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Tri-Space Approach to Exploratory Visualization of 
Multispectral and Multivariate Imagery 

 

Abstract 

 

Modeling the dynamic nature of phenomena over time is a powerful tool that can be used to 

further expand research and understanding of behavior. Continued development of methods 

and interfaces that explicitly visualize change within multitemporal and multivariate data 

support applications in many domains such as epidemiology, law enforcement, precision 

agriculture, environmental monitoring, and urban studies. The tri-space framework provides 

an alternative means of analyzing multivariate and multitemporal data by manipulating its 

structure to yield six distinct perspectives which can be visualized through dimension 

reduction techniques such as self-organizing maps (SOMs). Imagery analysis presents a 

compelling avenue for this methodology as it is a data source commonly used in a wide variety 

of environmental and urban studies that exploit its multitemporal and multivariate attributes. 

This research focuses on the conceptualization and development of software that 

encapsulates the tri-space approach in an exploratory data analysis environment to facilitate 

inductive investigation of imagery data. Implementing the software as a web-based platform 

further serves to increase accessibility and distribution capabilities to enable the extraction of 

insights. This study integrates and extends existing strands of collaborative research resulting 

from the Marshall Plan Foundation and San Diego State University which have contributed to 

this developmental project. 
 

 

1 Introduction 
 

In this era of big data, researchers face an ever-surmounting complexity in the quantity and 

dimensionality of their data due to technological advancements. This is the reality for 

research involving every conceivable type of multivariate and multitemporal data, including 

crime statistics, climate data, unstructured (text) data, and many others. Imagery data are no 

exception to this trend, especially as unmanned aerial vehicles (UAVs) continue to provide an 

abundance of low-cost, rapid acquisitions of imagery for monitoring phenomena. The 

multivariate nature of imagery relates to its spectral resolution, and the specific segments of 

the electromagnetic spectrum that are captured (Jensen 2007). The majority of remote 

sensing sensors capture multispectral imagery, which consists of anywhere from three to ten 

spectral channels. Newer state-of-the-art systems can capture hyperspectral imagery 

containing up to hundreds of thousands of spectral channels. Both of these data acquisition 

advancements demonstrate a substantial technological increase in volume and complexity, as 

higher spectral and temporal resolutions relate to data with higher dimensionality. Analysis 

techniques must also adapt to ensure that valuable insights are not obscured by this increase 

of data but are made obvious. 
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Classification maps are one of the most common and useful products that are derived by 

remote sensing analysts. This is possible by classifying the multispectral and hyperspectral 

attributes of an image pixel through either supervised or unsupervised classification (Jensen 

2007). These maps serve as an important input for many spatial analysis procedures and as 

informative tools to aid decision-makers. While this process is familiar with any remote 

sensing analyst, it can act as a ‘black box’ in that there are many parameters, methods, and 

additional operations that are utilized before data creation or map production. After imagery 

has been transformed into a land cover raster file, this process is repeated at different times, 

creating a multitemporal series of land cover maps. These can be input to a change 

identification analysis which can explicitly show the changes that occur in between any two 

images within the dataset, e.g. between the oldest and newest images. The derived products 

can show pixels that experience land cover change, which actually represents a movement 

across the multispectral attribute space (Chen et al. 2003). These conventional analyses do 

not enable the explicit visualization of this movement. Instead, analysis typically classifies a 

pixel, where this project attempts to visualize a pixel’s attribute trajectory to determine 

whether it’s experiencing change or is remaining stable. For the case of environmental 

monitoring, this could yield insights related to degradation, pollution, or ecosystem change 

by observing trends, trajectories, and classification of pixels. The comparison of classification 

scheme outputs can also be impeded by a lack of ground truth or reference points, the 

inability to validate results. 

 

These nuances suggest why new approaches are required to handle large quantities of data, 

detect patterns, and emphasize even subtle changes. The tri-space framework provides the 

means for analyzing and visualizing the behavior of these n-dimensional multitemporal data 

by manipulating its underlying structure to present six unique perspectives relating to its 

discrete objects, attributes, and temporal slices (Skupin 2010). These six perspectives are 

most effectively visualized using dimensionality reduction (DR) techniques, such as self-

organizing maps (SOMs), multidimensional scaling (MDS) (Kohonen 1982; Torgerson 1952). 

This study sought to develop a web-based platform that synthesizes these conceptual and 

computational approaches to enable a flexible and accessible means of analyzing imagery 

data in an exploratory fashion. After development, applying this platform as a case study that 

explores different kinds of environmental monitoring data in different scales and resolutions 

provides a substantive aim, and establishes this project’s relevance to geography. 
 

 

2 Literature Review 

 

2.1 Conceptual Frameworks 
 

This section of the literature review describes the conceptual frameworks that are utilized in 

this study. These different frameworks are integrated through software development as an 

engineering task to conduct this study’s research-oriented goals. It is important to explain 
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these frameworks in detail to establish where this research resides in the realm of image 

analysis and its relevance. 

 

2.1.1 Tri-Space Framework 
 

The tri-space framework and recent studies employing this methodology currently utilize 

discrete spatiotemporal data in structured and unstructured forms, which are typically 

represented by tabular datasets. These studies have explored the relationships and dynamics 

within topics such as demographics, air pollution, and snow water equivalency (Skupin & 

Hagelman 2005; Kolovos et al. 2010; Wang et al. 2013). Conversely, imagery can be 

considered as a subset of continuous geographic data, which is not typically stored in a tabular 

format rather inside of a two-dimensional array. In order to extend this framework to build 

this study’s proposed imagery analysis tool, a number of components must be synthesized. 

The conceptual approaches of tri-space and exploratory data analysis (EDA) are integrated 

into an interactive, data-driven visualization environment (Skupin 2010; Tukey 1997). This is 

enabled with the computational approach of self-organizing maps (SOMs) and supported with 

visualization of a parallel coordinate plot (Kohonen 1982; Inselberg 1985). The application of 

tri-space to any spatiotemporal dataset can utilize visualizations SOMs, a type of artificial 

neural network, or other dimensionality reduction techniques such as principal component 

analysis (PCA) or multidimensional scaling (MDS) to produce up to six unique perspectives 

with each one providing improved opportunities for detecting change (Kohonen 1982; 

Pearson 1901; Torgerson 1952; Skupin 2010; Thompson 2017). While this framework has been 

applied to many kinds of multivariate and multi-temporal data, this research seeks to expand 

the framework into the imagery analysis domain (Lehrer 2013; Schabus 2013; Thompson 

2017).  

 

The tri-space is a conceptual approach that permits the manipulation of the identity, 

temporal, and attribute aspects of the data to produce a variety of unique perspectives on 

multivariate and multitemporal data. Tabular data structures and object-oriented structures 

can be used within the tri-space approach because they can explicitly organize and transform 

the data by manipulating these three different aspects. T tabular data structure shown in 

Figure 1 includes the three components of tri-space exist within spatiotemporal datasets as a 

locus, attribute, and time (Kolovos et al. 2010; Skupin 2010). 
 

 
Figure 1. Tri-space components in tabular data (Skupin Unpublished, with permission) 

 

The locus property typically relates to a distinct entity, either geographic or non-geographic. In 

previous research, the locus has represented states with multitemporal crime data attributes, 

raster cells of pollution monitoring, and raster cells of snow water equivalent attribute data 
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(Skupin & Hagelman 2005; Skupin 2010; Kolovos et al. 2010; Wang et al. 2013). In this study, 

the loci represent the geographic extents of pixels or cells within a given imagery dataset. The 

other fields associated with a particular record refer to time and attribute spaces, or in the 

contest of this study are the different multispectral channels multiple temporal stages. The six 

high-dimensional perspectives that can be derived include (Skupin 2010): 

• Locus and time over attribute (LT_A) 

• Time over locus and attribute (T_LA) 

• Attribute and time over locus (AT_L) 

• Locus over attribute and time (L_AT) 

• Locus and attribute over time (LA_T) 

• Attribute over locus and time (A_LT) 

The simultaneous view of all perspectives can facilitate a greater comprehensive understanding 

of data behavior (Skupin 2010; Thompson 2017). These six perspectives when analyzed 

individually, offer major differences in terms of insights available. For example, the LT_A 

perspective highlights diverging and converging trajectories of demographic data (Skupin & 

Hagelman 2003). Additionally, the L_AT perspective enables the observation of the broad 

similarities between loci (image pixels) in the dataset. Applying the perspective of AT_L to 

imagery data would demonstrate the dynamic relationships among the multispectral channels 

across time. The LT_A perspective would explicitly show temporal trajectories of loci across the 

attribute space (Figure 2). De-aggregating the LA_T perspective into component planes through 

dynamic selection would yield differences according to which pixel and multispectral 

combination were selected. By presenting these different perspectives simultaneously, a 

meaningful exploration of how pixels and their attributes change over time and space can 

occur. Depending on the normalization scheme used, relationships between the magnitudes 

behavior can be explored. Dynamic selection by a user is a critical component, as their analysis 

can yield further questions and insights from observing the data in these different perspectives 

in a platform that supports the EDA framework. Normalization is another important 

consideration, as previous research has focused on normalization within the LA_T perspective 

which enhances the temporal signatures of the dataset (Thompson 2017). This normalization 

technique may also be the most appropriate for the study at hand, but normalization to all of 

the other perspectives was implemented. 

 

 
Figure 2. Converging and diverging LT_A trajectories (Skupin & Hagelman 2005) 
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2.1.2 Exploratory Data Analysis (EDA) 
 

EDA embodies graphic display and visualization of data results; as statistics alone can be 

inadequate in describing data behavior (Tukey 1977; Anscombe 1973). For example, descriptive 

statistics super-imposed upon visualizations can yield deeper insights and be more meaningful 

to a researcher than a table of statistical results, especially when observing trends over time 

and space. EDA has also been employed by researchers in the discipline of geography, as a way 

to facilitate inductive research questions about the data (Andrienko & Adrienko 2006). 

Analyzing temporal data benefits from EDA methods as dynamically constraining and filtering 

the data at various temporal scales and ranges can present meaningful patterns. EDA 

contributes a framework for synthesizing the interaction between cognition and computation 

through the dynamic linking of data through multiple perspectives (Xu et al. 2006). To evaluate 

a tool which utilizes the EDA framework, subject-matter experts are the most qualified to 

assess its effectiveness. Their familiarity with the underlying data allows them to conduct more 

robust analysis with the tool, in order to confirm truths or generate hypotheses through 

inductive reasoning (Tukey 1977). The standards and principles of this framework will be 

adhered to during the user interface development stage. 

 

2.1.3 Knowledge Discovery in Databases (KDD) 
 

Traditional approaches to data analytics for extracting knowledge and insights have not scaled 

in order to match the complexity and quantity of the data that is generated from satellites, 

smartphones, UAVs, and the wide variety of other sensors available. Knowledge discovery in 

databases (KDD) provides a procedural framework for deriving meaning from raw data through 

five main steps: selection, preprocessing, transformation, data mining, interpretation, and 

evaluation (Frawley et al. 1991; Ester et al. 1995; Fayyad et al. 1996). This framework 

represents the overall approach that this research utilizes to uncovered nuanced trends and 

relationships within a multitemporal layer stack of imagery data, it is illustrated in Figure 3. It is 

important to note that process is not linear, rather constantly refined through interaction and 

many iterations (Fayyad et al. 1996).

 
Figure 3. The KDD process (Fayyad et al. 1996) 
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2.2 Computational Approaches 
 

Dimensionality reduction provides an array of holistic approaches to analyzing high-

dimensional data. It includes a variety of techniques such as principal components analysis 

(PCA), multidimensional scaling (MDS), isomaps, topic modeling, and machine learning neural 

networks like self-organizing maps (Pearson 1901; Torgerson 1952; Tenenbaum, de Silva, & 

Langford 2000; Papadimitriou et al. 1998; Kohonen 1982). These are also commonly used in 

remote sensing, for classification of hyperspectral imagery. These different techniques’ ability 

to analyze high-dimensional data provide one set of approaches for visualizing the six tri-space 

perspectives.   

 

2.2.1 Self-Organizing Maps (SOMs) 
 

Self-organizing maps (Figure 4) can automatically process, organize, and visualize multivariate 

data across an abstract space where proximity and distance are metrics of similarity across n-

dimensions, as opposed to geographic space (Kohonen 1982). Samples of the dataset are used 

to generate the structure of the neural network; this refers to the training or machine learning 

process (Kohonen 1990). One primary assumption of these methods is that human 

interpretation is required either prior to SOM-use (supervised) or after (unsupervised) in order 

to extract insights, so in-depth knowledge of the data and subject of interest is critical. 

Software libraries which simplify usage procedures can generate an atmosphere of uncertainty 

and skepticism surrounding these methods and their results. Familiar approaches to geography, 

like labeling, need to be considered carefully as they may not be appropriate to data in these 

high-dimension spaces. While SOM techniques have been used with imagery data, they are 

traditionally used for unsupervised classification of cell clusters in a single image (Zhong et al. 

2006). This study will perform classification across all images in the time series. SOMs provide a 

means of displaying all six tri-space perspectives simultaneously, which yields a unique series of 

visualizations displaying the imagery cells moving through hyperspectral space. They are most 

useful when trying to organize and visualize a large number of input vectors if a sparse number 

of input vectors are encountered a different DR technique such as multidimensional scaling 

(MDS) may be preferable. 

 

 
Figure 4. SOM structure (Kurasova & Molyte 2011) 
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2.2.2 Multidimensional Scaling (MDS) 
 

Multidimensional scaling is a nonlinear DR technique that has optimal conditions for visualizing 

n-dimensional data (Torgerson 1952). If there are a relatively small number of input vectors, 

e.g. ten or twenty input vectors instead of thousands, the resultant visualization is more 

interpretable than a SOM. Comparisons can be observed by the proximity of similar to a scatter 

plot, it operates similarly to a scatter plot, as when only dealing with two dimensions it behaves 

in the exact same way. Objects are placed in the resultant 2-D space relate to the similarity 

between all dimensions of attribute data (Torgerson 1952). Figure 2 demonstrates how 

different techniques might be best used to visualize the different tri-space perspectives. 

Instead of all six outputs displaying SOMs, the bottom-left and bottom-right panes which 

contain a sparse number of input vectors utilize MDS. While MDS and SOMs both rely on 

topology to visualize comparisons, sometimes it is useful to look at the plotted data something 

that is easily implemented for n-dimensional data with a parallel coordinate plot. 

 

2.2.3 Parallel Coordinate Plots 
 

Parallel coordinate plots provide the capability to generate a two-dimensional visualization of 

complex multivariate data that could prove useful as an auxiliary perspective for exploring 

imagery data (Inselberg 1985; 1998). Spectral signature analysis within the domain of remote 

sensing commonly applies a similar strategy of visualization to show reflectance or digital 

number value signatures across axes that represent continuous hyperspectral and multispectral 

bands within the data. Conversely, parallel coordinate plots involve distinct variables that are 

plotted across the x-axis in a parallel fashion (Inselberg 1985). It permits one to observe vector 

values across many wavelengths or other variables that associated with each cell or cell region 

(Figure 5). Implementing this technique with interactive selection is an important step towards 

amplifying cognition when a user is exploring both pixels and neurons within the attribute 

space by acting as an auxiliary visual for interpreting and contextualizing the resultant tri-space 

perspectives. 

 
Figure 5. Parallel coordinate plot with four dimensions (Siirtola & Räihä 2006) 

 

2.2.3 K-Means Clustering 
 

Clustering techniques provide a means to enhance the user’s ability to interpret the SOM and 

MDS outputs. Because the two-dimensional outputs are actually showing topological 

relationships across high-dimensional space, clustering supports cognition by creating 

boundaries and classes within these spaces. K-Means clustering is a popular algorithm that is 
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commonly used for performing clustering on geographic data. Because SOMs and MDS outputs 

are topologic structures, k-means can be applied to its symbology to find non-obvious 

groupings of input vectors or neurons. The SOMatic Viewer implementation of the K-Means 

algorithm is used in this project, as it relies on many of the class definitions that already exist in 

the rest of SOMatic (Rainer 2013). This will be used to find clusters and perform classification 

on the neurons in the SOMs. 

 

2.3 Integrating Methods 
 

Software libraries reflect the majority of developments in recent years for SOM, MDS, and 

parallel coordinate plot usage and visualization as they provide a means for distribution and 

access to these approaches for researchers. There are many iterations and implementations of 

libraries that utilize SOM visualizations, but only the relevant ones to this project are discussed. 

The first SOM library, SOM_PAK, was originally developed through collective efforts from 

Kohonen (the original conceptualizer of SOM) and the Helsinki University of Technology. It is 

now a public-domain library that contributes the basis for most if not all future iterations. A 

modernized software library, SOMatic, has been developed through collaborative efforts 

between San Diego State University and Carinthia University of Applied Sciences (Rainer 2013; 

Spöcklberger 2013; Thompson 2017; Kowatsch 2017). It is a Java library that has been designed 

for a specialized tri-space approach to multi-perspective data visualizations. This project utilizes 

SOMatic for generating SOM visualizations, as it has been improved to handle the capability of 

generating the six simultaneous visualizations. Finally, a tri-space library has been created to 

handle the different transformations of data into the different tri-space perspectives. Input 

data can be in any perspective and the library outputs the data transformed into the other five 

perspectives. The Space-Time-Attribute Analysis tool created by Diansheng et al. served as an 

example of how one might achieve the integration of these different approaches into a single 

interface (2006). Parcoords.js is a JavaScript library that effectively implements a parallel 

coordinate plot with embedded features such as axis querying and subsetting. 
 

 

3 Study Area 

 

This project focuses on a very small subset of San Diego County, the master-planned 

community known as San Elijo Hills (Figure 6). This subset was selected for this project for a 

variety of reasons, which all seek to reduce the complexity of the input data for the initial 

proof-of-concept developed throughout this project. This contiguous region has experienced a 

great deal of change during the three captured time periods – 1993, 2003, and 2013. For 

software development purposes, a limited number of pixel objects was desired, the San Elijo 

Hills municipal area is comprised of 1,235 pixels which make for an adequate starting point in 

regards to the computational resources required to process and interact with the data.  
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Figure 6. San Elijo Hills, San Diego study area 

 

 

4 Research Questions 

 

This research aims to develop a web-based platform that can perform the processing, 

distribution, and visualization of imagery data in accordance with the tri-space framework. Two 

main research questions are pursued in the course of this project. 

 

5.1 How can the tri-space framework be extended into the imagery analysis domain? 

 

Answering this question relates to the workflow schema that must be designed which takes 

input image data and converts it into all the other tri-space perspectives. To build a reusable, 

generalizable platform, this process must be highly automated and conscious of computational 

resources. Finding a balanced level of parallelization in regards to processing time and 

performance will be investigated. Other considerations towards the user-interface design are 

required to answer the interactive visualization component of the platform. Finally, the 

capability to project different classification schemes onto trained SOMs create insightful 

overlays which show pixel trajectories through classifier boundaries has been integrated. This 

describes how the frameworks and methods are all implemented. 

 

5.2 What insights can be derived from imagery analysis utilizing tri-space? 

 

This question seeks to answer the substantive components of the research. A look into what 

insights can be extracted from each of the tri-space perspectives is performed. This explores 

how the spatial and temporal resolution characteristics of imagery data impact the platform. 

Also, discovering how do different tri-space normalizations can impact results. 
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5.3 How can implementing tri-space into a web-based platform be accomplished? 

 

One goal was to determine what geographic scales this approach could be reasonably applied. 

This was something encountered in different stages of the methodology workflow, some 

reducing the scales of analytics. This describes what issues are resolved through deploying 

technological solutions and data subsetting. 
 

 

5 Data 
 

The approach taken in this project has attempted to keep all workflows, procedures, and 

subroutines as generalizable as possible. While the technology has not been fully developed by 

the end of this project, most processes but the selection/naming of input data and the 

generation of the leaflet layers objects in the proof-of-concept’s interface have been 

implemented.   

 

5.1 Platforms and Sensors 
 

Imagery data is generated by a wide variety of platforms and sensors that are utilized to 

accomplish different kinds of goals. Common platforms include satellites, airplanes, UAVs, 

handheld, or even fixed structural locations. For implementation and testing, Landsat satellite 

platforms and their data products were primarily used as a functional and standardized data 

source.  

 

Landsat 8 contains eight visible bands, a panchromatic band, and two thermal bands. Landsat 7 

contains six visible bands, a panchromatic band, and one thermal band. USGS provides Landsat 

data in three kinds of forms: raw data, top-of-atmosphere reflectance, and surface reflectance. 

In the context of this project’s goals to detect land cover change, the surface reflectance option 

was utilized as this set of visible light bands are corrected to remove the interference from 

atmospheric irradiance while providing additional spectral indices. These outputs are composed 

of these bands, of which have different spatial resolutions: 15m2 for the panchromatic channel, 

100m2 for the thermal bands (resampled to 30m2), and the rest are 30m2. 

 

UAVs and their sensors do not adhere to any enforceable standards other than weight 

limitations. These are traditionally equipped with any kind of sensor from a standard RGB 

digital camera to that of a hyperspectral sensor for precision agriculture (CITATION). These are 

increasingly becoming the preferred way to capture high-resolution imagery in a quick 

deployment fashion. This translates to them having high temporal resolution, as repeat flights 

can be taken within the same day, hour, or minutes depending on the number of platforms, 

power usage, and the size of the study area. 
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5.2 Standards and Considerations 
 

It is important that all input data for analysis by this tool utilizes the same geographic extent 

and pixel size – spatial resolution. In order to create unique objects from the pixels in the L_AT, 

LT_A, and LA_T perspectives, a pixel must be consistent in the geographic space it corresponds 

to across all time slices. Ideally, the images should be registered to each other meaning they are 

geometrically rectified. 

 

Another important consideration is the spectral and radiometric resolution of the sensors that 

generate the input data. This project’s approach to analysis should come from data sets that 

utilize consistent sensors, at the same time of day, the same day of the year if performing an 

annual study, and preferably with the same amount of cloud cover and radiation within the 

atmosphere. This limits much of the variation that can influence the detection of change within 

a pixel across all of its bands. This means that even the difference between using Landsat 7 and 

Landsat 8 data in the same model would influence results, as their band designations actually 

cover different ranges within the electromagnetic spectrum. Similarly, the radiometric 

resolutions relate to the depth of the data that a sensor can capture. Using sensors that have 

different radiometric depths, makes their data incompatible with each other unless the more 

detailed data is scaled down to the lower resolution data, but this can also influence results. 

 

5.3 Formats 
 

Imagery data comes in in a wide variety of formats. But one of the most common formats that 

both satellite and UAV data come in is that of Geographic Tagged Image File Format (GeoTIFF). 

There are also formats like Network Common Data Form (NetCDF) and or Hierarchical Data 

Format (HDF) that are suited for multitemporal datasets. Because the open source GDAL library 

package can natively process GeoTIFF files, and its widespread use as a standard format for 

both satellite and UAV output data, it was chosen as the primary input data for the 

implemented workflows. 

 

Another data standard utilized is that of Geographic JavaScript Object Notation (GeoJSON). This 

allows for Leaflet to act as the primary library that enables interactive, scalable visualization. It 

is important to note here that this also enforces the use of the Web Mercator projection, as this 

the default and standard projection used in web mapping applications. It enables the vector 

layers to be created in leaflet as points, polygons, and lines. 

 

This study also looked at various options for improving the performance of the standard 

GeoJSON vector layers. Two potential solutions found include VectorGrid, a Leaflet plugin, and 

TopoJSON, a topology-enabled variant of GeoJSON. The VectorGrid converts a GeoJSON file into 

a vector tiles format, which is very similar to raster tiles in that it enables scalable detail which 

depends on the current extent. TopoJSON takes a different approach as it reduces redundancy 
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by storing related geometry only once, which makes it seem like a very appealing solution for 

this project since all vector layers are either neurons in a hexagonal lattice or pixel extents in a 

rectangular grid. However, Leaflet extensions that utilize TopoJSON cannot visualize it natively, 

rather they convert a TopoJSON file into a GeoJSON file in the browser, and therefore the 

reduced encoding is not actually utilized. Although explored, neither were successfully 

implemented in the proof-of-concept, but these technologies offer an alternative solution to 

achieving improved performance and a reduction in the computational workload in the 

browser.  

 

5.4 Naming Convention 
 

This project utilizes a file naming convention for the original input image data that is used 

throughout the preprocessing and data mining procedures. This naming convention persists 

even in the proof-of-concept user interface (UI). The proof-of-concept only focuses on a dataset 

with relatively coarse temporal resolution, three time slices with a ten-year interval. This is 

reflected in the current implementation, but this section includes the current naming 

convention and the conceptualization for a more generalizable naming convention. The current 

implementation utilizes the following naming convention: Year_Location.tif. This is displayed in 

Figure 7.  

 

 
Figure 7. Input data naming convention 

 

This convention does not capture the higher temporal resolution aspects of data, this is 

something that must be addressed since this project would like to include UAV data sources in 

the next stage of its development. One consideration was to utilize the Landsat naming 

convention; however, this again only captures the year and the day, something that would not 

be applicable to hourly or more frequent UAV data collections. The naming convention settled 

upon would be to use the following convention: Year.Month.Day.Hour.Minute_Location.tif. This 

would allow input data to capture intervals as low as a minute or can use intervals of years. 

Users are not required to populate all temporal regions, i.e. 2003_SanElijo.tif would still be a 

valid file name, as a tokenization split based off the ‘.’ and ‘_’ characters would only yield the 

year and location. If higher temporal attributes were provided, they would be captured in the 

tokenization and utilized.  
 

 

6 Methodology 

 

This section describes the project’s methodological approach to development and 

implementation of the conceptual frameworks and computational approaches described in the 
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literature review. The overall workflow presented utilizes the KDD framework as a logical 

procedure for knowledge discovery from multitemporal trends in imagery data. The input data 

used for this process was subsetted throughout the entire process, as the initial goal of almost 

an entire Landsat scene was too ambitious relative to computational resources. 

 

6.1 Data Selection 
 

The first step in the KDD framework is to perform a selection from the datasets that are 

available to the user. For this project, it relates to the selection criteria of Landsat 8 scene 

acquisition of the majority of San Diego County. Landsat satellites have a temporal resolution of 

sixteen days but are consistent with the time of day of their acquisitions.  The Landsat 5 dataset 

used for the visualization in the proof-of-concept were all from April in the three separate years 

1992, 2003, 2013. 

 

6.1.1 Hydrologic Year 
 

The Landsat 8 dataset used in the development of this project, adhered to the concept of a 

hydrologic year to capture temporal trends within the study area. A hydrologic year which 

begins on October 1st and ends September 30th is utilized in hydrology to measure changes in 

precipitation and vegetation. This was the basis for anniversary dates in the resultant multi-year 

dataset. The Landsat 8 dataset utilizes the following four dates as target anniversary dates for 

the entire dataset: October 1st, January 1st, April 1st, and July 1st. It begins with July 1st, 2013 and 

continues up until July 1st, 2017 as of the most recent data acquisition at the time of this project 

report. Obviously with the sixteen-day temporal resolution landing exactly on these dates over 

four years it not always possible, especially when considering uncontrollable interferences and 

obscurities such as cloud cover. Because this analysis tries to identify trends in the macro-

temporal cycles across the dataset, there is a need to fix the micro-temporal cycles in an 

attempt to make anniversary dates actually line up. This concept is visited in section 6.2.2. 

 

6.2 Data Preprocessing 
 

The next step after selecting the data is to prepare it. There are many considerations one must 

make at this juncture. This section covers some of the assumptions and preprocessing 

procedures that the input data must be subjected to first before it can be transformed and 

processed with machine learning. Some of these processes may not be necessary or even 

possible with UAV data, but this project still includes them as Landsat datasets are a frequent 

source of data for researchers in many fields like geography, environmental science, and urban 

studies. This part still utilized both the Landsat 8 and 5 datasets. 

 

6.2.1 Image Registration 
 

Image registration, as previously mentioned in section 5.2, is essential for all of the input data 

for this process to work. First, there must be the same number of cells in all input images. 

Second, all cells must be of the same spatial resolution and cover the same geographic extent. 
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If this is not the case, then one must use resampling and georectification tools to generate a 

clean registration between all input images in the dataset. This is not an issue for Landsat 

datasets as all the images come pre-registered and always occupy the same geographic extents 

with the same spatial resolution. This is more of an issue when using UAV datasets for the tri-

space approach. This must be considered and dealt with in a manual fashion as automation of 

this step is not within the scope of this project. 

 

6.2.2 Image Interpolation 
 

In order to achieve anniversary dates for the Landsat 8 dataset, an image interpolation 

technique was implemented. Linear interpolation was achieved using the following equation:  

 

𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑦𝑝𝑟𝑒 +  
(𝑥𝑡𝑎𝑟𝑔𝑒𝑡 −  𝑥𝑝𝑟𝑒)(𝑦𝑝𝑜𝑠𝑡 − 𝑦𝑝𝑟𝑒)

(𝑥𝑝𝑜𝑠𝑡 −  𝑥𝑝𝑟𝑒)
 

 

The x values refer to the number of days across the images with x2 being the target date, and 

the y values would correspond to the array of reflectance values. Therefore, the set of values 

represented by y2 would reside somewhere in between the y1 and y3 values. This serves two 

main purposes: 

 

1. To minimize the micro-temporal cycles in the dataset to achieve anniversary dates. 

2. To remove/reduce the influence of cloud cover in the images. 

 

While the implementation of this technique was not necessary for the dataset used in the 

proof-of-concept, it was an important step to incorporate into the preprocessing workflow to 

manage future research involving data from Landsat or other satellite platforms. As completely 

clean full-scene Landsat data is uncommon, this approach was made scalable in that it can 

utilize an array of scenes both prior and after the target date for interpolation. So, scenes 

closest to the target date are utilized first, then if clouds are detected in either scene it iterates 

to the next or previous scene that is not obscured by cloud cover for that pixel and readjusts 

the equation parameters with the appropriate separation in days (Figure 8). 
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Figure 8. Image interpolation routine 

 

6.2.3 Image Subsetting 
 

Subsetting is a useful strategy when trying to reduce the volume of the data being analyzed. 

This step was utilized both in the Landsat 8 dataset, as well as in the Landsat 5 (proof-of-

concept) dataset. For the full San Diego county study, all of the target images were subsetted 

to only include mainland San Diego, as well as have the eastern border equivalent to the 

smallest extent of all images. Because the focus of this study is to detect land cover change, 

including the huge number of pixels in the Pacific Ocean was deemed unnecessary and was 

excluded from the final Landsat 8 dataset. Similarly, in the San Elijo dataset only the pixels that 

were found within the municipal boundary were included in the analysis (Figure 9). 

 

 
Figure 9. San Elijo boundary subset from Landsat 
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6.2.4 Band Selection 
 

As discussed in section 5.1 there are many different bands available for use with the Landsat 8 

platform. For the Landsat 8 dataset, the following bands were used in preprocessing: surface 

reflectance bands 1-7, band 9, and band 10. Band 8 was not utilized as it represents the 

panchromatic part of the spectrum, therefore it would be redundant to include. Band 11 was 

not included because of USGS recommendations in the Landsat 8 documentation which states 

that it is more susceptible to contamination from the atmosphere than Band 10. The spectral 

indices such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), 

and others were considered, but it was determined with consultation with project advisors that 

solely focusing on the data that captures only the electromagnetic spectrum would be utilized. 

The San Elijo dataset also utilizes surface reflectance bands, specifically bands 1-5, and band 7. 

Band selection has been implemented as a parameter in the preprocessing software, so this 

parameter can be manipulated to include or exclude certain bands based on what is important 

to each study conducted. 

 

6.3 Data Transformation 
 

The next step after preparing the data through preprocessing is to transform it into a tabular 

format that can be analyzed through machine learning. The data must also be transformed into 

a format that it can be easily visualized in. This project utilizes Leaflet for the primary means of 

visualization, so these include converting images into raster tiles and GeoJSON formats for 

vector data. This is where an initial issue with the feasibility of geographic scales was 

encountered, the Trispace.jar library cannot handle large (1M+) tabular datasets. So only the 

Landsat 5 data was utilized after section 6.3.1. A subset of Bataquitos Lagoon and San Elijo 

containing 90,955 and 1,235 pixels respectively. 

 

6.3.1 GeoTIFF(s) to CSV Conversion 
 

The first input data in the processing workflow comes as GeoTIFF files. These must adhere to 

the naming convention described previously in section 5.3. In order to first prepare the data for 

its usage in SOMatic, it must be converted into a tabular data structure, then it can be 

transformed into all the Tri-Space perspectives. The GDAL function gdal2xyz is used to 

accomplish the conversion from a GeoTIFF image file into a CSV file. Each pixel in the GeoTIFF 

becomes a row in the CSV and its columns contain the pixel centroid and all of the values 

associated with each band. This procedure then parses through this CSV and removes the rows 

that do not contain data, as these do not provide any meaning when used to create the SOM. 

The final step is to merge all of the resulting CSV files into a single file (Figure 10).  
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Figure 10. GeoTIFF to CSV conversion workflow 
 

Each row in the table represents a pixel and the columns now reflect all band data across all 

time slices. This is the initial Tri-Space perspective that the data represents, L_AT. Each object in 

the table is a locus or a cell, and each of its attributes is related to a combination of a particular 

band and at a specific time. 

 
6.3.2 Tri-Space Conversion 
 

Once the data has been converted into one of the tri-space perspectives, it is then converted to 

the remaining five perspectives (Figure 11). Each of these perspectives hold the same data, but 

in different structures, as explained in section 2.1.1. These result in a number of different 

objects, which are all compared and analyzed with SOMatic. The current version of the 

Trispace.jar library expects the input perspective to be L_AT, it also cannot operate on datasets 

that have over one million records. 

 
Figure 11. Trispace.jar converts between perspectives initialized with L_AT 
 

This conversion does not perform any normalization, so performing a normalization for each 

perspective must occur. Using the raw numbers as inputs in SOMatic does not yield meaningful 

results. This study encountered two primary ways to implement this procedure, the first is the 

processing approach where an entire tabular dataset is loaded into memory with Processing’s 

Table class, then calls are made to each row in memory and they are transformed to a different 

perspective, this is how the software is currently implemented. The second approach 
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considered for this process is utilizing the more traditional Java approach of line-by-line reading 

and writing. While the current implementation works well for a subset of the data, the Java 

approach is better suited for large datasets as not all entities are stored in memory, rather they 

are written to a file. The trispace.jar library also converts the perspectives into a normal tabular 

format, as well as a .DAT file that is directly used as input to SOMatic. 

 

6.3.3 Tri-Space Normalization 
 

In order to produce meaningful comparisons in SOMatic normalization must first take place. 

Because there are six perspectives each with their own normalization, this results in a total of 

thirty-six combinations of normalizations and perspectives. The procedure in the data 

transformation workflow has been implemented and is illustrated in Figure 12.  

 

 
Figure 12. Six perspectives normalized each way result in 36 possible combinations 

 

The feature scaling normalization technique was used to normalize each perspective which 

results in data that scales as a decimal number between 0 and 1. It is represented by the 

following equation: 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛)
 

 

Normalization to a particular perspective focuses in on a particular characteristic of the data 

and helps magnify different kinds of trends within the data (Figure 13). Part of this research is 

to explore what effect these different normalizations have when analyzing imagery data.  
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Figure 13. Different normalization highlights different trends in the data (Thompson 2017) 
 

6.3.4 GeoTIFF to Leaflet Formats 
 

Leaflet provides the means to visualize the imagery on a geographic map. But Leaflet cannot 

directly utilize GeoTIFFs, rather it can utilize raster tiles or image overlays. The first format, 

raster tiles, preserve the geographic coordinates of the imagery, meaning one can easily change 

between different basemaps and have context that is typically provided with all web mapping 

applications. A potential drawback of this format is that it typically requires larger storage 

space, especially as the number of scenes and band combinations is increased. Raster tiles also 

require a conversion, this can be achieved both through GDAL with the gdal2tiles function or 

with a software called TileMill which is a two-step process to get the resultant raster tiles. A 

raster tile is a hierarchical folder structure that relates to each zoom level and exponentially 

increases in file size as the zoom levels are increased. The image overlay format is more 

efficient to store, but it does not have geographic coordinates so it cannot be easily switched 

out with other basemaps ending up with less context. It also has some performance benefits, as 

it does not have to load in multiple files; it can zoom and scale a single image file as opposed to 

switching between them for different zoom levels. 

 
6.3.5 GeoJSON 
 

GeoJSON is utilized to display vector layers in Leaflet. Vector objects are used in all seven of the 

Leaflet panes, six of them for the tri-space perspectives and one for the geographic map. These 

objects are used to enable interactivity with the user, it allows for the selection of objects 

which also select corresponding objects in the other perspectives. The imagery data must be 

converted to a GeoJSON to allow for the user to select a pixel in the image, otherwise, Leaflet 

does not allow for direct interaction with a raster tile. This is accomplished by processing the 
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data in ArcMap and using the Fishnet tool to generate a vector surface that corresponds to the 

pixels in the scene (Figure 14). The SOMs in the tri-space perspectives utilize GeoJSON for 

visualization in Leaflet. A useful output of SOMatic allows for direct transformation into a 

GeoJSON format of the SOM (Kowatsch 2017). 

 

 
Figure 14. Deriving GeoJSON extents from a GeoTIFF 

 

 

6.4 Data Mining 
 

Data mining presents the most computationally complex part of the KDD workflow. For this 

project, it involves using machine learning and dimensionality reduction techniques to develop 

SOMs. These are further explored by performing k-means cluster analysis on them to derive 

more meaning. This section describes this process. 

 
6.4.1 SOMatic 
 

Section 3.3.3 describes what the input data to SOMatic looks like. At this stage, the original 

input imagery and transformed it into thirty-six unique tables which correspond to each tri-

space normalization times each tri-space perspective. The main parameters that must be 
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considered for implementation relate to the size of the SOM, the size of the neighborhood, the 

number of cores for parallelization, and the similarity measure.  
 

SOMatic outputs a .COD file as well as a .SPRJ file that contains the data about the input 

parameters, the neurons and the SOM itself. Enhancements to SOMatic, have also enabled the 

direct output of GeoJSON files so they can be easily visualized in Quantum GIS (QGIS) or Leaflet 

as this project uses (Kowatsch 2017). 

 

Another previous project that is the first attempt at a tri-space enabled analytical tool is that of 

SOMGrid (Thompson 2017). Some functionality from this project was utilized to handle the 

finding of the best matching unit (BMU) for each of the input vectors. The input vector to BMU 

(one to one) matching is saved in a tabular format, as part of enabling interactivity in the proof-

of-concept. Conversely, the BMU to input vector table (one to many) was also saved in a similar 

fashion to also push the interactive capability of the prototype. 

 

6.4.2 K-Means Clustering 
 

In this same workflow, a subroutine was implemented that performs k-means clustering on all 

of the generated SOMs. This functionality is originally developed in the SOMatic Viewer but has 

a modified parameter for k (Rainer 2013). Instead of performing solely the calculation for a k 

number of classes, it iteratively decrements from a user-chosen parameter for k to k = 2. It 

stores all this information in additional columns in the BMU table. Additionally, the sum of 

squared errors (SSE) table is stored separately to allow for visualization of this metric to while 

the user is selecting an appropriate number for k. It is important to use the same similarity 

measure parameter as was used for the generation of the SOM, which in the case of the proof-

of-concept was Euclidean distance. 

 

6.5 Data Interpretation 
 

This is the final step in the KDD framework, it enables an analyst to interpret the results from 

the data mining computations. Visualization is a catalyst of successfully providing the means for 

interpretation. While statistics and machine learning quality metrics are also useful for 

extracting insights, they can also be visualized which makes their understanding more intuitive 

and comparable. This section discusses visualization techniques and how interactivity can drive 

more meaningful ways of interpretation through the EDA framework. 

 

6.5.1 Data Visualization 
 

As mentioned in previous sections, Leaflet is the primary tool used to deploy the geographic 

map and all of the tri-space perspectives in the UI. This allows for scalable extents with 

zooming, panning, and selection functionality already built-in. Here only the San Elijo Landsat 5 

scenes of 1993, 2003, and 2013 were used as a feasible data source. 
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The geographic map contains the imagery in raster tile or image overlay formats, in addition to 

the underlying vector representations of each pixel that enable interactivity. Deciding what 

bands to include on a particular image depends on storage space and level of detail the analyst 

expects while pursuing analysis. In the case of the proof-of-concept, eight images were made 

available: true color, false color, and panchromatic single-band images for all six bands. The 

ability to incorporate custom band combinations would be ideal, but this can end up too 

computationally expensive as the number of possible images would then be 63, or 216 potential 

combinations. For this reason, it was not pursued in the course of this project. 

 

Each of the tri-space perspectives utilized Leaflet as well for their display and to provide an 

interactive selection. This relies upon the GeoJSON export from SOMatic to visualize the SOMs. 

Leaflet makes it easy to symbolize each neuron according to either the number of input vectors 

mapped to it as well as the k-means class it corresponds to. Some of the sparser input vector 

sets may be better visualized with MDS but have only been implemented as SOMs for this 

project. Also, it easy to re-symbolize and change the underlying data depending on which 

normalization is selected. The underlying data is also provided in a table view, where it is 

possible to visualize both the input vector tables and the BMU tables. 

 

Also included in the visualization is a time slider, which allows for the manipulation of the data 

within geographic map while highlighting the appropriate selection in the temporal tri-space 

perspectives. Finally, a parallel coordinate plot acts as an auxiliary display to view either the 

pixels in the imagery or to observe the different input vector objects for each tri-space 

perspective. 

 

6.5.2 Interactivity 
 

Interactivity is one of the key elements to creating an EDA-enabled visualization environment 

(Tukey 1977). This section goes into detail on each element in the UI and what effect 

interactivity should have on other elements. 

 

The time slider is one of the most intuitive elements in the UI. Its interactivity directly 

manipulates which layers are available/displayed in the Leaflet geographic map. Another 

consideration is what should happen in the temporal-related tri-space perspectives. It certainly 

makes sense to highlight the appropriate neurons in T_LA because each neuron literally 

represents a particular time, but there is the case of when a neuron corresponds to more than 

a single time input vector which already throws some obscurity into the mix. There was also 

consideration towards if this should highlight neurons that correspond to that time in the AT_L 

and LT_A perspectives since each object in these perspectives directly relates to a particular 

time on the slider. 

 

The geographic map can be thought of the primary display element in the UI. It has a direct 

association with the L_AT, LT_A, and LA_T tri-space perspectives. Original conceptualization 
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envisioned that a two-way selection was the most logical method of implementation, but this 

also suffers from the same notion of pixels to neurons being a one to many relationship, where 

clicking one neuron may highlight multiple pixels, while one pixel only highlights a single 

neuron. Overcoming this obscurity with selection options may be the most intuitive way around 

this issue. Also, for the interaction with LT_A trajectories (the same pixel moving across all 

bands could be one option, or limiting it to whatever bands are currently visible in the 

geographic map makes sense. between them. 

 

In all of the tri-space perspectives, the first letter or two letters that come before the 

underscore indicate the object for that perspective. Each object actually represents an input 

vector which corresponds to a neuron in the SOM as a one-to-many relationship. It is important 

to understand this concept as the interactivity with each perspective is detailed. 

 

The first tri-space perspective refers to L_AT where each object relates to a pixel or cell in the 

imagery, and its attributes are all the bands at all time slices, which depend on the original 

input data. 
 

 

7 Results 
 

This section describes the result of the project which comes as a working proof-of-concept 

visualization application. Screenshots of the UI are included as well as a description of its 

functionality and analytical capability. While not all perspectives symbology and interactivity 

were implemented, L_AT was focused on to demonstrate how further development would 

make the other perspectives more interpretable.  

 

7.1 Proof-of-Concept 
 

The proof-of-concept yielded by this project is a visualization application that can be run locally 

or placed on a server to facilitate a distributed platform for analysis. While much of the project 

was focused on developing a standardized workflow for preprocessing and processing, the 

proof-of-concept only visualizes the results. In addition to simply being a desktop/web 

application, it also serves as an expansion of the framework for Tri-Space UI design as it has 

more analytical capabilities built into it than SOMGrid. Figure 15 shows the UI that has been 

designed over the past summer, which integrates geographic space and the six Tri-Space 

perspectives as Leaflet panels in addition to the parallel coordinate plot. From this initialized 

state one can see that only L_AT has been implemented with k-means clustering capability. The 

SOM perspectives utilize a tabbed CSS structure to contain tabular data and options. 

 

The UI provides an EDA-enabled environment for a user to interactively start to explore the data 

and find trends. The interactivity between the geographic map and the different perspectives 
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enhance a user’s cognition as they investigate individual or multiple pixels as well as clusters of 

neurons (Figure 16). 

 

 
Figure 15. Tri-Space Image Analysis UI 

 

 

7.1.2 Functionality and Capability 
 

The user is able to simultaneously display all six Tri-Space perspectives and can explore different 

kinds of patterns within the data through controls and options. The time slider provides a way to 

manipulate the temporal aspects of the UI, in the current implementation it solely affects which 

images are displayed on the geographic map. Another option includes which normalization one 

desires to investigate, this is currently a global operation – it changes all 6 SOMs and the parallel 

coordinate plot data into whatever normalization perspective is selected. 

 

  
Figure 16. Interacting with pixels and neurons 
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This will be stored in each Leaflet pane’s options window in future iterations. A tabular view of 

the data has also been implemented using the SlickGrid.js library (Figure 17). Another useful 

option is an adjuster for k in the k-means classes, users are provided with a graph of the sum of 

squared errors (SSE) and k that they can manipulate and change the SOM symbolization (Figure 

17). Figure 18 demonstrates the results of changing the value for k. 

 

 

  
Figure 17. Table view and k-means options 

 

 
Figure 18. False-color 1993 layer with k value of 2 

 

 

As mentioned in section 6.5.2 interaction has been implemented in various ways. Highlighting a 

pixel in the geographic map will highlight the corresponding neuron in L_AT and the trajectory in 

LT_A in a one-to-one relationship. Selecting a neuron in L_AT will highlight one or more pixels in 

the geographic map, and show all trajectories of selection in LT_A. Another interactive feature 

relates to the table of contents in the geographic map. Selecting a particular panchromatic band 

image will select the corresponding neuron in A_LT (Figure 19). 
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Figure 19. Selection of panchromatic band image 

 

 

7.1.2 Testing and Validation 
 

The section focuses on the validation of processing results and understanding performance. The 
following performance benchmarks are utilized to identify bottlenecks in the current version of 
the web application. The developer tools found in Google Chrome were utilized to generate 
Figure 20. One can see that outside of the initialization of the web application, normalization, 
and rescaling the Leaflet panes are the largest bottlenecks encountered in the proof-of-
concept. Normalization is the most substantial and potentially avoidable bottleneck as it 
determines the symbology of every SOM in all 6 Leaflet panes, as well as replaces all the data in 
the tables and parallel coordinate plot. This is something that should be addressed with off-
screen loading of states. The next largest bottleneck relates to panning and zooming of the 
high-density SOMs such as LT_A. Deploying a technology solution such as vector tiles may be 
the answer to improving this bottleneck.  
 

 

 
Figure 20. Google developer tools performance metrics 
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8 Conclusion, Limitations, and Future Work 

 

Although the resultant proof-of-concept of this project was not able to fully realize all of the 

project goals that will be further pursued in the course of the thesis work, it did serve as an 

important expansion of the Tri-Space framework in regards to developing an interactive EDA-

based web platform. It also yielded many important lessons that must be addressed in the future 

iterations of this project. Most issues that arose in the process of this study were associated with 

utilizing very large amounts of data in both the processing and visualization components. The 

proof-of-concept enables some analytical insights when looking for patterns within the San Elijo 

area in 1993, 2003, and 2013. One is able to link geographic space with the compressed attribute 

space visualized in L_AT. Also, one is able to visualize the trajectory for pixels across LT_A which 

facilitates exploring the temporal signatures of change of pixels. The current implementation 

permits one to observe the effects of using different normalizations and to overlay different 

granularities of k-means clustering onto the L_AT perspective. 

 

The current implementation is susceptible to many limitations, many of which are addressed in 

the following paragraph about future work. Limitations discussed here will appear in the same 

order as they did in the project workflow. The first limitation encountered related to how the 

TriSpace.jar library was implemented. Because it utilizes Processing’s native Table class, it stores 

an entire table into memory, this causes problems when utilizing very large datasets such as the 

entire Landsat 8 image of San Diego over 6 million pixels (Figure 21). This same issue was 

encountered when implementing the image interpolation procedure but was avoided by using 

the standard Java approach of BufferedReader and FileWriter classes, which continuously write 

data to file rather than hold it in memory. A solution that will avoid both of these procedures is 

to utilize a database to store these large quantities of data as they should neither be held in 

memory or in a local CSV file. 

 

 
Figure 21. Console print out when surpassing the Table limit (1,000,000) 
 

The next limitation occurred in the SOM processing routine, where the all-zero vector was 

encountered. Cosine similarity is a more robust metric, however, testing encountered an error 

related to an “all-zero vector” that occurs in some of the normalization/perspective 

combinations (Figure 22). These result in a division by zero undefined error, something that 

must be addressed in an improved version of SOMatic’s cosine similarity functionality, which 

when encountering a division by zero will convert the zero into a very low value such as 

0.00001. This project avoided this issue by using Euclidean distance for the similarity measure 

parameter.  
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Figure 22. Table of normalization/perspective combinations containing all-zero vectors 

 

The next limitation is related to performance in the proof-of-concept when displaying a large 

vector layer in Leaflet. This was eluded to in section 5.3, as other more efficient formats were 

investigated. TopoJSON for reasons described earlier, cannot actually be utilized by Leaflet as of 

version 1.2.0, rather it converts the format back into GeoJSON in the browser, which increases 

the computational workload instead of reducing it. VectorGrid does actually provide a potential 

solution to this issue, but the scaling parameter when outputting the SOM GeoJSON was not 

explored in totality. The primary issue faced when using VectorGrid was that the neurons were 

subjected to the Web Mercator projection’s distortion in high latitudes. This can be overcome by 

adjusting the scaling factor in SOMatic to a much lower value so that this distortion does not 

occur.  

 

This project will be continued in the form of a master’s thesis which will be completed in May 

2018. Here many of the limitations will be revisited, solutions will be re-implemented, and 

unexplored goals will be realized. First, overcoming the limitations encountered in the 

preprocessing and visualization components should be addressed. This includes utilizing a 

database for storage instead of local CSV tables, modifying the cosine similarity measure within 

SOMatic, and utilizing a more efficient means to interact with vector data in Leaflet. These 

changes should enable to proof-of-concept to be able to utilize much larger datasets, such as an 

entire Landsat 8 scene. This will facilitate more meaningful analysis and permit validation by 

comparison to other Landsat studies. Using UAV data sources would likely result in more 

challenges but would yield interesting results on how Tri-Space can detect change and trends in 

much higher spatial resolution data. Another important step will be to incorporate the use of 

MDS vector layers as an alternative to SOMs for the sparse input vectors. A SOM is not the 

appropriate means of visualization when there are a relatively small number of input vectors. 

Deploying an application server that handles input/inference of imagery data would be another 

useful endeavor. This way one could submit appropriately named GeoTIFF files and could use 

REST calls to retrieve inference results without directly interacting with a database. Finally, the 

UI design should be revisited and re-implemented. A high-level web development framework 

such as Angular will allow for modular development and should increase performance through 

CSS optimization and data streaming.  
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