg, “Reliable feature matching across 
widely separated views,” in Proceedings IEEE 
Conference on Computer Vision and Pattern 
Recognition. CVPR 2000 (Cat. No.PR00662), 2000, 
vol. 1, pp. 774–781. 

[36] K. Mikolajczyk and C. Schmid, “An Affine Invariant 
Interest Point Detector,” in Advanced Information 
Systems Engineering, 2002, pp. 128–142. 

[37] K. Mikolajczyk and C. Schmid, “A performance 
evaluation of local descriptors,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 27, no. 10, pp. 1615–1630, 
2005. 

[38] D. G. Lowe, “Local feature view clustering for 3D 
object recognition,” Proc. 2001 IEEE Comput. Soc. 
Conf. Comput. Vis. Pattern Recognition. CVPR 2001, 
vol. 1, p. I-682-I-688, 2001. 

[39] D. G. Lowe, “Object recognition from local scale-
invariant features,” Proc. Seventh IEEE Int. Conf. 
Comput. Vis., vol. 2, no. [8, pp. 1150–1157 vol.2, 
1999. 

[40] J. H. Freidman, J. L. Bentley, and R. A. Finkel, “An 
Algorithm for Finding Best Matches in Logarithmic 
Expected Time,” ACM Trans. Math. Softw., vol. 3, no. 
3, pp. 209–226, 1977. 

[41] M. A. Fischler and R. C. Bolles, “Random sample 
consensus: a paradigm for model fitting with 
applications to image analysis and automated 
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–
395, 1981. 

[42] S. Choi, T. Kim, and W. Yu, “Performance Evaluation 
of RANSAC Family,” Procedings Br. Mach. Vis. 
Conf. 2009, p. 81.1-81.12, 2009. 

[43] H. C. Longuet-Higgins, “A computer algorithm for 
reconstructing a scene from two projections,” Nature, 
vol. 293, no. 5828. pp. 133–135, 1981. 

[44] R. I. Hartley and F. Kahl, “Global optimization 
through rotation space search,” Int. J. Comput. Vis., 
vol. 82, no. 1, pp. 64–79, 2009. 

[45] N. Snavely, S. M. Seitz, and R. Szeliski, “Skeletal sets 
for efficient structure from motion,” Comput. Vis. 
Pattern Recognit., p. 2, 2008. 

[46] S. Ullman, “The Interpretation of Structure from 
Motion,” Proc. R. Soc. B Biol. Sci., vol. 203, no. 1153, 
pp. 405–426, Jan. 1979. 

 
 
 

[47] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling 
the world from Internet photo collections,” Int. J. 
Comput. Vis., vol. 80, no. 2, pp. 189–210, 2008. 

[48] Y. Furukawa and J. Ponce, “Accurate, Dense, and 
Robust Multi-View Stereopsis,” vol. 1, no. 1, pp. 1–14, 
2007. 

[49] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. 
Fitzgibbon, “Bundle Adjustment — A Modern 
Synthesis,” Vis. Algorithms Theory Pract., vol. 1883, 
pp. 298–372, 2000. 

[50] B. Mi??u????k and J. Ko??eck??, “Piecewise planar 
city 3D modeling from street view panoramic 
sequences,” 2009 IEEE Comput. Soc. Conf. Comput. 
Vis. Pattern Recognit. Work. CVPR Work. 2009, pp. 
2906–2912, 2009. 

[51] J. P. Dandois and E. C. Ellis, “High spatial resolution 
three-dimensional mapping of vegetation spectral 
dynamics using computer vision,” Remote Sens. 
Environ., vol. 136, pp. 259–276, 2013. 

[52] A. Eltner and D. Schneider, “Analysis of Different 
Methods for 3D Reconstruction of Natural Surfaces 
from Parallel-Axes UAV Images,” Photogramm. Rec., 
vol. 30, no. 151, pp. 279–299, 2015. 

[53] M. R. James and S. Robson, “Mitigating systematic 
error in topographic models derived from UAV and 
ground-based image networks,” Earth Surf. Process. 
Landforms, vol. 39, no. 10, pp. 1413–1420, 2014. 

[54] S. Zhang, C. D. Lippitt, S. M. Bogus, A. C. Loerch, 
and J. O. Sturm, “The accuracy of aerial triangulation 
products automatically generated from hyper-spatial 
resolution digital aerial photography,” Remote Sens. 
Lett., vol. 7, no. 2, pp. 160–169, 2016. 

[55] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. 
Stanley, “Change {Detection} from {Remotely} 
{Sensed} {Images}: {From} {Pixel}-based to 
{Object}-based {Approaches},” ISPRS J. 
Photogramm. Remote Sens., vol. 80, no. Supplement 
C, pp. 91–106, Jun. 2013. 

[56] A. Singh, “Digital {Change} {Detection} 
{Techniques} {Using} {Remotely}-sensed {Data},” 
Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003, Jun. 
1989. 

[57] R. S. Lunetta, D. M. Johnson, J. G. Lyon, and J. 
Crotwell, “Impacts of {Imagery} {Temporal} 
{Frequency} on {Land}-cover {Change} {Detection} 
{Monitoring},” Remote Sens. Environ., vol. 89, no. 4, 
pp. 444–454, Feb. 2004. 

[58] N. C. Coops, M. A. Wulder, and J. C. White, 
Identifying and {Describing} {Forest} {Disturbance} 
and {Spatial} {Pattern}: {Data} {Selection} {Issues} 
and {Methodological} {Implications}. Boca Raton, FL: 
CRC Press, 2006. 

[59] J. S. Rawat and M. Kumar, “Monitoring {Land} 
{Use}/{Cover} {Change} {Using} {Remote} 
{Sensing} and {GIS} {Techniques}: {A} {Case} 
{Study} of {Hawalbagh} {Block}, {District} 
{Almora}, {Uttarakhand}, {India},” Egypt. J. Remote 
Sens. Sp. Sci., vol. 18, no. 1, pp. 77–84, Jun. 2015. 

 


