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Abstract

My work during the research period aims at proposing a novel framework for
design space exploration and dynamic management policy optimization of ad-
aptive embedded signal processing systems. In the framework, Markov decision
processes (MDPs) are applied in a hierarchical way to enable autonomous ad-
aptation of embedded signal processing under multidimensional constraints and
optimization objectives. Thus, we name the proposed framework Hierarchical
MDP framework for Compact System-level Modeling (HMCSM). The applica-
tions are implemented using dataflow modeling techniques. The framework in-
tegrates automated, MDP-based generation of optimal reconfiguration policies,
dataflow-based application modeling, and implementation of embedded control
software that carries out the generated reconfiguration policies. HMCSM sys-
tematically decomposes a complex, monolithic MDP into a set of separate MDPs
that are connected hierarchically, and that operate more efficiently through such
a modularized structure.

The effectiveness of our proposed MDP-based system design framework was
demonstrated through an adaptive wireless communication application: a digital
predistortion (DPD) system, which benefits from an implementation that can
dynamically generate optimal control policies and reconfigure itself according
to the generated policies. Additionally, new features were added to the cur-
rent LIghtweight Dataflow Environment with the Verilog language (LIDE-V)
to improve the power efficiency of dataflow-based hardware design and support
efficient hardware acceleration of the targeted DPD system in this work.
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1 Introduction

Modern signal processing applications impose increasing demands of adaptivity,
flexibility and reconfigurability. The systems also have more and more complex
design spaces that are composed of multidimensional design parameters. This
trend presents challenges at many levels of system design, implementation and
optimization. On one hand, adaptive signal processing systems must adjust to
dynamically-changing environmental conditions, system status or user require-
ments; on the other hand, the systems must often satisfy stringent constraints
on energy-efficiency and real-time performance.

In wireless communication systems, high-power transmitters suffer from non-
linearities due to power amplifier (PA) characteristics, I/Q imbalance, and local
oscillator (LO) leakage. Digital Predistortion (DPD) is an effective technique
to counteract these impairments. To help maximize agility in cognitive radio
systems, it is important to investigate dynamically reconfigurable DPD systems
that are adaptive to changes in the employed modulation schemes and opera-
tional constraints. To help maximize effectiveness, such reconfiguration should
be performed based on multidimensional operational criteria. With this mo-
tivation, during the research period, I developed a novel framework, named
Hierarchical MDP framework for Compact System-level Modeling (HMCSM),
for the design space exploration and dynamic reconfiguration policy optimiza-
tion of signal processing systems, and I demonstrated the application of this
framework through the design of a reconfigurable DPD application.

Dataflow provides a formal mechanism for expressing the functionality of
digital signal processing (DSP) applications, and facilitates exploration of sys-
tem optimization methods to achieve efficient implementations (e.g., see [1]).
Dataflow models of computation are widely used for design and implementation
of DSP systems. These applications require a wide variety of platforms and
design tools and impose different kinds of constraints on system performance.
Dataflow, as an important form of model-based design, is effective in terms of
retargetability of design processes across different platforms. To demonstrate
the proposed design methodology and experiment with alternative DPD archi-
tectures, we apply dataflow modeling techniques and associated libraries and
tools to the design and implementation of DPD systems.

Our work on DPD design space exploration and dynamic reconfiguration
policy optimization builds on our previous work on multiobjective optimization
methods for digital signal processing systems [2]. In this previous work, evolu-
tionary algorithms are adapted according to design specifications and applied to
search the multidimensional system design space for a set of Pareto-optimized
configurations. Some of the optimized configurations in the obtained set are
then selected and extracted. This subset of selected configurations provides the
collection of system modes that will be integrated into the targeted implement-
ation. The set of operating modes provided in the selected configuration set is
made available during operation such that system trade-offs can be reconfigured
among based on statically or dynamically generated control policies.

Given a set of extracted Pareto-optimized system modes (configurations),
the HMCSM framework applies Markov decision processes (MDPs) to generate
policies that control the switching among these modes under multidimensional
constraints and optimization objectives. MDPs have been used in many applica-
tion areas as a foundation for dynamic determination of system configurations in



stochastic environments. Representative areas include artificial intelligence [3],
mobile systems [4], and wireless sensor networks [5].

Various methods have been developed to improve the practical utility of
MDPs in complex design problems involving dynamically adaptive systems. For
example, Boutilier et al. propose factored MDPs as a method for compact rep-
resentation of large, structured MDPs [6]. Benini et al. introduce a finite-state,
abstract system model for power-managed systems [7]. In their approach, the
system and its external environment are modeled as a service provider and a
service requester, respectively, in the format of Markov chains. Each of these
Markov chains has a set of states and a matrix of state transition probabilities.
The computed state-to-policy mapping is then stored in a local memory or con-
troller and is used in real time to dynamically reconfigure the system according
to its current state.

However, the complexity of the MDP algorithms in general grows exponen-
tially with increases in the size of the state space. Jonsson and Barto present an
algorithm that performs hierarchical decomposition of factored MDPs to help
alleviate this growth in complexity [8]. Their approach to hierarchical decom-
position systematically allows irrelevant state variables to be ignored. However,
their development of hierarchical MDPs is focused on algorithms and theoret-
ical analysis for state abstraction and MDP computation, and the connection to
implementation of the hierarchical MDPs and application to real-world systems
is not addressed. One objective of this work is to help bridge this gap in the
context of embedded signal processing systems.

In particular, in this work, the MDP schemes presented in [9] and [8] are
integrated. This results in a novel approach to formulating MDPs for policy
optimization in embedded signal processing systems with complex state spaces,
and stringent implementation constraints. In the proposed design framework,
hierarchical MDPs are applied to decompose the modeling of the application
and embedded processing system into multiple MDPs. Each smaller MDP is
formulated using an approach similar to that developed in [7]. This hybrid
MDP approach is referred to as the Hierarchical MDP approach for Compact
System-level Modeling (HMCSM).

To promote systematic derivation of embedded implementations using the
HMCSM approach, we integrate the approach into the framework of dataflow-
based design of signal processing systems. Model-based design in terms of data-
flow graphs helps to ensure properties, such as determinacy, deadlock-free oper-
ation, and bounded memory requirements, which are of great importance in the
reliable implementation of embedded signal processing systems (e.g., see [1]).
Dataflow also orthogonalizes the implementation of individual functional com-
ponents (actors) from the system-level control and coordination among the act-
ors. This separation of concerns is especially useful because it enables efficient
and reliable switching across different system-level configurations while reusing
individual actors across the configurations. With these motivations, I develop
in this work a dataflow-based framework for design and implementation of ad-
aptive signal processing systems using HMCSM.

To demonstrate the efficiency and flexibility of the proposed design frame-
work and the corresponding libraries and tools, we apply it to implement a
DPD system that benefits significantly from adaptivity and run-time system re-
configuration. In the targeted DPD system, Pareto-optimized DPD parameters
are derived subject to multidimensional constraints and predistortion trade-offs



are reconfigured among the different options to support efficient predistortion
across time-varying operational requirements and modulation schemes. The
design evaluation metrics (optimization objectives) targeted in the development
of the DPD architecture are system energy consumption, adjacent channel power
ratio (ACPR), and error vector magnitude (EVM).

Portions of our research on HMCSM are published in [10].

2 Background

In Section 1, MDP methods and dataflow-based design are introduced as two
key foundations of the contributions in this work. In this section, I provide back-
ground in these areas that is relevant to development of the proposed HMCSM
design framework.

2.1 MDP Methods

In Benini’s work on MDP-based methods for system-level power management,
the service provider, service requester, and power manager are defined as key
system components. The policy is composed of a finite discrete sequence of
decisions taken by the power manager. A generic deterministic stationary policy
can be represented as a table with the rows representing all possible states and
the columns representing all possible actions. The size of the policy table grows
geometrically when the number of system states increases. As a result, the
policies derived from the MDP techniques proposed in [7] are practical only for
problems with relatively small numbers of system states.

A factored MDP only requires specification of the conditional probabilities
with respect to dependent state variables, in contrast with traditional MDPs
where the probabilities with respect to independent variables must also be spe-
cified. The resulting modeling components are smaller in size and their policies
are more compact compared to traditional MDPs. A more detailed and sys-
tematic introduction to factored MDPs can be found in [6]. Based on the idea
of factored MDPs, a number of factorization methods has been proposed (e.g.,
see [11]).

As mentioned in Section 1, hierarchical factored MDPs are explored by
Jonsson and Barto [8]. They use a dynamic Bayesian network and a causal
graph to identify relationships among state variables and construct a hierarch-
ical MDP for a given policy optimization problem. In this work, we build on
these theoretical foundations of hierarchical factored MDPs, and apply this class
of MDPs to design and implementation of adaptive signal processing systems.

In our case study of a DPD architecture, we design and implement several
hierarchical MDPs with different levels of design space complexity. This case
study of a DPD architecture further demonstrates the utility of HMCSM MDPs.
Specifically, through the case study, we demonstrate a systematic process for
extending hierarchical MDPs to handle increasingly complex design spaces and
explore trade-offs involving enhanced system performance (when more complex
MDP formulations are applied) versus the design time and run time overhead
of the more complex formulations. Details on our formulations of hierarchical
MDPs for DPD architecture design are discussed in Section 6.5.



2.2 Dataflow-based Modeling and Design

An important contribution of this work is the integration of MDP-based design
methods into a model-based design framework based on dataflow models of
computation. In the form of dataflow that we apply, signal processing applica-
tions are modeled as directed graphs, called dataflow graphs, in which vertices
(actors) represent computations of arbitrary complexity; edges represent first-in,
first-out (FIFO) communication channels between actors; and actors represent
discrete units of computation, called firings, that consume and produce well-
defined amounts of data from and to the incident FIFOs [12].

Conceptually, data is encapsulated in objects called tokens as they pass
through FIFOs from one actor to another. In signal processing oriented dataflow
models, special attention is given to the rates at which actors produce and
consume data to and from their ports, respectively. These rates are referred
to as the production rates and consumption rates of the associated actor ports
or incident edges. Collectively, production rates and consumption rates are
referred to as dataflow rates. Analysis in terms of dataflow rates can be useful
for many kinds of optimizations, such as those involving scheduling and memory
management (e.g., see [1]). Different forms of dataflow have been proposed based
on different restrictions on the dataflow rates or how dataflow rates across an
actor or throughout a graph are related. Examples are cyclo-static dataflow [13],
scenario-aware dataflow [14], and synchronous dataflow (SDF) [15].

In this work, a form of dataflow called parameterized synchronous dataflow
(PSDF) is applied to demonstrate the model-based integration of the proposed
MDP-based design techniques [16]. We use PSDF because it is useful in mod-
eling dataflow graphs that have dynamically varying parameters. Quasi-static
scheduling techniques have also been developed for these graphs that systematic-
ally derive parameterized looped schedules [17]. A parameterized looped schedule
involves loops that iterate across subsets of actors, and have iteration counts
that can be symbolic expressions in terms of static or dynamically-varying actor,
edge or graph parameters.

Parameterized dataflow is applied due to its natural match with the objective
of developing a model-based framework for adaptive signal processing. However,
we envision that the framework can be adapted into modeling environments that
are based on other parametric dataflow models, such as Boolean parametric
dataflow [18] and the parameterized and interfaced dataflow meta-model [19].
Investigating such adaptations along with application of the distinguishing tools
and analysis techniques available for such alternative models is an interesting
direction for future work.

To implement PSDF-based models of adaptive signal processing systems, we
apply the Lightweight Dataflow Environment (LIDE) [20]. LIDE is a software
tool for dataflow-based design and implementation of signal processing systems.
LIDE is based on a compact set of application programming interfaces (APIs)
that is used for constructing and connecting dataflow actors, edges, and graphs.
LIDE includes facilities for dynamically manipulating actor, edge and graph
parameters. We use these facilities to incorporate PSDF semantics in the LIDE-
based implementations that we develop when applying the HMCSM framework.
Due to LIDE’s lightweight and flexible feature, it can readily be targeted to dif-
ferent implementation languages such as C, CUDA and MATLAB [21]. When
the system is implemented in a particular language XYZ, we refer to the result-



ing specialized version of LIDE as LIDE-XYZ. In this work, we apply LIDE-C,
which is based on a C language implementation of the LIDE APIs. A useful
direction for future work is to achieve hardware acceleration for DPD subsys-
tems using a LIDE-based digital hardware design methodology. Details on this
direction for future work are discussed in Section 5.

3 LIDE-based Implementation

In this work, we employ LIDE as the implementation approach for dataflow
modeling semantics. In the design of each actor, LIDE requires four basic inter-
face functions, construct, enable, invoke and terminate. The construct function
instantiates an actor and initializes its configuration. The enable function re-
turns a Boolean indicator about whether or not the actor can be fired based
on its current mode, and the current state of its input and output buffers. The
invoke function executes the actor in its current mode. The terminate function
performs operations for deallocating the actor when it is no longer needed in
the enclosing system.

We target our implementation to the C language and extend LIDE-C by
providing new capabilities to support hierarchical dataflow modeling and PSDF
semantics. The key features and utilities added in the new version of LIDE-C
are summarized as follows. For details on the original version of LIDE that we
have extended as part of this work, we refer the reader to [22].

e A graph abstract data type (ADT) has been created to enable hierarchical
semantics in LIDE-C. A graph ADT in LIDE-C contains a set of actors
and edges in the graph and is associated with a scheduler that coordinates
execution of actors in the graph when it is executed. An actor within the
graph associated with a graph ADT instance I can encapsulate another
graph ADT instance J, thereby allowing for hierarchical design of dataflow
graphs.

e The actor ADT has been extended to support implementation of hierarch-
ical dataflow in LIDE-C. The address of an array A that contains pointers
to graph ADT instances has been added to the common data structure
for actors so that an actor can be mapped to one or more subgraphs that
are nested hierarchically within it. An actor can be mapped to different
subgraphs based on different conditions. When an actor is associated with
one or more subgraphs, the actor is called a hierarchical actor; otherwise,
the array A is empty, and the actor is called a primitive actor. An actor is
executed from within graphs that contain it through a uniform interface
regardless of whether the actor is hierarchical or primitive.

e Like a primitive actor, a hierarchical actor also has a set of modes, where
each mode has fixed production and consumption rates that are associated
with the actor ports. The enable function of a hierarchical actor checks the
executions condition of the current mode in relation to the buffers in the
enclosing graph that are connected to the input and output ports of the
actor. The invoke function of a hierarchical actor executes the scheduler
that is associated with the actor.



e To support the implementation of PSDF, an ADT for PSDF specifications
has been developed in LIDE-C. The PSDF specification ADT inherits from
the graph ADT. The three core components of a PSDF specification are
modeled as three hierarchical actors (init, subinit, and body actors) in the
PSDF specification ADT. Each of these actors encapsulates a subgraph
that specifies the functionality of the corresponding PSDF specification
component. The scheduler for PSDF specifications is defined according
to PSDF semantics. A PSDF specification can be nested within a higher
level graph by being encapsulated as a hierarchical actor.

These new features in LIDE-C enable important new capabilities for model-
based design that are relevant to MDP-based design optimization for adaptive
signal processing systems.

4 Hierarchical MDP Approach

4.1 HMCSM Framework

The HMCSM framework is illustrated in Figure 1. At design time, the applic-
ation functionality is modeled using dataflow techniques, as illustrated in the
top right region of the figure. The design process also involves modeling the
environmental and system-level dynamics, and reconfiguration process in the
form of a hierarchical MDP, as illustrated by the part of Figure 1 that is labeled
Hierarchical MDP Subsystem. As part of this modeling process, Markov mod-
els are created of both the processing demands imposed on the system by the
application, and the dynamics of the processing system components. In a clas-
sical MDP formulation, these elements are combined into a single MDP. In this
work, I additionally explore the use of Hierarchical MDPs in comparison to a
single MDP to address the scaling problems that are well known to be a major
weakness of classical MDPs (see Section 1).

The single MDP is transformed into a hierarchy of multiple MDPs by first
factoring the elements in the MDP based on their stochastic interdependencies.
Once the MDP has been factored, it can be decomposed into sub-problems that
can be independently solved by multiple MDPs arranged in a hierarchy. For de-
tails on the processes involved in factoring and transforming the original MDP,
reader is referred to [8]. In the HMCSM framework, the factoring and decom-
position are carried out by hand, using knowledge of the application domain
and the processing system. An interesting future direction for this work is the
development of tools to help automate the factoring and decomposition process.

The Configuration Control Machine (CCM), shown in the lower (run time)
portion of Figure 1, is used to manage dynamic system-level reconfiguration
throughout operation of the embedded signal processing system. Here, by dy-
namic reconfiguration, we mean changes to any system-level parameters, includ-
ing software, platform, and algorithmic parameters, that can be manipulated
while the system is executing. At run-time, the CCM executes periodically,
where the period T, of its execution is a system parameter.

We refer to each periodic execution of the CCM as a reconfiguration round.
During a given reconfiguration round, the CCM determines, based on the current
environmental state and system state, whether or not to perform a dynamic
reconfiguration operation. Furthermore, if the determination is to perform such



Design Requirements Appl_igatiz_)n
and Constraints Specification
Evolutionary Multiobjective

Optimization Approach

l

’ Set of Extraced Pareto-optimized ‘

Configurations

Hierarchical MDP Subsystem

— LIDE Library
Stochastic
Models of Control Paramatic
Environment N Actions
Function -P
and System Dataflow Model
MDP
Solver
Parameterized Design Time
LIDE
Implementation Run Time
""""""""""""""""" [¢ onflguratlonParametersT
Policy
Mapping System

Engine Sensor

Optimized PolicyT

Configuration
Control
State-Policy Mapping Machine

Measurements

Environmental
Sensor

Configuration Management Subsystem

Figure 1: An illustration of the HMCSM framework for design and implement-
ation of adaptive signal processing systems.

an operation, the CCM also determines the specific reconfiguration operation
that is to be applied to the system. The blocks labeled System Sensor, System
State Model, Environmental Sensor, and Environmental State Model represent
measurements and models that are used by the CCM to determine the system
and environmental state during a given reconfiguration round.

The block labeled Control Actions, in the design time portion, encompasses
the set of possible reconfiguration operations that can be applied by the CCM
in a given reconfiguration round. Examples of control actions in the context of
HMCSM are changes to the type of digital filter that is applied to process a
given signal in the application flowgraph, changes to the coefficients in a filter
of a fixed type, and changes to the input port from which a given actor will read
input data.

If A denotes the set of control actions, then the CCM can be viewed as
an implementation of a function P : S, x Sy — A, where S, is the set of
environmental states, and S, is the set of system states. This function P is
referred to as the reconfiguration policy or simply “policy” in an adaptive signal
processing system that is developed using the HMCSM framework. In HMCSM,
the policy is applied at run-time, and derived at design-time. It is derived
using an MDP Solver, which is a software module that automatically generates
optimized policies from MDP model specifications.

The Policy Mapping Engine, shown near the center of Figure 1, translates
control actions into updates to dynamic parameters in the embedded software
that achieve the intended actions. In the implementation of the HMCSM frame-
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work, these parameter updates are made by setting appropriate variables in
an implementation of the application dataflow graph that is developed using
the Lightweight Dataflow Environment (LIDE) (see Section 2.2). This dataflow
graph implementation is represented by the block labeled Parameterized LIDE
Implementation, and the software tool that we use to construct this implement-
ation is represented by the block labeled LIDE Library.

In the HMCSM framework, each control action is formulated in terms of
specific changes to specific parameters in the parameterized dataflow application
model M. In other words, a given control action A can be represented as
A= {(p1,v1), (p2,v2),...,(PN(4), UN(4))}, Where each p; is a distinct parameter
in the application model M, each v; is an admissible value of parameter p;, and
N (X) is the number of parameters in M that are manipulated by a given control
action X. Execution of the control action A at run-time involves setting each
parameter p; to the corresponding value v; such that subsequent operation of
M will be performed using these new parameter settings. Operation continues
with the new parameter settings until a new control action is applied to the
system (in some subsequent reconfiguration round).

The formulation of an MDP in HMCSM includes three main components,
which are represented by the blocks in Figure 1 that are labeled Stochastic
Models of Environment and System, Reward Function, and Control Actions.
These components are developed by hand using well-established foundations of
MDP modeling, along with domain knowledge of the targeted application.

We have discussed the Control Actions part of the MDP formulation earlier
in this section. The Stochastic Models of Environment and System include, for
each of the two models (environment and system), the definition of the state
space and the state transition matrix (STM). The STM is a stochastic matrix
that defines the probability of the transition to the next state given the existing
state, and conditioned on a given action. Intuitively, the Reward Function
maps state-action pairs into scores that assess the utility of performing the
associated action (control action) during the given state. An approach is applied
for incorporating multidimensional design objectives into the scores produced
by the reward function. For details on this multidimensional reward function
approach, the reader is referred to [9].

In summary, the HMCSM framework presented in this section provides a
comprehensive methodology and supporting tools for design and implementa-
tion of adaptive embedded signal processing systems. The specific tools that
are applied in the demonstration of the framework are MDPSOLVE [23] and
LIDE, which correspond to the blocks labeled MDP Solver and LIDE Library,
respectively, in Figure 1. However, the framework is not intended to be specific
to these tools, and can readily be adapted to other tools for solving MDPs and
implementing parametric dataflow graphs, respectively.

4.2 Example: Channelizer/receiver Application

In this section, I describe a detailed case study as an illustrative example of the
proposed framework. In addition to providing a demonstration of the proposed
HMCSM design framework on a practical, adaptive signal processing application,
the case study also serves as a demonstration of a novel, application-specific,
MDP-based system design. The example is an adaptive wireless communica-
tion receiver that dynamically optimizes its system configuration in response to
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Figure 2: Block diagram of receiver signal processing and two MDP schemes.

changes in different use cases. As a key part of the receiver, the channelizer ex-
tracts multiple radio channels of distinct bandwidths from a digitized wideband
input signal. Among various computing components of the receiver, the channel-
izer operates at the highest sampling rate in the system and accounts for most
of the computational complexity and energy consumption [24]. By adapting the
configuration of the channelizer based on the communication scenario, we seek
to optimize its energy efficiency while ensuring that it extracts the number of
channels that is required by the communication scenario at any given time. We
design an HMCSM MDP to perform this adaptation, and apply the dataflow-
based MDP implementation framework to realize the resulting adaptive signal
processing on a state-of-the-art embedded processing platform.

4.2.1 Adaptive Receiver Architecture

Our example is a wireless receiver for a Low Power Wide Area Network (LP-
WAN) used in a “Smart Cities” Internet of Things (IoT) application [25]. We
propose an adaptive LPWAN receiver that dynamically adjusts the system band-
width continually, and periodically transmits the new bandwidth setting to end
nodes through the use of a downlink beacon. This case study implements the
physical layer signal processing for such an adaptive receiver. The implemented
architecture consists of reconfigurable channelizer and baseband processing al-
gorithms. In this work, we build on the MDP-based dynamically reconfigurable
channelizer presented in [9].

4.2.2 Application Specification

Figure 2 shows a block diagram of the adaptive receiver architecture that is
investigated in this case study. The channelizer is used to separate the incoming
wideband signal into multiple data streams, where each of the data streams is
associated with a distinct channel. Each channel is then oversampled for symbol
timing recovery, and then processed by a Generalized Likelihood Ratio Test
(GLRT) detector, which looks for the transmission preamble. Once a detection
is successful, a matched filter demodulator recovers the transmitted data and
confirms it with an error detection function (e.g., CRC32).

We compare the relative merits of two separate MDP schemes, labeled MDP-
I and MDP-II. These two schemes are illustrated together in Figure 2. MDP-I

12
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consists of a single MDP employed for control of both the dynamic bandwidth
as well as the channelizer processing configuration. MDP-II splits the modeling
into two MDPs arranged in a hierarchy. These two MDPs are labeled MDP-II-a
and MDP-II-b.

The channelizer can be implemented by one of two options, as detailed in [9]

— a bank of M polyphase decimators and mixers (labeled as DCM[1], DCM]2],
..., DCM[M]) or a Discrete Fourier Transform Filter Bank (labeled as DEFTFB).
Both options are capable of meeting the processing requirements of the channel-
izer subsystem.

However, they do so using different algorithmic means and the relative effi-
ciency of one option compared to the other is highly platform- and implementation-
dependent. Using our proposed MDP-based approach, the reconfiguration policy
is systematically optimized for the exact processing characteristics of a specific
platform (e.g., measured power consumption).

4.2.3 PSDF Model for Channelizer

We implement the channelizer subsystem as a PSDF design with dynamic para-
meters. Our PSDF model of the channelizer system is illustrated in Figure 3.
Here, M is a static parameter of the application that represents the total number
of available channels.

At run-time, the MDP-generated reconfiguration policy determines how many
channels to enable, based on the data rate, and whether to apply DCM pro-
cessing or DFTFB processing. These policy decisions are used to manipulate a
set of dynamic parameters {Y7,Ya,..., Y} that is associated with M distinct
DCM actors DCM[1], DCM][2],...,DCM[M], respectively. The policy decisions
are also used to manipulate a parameter Z that is associated with an actor
labeled DFTFB, which represents DFTFB processing on all of the enabled chan-
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nels. Each of these (M + 1) parameters is binary valued. In particular, for each
i€ {1,2,..., M} if DCM processing is enabled, and the ith channel is enabled,
then V; = 1 and Z = 0. Conversely, if DFTFB processing is enabled, then
Z =1, and Y; =0 for all .

After each reconfiguration round, updated values of {¥7,Y2,...,Yy} and Z
are propagated to the adaptive channelizer lowgraph through the Init Graph, as
illustrated in Figure 3. The channelizer flowgraph is parameterized in terms of
these (M +1) dynamic parameters and encapsulated within the Body Graph, as
shown in the figure. The Init Graph and Body Graph are modeling constructs
in PSDF that are used, respectively, for reconfiguration functionality (determ-
ination and propagation of new parameter values), and core signal processing
functionality associated with an application.

The Config. (configuration) Sink actor in Figure 3 is a special actor in LIDE
that is used to propagate parameter updates from the Init Graph to the Body
Graph in PSDF-based implementations. The shaded actors in the Body graph
are dynamically parameterized actors. The expressions next to the input and
output ports represent the consumption and production rates associated with
the ports, respectively. The Distrib. (distributor) actor takes its input data
and distributes copies of it to the appropriate subset of DCM/DFTFB actors
depending on the current values of the dynamic parameters in the graph.

The actors labeled Chn[1], Chn[2],...,Chn[M] in Figure 3 copy data from
their input ports to their output ports based on which (if any) input ports have
nonzero consumption rate. These actors generate samples on each of the M
output channels of the channelizer subsystem.

We compare the relative merits of a conventional, monolithic MDP approach
(labeled MDP-I) with our proposed hierarchical MDP approach (labeled MDP-
IT) to adaptive signal processing system design.

4.2.4 MDP-I

In MDP-I, the (single) MDP state space consists of the instantaneous rate of up-
link packets generated by all end nodes, and the configuration of the basestation
processor (number of channels enabled and channelizer configuration).

The action space consists of the next configuration of the basestation pro-
cessor (number of channels enabled and channelizer configuration).

The STM for the packet generation rate is computed a priori from the traffic
rate measured in a design-time simulation. The STM for the processing system
is obtained from the dynamics of the implementation on the reference platform.

The MDP reward metric is a linear combination of two competing metrics:
the probability of packet collision and the power consumption expended in bas-
estation processing. This linear combination of conflicting metrics tasks the
MDP with finding an optimal trade-off at any time based on relative weightings
that are provided by the designer for the two metrics.

4.2.5 MDP-II

In MDP-II, the control task is split across two hierarchically arranged MDPs:
MDP-II-a and MDP-II-b.

MDP-II-a is used to determine the optimal number of channels to enable
at a given time, while being agnostic to what processing configuration is actu-
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ally used in the receiver to implement that configuration. MDP-II-b is used
to determine the optimal processing configuration for an exogenously specified
number of channels.

4.2.6 Implementation

The configurable components of the processing system were implemented using
the method detailed in Section 4.1, and deployed to a Raspberry Pi 3 Model
B computing platform. Each of the available configurations was run in a test
mode, and the average processing power consumed was measured and tabulated
as shown in Table 1. The device we used for measuring power consumption is
the Tektronix Keithley Series 2280 Precision Measurement DC Power Supply.
The measurements were then provided as input to the MDP models, and used
to generate control policies using these empirically measured characteristics of
the processing system.

Table 1: Platform measurements.

Processing  Number of Channels  Average
Configuration Processed Power

DCM 1 1.4406 W
DCM 14781 W
DCM 1.5203 W
DCM 1.5660 W/
DCM 1.6025 W
DCM 1.6524 W
DCM 1.7013 W
1.7453 W
1.6754 W

DCM
DFTFB

oS e

4.2.7 Simulation Results

We performed a physical layer signal processing simulation in MATLAB to
generate uplink traffic from 1,000 end nodes. The simulation compared the
use of the two (adaptive) MDP Schemes and also (non-adaptive) cases where
only the fixed channelizer configurations were used. Each run of the simulation
generated results of the form shown in Figure 4. In this figure, the MDP (MDP-
I) is in control of the number R of receiver channels enabled. Note that when the
traffic rate is high, the system increases R in order to reduce packet collisions.

The two competing MDP schemes, MDP-I and MDP-II, produced the same
control policy. However, a key difference is that the hierarchical MDP reduced
the model size from 1.63MB to 265kB, which is a factor of 6.1 times smaller
than the original size. This reduction becomes especially relevant when hous-
ing the MDP model and policy generation code on the processing platform
itself. Such an embedded MDP realization is useful because it allows the MDP
and generated policy to adapt dynamically based on learned characteristics of
the operating environment. Integration of embedded MDP techniques into the
HMCSM framework is a useful direction for future work.

MDP-II also provides a benefit in the execution time required for the MDP
solver to compute the optimal policy. We applied the MATLAB-based open
source solver called MDPSOLVE [23]. The execution times were measured as
294ms for MDP-I, 50.8ms for MDP-II-a and 41.5ms for MDP-II-b.

As aresult, in a deployment with a fixed processing system that periodically
re-computes the control policy in response to a changing external environment,
the hierarchical MDP scheme reduces the solver time from 294ms to 50.8ms,
which is a factor of over 5.7X smaller.
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All of the simulation runs that we carried out are compared in Figure 5. Dif-
ferent simulations for the MDP-generated policy were carried out using different
relative weightings for the two performance metrics. Simulations were also car-
ried out for fixed signal processing configurations. The square-shaped points in
Figure 5 correspond to DCM-based channelizer operation with the number of
enabled channels ranging from 1 to 8. The fixed configuration DFTFB case is
represented by the triangle-shaped point in the top left region of the figure. In
the context of all of the design points evaluated and the two performance met-
rics, we see from the figure that the MDP-based approach generates a Pareto
front. This demonstrates that the adaptive reconfiguration capability provided
by the MDP leads to better performance in comparison with fixed configurations
for each of the available signal processing algorithms.
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Figure 4: Simulation results for MDP-  Figure 5: Comparison among
L MDP-generated policies and fixed-

configuration designs.

5 Extensions to the LIDE-V Library

Based on the analysis in [26], where a dataflow model is constructed for the DPD
algorithm in [27], most of the computation and energy consumption is concen-
trated in the filter actors. Thus, in our future work, we plan to implement all
the predistortion filters in the filtering stage on an FPGA platform to accelerate
the data processing. To facilitate the power efficient hardware implementation
of DPD systems, we have extended the LIDE-V library to integrate low power
techniques.

In LIDE-V, the enable, invoke and scheduling functions for an actor are
implemented as three coupled Verilog modules, which we refer to as the actor
enable module (AEM), actor invoke module (AIM) and actor scheduling module
(ASM), respectively [28]. Dataflow edges are implemented as dataflow edge
modules (DEMs) to provide communication channels for connections between
actors. Since DEMs buffer data through a first-in first-out protocol, we also
refer to them simply as FIFOs.

The new features added to the LIDE-V library can be summarized as the
following:
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e We have integrated into the LIDE-V library two low power methods: asyn-
chronous design with multiple clock domains and clock gating.

e We have integrated support for hierarchical actor design in LIDE-V. This
advancement provides useful new features in LIDE-V for design of complex
applications and reuse of dataflow subgraphs.

We have demonstrated the flexibility and power efficiency of the extended
LIDE-V library through a deep neural network application for vehicle classi-
fication. Our envisioned future work in this direction is to apply the updated
LIDE-V library to implement the DPD system designed in this work.

6 Case study: Digital Predistortion Application

6.1 Background

In wireless communication systems, I/Q mismatch, power amplifier (PA) non-
linearities, and signal leakage in the local oscillator (LO) are implementation-
related problems that must be addressed before the direct-conversion principal
can be deployed. In the frequency domain of the transmitted signal, the effects
of these impairments are translated as power leakage into adjacent channels.
DPD is a widely investigated technique (e.g., see [26,29-32]) to counteract such
impairments by applying carefully-calculated distortion to the signal prior to
transmission.

6.2 Adaptive Dataflow-based DPD Architecture

The DPD architecture developed in this report is based on the algorithm presen-
ted in [27]. This DPD algorithm operates in two stages. In the coefficient
estimation stage, the DPD filtering coefficients are estimated. The estimated
coefficients are then employed in the DPD filtering stage for actual predistortion
of the input signal.

The structure of the predistortion filtering system is shown in Figure 6. The
DPD system is split into two branches, namely direct and conjugate predistor-
tions. The output of the predistortion filter can be expressed as

Zn = Z Son * thp(an) + Z Fam xtq(ay) + ¢, (1)

pelp q€lq

where % denotes convolution; x, and z;, are the direct and conjugate input
samples, respectively; Ip and Ig are the employed sets of direct and conjugate
term orders, respectively; 1, and 14 are polynomial basis functions for the direct
and conjugate branches, respectively; f,, and f, , are the FIR filter coefficients
for the direct and conjugate polynomials, respectively; and ¢’ is the LO leakage
compensation component. The maximum polynomial order used can be different
for the direct and conjugate branches of the predistorter [27].
Given r € {p, ¢}, the polynomial basis function ¢, can be expressed as

¢T(xn) - Z uk7r|xn|k71xna re IR 5 (2)

kel,
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Figure 6: Predistorter structure for the joint predistortion of PA and I/Q mod-
ulator impairments.
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Figure 7: Dataflow model of DPD coeflicient estimation.

where I'r denotes the set of term orders employed in the given DPD configuration
(Ir =Ipifr =p,and Ig = Iy if r = q); I, denotes the subset of I that contains
only term orders up to r in Ir; and {uy } denotes the polynomial weights. Here,
given a polynomial p = ag + ajx + ... + a,2", we define each monomial a;z’
to be a term of p, and we define i to be the associated term order. According
to [27], only odd-order polynomials are used to avoid the computation of the
square-root within |z, |¥~!, which is a computation-saving option that has been
applied in the proposed implementation.

6.3 Application Specification

Dataflow modeling of the DPD is complex because of the high degree of para-
meterization. As mentioned in 6.2, the DPD architecture has been split into
two parts, the DPD filter and DPD coefficient estimation, as shown in Figure 7
and Figure 8, respectively. The interconnection between the two diagrams can
be inferred from the placeholder actors DPD Coefficient Estimation and DPD
Filter in Figure 7 and Figure 8. Also, the Parameter Source and Param Dis-
tribution actors have same functionalities in the two dataflow models and have
been replicated for design simplicity.

The implementations of the actors in the two dataflow graphs are summar-
ized as follows.

e Source and Sink: source actors are used for file reading. They read a file
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that contains data and move the acquired values to their output FIFOs.
Similarly, sink actors consume data from their input FIFOs and write it
to an output file.

e Param Distribution: This actor distributes updated parameter values
to parameterized actors.

e Conjugate: The conjugate actor computes the complex conjugate of the
received sample value and writes it to its output FIFO.

e Basis Matrix: This actor performs the basis matrix computation intro-
duced in Section 6.2.

e LS Estimate: This actor performs the least squares (LS) estimation
operation.

e DPD Coefficient Distribution: The actor reads and distributes estim-
ated filter coefficients to FIR filters.

e Polynomial Computation: This actor computes the polynomial basis
function according to Equation 2 for both non-conjugate and conjugate
branches of the DPD filter.

e FIR Filter: This actor performs the FIR filtering operation part of Equa-
tion 1.

e Accumulator: This actor combines the output from all FIR filters and
adds the LO leakage compensation component according to Equation 1.

6.4 PSDF Model

The DPD architecture introduced in Section 6.3 is implemented as a PSDF
design with dynamic parameters. A PSDF model of the DPD system is illus-
trated in Figure 9. The DPD system is parameterized by the number of direct
predistortion filters, the number of conjugate predistortion filters, and the or-
der of each deployed filter. Each of these parameters can be reconfigured at
run-time.

At design time, we determine the maximum number of available filters for
direct and conjugate predistortion, labeled M and N, respectively. Thus, in
Figure 9, there are (M + N) FIR filters in total, labeled FIR Filter 1, FIR Filter
2, ..., FIR Filter (M + N). At run-time, the MDP-generated reconfiguration
policy determines the current system configuration, which includes how many
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Figure 9: PSDF model of DPD architecture.

filters are deployed for direct and conjugate predistortion, respectively, and the
corresponding order of each deployed filter. These policy decisions are used to
manipulate a set of dynamic parameters {P, Q, Fy, Fy, ..., Fa, F1, Fo, ..., Fn},
where P and @ are the number of deployed filters for direct and conjugate data
processing, respectively; Fy, Fy, ..., Fyy are the orders of the M direct data
filters; and Fy, I, ..., Fy are the orders of the N conjugate data filters. Note
that when a filter is not deployed in the current configuration, the corresponding
order of that filter is set to 0.

After each reconfiguration round, updated values of
{P,Q,F\,F,...,Fy,Fy,Fy,...,Fx} are propagated to the adaptive DPD
flowgraph through the PSDF init graph. The DPD flowgraph is parameterized
in terms of these dynamic parameters and encapsulated within the subinit
graph and the body graph. The subinit graph is a modeling construct in PSDF
that can change body graph parameters just before each execution of the body
graph. Examples of such parameters include the coefficients of FIR filters and
the phases of downsamplers and upsamplers.

In our PSDF-based DPD architecture design, the DPD coefficient estimation
subsystem is mapped to the subinit graph. This subsystem estimates coeflicients
for the FIR filters that are deployed in the current configuration. The computed
coefficients are then propagated to the body graph as parameter updates. Given
the system configuration parameters from the init graph and the filter coefficient
parameters from the subinit graph, the body graph performs the predistortion
of input data based on the updated DPD parameter settings. In the body graph,
the first (P 4+ Q) FIR filters are switched on for predistortion filtering and the
rest of the filters are disabled.
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6.5 Hierarchical MDP Models for DPD System Optimiz-
ation

In this work, we apply the hierarchical MDP approach introduced in Section 4.1
to the dynamic management of the DPD system. The proposed hierarchical
MDP scheme is illustrated in Figure 10. This scheme decomposes analysis into
four MDPs that are arranged hierarchically. These four MDPs are labeled (from
topmost to bottom-most in the hierarchy) MDP-I, MDP-II, MDP-IIT and MDP-
1V, respectively. MDP-I decides whether to apply DPD or not based on the
current PA model and transmission power. If DPD is to be applied according
to the decision from MDP-I, then MDP-II determines whether to turn on the
learning phase of the DPD. When enabled, this learning phase recomputes the
filter coefficients based on the PA model and transmission power.

MDP-IIT and MDP-IV together optimize the DPD system configuration
based on the current system state and transmission power. Specifically, MDP-IIT
is responsible for determining the values of P and ), and MDP-1V is responsible
for determining the filter order of each employed filtering branch.

As an example, the core MDP components of MDP-III are defined as follows.

e System state space: {P,Q}, where P € {1,2,3,4} and Q € {1,2,3,4}.

e Environment state space: {p}, where p € {17dBm, 19dBm, 21dBm} rep-
resents the transmission power.

e Action space: {Paction, @action}- The actions on both P and @ belong to
the set {no change, reduce by 1,increase by 1}.

e Reward function: Reward(state,action) = C; x ACPR(state) — Cy X
EVM(state) — C3 x Power(state) — Cy x cost(action), where ACPR, EVM
and power are measurements with respect to the specified state; C1, Cs, Cs, Cy
are constants that represent weighting factors for the different metrics
considered; and cost represents the system cost incurred by taking the
specified action.

e Constraints: The generated policy is subject to ACPR, EVM and power
consumption constraints that are imposed on the system at run-time. Fur-
thermore, the selected action should not lead to branch count configura-
tions that violate the pre-specified P, Q ranges.
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Figure 11: Comparison among MDP-generated policies and manually-set
policies.

6.6 Simulation Results

We run simulations in MATLAB to measure ACPR and EVM related to each
P, Q combination in the system state space. The modulation employed to derive
these measurements is QPSK. The results from these measurements are provided
as input to the MDP models, and used to generate control policies.

In Figure 11, we compare the policy generated from the proposed hierarchical
MDP approach with a manually-set policy that always selects the action that
maximizes the current reward without considering stochastic characteristics. As
we can see, the manually-set policy may lead to more reward than the MDP-
generated policy in the short term (i.e., when time < 100 reconfiguration rounds
in this case). However, the MDP-generated policy outperforms the manually-set
policy over longer time periods.

7 Conclusions

In this work, we have developed the Hierarchical MDP framework for Compact
System-level Modeling (HMCSM) and its application to design and implement-
ation of adaptive embedded signal processing systems. HMCSM provides a
structured design methodology that integrates model-based design for embed-
ded signal processing in terms of dataflow methods; MDP formulation using
compact, hierarchical models; optimal policy generation from these models at
design time; and dynamic, system-level reconfiguration at run time. The frame-
work enables systematic derivation of system-level reconfiguration policies that
are based on application-specific functional requirements and operational con-
straints. The effectiveness of our proposed MDP-based system design framework
was demonstrated through an adaptive wireless communication application: a
digital predistortion (DPD) system, which benefits from an implementation that
can dynamically generate optimal control policies. Additionally, the LIDE-V lib-
rary has been updated to support power-efficient hardware implementation of
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signal processing systems. These techniques for power-efficient implementation
are relevant to hardware acceleration of the novel DPD system that has been
developed in this work.
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