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Abstract 

The research of anomaly-based intrusion detection within smart grids is a current topic and 

is investigated by many researchers. Thus, little experience is available on how to address 

the problem of detecting anomalies in smart grids. Another problem emerges when we try 

to use common approaches of pattern recognition. Through the occurring imbalance in the 

data distribution, which means that there are much more data instances belonging to normal 

behavior than to attack data, the common approaches cause a low detection rate for the 

minority class. Therefore, various methods to overcome this drawback will be investigated 

by using two different datasets. To test the performance of the investigated methods for smart 

grids, a three-layer hierarchical smart grid communication system using an intrusion 

detection system at each layer will be built. For this purpose, the two-class ADFA-LD will 

be used. This dataset includes contemporary attacks and is well-known for evaluating the 

performance of anomaly-based intrusion detection systems. Finally, the performance of 

common approaches is compared to the performance of the imbalanced data methods.
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1 Introduction 

Already over 100 years ago, the world’s largest engineered system, the electric grid, was 

built. The electric grid consists of many different systems, components and owners but was 

not built for the requirements of the 21st century. Thus, the electric grid struggles with a lot 

of weaknesses. Since it is difficult to match the energy generation to the demand, energy 

utilities need to over-generate electricity to ensure a complete supply. Nonetheless, power 

outages can occur and these outages are usually recognized only after a customer complaint. 

Additionally, due to the unidirectional architecture of the grid, it is difficult to integrate 

renewable energy power plants (e.g., wind farms or photovoltaic systems) into the electric 

grid. To overcome these shortcomings, the so-called “smart grid” has emerged. Within a 

smart grid, intelligent communication and information systems are used, for instance, to 

flatten peak demands, to predict demands to balance the power generation or to transmit 

price information so that intelligent devices can be activated automatically. This intelligent 

system comprises lots of sensors and communication flows between all components, utility 

providers and customers of the grid. This leads to various algorithms for estimation, control 

and pricing. Unfortunately, through the integration of such systems a lot of vulnerabilities 

arise [1]. Therefore, it is suggested in [2] to use methods from data analytics to monitor the 

communication in a smart grid to detect potential anomalies. But since most of the data is 

associated to normal behavior and not to disturbances or attacks, we must deal with an 

imbalanced data problem. For several reasons, it is more challenging for common 

approaches to predict classes in imbalanced datasets. Thus, a data imbalance makes 

classification of either normal data or anomalies more difficult. However, methods exist to 

overcome these shortcomings.  

Within this project, these improved methods for the classification of imbalanced data sets 

will be investigated comprehensively. All tests will be executed with publicly available 

datasets and as a 2-class classifier problem. Then, the effectiveness of imbalanced data 

methods is tested for an anomaly-based intrusion detection system for smart grids and is also 

compared to common approaches. So, the main goal is to explore the methods of classifying 

imbalanced data sets and then to investigate how to implement them in a smart grid anomaly 

detection system. Since the data in smart grids is imbalanced by nature, it is expected that 

the imbalanced data methods will outperform the common pattern recognition approaches.  
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To accomplish this, the research project will start with an introduction about the current 

power grid. Then, the basic concepts of a smart grid will be explained and the current grid 

will also be compared to a smart grid. After that, the evolution of the smart grid is presented. 

After a brief introduction to communication technologies, the chapter about smart grid is 

then finished with security concerns including a description of the intrusion detection system 

itself and also a concept of how to implement such a system in smart grids.  

The next chapter is about pattern recognition and will explain the fundamental concepts and 

the general recognition process. Then, different common models and approaches for the 

classification task will be described. Since we must deal with imbalanced data, the different 

existing approaches and methods will be explained next. To conclude the chapter, the 

common process and metrics of evaluating the performance of a classifier will be presented. 

Additionally, further metrics, especially for the imbalanced data problem, will be introduced. 

After this theoretical part, the used datasets will be introduced. For each dataset, the structure 

will be described, the source will be stated and the processing steps will be explained. 

Finally, former achieved performances based on a literature review will be presented. In the 

next chapter, the development environment, which is used for all tests, will be explained. 

Now, all conditions for the tests are fulfilled (theoretical foundations, data sets and the 

development environment) and an extensive method screening process will be executed. The 

performance of the datasets will be evaluated with some single classifiers first. Then, a grid 

search to tune the single classifiers and some newly added ensemble learners will be 

executed. Next, the tuned classifiers will be used to evaluate the performance of the dataset 

at first without any adaptions and then with all different imbalanced data methods. The 

performance will then be compared among each other.  

Finally, the best method will be chosen, which will be used for the implementation in the 

smart grid intrusion detection system. So, this research project will be completed with the 

creation of a prototypical smart grid intrusion detection infrastructure in which the 

performance of common approaches is compared to the performance of the best imbalanced 

data method which was chosen during the method screening process. 
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2 Smart grid networks 

The current power grid consists of four different power layers. These layers are categorized 

by voltage and the type of power generation. Therefore, one can distinguish between the 

extra-high-voltage grid, the high-voltage grid, the medium-voltage grid and the low-voltage 

grid. Within the extra-high-voltage grid, large conventional power plants, large hydropower 

or pumped-storage plants or even large renewable energy power plants like on- or offshore 

wind farms generate electricity. This structure continues along with the associated size of 

the high-voltage and the medium-voltage grid with the exception that there are different 

renewable energy power plants. While the high-voltage grid receives the renewable 

electricity from onshore wind farms or photovoltaic power plants, the renewable energy part 

of the medium-voltage grid is powered by freestanding photovoltaic power plants, 

photovoltaic roof systems, biomass power plants and onshore wind farms, too. Finally, the 

low-voltage grid receives the electricity from small, decentralized power plants like 

cogeneration units and also from various renewable energy producers such as individual 

photovoltaic roof-systems on buildings or onshore wind farms as well [3] [4]. 

If the generated power is not consumed directly on-site, it is necessary to transmit the 

electricity somewhere else. If the power is not yet on extra-high-voltage level, it is important 

to transform the power to that level since the transmission within this voltage level has the 

lowest electrical losses. Basically, the higher the voltage, the lower the electrical losses. 

Now, the electricity is transmitted over the extra-high-voltage grid and is transformed with 

voltage transformation substations to the next lower voltage level. Within the high-voltage 

grid the electricity is either used by industries or cities with a very high power demand or is 

converted again to the next lower voltage level. Inside the medium-voltage grid, the 

electricity is either used by smaller industries or cities or is converted a last time to a lower 

voltage level. The low-voltage grid has the lowest voltage level and powers private 

households or very small companies. Altogether, each of these voltage grids are separated 

by voltage transformation substations and the electricity needs to be converted for each 

voltage shift [3]. This structure was built more than 100 years ago and was designed for a 

unidirectional flow only, but yet must handle bidirectional transmissions. More and more 

renewable energy power plants are built whereby a decentralized distribution system arises, 

which causes a lot of power imbalances within the current power grid [4].  
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Beside the distribution power imbalances within the whole power grid, an imbalance occurs 

also on a daily basis. While there is a very high energy demand on the morning, around noon 

and after work time, there is only a medium load to handle during the rest of the day. During 

the night, just the base load remains. This causes different demands for the grid throughout 

the day. Furthermore, there is also an imbalance for different seasons (e.g., there is an 

essential higher demand during hot summers due to electric air conditioning systems). 

However, only half of the power plants in the United States are generating electricity around 

the clock. The other half is only activated if there is a higher demand. This imbalance occurs 

due to an insufficient efficiency of storage systems on a large scale [5]. 

Additional shortcomings for the current grid are for example slow response times, a lack of 

control and visibility, decreasing fuel reserves and resilience problems. So, to satisfy the 

requirements of the 21st century and to remedy the major shortcomings of the current power 

grid, it is important to evolve a new, modern power grid. Consequently, so-called smart grid 

networks, or shortly smart grids, emerged [6]. 

Now, a smart grid should overcome all the shortcomings and provide full visibility and 

pervasive control, which is accomplished by a bidirectional communication path. This two-

way communication network is realized by converging modern communication and 

information technologies with traditional power systems [7]. 

Current Power Grid Smart Grid 

Electromechanical Digital 

Unidirectional Bidirectional 

Centralized Generation Decentralized Generation 

Hierarchical Network 

Few Sensors Sensors Throughout 

Blind Self-Monitoring 

Manual Restoration Self-Healing 

Failures and Blackouts Adaptive and Islanding 

Manual Check/Test Remote Check/Test 

Limited Control Pervasive Control 

Few Customer Choices Many Customer Choices 

Table 1: Comparison between the current grid and a smart grid (adopted from [7]) 
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So, a smart grid is supposed to heal itself (e.g., choose different distribution routes), to be 

more resilient to different system anomalies, to smoothly include renewable energy sources 

and to allow remote checks and tests. A comparison list between the current power grid and 

a modern smart grid is stated in Table 1 [7]. Now, considering an emerged smart grid, various 

power plants, energy storage systems, transmission and distribution substations, industries, 

households and various other components of a power grid are linked together with modern 

communication paths and sensors (illustrated in Figure 1). These connections allow 

interoperability between all the members of the grid [6]. Additionally, the emerge of smart 

grids will build an intelligence layer over the whole power grid which further enables the 

development of new applications and business processes [7].  

 

Figure 1: Smart grid sample topology according to [6] 

 

However, the change from the current power grid to an intelligent power network cannot be 

done for the entire system at once. Instead, gradually strategic implementations into the 

existing grid across various locations are expected to arise. Then, these implementations can 

grow and take over more and more of the system’s load from the current power grid. All in 

all, there will be a coexistence between the current power grid and smart grid networks until 

the whole power grid network is replaced by smart devices [7].  
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For a more detailed explanation of the smart grid emergence, the following chapters will 

outline first of all the evolution of smart grids and their architecture. Then, various potential 

communication technologies for the data exchange within a smart grid will be introduced 

briefly. Afterwards, the chapter will be concluded with security concerns. More detailed, 

after a brief introduction in general security concerns a well-known security system is 

explained and considered for the smart grid domain. 

2.1 Evolution and architecture of smart grids 

Since most power outages (almost 90%) occur in the distribution network, the evolution of 

the smart grid started with improving this part of the grid. The first step was to replace the 

existing electromechanical meters with so-called unidirectional Automated Meter Reading 

(AMR) systems. AMR systems can automatically collect consumption records, alarms and 

status from customers and allow therefore an automated billing. However, with AMR 

systems, there is no demand side management possible and utilities cannot take corrective 

actions. Therefore, they are incapable for the usage within a smart grid. So, the next step was 

to use bidirectional Automated Metering Infrastructure (AMI) systems [7].  

AMI systems consist of a communication network including smart meters, monitoring 

systems, computer hard- and software, data management systems and lots of sensors [6]. 

With an AMI system, it is now possible to manage the demand side. This management 

comprises various customer services such as variable price models, the remote addition or 

removal of services and also remote maintenance. Further customer benefits are, that they 

have more choices about services, a higher reliability, more transparency and through lower 

utility costs also lower energy bills. Benefits for utilities are, that they can assess equipment 

health, maximize asset utilization and life, optimize maintenance, pinpoint grid problems 

and improve grid planning [8]. However, single AMI systems need a backbone and therefore 

a command-and-control system. This command-and-control system must incorporate the 

different systems of generation, transmission and distribution since a smart grid consists of 

the interaction of all these different components. So, a smart grid can be simply denoted as 

a power grid under pervasive control of an intelligent command-and-control system with the 

possibility of ad hoc integrations of various components, subsystems or functions [7]. 

 

The next section will now describe the architecture of smart grids. 
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Architecture 

It is expected, that the smart grid grows gradually and therefore a lot of independent so-

called microgrids will emerge. These microgrids will contain their own control, storage, 

power generation and distribution systems. Thus, they can either work independently or can 

be linked to the entire connected smart grid network with plug-and-play integration. The 

interconnection of different microgrids will be performed by separate command, data and 

power communication lines [7].  

Additionally, each smart grid or microgrid can be divided into Home-Area Networks (HAN) 

respectively Business-Area Networks, Neighbor-Area Networks (NAN) and Wide-Area 

Networks (WAN). A NAN consists of multiple HANs and a WAN consists of multiple 

NANs which are finally united by a utility provider through a control center (Figure 2) [1].  

 

Figure 2: Smart grid architecture according to [1] 

 

For further clarification, a HAN comprises homes or businesses. Within the boundaries of a 

HAN, various smart appliances (e.g., smart meters) are contained. A HAN is then connected 

to a NAN, which consists in general of multiple HANs. This means, multiple households 

and businesses are brought together within a single NAN. Additionally, other power grid 

components (e.g., renewable energy plants) can be incorporated with the NAN, too. Now, 

multiple NANs are united by a utility provided within a WAN and like a NAN, a WAN can 

also contain various power grid components such as power generation systems [1]. 

The next chapter will introduce different communication technologies to connect all the 

components within a smart grid. 
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2.2 Communication technologies 

To exchange the generated data by a modern power grid (e.g., consumption info, controls, 

loads), a communication system is indispensable [9]. For monitoring and controlling 

purposes, Supervisory Control and Data Acquisition (SCADA) systems are used. But they 

are limited to high-voltage networks and are not suitable for large scale monitoring for the 

whole grid [10].  

However, there are already a lot of existing technologies used in the current grid, including 

wired and wireless technologies. For wired data transmissions, utility providers use, for 

example, power line communication systems or copper-wire lines and for wireless 

communication they use cellular networks such as Global System for Mobile 

communication (GSM), General Packet Radio Service (GPRS), Worldwide Interoperability 

for Microwave Access (WiMAX), Wireless Local Area Network (WLAN) or Cognitive 

Radio [10]. But since these mediums and technologies alone are not sufficient for the use 

within a smart grid, Figure 3 shows an example of a hybrid smart grid architecture using 

various communication mediums and communication flows for the distribution domain [9].  

 

Figure 3: Hybrid smart grid network topology for the distribution domain by [9] 
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So, in addition to a distinction between wired and wireless communication mediums, one 

can distinguish also between two different communication flows. The first data flow occurs 

when sensors and electrical appliances send their collected data to smart meters and the 

second flow occurs between smart meters and electrical utilities and their data centers [6]. 

The different communication flows including the appropriate communication mediums and 

technologies for both wired and wireless transmissions will be explained subsequently in the 

following sections.  

 

Communication between sensors and smart meters 

As previously stated, the first data flow occurs when sensors and electrical appliances send 

their collected data to smart meters [6]. This flow is also denoted as Machine to Machine 

(M2M) communication. For example, wired power line communications (PLC) and various 

wireless transmission technologies are suggestions to enable M2Ms [9].  

But the communication flow between sensors and smart meters in the current grid is limited 

since there is a missing internet protocol (IP) based network architecture. Therefore, 

different wireless technologies such as ZigBee, 6LoWPAN and Z-Wave as an addition to 

Bluetooth and WLAN were developed to connect low-power devices to the internet. Another 

intention of these developments was to build low-cost, reliable and scalable communication 

protocols [10]. 

Communication between smart meters and utility providers 

The second flow occurs between smart meters and electrical utilities and their data centers. 

To transmit data between these two nodes, cellular technologies or the internet can be used 

[6]. The reason, why PLC is usually not used for transmissions between consumers and 

utilities, is that the frequency range from 10 to 20 megahertz cannot be used for a reliable 

communication over large distances, since feeder cables were not developed to transmit data 

and so they are prone to interferences [10].  

Beside the use of existing technologies such as WiMAX or various cellular network 

standards for the communication between smart meters and the utility providers, specific 

mesh networks have emerged. Wireless mesh networks bridge the gap between a HAN and 

a WAN whereby WiMAX can be used to increase the backbone network capacity to improve 

the performance and to reach long distances [9].  
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2.3 Security 

The emergence of the smart grid, containing all these previously stated different 

communication technologies, brings a lot of vulnerabilities along. The large scale and the 

complexity of a smart grid causes a lot of troubles to provide security over the network. The 

modern grid will be operated by many different entities and systems such as generation 

facilities, the distribution network and the according communication networks. Additionally, 

the accompanying control and pricing algorithms might also add even more vulnerabilities. 

The motivation to even attack smart grids might have several reasons. Maybe one wants to 

decrease his electricity bills, wants to play tricks on utility providers, intends to threaten 

people or just shows the possibility to invade a smart grid communication network [1]. 

Generally, the goal of information technology (IT) security is to protect assets such as 

financial data, hardware, software and networks from getting exploited. Therefore, each 

countermeasure should consider the so-called Confidentiality-Integrity-Availability (C-I-A) 

triangle. Confidentiality intends to protect data from third-parties so that no personal 

information is obtained by unauthorized users. Integrity ensures that information has not 

been modified during the transmission and finally availability intends to guarantee access to 

information whenever requested [11]. 

The requirements for smart grid data such as price information, meter data, control 

commands and software in relation to the C-I-A triangle can be found in Table 2.  

 Confidentiality Integrity Availability 

Price Information 

Not critical  

(if public 

knowledge) 

Critical 

(simultaneous 

device activations) 

Critical 

(financial and legal 

implications) 

Meter Data 

Important 

(personal activity 

information) 

Important 

(Revenue losses) 

Not Critical 

(data can be 

extracted later) 

Control Commands 

Not critical 

(if public 

knowledge) 

Important 

(Revenue losses) 

Important 

(no state changes 

for meters) 

Software 

Not critical 

(No security 

through obscurity) 

Critical 

(control of devices 

and components) 

N/A 

 Table 2: C-I-A triangle for smart grid data and software (created from [1]) 

 



Smart grid networks  11 

 

The statement in the brackets either explains the reason why a protection is unnecessary or 

it states the impact of a security breach. The encryption of price information (confidentiality) 

is not inevitably necessary since this information might be public knowledge anyway. So, 

protective measures for integrity (authentication) are more important than for confidentiality 

or availability [1].  

Anyway, various threats and countermeasures exist. More information about threats and 

countermeasures can be found in [1]. Further, it is learned from IT security that a 

comprehensive security system needs to include monitoring systems, too [2]. Therefore, 

monitoring is considered carefully within this research project. Thus, the next section 

explains the concept of an intrusion detection system (IDS) and then how an intrusion 

detection system can be implemented into a smart grid network. 

Intrusion detection 

Beside a lot of entry points and attack possibilities, there are further shortcomings for typical 

defense mechanisms such as firewalls and antivirus software. While firewalls mostly protect 

against malicious packets from outside, antivirus software is always running after the newest 

signatures and the software also cannot avoid zero-day attacks. Therefore, an IDS can 

monitor all devices and the whole traffic within a network (ingoing, outgoing and 

communication between hosts) and is also able to avoid zero-day attacks [12]. 

An IDS consists of one or more sensors for real-time monitoring of traffic and a management 

console to operate and monitor the sensors and to display warnings [12]. But, an IDS is not 

an active system which can stop attacks directly. In fact, it basically detects malicious traffic. 

After a detection, an IDS can report the attack to the management system, reconfigure 

network devices (e.g., a firewall) to block the malicious traffic or to send a TCP reset 

command to the traffic source to terminate the connection [14].  

To achieve this, it is for example possible to connect an IDS sensor to a central switch as 

illustrated in Figure 4. Then, the switch broadcasts a copy of the passed traffic through a so-

called mirror port to the sensor. Other functions are, for example, to audit configurations and 

vulnerabilities of a system, to assess the integrity of critical systems and files, to statistically 

analyze incidents of known attacks and to check the operating system. Beside the 

surveillance of attacks, it is also possible to monitor the compliance of policies [13].  

 



Smart grid networks  12 

 

 

Figure 4: Intrusion detection system topology by [14]  

 

However, there are two diverse types of IDS. One can distinguish between host-based 

intrusion detection system (HIDS) and network-based intrusion detection systems (NIDS). 

A HIDS has only a single sensor (e.g., software on a host) to monitor critical system 

functions on the host. The inspection is only done on system level (e.g., logs or events) and 

not for network packets. On the other hand, a NIDS uses one or multiple sensors spread 

within the network to monitor the whole network traffic. Each sensor has two interfaces 

whereby one interface is the management interface to control the sensor and to inspect 

warnings and the other interface is configured in monitor mode to capture and analyze the 

traffic [12] [13]. There are various pros and cons for both host and network based systems 

which are stated in detail in [12]. However, it is suggested to use both systems for a more 

comprehensive protection. 

To detect anomalies at all, four different approaches exist. These approaches are signature-

based detection, rule-based detection, anomaly-based detection and the usage of honeypots. 

Honeypots are systems with built-in vulnerabilities to lure blackhats. They can be deployed 

both within or outside the firewall perimeter. The reason to use honeypots is to gain 

information about attack methods to finally prepare the real network and systems for these 

attacks. A rule-based IDS will monitor the behavior and traffic for specific criteria. For 

example, a NIDS could monitor a special port and if a determined threshold (e.g., the 

quantity of scanned systems for this port) is exceeded, then the NIDS would send a warning 

message to the management system. It is possible to define rules for any parameter and 

threshold as long as the criteria meet the policies.  
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The signature-based approach tries to find patterns for single or multiple packets. Therefore, 

sequences are compared to a database with known attacks and if a sequence matches with 

an entry in the database then it is malicious behavior respectively malicious traffic. Although 

this method is very fast, the detection of zero-day attacks is not possible. So, the anomaly-

based detection approach can detect zero-day attacks and learns therefor the behavior of a 

clean system respectively network or uses already defined rules. From now on, any deviation 

from this trained behavior triggers an alarm. But unfortunately, it is very difficult to define 

and train the normal behavior correctly [14].  

Smart grid intrusion detection 

To deploy an IDS within a smart grid, one must consider the requirements (e.g., encryption 

and real-time transmissions) and constraints (e.g., topology and bandwidth) of smart grid 

communication systems. These considerations can help to define impacts and limitations on 

functionalities and security for the communication architecture and the monitoring system. 

Due to the fact that an AMI will consist mainly of wireless (mesh) networks with a lot of 

nodes, it is on the one hand more vulnerable for network-related attacks and unauthorized 

physical access and on the other hand it is more difficult to monitor such topologies. 

Additionally, a constraint for an implementation is a high detection rate including zero-day 

attacks while causing only a low overhead. While both network and host-based sensors are 

required to monitor a whole smart grid network, host-based sensors for smart devices are 

still in research due to low performance devices such as smart meters. Now, it is the 

challenge to apply the knowledge of intrusion detection systems to smart grids to cover the 

related threats and yet to consider industry strengths [2].  

The main limitation of a traditional IDS architecture is to make it scalable for the size of a 

smart grid network since the processing of the data from millions of nodes on a central 

system would be too inefficient. To circumvent this problem, it would be for example 

possible to outsource some of the processing load directly to the sensors whereby the central 

management station is only responsible for coordinating sensors and collecting high-level 

alerts. Another requirement is the robustness against failures and attacks. So, the system is 

supposed to operate even when a subset of sensors or the management station are unavailable 

or compromised. While sensors can be protected through virtualization or by using a separate 

hardware, the approach for management stations is to use redundant systems.  
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To detect compromised systems, various methods exist (e.g., a reputation system or a 

distributed proof system). Finally, it is suggested to use separated communication networks 

between sensors and management servers [2]. 

Existing approaches and concepts to implement an intrusion detection system within smart 

grids are for example a Model-Based IDS [15], a Behavior-Rule-Based IDS [16], an IDS 

with Domain Knowledge [17] and the Smart Grid Intrusion Detection System (SGDIDS) 

[18]. Since the SGDIDS is based on an anomaly-based approach, this concept will be used 

as reference model later. Basically, the SGDIDS works with a three-layer (HAN, NAN and 

WAN) network detection architecture with a top-down and vice versa communication and 

information flow (see Figure 5). 

 

Figure 5: SGDIDS three-layer network architecture by [18] 

 

However, this research project will investigate the anomaly-based detection approach and 

will therefore outline pattern recognition methods in the next chapter. This includes the 

pattern recognition process itself, various approaches and methods, models and classifiers 

and the imbalanced data problem. Then, various performance evaluation methods will be 

presented.
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3 Pattern Recognition 

Pattern recognition is the process of assigning a class, category or value to a given raw data 

input. While this is a naturally process for humans (e.g., face recognition), it is a 

sophisticated and complex task for machines [19]. In general, there are four different well-

known approaches for pattern recognition. These are template matching, the statistical 

approach, the syntactic or structural approach and neural networks. 

The template matching approach is one of the earliest approaches and is very simple. 

Basically, a template respectively a prototype of points, curves or shapes is available and 

stored. Then, an unseen pattern is compared with this template also considering translations, 

rotations and scale changes.  

The statistical approach will be used within the scope of this research project and is based 

on having an amount of 𝑑 features, which are represented in a 𝑑-dimensional matrix. The 

effectiveness of the approach is dependent on finding and extracting the correct features to 

distinguish between different classes, which is a very complex task. In general, it is the goal 

to find decision rules or boundaries within the feature space to distinguish between classes.  

If more complex patterns are involved, it is more appropriate to use a syntactic approach. 

For this purpose, a hierarchical structure is used where a pattern consists of multiple sub 

patterns and each of these sub patterns consists also of multiple sub patterns and so on.  

Finally, neural networks are based on the human nature and consist of a large amount of 

small processing stations which are interconnected. This creates the ability to build complex 

nonlinear relationships, to use sequential training procedures and to evolve dependent on the 

input data. Even if there are a lot of differences between neural networks and the statistical 

approach, there are also a lot of links between them with equivalent/similar methods [20]. 

As mentioned above, statistical pattern recognition will be used within the scope of this 

research project. So, the statistical approach and some of its concepts, techniques and 

procedures will be explained in the next chapter. Then, so-called models, which are used to 

build decision rules or boundaries within the feature space, will be described thoroughly. 

After an introduction to the imbalanced data problem, state-of-the-art solutions respectively 

concepts for this problem will be presented. Finally, the chapter is concluded with 

procedures, definitions and metrics for a comprehensive performance analysis. 
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3.1 Statistical pattern recognition 

The whole statistical pattern recognition cycle is illustrated in Figure 6. While the 

recognition cycle always starts with a specific problem and the design of experiments, the 

next step is usually to preprocess data and to select and extract features from the experiment 

object. After these steps, the object is then stored as vector which equals the best possible 

representation for other processes within the cycle. Now, depending on which recognition 

problem is present, there are different learning techniques to use, namely supervised 

learning, unsupervised learning and reinforcement learning. All these learning techniques 

have different approaches and methods to solve a given problem. Then, after completing the 

recognition process, the performance of the recognition is finally evaluated [21].  

 

Figure 6: Statistical pattern recognition cycle by [21] 

 

First of all, the different learning approaches will be explained briefly since this is a crucial 

distinction how a pattern recognition problem will be solved. Afterwards, an example based 

on one of these approaches will be presented since this approach is representative for a 

common pattern recognition problem. This approach will be used within the scope of this 

research project, too. Finally, the methods used within this approach and the mentioned 

preprocessing and feature selection methods will be explained to complete this subchapter. 
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3.1.1 Learning techniques 

As mentioned above, pattern recognition can be distinguished by three different learning 

techniques. The first learning technique is called supervised learning. Basically, if a given 

recognition problem has a training dataset with assigned targets (correct labels of the related 

classes), this problem falls into the category of supervised learning. Furthermore, one can 

distinguish between two subcategories of supervised learning, namely classification and 

regression. We talk about a classification problem, if only a finite number of categories to 

classify (e.g., negatives/positives) is given. On the other hand, if the output is a continuous 

variable (e.g., the age including decimals), it is considered a regression problem. If the 

training data do not have assigned targets, then it is about unsupervised learning. With 

unsupervised learning, one can discover groups (clustering), determine the distribution 

(density estimation) or project data from high dimensionality to two or three dimensions 

(visualization). The last learning technique is called reinforcement learning and addresses 

the problem of finding the best action for a given situation. The goal thereby is to interact 

with the environment in which a sequence of actions is available and to finally maximize a 

reward (e.g., a score for a game). Instead of finding a correct output, the algorithm improves 

itself by a process of trial and error. An example for such a problem might be a backgammon 

game in which a learning algorithm plays millions of games to improve its algorithm [22].  

Since the intrusion detection datasets, which will be used within the scope of this research 

project, have correctly assigned labels and also finite distinct classes, the supervised learning 

and classification problem is considered for all following chapters. 

3.1.2 Methods and steps for supervised learning classification 
 

To explain the concepts of the fundamental methods for supervised classification, an 

example from [22] is used. This example tries to recognize handwritten digits as illustrated 

in Figure 7. Each digit consists of 28 x 28 pixels and is stored as a vector denoted as 𝑥. So, 

this vector 𝑥 consists of 784 values. Based on the principle, that pattern recognition assigns 

a class, category or value to a given raw input, it is now the challenge to build a machine 

that takes the vector 𝑥 as input (raw data) and then to classify the digit as output. That 

implies, that the machine should calculate a digit between 0 and 9 based on the given input 

vector 𝑥. Again, this might be easy for a human but it is a nontrivial problem for a machine 

due to many several types of handwriting [22]. 
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Figure 7: Hand-written digits for pattern recognition by [22] 

 

To build such a machine model, a large set of so-called training data is used. This training 

data consists of many vectors of digits. The related digit for each vector is known previously 

(e.g., by inspecting and hand-labelling) and is stored as target vector denoted as 𝑡. So, each 

vector 𝑥 respectively digit image has a related (correct) digit value from the target vector 𝑡 

assigned. Now, to assign digits to new image vectors, the machine model must be trained. 

This process is called training phase respectively learning phase. During this process, a 

function 𝑦(𝑥) is calculated based on the training data. After the learning phase, the trained 

model can determine digits for a given test data set. Now, each new digit image is processed 

by the trained machine model respectively the function 𝑦(𝑥) which results in a new vector 

with predicted labels. This predicted target vector shows the ability to classify completely 

unseen and different digit images. If this prediction on unseen images has a good 

performance, it is called generalization. This is the central goal in pattern recognition [22]. 

Even though this process covers the basic tasks for supervised classification, there are some 

optimization methods to improve the performance in terms of both correct recognition and 

computation speed, namely preprocessing and feature extraction [21].  

 

So far, the single processes of a classification task were explained. To put all the pieces 

together, Figure 8 illustrates the two different mentioned recognition modes and how they 

do work together, to finally classify an unseen pattern. The first mode is the training 

(learning) mode and the second mode is the classification mode. During the training mode, 

the input data is preprocessed and features are extracted. Now, a machine model is trained 

in order to partition the feature space. Then, during the classification mode, the input data 

must be preprocessed exactly like the training data and the same features must be extracted. 

Finally, the trained machine model assigns the new unseen data to one of the given classes 

based on the measured features [20]. 
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Figure 8: Statistical pattern recognition classification process by [20] 

 

So, a classification task is accomplished in the same way all the time. Raw input data is 

preprocessed and features are extracted, then the data is split into training and test sets. 

Afterwards, a machine model is trained by the training data and finally the test data, 

preprocessed in the same way as the training data, is classified by the trained model [20]. 

All these steps will be explained subsequently. First of all, the optimization methods 

preprocessing and feature extraction will be explained and then two data splitting methods 

to create training and test data sets are introduced to conclude this subchapter. Then, the next 

chapter is completely dedicated to models and their tasks (learning and classification). 

 

Preprocessing and feature extraction 

To optimize the pattern recognition process, preprocessing and feature extraction might be 

used. Preprocessing transforms input variables into a new space of variables [22]. The 

reasons to use preprocessing are to reduce noisy data (outliers), to get a common resolution 

for images and videos, to optimize images and signals (e.g., edge detection) and to use 

scaling and normalization to have the data on a common range of values. In relation to 

scaling and normalization, the three different methods interval fit, z-score scaling 

(standardization) and arctangent scaling exist. The interval fit method fits the input data in 

each column usually to an interval [0,1] or an interval in any other range. The z-score scaling 

results in a zero mean and unit variance of the data while the arctangent scaling extends the 

standardization by putting the data in the interval [-1,1]. In that way, outliers are still within 

the interval range and data near the mean is scaled almost linearly [19]. Now, in relation to 

the digit recognition example, each image would be translated and scaled to the same format 

and size, which leads to easier processing and distinction through smaller variabilities. To 

predict unseen image vectors correctly, the test data must be preprocessed equally [22].  
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This recently mentioned preprocessing stage is also called feature extraction. Another 

example of feature extraction is related to face recognition. Since it is infeasible to process 

high resolution images in real-time, the process of feature extraction tries to find only 

features of a face which are fast to compute but preserve enough information for a correct 

distinction. So, instead of the whole image vector, only the extracted features are used as 

input data. This procedure is also related to dimensionality reduction [22]. However, the 

feature extraction process is application dependent but yet there exist a few methods which 

can be applied to any input vector. A popular method for independent dimensionality 

reduction is the principal component analysis (PCA). The goal of the PCA is to identify a 

smaller number of uncorrelated variables, so-called principal components. This smaller 

number of variables are supposed to map a maximum amount of variance of the whole input 

data [19]. 

Data splitting 

Training data is used to train the model and test data is used to evaluate the performance of 

the model. Sometimes a third part (validation data) is extracted, too. The usage of this part 

will be explained in the appropriate chapter since it belongs to a specific problem. 

Now, to divide the data accordingly, different splitting techniques exist. During the so-called 

random sampling, a randomly permuted data set is created. This data set serves as index 

array and has the same length as the input data which is supposed to get sampled. Based on 

a given split percentage (e.g., for the training set), this percentage of the randomly permuted 

array is taken and the indices are used to select the related indices from the input data for the 

training data. The remaining input data is used for the test data set. Optionally, a third split 

percentage can be used for the validation data set. 

The stratified sampling procedure follows the exact same routine but with one exception. 

While the existing classes during the random sampling procedure will be split randomly 

(e.g., most of the digits between 0 to 4 might be in the training set while the rest of the digits 

remain in the test set), stratified sampling splits the amount of data instances related to the 

classes equally to training, test and validation data set. For example, if a stratified sampling 

set for the digit vectors with a 50:50 split would be created, the training set would consist of 

half of the amount of all digits from 0 to 9 and so would the test set, too. Nevertheless, both 

datasets are still randomly sampled by the randomly permuted index array [19] [22]. 
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3.2 Models and classifiers 

In another example, this time from [19], a classifier tries to distinguish between a salmon 

and a sea bass and therefore extracts two features for the input vector. The two-dimensional 

feature-space consists of the lightness and the width from both salmon and sea bass. In 

general, the features and so the differences between a salmon and a sea bass can be viewed 

as different models. It is a challenging task to find the most appropriate features to classify 

a class as good as possible and to have a robust, insensitive model while using a minimum 

of features. However, the task for a classifier is to create a decision rule or boundary to 

decide either if it is a salmon or a sea bass. As illustrated in Figure 9, a learned decision rule 

from the test data (black lines in both images) would classify a given unseen (input) feature 

vector as sea bass if the data point is above the decision line and as salmon if the data point 

is below the decision line [19]. So, a classifier is looking for a mathematical or algorithmic 

mapping between features and classes to create a decision rule that partitions the feature 

space in as many regions as classes exist [21].  

For a model, there are learnt parameters during a training phase to define the boundary of 

the classifier. But, a classifier might also have so-called hyper-parameters which can be 

defined freely and used to tune a model respectively to adapt the decision boundary. To tune 

a model and to find the best performance, a search within the hyper-parameter space is 

recommended. Therefore, one approach is to define a set of various hyper-parameters and to 

try each possible combination. This approach is called grid search and is used commonly. 

The second approach is to execute a randomized search for various defined hyper-parameter 

to decrease the computational cost [23]. 

  

Figure 9: Model decision boundaries for a two-dimensional feature-space by [19] 
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However, the classifier used in the left picture of Figure 9 is very simple but this simple 

decision boundary will achieve a decent performance in terms of generalization. The more 

complex model in the right picture of Figure 9 might classify the test data perfectly but might 

not perform very well in terms of generalization since the decision rule is overly optimized 

for the given training data. This problem is known as overfitting. To avoid overfitting and to 

find a decision boundary with the ideal trade-off between performance on unseen data and 

simplicity of a classifier, one can split the given training set into training, test and validation 

data as described previously. Then, the validation data is used to compare the so-called error 

rate with the training data. If the error rate of the training data is very small while the error 

rate of the validation data is high, overfitting is indicated and the model must be adapted 

[19].  

Now, to create a decision rule or boundary, two different approaches exist. The first approach 

is to use Bayes’ decision rule and to estimate the class-conditional densities. The second 

approach uses discriminant functions for the classification. Both approaches will be 

explained in the following two chapters including classifier examples.  

Additionally, a third subchapter describes different approaches how to combine different 

classifiers with the aim to improve the overall performance. 

3.2.1 Bayes decision rule (stochastic) 

Based on a probabilistic approach, the optimal Bayes decision rule assigns a pattern to the 

class with the highest posteriori probability. To calculate the posteriori probability, it is 

necessary to have knowledge about the probability density function of each class. Since in 

most cases the real probability density function is unknown, one can build an estimated 

density function based on a given training data set. These estimated densities are either 

parametric or non-parametric. Commonly used parameter models are multivariate Gaussian 

distributions for continuous features, binomial distributions for binary features and 

multinormal distributions for integer-valued and categorical features. Commonly used non-

parameter models are the k-nearest neighbor (k-NN) rule and the Parzen classifier. While 

the k-NN rule operates similar to the one-nearest neighbor decision rule (explained in the 

following chapter), the Parzen classifier replaces the class-conditional densities by estimates 

using the so-called Parzen window approach. Both classifiers need to calculate the distance 

of an unseen pattern to all patterns within the training set to make a decision [20]. 
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Then the goal is to build decision rules with the motive to either minimize the average error 

(minimum error) or to minimize the average cost of classification (minimum risk) [21].  

Rather than using probabilities to create decision boundaries, the next chapter will use 

discriminant function to determine decision rules. 

3.2.2 Discriminant functions (deterministic) 

A discriminant function with a given pattern/vector 𝑥 basically leads to a classification rule. 

If we assume a two-class classifier problem, a discriminant function denoted as ℎ(𝑥) and a 

constant/threshold k, then the incidental classification rule is 

 ℎ(𝑥) > k ⇒  x ∈ ω1 

ℎ(𝑥) < k ⇒  x ∈ ω2 
(3.1) 

If ℎ(𝑥) = k, then the class is assigned randomly. In case of a multiclass problem with 𝑁 

discriminant functions 𝑔𝑖(𝑥), the function for the classification rule is  

 𝑔𝑖(𝑥) > 𝑔𝑗(x)  ⇒  x ∈ ω𝑖    𝑤𝑖𝑡ℎ 𝑗 = 1, … , 𝑁 𝑎𝑛𝑑 𝑗 ≠ 𝑖 (3.2) 

Basically, the pattern 𝑥 is assigned to the class ω𝑖 with the largest discriminate. So, the form 

of a discriminant function is specified and not accompanied by its distribution as described 

in the previous chapter. The used discriminant function might be either chosen through prior 

knowledge or a functional form is adapted during the training phase [26]. 

However, the discriminant approach can be distinguished by linear functions (e.g., minimum 

distance classifier, nearest neighbor rule), kernel-based approaches to build nonlinear 

functions (e.g., radial basis functions, support vector machines), projection-based methods 

to build nonlinear functions (e.g., multilayer perceptrons) and tree-based approaches [21]. 

So, in the following sections, linear discriminant functions, including the minimum distance 

classifier, the nearest neighbor rule and the k-NN rule, will be explained. After an 

introduction to the geometric approach, which finally leads to multilayer perceptrons, the 

support vector machine is described. Finally, the concept of decision trees will be presented. 

Minimum distance classifier and nearest neighbor rule 

A linear discriminant function divides the feature space by a hyperplane and creates convex 

decision regions. The orientation of the hyperplane is calculated by a weight vector and the 

distance from the origin is calculated by a weight threshold [21].  
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A piecewise linear discriminant function creates non-convex and disjoint decision region. 

Particular cases for a piecewise linear discriminant function are the minimum distance 

classifier and the nearest neighbor classifier [21]. The minimum distance classifier 

respectively nearest mean classifier is represented by multiple so-called prototypes. This 

classifier simply calculates the mean vector of all data points for each class and then each 

mean vector represents a single prototype. So, a new data vector is assigned to the class with 

the lowest Euclidean distance to a prototype respectively mean vector. While this is a very 

simple classifier, (learning) vector quantization and data reduction methods (e.g., editing, 

condensing) are more advanced techniques to calculate prototypes. The data reduction 

methods are used for example for the one-nearest neighbor (1-NN) classifier, which assigns 

an unseen data point based on the Euclidean distance (or other distance metrics) to the 

nearest neighbor. The previously introduced k-NN rule considers then instead of one nearest 

neighbor the 𝑘 nearest neighbors and assigns the pattern to the class with the highest 

occurrence within the 𝑘 neighbors [20].  

 

Figure 10: k-NN classifier example with k=1,2,3 (adopted from [24]) 

 

An example of the one-nearest neighbor and the two and three nearest neighbors (k=1,2,3) 

is illustrated in Figure 10. The one-nearest neighbor classifier (left image) decides for A, the 

2-nearest neighbor classifier (middle image) decides randomly and the 3-nearest neighbor 

classifier (right image) decides for A since there are more A’s than B’s as neighbors. 

 

Geometric approach 

Now, the geometric approach tries to minimize a criterion during the training procedure. 

This criterion might be the classification error or the mean squared error (MSE) between 

classifier output and a preset target value [20]. 
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Examples for this approach are the Fisher’s linear discriminant, which minimizes the MSE 

between classifier output and the stated labels, and the single-layer perceptron, which 

iteratively updates the separating hyperplane by the distances between the misclassified 

patterns from the hyperplane. A similar behavior as in other linear classifiers is achieved if 

the MSE is implemented together with the sigmoid function. An example therefor are feed-

forward neural networks respectively multilayer perceptrons (MLP). A neural network can 

lead to different classifiers and by including hidden layers, a neural network can also lead to 

nonlinear decision boundaries. In addition of classifying an input vector, the MLP classifier 

can also approximate the posteriori probabilities. This leads to the possibility of rejecting a 

pattern in case of doubt [20].  

Support vector machines 

A support vector machine (SVM), as illustrated in Figure 11, uses the width of the margin 

between two classes as optimization criterion to define the decision function. The margin is 

an empty area around the optimal decision hyperplane. This area is then limited by so-called 

support vectors (patterns) of each class, which are calculated from the training data [20]. 

 

Figure 11: Support vector machine example by [25] 

 

To accomplish this and to classify unseen patterns, it is necessary for the decision rule to use 

a so-called kernel function. The kernel function is a similarity function to find the similarity 

between two inputs. The simplest form (linear kernel) is just the dot product between the 

unseen pattern and a support (vector) set. On the other hand, nonlinear kernels consist of 

polynomial classifier (e.g., the dot product plus one and squared) or gaussian radial basis 

functions (RBF kernel). Now a SVM provides the ability to train even a small training data 

set with a high dimensionality space with good generalization. On the other hand, for large 

training sets only a small support set is selected to minimize the computational power [20]. 
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Decision trees 

Finally, tree-based methods or specifically a decision tree is represented by the most striking 

features of the whole feature space. The training phase comprises an iterative selection of 

these features. For the tree generation and as criteria for the feature selection the information 

content, the node purity or Fisher’s criterion are considered. This implies, that feature 

selection is explicitly built-in for tree based methods [20]. An example of a decision tree is 

illustrated in Figure 12. The figure shows a common binary tree, where each node (circle) is 

a single feature with a variable/threshold. The decision process itself is based on multiple 

stages until a final leaf (square), which represents the decided class label, is reached [21]. 

 

Figure 12: Decision tree example by [21] 

 

Now, let us assume, that we have built a decision tree similarly to Figure 12 and we want to 

classify a new pattern 𝑥 = (5,4,6,2,2,3). So, we start at the root node. This node decides 

based on the feature number 6 and a threshold smaller than 2. Since the feature number 6 

from our pattern is the value 3, the condition (< 2) is false and so we continue with the right 

child, which is another node. The decision for this node is based on a threshold smaller than 

5 and the feature number 5. The value of feature 5 in our pattern is 2. Thus, we proceed with 

the left child and have finally reached a leaf node. This node assigns our pattern to class 3. 

This example simplifies a complex procedure but basically it explains the main concept, 

which is to break up the final decision in multiple smaller and simpler decisions [21]. 

After the explanations, how decision boundaries with probabilities and decision rules with 

discriminant functions are created, the next chapter will explain various methods how single 

classifiers can be combined to improve the overall performance. 
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3.2.3 Ensemble methods 

Ensemble methods combine multiple so-called base learners to a single decision rule, which 

generalization ability is often much better than the generalization ability of a single classifier. 

Another great advantage of ensemble methods is, that they can boost weak learners (slightly 

better than a random guess) to strong learners for accurate predictions. A common 

architecture for ensemble methods is illustrated in Figure 13. 

 

Figure 13: Common architecture for ensemble methods by [26] 

 

Basically, each single base learner is an algorithm which is created based on the training of 

the training data by a k-NN, MLP, SVM, decision tree or any other classifier. While most 

ensemble methods use homogenous base learners (e.g., only decision trees), heterogenous 

ensembles consist of different basic learner types [26]. 

However, state-of-the-art ensemble learning approaches are boosting and bagging. These 

approaches are directly related to the previously described combination of weak learners to 

build a strong single learner. More detailed, boosting is a sequential ensemble method 

(sequential generation of base learners) and bagging is a parallel ensemble method (parallel 

generation of base learners). Another approach is the combination of various classifiers 

through averaging or voting [26].  

The different approaches for weak learners, namely boosting, bagging and the combination 

techniques, will be explained subsequently. Additionally, state-of-the-art classifiers will be 

introduced in each category.  

Boosting 

To combine multiple weak learners, the general boosting algorithm changes the distribution 

of a training set iteratively. Let us assume, that a data space 𝑥 is composed of three parts 𝑥1, 

𝑥2 and 𝑥3 whereby the data is equally distributed and the training set is drawn randomly by 

a distribution 𝐷. Since we have only one weak learner available, the goal is to generate a 

strong learner [26].  
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So, this weak learner, denoted as ℎ1, is trained by the distribution 𝐷 and has correct 

classifications for 𝑥1 and 𝑥2 but wrong classifications for 𝑥3 (classification error of 1/3). 

Now, to correct the error from ℎ1, boosting derives a new distribution 𝐷′ from 𝐷 which is 

more focused on the data from 𝑥3. Then, our weak classifier, now denoted as ℎ2, is trained 

by the distribution 𝐷′. This classifier has accurate classifications for 𝑥1 and 𝑥3 but wrong 

classifications for 𝑥2. It would be possible to combine the classifier ℎ1 and ℎ2 at this moment. 

Then, the combined classifier would classify 𝑥1 correct but might have some errors within 

𝑥2 and 𝑥3. Therefore, another distribution 𝐷′′ is derived, to focus on the errors from classifier 

ℎ2. If we train the weak learner with the new distribution, the new classifier ℎ3 has correct 

classifications for 𝑥2 and 𝑥3 but wrong classifications for 𝑥3. Finally, by combining ℎ1, ℎ2 

and ℎ3, a strong learner is created, which is able to classify all sets correctly [26].  

 

Figure 14: General boosting procedure by [26] 

 

The previously described process is shown as pseudo code in Figure 14 whereby the function 

𝑓 is basically the ground truth function respectively expresses the correct labels. However, 

this process outlines just the basic sequence and is no real algorithm, since neither the 

combination of the classifier nor the adjustment of the distribution is functionally declared. 

So, the AdaBoost algorithm was the first classifier which instantiated this process. AdaBoost 

is still the most famous boosting algorithm [26].  

Bagging 

Beside the fact that bagging methods can achieve a good generalization performance, this 

method can also be used for parallel computing, which is a serious benefit nowadays. 

However, the name bagging is a combination of Bootstrap and AGGregatING and therefore 

bootstrapping and aggregation is used during the bagging algorithm [26].  
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The goal of bagging methods is to reduce the error by combining independent base learners. 

Unfortunately, one cannot obtain real independent learners since they are at least trained by 

the same training set. A possibility would be to sample several non-overlapped data subsets 

and train each learner with a different sample but since we do not have unlimited training 

data, this approach is more visionary. So, randomness during the learning process is used to 

achieve more independence between the base learners [26]. 

Therefore, bootstrap sampling is used to generate different subsets to train the base learners. 

Basically, through sampling with replacement, which is executed 𝑇 times, a dataset with 𝑚 

instances leads to 𝑇 subsets with also 𝑚 instances. So, some subsets might contain double 

entries of instances but might not contain other instances at all. Finally, the base learners are 

trained by these sampled subsets and the aggregating strategy voting is used to classify a test 

pattern (averaging is used for regression problems). Therefore, the output of each base 

learner is collected and the label with the highest occurrence is predicted. In case of the same 

amount of votes the label is chosen randomly [26].  

The described algorithm is described as pseudo code in Figure 15. 

 

Figure 15: General bagging procedure by [26] 

8 

Bagging can be used for each classifier but is very popular for decision trees since a more 

flexible decision boundary can be created and a satisfactory performance is achieved. 

However, the so-called random forest ensemble is the state-of-the-art method, which is an 

extension of bagging but is also based on decision trees [26]. 

Combination methods 

To combine different outputs, the methods averaging, stacking and voting exist. While 

averaging is used for regression problems, stacking can be considered as general framework 

for the generalization of many ensemble methods or as specific combination method [26]. 
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The preferred combination method for classification problems is voting. Voting is used to 

combine multiple label outputs to a single decision label. Additionally, voting can also be 

used to make a final decision for probability outputs. Basically, a voting classifier takes 

multiple inputs (nominal or probability outputs from single classifiers) and creates a final 

decision through voting. Therefore, the four different voting types majority voting, plurality 

voting, weighted voting and soft voting exist. As the most popular voting method, majority 

voting simply counts the occurrences of each class label and the class with more than half 

of the votes is predicted. In case that no class gets more than half of the votes, the majority 

voting method makes no decision (rejection). On the other hand, the plurality voting predicts 

simply the class with the most votes. In case of a tie, the class is chosen randomly. If we 

assume that the classifiers for the voting have different performances, the weighted voting 

might be used since this voting classifier assigns more power to better classifiers. Therefore, 

weights based on the performance for each classifier are calculated and then this weight is 

multiplied with the vote. Finally, the class with the highest value is predicted. If a classier 

generates a probability output, soft voting is the way to go. Again, if all classifiers have equal 

performances, the simple soft voting classifier averages all individual outputs. If the outputs 

should be combined with different weights, weighted soft voting is used [26]. 

After the introduction of ensemble methods by concluding the chapter about models and 

classifiers, the next chapter will introduce the imbalanced data problem. After a definition 

of the problem, various methods to optimize the performance for pattern recognition with 

imbalanced data will be shown. 

3.3 The imbalanced data problem 

Basically, an imbalanced data problem means that a dataset has an unequal distribution 

between the classes. The issue thereby is to achieve the same performance as for balanced 

datasets since common algorithms or classifiers are only optimized for balanced datasets or 

equal misclassification costs. In case of a two-class problem, an imbalanced data problem 

means that one class has significantly more instances than the other class. This is known as 

between-class imbalance. As example, we consider the real-world medicine problem of 

detecting cancer with the two occurring classes healthy (negative) and cancerous (positive). 

This domain has imbalanced data in its nature since more healthy than cancerous patients 

exist [27].  
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For example, the real-world “Mammography Data Set” contains 10.923 negative examples, 

denoted as the majority class, and only 260 positive examples, denoted as minority class. 

Usually, we want to achieve a high classification performance for both classes. But with 

such a dataset the performance might be very high for the majority class (close to 100% 

correct classifications) and tends to be bad for the minority class (e.g., between 0% and 10% 

correct classifications). This implies, that from the 260 cancerous patients 90% to 100% 

would be classified as healthy. Since within the medical domain it is costlier to classify a 

cancerous patient as healthy than vice versa, it is important to improve the accuracy of the 

minority class. This problem can be assigned to many other domains such as fraud detection 

or network intrusion. However, it is furthermore important to distinguish between relative 

imbalance and imbalance due to rare instances respectively absolute rarity. If we assume that 

the mammography dataset would consist of 100,000 majority instances and 1,000 minority 

instances, the relative imbalance might be high (1:100) but the minority class is with 1,000 

instances not rare in an absolute perspective. While an absolute rarity might lead to a 

deficient performance for the minority class, some researches have shown that usual 

classifiers can achieve a satisfactory performance for the minority class for relative 

imbalances without absolute rarity. But these researches have also shown that the degree of 

imbalance is not the only factor which affects the performance. Instead, the most affecting 

factor is the complexity of the dataset and the addition of imbalance just worsens these 

impacts. The complexity of a dataset comprises for example overlapping, lack of 

representative data and small disjuncts. To explain these problems, an example imbalanced 

dataset is illustrated in Figure 16 [27].  

 

Figure 16: Illustrative imbalanced datasets by [27] 
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While the stars represent the minority class, the circles represent the majority class. Both 

datasets consist of a relative imbalance. While Figure 16a has no overlapping instances and 

only a single applied concept for each class, Figure 16b has overlapping instances and 

multiple applied concepts for each class. Figure 16b shows also the difference between 

relative imbalance (all stars vs. all circles) and absolute rarity (sub-concept C with a lack of 

representative data). Additionally, Figure 16a illustrates the previously described between-

class imbalance and Figure 16b introduces now the within-class imbalance. A within-class 

imbalance means that the representative data of a single class is distributed unequally over 

multiple (sub)concepts. So, cluster B within Figure 16b represents the dominant part (main 

concept) of the minority class while cluster C represents a sub-concept of the minority class. 

Since the sub-concept contains less instances than the main concept, this is called within-

class imbalance. Cluster D represents two sub-concepts of the majority class and concept A 

represents the main concept of the majority class. Again, the sub-concepts contain less 

instances than the main concept and so also the majority class has a within-class imbalance 

[27]. 

Now, a lot of different solutions to address the imbalance data problem exist. They can be 

categorized by data-level solutions, algorithm-level solutions and finally ensemble solutions 

[28]. These different approaches will be explained subsequently. 

3.3.1 Data-level solutions 

The approach for data-level solutions is to change the distribution of an imbalanced dataset 

to build a (more) balanced set. A sampled dataset is then used for the learning procedure and 

then the classifier might achieve better classification results. In a lot of studies, it was proved 

that some classifiers achieved a better overall performance with a sampled and (more) 

balanced dataset [27].  

In general, one can distinguish between under-sampling and over-sampling. While under-

sampling removes data from the majority class in the original imbalanced data set, the over-

sampling algorithm adds data to the minority class. So, it seems that both sampling 

techniques achieve the same result, namely change the imbalanced dataset to a more 

balanced set. However, both sampling techniques have their own pros and cons. While 

under-sampling might lose some important concepts through removing instances from the 

majority class, over-sampling might lead to overfitting since some instances might be simply 

duplicated through the randomness [27]. 
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Therefore, some intelligent approaches exist to overcome these shortcomings. In addition to 

various under- and over-sampling approaches, which will be explained subsequently, 

hybrid-sampling approaches exist, too. Basically, hybrid sampling combines under- and 

over-sampling in diverse ways to improve the performance [27].  

Under-sampling 

Different approaches how to apply under-sampling will be explained in written form and 

also graphically. First, the RandomUnderSampler (RUS) simply chooses and removes 

majority samples randomly until the classes are balanced [29]. An example is shown in 

Figure 17. 

 

Figure 17: Under-sampling example using RandomUnderSampling by [30] 

 

 

To start with the more intelligent approaches, the CondensedNearestNeighbour (CNN) is 

based on the nearest neighbor rule. The basic concept for the nearest neighbor rule was 

introduced previously. However, a shortcoming of this method is that the classifier must 

store all training instances. So, CNN under-sampling is an improved method of the NN-rule 

which needs finally less space for storing [29].  

An example is shown in Figure 18. 
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Figure 18: Under-sampling example using CondensedNearestNeighbour by [30] 

 

The next three under-sampling techniques, namely EditedNearestNeighbours (ENN), 

RepeatedEditedNearestNeighbours (RENN) and All-KNN, are all quite similar and are 

shown together in Figure 19. 

 

Figure 19: Under-sampling example using ENN, RENN and All-KNN by [30] 

 

ENN is based on the k-nearest neighbor rule. Basically, under-sampling performed by ENN 

creates a more balanced data set distribution by accepting only instances which were 

correctly classified by the k-NN rule [29]. 
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RENN works identically as ENN. The only change is that the process of removing wrongly 

classified instances is repeated infinite times respectively as long as no more eliminations 

are possible. However, this method has no proof of performance improvement in comparison 

to the ENN under-sampling [29]. The next under-sampling approach, All-KNN, iterates 

from 𝑘 = 1 to 𝑛 over a given distribution of a dataset. For each round, the k-nearest 

neighbors are calculated and then each instance within the distribution is classified. If most 

of the 𝑛 predictions for an instance are wrong, then this instance will be removed [31].  

The InstanceHardnessThreshold (IHT) assumes a value denoted as hardness for each 

instance within a dataset. This value indicates the probability of misclassification. Now the 

IHT under-sampling method comprises an algorithm to measure the hardness to filter the 

instances based on a given threshold [29]. Examples for various thresholds are shown in 

Figure 20. 

 

Figure 20: Under-sampling example using InstanceHardnessThreshold by [30] 

 

NearMiss consists of three different versions, but all focus on the relation between minority 

and majority class. While version 1 selects instances with the lowest average distance 

between majority instances and three minority instances, version 2 calculates the distance to 

all minority instances and selects then the instances with the average distance to the three 

farthest minority examples. Finally, version 3 selects majority instances which are 

surrounded by minority instances [29]. The three versions are shown in Figure 21. 
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Figure 21: Under-sampling example using NearMiss version 1-3 by [30] 

 

 

The under-sampling technique TomekLinks is based on CNN. Since CNN might have some 

shortcomings (e.g., random selection of instances at the beginning of the algorithm, which 

might lead to a disregarding of boundary instances), the TomekLinks algorithm uses two 

modifications for an increased consideration of boundary instances (Figure 22) [29].  

 

Figure 22: Under-sampling example using TomekLinks by [30] 
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The OneSidedSelection (OSS) method creates subsets of all minority instances and only a 

single majority instance. Then, the original dataset is reclassified by the 1-NN rule and the 

misclassifications are added to the generated subset. Finally, TomekLinks under-sampling 

is used to remove noisy and borderline instances of the majority class [29]. An example is 

shown in Figure 23. 

 

Figure 23: Under-sampling example using OneSidedSelection by [30] 

 

Finally, the NeighbourhoodCleaningRule (NCR) works like OSS but changes the 1-NN rule 

since the rule might be too sensitive to noise in the data. So, NCR under-sampling uses ENN 

under-sampling for the majority class to remove noisy instances. Then, misclassified 

instances are removed from both the minority and the majority class with the 3-NN rule [29]. 

An example is shown in Figure 24. 

 

Figure 24: Under-sampling example using NeighbourhoodCleaningRule by [30] 
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Over-sampling 

Now, various over-sampling methods will be introduced. First, the RandomOverSampler 

(ROS) is simply the reversed version of the RandomUnderSampler. ROS replicates minority 

instances randomly until the dataset is balanced [29]. An example is shown in Figure 25. 

 

Figure 25: Over-sampling example using RandomOverSampler by [30] 

 

The Synthetic Minority Over sampling TEchnique (SMOTE) uses synthetic instances to 

achieve more balance. The regular version calculates the distance between an instance and 

the nearest neighbor and then multiplies this distance with a random number between 0 and 

1. SMOTE borderline 1 and 2 assume that borderline instances are more likely to get 

misclassified. Thus, they are more important and so these over-sampling methods try to 

synthetize only borderline instances. Finally, SMOTE SVM focuses on the borders of the 

minority and majority class [29]. Examples for all variations are shown in Figure 26. 

 

Figure 26: Over-sampling example using SMOTE by [30] 
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Finally, Adaptive Synthetic (ADASYN) over-sampling is based on SMOTE. The key 

difference is that ADASYN uses the k-nearest neighbors of an instance from the majority 

class and decides then, based on a weighting algorithm, how many minority instances the 

algorithm should synthetize. This is done with the intention to reduce bias through imbalance 

and to shift boundaries towards harder examples [29]. An example is shown in Figure 27. 

 

Figure 27: Over-sampling example using ADASYN by [30] 

Hybrid-sampling 

The last sampling category introduces two different approaches for hybrid-sampling 

methods. The first approach, SMOTETomek, starts with over-sampling the dataset using 

SMOTE and then uses Tomek to under-sample the dataset. Since both under- and over-

sampling have their shortcomings, the idea is to improve the results with a combination of 

both methods [29]. An example is shown in Figure 28. 

 

Figure 28: Hybrid-sampling example using SMOTETomek by [30] 
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The other hybrid-sampling approach, SMOTEENN, performs a similar procedure like 

SMOTETomek except using ENN to remove samples after the SMOTE over-sampling 

process. Since ENN is used instead of Tomek, this might lead to more removed instances 

which might further lead to a better performance [29]. An example is shown in Figure 28. 

 

Figure 29: Hybrid-sampling example using SMOTETENN by [30] 

 

3.3.2 Algorithm-level solutions 

Even though this research project considers only cost-sensitive learning methods within the 

algorithm-level solution space, other approaches on the algorithm-level exist, too. These 

approaches are the kernel-based learning framework, one-class learning and active learning. 

Kernel-based methods solve a lot of today’s recognition problems and therefore they are also 

used for imbalanced data problems. One-class learning tries to train the classifier only by 

the instances of a single class and active learning (usually related to unsupervised learning) 

uses instead of the whole dataset only a small subset for each iterative step [27] [28]. 

Cost-sensitive learning 

As previously stated, a misclassification might be associated with different costs. Since 

studies showed that there is a direct connection between cost-sensitive learning and 

imbalances, the algorithms for cost-sensitive learning can be directly applied to imbalanced 

datasets without any change. To apply the following methods, a so-called cost-matrix is 

needed. A cost-matrix contains numerical values with costs/penalties for misclassifying a 

pattern. If the actual cost values are unavailable, a common way to build a cost matrix for 

imbalanced data problems is to assign the imbalanced ratios inversely.  
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This leads to costs of 𝐶(𝑀𝑖𝑛, 𝑀𝑎𝑗) for misclassifying the majority class and to costs of 

𝐶(𝑀𝑎𝑗, 𝑀𝑖𝑛) for missclassifiying the minority class whereby in general 𝐶(𝑀𝑎𝑗, 𝑀𝑖𝑛) >

𝐶(𝑀𝑖𝑛, 𝑀𝑎𝑗). However, there are usually no costs assigned for classifying a class correctly. 

As soon as the cost matrix is built, the goal for cost-sensitive learning is to minimize the 

overall costs for the training set. To achieve this, the Bayes conditional risk method is usually 

applied [27]. 

However, cost-sensitive learning can be distinguished by three distinct categories. These 

categories are dataspace weighting, meta-techniques and classifiers with built-in cost-

sensitive functions or features. 

Data-space weighting 

To apply cost-sensitive learning through data-space weighting, the misclassification costs 

are used to change the training data distribution. This approach is strongly based on the 

theoretical foundations of the Translation Theorem in [32]. So, the training distribution is 

changed to minimize the costs and to get the best possible distribution by multiplying each 

case by its relative cost. This can be performed either as transparent box or black box. The 

transparent box passes the cost-matrix directly to the classifiers while the black box performs 

a re-sampling with the same cost-matrix before handing the data over to the classifier. 

However, this method might lead to overfitting [33]. 

Meta-techniques 

The second category is built on theoretical foundations of the MetaCost Framework by [34]. 

In contrast to data-space weighting, a meta technique does not sample the data distribution 

and is also called non-sampling cost-sensitive meta-learning. With cost-sensitive meta-

learning it is possible to convert cost-insensitive classifiers into cost-sensitive classifiers 

without modifying them. This is done either with pre-processing the training data or post-

processing the output. However, this category can be further divided into the subcategories 

relabeling, weighting and threshold adjusting. The first subcategory, relabeling, changes the 

classes of single instances by the minimum expected cost criterium. Relabeling can be either 

done for the training data or the test data. The next method, weighting, basically assigns a 

given weight (based on the cost-matrix respectively misclassification costs) to classes and 

so classes with higher weights get more consideration [35].  
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The last method, threshold adjusting or also referred to as thresholding, investigates the 

output probabilities and optimizes the threshold to minimize the total misclassification costs 

based on a given cost-matrix. In general, the output probabilities from the training instances 

are used to calculate a new optimal threshold. Then, the new calculated threshold is used as 

decision criterion to classify the output probabilities from the test instances. If the probability 

of a pattern is above the new threshold, the instance is predicted as positive and if the 

probability is lower than the new threshold then the instance is labelled as negative. So, for 

all classifiers which can produce probability estimates for each instance, thresholding can be 

used. Additionally, this method avoids overfitting [35]. 

Built-in cost-sensitive functions 

The last category integrates cost-sensitive learning methods directly into various classifiers. 

Since the way how functions are integrated or features are changed are very different, no 

unifying framework is available [27].  

Classifiers used for such modifications are for example decision trees [27] [36], neural 

networks [27], random forests [36], bagging classifiers [36], pasting classifiers [36] and 

random patches classifiers [36]. 

 

3.3.3 Ensemble solutions 

The following stated methods and classifiers will not be used within this research project. 

Nevertheless, they are added to the picture for completeness. In general, ensemble solutions 

combine either data-level or algorithm-level solutions with ensemble learning and can be 

distinguished by the four types bagging, boosting, random forests and hybrids. Other 

ensemble solutions are based on ensemble selection or ensemble pruning [28].  

Bagging-based ensembles 

For this approach, sampling techniques are combined with bagging. So, the training 

instances are sampled in several ways and then they are used to train the single learners of 

the ensemble method. UnderBagging and OverBagging are examples which use either 

random under- or over-sampling respectively to balance the dataset for the learners. 

SMOTEBagging on the other hand uses a bootstrap sample from the majority class and a 

sample of the minority class created through SMOTE over-sampling [28].  
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Boosting-based ensembles 

Boosting-based ensembles combine either preprocessing or cost-sensitive learning with a 

boosting procedure. While cost-sensitive boosting keeps the general learning framework of 

boosting but includes weights within the weighing procedure, preprocessing in combination 

with boosting exploits the sampling method before the classifier generation step. Examples 

for cost-sensitive boosting ensembles are AdaC1, AdaC2, AdaC3, CSB1 and CBS2. They 

only differ in the way how they change the weighting procedure. On the other hand, 

SMOTEBoost, which combines SMOTE over-sampling and boosting, and RUSBoost, 

which combines random under-sampling and boosting, are examples for data-level-based 

boosting ensembles [28]. 

Random forest based ensembles 

Different adapted random forest ensemble methods exist for both sampling and cost-

sensitive learning. For example, the balanced random forest draws randomly the same 

number of (under-sampled) instances of the minority and majority class for each reputation 

of the random forest approach. The weighted random forest just adds heavier penalties for 

processes such as node-splitting within the random forest algorithm and is therefore related 

to cost-sensitive learning [28]. 

Hybrid ensembles 

The well-known EasyEnsemble and BalanceCascade approaches combine bagging and 

boosting for data-level solutions. EasyEnsemble uses bagging as main ensemble learning 

method but AdaBoost is used instead of a single classifier to train a random under-sampled 

balanced dataset. BalanceCascade removes majority instances in each bagging iteration after 

they are correctly classified by an iteratively trained AdaBoost classifier [28].  

3.4 Performance analysis 

To complete this chapter, different evaluation methods and performance metrics will be 

introduced, since we want to know how well the trained model will perform on unseen test 

data. In short, we want to observe the generalization ability. To do that in practice, a given 

dataset is split into a training set and a test set. Then, a model is trained with the training data 

and finally the performance is evaluated by using the test data [20]. The methods of splitting 

a dataset and the performance measure process will be explained subsequently.  
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3.4.1 Splitting a dataset 

If we want to evaluate the performance of a test data set, the question is how to split a given 

dataset into a training and test set optimally. While a small training set would result in a not 

very robust classifier and a bad generalization ability, a small test set would lead to a low 

confidence of the evaluated performances. So, various data splitting methods exist (stated in 

Table 3) to overcome these problems as good as possible. Nevertheless, there is no perfect 

solution for splitting a dataset since different (random) splits will always lead to different 

performances. However, the holdout method, the leave-one-out method and the rotation 

method (common method) fall into the cross validation (CV) approach [20]. 

Splitting method Description 

Resubstitution method 
All data is used for training and testing. This leads to a very 

optimistic estimate. 

Holdout method 

Half of the data is used for training and the other half is used 

for testing. This leads to a pessimistic estimate and different 

splits will lead to different estimates. 

Leave-one-out method 

If we assume 𝑛 data instances, a classifier is trained by 𝑛 − 1 

instances and then the performance is evaluated by the 

remaining single test instance. This procedure is repeated 𝑛 

times. Even if the estimate is unbiased, it has a large variance 

and requires a lot of computational power. 

Rotation method 

(k-fold cross validation) 

This is a happy medium between holdout method and leave-

one-out method. With a defined fold size 𝑘 (1 ≤ 𝑘 ≤ 𝑛), the 

available data instances are divided into 𝑘 subsets. Now 𝑘 −
1 subsets are used to train the classifier and the remaining 

subset is used for the performance evaluation. This procedure 

is then repeated 𝑘 times, so each subset is used for evaluation 

one time. 

Bootstrap method 

This method creates 𝑁 bootstrap sets by sampling the data 

with replacement. This might lead to lower variance than the 

leave-one-out method but is computationally even more 

demanding and is therefore only useful for small data sets. 

Table 3: Data splitting methods (adapted from [20]) 

 

3.4.2 Performance metrics 

The performance of a two-class problem can be generally represented with a so-called 

confusion matrix (Figure 30) including True Positives (TP), False Positives (FP), False 

Negatives (FN) and True Negatives (TN). Relating to Figure 30, the {𝑝, 𝑛} labels are the true 

positive and negative class labels and {𝑌, 𝑁} are the predicted positive and negative class 

labels respectively. Finally, {𝑃𝑐, 𝑁𝑐} are the total positives and negatives respectively [27].  
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Figure 30: Confusion matrix by [27] 

 

Let us return to the two-class problem with healthy and cancerous patients. Instead of 

distinguishing only between healthy or cancerous diagnosed patients, two different 

distinctions, namely healthy patients diagnosed as cancerous and cancerous patients 

diagnosed as healthy, will be of interest. Now, let us denote healthy as negatives and 

cancerous as positives. If a healthy patient (negative class) is diagnosed correctly ({𝑛, 𝑁}), 

then it is a TN. If a cancerous patient (positive class) is diagnosed correctly ({𝑝, 𝑌}), then it 

is a TP. If a healthy patient is diagnosed as cancerous ({𝑛, 𝑌}), then it is a FP. Finally, if a 

cancerous patient is diagnosed as healthy ({𝑝, 𝑁}), then it is a FN. In case of intrusion 

detection, it is usual to denote normal behavior as negatives and intrusions as positives, so 

this example is directly adaptable.  

Metrics 

The most common metrics to evaluate the performance are the accuracy (ACC) and the error 

rate. While the error rate is just 1 − 𝐴𝐶𝐶, the accuracy is expressed as 


𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Basically, the accuracy equation  expresses the correct classification rate over all 

instances and is calculated by adding up all correct classifications and then dividing them by 

all instances. Since we are evaluating performances for imbalanced data, this metric is not 

very meaningful. Let us assume that we have an imbalanced ratio of 1:99, which means that 

the minority class consists only of 1% of all data instances and the majority class consists of 

the remaining 99% instances. So, if we achieve an accuracy of 99%, that could mean that 

we have classified all majority instances correctly but all minority instances wrongly [33].  
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To overcome this shortcoming, various other evaluation metrics exist, which are more suited 

for the imbalanced domain [20] [33]. These metrics are 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.4) 

 

 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.5) 

 

 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) 𝑜𝑟 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.6) 

 

 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (3.7) 

 

 
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (3.8) 

In general, all metrics are based on TP, FP, FN and TN. First and foremost, Precision 

measures the exactness which means how many of all predicted positives are classified 

correctly. On the other hand, TPR or Recall/Sensitivity measures the completeness which 

means how many instances of all real positives are predicted correctly [20].  

Intuitively, TNR computes how many instances of all real negatives are predicted correctly. 

Now, FNR and FPR have an inverse relationship to TPR and TNR respectively. FNR states 

how many instances of all real positives are predicted wrongly and FPR calculates how many 

instances of all real negatives are predicted wrongly. However, further metrics are 

 
𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

(1 + ß2) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

ß2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (3.9) 

 

 𝐺 − 𝑚𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 (3.10) 

The 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 combines Recall and Precision as weighted ratio to represent the 

effectiveness of the classifier. The weight is based on the ß parameter. Usually, this 

parameter is set to 1 and so a balanced weight of Precision and Recall is achieved. Even 

though this metric gives more insight than the accuracy metric, it is still sensitive to 

imbalanced data distributions. The 𝐺 − 𝑚𝑒𝑎𝑛 finally calculates the ratio of positive 

accuracy and negative accuracy which represents the degree of inductive bias [20]. 



Pattern Recognition  47 

 

Receiver operating characteristics curves 

The receiver operating characteristics (ROC) curve plots the TPR against the FPR. Each 

point within this graph represents a single classifier at a specific data distribution. This 

means, that such a graph yields to a visual representation between benefits (TPR) and costs 

(FPR) for various data distributions. An example is shown in Figure 31. The Points 

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺} originate from hard-type classifiers which are only able to produce a 

single {𝑇𝑃𝑅, 𝐹𝑃𝑅} pair. So, Point A represents a perfect classification (100% TPR, 0% FPR) 

while Point B represents the worst possible classification (0% TPR, 100% FPR). The 

separation line between the white and the grey space stretched between Point C and D 

expresses a random classifier and therefore Point E represents a random guess. So, each 

Point within the grey lower right triangle performs worse than random guessing (e.g., Point 

F) and on the other hand each Point within the white upper left triangle performs better than 

random guessing (e.g., Point G) [27]. 

 

Figure 31: ROC curve example by [27] 

 

On the other hand, a series of ROC points produced by a threshold can generate full-featured 

ROC curves. So, the curves {𝐿1, 𝐿2} in Figure 31 are provided by soft-type classifiers, which 

can output continuous numeric values representing the confidence of an instance. To 

compare the average performance of different classifiers, the area under curve (AUC) is 

calculated. For example, the area under the curve 𝐿2 is greater than the area under the curve 

𝐿1. This means, that the classifier which has generated the curve 𝐿2 has a better average 

performance than the classifier which has generated the curve 𝐿1 [27]. 
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4 Datasets 

For all following tests, two different datasets are used. The first dataset is the Australian 

Defense Force Academy Linux Dataset (ADFA-LD) [37] which consists of normal behavior 

traffic and different attacks against an Ubuntu Linux server [38]. This dataset belongs to 

traditional network data which could occur in an analogous way in the information and 

communication technology (ICT) part of a smart grid network. The second dataset, 

belonging to the energy part of smart grids, is the Industrial Control System Power System 

Dataset (ICS-PSD) [39] [40] [41] [42] which contains different event types. These event 

types are No Events, Natural Events and Attack Events. Additionally, both ADFA-LD and 

ICS-PSD include multiple classes to distinguish different attack types respectively events 

[37] [39]. Nonetheless, this research project deals only with the binary classification problem 

and will not investigate the multiclass classification problem for these datasets.  

In the following subsections, both datasets will be explained. This explanation will contain 

a detailed description of the datasets, the dataset structure and quantities, the imbalance ratio, 

a processing description and a literature review on previous performances.  

4.1 ADFA-LD 

The ADFA-LD was made for anomaly based intrusion detection systems and created due to 

missing datasets containing contemporary attack protocols. One example of an outdated 

dataset is the Knowledge Discovery and Data Mining (KDD) dataset [43] which was 

generated in 1998 and was historically the most used dataset for IDS research. Prior to the 

generation of the ADFA-LD, there were some other not so successful attempts to generate 

and establish a contemporary and standard dataset for IDS research (e.g., the UNM dataset 

[44]). However, to generate the ADFA-LD, an Ubuntu Linux Server Version 11.04 was used 

as operating system. To allow different attacks, Apache Version 2.2.17 [45] with PHP 

Version 5.3.5 [46] and MySQL in Version 14.14 [47] were installed and started. The File 

Transfer Protocol (FTP) [48] and the Secure Shell (SSH) [49] services were enabled, too. 

To add additional vulnerability, TikiWiki Version 8.1 [50] was installed and started. After 

the full installation of the software and the installation of all available patches, different 

payloads to attack the operating system were generated [37] [51].  
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These payloads include password brute forcing, adding new superusers, a Java Based 

Meterpreter, a Linux Meterpreter Payload and a C100 Webshell. The vectors used for the 

password brute force attack were FTP by Hydra and SSH by Hydra. A client-side poisoned 

executable vector was used for both adding new superusers and to transfer the Linux 

Meterpreter Payload. To get a Java Based Meterpreter session, a TikiWiki vulnerability 

exploit was sent to the server. Finally, for the C100 Webshell payload a PHP Remote File 

Inclusion vulnerability was exploited. Altogether, these payloads and attack vectors 

represent current practices and tools to exploit a system. Considering the preparation of the 

server, a realistic defense environment was provided, too. Through several tests with 

different algorithms and the comparison with the KDD dataset, the ADFA-LD was validated 

as challenging and representative dataset for current cyber-attacks [37] [51]. 

 

Data structure 

During normal operations like web browsing or document operations 833 traces of system 

calls for normal training data and 4373 traces of system calls for normal validation data were 

collected. The normal training data traces contain only traces with a file size between 300 

Bytes and 6 Kilobytes while the normal validation data traces contain traces with a file size 

between 300 Bytes and 10 Kilobytes. The separation was done as trade-off between data 

fidelity and processing time. Since the goal of this research project is to gain the best 

detection rate, all normal data traces will be combined. This results in a total of 5206 normal 

behavior traces which will be classified as class 0 respectively negatives. For the generation 

of the attack data, ten attacks were executed for each attack vector, which results in totally 

746 attack data traces denoted as class 1 respectively positives. Consequently, the 

imbalanced ratio is approximately 1:7 [37]. The whole dataset is offered as a download at 

[52]. The downloaded file contains a separate subfolder for attack data, training data and 

validation data. Furthermore, the attack data folder contains subfolders for all different 

payloads and attack vectors. In all these subfolders are different amounts of text files 

contained. However, each single data example is an individual file and equals a system call 

trace whereby the term ‘trace’ refers to a sequence of single system calls for a privileged 

process. Each different system call has a different unique system call identification (ID). So, 

a sequence of system call IDs is saved for each system call trace and is therefore a single 

data example [51]. More information about the system call extraction can be found in [53].  
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Processing 

Since system call traces have different lengths, it is not possible to process them directly 

with a machine learning algorithm. Different solutions to bypass this problem consider trace 

lengths, the usage of common patterns or to count the frequencies. In [51] the author stated, 

that the trace length is not an effective way to find anomalies. Whereas common patterns 

like consecutive system call IDs are effective but highly time-consuming.  

Thus, a frequency based counting to gain a common sample length for system call traces is 

used. Therefore, the adapted dataset will consist of the same number of features as system 

call IDs. In case of the ADFA-LD, the highest system call ID is 340. Consequently, each 

data instance has 341 features, starting with the system call ID 0. For each file respectively 

system call trace, a row with 341 zero value entries is created. Now each occurrence of a 

system call ID in the trace increases the according (system call ID) feature by 1. After the 

processing of a trace, the row is added either to a matrix containing normal data or to a matrix 

containing attack data. So, two 𝑚 𝑥 𝑛 matrices were created with m as the number of either 

normal or attack data instances and n as the number of features.  

Through further investigations, it was found that some system call IDs never occur within 

all system call traces. Hence, both matrices were combined and the system call IDs 

respectively feature IDs with column sums equal 0 were extracted. Afterwards the found 

system call ID columns were removed from both the normal and attack data matrices. This 

adjustment has no impact to the detection rate but results in a higher performance due to the 

reduced feature space. Finally, the created matrices are stored to the local machine to save 

processing time. During the runtime of the program the data is stored in dictionaries. 

 

Previous performance 

Regarding to [54] the highest percentage achieved for the ADFA-LD measured by the area 

under the curve for a ROC curve is 95.32%. This value was achieved by a classification with 

a semantic Extreme Learning Machine [55]. In comparison, 88.93%, 76.22% and 86.87% 

were achieved with a semantic SVM, a syntactic Hidden Markov Model [56] and the 

Sequence Time-Delay Embedding 10 method [54] respectively. More results with different 

approaches can be found in [57], [37] and [51] in form of ROC plots without attached values.  
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4.2 ICS-PSD 

Disturbances in power systems occur not only by natural events, but additionally by man-

made events. Even though power systems were built with redundancies, computer security 

was not considered as relevant firstly. Through the emergence of smart grid networks, a lot 

of different intrusion detection techniques were developed. However, all the different 

approaches are limited to individual devices or attacks or they are very expensive to 

implement. So, with the ICS-PSD and the used network for the dataset generation it was 

intended to have a possibility to test various anomaly detection methods for power systems 

and to detect both natural and malicious events [39]. 

 

Figure 32: Network diagram for the ICS-PSD [39] 

 

Figure 32 shows the power system framework with different device types used to generate 

the ICS-PSD. For example, the components G1 and G2 represent power generators. The 

components BR1 to BR4 are breakers with a single line between BR1 and BR2 and another 

line between BR3 and BR4. The Intelligent Electronic Devices (IEDs) R1 to R4 can switch 

these breakers on or off automatically. Additionally, the IEDs have a distance protection 

scheme to trip a breaker once a fault is detected. Finally, it is possible to trip breakers via the 

IEDs manually. For all state changes, the IEDs submit information to the control system 

through a substation switch and a router. Beside the control system, there are different 

network monitoring systems such as a Snort [58] and Syslog [59] server and also data 

acquisition systems. However, all following attack scenarios assume that an attacker has 

already gained access to the substation switch [39]. 
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To generate disturbances, five different scenarios were performed. These scenarios are a 

short-circuit-fault, a line-maintenance, a remote tripping command injection, a relay setting 

change and a data injection. While the short-circuit-fault, which is a short in a power line, 

and the line maintenance belong to the natural events, the other scenarios belong to the attack 

events. During a remote tripping command injection, the attacker sends a command to an 

IED to open a breaker. With the relay setting change the attacker disables the distance 

protection scheme for the IEDs in what way they cannot trip for valid commands or faults. 

Finally, the data injection simulates a valid fault by changing different values which causes 

a black-out [39]. 

Data structure 

The dataset is offered at [60] as multi-class dataset with 8 different natural events, 28 

different attack events and a single class with no events. Additionally, the dataset is offered 

as Ternary-class dataset with natural events, attack events and no events and finally as 

Binary-class dataset where the normal and natural events were grouped together to one class 

and the attack events represent the other class [39]. 

As previously stated, this research project covers only the binary classification problem. 

Nonetheless, the Ternary-class dataset was downloaded and grouped to two different binary 

datasets. The first dataset equals the Binary-class dataset from [60] and groups the normal 

and natural events to class 0 respectively negatives while the attack events represent class 1 

respectively positives. The second dataset groups the natural and attack events to class 1 

respectively positives while the normal events represent class 0 respectively negatives. The 

first binary dataset is denoted as ICS-PSD-NNvA and the second one as ICS-PSD-NvNA. 

Now the downloaded archive contains 15 different comma-separated values (CSV) files with 

thousands of individual samples for each distinct event. In total, there are 4405 normal 

events, 18309 natural events and 55663 attack events. To work with a similar data amount 

as the ADFA-LD for better comparisons and a decent processing time, just the first CSV file 

is used. This file contains 173 normal events, 927 natural events and 3866 attack events. In 

case of the ICS-PSD-NNvA, class 0 consists of 1100 samples and class 1 of 3866 samples 

consequently. So, the imbalanced ratio for this dataset is approximately 1:3.50. In contrast, 

class 0 of the ICS-PSD-NvNA consists of 173 samples while class 1 consists of 4793 

samples. This results in an imbalanced ratio of approximately 1:27.70.  
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Each of the datasets has 129 columns and 128 features with 116 different measurements 

from four phasor measurement units (PMUs). The remaining 12 features consist of control 

panel logs, Snort alerts and relay logs for the PMUs. The last entry is a marker for the event 

type to classify if it is a normal event, a natural event or an attack event. 

Processing 

For the simple reason that the dataset is a single CSV file and each data entry has the same 

number of features, it is sufficient to iterate over each data entry in this file. Just the last 

column entry must be separated to distinguish between the event type. However, there are a 

few entries with an infinite value. Since the machine learning algorithms are not able to deal 

with any data types but numbers, it is necessary to substitute these values. There is no 

difference whichever number is substituted. The only two important things to consider are 

that firstly the substituted number remains the same for each substitution and secondly the 

number differs from any other containing number. Since all values are greater than or equal 

to zero, the easiest way is to choose a negative number. In this case minus one was chosen. 

Now, three different matrices, one for each event type, are created and each data entry is 

stored in the related matrix. Finally, the created matrices are stored in the local machine 

exactly like the ADFA-LD and will be handled as dictionaries during the runtime, too. 

Furthermore, the stored matrices can be loaded either as ICS-PSD-NNvA or as ICS-PSD-

NvNA during runtime and will be accordingly grouped during the import process. 

Previous performance 

Despite a literate review, no prior classification results for the generated ICS-PSD-NNvA 

were found. However, for the ICS-PSD-NvNA there are different performances in [39] 

available. The highest F-Measure percentage for the ICS-PSD-NvNA is approximately 92% 

(estimated from a plot) and was achieved with the AdaBoost+JRipper classifier. However, 

there was a higher percentage of 95.5% achieved for the Ternary-class dataset. Apart from 

[39], no other performance evaluations were found. 

 

The next chapter briefly describes the development environment (e.g., programing language, 

development tools, project structure). 
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5 Development environment 

The data processing as well as any other pattern recognition procedures such as 

preprocessing, classification/prediction and evaluation are implemented with the Python 

programing language [61] in version 3.6.0 which is for now one of the latest versions. Since 

there are many different packages used, the Anaconda Distribution [62] is installed. The 

Anaconda Distribution is a package manager, an environment manager and a Python 

distribution, including over 720 open source packages. The Jetbrains PyCharm [63] 

integrated development environment (IDE) is used for the source code development.  

The necessary packages to run the full program are stated in the following list: 

• NumPy [64] >= 1.11.2 

• SciPy [65] >= 0.18.1 

• Scikit-Learn [66] >= 0.18.1 

• Matplotlib [67] >= 2.0.0 

• Imbalanced-Learn [68] >= 0.2.1 

• CostsensitiveClassification [36] >= 0.5.0 

NumPy is a useful and efficient structure for numerical works with arrays and to manipulate 

matrices. So, NumPy arrays are used to store all the data and targets from the different 

datasets and for various calculations as well. SciPy contains modules for scientific work like 

linear algebra, integration, interpolation and image processing. Both NumPy and SciPy are 

required to install Scikit-Learn, which is used as the main library for all pattern recognition 

tasks. Scikit-Learn is a very powerful machine learning library featuring for example 

classification, regression, clustering, dimensionality reduction, model selection and 

preprocessing. With the Matplotlib module it is possible to generate diverse types of plots. 

For this research project, Matplotlib is used to generate ROC curves. Finally, Imbalanced-

Learn and CostsensitiveClassification are both libraries to execute different tests with the 

imbalanced datasets. The Imbalanced-Learn package supports various models for under-

sampling, over-sampling and hybrid-sampling. The CostsensitiveClassification library 

offers models for cost-sensitive classification problems with methods featuring for example 

cost-sensitive weighting, thresholding and classifiers with built-in cost-sensitive algorithms 

[64] [65] [66] [67] [68] [36]. 
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The program itself contains three different main modules which are denoted as “data”, 

“experiments” and “toolbox” and additionally two folders which are denoted as “doc” and 

“solutions”. The whole structure is illustrated in Figure 33. The “data” module contains one 

file for all operations for the ADFA-LD and one file for both datasets of the ICS-PSD. 

Furthermore, this module contains a subfolder for the downloaded raw data and a subfolder 

for the converted data sets which are stored there after the import process. The “experiments” 

module contains four submodules, one module for each experiment type. The different 

experiments are basic evaluations, a grid search, k-fold cross validations and a smart grid 

hierarchy simulation. For each of these experiments and for each dataset type an own file is 

created to set various parameters and to start the tests. All these experiments will be 

explained explicitly in the next chapters. The “toolbox” module contains two python scripts. 

The “helper” script contains various functions for easier processing such as calculating and 

saving different metrics, generating and saving ROC plots and also a setup of different tests. 

The “evaluation” script contains different core functionalities for the experiments.  

 

Figure 33: Python project structure 

 

Finally, the “doc” directory contains a project documentation built with Sphinx [69] and the 

“solution” folder contains all achieved rates during the experiments. 
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6 Method screening 

The main goal of this research project is to implement anomaly detection methods for 

imbalanced data sets in a smart grid hierarchy and to evaluate their performance. So, the first 

task is to investigate the mentioned imbalanced data methods for the previously described 

datasets. This task will be described within this chapter from beginning to end. Additionally, 

this chapter is divided into three parts. The first section will describe the process of testing 

different classifiers and preprocessing (scaling) methods with a simple stratified sampling to 

get a first impression of the performance of the three datasets ADFA-LD, ICS-PSD-NvNA 

and ICS-PSD-NNvA. After this process, the best scaling method will be chosen for all 

further tests. Then, in the second section, ensemble classifiers will be added to the classifier 

set and a grid search with k-fold cross validation in the hyper-parameter space for each 

individual classifier will be executed to find the best individual performance. Finally, in the 

last section, the methods sampling and cost-sensitive learning for imbalanced data will be 

tested and evaluated with k-fold cross validation. In this last subchapter, a method will be 

chosen, which will then be used for the smart grid hierarchy test implementation. 

 

Figure 34: Basic method screening process 
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If we consider the steps in the pattern recognition cycle, the first steps are feature extraction 

and preprocessing. Since the feature extraction process was described in the chapter about 

the datasets, all steps performed within these three sections will start with preprocessing and 

will end with performance evaluations. These steps are illustrated in Figure 34. So, after the 

dataset is loaded and the data is preprocessed, the next step is to split the data in training and 

test data. Once the classifier is trained with the training data, the test data is predicted with 

the trained classifier. Finally, the predictions for the testing data will be evaluated with the 

introduced performance metrics. The steps from splitting to prediction will be repeated 𝑛 

times for a more robust performance. Anyway, the described cycle must be executed for 

each single preprocessing, splitting, sampling and also classifier.  

However, to execute the tests for each subcategory, two files are used. The first file is located 

in the experiments module and the related experiment. This file is named after the dataset 

and contains the basic setup for the tests, such as the number of iterations, the fold size, 

scaling methods, the used classifiers and so on. This file enables an easy adoption of the test 

setup. The second file, namely evaluations, is located in the toolbox module and provides all 

the necessary tasks for the related subchapter purpose. 

 

6.1 Classifier and sampling tests 

First of all, before any test can be executed, it is necessary to define a set of classifiers, which 

will be used for all tests and comparisons. The following single classifiers were chosen: 

• Decision trees (DT) 

• k-nearest neighbor (k-NN) 

• Quadratic Discriminant Analysis (QDA) 

• Multilayer Perceptrons (MLP) 

• Support vector machines with a linear kernel (linSVM) and a RBF kernel (rbfSVM) 

For the first tests, all the classifiers will be used with their default (hyper-)parameters. As 

previously stated, the first step once the data is loaded is to preprocess the data. To find the 

best possible method, all different scaling methods, namely interval fit in the range of [0,1], 

z-score scaling (standardization) and arctangent scaling were tested and compared to the 

performance of the unscaled data for each dataset. The interval fit method and the z-score 

scaling methods are directly implemented in the Scikit-Learn module “preprocessing”. 
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The arctangent scaling is not directly implemented and must be programmed. To get the 

arctangent scaled data (denoted as 𝑎) the standardized data (denoted as 𝑠) is scaled by 

 
𝑎 =

2

𝜋
∗ tan−1(𝑠)   (6.1) 

Then, for each dataset the data is split into training and test data and targets with stratified 

sampling with a 70:30 training/test split. To execute this task, the built-in function 

“train_test_split” from the module “model_selection” in Scikit-Learn is used. Once the data 

is split, the training data and targets are used to train the classifiers and then the trained 

classifier is used to predict the test data split. The related functions are directly built-in in 

the classifiers and are denoted as “fit” and “predict”. The parameters for the “fit” function 

are the training data and the training targets and the only parameter for the “predict” function 

is the test data set. Finally, the performance is evaluated by comparing the original 

respectively correct test targets with the predicted targets. For a more robust result, the 

process is repeated 10 times and then the performance is simply averaged. 

 

Figure 35: Test-setup for scaling and classifier tests 
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This test setup is illustrated in Figure 35. So, each dataset is scaled separately to an interval 

[0,1], is standardized and arctangent scaled. Including the unscaled dataset, this means that 

for each dataset four different scaling methods exist. Consequently, 12 different datasets will 

be tested. Since we use 6 different classifiers, this leads to 72 iterations in total to execute 

the whole test setup a single time. Since the test is repeated 10 times for a more robust 

solution, the basic test setup needs 240 iterations for each dataset and 720 total iterations to 

complete all tests. For further clarification, the algorithm “basic_evaluation_binary” is stated 

in Listing 5 in Appendix A. If all parameters are passed correctly, a dictionary for the results 

is created. For each classifier, a dictionary is created and within such a classifier dictionary 

another dictionary for all the different scaling types is created. Then, a single scaling rate is 

initialized as a 2x2 matrix with zero values to store the confusion matrix. Next, a for-loop 

executes the test 𝑛 times. Within this for-loop, the first step is to split the data in training and 

test data and targets with stratified random sampling. Then, the data is scaled for each passed 

scaling type. Once we have the split and scaled datasets, the training and prediction tasks are 

executed for each passed classifier and scaling type. Then, the confusion matrix from the 

predicted targets is calculated with a built-in function “confusion_matrix” in the module 

“metrics” in Scikit-Learn and is added to the related rates in the previously created 

dictionary. Once all 𝑛 iterations are finished, the rates are divided by the number of iterations 

to get the average performance for each classifier. Finally, the rates dictionary is returned. 

Now, this test-setup is evaluated with TPR, TNR and ACC. For each dataset, an own table 

will show the performances for the stated classifiers DT, k-NN, MLP, QDA, linSVM and 

rbfSVM and each scaling type. The performance for the ADFA-LD is shown in Table 4. In 

general, a satisfactory performance is achieved with the out-of-the-box classifiers for the 

ADFA-LD. Especially the decision tree, k-NN and MLP classifiers have a high accuracy 

with approximately 95%. Since the positives in the ADFA-LD are the minority class and the 

negatives are the majority class, the performances for TPR and TNR behave as expected. 

The TNR (detection rate for negatives respectively for the majority class) for these three 

classifiers is about 97% and the TPR (detection rate for positives respectively minority class) 

is between approximately 79% and 84%. In case of decision trees and k-NN, the scaling of 

the data has little to no impact on the performance and lies within the fluctuation margin 

through random sampling. On the other hand, the MLP classifier shows little improvements 

for the interval fit and good improvements for standardization and arctangent scaling. 
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unscaled interval-fit [0,1] z-score scaling arctangent scaling 

 TPR TNR ACC  TPR TNR ACC  TPR TNR ACC  TPR TNR ACC 

DT 0.8103 0.9697 0.9497 0.8147 0.9705 0.9510 0.8121 0.9702 0.9504 0.8063 0.9707 0.9501 

k-NN 0.8388 0.9736 0.9567 0.8317 0.9704 0.9530 0.8433 0.9718 0.9557 0.8491 0.9778 0.9616 

MLP 0.7911 0.9793 0.9557 0.8272 0.9800 0.9609 0.8545 0.9802 0.9644 0.8536 0.9832 0.9670 

QDA 0.9710 0.4738 0.5371 0.9688 0.5061 0.5641 0.9656 0.4967 0.5555 0.9741 0.4652 0.5291 

linSVM 0.7344 0.9360 0.9107 0.3754 0.9834 0.9072 0.8174 0.9618 0.9437 0.8183 0.9720 0.9527 

rbfSVM 0.3179 0.9971 0.9119 0.0000 1.0000 0.8746 0.5330 0.9855 0.9287 0.0009 0.9999 0.8746 

Table 4: Basic evaluation results - ADFA-LD 

 

The QDA classifier steps out of the line and shows a bad accuracy of 53.71%. However, the 

performance for the minority class is with 97.10% very high and with 47.38% for the 

majority class very low. Since there are a lot more majority instances, the accuracy is 

decreased. This example shows perfectly the low validity of the accuracy score. A high 

detection rate for the majority class enables a good accuracy score while a good performance 

for the minority class does not lead to a high accuracy score necessarily. Nevertheless, in 

combination with TPR and TNR the validity is still good enough to choose the best scaling 

method after comparison of all performances. However, interval fit and z-score scaling show 

a slight improvement for the minority class detection rate for the QDA classifier while the 

arctangent scaling has no impact.  

The SVM with linear kernel achieves an accuracy of 91.07% with a TNR of 93.60% and a 

TPR of 73.44%. So, the performance is significantly worse than in comparison to the DT, 

the k-NN and the MLP classifiers. But the z-score scaling and arctangent scaling improve 

the performance in such a way that the gap is nearly closed. On the other hand, by using the 

interval fit method, the performance for the TPR drops significantly. Finally, the SVM with 

RBF kernel has the best detection rate for the majority class with a TNR of 99.71% but 

unfortunately a very low detection rate for the minority class with a TPR of 31.79%. This 

leads to a total accuracy of 91.19%. This behavior is even more intense with the use of the 

interval fit method and arctangent scaling. With interval fit all majority examples are 

detected and no single minority instance is correctly predicted and with arctangent scaling 

nearly all majority instances and only a few minority instances are detected. With z-score 

scaling the performance is more balanced by achieving a good detection rate for the majority 

class and nearly a doubled detection rate of the minority class in comparison to the unscaled 

data. In general, the low performances for the SVMs are unexpected since they usually show 

a good generalization ability out-of-the-box. But this circumstance will be investigated in 

the next subchapter.  
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However, with the ADFA-LD alone, no statement for the best scaling method is possible but 

there are little advantages for z-score scaling and arctangent scaling, since they show better 

improvements for single classifiers. Especially the classifiers with an already good 

performance showed even a slight performance improvement using standardization or 

arctangent scaling.  

 
unscaled interval-fit [0,1] z-score scaling arctangent scaling 

 TPR TNR ACC  TPR TNR ACC  TPR TNR ACC  TPR TNR ACC 

DT 0.9945 0.8519 0.9895 0.9946 0.8365 0.9891 0.9950 0.8404 0.9896 0.9942 0.8423 0.9889 

k-NN 0.9926 0.6750 0.9815 0.9954 0.8327 0.9897 0.9958 0.8385 0.9903 0.9967 0.8481 0.9915 

MLP 0.9316 0.1135 0.9030 0.9946 0.1712 0.9658 0.9958 0.8385 0.9903 0.9967 0.8481 0.9915 

QDA 0.9955 0.8250 0.9895 0.9955 0.8259 0.9895 0.9955 0.8250 0.9895 0.9967 0.8135 0.9903 

linSVM 0.9993 0.0000 0.9644 0.9991 0.0019 0.9643 0.9892 0.2692 0.9640 0.9944 0.5423 0.9786 

rbfSVM 0.9998 0.0019 0.9650 1.0000 0.0000 0.9651 1.0000 0.0000 0.9651 1.0000 0.0000 0.9651 

Table 5: Basic evaluation results – ICS-PSD-NvNA 

 

Next, the performance for the ICS-PSD-NvNA is shown in Table 5. First of all, for this 

dataset the positives are the majority class and the negatives are the minority class. In 

general, the performance for this dataset is very high. The highest accuracy of 99.15% was 

achieved with arctangent scaling and the k-NN and MLP classifiers with a TPR of 99.67% 

and a TNR of 84.81%. Since these classifiers are out-of-the-box single classifiers without 

hyper-parameter changes, the achieved performance is very good. Another remarkable note 

in terms of scaling is, that the MLP classifier achieved without scaling only an accuracy of 

90.30% with a TPR of 93.16% and a TNR of 11.35%. Like the ADFA-LD, the decision tree 

achieved a very good performance for the ICS-PSD-NvNA. With an accuracy of 98.95% 

and a TPR of 99.45% and a TNR of 85.19% the DT is even the best classifier for the unscaled 

data. Surprisingly, the QDA classifier reached a similar performance than the decision tree 

although this classifier performed not very good for the ADFA-LD. The performance 

through scaling was not improved for neither the decision tree nor the QDA classifier. While 

the k-NN classifier achieved a medium performance in comparison to the best classifiers for 

unscaled data, the performance for the scaled datasets is much better. As previously stated, 

the k-NN rule achieved even the best performance with arctangent scaling. Both SVM 

classifiers show a similar behavior as the ADFA-LD. While they achieve nearly 100% or 

even 100% detection rate for the majority class, the detection rate for the minority class is 

smaller than 1% or even 0%. Only with z-score and arctangent scaling the detection rate for 

the minority class was raised while the performance for the majority class is similar. But 

again, the performance for both SVM classifiers seems too low.  
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Overall, both z-score scaling and arctangent scaling are again superior to interval fit scaling 

and unscaled data. However, the arctangent scaling method is even slightly better than the 

z-score scaling method. 

 
unscaled interval-fit [0,1] z-score scaling arctangent scaling 

 TPR TNR ACC  TPR TNR ACC  TPR TNR ACC  TPR TNR ACC 

DT 0.9453 0.8270 0.9191 0.9450 0.8209 0.9175 0.9441 0.8312 0.9191 0.9454 0.8252 0.9188 

k-NN 0.9370 0.6752 0.8790 0.9407 0.7461 0.8976 0.9459 0.7355 0.8993 0.9423 0.7276 0.8948 

MLP 0.9802 0.0255 0.7687 0.9731 0.0961 0.7789 0.9437 0.5424 0.8548 0.9363 0.5358 0.8476 

QDA 0.3816 0.9452 0.5064 0.3838 0.9436 0.5078 0.3853 0.9224 0.5087 0.3950 0.9442 0.5166 

linSVM 0.8037 0.2009 0.6702 0.9823 0.0694 0.7801 0.9357 0.1855 0.7695 0.9604 0.1564 0.7823 

rbfSVM 0.9997 0.0206 0.7829 0.9450 0.8209 0.9175 0.9949 0.0506 0.7858 1.0000 0.0000 0.7785 

Table 6: Basic evaluation results – ICS-PSD-NNvA 

 

The performance for the ICS-PSD-NNvA is shown in Table 6. The ICS-PSD-NNvA has 

again more positive instances than negative instances. The performance for the best 

classifiers DT and k-NN is very good, but worse than the ICS-PSD-NvNA. This seems 

reasonable, since in the ICS-PSD-NNvA the normal and natural event data are combined to 

the negative class. For the unscaled data, the decision tree achieves an accuracy of 91.91% 

with a TPR of 94.53% and a TNR of 82.70% while the k-NN rule achieves an accuracy of 

87.90% with a TPR of 93.70% and a TNR of 67.52%. Even for these two classifiers, the 

detection rate for the minority class has large varieties. However, the other classifiers have 

a very bad performance. Even if the MLP and rbfSVM achieve an accuracy between 76% 

and 79% with a TPR between 98% and 100%, the TNR for both is only between 2% and 

3%. The linSVM achieves also only approximately 2% TNR and 80% TPR which results in 

an accuracy of 67.02%. The QDA demonstrates the same behavior than in the ADFA-LD. 

The detection rate for the minority class is with 94.52% very high while the detection rate 

for the majority class with only 38.16% is very low. This results in a total accuracy of 

50.64%. The scaling behavior is similar to the other datasets. The interval fit method shows 

slight improvements especially for the k-NN, MLP and both SVM classifiers. The same 

behavior occurs for z-score scaling and arctangent scaling but again the improvements are 

better than the interval fit method. Still, the performance for the SVM is surprisingly low.  

In general, the decision tree classifier performs very well for all three datasets but shows no 

improvements with the scaling methods. While the k-NN rule has also a good performance 

for all datasets, the performance improvements with scaling are high (especially through z-

score scaling and even more through arctangent scaling). So, the k-NN rule performed 

overall for two out of the three datasets better than the decision tree classifier. 
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The same behavior occurs for the MLP classifier. Consequently, the three classifiers DT, k-

NN an MLP showed the best performances. The k-NN rule and the MLP classifier achieved 

also a remarkable improvement through scaling, especially with arctangent scaling. On the 

other hand, QDA shows an odd behavior by having very high detection rates for the minority 

class for the datasets ADFA-LD and the ICS-PSD-NNvA and low detection rates for the 

majority class. Another strange behavior for the QDA classifier is that this classifier ranks 

simultaneously to the two best classifiers for the ICS-PSD-NvNA. Even though the scaling 

improved the performance for both SVM classifiers, the performance is still bad and 

unexpected low for all three datasets. Anyway, the performance improvements by scaling 

are very good. Since the best improvements were achieved by the arctangent scaling method, 

further test will use this method only.  

This section investigated only the basic performance for the datasets and the different scaling 

methods. So, in the next subchapter the full range of classifiers, including ensemble learners, 

will be used. Additionally, to improve the performance for all classifiers, a full k-fold cross 

validation grid search will be executed. After this, a full test for the three datasets with k-

fold cross validation and the ensemble learners will be performed. The results of this test 

will be the foundation for the comparison with all imbalanced data methods. 

6.2 Ensembles and hyper-parameter grid-search 

Now, some ensemble learners will be added to the classifier kit. Since the decision tree 

classifier has a stable high performance, this classifier will be used as base learner for all 

non-voting ensemble classifiers. Voting classifiers will be used as well but since they do not 

have any parameters to tune they will be used the first time in the k-fold cross validation test 

setup. So, the used classifiers for the grid search are 

• Decision tree (DT) 

• k-nearest neighbor (k-NN) 

• Quadratic Discriminant Analysis (QDA) 

• Multilayer Perceptrons (MLP) 

• Support vector machine (SVM) 

• AdaBoost with decision trees as base learners (DTBoost) 

• Bagging with decision Trees as base learners (DTBagg) 

• Random forest (RForest) 
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All of these classifiers have different hyper-parameters which will be explained 

subsequently. Prior to that, the basic process of a grid search CV is illustrated in Figure 36. 

 

Figure 36: Basic grid search cross validation process 

 

So, to execute a single iteration of a grid search cross validation, a dataset is loaded and is 

then preprocessed with arctangent scaling as elaborated in the previous subchapter. Then, a 

classifier and a set of related defined parameters is used for the cross validation with this 

parameter set. Luckily, Scikit-Learn offers in the “model_selection” module a function for 

a grid search cross validation, namely “GridSearchCV”. To use this function, one must pass 

the used classifiers, the parameters, the number of folds and a scoring function.  

The scoring function offers different default metrics such as the accuracy score to compare 

the achieved performances for different parameter sets. Since no appropriate metric for 

imbalanced data is available, a custom scorer function was created and is stated in Listing 6 

in Appendix A. This custom scorer function calculates both the F1-Measure and G-mean 

and averages the performance. 

Back to the execution of a single grid search iteration, the next step is to extract the 

performances. To evaluate the performance, it is only necessary to train respectively fit the 

grid search classifier with each set of the chosen parameter sets. The built-in function 

“GridSearchCV” offers an attribute which is called “best_params_” which returns the mean 

performance and standard deviation for the 𝑘 folds for a specific parameter set. This process 

is then repeated for each parameter set and for each classifier. For example, let us consider 

the k-NN rule which has a hyper-parameter called “n_neighbors”. This parameter simply 

represents the number of neighbors. So, if we want to evaluate the performance of this 

classifier with neighbors from 1 to 9, this single process is repeated 9 times.  
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The first iteration performs the cross validation with 1-NN, the next iteration with 2-NN, the 

next with 3-NN and so on. If we would add another parameter with two different possible 

values, the cross validation would be executed 18 times since each parameter is combined 

with each other. Once all parameter sets are evaluated, the best set can be chosen. Since k-

fold cross validation is used for the performance evaluation, overfitting is avoided.  

The source code for the generation of the classifiers with all related parameters for the grid 

search cross validation is shown Listing 7 in Appendix A. In general, a parameter set is 

defined as dictionary with the name of the hyper-parameter as key and a list of parameter 

values as value. Additionally, a dictionary for each classifier is created. While the key is the 

name of the classifier, the first value contains the classifier itself and the second value 

contains the parameter dictionary set.  

First of all, the parameters chosen for the DT classifier are “criterion”, “min_samples_split”, 

“max_depth”, “min_samples_leaf” and “max_leaf_nodes”. The “criterion” parameter 

measures the quality of a split and offers the criteria “gini” and “entropy”. The default 

parameter is “gini”. So, both criteria will be used for the grid search. Next, 

“min_samples_split” defines the number of samples required to split an internal node. The 

default parameter is 2 and the values 5 and 10 are added to the grid search. The parameter 

“max_depth” defines the maximum depth of the tree. The default parameter is “None” which 

means that nodes are expanded until all leaves contain less than “min_samples_split” 

samples or until all leaves are pure. The parameter “None” is extended by the values 5, 10 

and 20 for the grid search. The parameter “min_samples_leaf” defines the minimum number 

of samples required to be at a leaf node. The default value is 1 and is extended by 2 and 5 

for the grid search. Finally, the “max_leaf_nodes” parameter grows the leaves of a tree 

limited by these values. The default value is “None” which means that there is no stopping 

criterion. For the grid search, the “None” value is extended by 20 and 50 [70].  

Now, all parameters and values are defined. The parameter “criterion” has 2 values, the 

parameter “min_samples_split” has 3 values, the parameter “max_depth” has 4 values, the 

parameter “min_samples_leaf” has 3 values and the parameter “max_leaf_nodes” has also 3 

values. This leads to 2 ∗ 3 ∗ 4 ∗ 3 ∗ 3 = 216 different combinations for the decision tree 

classifier. 
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For the k-NN classifier, only the two parameters “n_neighbors” and “weights” are used. 

While “n_neighbors” defines the number of neighbors to use (default=5), the parameter 

“weights” is used to define a weight function for the prediction. Therefore, it is possible to 

choose between “uniform”, which weighs all points in the neighborhood equally, “distance”, 

which weighs the points by the inverse of their distance or a custom weight function. The 

default value is uniform [71]. For the grid search, this value will be extended by the 

“distance” weight function. Additionally, a range of neighbors between 1 and 9 will be used 

for the “n_neighbors” parameter. This leads to 2 ∗ 9 = 18 different combinations for the k-

NN classifier. 

This process is repeated for all other classifiers with their related parameters. The 

descriptions for the parameter definitions for the QDA classifier can be found in [72], for 

the MLP classifier in [73], for the SVM classifier in [74], for the AdaBoost classifier in [75], 

for the bagging classifier in [76] and for the random forest classifier in [77].  

However, this leads to 11 different combinations for the QDA classifier, to 10 ∗ 3 ∗ 3 = 90 

different combination for the MLP classifier, to 1 ∗ 4 ∗ 13 + 1 ∗ 4 = 56 different 

combination for the SVM classifier and to 10 ∗ 12 ∗ 2 = 240 different combination for the 

random forest classifier.  

 

Figure 37: Test-setup for the grid search cross validation 
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Since both the AdaBoost and the bagging classifier use the decision tree classifier as base 

learner, a grid search for the decision tree itself would result in redundant workload. So, the 

decision tree grid search was executed beforehand. The best performance for the decision 

tree for all datasets was achieved with a changed “criterion” parameter. The changed value 

is “entropy” while the rest of the parameters remain with their default values. Thus, 218 

additional feature combinations can be avoided for both the AdaBoost and bagging 

classifiers. So, it is only necessary to investigate the number of used base learners 

(“n_estimators”). Instead of 2,180 different combinations, only 10 different combinations 

for both DTBoost and DTBagg remain. 

The combination of all parameters and the used classifiers are shown in Figure 37. Since a 

5-fold cross validation with 10 repetitions is executed for each parameter set, 50 iterations 

are necessary for each parameter set and for each classifier. This results for each dataset in 

641 different parameter sets and 32,550 iterations and for all three datasets together in 97,650 

iterations to execute the full grid search cross validation. 

 

The function to execute these 97,650 iterations is stated in Listing 1. 

def grid_search(data, targets, iterations, number_of_folds,  

  number_of_threads, use_DT, use_kNN, use_QDA, use_MLP, use_SVM,  

  use_DTBoost, use_DTBagg, use_RForest, save_dir=''): 

 

    # generate grid search classifiers and params for the search 

    grid_search_classifiers = __generate_grid_search_classifiers(use_DT,  

     use_kNN, use_QDA, use_MLP, use_SVM,  

     use_DTBoost, use_DTBagg, use_RForest) 

  

 # arctangent scaling 

  data = preprocessing.StandardScaler().fit_transform(data) 

  data = (2 * np.arctan(data)) / np.pi 

 

    for key, value in grid_search_classifiers.items(): 

 

        best_params = [] 

        results = [] 

 

        for x in range(0, iterations): 

 

            # shuffle data 

            data, targets = shuffle(data, targets) 

             

            # set-up for grid search with stratified k-fold cross validation  

   and f1 + gmean comparison 

            clf = GridSearchCV(estimator=value['classifier'],  

   param_grid=value['parameter'], cv=number_of_folds,  

   n_jobs=number_of_threads, scoring=make_scorer(  

    score_func=__custom_scorer_mixed_f1_gmean,  

    greater_is_better=True)) 

 

            # calculate the different parameter performances 

            clf.fit(data, targets) 
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            # append results to the list 

            best_params.append(json.dumps(str(clf.best_params_))) 

            results.append(clf.cv_results_) 

 

        # calculate averages 

        all_means = []; all_stds=[]; 

 

        for result in results: 

            all_means.append(result['mean_test_score']) 

            all_stds.append(result['std_test_score']) 

 

        average_means = [np.mean(x) for x in zip(*all_means)] 

        average_stds = [np.mean(x) for x in zip(*all_stds)] 

        params = clf.cv_results_['params'] 

 

        sorted_index = np.argsort(average_means)[::-1] 

        average_means = np.array(average_means)[sorted_index] 

        average_stds = np.array(average_stds)[sorted_index] 

        params = np.array(params)[sorted_index] 

 

        # print solution or save solution to file 

        … 

Listing 1: Grid search execution function 

 

To execute this function successfully, the following parameters are necessary: 

• data [numpy matrix]: Numpy dataset matrix (columns=features) 

• targets [numpy matrix]: Numpy target matrix (each row = one target) 

• iterations [int value ≥ 𝟏]: The number of repetitions for the CV grid search 

• number_of_folds [int value > 𝟏]: The number of folds for a single grid search 

• number_of_threads [int value ≥ 𝟏]: The number of threads to use 

• use_classifier (any) [boolean]: True if the individual classifier should be generated 

• save_dir [string]: If empty, performances are printed. Otherwise the results are 

stored in the given path. Default = empty string 

First of all, the previously described function from Listing 7 is executed to generate the 

dictionary with all classifiers and parameters for which the grid search cross validation 

should be executed. Afterwards, the data is preprocessed with arctangent scaling. Then the 

function iterates over a for-loop for each single classifier. For each classifier, a list with the 

best parameters and the results is created to store all results which will be generated in 

another for-loop with 10 iterations. So, for each iteration in each classifier, the grid search 

cross validation is executed. Before the execution, the data is shuffled with the built-in 

function “shuffle” from the module “utils” in Scikit-Learn to generate more randomness and 

to avoid overfitting. Then, the parameters with their achieved performances are appended to 

the previously created list.  
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After the 10 iterations, the performances and standard deviations are summed up and 

averaged. Finally, the performances are either printed or saved. This process is then repeated 

for each classifier and then for each dataset. Additional to the performance for each 

parameter set, the best parameter set in each iteration is chosen and the output shows how 

often a specific parameter set was chosen.  

An example output for the k-NN classifier and the ADFA-LD is shown in Listing 2. This 

example shows, that the parameter “n_neighbors” with the value 4 and the distance weight 

function was chosen 6 of 10 times as the best classifier with an averaged performance over 

10 iterations for F1-Measure and G-Mean of 89.20% and a standard deviation of 3%. Both 

the k-NN classifier with either 3 or 6 neighbors and also the distance weight function were 

chosen 2 of 10 times as best classifiers. This implies, that in general the distance weight 

function results in better performance than the uniform weight function. This behavior is 

confirmed if we look in the single results for each parameter set.  

Best parameters set for KNeighbors found on development set: 

"{'n_neighbors': 4, 'weights': 'distance'}": 6/10 

"{'n_neighbors': 3, 'weights': 'distance'}": 2/10 

"{'n_neighbors': 6, 'weights': 'distance'}": 2/10 

 

Average grid scores on development set: 

0.892 (+/-0.030) for {'n_neighbors': 4, 'weights': 'distance'} 

0.890 (+/-0.029) for {'n_neighbors': 3, 'weights': 'distance'} 

0.890 (+/-0.028) for {'n_neighbors': 6, 'weights': 'distance'} 

0.887 (+/-0.030) for {'n_neighbors': 5, 'weights': 'distance'} 

0.885 (+/-0.030) for {'n_neighbors': 7, 'weights': 'distance'} 

0.885 (+/-0.029) for {'n_neighbors': 8, 'weights': 'distance'} 

0.884 (+/-0.030) for {'n_neighbors': 1, 'weights': 'distance'} 

0.884 (+/-0.030) for {'n_neighbors': 1, 'weights': 'uniform'} 

0.882 (+/-0.028) for {'n_neighbors': 2, 'weights': 'distance'} 

0.881 (+/-0.029) for {'n_neighbors': 3, 'weights': 'uniform'} 

0.873 (+/-0.030) for {'n_neighbors': 5, 'weights': 'uniform'} 

0.870 (+/-0.033) for {'n_neighbors': 2, 'weights': 'uniform'} 

0.869 (+/-0.029) for {'n_neighbors': 4, 'weights': 'uniform'} 

0.864 (+/-0.032) for {'n_neighbors': 6, 'weights': 'uniform'} 

0.864 (+/-0.030) for {'n_neighbors': 7, 'weights': 'uniform'} 

0.854 (+/-0.037) for {'n_neighbors': 8, 'weights': 'uniform'} 

 Listing 2: Grid search cross validation performance output 

 

This example shows only 18 different parameter sets for one classifier and one dataset. Thus, 

it is not possible to show the full performance outputs for each dataset, all classifiers and 

each parameter combination. Hence, only the best parameters with the chosen parameters 

and the achieved performances for each classifier and dataset will be stated subsequently. 

The choices for the ADFA-LD can be found in Table 7, the choices for the ICS-PSD-NvNA 

are stated in Table 8 and the choices for the ICS-PSD-NNvA can be found in Table 9. 
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 DT k-NN QDA MLP SVM DTBoost DTBagg RForest 

selected times 5 / 10 6 / 10 10 / 10 1 / 10 6 / 10 3 / 10 5 / 10 2 / 10 

 mean performance 0.8610 0.9000 0.7590 0.9010 0.8980 0.8940 0.9010 0.9070 

standard deviation 0.0370 0.0320 0.0260 0.0230 0.0310 0.0400 0.0310 0.0210 

criterion entropy - - - - entropy entropy entropy 

min_sample_split 2 - - - - 2 2 - 

max_depth None - - - - None None - 

min_samples_leaf 1 - - - - 1 1 - 

max_leaf_nodes None - - - - None None - 

n_neighbors - 3 - - - - - - 

weights - distance - - - - - - 

reg_param - - 0.001 - - - - - 

hidden_layer_sizes - - - 500 - - - - 

solver - - - lbfgs - - - - 

learning_rate - - - constant - - - - 

kernel - - - - rbf - - - 

C - - - - 100 - - - 

gamma - - - - 1 - - - 

n_estimators - - - - - 90 80 70 

max_features - - - - - - - 0.4 

Table 7: Best parameter values for each classifier for the ADFA-LD 

 

 DT k-NN QDA MLP SVM DTBoost DTBagg RForest 

selected times 1 / 10 10 / 10 7 / 10 1 / 10 8 / 10 3 / 10 2 / 10 1 / 10 

 mean performance 0.9650 0.9880 0.9730 0.9780 0.9810 0.9700 0.9820 0.9850 

standard deviation 0.0310 0.0160 0.0240 0.0210 0.0190 0.0280 0.0220 0.0200 

criterion entropy - - - - entropy entropy entropy 

min_sample_split 2 - - - - 2 2 - 

max_depth None - - - - None None - 

min_samples_leaf 1 - - - - 1 1 - 

max_leaf_nodes None - - - - None None - 

n_neighbors - 2 - - - - - - 

weights - uniform - - - - - - 

reg_param - - 10^(-7) - - - - - 

hidden_layer_sizes - - - 300 - - - - 

solver - - - lbfgs - - - - 

learning_rate - - - constant - - - - 

kernel - - - - rbf - - - 

C - - - - 1000 - - - 

gamma - - - - 0.1 - - - 

n_estimators - - - - - 40 40 40 

max_features - - - - - - - sqrt 

Table 8: Best parameter values for each classifier for the ICS-PSD-NvNA 

 

 DT k-NN QDA MLP SVM DTBoost DTBagg RForest 

selected times 5 / 10 10 / 10 10 / 10 1 / 10 10 / 10 X / 10 X / 10 2 / 10 

 mean performance 0.9280 0.9360 0.7170 0.9280 0.9260 0.9280 0.9530 0.9540 

standard deviation 0.0220 0.0120 0.0290 0.0140 0.0200 0.0120 0.0120 0.0140 

criterion entropy - - - - entropy entropy entropy 

min_sample_split 2 - - - - 2 2 - 

max_depth None - - - - None None - 

min_samples_leaf 1 - - - - 1 1 - 

max_leaf_nodes None - - - - None None - 

n_neighbors - 2 - - - - - - 

weights - distance - - - - - - 

reg_param - - 0.1 - - - - - 

hidden_layer_sizes - - - 400 - - - - 

solver - - - lbfgs - - - - 

learning_rate - - - constant - - - - 

kernel - - - - rbf - - - 

C - - - - 1000 - - - 

gamma - - - - 1 - - - 

n_estimators - - - - - 30 50 40 

max_features - - - - - - - sqrt 

Table 9: Best parameter values for each classifier for the ICS-PSD-NNvA 
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Since this performance is based on the average score of the F-Measure and G-Mean metrics, 

we cannot compare this performances with the basic evaluation performances from the last 

chapter. However, the found parameters lay the foundation for all future tests and evaluations 

in the next subchapter, in which all performances will be evaluated by classifiers which are 

configured with these parameters. First, the three datasets will be evaluated with k-fold cross 

validation by the optimized classifiers and then the performance will be compared to the 

basic evaluation to demonstrate the performance improvement through the grid search. Then, 

all imbalanced data method tests will be executed and the achieved performances will be 

compared among each other to choose the best method for the smart grid hierarchy test 

implementation. 

6.3 Imbalanced methods evaluation 

The final set of classifiers for all tests with original data and imbalanced data methods are 

• k-nearest neighbor (k-NN) 

• Quadratic Discriminant Analysis (QDA) 

• Multilayer Perceptrons (MLP) 

• Support vector machine (SVM) 

• AdaBoost with decision trees as base learners (DTBoost) 

• Bagging with decision trees as base learners (DTBagg) 

• Random forest (RForest) 

• Plurality voting (PlurVt) 

• Weighted voting (WeighVt) 

Since both DTBoost and DTBagg are using decision trees as their base learners, the single 

decision tree classifier will not be used any longer. But therefore, the two voting classifiers, 

plurality and weighted voting, will be added to the set of classifiers. 

As illustrated in Figure 38, the tests can be distinguished by the use of original data and 

sampled data. If the original data is used, a normal test or one of the three different used 

cost-sensitive learning tests (weighting, thresholding and cost classifiers) can be executed. 

If the data distribution is changed, various data sampling tests can be executed. The sampling 

methods used in this research project can be divided into 11 under-sampling methods, 3 

over-sampling methods and 2 hybrid-sampling methods, all introduced previously. 
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Figure 38: Test-setup for normal, cost-sensitive and sampling tests 

 

However, each method uses several classifiers to evaluate the performance. While the 

normal execution and all sampling methods can use all 9 previously stated classifiers, the 

cost-sensitive learning methods have restricted possibilities. The cost-sensitive weighting 

method is only executable for selected classifiers such as decision trees and SVMs. 

Therefore, the weighted classifier set consists of the classifiers SVM, DTBoost, DTBagg, 

RForest and the two voting classifiers PlurVt and WeighVt. Since thresholding is only 

possible for classifiers which can produce probability outputs, the classifier set is restricted 

to the classifiers k-NN, MLP, QDA, SVM, DTBoost, DTBagg and RForest (voting 

classifiers cannot produce probability outputs). The cost-sensitive classifier set, with directly 

built-in cost-sensitivity, consists of a decision tree, bagging, pasting, random forests and 

random patches. This setup leads for each dataset to 20 different scenarios (1 normal 

execution scenario, 1 cost-sensitive weighting scenario, 1 cost-sensitive thresholding 

scenario, 1 cost-sensitive classifier set, 11 under-sampling methods, 3 over-sampling 

methods and 2 hybrid-sampling methods) and to 171 different rounds through the amount of 

used classifiers (9 classifiers for normal execution, 6 classifiers for cost-sensitive weightings, 

7 classifiers for cost-sensitive thresholding, 5 cost-sensitive classifiers, 9 classifiers for 11 

under-sampling methods, 3 over-sampling methods and 2 hybrid-sampling methods).  



Method screening  73 

 

Each round is executed with a 5-fold cross validation and 20 repetitions to create robust 

classifiers. This means that each round needs 100 iterations to accomplish the evaluation and 

to obtain the performance. Consequently, each dataset needs 17,100 iterations to perform all 

different test setups. This leads to 51,300 total iterations.  

To evaluate all classifiers and scenarios, two wrapper functions were built. The first wrapper 

function executes a full scenario and the second wrapper executes all scenarios one by one. 

So, the complete test setup including all evaluations for un-sampled data and original 

classifiers, cost-sensitive learning methods and sampling methods is illustrated as process 

flow in Figure 39. 

 

Figure 39: Process of complete test setup for all evaluations 

 

To execute all scenarios (normal execution, cost-sensitive learning methods and sampling 

techniques), wrapper 2 defines all single classifiers and ensemble learners, the single 

classifiers and ensemble learners with integrated costs and all cost-sensitive classifiers. 

Then, each scenario is executed one by one. First, the normal scenario without any changes 

at the data distribution or any cost-sensitive integrations is simulated.  
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Then, the three cost-sensitive learning scenarios (weighting, thresholding, cost-sensitive 

classifiers) are performed. Next, all different sampling technique scenarios including 11 

under-sampling methods, 3 over-sampling methods and 2 hybrid-sampling methods are 

executed.  

To execute a single scenario, wrapper 1 starts with executing the performance evaluation 

method (stated in Listing 8 in Appendix A) for all single classifiers and ensemble learners 

except the voting classifiers. This is necessary, since the weighted voting classifier needs the 

performance weights from the other classifiers to create the classifier. So, the weights based 

on the performances from all single classifiers and non-voting ensemble learners are 

calculated. Then, the plurality voting classifier with all used classifiers and the weighted 

voting classifier with the same classifiers and the calculated weights are created. Finally, the 

evaluation process (Listing 8 in Appendix A) is executed for the plurality and the weighted 

voting classifier. First in the evaluation process – similar to the basic evaluation – the 

function creates a dictionary with rates for all classifiers and also different dictionaries for 

the confusion matrix and the TPR and FPR performances for the ROC plot. Then, for 𝑛 

iterations the evaluation process is executed. The passed data and targets are split into 𝑘 

stratified and random sampled folds with the built-in function “StratifiedKFold” from Scikit-

Learn in the module “model_selection”. Then, for each fold, the performance for the given 

scenario is executed. If it is a sampling scenario, the training data and training targets will 

be sampled with the passed method. Afterwards, for each classifier, it is determined if either 

a cost-sensitive classifier is used or not. If a cost-sensitive classifier is used, the related cost-

matrix is generated and the cost-sensitive classifier is trained by the original training data. If 

no cost-sensitive classifier is used, the classifier is trained with the either sampled or original 

training data by the “fit” method. Since the cost-sensitive thresholding method changes the 

threshold once a classifier is trained, the next decision is to make at this point. So, if 

thresholding should be used, the next step instead of proceeding to the prediction is to 

substitute the training and test data by their predicted probabilities. Therefore, the built-in 

function “predict_proba” of the classifier is used (only available if the classifier can predict 

probabilities). Then, the related cost-matrix is generated and the thresholding class is trained 

by the predicted probabilities for the training data, the cost-matrix and the training targets. 

Finally, either the test data or the predicted probabilities are used for the prediction. 
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Next, the performances are evaluated and added to the rates dictionary. As soon as all folds 

and iterations for all classifiers are executed, the performances are divided by the iterations 

and finally returned. Then, to calculate various metrics for the gained rates, the function 

stated in Listing 9 in Appendix A is used. This function simply extracts the TP, FP, TN and 

FN to calculate all used performance metrics. Then the ACC, FPR, FNR, F1-Measure and 

G-Mean metrics are returned. 

To generate a ROC plot with the collected TPR, FPR and AUC values, the function stated 

in Listing 10 in Appendix A is used. Therefore, the Matplotlib module “pyplot”, denoted as 

“plt”, is used. A diagonal line is added to represent a guessing classifier. Additional to the 

True Positive Rate on the y-axis and the False Positive Rate on the x-axis, the AUC 

performance metric is added in the lower right corner. Finally, the ROC curve is either 

showed or saved. 

 

Normal scenario without imbalanced data methods 

First of all, let us have a look at the performances achieved for the normal scenario, which 

was executed based on the process illustrated in Figure 34 without any adaptions. Thus, we 

can firstly compare the achieved performance to the basic evaluation and secondly compare 

the achieved performance of the ensemble learners to the single classifiers. As reminder and 

for an easier compare, all performances with arctangent scaling from the basic evaluation 

for all datasets are combined and stated in Table 10. 

 
ADFA-LD ICS-PSD-NvNA ICS-PSD-NNvA 

 TPR TNR ACC  TPR TNR ACC  TPR TNR ACC 

k-NN 0.8491 0.9778 0.9616 0.9967 0.8481 0.9915 0.9423 0.7276 0.8948 

MLP 0.8536 0.9832 0.9670 0.9967 0.8481 0.9915 0.9363 0.5358 0.8476 

QDA 0.9741 0.4652 0.5291 0.9967 0.8135 0.9903 0.3950 0.9442 0.5166 

linSVM 0.8183 0.9720 0.9527 0.9944 0.5423 0.9786 0.9604 0.1564 0.7823 

rbfSVM 0.0009 0.9999 0.8746 1.0000 0.0000 0.9651 1.0000 0.0000 0.7785 

Table 10: Basic evaluation results – all datasets with arctangent scaling 

 

In general, all upcoming presented performances will consist of the metrics FPR, FNR, the 

ROC AUC (denoted as AUC), the ACC, the F1-Measure (denoted as F1) and the G-Mean 

(denoted as G). To compare these metrics with the metrics TPR, TNR and ACC from the 

basic evaluation, the FNR is simply to consider as the complementary metric to TPR and the 

FPR is simply to consider the complementary metric to TNR.  
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Now, the achieved performance for the ADFA-LD is stated in Table 11. As we can see, the 

overall performance improvement through the parameter grid search is quite good. For 

example, the k-NN classifier achieved a 2.50% higher TPR (1-FNR) and a 0.50% higher 

TNR (1-FPR). The MLP classifier has an 1.30% higher TPR and about the same TNR. Even 

if the ACC improvements for k-NN and MLP classifiers are not high, the performance for 

the minority class was improved remarkable. The QDA classifier performs still not well. 

ADFA-LD FPR FNR AUC ACC F1 G 

Single 

classifiers 

k-NN 0.0186 0.1251 0.9281 0.9680 0.8728 0.9266 

MLP 0.0165 0.1334 0.9250 0.9689 0.8746 0.9232 

QDA 0.1661 0.0319 0.9010 0.8507 0.6191 0.8985 

SVM 0.0133 0.1443 0.9212 0.9703 0.8783 0.9189 

Ensemble 

classifiers 

DTBoost 0.0135 0.1487 0.9189 0.9695 0.8751 0.9164 

DTBagg 0.0111 0.1444 0.9223 0.9722 0.8852 0.9199 

RForest 0.0097 0.1436 0.9233 0.9735 0.8901 0.9209 

PlurVt 0.0107 0.1176 0.9358 0.9759 0.9017 0.9343 

WeighVt 0.0099 0.1190 0.9355 0.9764 0.9034 0.9339 

Table 11: K-fold cross validation results - ADFA-LD  

 

But we could actually achieve the expected performance for the SVM classifier. Now the 

SVM is an equally good classifier and achieves noteworthy results. However, this is the first 

time we see the performances of the ensemble learners in comparison with the single 

classifiers. The DTBagg and RForest classifiers were able to improve the detection rate for 

the majority class but at the expense of a reduced detection rate for the minority class. The 

ACC metric for the DTBagg and RForest ensemble learners are higher than each single 

classifier but on the other hand each AUC metric of these ensemble learners is lower than 

the AUC metric of the k-NN and MLP classifiers. The SVM and DTBoost classifiers have 

about the same performance. However, the voting classifiers were able to achieve the best 

performances by far. They could achieve approximately a 3 to 8% lower FPR and a 1 to 3% 

lower FNR in comparison to the k-NN, MLP and SVM single classifiers. But they even 

outperform the other ensemble learners. In terms of the AUC metric, the best classifier was 

the plurality voting classifier with 93.58%. 

 

The achieved performance for the ICS-PSD-NvNA is stated in Table 12. Even if the 

performance for this classifier was already very good, through the parameter grid search the 

performance was even increased.  
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ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

Single 

classifiers 

k-NN 0.0428 0.0030 0.9771 0.9956 0.9977 0.9769 

MLP 0.0844 0.0038 0.9559 0.9934 0.9966 0.9551 

QDA 0.0870 0.0120 0.9505 0.9854 0.9924 0.9498 

SVM 0.0512 0.0073 0.9707 0.9912 0.9954 0.9705 

Ensemble 

classifiers 

DTBoost 0.0451 0.0006 0.9771 0.9979 0.9989 0.9769 

DTBagg 0.0694 0.0010 0.9648 0.9967 0.9983 0.9642 

RForest 0.0656 0.0004 0.9669 0.9973 0.9986 0.9664 

PlurVt 0.0387 0.0006 0.9803 0.9980 0.9990 0.9801 

WeighVt 0.0425 0.0004 0.9785 0.9982 0.9991 0.9783 

Table 12: K-fold cross validation results - ICS-PSD-NvNA 

 

While the detection rate for the majority class is still close to 100%, the detection rate for 

the minority class was improved by 11% for the k-NN classifier and by nearly 7% for the 

MLP classifier. The QDA classifier detected 1% less majority instances but therefor was 

able to detect 10% more minority instances. Again, the SVM classifier improved the 

performance drastically. The ensemble learners raised the already very high detection rate 

for the majority class to over 99.90%. While the DTBoost and both voting classifiers were 

able to improve the detection rate for the minority class to over 95% (similar to k-NN), 

DTBagg and RForest detected just about 93% of the minority instances. This is better than 

the MLP and QDA classifier but worse than the others. Again, the plurality voting classifier 

achieved with 98.03% the best performance in terms of the AUC metric. 

 

The achieved performance for the ICS-PSD-NNvA is stated in Table 13. The behavior is 

similar to the other two datasets. Through grid search a quite good performance 

improvement was achieved. 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

Single 

classifiers 

k-NN 0.1370 0.0393 0.9119 0.9391 0.9609 0.9106 

MLP 0.1585 0.0429 0.8993 0.9315 0.9560 0.8974 

QDA 0.1779 0.3946 0.7138 0.6534 0.7312 0.7055 

SVM 0.1935 0.0195 0.8935 0.9419 0.9634 0.8893 

Ensemble 

classifiers 

DTBoost 0.1915 0.0411 0.8837 0.9256 0.9525 0.8805 

DTBagg 0.1188 0.0152 0.9330 0.9618 0.9757 0.9315 

RForest 0.1173 0.0150 0.9338 0.9623 0.9760 0.9324 

PlurVt 0.1205 0.0186 0.9304 0.9588 0.9737 0.9290 

WeighVt 0.1297 0.0171 0.9266 0.9580 0.9733 0.9249 

Table 13: K-fold cross validation results - ICS-PSD-NNvA 
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The k-NN classifier improved its accuracy by over 4% by detecting 1.80% more majority 

instances and 13.50% more minority instances. The MLP classifier performed even better 

and achieved an 8.40% higher accuracy by detecting 2% more majority instances and nearly 

31% more minority instances. The performance for the QDA classifier is still bad. Again, 

the performance for the SVM classifier was improved to an equal level. The detection rate 

for majority instances is better but in expense of the detection rate for the minority instances. 

Except DTBoost, the ensemble learner performances are a lot better than the performances 

of the single classifiers. They improved the amount of detected majority instances by 0.50 

to 2.50% and the amount of detected minority instances up to 7.60%. This time, a non-voting 

ensemble learner, namely the RForest classifier, achieved the best AUC with 93.38%.  

 

All in all, it was shown that the parameter grid search was very effective to boost the 

performance of the classifiers. The behavior was for all datasets similar but only a different 

range of improvements is to consider. Beside that, the ensemble learners showed also for all 

datasets an even better performance than the single classifiers.  

Next, all the imbalanced data methods will be executed and compared to these performances. 

Finally, the best method will be selected for the smart grid hierarchy setup.  

 

Imbalanced data methods performances 

To this point, all performances were achieved with the help of the NumPy [64], SciPy [65], 

Matplotlib [67] and especially the Scikit-Learn [66] package. To execute the cost-sensitive 

learning methods, the CostsensitiveClassification package [36] includes the stated cost-

sensitive classifiers and was also used to perform thresholding. To add weights to the 

classifiers, the classifiers within the Scikit-Learn package could be used. Finally, for all 

sampling methods, the Imbalanced-Learn package [68] was used. 

Before the performances from the imbalanced data methods will be compared to the normal 

scenario, let us consider that all the previous evaluations were performed by the 

straightforward process illustrated in Figure 34. To execute the imbalanced methods, some 

individual changes in this process were necessary. Therefore, each individual changed 

process will be illustrated separately. The changes will be outlined with red color.  
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Figure 40: Cost-sensitive weighting and classifiers evaluation process 

 

Let us start with the changes for cost-sensitive weighting and cost-sensitive classifiers. The 

changes for both methods are illustrated in Figure 40, since the changes are similar and only 

different classifiers are used. So, the only relevant change is that a cost-matrix is created 

which is either directly integrated into the classifier (weighting) or passed to train the cost-

sensitive classifier. The rest of the process remains the same. 

 

Figure 41: Cost-sensitive thresholding evaluation process 
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More changes are necessary for cost-sensitive thresholding (see Figure 41). Once the original 

classifier is trained, the classifier is used to predict probabilities for test and training data. 

Then, a cost-matrix is created and the thresholding classifier is trained by the predicted 

training data probabilities and the cost-matrix. Finally, the targets are predicted with the 

thresholding classifier by the predicted test data probabilities. 

 

Figure 42: Sampling evaluation process 

 

 

To execute the evaluation process with sampling methods, only a single change is necessary. 

As illustrated in Figure 42, the training data is sampled with the according sampling method 

and then the classifier is trained with the sampled training data. 

 

As stated, there are 20 different scenarios for each dataset. So, not each performance result 

will be stated in the following pages. Instead, only the best method for each sampling type 

and the three cost-sensitive methods will be shown and compared to the normal scenario. 

Nevertheless, all performance results can be found in the Appendix. The results for the 

ADFA-LD are stated in Appendix B, the results for the ICS-PSD-NvNA can be found in 

Appendix C and the results for the ICS-PSD-NNvA are listed in Appendix D.  
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Since the comparison of all performance metrics would be beyond the scope, the AUC, FPR 

and FNR metrics were chosen for the comparison. The AUC metric was chosen because the 

ACC and also the F1-Measure are too biased related to a single class. Since the G-mean 

evaluates similar metrics (square of TPR multiplied by TNR) than the AUC (curve area for 

TPR and FPR with different thresholds) and the results for both metrics are quite similar, the 

AUC was chosen because the performance can be illustrated additionally with the ROC plot. 

The FPR and the FNR metrics were chosen as addition to the AUC metric for a better 

comparison of the detection rate for both the minority and majority class. Based on this 

metrics, the best under-, over- and hybrid-sampling methods were chosen. 

After the presentation of the results, each dataset will be individually compared by the 

different imbalanced data methods. Additionally, the results from the imbalanced data 

methods from each dataset will be compared to the normal scenario. Then, the different 

imbalanced data methods will be compared over all datasets. Finally, the best method will 

be chosen. This method will then be used for the final test, the smart grid hierarchy model.  

Now, let us finally come to the results for the imbalanced data methods. The results for all 

test scenarios for the ADFA-LD are stated in Table 14, the results for the ICS-PSD-NvNA 

are stated in Table 15 and the results for the ICS-PSD-NNvA are stated in Table 16. 

If we compare the imbalanced data method performances for the ADFA-LD (Table 14) to 

the results from the normal scenario (Table 11), then all sampling methods were able to 

improve the AUC score. On the other hand, nearly all cost-sensitive learning methods 

decreased the performance. Let us start with the RENN under-sampling method, which was 

chosen as the best under-sampling method. This method was able to improve the AUC 

performance of each single classifier and ensemble learner. An improvement of the AUC 

between 0.30% and 1.50% was achieved by a more balanced detection rate. For the normal 

scenario, the common (without QDA) false detection rate for the majority class (FPR) is 

between 1 and 2% and for the minority class (FNR) between 11 and 15%. With RENN 

under-sampling, the common FPR is now between 4 and 7% and the FNR remains only 

between 2 and 10%. This means, that there are less detected majority instances but therefore 

a lot more detected minority instances. To highlight this, the average AUC was raised from 

92.35% (FPR 2.99%, FNR 12.31%) to 93.30% (FPR 6.47%, FNR 6.94%). This behavior is 

exactly as expected and improves the overall detection rate (based on the AUC metric) while 

a much better detection rate for the minority class was achieved. 
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ADFA-LD FPR FNR AUC ACC F1 G 
U

n
d

er
-s

am
p

li
n

g
: 

R
ep

ea
te

d
E

d
it

ed
-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(R
E

N
N

) 

k-NN 0.0663 0.0603 0.9367 0.9345 0.7824 0.9367 

MLP 0.0583 0.0660 0.9379 0.9407 0.7980 0.9379 

QDA 0.1633 0.0288 0.9040 0.8536 0.6245 0.9015 

SVM 0.0542 0.0777 0.9341 0.9428 0.8018 0.9340 

DTBoost 0.0546 0.1018 0.9218 0.9394 0.7881 0.9215 

DTBagg 0.0435 0.0883 0.9341 0.9509 0.8230 0.9338 

RForest 0.0386 0.0839 0.9387 0.9557 0.8384 0.9385 

PlurVt 0.0514 0.0613 0.9437 0.9474 0.8173 0.9437 

WeighVt 0.0523 0.0564 0.9456 0.9472 0.8174 0.9456 
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k-NN 0.0407 0.0735 0.9429 0.9552 0.8383 0.9428 

MLP 0.0347 0.0849 0.9402 0.9590 0.8484 0.9399 

QDA 0.2209 0.0392 0.8699 0.8019 0.5487 0.8652 

SVM 0.0339 0.0929 0.9366 0.9587 0.8462 0.9361 

DTBoost 0.0229 0.1176 0.9297 0.9652 0.8641 0.9285 

DTBagg 0.0274 0.0887 0.9420 0.9649 0.8670 0.9415 

RForest 0.0237 0.0928 0.9418 0.9677 0.8755 0.9411 

PlurVt 0.0283 0.0697 0.9510 0.9665 0.8746 0.9508 

WeighVt 0.0254 0.0745 0.9500 0.9684 0.8802 0.9497 
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k-NN 0.0385 0.0721 0.9447 0.9573 0.8448 0.9446 

MLP 0.0263 0.1092 0.9322 0.9633 0.8588 0.9313 

QDA 0.1458 0.0464 0.9039 0.8667 0.6420 0.9025 

SVM 0.0257 0.1200 0.9272 0.9625 0.8547 0.9260 

DTBoost 0.0196 0.1284 0.9260 0.9668 0.8680 0.9244 

DTBagg 0.0212 0.1098 0.9345 0.9677 0.8734 0.9334 

RForest 0.0175 0.1056 0.9385 0.9715 0.8872 0.9375 

PlurVt 0.0212 0.0867 0.9460 0.9706 0.8862 0.9455 

WeighVt 0.0199 0.0874 0.9464 0.9717 0.8898 0.9458 
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SVM 0.0219 0.2355 0.8713 0.9514 0.7976 0.8647 

DTBoost 0.0150 0.1543 0.9154 0.9676 0.8674 0.9127 

DTBagg 0.0118 0.1451 0.9215 0.9715 0.8826 0.9191 

RForest 0.0101 0.1442 0.9228 0.9731 0.8885 0.9204 

PlurVt 0.0083 0.1638 0.9140 0.9722 0.8830 0.9106 

WeighVt 0.0093 0.1451 0.9228 0.9737 0.8905 0.9203 
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k-NN 0.0415 0.0791 0.9397 0.9538 0.8332 0.9395 

MLP 0.0183 0.1830 0.8993 0.9610 0.8402 0.8955 

QDA 0.0195 0.1218 0.9293 0.9677 0.8719 0.9279 

SVM 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955 

DTBoost 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955 

DTBagg 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278 

RForest 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278 
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 DT 0.0256 0.4955 0.7395 0.9155 0.5996 0.7011 

Bagging 0.0864 0.1014 0.9061 0.9117 0.7185 0.9061 

Pasting 0.0965 0.0879 0.9078 0.9046 0.7056 0.9078 

RForest 0.0879 0.0839 0.9141 0.9126 0.7244 0.9141 

RPatches 0.1215 0.0753 0.9016 0.8843 0.6671 0.9013 

Table 14: Results for imbalanced data methods – ADFA-LD 
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Although the RENN under-sampling for the ADFA-LD achieved the best detection rates for 

the minority class, with ADASYN over-sampling the AUC score could be raised again. So, 

an average AUC of 93.38% was achieved with an average FPR of 5.09% and an average 

FNR of 8.15%. Comparing the best single classifiers, the normal scenario achieved an AUC 

of 93.58% with the plurality voting classifier, the RENN under-sampling achieved an AUC 

of 94.56% with the weighted voting classifier and through ADASYN over-sampling the 

plurality voting classifier achieved an AUC score of 95.10%. However, SMOTETomek 

hybrid-sampling achieved also for each classifier a better AUC score than the normal 

scenario. But, the detection rate for the minority class is worse than the detection rate with 

under- or over-sampling. Anyway, a slightly better detection rate for the majority class was 

achieved. Nevertheless, the best classifier from SMOTETomek hybrid-sampling achieved 

just a 0.10% better performance than the best classifier from RENN under-sampling and a 

0.50% worse performance than ADASYN over-sampling.  

The cost-sensitive weighting had only insignificant impact on the performance. While 

individual classifiers are slightly better, other classifiers are slightly worse and the voting 

classifiers achieve also a worse performance since there are less single classifiers to consider 

for the voting. So, the overall performance of cost-sensitive weighting is worse than the 

normal scenario. Also, with cost-sensitive thresholding, the performance of each classifier 

but k-NN and QDA was decreased. The k-NN classifier with thresholding achieved an over 

1% higher AUC by detecting 2.30% less majority instances but nearly 5% more minority 

instances. The curious behavior of the QDA classifier continues, since this classifier 

improved the AUC score by nearly 3% with an over 14% higher detection rate for the 

majority class and a 9% lower detection rate for the minority class. Anyway, the overall 

lower performance through thresholding seems very inconsistent. But the decreasing 

performance is unfortunately continued with the cost-sensitive classifiers. While the 

decision tree with built-in cost-sensitiveness performs at the very worst, the other cost-

sensitive classifiers can achieve at least an AUC score barely over 90% with at least more 

balanced detection rates. All in all, the cost-sensitive classifiers are very disappointing, since 

cost-sensitive weighting achieved only a similar performance to the normal scenario and 

thresholding and the cost-sensitive classifiers even decreased the performance. However, the 

sampling methods compensate this bad performance. Regarding the best method among 

them, the decision is not easy to make.  
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Plurality voting classifier – normal scenario Plurality voting classifier – ADASYN 

 

 

Compared only based on the AUC metric, ADASYN over-sampling has definitely the best 

performance even when RENN under-sampling achieved just a 0.50% lower AUC score 

while having generally a higher detection rate for the minority class. Nevertheless, 

ADASYN over-sampling achieved with the plurality voting classifier the best AUC 

performance for the ADFA-LD. A comparison between the normal scenario and ADASYN 

over-sampling is illustrated through ROC plots in Figure 43. A close inspection reveals that 

the higher TPR emerges as a direct consequence of the lower FPR. 

   

 

Figure 43: ROC plots –Best normal vs. imbalanced method (ADFA-LD) 

 

 

The performance of the normal scenario for the ICS-PSD-NvNA is stated in Table 12. 

Compared to the results from the imbalanced data methods from Table 15, the behavior is 

similar to the ADFA-LD. But the first difference is that not the RENN method performed 

best among the under-sampling methods. Instead, the CNN under-sampling method 

achieved the best results. Anyway, the behavior is similar. The detection rate for the minority 

class was improved by up to 5% which leads for example for the k-NN classifier to a 

detection rate of over 99% while the detection rate for the majority class was decreased by 

up to 14% in an exceptional case and by up to 3.50% for the rest of the classifiers. This leads 

in general to a better AUC score for nearly all classifiers.  

Again, ADASYN was chosen as the best over-sampling method. In average, the detection 

rate of the majority class was just slightly decreased while the detection rate for the minority 

class was improved remarkable.  
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k-NN 0.0069 0.1433 0.9247 0.8614 0.9227 0.9223 

MLP 0.0520 0.0358 0.9560 0.9636 0.9808 0.9560 

QDA 0.0633 0.0121 0.9623 0.9861 0.9928 0.9620 

SVM 0.0234 0.0414 0.9676 0.9592 0.9784 0.9676 

DTBoost 0.0142 0.0256 0.9800 0.9748 0.9868 0.9801 

DTBagg 0.0176 0.0222 0.9800 0.9780 0.9885 0.9801 

RForest 0.0188 0.0207 0.9801 0.9793 0.9892 0.9802 

PlurVt 0.0150 0.0152 0.9847 0.9848 0.9920 0.9849 

WeighVt 0.0162 0.0120 0.9857 0.9878 0.9936 0.9859 
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k-NN 0.0355 0.0044 0.9799 0.9945 0.9971 0.9799 

MLP 0.0723 0.0063 0.9607 0.9914 0.9956 0.9602 

QDA 0.0780 0.0871 0.9174 0.9132 0.9531 0.9174 

SVM 0.0442 0.0083 0.9737 0.9905 0.9950 0.9736 

DTBoost 0.0228 0.0019 0.9876 0.9974 0.9986 0.9876 

DTBagg 0.0246 0.0029 0.9862 0.9964 0.9981 0.9862 

RForest 0.0231 0.0018 0.9874 0.9974 0.9987 0.9875 

PlurVt 0.0205 0.0020 0.9886 0.9974 0.9986 0.9887 

WeighVt 0.0159 0.0015 0.9912 0.9980 0.9990 0.9913 
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k-NN 0.0321 0.0041 0.9819 0.9950 0.9974 0.9818 

MLP 0.0540 0.0063 0.9698 0.9920 0.9959 0.9695 

QDA 0.1043 0.0100 0.9428 0.9867 0.9931 0.9417 

SVM 0.0540 0.0064 0.9698 0.9920 0.9958 0.9695 

DTBoost 0.0280 0.0014 0.9852 0.9977 0.9988 0.9852 

DTBagg 0.0341 0.0035 0.9812 0.9955 0.9977 0.9811 

RForest 0.0309 0.0022 0.9834 0.9968 0.9983 0.9833 

PlurVt 0.0182 0.0020 0.9898 0.9974 0.9987 0.9899 

WeighVt 0.0231 0.0013 0.9877 0.9979 0.9989 0.9877 
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SVM 0.0633 0.0057 0.9655 0.9922 0.9960 0.9650 

DTBoost 0.0436 0.0008 0.9778 0.9977 0.9988 0.9775 

DTBagg 0.0789 0.0016 0.9597 0.9957 0.9978 0.9590 

RForest 0.0780 0.0007 0.9607 0.9966 0.9983 0.9599 

PlurVt 0.0286 0.0009 0.9852 0.9982 0.9991 0.9852 

WeighVt 0.0393 0.0003 0.9802 0.9983 0.9991 0.9800 
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k-NN 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787 

MLP 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651 

QDA 0.0373 0.0728 0.9449 0.9284 0.9615 0.9448 

SVM 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651 

DTBoost 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651 

DTBagg 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787 

RForest 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787 
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 DT 0.5477 0.0160 0.7181 0.9655 0.9822 0.6671 

Bagging 0.0740 0.0283 0.9488 0.9701 0.9843 0.9486 

Pasting 0.0546 0.0313 0.9570 0.9679 0.9831 0.9570 

RForest 0.0572 0.0282 0.9573 0.9708 0.9847 0.9572 

RPatches 0.0497 0.0310 0.9596 0.9684 0.9834 0.9596 

Table 15: Results for imbalanced data methods – ICS-PSD-NvNA 
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Plurality voting classifier – normal scenario Weighted voting classifier – ADASYN 

 

For example, the weighted voting classifier, which is the best individual classifier for the 

ICS-PSD-NvNA, increased the AUC score through oversampling from 97.85% (FPR 4.25%, 

FNR 0.04%) to 99.12% (FPR 1.59%, FNR 0.15%) with nearly the same detection rate for 

the majority class. This is a desirable result since the accuracy stays the same while a crucial 

increased detection rate for the minority class was achieved. But also, the rest of the 

classifiers (except QDA) improved their performances, whereby the ensemble learners were 

able to raise the AUC score the most (over 2%). Also, the SMOTETomek hybrid-sampling 

method improved the performance of nearly all classifiers and again the ensemble learners 

improved their already superior performance at most. The best classifier within the hybrid-

sampling method is the plurality voting classifier with an AUC of 98.98%, which is just 

0.14% lower than the best classifier within over-sampling.  

The cost-sensitive learning methods were again not able to keep up with the sampling 

methods. The cost-sensitive weighting showed about the same performance than the normal 

scenario. Only the voting classifiers were slightly worse due to the small number of 

participating classifiers. While the cost-sensitive thresholding method were able to balance 

the detection rates for the k-NN, QDA, DTBagg and RForest classifiers a bit, the 

performance for the MLP, SVM and DTBoost classifiers decreased drastically. Finally, the 

cost-sensitive classifiers caused an overall worse AUC score but therefore a more balanced 

detection rate. But again, the decision tree classifier is the worst classifier.  

However, the choice of the best method was not as difficult as for the ADFA-LD. The 

ADASYN over-sampling method achieved the best performance in all categories. 

 

  

Figure 44: ROC plots – Best normal vs. imbalanced method (ICS-PSD-NvNA) 
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A comparison between the normal scenario and the ADASYN over-sampling is illustrated 

through ROC plots in Figure 44. Even if the AUC score was improved by only 1.09%, one 

can see how close this comes to an ideal performance. 

 

The last dataset, the ICS-PSD-NNvA is compared between the performances of the normal 

scenario from Table 13 and the performances of the imbalanced data methods from Table 

16. Since the behavior is very similar to the other two datasets, the performances for this 

dataset will be compared less detailed. This time, NCR under-sampling was the best under-

sampling method and was able to improve the AUC score for nearly each classifier. Again, 

the under-sampling method was able to detect the most minority instances compared to over-

sampling and hybrid-sampling. Anyway, ADASYN over-sampling achieved again the best 

performance among the over-sampling methods and gained also the overall best 

performance. Instead of one of the voting classifiers, the random forest classifier achieved 

the best performance among the different classifiers. So, the best AUC score was improved 

from 93.38% (normal scenario) to 95.08% (ADASYN over-sampling). Also, similar to the 

previous evaluations, SMOTETomek was the best hybrid-sampling method and performed 

in terms of AUC better than NCR under-sampling and only slightly worse than ADASYN 

over-sampling.  

While the cost-sensitive weighting method is comparable to the normal scenario, cost-

sensitive thresholding and the cost-sensitive classifiers stepped completely out of the line. 

Thresholding tuned the threshold for the k-NN, MLP, QDA and SVM classifiers in such a 

way, that all minority instances were detected but no single majority instance. This time, not 

only the cost-sensitive decision tree classifier performs badly but all cost-sensitive classifiers 

are in an agreement about a terrible performance. 

However, a comparison between the normal scenario and the best method, the ADASYN 

over-sampling, is illustrated through ROC plots in Figure 45. Now we can see that the 

minority and the majority classes are interchanged since the curve behaves exactly inversely 

since the TPR decreases while the FPR improves. However, the AUC score was improved 

by 1.70%. 
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k-NN 0.0917 0.1046 0.9018 0.8982 0.9320 0.9018 

MLP 0.1179 0.0897 0.8962 0.9040 0.9366 0.8961 

QDA 0.3039 0.3047 0.6957 0.6955 0.7805 0.6957 

SVM 0.1620 0.0566 0.8907 0.9201 0.9484 0.8891 

DTBoost 0.1521 0.0680 0.8899 0.9134 0.9437 0.8890 

DTBagg 0.0830 0.0494 0.9338 0.9432 0.9630 0.9336 

RForest 0.0785 0.0455 0.9380 0.9472 0.9657 0.9378 

PlurVt 0.0849 0.0624 0.9264 0.9327 0.9559 0.9263 

WeighVt 0.0856 0.0634 0.9255 0.9316 0.9552 0.9254 
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k-NN 0.1260 0.0443 0.9148 0.9376 0.9598 0.9139 

MLP 0.1327 0.0574 0.9049 0.9259 0.9519 0.9042 

QDA 0.8764 0.0725 0.5255 0.7494 0.8521 0.3386 

SVM 0.1617 0.0246 0.9069 0.9451 0.9651 0.9043 

DTBoost 0.1820 0.0903 0.8639 0.8894 0.9276 0.8627 

DTBagg 0.0932 0.0574 0.9247 0.9347 0.9574 0.9245 

RForest 0.0477 0.0508 0.9508 0.9499 0.9672 0.9508 

PlurVt 0.1007 0.0318 0.9338 0.9530 0.9697 0.9331 

WeighVt 0.1022 0.0330 0.9324 0.9516 0.9689 0.9317 

H
y
b
ri

d
-s

am
p
li

n
g
: 

S
M

O
T

E
T

o
m

ek
 

k-NN 0.1162 0.0511 0.9163 0.9345 0.9575 0.9158 

MLP 0.1440 0.0562 0.8999 0.9243 0.9510 0.8988 

QDA 0.0675 0.6118 0.6603 0.5088 0.5517 0.6017 

SVM 0.1824 0.0243 0.8966 0.9407 0.9624 0.8931 

DTBoost 0.1703 0.0701 0.8798 0.9077 0.9401 0.8784 

DTBagg 0.0785 0.0343 0.9436 0.9559 0.9715 0.9433 

RForest 0.0756 0.0321 0.9462 0.9583 0.9731 0.9459 

PlurVt 0.0852 0.0329 0.9409 0.9555 0.9713 0.9406 

WeighVt 0.0988 0.0286 0.9363 0.9559 0.9716 0.9357 
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SVM 0.1959 0.0184 0.8929 0.9423 0.9636 0.8885 

DTBoost 0.1057 0.1347 0.8798 0.8717 0.9131 0.8797 

DTBagg 0.1345 0.0135 0.9260 0.9597 0.9744 0.9241 

RForest 0.1294 0.0111 0.9297 0.9627 0.9763 0.9278 

PlurVt 0.0985 0.0197 0.9409 0.9629 0.9762 0.9401 

WeighVt 0.1425 0.0094 0.9240 0.9611 0.9754 0.9216 
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k-NN 0.0960 0.0852 0.9094 0.9124 0.9421 0.9094 

MLP 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

QDA 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

SVM 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

DTBoost 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

DTBagg 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967 

RForest 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967 
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 DT 0.6166 0.0817 0.6509 0.7998 0.8772 0.5934 

Bagging 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874 

Pasting 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874 

RForest 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874 

RPatches 0.1400 0.2490 0.8055 0.7751 0.8387 0.8036 

Table 16: Results for imbalanced data methods – ICS-PSD-NNvA 



Method screening  89 

 

Random Forest Classifier – normal scenario Random Forest Classifier – ADASYN 

 

Random forest classifier – normal scenario Random forest classifier – ADASYN 

 

 

 

  

Figure 45: ROC plots – Best normal vs. imbalanced method (ICS-PSD-NNvA) 

 

In general, the cost-sensitive classifiers are basically good for balancing the detection rates 

respectively improve the detection rate for the minority class but they are prone to over-

balance the rates and so it is possible that the performance drops heavily. The sampling 

methods provide a very constant improvement in comparison to the normal scenario. The 

under-sampling methods achieved an overall higher AUC score and were mostly able to 

detect the most minority class instances among the sampling methods. On the other hand, 

the over-sampling method is the superior method and can achieve every time the best scores. 

Last but not least, the hybrid-sampling method keeps the performance somewhere between 

under- and over-sampling. In general, not only over-sampling is the superior method, 

especially ADASYN performed outstanding and achieved the best performances overall for 

each of the three datasets. While this is the same for SMOTETomek hybrid-sampling, the 

best under-sampling method was different for each dataset. However, it is suggested to use 

ADASYN over-sampling for the smart grid IDS implementation, which will be introduced 

subsequently, since it is the most promising imbalanced data method. 
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7 Hierarchical smart grid IDS communication system 

In this chapter, a hierarchical smart grid IDS will be built to simulate a communication flow. 

To evaluate the performance of this communication system, the ADFA-LD will be used to 

provide normal and attack data. One simulation round will use the unchanged data set and 

another simulation round will use the previously chosen best imbalanced data method, 

namely ADASYN over-sampling. Then, the two performances for the smart grid IDS will 

be compared.  

To execute a single simulation round, a process as illustrated in Figure 46 is executed. The 

yellow outlined tasks state optional processes, since the first round is executed without over-

sampling. Anyway, in each simulation round the test data is predicted by a hierarchical smart 

grid IDS communication system (outlined in red). 

 

Figure 46: Hierarchical smart grid IDS simulation process 

 

So, the red outlined part represents a three-layer hierarchy smart grid architecture which will 

be built similar to the hierarchical smart grid IDS system as illustrated in Figure 5 and 

described in [18]. Since the used architecture and communication flow for this hierarchical 

smart grid IDS are very complex, a prototypical implementation with a more simplified 

communication flow will be created. Therefore, the created prototype uses only a single IDS 

at each layer and is simulated only by if/else decisions. 
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For a better understanding of the created three-layer smart grid architecture, a single decision 

process for a single data instance is illustrated in Figure 47. 

 

Figure 47: Hierarchical smart grid communication flow and decision process 

 

This process illustrates the communication flow of a single data instance and at this point 

we assume that the classifiers are already trained. Now, a single data instance is passed at 

first to the HAN layer. Since the devices used in HANs (e.g., smart meters) have usually a 

low-performance, just the two fastest (measured during the method screening process) but 

still well performing classifiers were chosen for the HAN IDS. The used classifiers are the 

k-NN and the SVM classifier. The single data instance is then predicted with both classifiers. 

If both the k-NN and the SVM classifiers predict the same class, then this prediction is a 

final decision. If they disagree in their decision, the data instance is passed to the next layer.  

Within the NAN layer, the data instance is now predicted from an IDS with four different 

classifiers, namely k-NN, MLP, SVM and RForest. If the majority of the classifiers decide 

for one class, then this class is the final decision. On the other hand, if two of the classifiers 

predict one class and the other two classifiers predict the other class, then the data instance 

is again forwarded to the next and last layer. In the WAN layer, the data instance is predicted 

by the plurality voting classifier. Since this is the last layer, no further decision is necessary. 

Consequently, the predicted class is the final decision. 
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However, to perform the simulation at all, an own module “sg_hierarchy_simulation” was 

developed. This module contains two scripts “model” and “simulation”. The “model” script 

contains the training and the prediction functions and the “simulation” script contains the 

simulation routine to execute the “model” functions for 𝑛 rounds and to evaluate the 

performances.  

The function for a complete simulation round (either with or without over-sampling) is stated 

in Listing 11 in Appendix A. Basically, the data is scaled and performance values are created. 

Then, the process of splitting data, over-sampling (if true), training and predicting is 

executed for 𝑛 rounds to finally get an average performance. However, the training and 

prediction functions are the most important parts for the hierarchical smart grid IDS (red 

outline section in Figure 46) and will be explained subsequently.  

The function to create the classifiers and to train them is stated in Listing 3. 

def build_and_train_classifier_2HAN_4NAN_voteWAN(data, targets): 

    # load HAN classifier + training 

    HAN_clf = __get_classifier(use_kNN=True, use_SVM=True) 

    for key, classifier in HAN_clf.items(): 

        classifier.fit(data, targets) 

 

    # load NAN classifier + training 

    NAN_clf = __get_classifier(use_kNN=True, use_MLP=True, use_SVM=True,  

  use_RForest=True) 

    for key, classifier in NAN_clf.items(): 

        classifier.fit(data, targets) 

 

    # load WAN classifier + training 

    WAN_clf = __get_classifier(use_kNN=True, use_QDA=True, use_MLP=True,  

  use_SVM=True, use_DTBoost=True, use_DTBagg=True,  

  use_RForest=True) 

    estimators = [] 

    for key, classifier in sorted(WAN_clf.items()): 

        estimators.append((key, classifier)) 

    WAN_clf = VotingClassifier(estimators=estimators, voting='hard') 

    WAN_clf.fit(data, targets) 

 

    return HAN_clf, NAN_clf, WAN_clf 

Listing 3: Create and train smart grid hierarchy classifiers 

 

This function creates and trains the classifiers only for the introduced architecture (2 HAN 

classifiers, 4 WAN classifiers and a single WAN voting classifier). If a different architecture 

should be used (e.g., 2 HAN classifiers, 6 WAN classifiers and 2 WAN classifier), it is only 

necessary to create another function which creates the classifiers for the desired architecture. 

 



Hierarchical smart grid IDS communication system  93 

 

To finally evaluate the full test dataset, the process of a single data decision, as previously 

described and illustrated in Figure 47, needs to be repeated for all test data instances. 

Additionally, a few evaluation variables are used to evaluate the performance of the whole 

training data set (e.g., for each layer, the correct predicted instances and amount of passed 

instances are measured). The function to execute these tasks is stated in Listing 4.  

def model_evaluation_2HAN_4NAN_voteWAN(data, targets, HAN_clf, NAN_clf, 

WAN_clf): 

    predictions = [] 

    HAN_correct = 0 

    NAN_correct = 0 

    WAN_correct = 0 

    from_han_to_nan = 0 

    from_nan_to_wan = 0 

 

    pos = 0 

    for single_instance in data: 

        # HAN prediction 

        HAN_predicts = [] 

        for key, classifier in HAN_clf.items(): 

            HAN_predicts.append(classifier.predict(single_data)) 

 

        if HAN_predicts[0] == HAN_predicts[1]: 

            prediction = HAN_predicts[0] 

            predictions.append(prediction) 

            if prediction == targets[pos]: 

                HAN_correct += 1 

        else: 

            # HAN classifier in disagreement 

            from_han_to_nan += 1 

 

            NAN_predicts = [] 

            for key, classifier in NAN_clf.items(): 

                NAN_predicts.append(classifier.predict(single_data)) 

 

            negatives = 0 

            positives = 0 

            for NAN_predict in NAN_predicts: 

                if NAN_predict == 0: 

                    negatives += 1 

                else: 

                    positives += 1 

 

            if positives > negatives: 

                prediction = 1 

                if prediction == targets[pos]: 

                    NAN_correct += 1 

            elif negatives > positives: 

                prediction = 0 

                if prediction == targets[pos]: 

                    NAN_correct += 1 

            else: 

                # equal votes for NAN classifier 

                from_nan_to_wan += 1 

                prediction = WAN_clf.predict(single_data) 

                if prediction == targets[pos]: 

                    WAN_correct += 1 

 

            predictions.append(prediction) 

 

        pos += 1 
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    # calculate accuracies 

    HAN_total = len(targets) - from_han_to_nan 

    NAN_total = from_han_to_nan - from_nan_to_wan 

    WAN_total = from_nan_to_wan 

 

    HAN_accuracy = HAN_correct / HAN_total 

    NAN_accuracy = NAN_correct / NAN_total 

    if WAN_total > 0: 

        WAN_accuracy = WAN_correct / WAN_total 

    else: 

        WAN_accuracy = 1 

 

    return np.asarray(predictions, dtype=int), HAN_total, HAN_accuracy,  

 NAN_total, NAN_accuracy, WAN_total, WAN_accuracy 

Listing 4: Hierarchical smart grid model evaluation process 

8 

To execute this function successfully, the following parameters are necessary: 

• data [numpy matrix]: Numpy dataset matrix (columns=features) 

• targets [numpy matrix]: Numpy target matrix (each row = one target) 

• HAN_clf [dictionary]: All trained classifiers used for the HAN layer. The name of 

the classifiers as key for each entry and the classifier itself as value. 

• NAN_clf [dictionary]: All trained classifiers used for the NAN layer. The name of 

the classifiers as key for each entry and the classifier itself as value. 

• WAN_clf [dictionary]: All trained classifiers used for the WAN layer. The name of 

the classifiers as key for each entry and the classifier itself as value. 

At the end, this function returns the amount of classified data instances at each layer, the 

achieved accuracy at each layer and the list with the final predictions. These values are used 

to evaluate the performance of the hierarchy itself and to compare the performances with the 

simple train and fit tests from the previous chapter and between the normal simulation and 

the simulation with over-sampled training data. Again, to use a different architecture, it is 

only necessary to create another function with the desired if/else architecture. 

However, the processed data instances and the accuracy for these instances are stated in 

Table 17 for each hierarchy layer. 

 
HAN 

predictions 

HAN 

accuracy 

NAN 

predictions 

NAN 

accuracy 

WAN 

predictions 

WAN 

accuracy 

ADFA-LD 

original 
1161.54 97.92% 19.14 83.32% 10.32 74.22% 

ADDA-LD 

sampled 
1143.56 97.03% 32.04 82.92% 15.40 69.57% 

Table 17: Data instances and accuracy for the hierarchy layers in the smart grid IDS 
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So, in total 1,191 test data instances were processed. Since the smart grid IDS detection 

process was repeated 100 times, the amount of processed data for each hierarchy layer has 

decimals. However, the number of processed instances within the HAN layer is very high. 

In the simulation process with un-sampled training data, on average 1,161.54 data instances 

were processed in the HAN. This means, that less than 30 instances were passed to next layer 

(or less than 2.50%). For the simulation round with over-sampled training data the number 

of processed instances at the HAN layer is 1,143.56 averaged. Less than 48 data instances 

or less than 4% were passed to the next layer. But this fact is only remarkable since the total 

accuracy at this layer is very high. The simulation with the original training data achieved 

an accuracy of 97.92% within the HAN layer and the simulation with the over-sampled 

training data achieved an accuracy of 97.03%. The first comparison of this accuracy already 

implies, that the behavior for the over-sampled data might be similar as described in the 

previous chapter. However, for the scenario with the original data, the NAN layer processed 

over 19 data instances from the approximately remaining 30 (approximately 65% of the 

remaining instances). This was accomplished with a total accuracy of 83.32%. On the other 

hand, the scenario with the over-sampled training data processed over 32 instances from the 

averaged 47.44 remaining instances (approximately 67.50% of the remaining instances). The 

total accuracy at the NAN layer for these instances is 82.92%. The WAN layer processed 

only 10.32 data instances for the round with original data with an achieved accuracy of 

74.22% and only 15.40 data instances for the round with over-sampled data with an achieved 

accuracy of 69.57%. So, even the supposed difficult to predict instances which were passed 

to the next layers were predicted with an acceptable accuracy.  

Finally, the performance metrics for the complete smart grid communication model are 

stated in Table 18. As assumed, the behavior of the smart grid communication system is 

similar to a common prediction process from the previous chapter.  

 FPR FNR AUC ACC F1 G 

ADFA-LD 

original 
1.18% 11.96% 93.46% 97.48% 89.68% 93.27% 

ADDA-LD 

sampled 
3.23% 6.97% 94.90% 96.30% 86.34% 94.88% 

Table 18: Performance results for the smart grid IDS 
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ADFA-LD (unsampled) ADFA-LD (over-sampled) 

For the simulation with unchanged methods, the detection rate for the minority class is at 

88.04% and the detection rate for the majority class is at 98.82%. This leads to an AUC score 

of 93.46%. Through over-sampling the training data for the simulation process the AUC 

score was raised to 94.90%. This score was achieved with a detection rate of 93.03% for the 

minority class and a detection rate of 96.77% for the majority class. So, the 1.44% higher 

AUC score with 5% more detected minority instances is achieved at the expense of a 1.18% 

lower accuracy score.  

The ROC plots for both scenarios are illustrated Figure 48. These plots show visually the 

change of the detection rates for minority and majority class which led to a higher AUC 

score. 

 

 

 

Figure 48: ROC plots for the best performers in the smart grid IDS 

 

Finally, if we compare this performance to the results from the previous chapter, we can see 

that the performance of the smart grid IDS communication system achieves the same results 

as the respective best classifier. This means, the smart grid IDS communication system 

achieves for both scenarios a similar performance as their respective voting classifiers from 

the previous chapter. 
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8 Conclusion 

The goal of this research project was to investigate imbalanced data methods and to use these 

methods for anomaly detection in smart grids. For this purpose, two different datasets were 

chosen, whereby one dataset consists of normal network data and cyber-attacks and the other 

dataset consists of normal, natural and attack events. Both datasets were evaluated with a 

selection of classifiers. These classifiers were tested with their default parameters and then 

a grid search was executed to improve their performance. In general, it is a promising idea 

to execute a grid search within the hyper-parameter space since the performance were 

improved for all datasets and all classifiers. Then, the performance for all datasets were 

evaluated with various imbalanced data methods. Therefore, sampling methods such as 

under-sampling, over-sampling and hybrid-sampling and also cost-sensitive learning 

methods such as weighting, thresholding and cost-sensitive classifiers were tested. While the 

performance for the cost-sensitive learning methods were disappointing, the sampling 

methods fulfilled their expectations. Especially through over-sampling they were able to 

improve the detection rate of the minority class while the detection rate for majority class 

nearly remained. Overall, this behavior led to an improved AUC score.  

After the exploration of all methods, the best method for the ADFA-LD was chosen to build 

a smart grid IDS. To build the smart grid IDS, a hierarchical three-layer communication 

system were constructed with if/else conditions. Then, both the best common method and 

the best chosen imbalanced data method were evaluated for the built smart grid IDS. The 

expectation was, that the imbalanced data method outperforms existing approaches. If we 

consider the AUC score, this goal was definitely reached. The behavior for the three-layer 

smart grid IDS with ADASYN over-sampling was similar to a common evaluation and so 

the detection rate for the minority class was improved while the performance for the majority 

class was just slightly worse. This led to an overall better AUC score of 1.50%.  

But the hierarchical smart grid IDS itself was also able to improve the overall performance. 

So, the performance for both methods match their respective best performing classifier, 

namely the plurality voting classifier. Consequently, a higher performance was achieved 

only through the use of the hierarchical three-layer smart grid IDS. This performance was 

again improved through ADASYN over-sampling which led finally to the overall best 

performance. 
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To extend this work, one might experiment with various combinations of classifiers and 

structures for the hierarchical smart grid IDS to improve the performance. Another 

possibility would be to add some ensemble solution classifiers to the classifier set or to add 

some classifiers from the algorithm-level solutions (e.g., kernel-based learning framework, 

one-class learning approach or active learning approach). Finally, one could change the 

prototypical implementation with if/else conditions to a real smart grid communication 

system as created in [18]. 
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Appendix A: Source code 

Following, some used functions from the created Python program will be stated. The 

functions are referenced and explained within the research project. 

Basic evaluation function (scaling and classifier tests) 

def basic_evaluation_binary(data, targets, classifiers,  

 training_share=0.5, iterations=10, use_unscaled_data,  

 use_interval_scaled_data, use_zscore_scaled_data,  

 use_atan_scaled_data): 

 

    # create empty dictionary for rates 

    rates = {} 

    for key in classifiers.keys(): 

        rates[key] = {} 

        if use_unscaled_data: 

            rates[key]['unscaled'] = np.zeros((2, 2)) 

        if use_interval_scaled_data: 

            rates[key]['interval'] = np.zeros((2, 2)) 

        if use_zscore_scaled_data: 

            rates[key]['zscore'] = np.zeros((2, 2)) 

        if use_atan_scaled_data: 

            rates[key]['atan'] = np.zeros((2, 2)) 

 

    for x in range(0, iterations): 

        # random sampling 

        train_unscaled, test_unscaled, train_targets, test_targets =  

  train_test_split(data, targets, test_size=1-training_share,  

  stratify=targets) 

 

        # scaling 

        if use_interval_scaled_data: 

            scaler = preprocessing.MinMaxScaler().fit(train_unscaled) 

            train_interval = scaler.transform(train_unscaled) 

            test_interval = scaler.transform(test_unscaled) 

        if use_zscore_scaled_data: 

            scaler = preprocessing.StandardScaler().fit(train_unscaled) 

            train_zscore = scaler.transform(train_unscaled) 

            test_zscore = scaler.transform(test_unscaled) 

        if use_atan_scaled_data: 

            if not use_zscore_scaled_data: 

                scaler =  

   preprocessing.StandardScaler().fit(train_unscaled) 

                train_zscore = scaler.transform(train_unscaled) 

                test_zscore = scaler.transform(test_unscaled) 

            train_atan = (2 * np.arctan(train_zscore)) / np.pi 

            test_atan = (2 * np.arctan(test_zscore)) / np.pi 

 

        # prediction and metric calculation 

        for key, classifier in classifiers.items(): 

            if use_unscaled_data: 

                rates[key]['unscaled'] +=  

   metrics.confusion_matrix(test_targets,  

   classifier.fit(train_unscaled,  

   train_targets).predict(test_unscaled)) 

            if use_interval_scaled_data: 

                rates[key]['interval'] +=  

   metrics.confusion_matrix(test_targets,  

   classifier.fit(train_interval,  
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   train_targets).predict(test_interval)) 

            if use_zscore_scaled_data: 

                rates[key]['zscore'] +=  

   metrics.confusion_matrix(test_targets,  

   classifier.fit(train_zscore,  

   train_targets).predict(test_zscore)) 

            if use_atan_scaled_data: 

                rates[key]['atan'] +=  

   metrics.confusion_matrix(test_targets,  

   classifier.fit(train_atan,  

   train_targets).predict(test_atan)) 

 

 

    # divide rates by iterations to get the mean 

    for key in classifiers.keys(): 

        if use_unscaled_data: 

            rates[key]['unscaled'] /= iterations 

        if use_interval_scaled_data: 

            rates[key]['interval'] /= iterations 

        if use_zscore_scaled_data: 

            rates[key]['zscore'] /= iterations 

        if use_atan_scaled_data: 

            rates[key]['atan'] /= iterations 

 

    return rates 

Listing 5: Basic evaluation function (scaling and classifier tests) 

 

To execute this function successfully, the following parameters are necessary: 

• data [numpy matrix]: Numpy dataset matrix (columns=features) 

• targets [numpy matrix]: Numpy target matrix (each row = one target) 

• classifiers [dictionary]: The name of the classifiers as key for each entry and the 

classifier itself as value; the evaluation is executed for each classifier  

• training_share [double value > 𝟎 𝒂𝒏𝒅 < 𝟏]: The percentage of data which should 

be used to train the classifier 

• iterations [int value ≥ 𝟏]: The number of repetitions for a single evaluation process 

• use_unscaled_data [boolean]: True if unscaled data should be used for the 

evaluation 

• use_interval_scaled_data [boolean]: True if the data should be fitted to the interval 

[0,1] and used for the evaluation 

• use_zscore_scaled_data [boolean]: True if the data should be z-score scaled 

(standardized) and used for the evaluation  

• use_atan_scaled_data [boolean]: True if the data should be arctangent scaled and 

used for the evaluation 
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Custom scorer function for the GridSearchCV 

def __custom_scorer_mixed_f1_gmean(targets, predictions): 

    rates = metrics.confusion_matrix(targets, predictions) 

    TN = rates[0][0]; FP = rates[0][1]; 

    FN = rates[1][0]; TP = rates[1][1]; 

 

    # calculate F1 performance metrics 

    if (TP + FN == 0) or (TP + FP == 0): 

        F1 = 0 

    else: 

        Recall = TP / (TP + FN) 

        Precision = TP / (TP + FP) 

 

        if Recall == 0 or Precision == 0: 

            F1 = 0 

        else: 

            F1 = (2 * Precision * Recall) / (Precision + Recall) 

 

    # calculate Gmean performance metrics 

    if (TP + FN == 0) or (TN + FP == 0): 

        Gmean = 0 

    else: 

        Recall = TP / (TP + FN) 

        Specifity = TN / (TN + FP) 

        Gmean = (Recall * Specifity) ** (1 / 2) 

 

    return np.mean([F1, Gmean]) 

Listing 6: Custom scorer function for the GridSearchCV 

 

 

Generation of grid search classifiers and parameters 

def __generate_grid_search_classifiers(use_DT, use_kNN, use_QDA, use_MLP,  

       use_SVM, use_DTBoost, use_DTBagg, 

                                       use_RForest): 

    grid_search_classifiers = {} 

 

    if use_DT: 

        grid_search_classifiers['DT'] = {} 

        grid_search_classifiers['DT']['classifier'] =  

  DecisionTreeClassifier() 

        grid_search_classifiers['DT']['parameter'] = \ 

            { 

                "criterion": ["gini", "entropy"], 

                "min_samples_split": [2, 5, 10], 

                "max_depth": [None, 5, 10, 20], 

                "min_samples_leaf": [1, 2, 5], 

                "max_leaf_nodes": [None, 20, 50] 

            } 
 

    if use_kNN: 

        grid_search_classifiers['k-NN'] = {} 

        grid_search_classifiers['k-NN']['classifier'] =  

  KNeighborsClassifier() 

        grid_search_classifiers['k-NN']['parameter'] = \ 

            { 

                "n_neighbors": np.arange(1, 9), 

                "weights": ['uniform', 'distance'], 

            } 
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    if use_QDA: 

        grid_search_classifiers['QDA'] = {} 

        grid_search_classifiers['QDA']['classifier'] =  

  QuadraticDiscriminantAnalysis() 

        grid_search_classifiers['QDA']['parameter'] =  

  { 

   "reg_param": np.concatenate([np.zeros(1), np.logspace(- 

    10, 0, 11)]) 

  } 

    if use_MLP: 

        grid_search_classifiers['MLP'] = {} 

        grid_search_classifiers['MLP']['classifier'] = MLPClassifier() 

        grid_search_classifiers['MLP']['parameter'] = \ 

            { 

                "hidden_layer_sizes": np.arange(100, 1001, 100), 

                "solver": ['lbfgs', 'sgd', 'adam'], 

                "learning_rate": ['constant', 'invscaling', 'adaptive'] 

            } 

    if use_SVM: 

        grid_search_classifiers['SVM'] = {} 

        grid_search_classifiers['SVM']['classifier'] = SVC() 

        grid_search_classifiers['SVM']['parameter'] = \ 

            [ 

                { 

                    'kernel': ['rbf'], 

                    'C': [1, 10, 100, 1000], 

                    'gamma': np.logspace(-9, 3, 13) 

                }, 

                { 

                    'kernel': ['linear'], 

                    'C': [1, 10, 100, 1000] 

                } 

            ] 

    if use_DTBoost: 

        grid_search_classifiers['DTBoost'] = {} 

        grid_search_classifiers['DTBoost']['classifier'] =  

  AdaBoostClassifier(base_estimator= \ 

   DecisionTreeClassifier(criterion="entropy")) 

        grid_search_classifiers['DTBoost']['parameter'] = 

  { 

   "n_estimators": np.arange(10, 101, 10) 

  } 

    if use_DTBagg: 

        grid_search_classifiers['DTBagg'] = {} 

        grid_search_classifiers['DTBagg']['classifier'] = BaggingClassifier( 

            base_estimator=DecisionTreeClassifier(criterion="entropy")) 

        grid_search_classifiers['DTBagg']['parameter'] = 

  { 

   "n_estimators": np.arange(10, 101, 10) 

  } 

    if use_RForest: 

        grid_search_classifiers['RandomForest'] = {} 

        grid_search_classifiers['RandomForest']['classifier'] =  

  RandomForestClassifier() 

        grid_search_classifiers['RandomForest']['parameter'] = \ 

            { 

                "n_estimators": np.arange(10, 101, 10), 

                "max_features": ['sqrt', None, 0.01, 0.1, 0.2, 0.3, 0.4,  

   0.5, 0.6, 0.7, 0.8, 0.9], 

                "criterion": ['gini', 'entropy'], 

            } 

 

    return grid_search_classifiers 

Listing 7: Generation of grid search classifiers and parameters 
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K-fold cross validation for normal, cost-sensitive and sampling tests 

def k_fold_cv_binary(data, targets, clfs, folds, iterations,  

 use_thresholding=False, use_cost_models=False, sampling=None): 
 

    rates = {} 

    for key in clfs.keys(): 

        rates[key] = {} 

        rates[key]['cm'] = np.zeros((2, 2)) 

        rates[key]['roc'] = {} 

        rates[key]['roc']['FPR'] = np.linspace(0, 1, 2501) 

        rates[key]['roc']['TPR'] = [] 
 

    for x in range(0, iterations): 

 # k-fold sampling // iterate over each fold 

        skf = StratifiedKFold(n_splits=folds, shuffle=True) 

        for train_index, test_index in skf.split(data, targets): 
 

            # set train and test data for this fold 

            train_data, test_data = data[train_index], data[test_index] 

            train_targets, test_targets = targets[train_index],  

  targets[test_index] 
 

            if sampling != None: 

                train_data, train_targets = sampling.fit_sample(train_data,  

  train_targets) 
 

            # prediction and metric calculation 

            for key, classifier in clfs.items(): 

                if not use_cost_models: 

                    pred_clf = classifier.fit(train_data, train_targets) 

                    if use_thresholding and not hasattr(pred_clf, 'voting'): 

                        train_data = pred_clf.predict_proba(train_data) 

                        test_data = pred_clf.predict_proba(test_data) 

                        cost_mat = __generate_imb_cost_mat(train_targets) 

                        pred_clf = ThresholdingOptimization().fit(train_data,  

   cost_mat, train_targets) 

                else: 

                    costs = __generate_imb_cost_mat(train_targets) 

                    pred_clf = classifier.fit(train_data, train_targets, costs) 

 

                # predict the test data 

                prediction_targets = pred_clf.predict(test_data) 

 

                # calculate metrics and store them in dict 

                rates[key]['cm'] += metrics.confusion_matrix(test_targets,  

  prediction_targets) 

                fpr, tpr, th_roc = metrics.roc_curve(test_targets,  

  prediction_targets) 

                rates[key]['roc']['TPR'].append(  

  np.interp(rates[key]['roc']['FPR'], fpr, tpr)) 

                rates[key]['roc']['TPR'][-1][0] = 0.0 
 

    # divide rates by iterations to get the average of the whole evaluation 

    for key in clfs.keys(): 

        rates[key]['cm'] /= iterations 

        rates[key]['roc']['TPR'] = np.mean(rates[key]['roc']['TPR'], axis=0) 

        rates[key]['roc']['AUC'] = metrics.auc(rates[key]['roc']['FPR'],  

 rates[key]['roc']['TPR']) 
 

    return rates 

Listing 8: K-fold cross validation for normal, cost-sensitive and sampling tests 
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To execute this function successfully, the following parameters are necessary: 

• data [numpy matrix]: Numpy dataset matrix (columns=features) 

• targets [numpy matrix]: Numpy target matrix (each row = one target) 

• clfs [dictionary]: The name of the classifiers as key for each entry and the classifier 

itself as value; the evaluation is executed for each classifier  

• folds [int value > 𝟏]: The number of fold for a single grid search 

• iterations [int value ≥ 𝟏]: The number of repetitions for the CV grid search 

• use_thresholding [boolean]: True if thresholding should be performed to adapt the 

fit and predict behavior. Default: False 

• use_cost_models [boolean]: True if cost classifiers are passed to adapt the fit and 

predict behavior. Default: False 

• sampling [Sampling Class]: If a sampling method should be used, pass the sampling 

class to this parameter. Default: None 

 

 

Confusion matrix performance evaluation function 

def cm_performance_evaluation(rates): 

    # calculate performance metrics 

    TN = rates[0][0]; 

    FP = rates[0][1]; 

    FN = rates[1][0]; 

    TP = rates[1][1]; 

 

    Precision = TP / (TP + FP) 

    Recall = TP / (TP + FN) 

    Specifity = TN / (TN + FP) 

 

    ACC = (TP + TN) / (TP + TN + FP + FN) 

    FPR = 1 - Specifity 

    FNR = 1 - Recall 

 

    F1_Score = (2 * Precision * Recall) / (Precision + Recall) 

    G_mean = (Recall * Specifity) ** (1 / 2) 

 

    return ACC, FPR, FNR, F1_Score, G_mean 

Listing 9: Confusion matrix performance evaluation function 
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ROC curve generation function 

def roc_plot(dataset_name, classifier_name, rates_FPR, rates_TPR, 

rates_AUC, save_plot=False, base_path="", scaling_name=""): 

    plt.figure(figsize=(5, 5)) 

    plt.title('ROC: ' + dataset_name + ' - ' + classifier_name) 

    plt.plot(rates_FPR, rates_TPR, 'b', label='AUC = %0.4f' % rates_AUC) 

    plt.legend(loc='lower right') 

    plt.plot([0, 1], [0, 1], 'r--') 

    plt.xlim([-0.1, 1.1]) 

    plt.ylim([-0.1, 1.1]) 

    plt.ylabel('True Positive Rate') 

    plt.xlabel('False Positive Rate') 

    plt.grid(True) 
 

    if save_plot: 

        … 

    else: 

        plt.show() 

 

    plt.close() 

Listing 10: ROC curve generation function 

 

 

Hierarchical smart grid IDS simulation process 

def simulate(data, targets, training_size, iterations, sampling): 

 

    # preprocess data (atan scaling) 

    data = preprocessing.StandardScaler().fit_transform(data) 

    data = (2 * np.arctan(data)) / np.pi 

 

    # evaluation values 

    rates = {} 

    rates['cm'] = np.zeros((2, 2)) 

    rates['roc'] = {} 

    rates['roc']['FPR'] = np.linspace(0, 1, 2501) 

    rates['roc']['TPR'] = [] 

    HAN_total = 0 

    HAN_accuracy = 0 

    NAN_total = 0 

    NAN_accuracy = 0 

    WAN_total = 0 

    WAN_accuracy = 0 

 

 

    # execute simulation for x rounds 

    for x in range(iterations): 

 

        # split data 

        data_train, data_test, targets_train, targets_test =  

 train_test_split(data, targets, train_size=training_size) 

 

        # oversampling for training data 

        if sampling: 

            data_train, targets_train = ADASYN().fit_sample(data_train,  

  targets_train) 
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        # build and train classifier for sg architecture 

        HAN_clf, NAN_clf, WAN_clf =  

 build_and_train_classifier_2HAN_4NAN_voteWAN(data_train, targets_train) 

 

        # run model simulation for sg architecture 

        prediction, HAN_total_round, HAN_accuracy_round, NAN_total_round,  

 NAN_accuracy_round, WAN_total_round, WAN_accuracy_round = \ 

            model_evaluation_2HAN_4NAN_voteWAN(data_test, targets_test, HAN_clf,  

  NAN_clf, WAN_clf) 

 

        # add performance values 

        … 

 

 

    # divide performance values by iterations to get the average performance 

    … 

 

    # calculate performance measures 

    ACC, FPR, FNR, F1_Score, G_mean = cm_performance_evaluation(rates['cm']) 

Listing 11: Hierarchical smart grid IDS simulation process 

 

To execute this function successfully, the following parameters are necessary: 

• data [numpy matrix]: Numpy dataset matrix (columns=features) 

• targets [numpy matrix]: Numpy target matrix (each row = one target) 

• training_size [double value > 𝟎 𝒂𝒏𝒅 < 𝟏]: The percentage of data which should 

be used to train the classifiers 

• iterations [int value ≥ 𝟏]: The number of repetitions for a single evaluation process 

• sampling [boolean]: True, if ADASYN over-sampling should be used 
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Appendix B: ADFA-LD results 

ADFA-LD results 

ADFA-LD FPR FNR AUC ACC F1 G 

Single 

classifiers 

k-NN 0.0186 0.1251 0.9281 0.9680 0.8728 0.9266 

MLP 0.0165 0.1334 0.9250 0.9689 0.8746 0.9232 

QDA 0.1661 0.0319 0.9010 0.8507 0.6191 0.8985 

SVM 0.0133 0.1443 0.9212 0.9703 0.8783 0.9189 

Ensemble 

classifiers 

DTBoost 0.0135 0.1487 0.9189 0.9695 0.8751 0.9164 

DTBagg 0.0111 0.1444 0.9223 0.9722 0.8852 0.9199 

RForest 0.0097 0.1436 0.9233 0.9735 0.8901 0.9209 

PlurVt 0.0107 0.1176 0.9358 0.9759 0.9017 0.9343 

WeighVt 0.0099 0.1190 0.9355 0.9764 0.9034 0.9339 

Table 19: ADFA-LD results 

 

ADFA-LD results (Under-sampling) 

ADFA-LD FPR FNR AUC ACC F1 G 

R
a
n

d
o
m

- 

U
n

d
er

S
a
m

p
le

r 
 

(R
U

S
) 

k-NN 0.1091 0.0411 0.9249 0.8994 0.7050 0.9243 

MLP 0.0802 0.0615 0.9291 0.9222 0.7514 0.9291 

QDA 0.1548 0.0284 0.9084 0.8611 0.6368 0.9062 

SVM 0.0676 0.0607 0.9358 0.9333 0.7792 0.9358 

DTBoost 0.0961 0.0702 0.9168 0.9071 0.7150 0.9167 

DTBagg 0.0896 0.0486 0.9309 0.9155 0.7385 0.9307 

RForest 0.0830 0.0456 0.9357 0.9217 0.7535 0.9355 

PlurVt 0.0821 0.0407 0.9386 0.9231 0.7577 0.9384 

WeighVt 0.0795 0.0405 0.9400 0.9254 0.7633 0.9398 

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o
u

r 

(C
N

N
) 

k-NN 0.0746 0.0922 0.9166 0.9232 0.7477 0.9165 

MLP 0.0680 0.1122 0.9099 0.9265 0.7517 0.9096 

QDA 0.1651 0.0413 0.8968 0.8504 0.6164 0.8946 

SVM 0.0314 0.1068 0.9309 0.9591 0.8456 0.9301 

DTBoost 0.0957 0.1148 0.8947 0.9019 0.6934 0.8947 

DTBagg 0.0621 0.1116 0.9131 0.9317 0.7653 0.9128 

RForest 0.0531 0.1063 0.9203 0.9402 0.7894 0.9199 

PlurVt 0.0332 0.0886 0.9391 0.9599 0.8506 0.9387 

WeighVt 0.0345 0.0812 0.9422 0.9596 0.8509 0.9419 

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(E
N

N
) 

k-NN 0.0476 0.0796 0.9364 0.9484 0.8172 0.9363 

MLP 0.0414 0.0831 0.9378 0.9534 0.8315 0.9375 

QDA 0.1635 0.0294 0.9036 0.8533 0.6239 0.9011 

SVM 0.0373 0.0947 0.9340 0.9555 0.8361 0.9336 

DTBoost 0.0425 0.1192 0.9192 0.9479 0.8091 0.9184 

DTBagg 0.0291 0.1027 0.9341 0.9617 0.8544 0.9334 

RForest 0.0265 0.1011 0.9362 0.9642 0.8628 0.9355 

PlurVt 0.0349 0.0757 0.9447 0.9600 0.8528 0.9445 

WeighVt 0.0354 0.0745 0.9451 0.9597 0.8520 0.9449 
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ADFA-LD FPR FNR AUC ACC F1 G 
R

ep
ea

te
d

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(R
E

N
N

) 
k-NN 0.0663 0.0603 0.9367 0.9345 0.7824 0.9367 

MLP 0.0583 0.0660 0.9379 0.9407 0.7980 0.9379 

QDA 0.1633 0.0288 0.9040 0.8536 0.6245 0.9015 

SVM 0.0542 0.0777 0.9341 0.9428 0.8018 0.9340 

DTBoost 0.0546 0.1018 0.9218 0.9394 0.7881 0.9215 

DTBagg 0.0435 0.0883 0.9341 0.9509 0.8230 0.9338 

RForest 0.0386 0.0839 0.9387 0.9557 0.8384 0.9385 

PlurVt 0.0514 0.0613 0.9437 0.9474 0.8173 0.9437 

WeighVt 0.0523 0.0564 0.9456 0.9472 0.8174 0.9456 

A
ll

-K
N

N
 

k-NN 0.0585 0.0695 0.9360 0.9401 0.7957 0.9360 

MLP 0.0514 0.0738 0.9374 0.9458 0.8108 0.9374 

QDA 0.1633 0.0294 0.9036 0.8535 0.6241 0.9011 

SVM 0.0464 0.0854 0.9341 0.9487 0.8172 0.9339 

DTBoost 0.0483 0.1079 0.9219 0.9442 0.8004 0.9214 

DTBagg 0.0369 0.0932 0.9349 0.9560 0.8378 0.9345 

RForest 0.0330 0.0914 0.9378 0.9596 0.8495 0.9373 

PlurVt 0.0433 0.0698 0.9434 0.9534 0.8335 0.9434 

WeighVt 0.0436 0.0655 0.9455 0.9537 0.8349 0.9454 

In
st

a
n

ce
H

a
rd

n
es

s-

T
h

re
sh

o
ld

 (
IH

T
) 

k-NN 0.0910 0.0534 0.9278 0.9138 0.7335 0.9277 

MLP 0.0772 0.0607 0.9311 0.9249 0.7581 0.9310 

QDA 0.1658 0.0255 0.9043 0.8518 0.6224 0.9016 

SVM 0.0667 0.0716 0.9308 0.9326 0.7756 0.9308 

DTBoost 0.0886 0.0816 0.9149 0.9123 0.7241 0.9149 

DTBagg 0.0765 0.0639 0.9298 0.9251 0.7580 0.9298 

RForest 0.0701 0.0573 0.9363 0.9315 0.7753 0.9363 

PlurVt 0.0762 0.0483 0.9378 0.9273 0.7665 0.9377 

WeighVt 0.0750 0.0475 0.9387 0.9284 0.7694 0.9386 

N
ea

rM
is

s 
(N

M
) 

v
er

si
o
n

 1
 

k-NN 0.5422 0.1140 0.6719 0.5115 0.3126 0.6369 

MLP 0.5061 0.1134 0.6903 0.5431 0.3273 0.6617 

QDA 0.7159 0.4902 0.3969 0.3124 0.1567 0.3806 

SVM 0.7257 0.1040 0.5852 0.3523 0.2575 0.4958 

DTBoost 0.4547 0.1211 0.7121 0.5871 0.3480 0.6923 

DTBagg 0.2859 0.1231 0.7955 0.7345 0.4530 0.7914 

RForest 0.3051 0.1215 0.7867 0.7179 0.4384 0.7813 

PlurVt 0.5604 0.1182 0.6607 0.4950 0.3045 0.6226 

WeighVt 0.5508 0.1194 0.6649 0.5033 0.3077 0.6289 

N
ea

rM
is

s 
(N

M
) 

v
er

si
o

n
 2

 

k-NN 0.5197 0.0843 0.6980 0.5349 0.3305 0.6632 

MLP 0.4217 0.0682 0.7551 0.6226 0.3824 0.7341 

QDA 0.5732 0.1741 0.6263 0.4768 0.2836 0.5937 

SVM 0.7413 0.0645 0.5971 0.3436 0.2632 0.4920 

DTBoost 0.3886 0.0853 0.7631 0.6494 0.3955 0.7479 

DTBagg 0.2898 0.0871 0.8115 0.7356 0.4640 0.8052 

RForest 0.2995 0.0827 0.8089 0.7277 0.4579 0.8016 

PlurVt 0.4938 0.0779 0.7141 0.5583 0.3436 0.6832 

WeighVt 0.4962 0.0769 0.7135 0.5564 0.3428 0.6820 
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ADFA-LD FPR FNR AUC ACC F1 G 

T
o

m
ek

L
in

k
s 

k-NN 0.0229 0.1117 0.9327 0.9660 0.8675 0.9316 

MLP 0.0209 0.1188 0.9301 0.9668 0.8695 0.9288 

QDA 0.1661 0.0322 0.9009 0.8507 0.6191 0.8984 

SVM 0.0169 0.1349 0.9241 0.9683 0.8725 0.9222 

DTBoost 0.0163 0.1359 0.9239 0.9687 0.8739 0.9220 

DTBagg 0.0134 0.1331 0.9267 0.9716 0.8844 0.9248 

RForest 0.0114 0.1311 0.9287 0.9736 0.8919 0.9268 

PlurVt 0.0141 0.1057 0.9401 0.9744 0.8975 0.9390 

WeighVt 0.0137 0.1074 0.9394 0.9746 0.8979 0.9383 

O
n

eS
id

ed
S

el
ec

ti
o

n
s 

(O
S

S
) 

k-NN 0.0233 0.1149 0.9309 0.9652 0.8644 0.9297 

MLP 0.0209 0.1194 0.9299 0.9668 0.8692 0.9286 

QDA 0.1670 0.0320 0.9005 0.8499 0.6179 0.8980 

SVM 0.0166 0.1304 0.9265 0.9691 0.8760 0.9247 

DTBoost 0.0162 0.1357 0.9240 0.9688 0.8741 0.9221 

DTBagg 0.0129 0.1345 0.9263 0.9719 0.8852 0.9243 

RForest 0.0112 0.1340 0.9274 0.9734 0.8909 0.9253 

PlurVt 0.0144 0.1067 0.9395 0.9741 0.8962 0.9383 

WeighVt 0.0138 0.1091 0.9385 0.9743 0.8967 0.9373 

N
ei

g
h

b
o
u

rh
o
o
d

-

C
le

a
n

in
g
R

u
le

 

(N
C

R
) 

k-NN 0.0376 0.0899 0.9362 0.9558 0.8378 0.9359 

MLP 0.0339 0.0893 0.9384 0.9591 0.8482 0.9380 

QDA 0.1641 0.0298 0.9030 0.8527 0.6229 0.9005 

SVM 0.0289 0.1075 0.9318 0.9613 0.8525 0.9310 

DTBoost 0.0384 0.1233 0.9191 0.9509 0.8174 0.9181 

DTBagg 0.0232 0.1099 0.9335 0.9660 0.8677 0.9325 

RForest 0.0206 0.1078 0.9358 0.9685 0.8766 0.9348 

PlurVt 0.0273 0.0866 0.9431 0.9653 0.8683 0.9426 

WeighVt 0.0271 0.0850 0.9440 0.9656 0.8697 0.9435 

Table 20: ADFA-LD results (Under-sampling) 

 

 

 

ADFA-LD results (Over-sampling) 

ADFA-LD FPR FNR AUC ACC F1 G 

R
a

n
d

o
m

- 

O
v
er

S
a

m
p

le
r 

 

(R
O

S
) 

k-NN 0.0358 0.0802 0.9420 0.9587 0.8480 0.9418 

MLP 0.0289 0.0973 0.9369 0.9625 0.8580 0.9363 

QDA 0.1685 0.0319 0.8998 0.8486 0.6158 0.8972 

SVM 0.0285 0.1130 0.9292 0.9609 0.8504 0.9283 

DTBoost 0.0147 0.1475 0.9189 0.9687 0.8721 0.9165 

DTBagg 0.0191 0.1197 0.9306 0.9683 0.8744 0.9292 

RForest 0.0146 0.1129 0.9362 0.9730 0.8919 0.9350 

PlurVt 0.0194 0.0861 0.9472 0.9722 0.8920 0.9467 

WeighVt 0.0175 0.0867 0.9479 0.9738 0.8975 0.9473 
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ADFA-LD FPR FNR AUC ACC F1 G 

S
M

O
T

E
 

k-NN 0.0394 0.0732 0.9437 0.9564 0.8420 0.9436 

MLP 0.0268 0.1077 0.9327 0.9630 0.8582 0.9319 

QDA 0.1465 0.0469 0.9033 0.8660 0.6406 0.9019 

SVM 0.0267 0.1188 0.9273 0.9617 0.8524 0.9261 

DTBoost 0.0204 0.1286 0.9255 0.9661 0.8656 0.9240 

DTBagg 0.0225 0.1109 0.9333 0.9664 0.8689 0.9322 

RForest 0.0184 0.1048 0.9384 0.9708 0.8849 0.9374 

PlurVt 0.0220 0.0838 0.9471 0.9702 0.8852 0.9466 

WeighVt 0.0204 0.0875 0.9460 0.9712 0.8882 0.9454 

A
D

A
S

Y
N

 

k-NN 0.0407 0.0735 0.9429 0.9552 0.8383 0.9428 

MLP 0.0347 0.0849 0.9402 0.9590 0.8484 0.9399 

QDA 0.2209 0.0392 0.8699 0.8019 0.5487 0.8652 

SVM 0.0339 0.0929 0.9366 0.9587 0.8462 0.9361 

DTBoost 0.0229 0.1176 0.9297 0.9652 0.8641 0.9285 

DTBagg 0.0274 0.0887 0.9420 0.9649 0.8670 0.9415 

RForest 0.0237 0.0928 0.9418 0.9677 0.8755 0.9411 

PlurVt 0.0283 0.0697 0.9510 0.9665 0.8746 0.9508 

WeighVt 0.0254 0.0745 0.9500 0.9684 0.8802 0.9497 

Table 21: ADFA-LD results (Over-sampling) 

 

ADFA-LD results (Hybrid-sampling) 
 

ADFA-LD FPR FNR AUC ACC F1 G 

S
M

O
T

E
T

o
m

ek
 

k-NN 0.0385 0.0721 0.9447 0.9573 0.8448 0.9446 

MLP 0.0263 0.1092 0.9322 0.9633 0.8588 0.9313 

QDA 0.1458 0.0464 0.9039 0.8667 0.6420 0.9025 

SVM 0.0257 0.1200 0.9272 0.9625 0.8547 0.9260 

DTBoost 0.0196 0.1284 0.9260 0.9668 0.8680 0.9244 

DTBagg 0.0212 0.1098 0.9345 0.9677 0.8734 0.9334 

RForest 0.0175 0.1056 0.9385 0.9715 0.8872 0.9375 

PlurVt 0.0212 0.0867 0.9460 0.9706 0.8862 0.9455 

WeighVt 0.0199 0.0874 0.9464 0.9717 0.8898 0.9458 

S
M

O
T

E
E

N
N

 

k-NN 0.0340 0.0824 0.9418 0.9599 0.8515 0.9414 

MLP 0.0225 0.1194 0.9290 0.9653 0.8642 0.9278 

QDA 0.1398 0.0481 0.9061 0.8717 0.6504 0.9049 

SVM 0.0223 0.1301 0.9238 0.9642 0.8591 0.9222 

DTBoost 0.0215 0.1466 0.9160 0.9628 0.8519 0.9138 

DTBagg 0.0183 0.1210 0.9303 0.9688 0.8761 0.9289 

RForest 0.0146 0.1152 0.9351 0.9728 0.8907 0.9337 

PlurVt 0.0177 0.0970 0.9427 0.9724 0.8912 0.9418 

WeighVt 0.0167 0.0976 0.9428 0.9731 0.8939 0.9420 

Table 22: ADFA-LD results (Hybrid-sampling) 
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ADFA-LD results (Cost-sensitive learning) 

ADFA-LD FPR FNR AUC ACC F1 G 
W

ei
g

h
te

d
 

SVM 0.0219 0.2355 0.8713 0.9514 0.7976 0.8647 

DTBoost 0.0150 0.1543 0.9154 0.9676 0.8674 0.9127 

DTBagg 0.0118 0.1451 0.9215 0.9715 0.8826 0.9191 

RForest 0.0101 0.1442 0.9228 0.9731 0.8885 0.9204 

PlurVt 0.0083 0.1638 0.9140 0.9722 0.8830 0.9106 

WeighVt 0.0093 0.1451 0.9228 0.9737 0.8905 0.9203 

T
h

re
sh

o
ld

in
g
 

k-NN 0.0415 0.0791 0.9397 0.9538 0.8332 0.9395 

MLP 0.0183 0.1830 0.8993 0.9610 0.8402 0.8955 

QDA 0.0195 0.1218 0.9293 0.9677 0.8719 0.9279 

SVM 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955 

DTBoost 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955 

DTBagg 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278 

RForest 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278 

C
o
st

-

se
n

si
ti

v
e 

cl
a
ss

if
ie

r 

DT 0.0256 0.4955 0.7395 0.9155 0.5996 0.7011 

Bagging 0.0864 0.1014 0.9061 0.9117 0.7185 0.9061 

Pasting 0.0965 0.0879 0.9078 0.9046 0.7056 0.9078 

RForest 0.0879 0.0839 0.9141 0.9126 0.7244 0.9141 

RPatches 0.1215 0.0753 0.9016 0.8843 0.6671 0.9013 

Table 23: ADFA-LD results (Cost-sensitive learning) 
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Appendix C: ICS-PSD-NvNA results 

ICS-PSD-NvNA results 

ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

Single 

classifiers 

k-NN 0.0428 0.0030 0.9771 0.9956 0.9977 0.9769 

MLP 0.0844 0.0038 0.9559 0.9934 0.9966 0.9551 

QDA 0.0870 0.0120 0.9505 0.9854 0.9924 0.9498 

SVM 0.0512 0.0073 0.9707 0.9912 0.9954 0.9705 

Ensemble 

classifiers 

DTBoost 0.0451 0.0006 0.9771 0.9979 0.9989 0.9769 

DTBagg 0.0694 0.0010 0.9648 0.9967 0.9983 0.9642 

RForest 0.0656 0.0004 0.9669 0.9973 0.9986 0.9664 

PlurVt 0.0387 0.0006 0.9803 0.9980 0.9990 0.9801 

WeighVt 0.0425 0.0004 0.9785 0.9982 0.9991 0.9783 

Table 24: ICS-PSD-NvNA results 

 

ICS-PSD-NvNA results (Under-sampling) 

ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

R
a
n

d
o
m

- 

U
n

d
er

S
a
m

p
le

r 
 

(R
U

S
) 

k-NN 0.0032 0.1511 0.9227 0.8541 0.9182 0.9199 

MLP 0.0266 0.0584 0.9574 0.9427 0.9694 0.9573 

QDA 0.0691 0.0102 0.9603 0.9877 0.9936 0.9599 

SVM 0.0110 0.0604 0.9642 0.9413 0.9687 0.9640 

DTBoost 0.0069 0.0479 0.9725 0.9536 0.9754 0.9724 

DTBagg 0.0078 0.0587 0.9666 0.9430 0.9696 0.9664 

RForest 0.0040 0.0586 0.9685 0.9433 0.9697 0.9683 

PlurVt 0.0052 0.0479 0.9733 0.9536 0.9754 0.9732 

WeighVt 0.0095 0.0370 0.9766 0.9640 0.9810 0.9766 

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o
u

r 

(C
N

N
) 

k-NN 0.0069 0.1433 0.9247 0.8614 0.9227 0.9223 

MLP 0.0520 0.0358 0.9560 0.9636 0.9808 0.9560 

QDA 0.0633 0.0121 0.9623 0.9861 0.9928 0.9620 

SVM 0.0234 0.0414 0.9676 0.9592 0.9784 0.9676 

DTBoost 0.0142 0.0256 0.9800 0.9748 0.9868 0.9801 

DTBagg 0.0176 0.0222 0.9800 0.9780 0.9885 0.9801 

RForest 0.0188 0.0207 0.9801 0.9793 0.9892 0.9802 

PlurVt 0.0150 0.0152 0.9847 0.9848 0.9920 0.9849 

WeighVt 0.0162 0.0120 0.9857 0.9878 0.9936 0.9859 

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(E
N

N
) 

k-NN 0.0431 0.0083 0.9743 0.9905 0.9950 0.9742 

MLP 0.0780 0.0053 0.9583 0.9921 0.9959 0.9576 

QDA 0.0824 0.0119 0.9529 0.9857 0.9925 0.9522 

SVM 0.0474 0.0088 0.9719 0.9898 0.9947 0.9717 

DTBoost 0.0355 0.0024 0.9810 0.9964 0.9982 0.9809 

DTBagg 0.0676 0.0038 0.9643 0.9940 0.9969 0.9638 

RForest 0.0584 0.0027 0.9694 0.9954 0.9976 0.9691 

PlurVt 0.0324 0.0030 0.9823 0.9960 0.9979 0.9822 

WeighVt 0.0353 0.0024 0.9812 0.9964 0.9982 0.9810 
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ICS-PSD-NvNA FPR FNR AUC ACC F1 G 
R

ep
ea

te
d

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(R
E

N
N

) 
k-NN 0.0399 0.0096 0.9752 0.9893 0.9944 0.9751 

MLP 0.0725 0.0064 0.9605 0.9913 0.9955 0.9600 

QDA 0.0772 0.0119 0.9554 0.9858 0.9926 0.9549 

SVM 0.0384 0.0094 0.9760 0.9896 0.9946 0.9760 

DTBoost 0.0347 0.0033 0.9809 0.9956 0.9977 0.9809 

DTBagg 0.0746 0.0044 0.9604 0.9931 0.9964 0.9599 

RForest 0.0584 0.0037 0.9688 0.9944 0.9971 0.9686 

PlurVt 0.0335 0.0033 0.9815 0.9957 0.9977 0.9815 

WeighVt 0.0350 0.0030 0.9810 0.9959 0.9979 0.9809 

A
ll

-K
N

N
 

k-NN 0.0451 0.0080 0.9734 0.9907 0.9952 0.9733 

MLP 0.0717 0.0055 0.9613 0.9921 0.9959 0.9608 

QDA 0.0844 0.0119 0.9518 0.9856 0.9925 0.9512 

SVM 0.0431 0.0087 0.9741 0.9901 0.9949 0.9740 

DTBoost 0.0341 0.0022 0.9818 0.9967 0.9983 0.9817 

DTBagg 0.0688 0.0039 0.9636 0.9938 0.9968 0.9631 

RForest 0.0552 0.0031 0.9708 0.9951 0.9974 0.9705 

PlurVt 0.0373 0.0027 0.9800 0.9961 0.9980 0.9799 

WeighVt 0.0376 0.0025 0.9799 0.9963 0.9981 0.9798 

In
st

a
n

ce
H

a
rd

n
es

s-

T
h

re
sh

o
ld

 (
IH

T
) 

k-NN 0.0263 0.0276 0.9730 0.9725 0.9855 0.9731 

MLP 0.0240 0.0370 0.9694 0.9634 0.9807 0.9695 

QDA 0.0777 0.0115 0.9554 0.9861 0.9928 0.9548 

SVM 0.0211 0.0241 0.9773 0.9760 0.9874 0.9774 

DTBoost 0.0136 0.0388 0.9737 0.9621 0.9800 0.9737 

DTBagg 0.0367 0.0446 0.9592 0.9556 0.9765 0.9593 

RForest 0.0249 0.0437 0.9656 0.9569 0.9772 0.9657 

PlurVt 0.0150 0.0329 0.9759 0.9677 0.9830 0.9760 

WeighVt 0.0223 0.0301 0.9737 0.9702 0.9843 0.9738 

N
ea

rM
is

s 
(N

M
) 

v
er

si
o
n

 1
 

k-NN 0.0168 0.5218 0.7306 0.4958 0.6467 0.6857 

MLP 0.0590 0.5040 0.7185 0.5115 0.6621 0.6832 

QDA 0.1757 0.6284 0.5979 0.3874 0.5393 0.5534 

SVM 0.0197 0.7634 0.6084 0.2625 0.3825 0.4816 

DTBoost 0.0127 0.3859 0.8006 0.6271 0.7607 0.7786 

DTBagg 0.0231 0.4258 0.7755 0.5883 0.7292 0.7490 

RForest 0.0182 0.3893 0.7961 0.6236 0.7580 0.7743 

PlurVt 0.0084 0.5085 0.7415 0.5089 0.6589 0.6981 

WeighVt 0.0104 0.5024 0.7435 0.5147 0.6644 0.7017 

N
ea

rM
is

s 
(N

M
) 

v
er

si
o

n
 2

 

k-NN 0.0000 0.8966 0.5517 0.1346 0.1874 0.3216 

MLP 0.0066 0.8808 0.5563 0.1497 0.2130 0.3441 

QDA 0.0095 0.7930 0.5987 0.2343 0.3429 0.4528 

SVM 0.0020 0.8948 0.5516 0.1363 0.1904 0.3240 

DTBoost 0.0084 0.6915 0.6500 0.3323 0.4714 0.5531 

DTBagg 0.0064 0.7002 0.6467 0.3240 0.4612 0.5458 

RForest 0.0023 0.8762 0.5607 0.1542 0.2203 0.3514 

PlurVt 0.0055 0.8846 0.5549 0.1460 0.2069 0.3388 

WeighVt 0.0058 0.8853 0.5544 0.1453 0.2058 0.3377 
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ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

T
o

m
ek

L
in

k
s 

k-NN 0.0405 0.0029 0.9783 0.9958 0.9978 0.9781 

MLP 0.0824 0.0037 0.9569 0.9936 0.9967 0.9562 

QDA 0.0792 0.0117 0.9545 0.9859 0.9927 0.9540 

SVM 0.0526 0.0076 0.9699 0.9909 0.9953 0.9697 

DTBoost 0.0431 0.0007 0.9780 0.9978 0.9989 0.9779 

DTBagg 0.0723 0.0009 0.9634 0.9966 0.9983 0.9628 

RForest 0.0682 0.0004 0.9656 0.9972 0.9986 0.9651 

PlurVt 0.0379 0.0004 0.9808 0.9983 0.9991 0.9807 

WeighVt 0.0402 0.0005 0.9796 0.9981 0.9990 0.9795 

O
n

eS
id

ed
S

el
ec

ti
o

n
s 

(O
S

S
) 

k-NN 0.0390 0.0044 0.9782 0.9944 0.9971 0.9781 

MLP 0.0867 0.0042 0.9546 0.9930 0.9964 0.9537 

QDA 0.0815 0.0115 0.9535 0.9861 0.9928 0.9529 

SVM 0.0517 0.0083 0.9699 0.9902 0.9949 0.9697 

DTBoost 0.0436 0.0010 0.9777 0.9975 0.9987 0.9774 

DTBagg 0.0789 0.0011 0.9600 0.9962 0.9980 0.9592 

RForest 0.0679 0.0005 0.9658 0.9971 0.9985 0.9652 

PlurVt 0.0364 0.0006 0.9815 0.9982 0.9991 0.9813 

WeighVt 0.0396 0.0006 0.9798 0.9980 0.9990 0.9797 

N
ei

g
h

b
o
u

rh
o
o
d

-

C
le

a
n

in
g
R

u
le

 

(N
C

R
) 

k-NN 0.0410 0.0049 0.9770 0.9939 0.9968 0.9769 

MLP 0.0815 0.0044 0.9570 0.9929 0.9963 0.9563 

QDA 0.0812 0.0117 0.9536 0.9859 0.9926 0.9529 

SVM 0.0486 0.0077 0.9718 0.9908 0.9952 0.9716 

DTBoost 0.0355 0.0017 0.9813 0.9972 0.9985 0.9812 

DTBagg 0.0702 0.0020 0.9638 0.9956 0.9977 0.9633 

RForest 0.0595 0.0014 0.9694 0.9965 0.9982 0.9691 

PlurVt 0.0347 0.0016 0.9818 0.9973 0.9986 0.9817 

WeighVt 0.0425 0.0015 0.9780 0.9971 0.9985 0.9778 

Table 25: ICS-PSD-NvNA results (Under-sampling) 

 

 

 

ICS-PSD-NvNA results (Over-sampling) 

ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

R
a

n
d

o
m

- 

O
v
er

S
a

m
p

le
r 

 

(R
O

S
) 

k-NN 0.0428 0.0032 0.9770 0.9954 0.9976 0.9768 

MLP 0.0425 0.0063 0.9756 0.9924 0.9961 0.9754 

QDA 0.0818 0.0116 0.9534 0.9860 0.9927 0.9527 

SVM 0.0480 0.0072 0.9724 0.9914 0.9955 0.9722 

DTBoost 0.0494 0.0008 0.9749 0.9975 0.9987 0.9746 

DTBagg 0.0517 0.0023 0.9730 0.9960 0.9979 0.9727 

RForest 0.0503 0.0012 0.9743 0.9971 0.9985 0.9740 

PlurVt 0.0303 0.0012 0.9842 0.9977 0.9988 0.9841 

WeighVt 0.0324 0.0010 0.9833 0.9979 0.9989 0.9832 



Appendix  121 

 

ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

S
M

O
T

E
 

k-NN 0.0306 0.0045 0.9824 0.9946 0.9972 0.9824 

MLP 0.0566 0.0060 0.9686 0.9922 0.9959 0.9683 

QDA 0.1000 0.0102 0.9449 0.9867 0.9931 0.9438 

SVM 0.0526 0.0064 0.9704 0.9920 0.9958 0.9702 

DTBoost 0.0260 0.0015 0.9862 0.9977 0.9988 0.9862 

DTBagg 0.0367 0.0033 0.9800 0.9955 0.9977 0.9799 

RForest 0.0301 0.0021 0.9839 0.9970 0.9984 0.9838 

PlurVt 0.0202 0.0020 0.9888 0.9974 0.9986 0.9889 

WeighVt 0.0220 0.0012 0.9883 0.9981 0.9990 0.9884 

A
D

A
S

Y
N

 

k-NN 0.0355 0.0044 0.9799 0.9945 0.9971 0.9799 

MLP 0.0723 0.0063 0.9607 0.9914 0.9956 0.9602 

QDA 0.0780 0.0871 0.9174 0.9132 0.9531 0.9174 

SVM 0.0442 0.0083 0.9737 0.9905 0.9950 0.9736 

DTBoost 0.0228 0.0019 0.9876 0.9974 0.9986 0.9876 

DTBagg 0.0246 0.0029 0.9862 0.9964 0.9981 0.9862 

RForest 0.0231 0.0018 0.9874 0.9974 0.9987 0.9875 

PlurVt 0.0205 0.0020 0.9886 0.9974 0.9986 0.9887 

WeighVt 0.0159 0.0015 0.9912 0.9980 0.9990 0.9913 

Table 26: ICS-PSD-NvNA results (Over-sampling) 

 

ICS-PSD-NvNA results (Hybrid-sampling) 
 

ICS-PSD-NvNA FPR FNR AUC ACC F1 G 

S
M

O
T

E
T

o
m

ek
 

k-NN 0.0321 0.0041 0.9819 0.9950 0.9974 0.9818 

MLP 0.0540 0.0063 0.9698 0.9920 0.9959 0.9695 

QDA 0.1043 0.0100 0.9428 0.9867 0.9931 0.9417 

SVM 0.0540 0.0064 0.9698 0.9920 0.9958 0.9695 

DTBoost 0.0280 0.0014 0.9852 0.9977 0.9988 0.9852 

DTBagg 0.0341 0.0035 0.9812 0.9955 0.9977 0.9811 

RForest 0.0309 0.0022 0.9834 0.9968 0.9983 0.9833 

PlurVt 0.0182 0.0020 0.9898 0.9974 0.9987 0.9899 

WeighVt 0.0231 0.0013 0.9877 0.9979 0.9989 0.9877 

S
M

O
T

E
E

N
N

 

k-NN 0.0280 0.0095 0.9812 0.9899 0.9947 0.9812 

MLP 0.0483 0.0078 0.9719 0.9908 0.9952 0.9717 

QDA 0.0991 0.0101 0.9454 0.9868 0.9931 0.9443 

SVM 0.0468 0.0078 0.9726 0.9908 0.9952 0.9725 

DTBoost 0.0251 0.0040 0.9854 0.9953 0.9976 0.9854 

DTBagg 0.0329 0.0063 0.9803 0.9927 0.9962 0.9803 

RForest 0.0266 0.0049 0.9842 0.9944 0.9971 0.9842 

PlurVt 0.0231 0.0044 0.9861 0.9949 0.9974 0.9862 

WeighVt 0.0214 0.0041 0.9872 0.9953 0.9976 0.9872 

Table 27: ICS-PSD-NvNA results (Hybrid-sampling) 
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ICS-PSD-NvNA results (Cost-sensitive learning) 

ICS-PSD-NvNA FPR FNR AUC ACC F1 G 
W

ei
g

h
te

d
 

SVM 0.0633 0.0057 0.9655 0.9922 0.9960 0.9650 

DTBoost 0.0436 0.0008 0.9778 0.9977 0.9988 0.9775 

DTBagg 0.0789 0.0016 0.9597 0.9957 0.9978 0.9590 

RForest 0.0780 0.0007 0.9607 0.9966 0.9983 0.9599 

PlurVt 0.0286 0.0009 0.9852 0.9982 0.9991 0.9852 

WeighVt 0.0393 0.0003 0.9802 0.9983 0.9991 0.9800 

T
h

re
sh

o
ld

in
g
 

k-NN 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787 

MLP 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651 

QDA 0.0373 0.0728 0.9449 0.9284 0.9615 0.9448 

SVM 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651 

DTBoost 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651 

DTBagg 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787 

RForest 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787 

C
o
st

-

se
n

si
ti

v
e 

cl
a
ss

if
ie

r 

DT 0.5477 0.0160 0.7181 0.9655 0.9822 0.6671 

Bagging 0.0740 0.0283 0.9488 0.9701 0.9843 0.9486 

Pasting 0.0546 0.0313 0.9570 0.9679 0.9831 0.9570 

RForest 0.0572 0.0282 0.9573 0.9708 0.9847 0.9572 

RPatches 0.0497 0.0310 0.9596 0.9684 0.9834 0.9596 

Table 28: ICS-PSD-NvNA results (Cost-sensitive learning) 
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Appendix D: ICS-PSD-NNvA results 

ICS-PSD-NNvA results 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

Single 

classifiers 

k-NN 0.1370 0.0393 0.9119 0.9391 0.9609 0.9106 

MLP 0.1585 0.0429 0.8993 0.9315 0.9560 0.8974 

QDA 0.1779 0.3946 0.7138 0.6534 0.7312 0.7055 

SVM 0.1935 0.0195 0.8935 0.9419 0.9634 0.8893 

Ensemble 

classifiers 

DTBoost 0.1915 0.0411 0.8837 0.9256 0.9525 0.8805 

DTBagg 0.1188 0.0152 0.9330 0.9618 0.9757 0.9315 

RForest 0.1173 0.0150 0.9338 0.9623 0.9760 0.9324 

PlurVt 0.1205 0.0186 0.9304 0.9588 0.9737 0.9290 

WeighVt 0.1297 0.0171 0.9266 0.9580 0.9733 0.9249 

Table 29: ICS-PSD-NNvA results 

 

ICS-PSD-NNvA results (Under-sampling) 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

R
a
n

d
o
m

- 

U
n

d
er

S
a
m

p
le

r 
 

(R
U

S
) 

k-NN 0.0757 0.1528 0.8858 0.8643 0.9067 0.8849 

MLP 0.0981 0.1516 0.8751 0.8602 0.9043 0.8747 

QDA 0.0817 0.5472 0.6856 0.5559 0.6135 0.6448 

SVM 0.1224 0.1121 0.8827 0.8856 0.9236 0.8827 

DTBoost 0.1005 0.1518 0.8739 0.8596 0.9039 0.8735 

DTBagg 0.0485 0.1281 0.9117 0.8895 0.9248 0.9108 

RForest 0.0455 0.1134 0.9206 0.9016 0.9335 0.9199 

PlurVt 0.0527 0.1274 0.9099 0.8891 0.9245 0.9092 

WeighVt 0.0537 0.1216 0.9124 0.8934 0.9277 0.9117 

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o
u

r 

(C
N

N
) 

k-NN 0.1180 0.0554 0.9133 0.9307 0.9550 0.9128 

MLP 0.1429 0.1404 0.8583 0.8590 0.9047 0.8583 

QDA 0.0660 0.8600 0.5370 0.3159 0.2417 0.3617 

SVM 0.1758 0.0904 0.8669 0.8907 0.9284 0.8659 

DTBoost 0.1266 0.2162 0.8286 0.8036 0.8614 0.8274 

DTBagg 0.0959 0.1823 0.8609 0.8369 0.8864 0.8599 

RForest 0.0901 0.1527 0.8786 0.8611 0.9048 0.8780 

PlurVt 0.0895 0.1143 0.8981 0.8912 0.9269 0.8980 

WeighVt 0.0969 0.0853 0.9089 0.9121 0.9419 0.9089 

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(E
N

N
) 

k-NN 0.0793 0.1330 0.8939 0.8789 0.9177 0.8935 

MLP 0.1010 0.1125 0.8933 0.8900 0.9263 0.8932 

QDA 0.3795 0.2759 0.6723 0.7011 0.7905 0.6703 

SVM 0.1449 0.0784 0.8884 0.9069 0.9391 0.8877 

DTBoost 0.1280 0.0827 0.8946 0.9072 0.9390 0.8943 

DTBagg 0.0725 0.0720 0.9278 0.9279 0.9525 0.9278 

RForest 0.0662 0.0666 0.9336 0.9335 0.9562 0.9336 

PlurVt 0.0757 0.0851 0.9196 0.9169 0.9449 0.9196 

WeighVt 0.0701 0.0884 0.9207 0.9156 0.9439 0.9207 
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ICS-PSD-NNvA FPR FNR AUC ACC F1 G 
R

ep
ea

te
d

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r 

(R
E

N
N

) 
k-NN 0.0603 0.1717 0.8840 0.8530 0.8977 0.8823 

MLP 0.0802 0.1522 0.8838 0.8637 0.9064 0.8830 

QDA 0.6244 0.1803 0.5976 0.7213 0.8208 0.5549 

SVM 0.1241 0.1020 0.8869 0.8931 0.9290 0.8869 

DTBoost 0.1087 0.1078 0.8918 0.8920 0.9279 0.8918 

DTBagg 0.0586 0.1128 0.9143 0.8992 0.9320 0.9139 

RForest 0.0506 0.1030 0.9232 0.9086 0.9386 0.9228 

PlurVt 0.0571 0.1194 0.9117 0.8944 0.9285 0.9112 

WeighVt 0.0497 0.1326 0.9089 0.8858 0.9220 0.9079 

A
ll

-K
N

N
 

k-NN 0.0687 0.1496 0.8909 0.8683 0.9095 0.8899 

MLP 0.0920 0.1287 0.8896 0.8794 0.9184 0.8894 

QDA 0.5108 0.2282 0.6305 0.7092 0.8052 0.6145 

SVM 0.1362 0.0882 0.8878 0.9011 0.9349 0.8875 

DTBoost 0.1161 0.0936 0.8951 0.9014 0.9347 0.8951 

DTBagg 0.0634 0.0900 0.9233 0.9159 0.9439 0.9232 

RForest 0.0575 0.0830 0.9297 0.9227 0.9486 0.9297 

PlurVt 0.0683 0.0989 0.9164 0.9079 0.9384 0.9163 

WeighVt 0.0613 0.1076 0.9155 0.9026 0.9345 0.9152 

In
st

a
n

ce
H

a
rd

n
es

s-

T
h

re
sh

o
ld

 (
IH

T
) 

k-NN 0.0312 0.4067 0.7810 0.6765 0.7406 0.7581 

MLP 0.0410 0.3792 0.7899 0.6957 0.7606 0.7716 

QDA 0.3808 0.3243 0.6475 0.6632 0.7575 0.6469 

SVM 0.0169 0.4558 0.7637 0.6414 0.7027 0.7315 

DTBoost 0.0342 0.3997 0.7831 0.6813 0.7457 0.7614 

DTBagg 0.0245 0.3935 0.7910 0.6883 0.7518 0.7692 

RForest 0.0175 0.4129 0.7848 0.6747 0.7375 0.7595 

PlurVt 0.0159 0.4066 0.7887 0.6799 0.7427 0.7641 

WeighVt 0.0174 0.4050 0.7888 0.6809 0.7438 0.7646 

N
ea

rM
is

s 
(N

M
) 

v
er

si
o
n

 1
 

k-NN 0.0300 0.4295 0.7702 0.6590 0.7226 0.7439 

MLP 0.0583 0.4966 0.7226 0.6005 0.6624 0.6885 

QDA 0.7850 0.1867 0.5142 0.6808 0.7987 0.4182 

SVM 0.0240 0.5012 0.7374 0.6045 0.6626 0.6977 

DTBoost 0.0419 0.4481 0.7550 0.6419 0.7059 0.7272 

DTBagg 0.0097 0.4081 0.7911 0.6802 0.7424 0.7656 

RForest 0.0066 0.4235 0.7849 0.6688 0.7305 0.7567 

PlurVt 0.0113 0.4131 0.7878 0.6759 0.7382 0.7618 

WeighVt 0.0125 0.4307 0.7784 0.6620 0.7239 0.7498 

N
ea

rM
is

s 
(N

M
) 

v
er

si
o

n
 2

 

k-NN 0.0324 0.6480 0.6598 0.4883 0.5171 0.5836 

MLP 0.0357 0.6542 0.6551 0.4828 0.5100 0.5775 

QDA 0.4715 0.4754 0.5265 0.5254 0.6325 0.5265 

SVM 0.0211 0.6708 0.6541 0.4731 0.4931 0.5677 

DTBoost 0.0277 0.6464 0.6629 0.4906 0.5194 0.5863 

DTBagg 0.0171 0.6513 0.6658 0.4892 0.5153 0.5855 

RForest 0.0103 0.6592 0.6653 0.4845 0.5073 0.5808 

PlurVt 0.0174 0.6597 0.6615 0.4826 0.5059 0.5783 

WeighVt 0.0190 0.6554 0.6628 0.4856 0.5105 0.5814 
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ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

T
o

m
ek

L
in

k
s 

k-NN 0.1280 0.0504 0.9108 0.9324 0.9563 0.9100 

MLP 0.1496 0.0493 0.9005 0.9285 0.9539 0.8991 

QDA 0.1996 0.3785 0.7110 0.6612 0.7407 0.7053 

SVM 0.1895 0.0238 0.8934 0.9395 0.9617 0.8895 

DTBoost 0.1866 0.0463 0.8836 0.9226 0.9505 0.8808 

DTBagg 0.1110 0.0203 0.9344 0.9596 0.9742 0.9333 

RForest 0.1098 0.0190 0.9356 0.9609 0.9750 0.9345 

PlurVt 0.1086 0.0256 0.9329 0.9560 0.9718 0.9320 

WeighVt 0.1172 0.0242 0.9293 0.9552 0.9713 0.9281 

O
n

eS
id

ed
S

el
ec

ti
o

n
s 

(O
S

S
) 

k-NN 0.1310 0.0514 0.9088 0.9309 0.9553 0.9079 

MLP 0.1499 0.0503 0.8999 0.9276 0.9533 0.8985 

QDA 0.1974 0.3807 0.7110 0.6599 0.7393 0.7050 

SVM 0.1906 0.0247 0.8923 0.9385 0.9611 0.8884 

DTBoost 0.1877 0.0471 0.8826 0.9217 0.9499 0.8798 

DTBagg 0.1115 0.0205 0.9340 0.9593 0.9740 0.9329 

RForest 0.1082 0.0193 0.9362 0.9610 0.9751 0.9352 

PlurVt 0.1100 0.0256 0.9322 0.9557 0.9716 0.9312 

WeighVt 0.1185 0.0237 0.9289 0.9553 0.9714 0.9277 

N
ei

g
h

b
o
u

rh
o
o
d

-

C
le

a
n

in
g
R

u
le

 

(N
C

R
) 

k-NN 0.0917 0.1046 0.9018 0.8982 0.9320 0.9018 

MLP 0.1179 0.0897 0.8962 0.9040 0.9366 0.8961 

QDA 0.3039 0.3047 0.6957 0.6955 0.7805 0.6957 

SVM 0.1620 0.0566 0.8907 0.9201 0.9484 0.8891 

DTBoost 0.1521 0.0680 0.8899 0.9134 0.9437 0.8890 

DTBagg 0.0830 0.0494 0.9338 0.9432 0.9630 0.9336 

RForest 0.0785 0.0455 0.9380 0.9472 0.9657 0.9378 

PlurVt 0.0849 0.0624 0.9264 0.9327 0.9559 0.9263 

WeighVt 0.0856 0.0634 0.9255 0.9316 0.9552 0.9254 

Table 30: ICS-PSD-NNvA results (Under-sampling) 

 

 

 

ICS-PSD-NNvA results (Over-sampling) 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

R
a

n
d

o
m

- 

O
v
er

S
a

m
p

le
r 

 

(R
O

S
) 

k-NN 0.1395 0.0390 0.9107 0.9387 0.9607 0.9093 

MLP 0.1416 0.0536 0.9024 0.9269 0.9527 0.9013 

QDA 0.0735 0.5628 0.6819 0.5456 0.5997 0.6364 

SVM 0.1953 0.0184 0.8931 0.9424 0.9637 0.8888 

DTBoost 0.1524 0.0671 0.8902 0.9140 0.9441 0.8892 

DTBagg 0.0932 0.0237 0.9416 0.9609 0.9749 0.9409 

RForest 0.0882 0.0208 0.9455 0.9643 0.9771 0.9449 

PlurVt 0.0957 0.0239 0.9402 0.9602 0.9745 0.9395 

WeighVt 0.1089 0.0204 0.9354 0.9600 0.9744 0.9343 



Appendix  126 

 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

S
M

O
T

E
 

k-NN 0.1175 0.0478 0.9174 0.9368 0.9591 0.9167 

MLP 0.1481 0.0550 0.8984 0.9244 0.9511 0.8972 

QDA 0.0683 0.6117 0.6600 0.5087 0.5517 0.6015 

SVM 0.1849 0.0229 0.8961 0.9413 0.9628 0.8925 

DTBoost 0.1652 0.0703 0.8822 0.9087 0.9406 0.8810 

DTBagg 0.0816 0.0318 0.9433 0.9571 0.9724 0.9429 

RForest 0.0746 0.0309 0.9473 0.9594 0.9738 0.9470 

PlurVt 0.0865 0.0310 0.9413 0.9567 0.9721 0.9409 

WeighVt 0.0993 0.0266 0.9370 0.9573 0.9726 0.9363 

A
D

A
S

Y
N

 

k-NN 0.1260 0.0443 0.9148 0.9376 0.9598 0.9139 

MLP 0.1327 0.0574 0.9049 0.9259 0.9519 0.9042 

QDA 0.8764 0.0725 0.5255 0.7494 0.8521 0.3386 

SVM 0.1617 0.0246 0.9069 0.9451 0.9651 0.9043 

DTBoost 0.1820 0.0903 0.8639 0.8894 0.9276 0.8627 

DTBagg 0.0932 0.0574 0.9247 0.9347 0.9574 0.9245 

RForest 0.0477 0.0508 0.9508 0.9499 0.9672 0.9508 

PlurVt 0.1007 0.0318 0.9338 0.9530 0.9697 0.9331 

WeighVt 0.1022 0.0330 0.9324 0.9516 0.9689 0.9317 

Table 31: ICS-PSD-NNvA results (Over-sampling) 

 

ICS-PSD-NNvA results (Hybrid-sampling) 
 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 

S
M

O
T

E
T

o
m

ek
 

k-NN 0.1162 0.0511 0.9163 0.9345 0.9575 0.9158 

MLP 0.1440 0.0562 0.8999 0.9243 0.9510 0.8988 

QDA 0.0675 0.6118 0.6603 0.5088 0.5517 0.6017 

SVM 0.1824 0.0243 0.8966 0.9407 0.9624 0.8931 

DTBoost 0.1703 0.0701 0.8798 0.9077 0.9401 0.8784 

DTBagg 0.0785 0.0343 0.9436 0.9559 0.9715 0.9433 

RForest 0.0756 0.0321 0.9462 0.9583 0.9731 0.9459 

PlurVt 0.0852 0.0329 0.9409 0.9555 0.9713 0.9406 

WeighVt 0.0988 0.0286 0.9363 0.9559 0.9716 0.9357 

S
M

O
T

E
E

N
N

 

k-NN 0.0645 0.1508 0.8924 0.8684 0.9095 0.8913 

MLP 0.0892 0.1292 0.8908 0.8797 0.9185 0.8906 

QDA 0.0672 0.5598 0.6865 0.5493 0.6033 0.6408 

SVM 0.1296 0.0892 0.8906 0.9019 0.9353 0.8904 

DTBoost 0.1046 0.1132 0.8911 0.8887 0.9254 0.8911 

DTBagg 0.0462 0.1105 0.9216 0.9037 0.9350 0.9211 

RForest 0.0380 0.1027 0.9296 0.9116 0.9405 0.9291 

PlurVt 0.0485 0.1208 0.9153 0.8952 0.9289 0.9146 

WeighVt 0.0525 0.1180 0.9148 0.8965 0.9299 0.9142 

Table 32: ICS-PSD-NNvA results (Hybrid-sampling) 
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ICS-PSD-NNvA results (Cost-sensitive learning) 

ICS-PSD-NNvA FPR FNR AUC ACC F1 G 
W

ei
g

h
te

d
 

SVM 0.1959 0.0184 0.8929 0.9423 0.9636 0.8885 

DTBoost 0.1057 0.1347 0.8798 0.8717 0.9131 0.8797 

DTBagg 0.1345 0.0135 0.9260 0.9597 0.9744 0.9241 

RForest 0.1294 0.0111 0.9297 0.9627 0.9763 0.9278 

PlurVt 0.0985 0.0197 0.9409 0.9629 0.9762 0.9401 

WeighVt 0.1425 0.0094 0.9240 0.9611 0.9754 0.9216 

T
h

re
sh

o
ld

in
g
 

k-NN 0.0960 0.0852 0.9094 0.9124 0.9421 0.9094 

MLP 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

QDA 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

SVM 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

DTBoost 0.0000 1.0000 0.5000 0.2215 nan 0.0000 

DTBagg 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967 

RForest 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967 

C
o
st

-

se
n

si
ti

v
e 

cl
a
ss

if
ie

r 

DT 0.6166 0.0817 0.6509 0.7998 0.8772 0.5934 

Bagging 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874 

Pasting 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874 

RForest 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874 

RPatches 0.1400 0.2490 0.8055 0.7751 0.8387 0.8036 

Table 33: ICS-PSD-NNvA results (Cost-sensitive learning) 


