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Abstra
t

My work during the resear
h period aims at proposing a novel framework for

design spa
e exploration and dynami
 management poli
y optimization of ad-

aptive embedded signal pro
essing systems. In the framework, Markov de
ision

pro
esses (MDPs) are applied in a hierar
hi
al way to enable autonomous ad-

aptation of embedded signal pro
essing under multidimensional 
onstraints and

optimization obje
tives. Thus, we name the proposed framework Hierar
hi
al

MDP framework for Compa
t System-level Modeling (HMCSM). The appli
a-

tions are implemented using data�ow modeling te
hniques. The framework in-

tegrates automated, MDP-based generation of optimal re
on�guration poli
ies,

data�ow-based appli
ation modeling, and implementation of embedded 
ontrol

software that 
arries out the generated re
on�guration poli
ies. HMCSM sys-

temati
ally de
omposes a 
omplex, monolithi
 MDP into a set of separate MDPs

that are 
onne
ted hierar
hi
ally, and that operate more e�
iently through su
h

a modularized stru
ture.

The e�e
tiveness of our proposed MDP-based system design framework was

demonstrated through an adaptive wireless 
ommuni
ation appli
ation: a digital

predistortion (DPD) system, whi
h bene�ts from an implementation that 
an

dynami
ally generate optimal 
ontrol poli
ies and re
on�gure itself a

ording

to the generated poli
ies. Additionally, new features were added to the 
ur-

rent LIghtweight Data�ow Environment with the Verilog language (LIDE-V)

to improve the power e�
ien
y of data�ow-based hardware design and support

e�
ient hardware a

eleration of the targeted DPD system in this work.
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1 Introdu
tion

Modern signal pro
essing appli
ations impose in
reasing demands of adaptivity,

�exibility and re
on�gurability. The systems also have more and more 
omplex

design spa
es that are 
omposed of multidimensional design parameters. This

trend presents 
hallenges at many levels of system design, implementation and

optimization. On one hand, adaptive signal pro
essing systems must adjust to

dynami
ally-
hanging environmental 
onditions, system status or user require-

ments; on the other hand, the systems must often satisfy stringent 
onstraints

on energy-e�
ien
y and real-time performan
e.

In wireless 
ommuni
ation systems, high-power transmitters su�er from non-

linearities due to power ampli�er (PA) 
hara
teristi
s, I/Q imbalan
e, and lo
al

os
illator (LO) leakage. Digital Predistortion (DPD) is an e�e
tive te
hnique

to 
ountera
t these impairments. To help maximize agility in 
ognitive radio

systems, it is important to investigate dynami
ally re
on�gurable DPD systems

that are adaptive to 
hanges in the employed modulation s
hemes and opera-

tional 
onstraints. To help maximize e�e
tiveness, su
h re
on�guration should

be performed based on multidimensional operational 
riteria. With this mo-

tivation, during the resear
h period, I developed a novel framework, named

Hierar
hi
al MDP framework for Compa
t System-level Modeling (HMCSM),

for the design spa
e exploration and dynami
 re
on�guration poli
y optimiza-

tion of signal pro
essing systems, and I demonstrated the appli
ation of this

framework through the design of a re
on�gurable DPD appli
ation.

Data�ow provides a formal me
hanism for expressing the fun
tionality of

digital signal pro
essing (DSP) appli
ations, and fa
ilitates exploration of sys-

tem optimization methods to a
hieve e�
ient implementations (e.g., see [1℄).

Data�ow models of 
omputation are widely used for design and implementation

of DSP systems. These appli
ations require a wide variety of platforms and

design tools and impose di�erent kinds of 
onstraints on system performan
e.

Data�ow, as an important form of model-based design, is e�e
tive in terms of

retargetability of design pro
esses a
ross di�erent platforms. To demonstrate

the proposed design methodology and experiment with alternative DPD ar
hi-

te
tures, we apply data�ow modeling te
hniques and asso
iated libraries and

tools to the design and implementation of DPD systems.

Our work on DPD design spa
e exploration and dynami
 re
on�guration

poli
y optimization builds on our previous work on multiobje
tive optimization

methods for digital signal pro
essing systems [2℄. In this previous work, evolu-

tionary algorithms are adapted a

ording to design spe
i�
ations and applied to

sear
h the multidimensional system design spa
e for a set of Pareto-optimized


on�gurations. Some of the optimized 
on�gurations in the obtained set are

then sele
ted and extra
ted. This subset of sele
ted 
on�gurations provides the


olle
tion of system modes that will be integrated into the targeted implement-

ation. The set of operating modes provided in the sele
ted 
on�guration set is

made available during operation su
h that system trade-o�s 
an be re
on�gured

among based on stati
ally or dynami
ally generated 
ontrol poli
ies.

Given a set of extra
ted Pareto-optimized system modes (
on�gurations),

the HMCSM framework applies Markov de
ision pro
esses (MDPs) to generate

poli
ies that 
ontrol the swit
hing among these modes under multidimensional


onstraints and optimization obje
tives. MDPs have been used in many appli
a-

tion areas as a foundation for dynami
 determination of system 
on�gurations in
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sto
hasti
 environments. Representative areas in
lude arti�
ial intelligen
e [3℄,

mobile systems [4℄, and wireless sensor networks [5℄.

Various methods have been developed to improve the pra
ti
al utility of

MDPs in 
omplex design problems involving dynami
ally adaptive systems. For

example, Boutilier et al. propose fa
tored MDPs as a method for 
ompa
t rep-

resentation of large, stru
tured MDPs [6℄. Benini et al. introdu
e a �nite-state,

abstra
t system model for power-managed systems [7℄. In their approa
h, the

system and its external environment are modeled as a servi
e provider and a

servi
e requester, respe
tively, in the format of Markov 
hains. Ea
h of these

Markov 
hains has a set of states and a matrix of state transition probabilities.

The 
omputed state-to-poli
y mapping is then stored in a lo
al memory or 
on-

troller and is used in real time to dynami
ally re
on�gure the system a

ording

to its 
urrent state.

However, the 
omplexity of the MDP algorithms in general grows exponen-

tially with in
reases in the size of the state spa
e. Jonsson and Barto present an

algorithm that performs hierar
hi
al de
omposition of fa
tored MDPs to help

alleviate this growth in 
omplexity [8℄. Their approa
h to hierar
hi
al de
om-

position systemati
ally allows irrelevant state variables to be ignored. However,

their development of hierar
hi
al MDPs is fo
used on algorithms and theoret-

i
al analysis for state abstra
tion and MDP 
omputation, and the 
onne
tion to

implementation of the hierar
hi
al MDPs and appli
ation to real-world systems

is not addressed. One obje
tive of this work is to help bridge this gap in the


ontext of embedded signal pro
essing systems.

In parti
ular, in this work, the MDP s
hemes presented in [9℄ and [8℄ are

integrated. This results in a novel approa
h to formulating MDPs for poli
y

optimization in embedded signal pro
essing systems with 
omplex state spa
es,

and stringent implementation 
onstraints. In the proposed design framework,

hierar
hi
al MDPs are applied to de
ompose the modeling of the appli
ation

and embedded pro
essing system into multiple MDPs. Ea
h smaller MDP is

formulated using an approa
h similar to that developed in [7℄. This hybrid

MDP approa
h is referred to as the Hierar
hi
al MDP approa
h for Compa
t

System-level Modeling (HMCSM).

To promote systemati
 derivation of embedded implementations using the

HMCSM approa
h, we integrate the approa
h into the framework of data�ow-

based design of signal pro
essing systems. Model-based design in terms of data-

�ow graphs helps to ensure properties, su
h as determina
y, deadlo
k-free oper-

ation, and bounded memory requirements, whi
h are of great importan
e in the

reliable implementation of embedded signal pro
essing systems (e.g., see [1℄).

Data�ow also orthogonalizes the implementation of individual fun
tional 
om-

ponents (a
tors) from the system-level 
ontrol and 
oordination among the a
t-

ors. This separation of 
on
erns is espe
ially useful be
ause it enables e�
ient

and reliable swit
hing a
ross di�erent system-level 
on�gurations while reusing

individual a
tors a
ross the 
on�gurations. With these motivations, I develop

in this work a data�ow-based framework for design and implementation of ad-

aptive signal pro
essing systems using HMCSM.

To demonstrate the e�
ien
y and �exibility of the proposed design frame-

work and the 
orresponding libraries and tools, we apply it to implement a

DPD system that bene�ts signi�
antly from adaptivity and run-time system re-


on�guration. In the targeted DPD system, Pareto-optimized DPD parameters

are derived subje
t to multidimensional 
onstraints and predistortion trade-o�s

5



are re
on�gured among the di�erent options to support e�
ient predistortion

a
ross time-varying operational requirements and modulation s
hemes. The

design evaluation metri
s (optimization obje
tives) targeted in the development

of the DPD ar
hite
ture are system energy 
onsumption, adja
ent 
hannel power

ratio (ACPR), and error ve
tor magnitude (EVM).

Portions of our resear
h on HMCSM are published in [10℄.

2 Ba
kground

In Se
tion 1, MDP methods and data�ow-based design are introdu
ed as two

key foundations of the 
ontributions in this work. In this se
tion, I provide ba
k-

ground in these areas that is relevant to development of the proposed HMCSM

design framework.

2.1 MDP Methods

In Benini's work on MDP-based methods for system-level power management,

the servi
e provider, servi
e requester, and power manager are de�ned as key

system 
omponents. The poli
y is 
omposed of a �nite dis
rete sequen
e of

de
isions taken by the power manager. A generi
 deterministi
 stationary poli
y


an be represented as a table with the rows representing all possible states and

the 
olumns representing all possible a
tions. The size of the poli
y table grows

geometri
ally when the number of system states in
reases. As a result, the

poli
ies derived from the MDP te
hniques proposed in [7℄ are pra
ti
al only for

problems with relatively small numbers of system states.

A fa
tored MDP only requires spe
i�
ation of the 
onditional probabilities

with respe
t to dependent state variables, in 
ontrast with traditional MDPs

where the probabilities with respe
t to independent variables must also be spe-


i�ed. The resulting modeling 
omponents are smaller in size and their poli
ies

are more 
ompa
t 
ompared to traditional MDPs. A more detailed and sys-

temati
 introdu
tion to fa
tored MDPs 
an be found in [6℄. Based on the idea

of fa
tored MDPs, a number of fa
torization methods has been proposed (e.g.,

see [11℄).

As mentioned in Se
tion 1, hierar
hi
al fa
tored MDPs are explored by

Jonsson and Barto [8℄. They use a dynami
 Bayesian network and a 
ausal

graph to identify relationships among state variables and 
onstru
t a hierar
h-

i
al MDP for a given poli
y optimization problem. In this work, we build on

these theoreti
al foundations of hierar
hi
al fa
tored MDPs, and apply this 
lass

of MDPs to design and implementation of adaptive signal pro
essing systems.

In our 
ase study of a DPD ar
hite
ture, we design and implement several

hierar
hi
al MDPs with di�erent levels of design spa
e 
omplexity. This 
ase

study of a DPD ar
hite
ture further demonstrates the utility of HMCSM MDPs.

Spe
i�
ally, through the 
ase study, we demonstrate a systemati
 pro
ess for

extending hierar
hi
al MDPs to handle in
reasingly 
omplex design spa
es and

explore trade-o�s involving enhan
ed system performan
e (when more 
omplex

MDP formulations are applied) versus the design time and run time overhead

of the more 
omplex formulations. Details on our formulations of hierar
hi
al

MDPs for DPD ar
hite
ture design are dis
ussed in Se
tion 6.5.
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2.2 Data�ow-based Modeling and Design

An important 
ontribution of this work is the integration of MDP-based design

methods into a model-based design framework based on data�ow models of


omputation. In the form of data�ow that we apply, signal pro
essing appli
a-

tions are modeled as dire
ted graphs, 
alled data�ow graphs, in whi
h verti
es

(a
tors) represent 
omputations of arbitrary 
omplexity; edges represent �rst-in,

�rst-out (FIFO) 
ommuni
ation 
hannels between a
tors; and a
tors represent

dis
rete units of 
omputation, 
alled �rings, that 
onsume and produ
e well-

de�ned amounts of data from and to the in
ident FIFOs [12℄.

Con
eptually, data is en
apsulated in obje
ts 
alled tokens as they pass

through FIFOs from one a
tor to another. In signal pro
essing oriented data�ow

models, spe
ial attention is given to the rates at whi
h a
tors produ
e and


onsume data to and from their ports, respe
tively. These rates are referred

to as the produ
tion rates and 
onsumption rates of the asso
iated a
tor ports

or in
ident edges. Colle
tively, produ
tion rates and 
onsumption rates are

referred to as data�ow rates. Analysis in terms of data�ow rates 
an be useful

for many kinds of optimizations, su
h as those involving s
heduling and memory

management (e.g., see [1℄). Di�erent forms of data�ow have been proposed based

on di�erent restri
tions on the data�ow rates or how data�ow rates a
ross an

a
tor or throughout a graph are related. Examples are 
y
lo-stati
 data�ow [13℄,

s
enario-aware data�ow [14℄, and syn
hronous data�ow (SDF) [15℄.

In this work, a form of data�ow 
alled parameterized syn
hronous data�ow

(PSDF) is applied to demonstrate the model-based integration of the proposed

MDP-based design te
hniques [16℄. We use PSDF be
ause it is useful in mod-

eling data�ow graphs that have dynami
ally varying parameters. Quasi-stati


s
heduling te
hniques have also been developed for these graphs that systemati
-

ally derive parameterized looped s
hedules [17℄. A parameterized looped s
hedule

involves loops that iterate a
ross subsets of a
tors, and have iteration 
ounts

that 
an be symboli
 expressions in terms of stati
 or dynami
ally-varying a
tor,

edge or graph parameters.

Parameterized data�ow is applied due to its natural mat
h with the obje
tive

of developing a model-based framework for adaptive signal pro
essing. However,

we envision that the framework 
an be adapted into modeling environments that

are based on other parametri
 data�ow models, su
h as Boolean parametri


data�ow [18℄ and the parameterized and interfa
ed data�ow meta-model [19℄.

Investigating su
h adaptations along with appli
ation of the distinguishing tools

and analysis te
hniques available for su
h alternative models is an interesting

dire
tion for future work.

To implement PSDF-based models of adaptive signal pro
essing systems, we

apply the Lightweight Data�ow Environment (LIDE) [20℄. LIDE is a software

tool for data�ow-based design and implementation of signal pro
essing systems.

LIDE is based on a 
ompa
t set of appli
ation programming interfa
es (APIs)

that is used for 
onstru
ting and 
onne
ting data�ow a
tors, edges, and graphs.

LIDE in
ludes fa
ilities for dynami
ally manipulating a
tor, edge and graph

parameters. We use these fa
ilities to in
orporate PSDF semanti
s in the LIDE-

based implementations that we develop when applying the HMCSM framework.

Due to LIDE's lightweight and �exible feature, it 
an readily be targeted to dif-

ferent implementation languages su
h as C, CUDA and MATLAB [21℄. When

the system is implemented in a parti
ular language XYZ, we refer to the result-
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ing spe
ialized version of LIDE as LIDE-XYZ. In this work, we apply LIDE-C,

whi
h is based on a C language implementation of the LIDE APIs. A useful

dire
tion for future work is to a
hieve hardware a

eleration for DPD subsys-

tems using a LIDE-based digital hardware design methodology. Details on this

dire
tion for future work are dis
ussed in Se
tion 5.

3 LIDE-based Implementation

In this work, we employ LIDE as the implementation approa
h for data�ow

modeling semanti
s. In the design of ea
h a
tor, LIDE requires four basi
 inter-

fa
e fun
tions, 
onstru
t, enable, invoke and terminate. The 
onstru
t fun
tion

instantiates an a
tor and initializes its 
on�guration. The enable fun
tion re-

turns a Boolean indi
ator about whether or not the a
tor 
an be �red based

on its 
urrent mode, and the 
urrent state of its input and output bu�ers. The

invoke fun
tion exe
utes the a
tor in its 
urrent mode. The terminate fun
tion

performs operations for deallo
ating the a
tor when it is no longer needed in

the en
losing system.

We target our implementation to the C language and extend LIDE-C by

providing new 
apabilities to support hierar
hi
al data�ow modeling and PSDF

semanti
s. The key features and utilities added in the new version of LIDE-C

are summarized as follows. For details on the original version of LIDE that we

have extended as part of this work, we refer the reader to [22℄.

• A graph abstra
t data type (ADT) has been 
reated to enable hierar
hi
al

semanti
s in LIDE-C. A graph ADT in LIDE-C 
ontains a set of a
tors

and edges in the graph and is asso
iated with a s
heduler that 
oordinates

exe
ution of a
tors in the graph when it is exe
uted. An a
tor within the

graph asso
iated with a graph ADT instan
e I 
an en
apsulate another

graph ADT instan
e J , thereby allowing for hierar
hi
al design of data�ow

graphs.

• The a
tor ADT has been extended to support implementation of hierar
h-

i
al data�ow in LIDE-C. The address of an array A that 
ontains pointers

to graph ADT instan
es has been added to the 
ommon data stru
ture

for a
tors so that an a
tor 
an be mapped to one or more subgraphs that

are nested hierar
hi
ally within it. An a
tor 
an be mapped to di�erent

subgraphs based on di�erent 
onditions. When an a
tor is asso
iated with

one or more subgraphs, the a
tor is 
alled a hierar
hi
al a
tor; otherwise,

the array A is empty, and the a
tor is 
alled a primitive a
tor. An a
tor is

exe
uted from within graphs that 
ontain it through a uniform interfa
e

regardless of whether the a
tor is hierar
hi
al or primitive.

• Like a primitive a
tor, a hierar
hi
al a
tor also has a set of modes, where

ea
h mode has �xed produ
tion and 
onsumption rates that are asso
iated

with the a
tor ports. The enable fun
tion of a hierar
hi
al a
tor 
he
ks the

exe
utions 
ondition of the 
urrent mode in relation to the bu�ers in the

en
losing graph that are 
onne
ted to the input and output ports of the

a
tor. The invoke fun
tion of a hierar
hi
al a
tor exe
utes the s
heduler

that is asso
iated with the a
tor.
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• To support the implementation of PSDF, an ADT for PSDF spe
i�
ations

has been developed in LIDE-C. The PSDF spe
i�
ation ADT inherits from

the graph ADT. The three 
ore 
omponents of a PSDF spe
i�
ation are

modeled as three hierar
hi
al a
tors (init, subinit, and body a
tors) in the

PSDF spe
i�
ation ADT. Ea
h of these a
tors en
apsulates a subgraph

that spe
i�es the fun
tionality of the 
orresponding PSDF spe
i�
ation


omponent. The s
heduler for PSDF spe
i�
ations is de�ned a

ording

to PSDF semanti
s. A PSDF spe
i�
ation 
an be nested within a higher

level graph by being en
apsulated as a hierar
hi
al a
tor.

These new features in LIDE-C enable important new 
apabilities for model-

based design that are relevant to MDP-based design optimization for adaptive

signal pro
essing systems.

4 Hierar
hi
al MDP Approa
h

4.1 HMCSM Framework

The HMCSM framework is illustrated in Figure 1. At design time, the appli
-

ation fun
tionality is modeled using data�ow te
hniques, as illustrated in the

top right region of the �gure. The design pro
ess also involves modeling the

environmental and system-level dynami
s, and re
on�guration pro
ess in the

form of a hierar
hi
al MDP, as illustrated by the part of Figure 1 that is labeled

Hierar
hi
al MDP Subsystem. As part of this modeling pro
ess, Markov mod-

els are 
reated of both the pro
essing demands imposed on the system by the

appli
ation, and the dynami
s of the pro
essing system 
omponents. In a 
las-

si
al MDP formulation, these elements are 
ombined into a single MDP. In this

work, I additionally explore the use of Hierar
hi
al MDPs in 
omparison to a

single MDP to address the s
aling problems that are well known to be a major

weakness of 
lassi
al MDPs (see Se
tion 1).

The single MDP is transformed into a hierar
hy of multiple MDPs by �rst

fa
toring the elements in the MDP based on their sto
hasti
 interdependen
ies.

On
e the MDP has been fa
tored, it 
an be de
omposed into sub-problems that


an be independently solved by multiple MDPs arranged in a hierar
hy. For de-

tails on the pro
esses involved in fa
toring and transforming the original MDP,

reader is referred to [8℄. In the HMCSM framework, the fa
toring and de
om-

position are 
arried out by hand, using knowledge of the appli
ation domain

and the pro
essing system. An interesting future dire
tion for this work is the

development of tools to help automate the fa
toring and de
omposition pro
ess.

The Con�guration Control Ma
hine (CCM), shown in the lower (run time)

portion of Figure 1, is used to manage dynami
 system-level re
on�guration

throughout operation of the embedded signal pro
essing system. Here, by dy-

nami
 re
on�guration, we mean 
hanges to any system-level parameters, in
lud-

ing software, platform, and algorithmi
 parameters, that 
an be manipulated

while the system is exe
uting. At run-time, the CCM exe
utes periodi
ally,

where the period Tc of its exe
ution is a system parameter.

We refer to ea
h periodi
 exe
ution of the CCM as a re
on�guration round.

During a given re
on�guration round, the CCM determines, based on the 
urrent

environmental state and system state, whether or not to perform a dynami


re
on�guration operation. Furthermore, if the determination is to perform su
h
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Figure 1: An illustration of the HMCSM framework for design and implement-

ation of adaptive signal pro
essing systems.

an operation, the CCM also determines the spe
i�
 re
on�guration operation

that is to be applied to the system. The blo
ks labeled System Sensor, System

State Model, Environmental Sensor, and Environmental State Model represent

measurements and models that are used by the CCM to determine the system

and environmental state during a given re
on�guration round.

The blo
k labeled Control A
tions, in the design time portion, en
ompasses

the set of possible re
on�guration operations that 
an be applied by the CCM

in a given re
on�guration round. Examples of 
ontrol a
tions in the 
ontext of

HMCSM are 
hanges to the type of digital �lter that is applied to pro
ess a

given signal in the appli
ation �owgraph, 
hanges to the 
oe�
ients in a �lter

of a �xed type, and 
hanges to the input port from whi
h a given a
tor will read

input data.

If A denotes the set of 
ontrol a
tions, then the CCM 
an be viewed as

an implementation of a fun
tion P : Se × Ss → A, where Se is the set of

environmental states, and Ss is the set of system states. This fun
tion P is

referred to as the re
on�guration poli
y or simply �poli
y� in an adaptive signal

pro
essing system that is developed using the HMCSM framework. In HMCSM,

the poli
y is applied at run-time, and derived at design-time. It is derived

using an MDP Solver, whi
h is a software module that automati
ally generates

optimized poli
ies from MDP model spe
i�
ations.

The Poli
y Mapping Engine, shown near the 
enter of Figure 1, translates


ontrol a
tions into updates to dynami
 parameters in the embedded software

that a
hieve the intended a
tions. In the implementation of the HMCSM frame-
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work, these parameter updates are made by setting appropriate variables in

an implementation of the appli
ation data�ow graph that is developed using

the Lightweight Data�ow Environment (LIDE) (see Se
tion 2.2). This data�ow

graph implementation is represented by the blo
k labeled Parameterized LIDE

Implementation, and the software tool that we use to 
onstru
t this implement-

ation is represented by the blo
k labeled LIDE Library.

In the HMCSM framework, ea
h 
ontrol a
tion is formulated in terms of

spe
i�
 
hanges to spe
i�
 parameters in the parameterized data�ow appli
ation

model M . In other words, a given 
ontrol a
tion A 
an be represented as

A = {(p1, v1), (p2, v2), . . . , (pN(A), vN(A))}, where ea
h pi is a distin
t parameter

in the appli
ation model M , ea
h vi is an admissible value of parameter pi, and

N(X) is the number of parameters inM that are manipulated by a given 
ontrol

a
tion X . Exe
ution of the 
ontrol a
tion A at run-time involves setting ea
h

parameter pi to the 
orresponding value vi su
h that subsequent operation of

M will be performed using these new parameter settings. Operation 
ontinues

with the new parameter settings until a new 
ontrol a
tion is applied to the

system (in some subsequent re
on�guration round).

The formulation of an MDP in HMCSM in
ludes three main 
omponents,

whi
h are represented by the blo
ks in Figure 1 that are labeled Sto
hasti


Models of Environment and System, Reward Fun
tion, and Control A
tions.

These 
omponents are developed by hand using well-established foundations of

MDP modeling, along with domain knowledge of the targeted appli
ation.

We have dis
ussed the Control A
tions part of the MDP formulation earlier

in this se
tion. The Sto
hasti
 Models of Environment and System in
lude, for

ea
h of the two models (environment and system), the de�nition of the state

spa
e and the state transition matrix (STM). The STM is a sto
hasti
 matrix

that de�nes the probability of the transition to the next state given the existing

state, and 
onditioned on a given a
tion. Intuitively, the Reward Fun
tion

maps state-a
tion pairs into s
ores that assess the utility of performing the

asso
iated a
tion (
ontrol a
tion) during the given state. An approa
h is applied

for in
orporating multidimensional design obje
tives into the s
ores produ
ed

by the reward fun
tion. For details on this multidimensional reward fun
tion

approa
h, the reader is referred to [9℄.

In summary, the HMCSM framework presented in this se
tion provides a


omprehensive methodology and supporting tools for design and implementa-

tion of adaptive embedded signal pro
essing systems. The spe
i�
 tools that

are applied in the demonstration of the framework are MDPSOLVE [23℄ and

LIDE, whi
h 
orrespond to the blo
ks labeled MDP Solver and LIDE Library,

respe
tively, in Figure 1. However, the framework is not intended to be spe
i�


to these tools, and 
an readily be adapted to other tools for solving MDPs and

implementing parametri
 data�ow graphs, respe
tively.

4.2 Example: Channelizer/re
eiver Appli
ation

In this se
tion, I des
ribe a detailed 
ase study as an illustrative example of the

proposed framework. In addition to providing a demonstration of the proposed

HMCSM design framework on a pra
ti
al, adaptive signal pro
essing appli
ation,

the 
ase study also serves as a demonstration of a novel, appli
ation-spe
i�
,

MDP-based system design. The example is an adaptive wireless 
ommuni
a-

tion re
eiver that dynami
ally optimizes its system 
on�guration in response to
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Figure 2: Blo
k diagram of re
eiver signal pro
essing and two MDP s
hemes.


hanges in di�erent use 
ases. As a key part of the re
eiver, the 
hannelizer ex-

tra
ts multiple radio 
hannels of distin
t bandwidths from a digitized wideband

input signal. Among various 
omputing 
omponents of the re
eiver, the 
hannel-

izer operates at the highest sampling rate in the system and a

ounts for most

of the 
omputational 
omplexity and energy 
onsumption [24℄. By adapting the


on�guration of the 
hannelizer based on the 
ommuni
ation s
enario, we seek

to optimize its energy e�
ien
y while ensuring that it extra
ts the number of


hannels that is required by the 
ommuni
ation s
enario at any given time. We

design an HMCSM MDP to perform this adaptation, and apply the data�ow-

based MDP implementation framework to realize the resulting adaptive signal

pro
essing on a state-of-the-art embedded pro
essing platform.

4.2.1 Adaptive Re
eiver Ar
hite
ture

Our example is a wireless re
eiver for a Low Power Wide Area Network (LP-

WAN) used in a �Smart Cities� Internet of Things (IoT) appli
ation [25℄. We

propose an adaptive LPWAN re
eiver that dynami
ally adjusts the system band-

width 
ontinually, and periodi
ally transmits the new bandwidth setting to end

nodes through the use of a downlink bea
on. This 
ase study implements the

physi
al layer signal pro
essing for su
h an adaptive re
eiver. The implemented

ar
hite
ture 
onsists of re
on�gurable 
hannelizer and baseband pro
essing al-

gorithms. In this work, we build on the MDP-based dynami
ally re
on�gurable


hannelizer presented in [9℄.

4.2.2 Appli
ation Spe
i�
ation

Figure 2 shows a blo
k diagram of the adaptive re
eiver ar
hite
ture that is

investigated in this 
ase study. The 
hannelizer is used to separate the in
oming

wideband signal into multiple data streams, where ea
h of the data streams is

asso
iated with a distin
t 
hannel. Ea
h 
hannel is then oversampled for symbol

timing re
overy, and then pro
essed by a Generalized Likelihood Ratio Test

(GLRT) dete
tor, whi
h looks for the transmission preamble. On
e a dete
tion

is su

essful, a mat
hed �lter demodulator re
overs the transmitted data and


on�rms it with an error dete
tion fun
tion (e.g., CRC32).

We 
ompare the relative merits of two separate MDP s
hemes, labeled MDP-

I and MDP-II. These two s
hemes are illustrated together in Figure 2. MDP-I

12
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onsists of a single MDP employed for 
ontrol of both the dynami
 bandwidth

as well as the 
hannelizer pro
essing 
on�guration. MDP-II splits the modeling

into two MDPs arranged in a hierar
hy. These two MDPs are labeled MDP-II-a

and MDP-II-b.

The 
hannelizer 
an be implemented by one of two options, as detailed in [9℄

� a bank of M polyphase de
imators and mixers (labeled as DCM[1],DCM[2],
. . . ,DCM[M ]) or a Dis
rete Fourier Transform Filter Bank (labeled as DFTFB).

Both options are 
apable of meeting the pro
essing requirements of the 
hannel-

izer subsystem.

However, they do so using di�erent algorithmi
 means and the relative e�-


ien
y of one option 
ompared to the other is highly platform- and implementation-

dependent. Using our proposedMDP-based approa
h, the re
on�guration poli
y

is systemati
ally optimized for the exa
t pro
essing 
hara
teristi
s of a spe
i�


platform (e.g., measured power 
onsumption).

4.2.3 PSDF Model for Channelizer

We implement the 
hannelizer subsystem as a PSDF design with dynami
 para-

meters. Our PSDF model of the 
hannelizer system is illustrated in Figure 3.

Here,M is a stati
 parameter of the appli
ation that represents the total number

of available 
hannels.

At run-time, the MDP-generated re
on�guration poli
y determines how many


hannels to enable, based on the data rate, and whether to apply DCM pro-


essing or DFTFB pro
essing. These poli
y de
isions are used to manipulate a

set of dynami
 parameters {Y1, Y2, . . . , YM} that is asso
iated with M distin
t

DCM a
tors DCM[1],DCM[2], . . . ,DCM[M ], respe
tively. The poli
y de
isions

are also used to manipulate a parameter Z that is asso
iated with an a
tor

labeled DFTFB, whi
h represents DFTFB pro
essing on all of the enabled 
han-
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nels. Ea
h of these (M +1) parameters is binary valued. In parti
ular, for ea
h

i ∈ {1, 2, . . . ,M} if DCM pro
essing is enabled, and the ith 
hannel is enabled,

then Yi = 1 and Z = 0. Conversely, if DFTFB pro
essing is enabled, then

Z = 1, and Yi = 0 for all i.

After ea
h re
on�guration round, updated values of {Y1, Y2, . . . , YM} and Z

are propagated to the adaptive 
hannelizer �owgraph through the Init Graph, as

illustrated in Figure 3. The 
hannelizer �owgraph is parameterized in terms of

these (M+1) dynami
 parameters and en
apsulated within the Body Graph, as

shown in the �gure. The Init Graph and Body Graph are modeling 
onstru
ts

in PSDF that are used, respe
tively, for re
on�guration fun
tionality (determ-

ination and propagation of new parameter values), and 
ore signal pro
essing

fun
tionality asso
iated with an appli
ation.

The Con�g. (
on�guration) Sink a
tor in Figure 3 is a spe
ial a
tor in LIDE

that is used to propagate parameter updates from the Init Graph to the Body

Graph in PSDF-based implementations. The shaded a
tors in the Body graph

are dynami
ally parameterized a
tors. The expressions next to the input and

output ports represent the 
onsumption and produ
tion rates asso
iated with

the ports, respe
tively. The Distrib. (distributor) a
tor takes its input data

and distributes 
opies of it to the appropriate subset of DCM/DFTFB a
tors

depending on the 
urrent values of the dynami
 parameters in the graph.

The a
tors labeled Chn[1],Chn[2], . . . ,Chn[M ] in Figure 3 
opy data from

their input ports to their output ports based on whi
h (if any) input ports have

nonzero 
onsumption rate. These a
tors generate samples on ea
h of the M

output 
hannels of the 
hannelizer subsystem.

We 
ompare the relative merits of a 
onventional, monolithi
 MDP approa
h

(labeled MDP-I) with our proposed hierar
hi
al MDP approa
h (labeled MDP-

II) to adaptive signal pro
essing system design.

4.2.4 MDP-I

In MDP-I, the (single) MDP state spa
e 
onsists of the instantaneous rate of up-

link pa
kets generated by all end nodes, and the 
on�guration of the basestation

pro
essor (number of 
hannels enabled and 
hannelizer 
on�guration).

The a
tion spa
e 
onsists of the next 
on�guration of the basestation pro-


essor (number of 
hannels enabled and 
hannelizer 
on�guration).

The STM for the pa
ket generation rate is 
omputed a priori from the tra�


rate measured in a design-time simulation. The STM for the pro
essing system

is obtained from the dynami
s of the implementation on the referen
e platform.

The MDP reward metri
 is a linear 
ombination of two 
ompeting metri
s:

the probability of pa
ket 
ollision and the power 
onsumption expended in bas-

estation pro
essing. This linear 
ombination of 
on�i
ting metri
s tasks the

MDP with �nding an optimal trade-o� at any time based on relative weightings

that are provided by the designer for the two metri
s.

4.2.5 MDP-II

In MDP-II, the 
ontrol task is split a
ross two hierar
hi
ally arranged MDPs:

MDP-II-a and MDP-II-b.

MDP-II-a is used to determine the optimal number of 
hannels to enable

at a given time, while being agnosti
 to what pro
essing 
on�guration is a
tu-
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ally used in the re
eiver to implement that 
on�guration. MDP-II-b is used

to determine the optimal pro
essing 
on�guration for an exogenously spe
i�ed

number of 
hannels.

4.2.6 Implementation

The 
on�gurable 
omponents of the pro
essing system were implemented using

the method detailed in Se
tion 4.1, and deployed to a Raspberry Pi 3 Model

B 
omputing platform. Ea
h of the available 
on�gurations was run in a test

mode, and the average pro
essing power 
onsumed was measured and tabulated

as shown in Table 1. The devi
e we used for measuring power 
onsumption is

the Tektronix Keithley Series 2280 Pre
ision Measurement DC Power Supply.

The measurements were then provided as input to the MDP models, and used

to generate 
ontrol poli
ies using these empiri
ally measured 
hara
teristi
s of

the pro
essing system.

Table 1: Platform measurements.

Pro
essing Number of Channels Average

Con�guration Pro
essed Power

DCM 1 1.4406 W

DCM 2 1.4781 W

DCM 3 1.5203 W

DCM 4 1.5660 W

DCM 5 1.6025 W

DCM 6 1.6524 W

DCM 7 1.7013 W

DCM 8 1.7453 W

DFTFB 8 1.6754 W

4.2.7 Simulation Results

We performed a physi
al layer signal pro
essing simulation in MATLAB to

generate uplink tra�
 from 1,000 end nodes. The simulation 
ompared the

use of the two (adaptive) MDP S
hemes and also (non-adaptive) 
ases where

only the �xed 
hannelizer 
on�gurations were used. Ea
h run of the simulation

generated results of the form shown in Figure 4. In this �gure, the MDP (MDP-

I) is in 
ontrol of the number R of re
eiver 
hannels enabled. Note that when the

tra�
 rate is high, the system in
reases R in order to redu
e pa
ket 
ollisions.

The two 
ompeting MDP s
hemes, MDP-I and MDP-II, produ
ed the same


ontrol poli
y. However, a key di�eren
e is that the hierar
hi
al MDP redu
ed

the model size from 1.63MB to 265kB, whi
h is a fa
tor of 6.1 times smaller

than the original size. This redu
tion be
omes espe
ially relevant when hous-

ing the MDP model and poli
y generation 
ode on the pro
essing platform

itself. Su
h an embedded MDP realization is useful be
ause it allows the MDP

and generated poli
y to adapt dynami
ally based on learned 
hara
teristi
s of

the operating environment. Integration of embedded MDP te
hniques into the

HMCSM framework is a useful dire
tion for future work.

MDP-II also provides a bene�t in the exe
ution time required for the MDP

solver to 
ompute the optimal poli
y. We applied the MATLAB-based open

sour
e solver 
alled MDPSOLVE [23℄. The exe
ution times were measured as

294ms for MDP-I, 50.8ms for MDP-II-a and 41.5ms for MDP-II-b.

As a result, in a deployment with a �xed pro
essing system that periodi
ally

re-
omputes the 
ontrol poli
y in response to a 
hanging external environment,

the hierar
hi
al MDP s
heme redu
es the solver time from 294ms to 50.8ms,

whi
h is a fa
tor of over 5.7X smaller.
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All of the simulation runs that we 
arried out are 
ompared in Figure 5. Dif-

ferent simulations for the MDP-generated poli
y were 
arried out using di�erent

relative weightings for the two performan
e metri
s. Simulations were also 
ar-

ried out for �xed signal pro
essing 
on�gurations. The square-shaped points in

Figure 5 
orrespond to DCM-based 
hannelizer operation with the number of

enabled 
hannels ranging from 1 to 8. The �xed 
on�guration DFTFB 
ase is

represented by the triangle-shaped point in the top left region of the �gure. In

the 
ontext of all of the design points evaluated and the two performan
e met-

ri
s, we see from the �gure that the MDP-based approa
h generates a Pareto

front. This demonstrates that the adaptive re
on�guration 
apability provided

by the MDP leads to better performan
e in 
omparison with �xed 
on�gurations

for ea
h of the available signal pro
essing algorithms.
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5 Extensions to the LIDE-V Library

Based on the analysis in [26℄, where a data�ow model is 
onstru
ted for the DPD

algorithm in [27℄, most of the 
omputation and energy 
onsumption is 
on
en-

trated in the �lter a
tors. Thus, in our future work, we plan to implement all

the predistortion �lters in the �ltering stage on an FPGA platform to a

elerate

the data pro
essing. To fa
ilitate the power e�
ient hardware implementation

of DPD systems, we have extended the LIDE-V library to integrate low power

te
hniques.

In LIDE-V, the enable, invoke and s
heduling fun
tions for an a
tor are

implemented as three 
oupled Verilog modules, whi
h we refer to as the a
tor

enable module (AEM), a
tor invoke module (AIM) and a
tor s
heduling module

(ASM), respe
tively [28℄. Data�ow edges are implemented as data�ow edge

modules (DEMs) to provide 
ommuni
ation 
hannels for 
onne
tions between

a
tors. Sin
e DEMs bu�er data through a �rst-in �rst-out proto
ol, we also

refer to them simply as FIFOs.

The new features added to the LIDE-V library 
an be summarized as the

following:
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• We have integrated into the LIDE-V library two low power methods: asyn-


hronous design with multiple 
lo
k domains and 
lo
k gating.

• We have integrated support for hierar
hi
al a
tor design in LIDE-V. This

advan
ement provides useful new features in LIDE-V for design of 
omplex

appli
ations and reuse of data�ow subgraphs.

We have demonstrated the �exibility and power e�
ien
y of the extended

LIDE-V library through a deep neural network appli
ation for vehi
le 
lassi-

�
ation. Our envisioned future work in this dire
tion is to apply the updated

LIDE-V library to implement the DPD system designed in this work.

6 Case study: Digital Predistortion Appli
ation

6.1 Ba
kground

In wireless 
ommuni
ation systems, I/Q mismat
h, power ampli�er (PA) non-

linearities, and signal leakage in the lo
al os
illator (LO) are implementation-

related problems that must be addressed before the dire
t-
onversion prin
ipal


an be deployed. In the frequen
y domain of the transmitted signal, the e�e
ts

of these impairments are translated as power leakage into adja
ent 
hannels.

DPD is a widely investigated te
hnique (e.g., see [26,29�32℄) to 
ountera
t su
h

impairments by applying 
arefully-
al
ulated distortion to the signal prior to

transmission.

6.2 Adaptive Data�ow-based DPD Ar
hite
ture

The DPD ar
hite
ture developed in this report is based on the algorithm presen-

ted in [27℄. This DPD algorithm operates in two stages. In the 
oe�
ient

estimation stage, the DPD �ltering 
oe�
ients are estimated. The estimated


oe�
ients are then employed in the DPD �ltering stage for a
tual predistortion

of the input signal.

The stru
ture of the predistortion �ltering system is shown in Figure 6. The

DPD system is split into two bran
hes, namely dire
t and 
onjugate predistor-

tions. The output of the predistortion �lter 
an be expressed as

zn =
∑

p∈IP

fp,n ⋆ ψp(xn) +
∑

q∈IQ

f̄q,n ⋆ ψq(x
∗

n) + c′ , (1)

where ⋆ denotes 
onvolution; xn and x∗n are the dire
t and 
onjugate input

samples, respe
tively; IP and IQ are the employed sets of dire
t and 
onjugate

term orders, respe
tively; ψp and ψq are polynomial basis fun
tions for the dire
t

and 
onjugate bran
hes, respe
tively; fp,n and f̄q,n are the FIR �lter 
oe�
ients

for the dire
t and 
onjugate polynomials, respe
tively; and c′ is the LO leakage


ompensation 
omponent. The maximum polynomial order used 
an be di�erent

for the dire
t and 
onjugate bran
hes of the predistorter [27℄.

Given r ∈ {p, q}, the polynomial basis fun
tion ψr 
an be expressed as

ψr(xn) =
∑

k∈Ir

uk,r|xn|
k−1xn, r ∈ IR , (2)
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Figure 6: Predistorter stru
ture for the joint predistortion of PA and I/Q mod-

ulator impairments.

Figure 7: Data�ow model of DPD 
oe�
ient estimation.

where IR denotes the set of term orders employed in the given DPD 
on�guration

(IR = IP if r = p, and IR = IQ if r = q); Ir denotes the subset of IR that 
ontains

only term orders up to r in IR; and {uk,r} denotes the polynomial weights. Here,

given a polynomial ρ = a0 + a1x + . . . + anx
n
, we de�ne ea
h monomial aix

i

to be a term of ρ, and we de�ne i to be the asso
iated term order. A

ording

to [27℄, only odd-order polynomials are used to avoid the 
omputation of the

square-root within |xn|
k−1

, whi
h is a 
omputation-saving option that has been

applied in the proposed implementation.

6.3 Appli
ation Spe
i�
ation

Data�ow modeling of the DPD is 
omplex be
ause of the high degree of para-

meterization. As mentioned in 6.2, the DPD ar
hite
ture has been split into

two parts, the DPD �lter and DPD 
oe�
ient estimation, as shown in Figure 7

and Figure 8, respe
tively. The inter
onne
tion between the two diagrams 
an

be inferred from the pla
eholder a
tors DPD Coe�
ient Estimation and DPD

Filter in Figure 7 and Figure 8. Also, the Parameter Sour
e and Param Dis-

tribution a
tors have same fun
tionalities in the two data�ow models and have

been repli
ated for design simpli
ity.

The implementations of the a
tors in the two data�ow graphs are summar-

ized as follows.

• Sour
e and Sink: sour
e a
tors are used for �le reading. They read a �le
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Figure 8: Data�ow model of the predistortion �lter.

that 
ontains data and move the a
quired values to their output FIFOs.

Similarly, sink a
tors 
onsume data from their input FIFOs and write it

to an output �le.

• Param Distribution: This a
tor distributes updated parameter values

to parameterized a
tors.

• Conjugate: The 
onjugate a
tor 
omputes the 
omplex 
onjugate of the

re
eived sample value and writes it to its output FIFO.

• Basis Matrix: This a
tor performs the basis matrix 
omputation intro-

du
ed in Se
tion 6.2.

• LS Estimate: This a
tor performs the least squares (LS) estimation

operation.

• DPD Coe�
ient Distribution: The a
tor reads and distributes estim-

ated �lter 
oe�
ients to FIR �lters.

• Polynomial Computation: This a
tor 
omputes the polynomial basis

fun
tion a

ording to Equation 2 for both non-
onjugate and 
onjugate

bran
hes of the DPD �lter.

• FIR Filter: This a
tor performs the FIR �ltering operation part of Equa-

tion 1.

• A

umulator: This a
tor 
ombines the output from all FIR �lters and

adds the LO leakage 
ompensation 
omponent a

ording to Equation 1.

6.4 PSDF Model

The DPD ar
hite
ture introdu
ed in Se
tion 6.3 is implemented as a PSDF

design with dynami
 parameters. A PSDF model of the DPD system is illus-

trated in Figure 9. The DPD system is parameterized by the number of dire
t

predistortion �lters, the number of 
onjugate predistortion �lters, and the or-

der of ea
h deployed �lter. Ea
h of these parameters 
an be re
on�gured at

run-time.

At design time, we determine the maximum number of available �lters for

dire
t and 
onjugate predistortion, labeled M and N , respe
tively. Thus, in

Figure 9, there are (M +N) FIR �lters in total, labeled FIR Filter 1, FIR Filter

2, . . . , FIR Filter (M + N). At run-time, the MDP-generated re
on�guration

poli
y determines the 
urrent system 
on�guration, whi
h in
ludes how many
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Figure 9: PSDF model of DPD ar
hite
ture.

�lters are deployed for dire
t and 
onjugate predistortion, respe
tively, and the


orresponding order of ea
h deployed �lter. These poli
y de
isions are used to

manipulate a set of dynami
 parameters {P,Q, F1, F2, . . . , FM , F̄1, F̄2, . . . , F̄N},
where P and Q are the number of deployed �lters for dire
t and 
onjugate data

pro
essing, respe
tively; F1, F2, . . . , FM are the orders of the M dire
t data

�lters; and F̄1, F̄2, . . . , F̄N are the orders of the N 
onjugate data �lters. Note

that when a �lter is not deployed in the 
urrent 
on�guration, the 
orresponding

order of that �lter is set to 0.
After ea
h re
on�guration round, updated values of

{P,Q, F1, F2, . . . , FM , F̄1, F̄2, . . . , F̄N} are propagated to the adaptive DPD

�owgraph through the PSDF init graph. The DPD �owgraph is parameterized

in terms of these dynami
 parameters and en
apsulated within the subinit

graph and the body graph. The subinit graph is a modeling 
onstru
t in PSDF

that 
an 
hange body graph parameters just before ea
h exe
ution of the body

graph. Examples of su
h parameters in
lude the 
oe�
ients of FIR �lters and

the phases of downsamplers and upsamplers.

In our PSDF-based DPD ar
hite
ture design, the DPD 
oe�
ient estimation

subsystem is mapped to the subinit graph. This subsystem estimates 
oe�
ients

for the FIR �lters that are deployed in the 
urrent 
on�guration. The 
omputed


oe�
ients are then propagated to the body graph as parameter updates. Given

the system 
on�guration parameters from the init graph and the �lter 
oe�
ient

parameters from the subinit graph, the body graph performs the predistortion

of input data based on the updated DPD parameter settings. In the body graph,

the �rst (P +Q) FIR �lters are swit
hed on for predistortion �ltering and the

rest of the �lters are disabled.
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Figure 10: Hierar
hi
al MDP s
heme for DPD system.

6.5 Hierar
hi
al MDP Models for DPD System Optimiz-

ation

In this work, we apply the hierar
hi
al MDP approa
h introdu
ed in Se
tion 4.1

to the dynami
 management of the DPD system. The proposed hierar
hi
al

MDP s
heme is illustrated in Figure 10. This s
heme de
omposes analysis into

four MDPs that are arranged hierar
hi
ally. These four MDPs are labeled (from

topmost to bottom-most in the hierar
hy) MDP-I, MDP-II, MDP-III and MDP-

IV, respe
tively. MDP-I de
ides whether to apply DPD or not based on the


urrent PA model and transmission power. If DPD is to be applied a

ording

to the de
ision from MDP-I, then MDP-II determines whether to turn on the

learning phase of the DPD. When enabled, this learning phase re
omputes the

�lter 
oe�
ients based on the PA model and transmission power.

MDP-III and MDP-IV together optimize the DPD system 
on�guration

based on the 
urrent system state and transmission power. Spe
i�
ally, MDP-III

is responsible for determining the values of P and Q, and MDP-IV is responsible

for determining the �lter order of ea
h employed �ltering bran
h.

As an example, the 
ore MDP 
omponents of MDP-III are de�ned as follows.

• System state spa
e: {P,Q}, where P ∈ {1, 2, 3, 4} and Q ∈ {1, 2, 3, 4}.

• Environment state spa
e: {ρ}, where ρ ∈ {17dBm, 19dBm, 21dBm} rep-

resents the transmission power.

• A
tion spa
e: {Paction, Qaction}. The a
tions on both P and Q belong to

the set {no change, reduce by 1, increase by 1}.

• Reward fun
tion: Reward(state, action) = C1 × ACPR(state) − C2 ×
EVM(state)−C3 ×Power(state)−C4 × cost(action), where ACPR, EVM
and power are measurements with respe
t to the spe
i�ed state; C1, C2, C3, C4

are 
onstants that represent weighting fa
tors for the di�erent metri
s


onsidered; and cost represents the system 
ost in
urred by taking the

spe
i�ed a
tion.

• Constraints: The generated poli
y is subje
t to ACPR, EVM and power


onsumption 
onstraints that are imposed on the system at run-time. Fur-

thermore, the sele
ted a
tion should not lead to bran
h 
ount 
on�gura-

tions that violate the pre-spe
i�ed P,Q ranges.
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poli
ies.

6.6 Simulation Results

We run simulations in MATLAB to measure ACPR and EVM related to ea
h

P,Q 
ombination in the system state spa
e. The modulation employed to derive

these measurements is QPSK. The results from these measurements are provided

as input to the MDP models, and used to generate 
ontrol poli
ies.

In Figure 11, we 
ompare the poli
y generated from the proposed hierar
hi
al

MDP approa
h with a manually-set poli
y that always sele
ts the a
tion that

maximizes the 
urrent reward without 
onsidering sto
hasti
 
hara
teristi
s. As

we 
an see, the manually-set poli
y may lead to more reward than the MDP-

generated poli
y in the short term (i.e., when time < 100 reconfiguration rounds
in this 
ase). However, the MDP-generated poli
y outperforms the manually-set

poli
y over longer time periods.

7 Con
lusions

In this work, we have developed the Hierar
hi
al MDP framework for Compa
t

System-level Modeling (HMCSM) and its appli
ation to design and implement-

ation of adaptive embedded signal pro
essing systems. HMCSM provides a

stru
tured design methodology that integrates model-based design for embed-

ded signal pro
essing in terms of data�ow methods; MDP formulation using


ompa
t, hierar
hi
al models; optimal poli
y generation from these models at

design time; and dynami
, system-level re
on�guration at run time. The frame-

work enables systemati
 derivation of system-level re
on�guration poli
ies that

are based on appli
ation-spe
i�
 fun
tional requirements and operational 
on-

straints. The e�e
tiveness of our proposed MDP-based system design framework

was demonstrated through an adaptive wireless 
ommuni
ation appli
ation: a

digital predistortion (DPD) system, whi
h bene�ts from an implementation that


an dynami
ally generate optimal 
ontrol poli
ies. Additionally, the LIDE-V lib-

rary has been updated to support power-e�
ient hardware implementation of
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signal pro
essing systems. These te
hniques for power-e�
ient implementation

are relevant to hardware a

eleration of the novel DPD system that has been

developed in this work.
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