

MARSHALL PLAN

RESEARCH REPORT

Anomaly Detection in Smart Grids with

Imbalanced Data Methods

performed for the

in collaboration with

submitted by

Christian Promper, BSc

 Supervisor (BGSU): Prof. Robert C. Green II, Ph.D.

 Supervisor (FHS): FH-Prof. DI Mag. Dr. Dominik Engel

Thalgau, Oktober 2017

ACKNOWLEDGEMENT

I would first like to thank my supervisor FH-Prof. DI Mag. Dr. Dominik Engel, head of the

network technologies and security department of the information technology and systems

management degree course at the Salzburg University of Applied Sciences. Without his

support and faith in me the admission to the Marshallplan scholarship and as a result the

semester abroad at the Bowling Green State University in the Unites States of America

would not have been possible. Additionally, I am gratefully indebted for his permanent

guidance and very valuable comments on this research project.

I would also like to acknowledge Prof. Robert C. Green II, Ph.D. of the Computer Science

Department at the Bowling Green State University as my supervisor abroad. Beside his

warm welcome in the Unites States of America and at the Bowling Green State University,

the door to Prof. Robert Green's office was always open whenever I ran into a trouble spot

or had a question about my research. He consistently allowed this research project to be my

own work, but steered me in the right direction whenever he thought I needed it.

Finally, I must thank my family and my partner for providing me with unfailing support

throughout my years of study and especially the six months abroad. This accomplishment

would not have been possible without them. Also, this research project would not have been

possible without the granted scholarship from the Austrian Marshall Plan Foundation.

Thank you.

Christian Promper

General information

Name and surname: Christian Promper, BSc

University: Salzburg University of Applied Sciences

Degree Course: Information Technology & Systems Management

Title of the Research project: Anomaly Detection in Smart Grids with Imbalanced

Data Methods

Keywords: Smart Grid

Anomaly-based Intrusion Detection

Python

Imbalanced Data

Cost-sensitive learning

Under- and Over-Sampling

Supervisor at FHS: FH-Prof. DI Mag. Dr. Dominik Engel

Supervisor at BGSU: Prof. Robert C. Green II, Ph.D.

Abstract

The research of anomaly-based intrusion detection within smart grids is a current topic and

is investigated by many researchers. Thus, little experience is available on how to address

the problem of detecting anomalies in smart grids. Another problem emerges when we try

to use common approaches of pattern recognition. Through the occurring imbalance in the

data distribution, which means that there are much more data instances belonging to normal

behavior than to attack data, the common approaches cause a low detection rate for the

minority class. Therefore, various methods to overcome this drawback will be investigated

by using two different datasets. To test the performance of the investigated methods for smart

grids, a three-layer hierarchical smart grid communication system using an intrusion

detection system at each layer will be built. For this purpose, the two-class ADFA-LD will

be used. This dataset includes contemporary attacks and is well-known for evaluating the

performance of anomaly-based intrusion detection systems. Finally, the performance of

common approaches is compared to the performance of the imbalanced data methods.

 i

List of Contents

1 Introduction ... 1

2 Smart grid networks .. 3

2.1 Evolution and architecture of smart grids ... 6

2.2 Communication technologies ... 8

2.3 Security ... 10

3 Pattern Recognition ... 15

3.1 Statistical pattern recognition ... 16

3.1.1 Learning techniques ... 17

3.1.2 Methods and steps for supervised learning classification 17

3.2 Models and classifiers ... 21

3.2.1 Bayes decision rule (stochastic) .. 22

3.2.2 Discriminant functions (deterministic) .. 23

3.2.3 Ensemble methods ... 27

3.3 The imbalanced data problem ... 30

3.3.1 Data-level solutions ... 32

3.3.2 Algorithm-level solutions .. 40

3.3.3 Ensemble solutions .. 42

3.4 Performance analysis .. 43

3.4.1 Splitting a dataset .. 44

3.4.2 Performance metrics .. 44

4 Datasets .. 48

4.1 ADFA-LD ... 48

4.2 ICS-PSD .. 51

5 Development environment .. 54

 ii

6 Method screening .. 56

6.1 Classifier and sampling tests ... 57

6.2 Ensembles and hyper-parameter grid-search .. 63

6.3 Imbalanced methods evaluation .. 71

7 Hierarchical smart grid IDS communication system ... 90

8 Conclusion ... 97

9 Bibliography .. 99

Appendix A: Source code .. 105

Appendix B: ADFA-LD results ... 113

Appendix C: ICS-PSD-NvNA results ... 118

Appendix D: ICS-PSD-NNvA results ... 123

 iii

List of Abbreviations

1-NN One-Nearest Neighbor

ACC Accuracy

ADASYN Adaptive Synthetic

ADFA-LD Australian Defense Force Academy Linux Dataset

AMI Automated Meter Infrastructure

AMR Automated Meter Reading

AUC Area Under Curve

C-I-A Confidentiality-Integrity-Availability

CNN CondensedNearestNeighbor

CSV Comma-Separated Values

CV Cross Validation

DDoS Distributed Denial of Service

DoS Denial of Service

DSL Digital Subscriber Line

DT Decision Tree

ENN Edited Nearest Neighbor

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FTP File Transfer Protocol

GPRS General Packet Radio Service

GSM Global System for Mobile communication

HAN Home-Area Network

 iv

HIDS Host-Based Intrusion Detection System

ICS-PSD Industrial Control System Power System Dataset

ICT Information and Communication Technology

ID Identification

IDE Integrated Development Environment

IDS Intrusion Detection System

IED Intelligent Electronic Device

IEEE Institute of Electrical and Electronics Engineers

IHT InstanceHardnessThreshold

IP Internet Protocol

IPv6 Internet Protocol version 6

IT Information Technology

k-NN k-Nearest Neighbor

KDD Knowledge Discovery and Data Mining

LoWPAN Low-Power Wireless Personal Area Network

M2M Machine-to-Machine

MAC Medium Access Control

MLP Multilayer Perceptrons

MSE Mean Squared Error

NAN Neighbor-Area Network

NCR NeighborhoodCleaningRule

NIDS Network-Based Intrusion Detection System

OSS OneSidedSelection

PCA Principal Component Analysis

QDA Quadratic Discriminant Analysis

 v

PMU Phasor Measurement Unit

PKI Public Key Infrastructure

PLC Power Line Communication

RBF Radial Basis Function

RENN Repeated Edited Nearest Neighbor

ROC Receiver Operating Characteristics

ROS RandomOverSampler

RUS RandomUnderSampler

SCADA Supervisory Control and Data Acquisition

SGDIDS Smart Grid Intrusion Detection System

SMOTE Synthetic Minority Over sampling Technique

SSH Secure Shell

SUN Smart Utility Network

SVM Support Vector Machine

TCP Transmission Control Protocol

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

UDP User Datagram Protocol

WAN Wide-Area Network

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

 vi

List of Figures

Figure 1: Smart grid sample topology according to [6] .. 5

Figure 2: Smart grid architecture according to [1] .. 7

Figure 3: Hybrid smart grid network topology for the distribution domain by [9] 8

Figure 4: Intrusion detection system topology by [14] ... 12

Figure 5: SGDIDS three-layer network architecture by [18] .. 14

Figure 6: Statistical pattern recognition cycle by [21] .. 16

Figure 7: Hand-written digits for pattern recognition by [22] ... 18

Figure 8: Statistical pattern recognition classification process by [20] 19

Figure 9: Model decision boundaries for a two-dimensional feature-space by [19] 21

Figure 10: k-NN classifier example with k=1,2,3 (adopted from [24]) 24

Figure 11: Support vector machine example by [25] .. 25

Figure 12: Decision tree example by [21] ... 26

Figure 13: Common architecture for ensemble methods by [26] .. 27

Figure 14: General boosting procedure by [26]... 28

Figure 15: General bagging procedure by [26] ... 29

Figure 16: Illustrative imbalanced datasets by [27] .. 31

Figure 17: Under-sampling example using RandomUnderSampling by [30] 33

Figure 18: Under-sampling example using CondensedNearestNeighbour by [30] 34

Figure 19: Under-sampling example using ENN, RENN and All-KNN by [30] 34

Figure 20: Under-sampling example using InstanceHardnessThreshold by [30] 35

Figure 21: Under-sampling example using NearMiss version 1-3 by [30] 36

Figure 22: Under-sampling example using TomekLinks by [30] 36

Figure 23: Under-sampling example using OneSidedSelection by [30] 37

Figure 24: Under-sampling example using NeighbourhoodCleaningRule by [30] 37

 vii

Figure 25: Over-sampling example using RandomOverSampler by [30] 38

Figure 26: Over-sampling example using SMOTE by [30] .. 38

Figure 27: Over-sampling example using ADASYN by [30] ... 39

Figure 28: Hybrid-sampling example using SMOTETomek by [30].................................. 39

Figure 29: Hybrid-sampling example using SMOTETENN by [30] 40

Figure 30: Confusion matrix by [27] ... 45

Figure 31: ROC curve example by [27] .. 47

Figure 32: Network diagram for the ICS-PSD [39] .. 51

Figure 33: Python project structure ... 55

Figure 34: Basic method screening process .. 56

Figure 35: Test-setup for scaling and classifier tests ... 58

Figure 36: Basic grid search cross validation process ... 64

Figure 37: Test-setup for the grid search cross validation... 66

Figure 38: Test-setup for normal, cost-sensitive and sampling tests 72

Figure 39: Process of complete test setup for all evaluations.. 73

Figure 40: Cost-sensitive weighting and classifiers evaluation process.............................. 79

Figure 41: Cost-sensitive thresholding evaluation process ... 79

Figure 42: Sampling evaluation process .. 80

Figure 43: ROC plots –Best normal vs. imbalanced method (ADFA-LD) 84

Figure 44: ROC plots – Best normal vs. imbalanced method (ICS-PSD-NvNA) 86

Figure 45: ROC plots – Best normal vs. imbalanced method (ICS-PSD-NNvA) 89

Figure 46: Hierarchical smart grid IDS simulation process .. 90

Figure 47: Hierarchical smart grid communication flow and decision process 91

Figure 48: ROC plots for the best performers in the smart grid IDS 96

 viii

List of Tables

Table 1: Comparison between the current grid and a smart grid (adopted from [7]) 4

Table 2: C-I-A triangle for smart grid data and software (created from [1]) 10

Table 3: Data splitting methods (adapted from [20]) .. 44

Table 4: Basic evaluation results - ADFA-LD .. 60

Table 5: Basic evaluation results – ICS-PSD-NvNA .. 61

Table 6: Basic evaluation results – ICS-PSD-NNvA .. 62

Table 7: Best parameter values for each classifier for the ADFA-LD 70

Table 8: Best parameter values for each classifier for the ICS-PSD-NvNA 70

Table 9: Best parameter values for each classifier for the ICS-PSD-NNvA 70

Table 10: Basic evaluation results – all datasets with arctangent scaling 75

Table 11: K-fold cross validation results - ADFA-LD .. 76

Table 12: K-fold cross validation results - ICS-PSD-NvNA .. 77

Table 13: K-fold cross validation results - ICS-PSD-NNvA .. 77

Table 14: Results for imbalanced data methods – ADFA-LD .. 82

Table 15: Results for imbalanced data methods – ICS-PSD-NvNA 85

Table 16: Results for imbalanced data methods – ICS-PSD-NNvA 88

Table 17: Data instances and accuracy for the hierarchy layers in the smart grid IDS 94

Table 18: Performance results for the smart grid IDS ... 95

Table 19: ADFA-LD results .. 113

Table 20: ADFA-LD results (Under-sampling) .. 115

Table 21: ADFA-LD results (Over-sampling) .. 116

Table 22: ADFA-LD results (Hybrid-sampling) ... 116

Table 23: ADFA-LD results (Cost-sensitive learning).. 117

Table 24: ICS-PSD-NvNA results ... 118

 ix

Table 25: ICS-PSD-NvNA results (Under-sampling) ... 120

Table 26: ICS-PSD-NvNA results (Over-sampling) ... 121

Table 27: ICS-PSD-NvNA results (Hybrid-sampling) .. 121

Table 28: ICS-PSD-NvNA results (Cost-sensitive learning) .. 122

Table 29: ICS-PSD-NNvA results ... 123

Table 30: ICS-PSD-NNvA results (Under-sampling) ... 125

Table 31: ICS-PSD-NNvA results (Over-sampling) ... 126

Table 32: ICS-PSD-NNvA results (Hybrid-sampling) .. 126

Table 33: ICS-PSD-NNvA results (Cost-sensitive learning) .. 127

 x

List of Listings

Listing 1: Grid search execution function ... 68

Listing 2: Grid search cross validation performance output.. 69

Listing 3: Create and train smart grid hierarchy classifiers ... 92

Listing 4: Hierarchical smart grid model evaluation process .. 94

Listing 5: Basic evaluation function (scaling and classifier tests)..................................... 106

Listing 6: Custom scorer function for the GridSearchCV ... 107

Listing 7: Generation of grid search classifiers and parameters .. 108

Listing 8: K-fold cross validation for normal, cost-sensitive and sampling tests.............. 109

Listing 9: Confusion matrix performance evaluation function ... 110

Listing 10: ROC curve generation function .. 111

Listing 11: Hierarchical smart grid IDS simulation process ... 112

Introduction 1

1 Introduction

Already over 100 years ago, the world’s largest engineered system, the electric grid, was

built. The electric grid consists of many different systems, components and owners but was

not built for the requirements of the 21st century. Thus, the electric grid struggles with a lot

of weaknesses. Since it is difficult to match the energy generation to the demand, energy

utilities need to over-generate electricity to ensure a complete supply. Nonetheless, power

outages can occur and these outages are usually recognized only after a customer complaint.

Additionally, due to the unidirectional architecture of the grid, it is difficult to integrate

renewable energy power plants (e.g., wind farms or photovoltaic systems) into the electric

grid. To overcome these shortcomings, the so-called “smart grid” has emerged. Within a

smart grid, intelligent communication and information systems are used, for instance, to

flatten peak demands, to predict demands to balance the power generation or to transmit

price information so that intelligent devices can be activated automatically. This intelligent

system comprises lots of sensors and communication flows between all components, utility

providers and customers of the grid. This leads to various algorithms for estimation, control

and pricing. Unfortunately, through the integration of such systems a lot of vulnerabilities

arise [1]. Therefore, it is suggested in [2] to use methods from data analytics to monitor the

communication in a smart grid to detect potential anomalies. But since most of the data is

associated to normal behavior and not to disturbances or attacks, we must deal with an

imbalanced data problem. For several reasons, it is more challenging for common

approaches to predict classes in imbalanced datasets. Thus, a data imbalance makes

classification of either normal data or anomalies more difficult. However, methods exist to

overcome these shortcomings.

Within this project, these improved methods for the classification of imbalanced data sets

will be investigated comprehensively. All tests will be executed with publicly available

datasets and as a 2-class classifier problem. Then, the effectiveness of imbalanced data

methods is tested for an anomaly-based intrusion detection system for smart grids and is also

compared to common approaches. So, the main goal is to explore the methods of classifying

imbalanced data sets and then to investigate how to implement them in a smart grid anomaly

detection system. Since the data in smart grids is imbalanced by nature, it is expected that

the imbalanced data methods will outperform the common pattern recognition approaches.

Introduction 2

To accomplish this, the research project will start with an introduction about the current

power grid. Then, the basic concepts of a smart grid will be explained and the current grid

will also be compared to a smart grid. After that, the evolution of the smart grid is presented.

After a brief introduction to communication technologies, the chapter about smart grid is

then finished with security concerns including a description of the intrusion detection system

itself and also a concept of how to implement such a system in smart grids.

The next chapter is about pattern recognition and will explain the fundamental concepts and

the general recognition process. Then, different common models and approaches for the

classification task will be described. Since we must deal with imbalanced data, the different

existing approaches and methods will be explained next. To conclude the chapter, the

common process and metrics of evaluating the performance of a classifier will be presented.

Additionally, further metrics, especially for the imbalanced data problem, will be introduced.

After this theoretical part, the used datasets will be introduced. For each dataset, the structure

will be described, the source will be stated and the processing steps will be explained.

Finally, former achieved performances based on a literature review will be presented. In the

next chapter, the development environment, which is used for all tests, will be explained.

Now, all conditions for the tests are fulfilled (theoretical foundations, data sets and the

development environment) and an extensive method screening process will be executed. The

performance of the datasets will be evaluated with some single classifiers first. Then, a grid

search to tune the single classifiers and some newly added ensemble learners will be

executed. Next, the tuned classifiers will be used to evaluate the performance of the dataset

at first without any adaptions and then with all different imbalanced data methods. The

performance will then be compared among each other.

Finally, the best method will be chosen, which will be used for the implementation in the

smart grid intrusion detection system. So, this research project will be completed with the

creation of a prototypical smart grid intrusion detection infrastructure in which the

performance of common approaches is compared to the performance of the best imbalanced

data method which was chosen during the method screening process.

Smart grid networks 3

2 Smart grid networks

The current power grid consists of four different power layers. These layers are categorized

by voltage and the type of power generation. Therefore, one can distinguish between the

extra-high-voltage grid, the high-voltage grid, the medium-voltage grid and the low-voltage

grid. Within the extra-high-voltage grid, large conventional power plants, large hydropower

or pumped-storage plants or even large renewable energy power plants like on- or offshore

wind farms generate electricity. This structure continues along with the associated size of

the high-voltage and the medium-voltage grid with the exception that there are different

renewable energy power plants. While the high-voltage grid receives the renewable

electricity from onshore wind farms or photovoltaic power plants, the renewable energy part

of the medium-voltage grid is powered by freestanding photovoltaic power plants,

photovoltaic roof systems, biomass power plants and onshore wind farms, too. Finally, the

low-voltage grid receives the electricity from small, decentralized power plants like

cogeneration units and also from various renewable energy producers such as individual

photovoltaic roof-systems on buildings or onshore wind farms as well [3] [4].

If the generated power is not consumed directly on-site, it is necessary to transmit the

electricity somewhere else. If the power is not yet on extra-high-voltage level, it is important

to transform the power to that level since the transmission within this voltage level has the

lowest electrical losses. Basically, the higher the voltage, the lower the electrical losses.

Now, the electricity is transmitted over the extra-high-voltage grid and is transformed with

voltage transformation substations to the next lower voltage level. Within the high-voltage

grid the electricity is either used by industries or cities with a very high power demand or is

converted again to the next lower voltage level. Inside the medium-voltage grid, the

electricity is either used by smaller industries or cities or is converted a last time to a lower

voltage level. The low-voltage grid has the lowest voltage level and powers private

households or very small companies. Altogether, each of these voltage grids are separated

by voltage transformation substations and the electricity needs to be converted for each

voltage shift [3]. This structure was built more than 100 years ago and was designed for a

unidirectional flow only, but yet must handle bidirectional transmissions. More and more

renewable energy power plants are built whereby a decentralized distribution system arises,

which causes a lot of power imbalances within the current power grid [4].

Smart grid networks 4

Beside the distribution power imbalances within the whole power grid, an imbalance occurs

also on a daily basis. While there is a very high energy demand on the morning, around noon

and after work time, there is only a medium load to handle during the rest of the day. During

the night, just the base load remains. This causes different demands for the grid throughout

the day. Furthermore, there is also an imbalance for different seasons (e.g., there is an

essential higher demand during hot summers due to electric air conditioning systems).

However, only half of the power plants in the United States are generating electricity around

the clock. The other half is only activated if there is a higher demand. This imbalance occurs

due to an insufficient efficiency of storage systems on a large scale [5].

Additional shortcomings for the current grid are for example slow response times, a lack of

control and visibility, decreasing fuel reserves and resilience problems. So, to satisfy the

requirements of the 21st century and to remedy the major shortcomings of the current power

grid, it is important to evolve a new, modern power grid. Consequently, so-called smart grid

networks, or shortly smart grids, emerged [6].

Now, a smart grid should overcome all the shortcomings and provide full visibility and

pervasive control, which is accomplished by a bidirectional communication path. This two-

way communication network is realized by converging modern communication and

information technologies with traditional power systems [7].

Current Power Grid Smart Grid

Electromechanical Digital

Unidirectional Bidirectional

Centralized Generation Decentralized Generation

Hierarchical Network

Few Sensors Sensors Throughout

Blind Self-Monitoring

Manual Restoration Self-Healing

Failures and Blackouts Adaptive and Islanding

Manual Check/Test Remote Check/Test

Limited Control Pervasive Control

Few Customer Choices Many Customer Choices

Table 1: Comparison between the current grid and a smart grid (adopted from [7])

Smart grid networks 5

So, a smart grid is supposed to heal itself (e.g., choose different distribution routes), to be

more resilient to different system anomalies, to smoothly include renewable energy sources

and to allow remote checks and tests. A comparison list between the current power grid and

a modern smart grid is stated in Table 1 [7]. Now, considering an emerged smart grid, various

power plants, energy storage systems, transmission and distribution substations, industries,

households and various other components of a power grid are linked together with modern

communication paths and sensors (illustrated in Figure 1). These connections allow

interoperability between all the members of the grid [6]. Additionally, the emerge of smart

grids will build an intelligence layer over the whole power grid which further enables the

development of new applications and business processes [7].

Figure 1: Smart grid sample topology according to [6]

However, the change from the current power grid to an intelligent power network cannot be

done for the entire system at once. Instead, gradually strategic implementations into the

existing grid across various locations are expected to arise. Then, these implementations can

grow and take over more and more of the system’s load from the current power grid. All in

all, there will be a coexistence between the current power grid and smart grid networks until

the whole power grid network is replaced by smart devices [7].

Smart grid networks 6

For a more detailed explanation of the smart grid emergence, the following chapters will

outline first of all the evolution of smart grids and their architecture. Then, various potential

communication technologies for the data exchange within a smart grid will be introduced

briefly. Afterwards, the chapter will be concluded with security concerns. More detailed,

after a brief introduction in general security concerns a well-known security system is

explained and considered for the smart grid domain.

2.1 Evolution and architecture of smart grids

Since most power outages (almost 90%) occur in the distribution network, the evolution of

the smart grid started with improving this part of the grid. The first step was to replace the

existing electromechanical meters with so-called unidirectional Automated Meter Reading

(AMR) systems. AMR systems can automatically collect consumption records, alarms and

status from customers and allow therefore an automated billing. However, with AMR

systems, there is no demand side management possible and utilities cannot take corrective

actions. Therefore, they are incapable for the usage within a smart grid. So, the next step was

to use bidirectional Automated Metering Infrastructure (AMI) systems [7].

AMI systems consist of a communication network including smart meters, monitoring

systems, computer hard- and software, data management systems and lots of sensors [6].

With an AMI system, it is now possible to manage the demand side. This management

comprises various customer services such as variable price models, the remote addition or

removal of services and also remote maintenance. Further customer benefits are, that they

have more choices about services, a higher reliability, more transparency and through lower

utility costs also lower energy bills. Benefits for utilities are, that they can assess equipment

health, maximize asset utilization and life, optimize maintenance, pinpoint grid problems

and improve grid planning [8]. However, single AMI systems need a backbone and therefore

a command-and-control system. This command-and-control system must incorporate the

different systems of generation, transmission and distribution since a smart grid consists of

the interaction of all these different components. So, a smart grid can be simply denoted as

a power grid under pervasive control of an intelligent command-and-control system with the

possibility of ad hoc integrations of various components, subsystems or functions [7].

The next section will now describe the architecture of smart grids.

Smart grid networks 7

Architecture

It is expected, that the smart grid grows gradually and therefore a lot of independent so-

called microgrids will emerge. These microgrids will contain their own control, storage,

power generation and distribution systems. Thus, they can either work independently or can

be linked to the entire connected smart grid network with plug-and-play integration. The

interconnection of different microgrids will be performed by separate command, data and

power communication lines [7].

Additionally, each smart grid or microgrid can be divided into Home-Area Networks (HAN)

respectively Business-Area Networks, Neighbor-Area Networks (NAN) and Wide-Area

Networks (WAN). A NAN consists of multiple HANs and a WAN consists of multiple

NANs which are finally united by a utility provider through a control center (Figure 2) [1].

Figure 2: Smart grid architecture according to [1]

For further clarification, a HAN comprises homes or businesses. Within the boundaries of a

HAN, various smart appliances (e.g., smart meters) are contained. A HAN is then connected

to a NAN, which consists in general of multiple HANs. This means, multiple households

and businesses are brought together within a single NAN. Additionally, other power grid

components (e.g., renewable energy plants) can be incorporated with the NAN, too. Now,

multiple NANs are united by a utility provided within a WAN and like a NAN, a WAN can

also contain various power grid components such as power generation systems [1].

The next chapter will introduce different communication technologies to connect all the

components within a smart grid.

Smart grid networks 8

2.2 Communication technologies

To exchange the generated data by a modern power grid (e.g., consumption info, controls,

loads), a communication system is indispensable [9]. For monitoring and controlling

purposes, Supervisory Control and Data Acquisition (SCADA) systems are used. But they

are limited to high-voltage networks and are not suitable for large scale monitoring for the

whole grid [10].

However, there are already a lot of existing technologies used in the current grid, including

wired and wireless technologies. For wired data transmissions, utility providers use, for

example, power line communication systems or copper-wire lines and for wireless

communication they use cellular networks such as Global System for Mobile

communication (GSM), General Packet Radio Service (GPRS), Worldwide Interoperability

for Microwave Access (WiMAX), Wireless Local Area Network (WLAN) or Cognitive

Radio [10]. But since these mediums and technologies alone are not sufficient for the use

within a smart grid, Figure 3 shows an example of a hybrid smart grid architecture using

various communication mediums and communication flows for the distribution domain [9].

Figure 3: Hybrid smart grid network topology for the distribution domain by [9]

Smart grid networks 9

So, in addition to a distinction between wired and wireless communication mediums, one

can distinguish also between two different communication flows. The first data flow occurs

when sensors and electrical appliances send their collected data to smart meters and the

second flow occurs between smart meters and electrical utilities and their data centers [6].

The different communication flows including the appropriate communication mediums and

technologies for both wired and wireless transmissions will be explained subsequently in the

following sections.

Communication between sensors and smart meters

As previously stated, the first data flow occurs when sensors and electrical appliances send

their collected data to smart meters [6]. This flow is also denoted as Machine to Machine

(M2M) communication. For example, wired power line communications (PLC) and various

wireless transmission technologies are suggestions to enable M2Ms [9].

But the communication flow between sensors and smart meters in the current grid is limited

since there is a missing internet protocol (IP) based network architecture. Therefore,

different wireless technologies such as ZigBee, 6LoWPAN and Z-Wave as an addition to

Bluetooth and WLAN were developed to connect low-power devices to the internet. Another

intention of these developments was to build low-cost, reliable and scalable communication

protocols [10].

Communication between smart meters and utility providers

The second flow occurs between smart meters and electrical utilities and their data centers.

To transmit data between these two nodes, cellular technologies or the internet can be used

[6]. The reason, why PLC is usually not used for transmissions between consumers and

utilities, is that the frequency range from 10 to 20 megahertz cannot be used for a reliable

communication over large distances, since feeder cables were not developed to transmit data

and so they are prone to interferences [10].

Beside the use of existing technologies such as WiMAX or various cellular network

standards for the communication between smart meters and the utility providers, specific

mesh networks have emerged. Wireless mesh networks bridge the gap between a HAN and

a WAN whereby WiMAX can be used to increase the backbone network capacity to improve

the performance and to reach long distances [9].

Smart grid networks 10

2.3 Security

The emergence of the smart grid, containing all these previously stated different

communication technologies, brings a lot of vulnerabilities along. The large scale and the

complexity of a smart grid causes a lot of troubles to provide security over the network. The

modern grid will be operated by many different entities and systems such as generation

facilities, the distribution network and the according communication networks. Additionally,

the accompanying control and pricing algorithms might also add even more vulnerabilities.

The motivation to even attack smart grids might have several reasons. Maybe one wants to

decrease his electricity bills, wants to play tricks on utility providers, intends to threaten

people or just shows the possibility to invade a smart grid communication network [1].

Generally, the goal of information technology (IT) security is to protect assets such as

financial data, hardware, software and networks from getting exploited. Therefore, each

countermeasure should consider the so-called Confidentiality-Integrity-Availability (C-I-A)

triangle. Confidentiality intends to protect data from third-parties so that no personal

information is obtained by unauthorized users. Integrity ensures that information has not

been modified during the transmission and finally availability intends to guarantee access to

information whenever requested [11].

The requirements for smart grid data such as price information, meter data, control

commands and software in relation to the C-I-A triangle can be found in Table 2.

 Confidentiality Integrity Availability

Price Information

Not critical

(if public

knowledge)

Critical

(simultaneous

device activations)

Critical

(financial and legal

implications)

Meter Data

Important

(personal activity

information)

Important

(Revenue losses)

Not Critical

(data can be

extracted later)

Control Commands

Not critical

(if public

knowledge)

Important

(Revenue losses)

Important

(no state changes

for meters)

Software

Not critical

(No security

through obscurity)

Critical

(control of devices

and components)

N/A

 Table 2: C-I-A triangle for smart grid data and software (created from [1])

Smart grid networks 11

The statement in the brackets either explains the reason why a protection is unnecessary or

it states the impact of a security breach. The encryption of price information (confidentiality)

is not inevitably necessary since this information might be public knowledge anyway. So,

protective measures for integrity (authentication) are more important than for confidentiality

or availability [1].

Anyway, various threats and countermeasures exist. More information about threats and

countermeasures can be found in [1]. Further, it is learned from IT security that a

comprehensive security system needs to include monitoring systems, too [2]. Therefore,

monitoring is considered carefully within this research project. Thus, the next section

explains the concept of an intrusion detection system (IDS) and then how an intrusion

detection system can be implemented into a smart grid network.

Intrusion detection

Beside a lot of entry points and attack possibilities, there are further shortcomings for typical

defense mechanisms such as firewalls and antivirus software. While firewalls mostly protect

against malicious packets from outside, antivirus software is always running after the newest

signatures and the software also cannot avoid zero-day attacks. Therefore, an IDS can

monitor all devices and the whole traffic within a network (ingoing, outgoing and

communication between hosts) and is also able to avoid zero-day attacks [12].

An IDS consists of one or more sensors for real-time monitoring of traffic and a management

console to operate and monitor the sensors and to display warnings [12]. But, an IDS is not

an active system which can stop attacks directly. In fact, it basically detects malicious traffic.

After a detection, an IDS can report the attack to the management system, reconfigure

network devices (e.g., a firewall) to block the malicious traffic or to send a TCP reset

command to the traffic source to terminate the connection [14].

To achieve this, it is for example possible to connect an IDS sensor to a central switch as

illustrated in Figure 4. Then, the switch broadcasts a copy of the passed traffic through a so-

called mirror port to the sensor. Other functions are, for example, to audit configurations and

vulnerabilities of a system, to assess the integrity of critical systems and files, to statistically

analyze incidents of known attacks and to check the operating system. Beside the

surveillance of attacks, it is also possible to monitor the compliance of policies [13].

Smart grid networks 12

Figure 4: Intrusion detection system topology by [14]

However, there are two diverse types of IDS. One can distinguish between host-based

intrusion detection system (HIDS) and network-based intrusion detection systems (NIDS).

A HIDS has only a single sensor (e.g., software on a host) to monitor critical system

functions on the host. The inspection is only done on system level (e.g., logs or events) and

not for network packets. On the other hand, a NIDS uses one or multiple sensors spread

within the network to monitor the whole network traffic. Each sensor has two interfaces

whereby one interface is the management interface to control the sensor and to inspect

warnings and the other interface is configured in monitor mode to capture and analyze the

traffic [12] [13]. There are various pros and cons for both host and network based systems

which are stated in detail in [12]. However, it is suggested to use both systems for a more

comprehensive protection.

To detect anomalies at all, four different approaches exist. These approaches are signature-

based detection, rule-based detection, anomaly-based detection and the usage of honeypots.

Honeypots are systems with built-in vulnerabilities to lure blackhats. They can be deployed

both within or outside the firewall perimeter. The reason to use honeypots is to gain

information about attack methods to finally prepare the real network and systems for these

attacks. A rule-based IDS will monitor the behavior and traffic for specific criteria. For

example, a NIDS could monitor a special port and if a determined threshold (e.g., the

quantity of scanned systems for this port) is exceeded, then the NIDS would send a warning

message to the management system. It is possible to define rules for any parameter and

threshold as long as the criteria meet the policies.

Smart grid networks 13

The signature-based approach tries to find patterns for single or multiple packets. Therefore,

sequences are compared to a database with known attacks and if a sequence matches with

an entry in the database then it is malicious behavior respectively malicious traffic. Although

this method is very fast, the detection of zero-day attacks is not possible. So, the anomaly-

based detection approach can detect zero-day attacks and learns therefor the behavior of a

clean system respectively network or uses already defined rules. From now on, any deviation

from this trained behavior triggers an alarm. But unfortunately, it is very difficult to define

and train the normal behavior correctly [14].

Smart grid intrusion detection

To deploy an IDS within a smart grid, one must consider the requirements (e.g., encryption

and real-time transmissions) and constraints (e.g., topology and bandwidth) of smart grid

communication systems. These considerations can help to define impacts and limitations on

functionalities and security for the communication architecture and the monitoring system.

Due to the fact that an AMI will consist mainly of wireless (mesh) networks with a lot of

nodes, it is on the one hand more vulnerable for network-related attacks and unauthorized

physical access and on the other hand it is more difficult to monitor such topologies.

Additionally, a constraint for an implementation is a high detection rate including zero-day

attacks while causing only a low overhead. While both network and host-based sensors are

required to monitor a whole smart grid network, host-based sensors for smart devices are

still in research due to low performance devices such as smart meters. Now, it is the

challenge to apply the knowledge of intrusion detection systems to smart grids to cover the

related threats and yet to consider industry strengths [2].

The main limitation of a traditional IDS architecture is to make it scalable for the size of a

smart grid network since the processing of the data from millions of nodes on a central

system would be too inefficient. To circumvent this problem, it would be for example

possible to outsource some of the processing load directly to the sensors whereby the central

management station is only responsible for coordinating sensors and collecting high-level

alerts. Another requirement is the robustness against failures and attacks. So, the system is

supposed to operate even when a subset of sensors or the management station are unavailable

or compromised. While sensors can be protected through virtualization or by using a separate

hardware, the approach for management stations is to use redundant systems.

Smart grid networks 14

To detect compromised systems, various methods exist (e.g., a reputation system or a

distributed proof system). Finally, it is suggested to use separated communication networks

between sensors and management servers [2].

Existing approaches and concepts to implement an intrusion detection system within smart

grids are for example a Model-Based IDS [15], a Behavior-Rule-Based IDS [16], an IDS

with Domain Knowledge [17] and the Smart Grid Intrusion Detection System (SGDIDS)

[18]. Since the SGDIDS is based on an anomaly-based approach, this concept will be used

as reference model later. Basically, the SGDIDS works with a three-layer (HAN, NAN and

WAN) network detection architecture with a top-down and vice versa communication and

information flow (see Figure 5).

Figure 5: SGDIDS three-layer network architecture by [18]

However, this research project will investigate the anomaly-based detection approach and

will therefore outline pattern recognition methods in the next chapter. This includes the

pattern recognition process itself, various approaches and methods, models and classifiers

and the imbalanced data problem. Then, various performance evaluation methods will be

presented.

Pattern Recognition 15

3 Pattern Recognition

Pattern recognition is the process of assigning a class, category or value to a given raw data

input. While this is a naturally process for humans (e.g., face recognition), it is a

sophisticated and complex task for machines [19]. In general, there are four different well-

known approaches for pattern recognition. These are template matching, the statistical

approach, the syntactic or structural approach and neural networks.

The template matching approach is one of the earliest approaches and is very simple.

Basically, a template respectively a prototype of points, curves or shapes is available and

stored. Then, an unseen pattern is compared with this template also considering translations,

rotations and scale changes.

The statistical approach will be used within the scope of this research project and is based

on having an amount of 𝑑 features, which are represented in a 𝑑-dimensional matrix. The

effectiveness of the approach is dependent on finding and extracting the correct features to

distinguish between different classes, which is a very complex task. In general, it is the goal

to find decision rules or boundaries within the feature space to distinguish between classes.

If more complex patterns are involved, it is more appropriate to use a syntactic approach.

For this purpose, a hierarchical structure is used where a pattern consists of multiple sub

patterns and each of these sub patterns consists also of multiple sub patterns and so on.

Finally, neural networks are based on the human nature and consist of a large amount of

small processing stations which are interconnected. This creates the ability to build complex

nonlinear relationships, to use sequential training procedures and to evolve dependent on the

input data. Even if there are a lot of differences between neural networks and the statistical

approach, there are also a lot of links between them with equivalent/similar methods [20].

As mentioned above, statistical pattern recognition will be used within the scope of this

research project. So, the statistical approach and some of its concepts, techniques and

procedures will be explained in the next chapter. Then, so-called models, which are used to

build decision rules or boundaries within the feature space, will be described thoroughly.

After an introduction to the imbalanced data problem, state-of-the-art solutions respectively

concepts for this problem will be presented. Finally, the chapter is concluded with

procedures, definitions and metrics for a comprehensive performance analysis.

Pattern Recognition 16

3.1 Statistical pattern recognition

The whole statistical pattern recognition cycle is illustrated in Figure 6. While the

recognition cycle always starts with a specific problem and the design of experiments, the

next step is usually to preprocess data and to select and extract features from the experiment

object. After these steps, the object is then stored as vector which equals the best possible

representation for other processes within the cycle. Now, depending on which recognition

problem is present, there are different learning techniques to use, namely supervised

learning, unsupervised learning and reinforcement learning. All these learning techniques

have different approaches and methods to solve a given problem. Then, after completing the

recognition process, the performance of the recognition is finally evaluated [21].

Figure 6: Statistical pattern recognition cycle by [21]

First of all, the different learning approaches will be explained briefly since this is a crucial

distinction how a pattern recognition problem will be solved. Afterwards, an example based

on one of these approaches will be presented since this approach is representative for a

common pattern recognition problem. This approach will be used within the scope of this

research project, too. Finally, the methods used within this approach and the mentioned

preprocessing and feature selection methods will be explained to complete this subchapter.

Pattern Recognition 17

3.1.1 Learning techniques

As mentioned above, pattern recognition can be distinguished by three different learning

techniques. The first learning technique is called supervised learning. Basically, if a given

recognition problem has a training dataset with assigned targets (correct labels of the related

classes), this problem falls into the category of supervised learning. Furthermore, one can

distinguish between two subcategories of supervised learning, namely classification and

regression. We talk about a classification problem, if only a finite number of categories to

classify (e.g., negatives/positives) is given. On the other hand, if the output is a continuous

variable (e.g., the age including decimals), it is considered a regression problem. If the

training data do not have assigned targets, then it is about unsupervised learning. With

unsupervised learning, one can discover groups (clustering), determine the distribution

(density estimation) or project data from high dimensionality to two or three dimensions

(visualization). The last learning technique is called reinforcement learning and addresses

the problem of finding the best action for a given situation. The goal thereby is to interact

with the environment in which a sequence of actions is available and to finally maximize a

reward (e.g., a score for a game). Instead of finding a correct output, the algorithm improves

itself by a process of trial and error. An example for such a problem might be a backgammon

game in which a learning algorithm plays millions of games to improve its algorithm [22].

Since the intrusion detection datasets, which will be used within the scope of this research

project, have correctly assigned labels and also finite distinct classes, the supervised learning

and classification problem is considered for all following chapters.

3.1.2 Methods and steps for supervised learning classification

To explain the concepts of the fundamental methods for supervised classification, an

example from [22] is used. This example tries to recognize handwritten digits as illustrated

in Figure 7. Each digit consists of 28 x 28 pixels and is stored as a vector denoted as 𝑥. So,

this vector 𝑥 consists of 784 values. Based on the principle, that pattern recognition assigns

a class, category or value to a given raw input, it is now the challenge to build a machine

that takes the vector 𝑥 as input (raw data) and then to classify the digit as output. That

implies, that the machine should calculate a digit between 0 and 9 based on the given input

vector 𝑥. Again, this might be easy for a human but it is a nontrivial problem for a machine

due to many several types of handwriting [22].

Pattern Recognition 18

Figure 7: Hand-written digits for pattern recognition by [22]

To build such a machine model, a large set of so-called training data is used. This training

data consists of many vectors of digits. The related digit for each vector is known previously

(e.g., by inspecting and hand-labelling) and is stored as target vector denoted as 𝑡. So, each

vector 𝑥 respectively digit image has a related (correct) digit value from the target vector 𝑡

assigned. Now, to assign digits to new image vectors, the machine model must be trained.

This process is called training phase respectively learning phase. During this process, a

function 𝑦(𝑥) is calculated based on the training data. After the learning phase, the trained

model can determine digits for a given test data set. Now, each new digit image is processed

by the trained machine model respectively the function 𝑦(𝑥) which results in a new vector

with predicted labels. This predicted target vector shows the ability to classify completely

unseen and different digit images. If this prediction on unseen images has a good

performance, it is called generalization. This is the central goal in pattern recognition [22].

Even though this process covers the basic tasks for supervised classification, there are some

optimization methods to improve the performance in terms of both correct recognition and

computation speed, namely preprocessing and feature extraction [21].

So far, the single processes of a classification task were explained. To put all the pieces

together, Figure 8 illustrates the two different mentioned recognition modes and how they

do work together, to finally classify an unseen pattern. The first mode is the training

(learning) mode and the second mode is the classification mode. During the training mode,

the input data is preprocessed and features are extracted. Now, a machine model is trained

in order to partition the feature space. Then, during the classification mode, the input data

must be preprocessed exactly like the training data and the same features must be extracted.

Finally, the trained machine model assigns the new unseen data to one of the given classes

based on the measured features [20].

Pattern Recognition 19

Figure 8: Statistical pattern recognition classification process by [20]

So, a classification task is accomplished in the same way all the time. Raw input data is

preprocessed and features are extracted, then the data is split into training and test sets.

Afterwards, a machine model is trained by the training data and finally the test data,

preprocessed in the same way as the training data, is classified by the trained model [20].

All these steps will be explained subsequently. First of all, the optimization methods

preprocessing and feature extraction will be explained and then two data splitting methods

to create training and test data sets are introduced to conclude this subchapter. Then, the next

chapter is completely dedicated to models and their tasks (learning and classification).

Preprocessing and feature extraction

To optimize the pattern recognition process, preprocessing and feature extraction might be

used. Preprocessing transforms input variables into a new space of variables [22]. The

reasons to use preprocessing are to reduce noisy data (outliers), to get a common resolution

for images and videos, to optimize images and signals (e.g., edge detection) and to use

scaling and normalization to have the data on a common range of values. In relation to

scaling and normalization, the three different methods interval fit, z-score scaling

(standardization) and arctangent scaling exist. The interval fit method fits the input data in

each column usually to an interval [0,1] or an interval in any other range. The z-score scaling

results in a zero mean and unit variance of the data while the arctangent scaling extends the

standardization by putting the data in the interval [-1,1]. In that way, outliers are still within

the interval range and data near the mean is scaled almost linearly [19]. Now, in relation to

the digit recognition example, each image would be translated and scaled to the same format

and size, which leads to easier processing and distinction through smaller variabilities. To

predict unseen image vectors correctly, the test data must be preprocessed equally [22].

Pattern Recognition 20

This recently mentioned preprocessing stage is also called feature extraction. Another

example of feature extraction is related to face recognition. Since it is infeasible to process

high resolution images in real-time, the process of feature extraction tries to find only

features of a face which are fast to compute but preserve enough information for a correct

distinction. So, instead of the whole image vector, only the extracted features are used as

input data. This procedure is also related to dimensionality reduction [22]. However, the

feature extraction process is application dependent but yet there exist a few methods which

can be applied to any input vector. A popular method for independent dimensionality

reduction is the principal component analysis (PCA). The goal of the PCA is to identify a

smaller number of uncorrelated variables, so-called principal components. This smaller

number of variables are supposed to map a maximum amount of variance of the whole input

data [19].

Data splitting

Training data is used to train the model and test data is used to evaluate the performance of

the model. Sometimes a third part (validation data) is extracted, too. The usage of this part

will be explained in the appropriate chapter since it belongs to a specific problem.

Now, to divide the data accordingly, different splitting techniques exist. During the so-called

random sampling, a randomly permuted data set is created. This data set serves as index

array and has the same length as the input data which is supposed to get sampled. Based on

a given split percentage (e.g., for the training set), this percentage of the randomly permuted

array is taken and the indices are used to select the related indices from the input data for the

training data. The remaining input data is used for the test data set. Optionally, a third split

percentage can be used for the validation data set.

The stratified sampling procedure follows the exact same routine but with one exception.

While the existing classes during the random sampling procedure will be split randomly

(e.g., most of the digits between 0 to 4 might be in the training set while the rest of the digits

remain in the test set), stratified sampling splits the amount of data instances related to the

classes equally to training, test and validation data set. For example, if a stratified sampling

set for the digit vectors with a 50:50 split would be created, the training set would consist of

half of the amount of all digits from 0 to 9 and so would the test set, too. Nevertheless, both

datasets are still randomly sampled by the randomly permuted index array [19] [22].

Pattern Recognition 21

3.2 Models and classifiers

In another example, this time from [19], a classifier tries to distinguish between a salmon

and a sea bass and therefore extracts two features for the input vector. The two-dimensional

feature-space consists of the lightness and the width from both salmon and sea bass. In

general, the features and so the differences between a salmon and a sea bass can be viewed

as different models. It is a challenging task to find the most appropriate features to classify

a class as good as possible and to have a robust, insensitive model while using a minimum

of features. However, the task for a classifier is to create a decision rule or boundary to

decide either if it is a salmon or a sea bass. As illustrated in Figure 9, a learned decision rule

from the test data (black lines in both images) would classify a given unseen (input) feature

vector as sea bass if the data point is above the decision line and as salmon if the data point

is below the decision line [19]. So, a classifier is looking for a mathematical or algorithmic

mapping between features and classes to create a decision rule that partitions the feature

space in as many regions as classes exist [21].

For a model, there are learnt parameters during a training phase to define the boundary of

the classifier. But, a classifier might also have so-called hyper-parameters which can be

defined freely and used to tune a model respectively to adapt the decision boundary. To tune

a model and to find the best performance, a search within the hyper-parameter space is

recommended. Therefore, one approach is to define a set of various hyper-parameters and to

try each possible combination. This approach is called grid search and is used commonly.

The second approach is to execute a randomized search for various defined hyper-parameter

to decrease the computational cost [23].

Figure 9: Model decision boundaries for a two-dimensional feature-space by [19]

Pattern Recognition 22

However, the classifier used in the left picture of Figure 9 is very simple but this simple

decision boundary will achieve a decent performance in terms of generalization. The more

complex model in the right picture of Figure 9 might classify the test data perfectly but might

not perform very well in terms of generalization since the decision rule is overly optimized

for the given training data. This problem is known as overfitting. To avoid overfitting and to

find a decision boundary with the ideal trade-off between performance on unseen data and

simplicity of a classifier, one can split the given training set into training, test and validation

data as described previously. Then, the validation data is used to compare the so-called error

rate with the training data. If the error rate of the training data is very small while the error

rate of the validation data is high, overfitting is indicated and the model must be adapted

[19].

Now, to create a decision rule or boundary, two different approaches exist. The first approach

is to use Bayes’ decision rule and to estimate the class-conditional densities. The second

approach uses discriminant functions for the classification. Both approaches will be

explained in the following two chapters including classifier examples.

Additionally, a third subchapter describes different approaches how to combine different

classifiers with the aim to improve the overall performance.

3.2.1 Bayes decision rule (stochastic)

Based on a probabilistic approach, the optimal Bayes decision rule assigns a pattern to the

class with the highest posteriori probability. To calculate the posteriori probability, it is

necessary to have knowledge about the probability density function of each class. Since in

most cases the real probability density function is unknown, one can build an estimated

density function based on a given training data set. These estimated densities are either

parametric or non-parametric. Commonly used parameter models are multivariate Gaussian

distributions for continuous features, binomial distributions for binary features and

multinormal distributions for integer-valued and categorical features. Commonly used non-

parameter models are the k-nearest neighbor (k-NN) rule and the Parzen classifier. While

the k-NN rule operates similar to the one-nearest neighbor decision rule (explained in the

following chapter), the Parzen classifier replaces the class-conditional densities by estimates

using the so-called Parzen window approach. Both classifiers need to calculate the distance

of an unseen pattern to all patterns within the training set to make a decision [20].

Pattern Recognition 23

Then the goal is to build decision rules with the motive to either minimize the average error

(minimum error) or to minimize the average cost of classification (minimum risk) [21].

Rather than using probabilities to create decision boundaries, the next chapter will use

discriminant function to determine decision rules.

3.2.2 Discriminant functions (deterministic)

A discriminant function with a given pattern/vector 𝑥 basically leads to a classification rule.

If we assume a two-class classifier problem, a discriminant function denoted as ℎ(𝑥) and a

constant/threshold k, then the incidental classification rule is

 ℎ(𝑥) > k ⇒ x ∈ ω1

ℎ(𝑥) < k ⇒ x ∈ ω2
(3.1)

If ℎ(𝑥) = k, then the class is assigned randomly. In case of a multiclass problem with 𝑁

discriminant functions 𝑔𝑖(𝑥), the function for the classification rule is

 𝑔𝑖(𝑥) > 𝑔𝑗(x) ⇒ x ∈ ω𝑖 𝑤𝑖𝑡ℎ 𝑗 = 1, … , 𝑁 𝑎𝑛𝑑 𝑗 ≠ 𝑖 (3.2)

Basically, the pattern 𝑥 is assigned to the class ω𝑖 with the largest discriminate. So, the form

of a discriminant function is specified and not accompanied by its distribution as described

in the previous chapter. The used discriminant function might be either chosen through prior

knowledge or a functional form is adapted during the training phase [26].

However, the discriminant approach can be distinguished by linear functions (e.g., minimum

distance classifier, nearest neighbor rule), kernel-based approaches to build nonlinear

functions (e.g., radial basis functions, support vector machines), projection-based methods

to build nonlinear functions (e.g., multilayer perceptrons) and tree-based approaches [21].

So, in the following sections, linear discriminant functions, including the minimum distance

classifier, the nearest neighbor rule and the k-NN rule, will be explained. After an

introduction to the geometric approach, which finally leads to multilayer perceptrons, the

support vector machine is described. Finally, the concept of decision trees will be presented.

Minimum distance classifier and nearest neighbor rule

A linear discriminant function divides the feature space by a hyperplane and creates convex

decision regions. The orientation of the hyperplane is calculated by a weight vector and the

distance from the origin is calculated by a weight threshold [21].

Pattern Recognition 24

A piecewise linear discriminant function creates non-convex and disjoint decision region.

Particular cases for a piecewise linear discriminant function are the minimum distance

classifier and the nearest neighbor classifier [21]. The minimum distance classifier

respectively nearest mean classifier is represented by multiple so-called prototypes. This

classifier simply calculates the mean vector of all data points for each class and then each

mean vector represents a single prototype. So, a new data vector is assigned to the class with

the lowest Euclidean distance to a prototype respectively mean vector. While this is a very

simple classifier, (learning) vector quantization and data reduction methods (e.g., editing,

condensing) are more advanced techniques to calculate prototypes. The data reduction

methods are used for example for the one-nearest neighbor (1-NN) classifier, which assigns

an unseen data point based on the Euclidean distance (or other distance metrics) to the

nearest neighbor. The previously introduced k-NN rule considers then instead of one nearest

neighbor the 𝑘 nearest neighbors and assigns the pattern to the class with the highest

occurrence within the 𝑘 neighbors [20].

Figure 10: k-NN classifier example with k=1,2,3 (adopted from [24])

An example of the one-nearest neighbor and the two and three nearest neighbors (k=1,2,3)

is illustrated in Figure 10. The one-nearest neighbor classifier (left image) decides for A, the

2-nearest neighbor classifier (middle image) decides randomly and the 3-nearest neighbor

classifier (right image) decides for A since there are more A’s than B’s as neighbors.

Geometric approach

Now, the geometric approach tries to minimize a criterion during the training procedure.

This criterion might be the classification error or the mean squared error (MSE) between

classifier output and a preset target value [20].

Pattern Recognition 25

Examples for this approach are the Fisher’s linear discriminant, which minimizes the MSE

between classifier output and the stated labels, and the single-layer perceptron, which

iteratively updates the separating hyperplane by the distances between the misclassified

patterns from the hyperplane. A similar behavior as in other linear classifiers is achieved if

the MSE is implemented together with the sigmoid function. An example therefor are feed-

forward neural networks respectively multilayer perceptrons (MLP). A neural network can

lead to different classifiers and by including hidden layers, a neural network can also lead to

nonlinear decision boundaries. In addition of classifying an input vector, the MLP classifier

can also approximate the posteriori probabilities. This leads to the possibility of rejecting a

pattern in case of doubt [20].

Support vector machines

A support vector machine (SVM), as illustrated in Figure 11, uses the width of the margin

between two classes as optimization criterion to define the decision function. The margin is

an empty area around the optimal decision hyperplane. This area is then limited by so-called

support vectors (patterns) of each class, which are calculated from the training data [20].

Figure 11: Support vector machine example by [25]

To accomplish this and to classify unseen patterns, it is necessary for the decision rule to use

a so-called kernel function. The kernel function is a similarity function to find the similarity

between two inputs. The simplest form (linear kernel) is just the dot product between the

unseen pattern and a support (vector) set. On the other hand, nonlinear kernels consist of

polynomial classifier (e.g., the dot product plus one and squared) or gaussian radial basis

functions (RBF kernel). Now a SVM provides the ability to train even a small training data

set with a high dimensionality space with good generalization. On the other hand, for large

training sets only a small support set is selected to minimize the computational power [20].

Pattern Recognition 26

Decision trees

Finally, tree-based methods or specifically a decision tree is represented by the most striking

features of the whole feature space. The training phase comprises an iterative selection of

these features. For the tree generation and as criteria for the feature selection the information

content, the node purity or Fisher’s criterion are considered. This implies, that feature

selection is explicitly built-in for tree based methods [20]. An example of a decision tree is

illustrated in Figure 12. The figure shows a common binary tree, where each node (circle) is

a single feature with a variable/threshold. The decision process itself is based on multiple

stages until a final leaf (square), which represents the decided class label, is reached [21].

Figure 12: Decision tree example by [21]

Now, let us assume, that we have built a decision tree similarly to Figure 12 and we want to

classify a new pattern 𝑥 = (5,4,6,2,2,3). So, we start at the root node. This node decides

based on the feature number 6 and a threshold smaller than 2. Since the feature number 6

from our pattern is the value 3, the condition (< 2) is false and so we continue with the right

child, which is another node. The decision for this node is based on a threshold smaller than

5 and the feature number 5. The value of feature 5 in our pattern is 2. Thus, we proceed with

the left child and have finally reached a leaf node. This node assigns our pattern to class 3.

This example simplifies a complex procedure but basically it explains the main concept,

which is to break up the final decision in multiple smaller and simpler decisions [21].

After the explanations, how decision boundaries with probabilities and decision rules with

discriminant functions are created, the next chapter will explain various methods how single

classifiers can be combined to improve the overall performance.

Pattern Recognition 27

3.2.3 Ensemble methods

Ensemble methods combine multiple so-called base learners to a single decision rule, which

generalization ability is often much better than the generalization ability of a single classifier.

Another great advantage of ensemble methods is, that they can boost weak learners (slightly

better than a random guess) to strong learners for accurate predictions. A common

architecture for ensemble methods is illustrated in Figure 13.

Figure 13: Common architecture for ensemble methods by [26]

Basically, each single base learner is an algorithm which is created based on the training of

the training data by a k-NN, MLP, SVM, decision tree or any other classifier. While most

ensemble methods use homogenous base learners (e.g., only decision trees), heterogenous

ensembles consist of different basic learner types [26].

However, state-of-the-art ensemble learning approaches are boosting and bagging. These

approaches are directly related to the previously described combination of weak learners to

build a strong single learner. More detailed, boosting is a sequential ensemble method

(sequential generation of base learners) and bagging is a parallel ensemble method (parallel

generation of base learners). Another approach is the combination of various classifiers

through averaging or voting [26].

The different approaches for weak learners, namely boosting, bagging and the combination

techniques, will be explained subsequently. Additionally, state-of-the-art classifiers will be

introduced in each category.

Boosting

To combine multiple weak learners, the general boosting algorithm changes the distribution

of a training set iteratively. Let us assume, that a data space 𝑥 is composed of three parts 𝑥1,

𝑥2 and 𝑥3 whereby the data is equally distributed and the training set is drawn randomly by

a distribution 𝐷. Since we have only one weak learner available, the goal is to generate a

strong learner [26].

Pattern Recognition 28

So, this weak learner, denoted as ℎ1, is trained by the distribution 𝐷 and has correct

classifications for 𝑥1 and 𝑥2 but wrong classifications for 𝑥3 (classification error of 1/3).

Now, to correct the error from ℎ1, boosting derives a new distribution 𝐷′ from 𝐷 which is

more focused on the data from 𝑥3. Then, our weak classifier, now denoted as ℎ2, is trained

by the distribution 𝐷′. This classifier has accurate classifications for 𝑥1 and 𝑥3 but wrong

classifications for 𝑥2. It would be possible to combine the classifier ℎ1 and ℎ2 at this moment.

Then, the combined classifier would classify 𝑥1 correct but might have some errors within

𝑥2 and 𝑥3. Therefore, another distribution 𝐷′′ is derived, to focus on the errors from classifier

ℎ2. If we train the weak learner with the new distribution, the new classifier ℎ3 has correct

classifications for 𝑥2 and 𝑥3 but wrong classifications for 𝑥3. Finally, by combining ℎ1, ℎ2

and ℎ3, a strong learner is created, which is able to classify all sets correctly [26].

Figure 14: General boosting procedure by [26]

The previously described process is shown as pseudo code in Figure 14 whereby the function

𝑓 is basically the ground truth function respectively expresses the correct labels. However,

this process outlines just the basic sequence and is no real algorithm, since neither the

combination of the classifier nor the adjustment of the distribution is functionally declared.

So, the AdaBoost algorithm was the first classifier which instantiated this process. AdaBoost

is still the most famous boosting algorithm [26].

Bagging

Beside the fact that bagging methods can achieve a good generalization performance, this

method can also be used for parallel computing, which is a serious benefit nowadays.

However, the name bagging is a combination of Bootstrap and AGGregatING and therefore

bootstrapping and aggregation is used during the bagging algorithm [26].

Pattern Recognition 29

The goal of bagging methods is to reduce the error by combining independent base learners.

Unfortunately, one cannot obtain real independent learners since they are at least trained by

the same training set. A possibility would be to sample several non-overlapped data subsets

and train each learner with a different sample but since we do not have unlimited training

data, this approach is more visionary. So, randomness during the learning process is used to

achieve more independence between the base learners [26].

Therefore, bootstrap sampling is used to generate different subsets to train the base learners.

Basically, through sampling with replacement, which is executed 𝑇 times, a dataset with 𝑚

instances leads to 𝑇 subsets with also 𝑚 instances. So, some subsets might contain double

entries of instances but might not contain other instances at all. Finally, the base learners are

trained by these sampled subsets and the aggregating strategy voting is used to classify a test

pattern (averaging is used for regression problems). Therefore, the output of each base

learner is collected and the label with the highest occurrence is predicted. In case of the same

amount of votes the label is chosen randomly [26].

The described algorithm is described as pseudo code in Figure 15.

Figure 15: General bagging procedure by [26]

8

Bagging can be used for each classifier but is very popular for decision trees since a more

flexible decision boundary can be created and a satisfactory performance is achieved.

However, the so-called random forest ensemble is the state-of-the-art method, which is an

extension of bagging but is also based on decision trees [26].

Combination methods

To combine different outputs, the methods averaging, stacking and voting exist. While

averaging is used for regression problems, stacking can be considered as general framework

for the generalization of many ensemble methods or as specific combination method [26].

Pattern Recognition 30

The preferred combination method for classification problems is voting. Voting is used to

combine multiple label outputs to a single decision label. Additionally, voting can also be

used to make a final decision for probability outputs. Basically, a voting classifier takes

multiple inputs (nominal or probability outputs from single classifiers) and creates a final

decision through voting. Therefore, the four different voting types majority voting, plurality

voting, weighted voting and soft voting exist. As the most popular voting method, majority

voting simply counts the occurrences of each class label and the class with more than half

of the votes is predicted. In case that no class gets more than half of the votes, the majority

voting method makes no decision (rejection). On the other hand, the plurality voting predicts

simply the class with the most votes. In case of a tie, the class is chosen randomly. If we

assume that the classifiers for the voting have different performances, the weighted voting

might be used since this voting classifier assigns more power to better classifiers. Therefore,

weights based on the performance for each classifier are calculated and then this weight is

multiplied with the vote. Finally, the class with the highest value is predicted. If a classier

generates a probability output, soft voting is the way to go. Again, if all classifiers have equal

performances, the simple soft voting classifier averages all individual outputs. If the outputs

should be combined with different weights, weighted soft voting is used [26].

After the introduction of ensemble methods by concluding the chapter about models and

classifiers, the next chapter will introduce the imbalanced data problem. After a definition

of the problem, various methods to optimize the performance for pattern recognition with

imbalanced data will be shown.

3.3 The imbalanced data problem

Basically, an imbalanced data problem means that a dataset has an unequal distribution

between the classes. The issue thereby is to achieve the same performance as for balanced

datasets since common algorithms or classifiers are only optimized for balanced datasets or

equal misclassification costs. In case of a two-class problem, an imbalanced data problem

means that one class has significantly more instances than the other class. This is known as

between-class imbalance. As example, we consider the real-world medicine problem of

detecting cancer with the two occurring classes healthy (negative) and cancerous (positive).

This domain has imbalanced data in its nature since more healthy than cancerous patients

exist [27].

Pattern Recognition 31

For example, the real-world “Mammography Data Set” contains 10.923 negative examples,

denoted as the majority class, and only 260 positive examples, denoted as minority class.

Usually, we want to achieve a high classification performance for both classes. But with

such a dataset the performance might be very high for the majority class (close to 100%

correct classifications) and tends to be bad for the minority class (e.g., between 0% and 10%

correct classifications). This implies, that from the 260 cancerous patients 90% to 100%

would be classified as healthy. Since within the medical domain it is costlier to classify a

cancerous patient as healthy than vice versa, it is important to improve the accuracy of the

minority class. This problem can be assigned to many other domains such as fraud detection

or network intrusion. However, it is furthermore important to distinguish between relative

imbalance and imbalance due to rare instances respectively absolute rarity. If we assume that

the mammography dataset would consist of 100,000 majority instances and 1,000 minority

instances, the relative imbalance might be high (1:100) but the minority class is with 1,000

instances not rare in an absolute perspective. While an absolute rarity might lead to a

deficient performance for the minority class, some researches have shown that usual

classifiers can achieve a satisfactory performance for the minority class for relative

imbalances without absolute rarity. But these researches have also shown that the degree of

imbalance is not the only factor which affects the performance. Instead, the most affecting

factor is the complexity of the dataset and the addition of imbalance just worsens these

impacts. The complexity of a dataset comprises for example overlapping, lack of

representative data and small disjuncts. To explain these problems, an example imbalanced

dataset is illustrated in Figure 16 [27].

Figure 16: Illustrative imbalanced datasets by [27]

Pattern Recognition 32

While the stars represent the minority class, the circles represent the majority class. Both

datasets consist of a relative imbalance. While Figure 16a has no overlapping instances and

only a single applied concept for each class, Figure 16b has overlapping instances and

multiple applied concepts for each class. Figure 16b shows also the difference between

relative imbalance (all stars vs. all circles) and absolute rarity (sub-concept C with a lack of

representative data). Additionally, Figure 16a illustrates the previously described between-

class imbalance and Figure 16b introduces now the within-class imbalance. A within-class

imbalance means that the representative data of a single class is distributed unequally over

multiple (sub)concepts. So, cluster B within Figure 16b represents the dominant part (main

concept) of the minority class while cluster C represents a sub-concept of the minority class.

Since the sub-concept contains less instances than the main concept, this is called within-

class imbalance. Cluster D represents two sub-concepts of the majority class and concept A

represents the main concept of the majority class. Again, the sub-concepts contain less

instances than the main concept and so also the majority class has a within-class imbalance

[27].

Now, a lot of different solutions to address the imbalance data problem exist. They can be

categorized by data-level solutions, algorithm-level solutions and finally ensemble solutions

[28]. These different approaches will be explained subsequently.

3.3.1 Data-level solutions

The approach for data-level solutions is to change the distribution of an imbalanced dataset

to build a (more) balanced set. A sampled dataset is then used for the learning procedure and

then the classifier might achieve better classification results. In a lot of studies, it was proved

that some classifiers achieved a better overall performance with a sampled and (more)

balanced dataset [27].

In general, one can distinguish between under-sampling and over-sampling. While under-

sampling removes data from the majority class in the original imbalanced data set, the over-

sampling algorithm adds data to the minority class. So, it seems that both sampling

techniques achieve the same result, namely change the imbalanced dataset to a more

balanced set. However, both sampling techniques have their own pros and cons. While

under-sampling might lose some important concepts through removing instances from the

majority class, over-sampling might lead to overfitting since some instances might be simply

duplicated through the randomness [27].

Pattern Recognition 33

Therefore, some intelligent approaches exist to overcome these shortcomings. In addition to

various under- and over-sampling approaches, which will be explained subsequently,

hybrid-sampling approaches exist, too. Basically, hybrid sampling combines under- and

over-sampling in diverse ways to improve the performance [27].

Under-sampling

Different approaches how to apply under-sampling will be explained in written form and

also graphically. First, the RandomUnderSampler (RUS) simply chooses and removes

majority samples randomly until the classes are balanced [29]. An example is shown in

Figure 17.

Figure 17: Under-sampling example using RandomUnderSampling by [30]

To start with the more intelligent approaches, the CondensedNearestNeighbour (CNN) is

based on the nearest neighbor rule. The basic concept for the nearest neighbor rule was

introduced previously. However, a shortcoming of this method is that the classifier must

store all training instances. So, CNN under-sampling is an improved method of the NN-rule

which needs finally less space for storing [29].

An example is shown in Figure 18.

Pattern Recognition 34

Figure 18: Under-sampling example using CondensedNearestNeighbour by [30]

The next three under-sampling techniques, namely EditedNearestNeighbours (ENN),

RepeatedEditedNearestNeighbours (RENN) and All-KNN, are all quite similar and are

shown together in Figure 19.

Figure 19: Under-sampling example using ENN, RENN and All-KNN by [30]

ENN is based on the k-nearest neighbor rule. Basically, under-sampling performed by ENN

creates a more balanced data set distribution by accepting only instances which were

correctly classified by the k-NN rule [29].

Pattern Recognition 35

RENN works identically as ENN. The only change is that the process of removing wrongly

classified instances is repeated infinite times respectively as long as no more eliminations

are possible. However, this method has no proof of performance improvement in comparison

to the ENN under-sampling [29]. The next under-sampling approach, All-KNN, iterates

from 𝑘 = 1 to 𝑛 over a given distribution of a dataset. For each round, the k-nearest

neighbors are calculated and then each instance within the distribution is classified. If most

of the 𝑛 predictions for an instance are wrong, then this instance will be removed [31].

The InstanceHardnessThreshold (IHT) assumes a value denoted as hardness for each

instance within a dataset. This value indicates the probability of misclassification. Now the

IHT under-sampling method comprises an algorithm to measure the hardness to filter the

instances based on a given threshold [29]. Examples for various thresholds are shown in

Figure 20.

Figure 20: Under-sampling example using InstanceHardnessThreshold by [30]

NearMiss consists of three different versions, but all focus on the relation between minority

and majority class. While version 1 selects instances with the lowest average distance

between majority instances and three minority instances, version 2 calculates the distance to

all minority instances and selects then the instances with the average distance to the three

farthest minority examples. Finally, version 3 selects majority instances which are

surrounded by minority instances [29]. The three versions are shown in Figure 21.

Pattern Recognition 36

Figure 21: Under-sampling example using NearMiss version 1-3 by [30]

The under-sampling technique TomekLinks is based on CNN. Since CNN might have some

shortcomings (e.g., random selection of instances at the beginning of the algorithm, which

might lead to a disregarding of boundary instances), the TomekLinks algorithm uses two

modifications for an increased consideration of boundary instances (Figure 22) [29].

Figure 22: Under-sampling example using TomekLinks by [30]

Pattern Recognition 37

The OneSidedSelection (OSS) method creates subsets of all minority instances and only a

single majority instance. Then, the original dataset is reclassified by the 1-NN rule and the

misclassifications are added to the generated subset. Finally, TomekLinks under-sampling

is used to remove noisy and borderline instances of the majority class [29]. An example is

shown in Figure 23.

Figure 23: Under-sampling example using OneSidedSelection by [30]

Finally, the NeighbourhoodCleaningRule (NCR) works like OSS but changes the 1-NN rule

since the rule might be too sensitive to noise in the data. So, NCR under-sampling uses ENN

under-sampling for the majority class to remove noisy instances. Then, misclassified

instances are removed from both the minority and the majority class with the 3-NN rule [29].

An example is shown in Figure 24.

Figure 24: Under-sampling example using NeighbourhoodCleaningRule by [30]

Pattern Recognition 38

Over-sampling

Now, various over-sampling methods will be introduced. First, the RandomOverSampler

(ROS) is simply the reversed version of the RandomUnderSampler. ROS replicates minority

instances randomly until the dataset is balanced [29]. An example is shown in Figure 25.

Figure 25: Over-sampling example using RandomOverSampler by [30]

The Synthetic Minority Over sampling TEchnique (SMOTE) uses synthetic instances to

achieve more balance. The regular version calculates the distance between an instance and

the nearest neighbor and then multiplies this distance with a random number between 0 and

1. SMOTE borderline 1 and 2 assume that borderline instances are more likely to get

misclassified. Thus, they are more important and so these over-sampling methods try to

synthetize only borderline instances. Finally, SMOTE SVM focuses on the borders of the

minority and majority class [29]. Examples for all variations are shown in Figure 26.

Figure 26: Over-sampling example using SMOTE by [30]

Pattern Recognition 39

Finally, Adaptive Synthetic (ADASYN) over-sampling is based on SMOTE. The key

difference is that ADASYN uses the k-nearest neighbors of an instance from the majority

class and decides then, based on a weighting algorithm, how many minority instances the

algorithm should synthetize. This is done with the intention to reduce bias through imbalance

and to shift boundaries towards harder examples [29]. An example is shown in Figure 27.

Figure 27: Over-sampling example using ADASYN by [30]

Hybrid-sampling

The last sampling category introduces two different approaches for hybrid-sampling

methods. The first approach, SMOTETomek, starts with over-sampling the dataset using

SMOTE and then uses Tomek to under-sample the dataset. Since both under- and over-

sampling have their shortcomings, the idea is to improve the results with a combination of

both methods [29]. An example is shown in Figure 28.

Figure 28: Hybrid-sampling example using SMOTETomek by [30]

Pattern Recognition 40

The other hybrid-sampling approach, SMOTEENN, performs a similar procedure like

SMOTETomek except using ENN to remove samples after the SMOTE over-sampling

process. Since ENN is used instead of Tomek, this might lead to more removed instances

which might further lead to a better performance [29]. An example is shown in Figure 28.

Figure 29: Hybrid-sampling example using SMOTETENN by [30]

3.3.2 Algorithm-level solutions

Even though this research project considers only cost-sensitive learning methods within the

algorithm-level solution space, other approaches on the algorithm-level exist, too. These

approaches are the kernel-based learning framework, one-class learning and active learning.

Kernel-based methods solve a lot of today’s recognition problems and therefore they are also

used for imbalanced data problems. One-class learning tries to train the classifier only by

the instances of a single class and active learning (usually related to unsupervised learning)

uses instead of the whole dataset only a small subset for each iterative step [27] [28].

Cost-sensitive learning

As previously stated, a misclassification might be associated with different costs. Since

studies showed that there is a direct connection between cost-sensitive learning and

imbalances, the algorithms for cost-sensitive learning can be directly applied to imbalanced

datasets without any change. To apply the following methods, a so-called cost-matrix is

needed. A cost-matrix contains numerical values with costs/penalties for misclassifying a

pattern. If the actual cost values are unavailable, a common way to build a cost matrix for

imbalanced data problems is to assign the imbalanced ratios inversely.

Pattern Recognition 41

This leads to costs of 𝐶(𝑀𝑖𝑛, 𝑀𝑎𝑗) for misclassifying the majority class and to costs of

𝐶(𝑀𝑎𝑗, 𝑀𝑖𝑛) for missclassifiying the minority class whereby in general 𝐶(𝑀𝑎𝑗, 𝑀𝑖𝑛) >

𝐶(𝑀𝑖𝑛, 𝑀𝑎𝑗). However, there are usually no costs assigned for classifying a class correctly.

As soon as the cost matrix is built, the goal for cost-sensitive learning is to minimize the

overall costs for the training set. To achieve this, the Bayes conditional risk method is usually

applied [27].

However, cost-sensitive learning can be distinguished by three distinct categories. These

categories are dataspace weighting, meta-techniques and classifiers with built-in cost-

sensitive functions or features.

Data-space weighting

To apply cost-sensitive learning through data-space weighting, the misclassification costs

are used to change the training data distribution. This approach is strongly based on the

theoretical foundations of the Translation Theorem in [32]. So, the training distribution is

changed to minimize the costs and to get the best possible distribution by multiplying each

case by its relative cost. This can be performed either as transparent box or black box. The

transparent box passes the cost-matrix directly to the classifiers while the black box performs

a re-sampling with the same cost-matrix before handing the data over to the classifier.

However, this method might lead to overfitting [33].

Meta-techniques

The second category is built on theoretical foundations of the MetaCost Framework by [34].

In contrast to data-space weighting, a meta technique does not sample the data distribution

and is also called non-sampling cost-sensitive meta-learning. With cost-sensitive meta-

learning it is possible to convert cost-insensitive classifiers into cost-sensitive classifiers

without modifying them. This is done either with pre-processing the training data or post-

processing the output. However, this category can be further divided into the subcategories

relabeling, weighting and threshold adjusting. The first subcategory, relabeling, changes the

classes of single instances by the minimum expected cost criterium. Relabeling can be either

done for the training data or the test data. The next method, weighting, basically assigns a

given weight (based on the cost-matrix respectively misclassification costs) to classes and

so classes with higher weights get more consideration [35].

Pattern Recognition 42

The last method, threshold adjusting or also referred to as thresholding, investigates the

output probabilities and optimizes the threshold to minimize the total misclassification costs

based on a given cost-matrix. In general, the output probabilities from the training instances

are used to calculate a new optimal threshold. Then, the new calculated threshold is used as

decision criterion to classify the output probabilities from the test instances. If the probability

of a pattern is above the new threshold, the instance is predicted as positive and if the

probability is lower than the new threshold then the instance is labelled as negative. So, for

all classifiers which can produce probability estimates for each instance, thresholding can be

used. Additionally, this method avoids overfitting [35].

Built-in cost-sensitive functions

The last category integrates cost-sensitive learning methods directly into various classifiers.

Since the way how functions are integrated or features are changed are very different, no

unifying framework is available [27].

Classifiers used for such modifications are for example decision trees [27] [36], neural

networks [27], random forests [36], bagging classifiers [36], pasting classifiers [36] and

random patches classifiers [36].

3.3.3 Ensemble solutions

The following stated methods and classifiers will not be used within this research project.

Nevertheless, they are added to the picture for completeness. In general, ensemble solutions

combine either data-level or algorithm-level solutions with ensemble learning and can be

distinguished by the four types bagging, boosting, random forests and hybrids. Other

ensemble solutions are based on ensemble selection or ensemble pruning [28].

Bagging-based ensembles

For this approach, sampling techniques are combined with bagging. So, the training

instances are sampled in several ways and then they are used to train the single learners of

the ensemble method. UnderBagging and OverBagging are examples which use either

random under- or over-sampling respectively to balance the dataset for the learners.

SMOTEBagging on the other hand uses a bootstrap sample from the majority class and a

sample of the minority class created through SMOTE over-sampling [28].

Pattern Recognition 43

Boosting-based ensembles

Boosting-based ensembles combine either preprocessing or cost-sensitive learning with a

boosting procedure. While cost-sensitive boosting keeps the general learning framework of

boosting but includes weights within the weighing procedure, preprocessing in combination

with boosting exploits the sampling method before the classifier generation step. Examples

for cost-sensitive boosting ensembles are AdaC1, AdaC2, AdaC3, CSB1 and CBS2. They

only differ in the way how they change the weighting procedure. On the other hand,

SMOTEBoost, which combines SMOTE over-sampling and boosting, and RUSBoost,

which combines random under-sampling and boosting, are examples for data-level-based

boosting ensembles [28].

Random forest based ensembles

Different adapted random forest ensemble methods exist for both sampling and cost-

sensitive learning. For example, the balanced random forest draws randomly the same

number of (under-sampled) instances of the minority and majority class for each reputation

of the random forest approach. The weighted random forest just adds heavier penalties for

processes such as node-splitting within the random forest algorithm and is therefore related

to cost-sensitive learning [28].

Hybrid ensembles

The well-known EasyEnsemble and BalanceCascade approaches combine bagging and

boosting for data-level solutions. EasyEnsemble uses bagging as main ensemble learning

method but AdaBoost is used instead of a single classifier to train a random under-sampled

balanced dataset. BalanceCascade removes majority instances in each bagging iteration after

they are correctly classified by an iteratively trained AdaBoost classifier [28].

3.4 Performance analysis

To complete this chapter, different evaluation methods and performance metrics will be

introduced, since we want to know how well the trained model will perform on unseen test

data. In short, we want to observe the generalization ability. To do that in practice, a given

dataset is split into a training set and a test set. Then, a model is trained with the training data

and finally the performance is evaluated by using the test data [20]. The methods of splitting

a dataset and the performance measure process will be explained subsequently.

Pattern Recognition 44

3.4.1 Splitting a dataset

If we want to evaluate the performance of a test data set, the question is how to split a given

dataset into a training and test set optimally. While a small training set would result in a not

very robust classifier and a bad generalization ability, a small test set would lead to a low

confidence of the evaluated performances. So, various data splitting methods exist (stated in

Table 3) to overcome these problems as good as possible. Nevertheless, there is no perfect

solution for splitting a dataset since different (random) splits will always lead to different

performances. However, the holdout method, the leave-one-out method and the rotation

method (common method) fall into the cross validation (CV) approach [20].

Splitting method Description

Resubstitution method
All data is used for training and testing. This leads to a very

optimistic estimate.

Holdout method

Half of the data is used for training and the other half is used

for testing. This leads to a pessimistic estimate and different

splits will lead to different estimates.

Leave-one-out method

If we assume 𝑛 data instances, a classifier is trained by 𝑛 − 1

instances and then the performance is evaluated by the

remaining single test instance. This procedure is repeated 𝑛

times. Even if the estimate is unbiased, it has a large variance

and requires a lot of computational power.

Rotation method

(k-fold cross validation)

This is a happy medium between holdout method and leave-

one-out method. With a defined fold size 𝑘 (1 ≤ 𝑘 ≤ 𝑛), the

available data instances are divided into 𝑘 subsets. Now 𝑘 −
1 subsets are used to train the classifier and the remaining

subset is used for the performance evaluation. This procedure

is then repeated 𝑘 times, so each subset is used for evaluation

one time.

Bootstrap method

This method creates 𝑁 bootstrap sets by sampling the data

with replacement. This might lead to lower variance than the

leave-one-out method but is computationally even more

demanding and is therefore only useful for small data sets.

Table 3: Data splitting methods (adapted from [20])

3.4.2 Performance metrics

The performance of a two-class problem can be generally represented with a so-called

confusion matrix (Figure 30) including True Positives (TP), False Positives (FP), False

Negatives (FN) and True Negatives (TN). Relating to Figure 30, the {𝑝, 𝑛} labels are the true

positive and negative class labels and {𝑌, 𝑁} are the predicted positive and negative class

labels respectively. Finally, {𝑃𝑐, 𝑁𝑐} are the total positives and negatives respectively [27].

Pattern Recognition 45

Figure 30: Confusion matrix by [27]

Let us return to the two-class problem with healthy and cancerous patients. Instead of

distinguishing only between healthy or cancerous diagnosed patients, two different

distinctions, namely healthy patients diagnosed as cancerous and cancerous patients

diagnosed as healthy, will be of interest. Now, let us denote healthy as negatives and

cancerous as positives. If a healthy patient (negative class) is diagnosed correctly ({𝑛, 𝑁}),

then it is a TN. If a cancerous patient (positive class) is diagnosed correctly ({𝑝, 𝑌}), then it

is a TP. If a healthy patient is diagnosed as cancerous ({𝑛, 𝑌}), then it is a FP. Finally, if a

cancerous patient is diagnosed as healthy ({𝑝, 𝑁}), then it is a FN. In case of intrusion

detection, it is usual to denote normal behavior as negatives and intrusions as positives, so

this example is directly adaptable.

Metrics

The most common metrics to evaluate the performance are the accuracy (ACC) and the error

rate. While the error rate is just 1 − 𝐴𝐶𝐶, the accuracy is expressed as


𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Basically, the accuracy equation  expresses the correct classification rate over all

instances and is calculated by adding up all correct classifications and then dividing them by

all instances. Since we are evaluating performances for imbalanced data, this metric is not

very meaningful. Let us assume that we have an imbalanced ratio of 1:99, which means that

the minority class consists only of 1% of all data instances and the majority class consists of

the remaining 99% instances. So, if we achieve an accuracy of 99%, that could mean that

we have classified all majority instances correctly but all minority instances wrongly [33].

Pattern Recognition 46

To overcome this shortcoming, various other evaluation metrics exist, which are more suited

for the imbalanced domain [20] [33]. These metrics are

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.4)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.5)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) 𝑜𝑟 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.6)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (3.7)

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (3.8)

In general, all metrics are based on TP, FP, FN and TN. First and foremost, Precision

measures the exactness which means how many of all predicted positives are classified

correctly. On the other hand, TPR or Recall/Sensitivity measures the completeness which

means how many instances of all real positives are predicted correctly [20].

Intuitively, TNR computes how many instances of all real negatives are predicted correctly.

Now, FNR and FPR have an inverse relationship to TPR and TNR respectively. FNR states

how many instances of all real positives are predicted wrongly and FPR calculates how many

instances of all real negatives are predicted wrongly. However, further metrics are

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

(1 + ß2) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

ß2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (3.9)

 𝐺 − 𝑚𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 (3.10)

The 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 combines Recall and Precision as weighted ratio to represent the

effectiveness of the classifier. The weight is based on the ß parameter. Usually, this

parameter is set to 1 and so a balanced weight of Precision and Recall is achieved. Even

though this metric gives more insight than the accuracy metric, it is still sensitive to

imbalanced data distributions. The 𝐺 − 𝑚𝑒𝑎𝑛 finally calculates the ratio of positive

accuracy and negative accuracy which represents the degree of inductive bias [20].

Pattern Recognition 47

Receiver operating characteristics curves

The receiver operating characteristics (ROC) curve plots the TPR against the FPR. Each

point within this graph represents a single classifier at a specific data distribution. This

means, that such a graph yields to a visual representation between benefits (TPR) and costs

(FPR) for various data distributions. An example is shown in Figure 31. The Points

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺} originate from hard-type classifiers which are only able to produce a

single {𝑇𝑃𝑅, 𝐹𝑃𝑅} pair. So, Point A represents a perfect classification (100% TPR, 0% FPR)

while Point B represents the worst possible classification (0% TPR, 100% FPR). The

separation line between the white and the grey space stretched between Point C and D

expresses a random classifier and therefore Point E represents a random guess. So, each

Point within the grey lower right triangle performs worse than random guessing (e.g., Point

F) and on the other hand each Point within the white upper left triangle performs better than

random guessing (e.g., Point G) [27].

Figure 31: ROC curve example by [27]

On the other hand, a series of ROC points produced by a threshold can generate full-featured

ROC curves. So, the curves {𝐿1, 𝐿2} in Figure 31 are provided by soft-type classifiers, which

can output continuous numeric values representing the confidence of an instance. To

compare the average performance of different classifiers, the area under curve (AUC) is

calculated. For example, the area under the curve 𝐿2 is greater than the area under the curve

𝐿1. This means, that the classifier which has generated the curve 𝐿2 has a better average

performance than the classifier which has generated the curve 𝐿1 [27].

Datasets 48

4 Datasets

For all following tests, two different datasets are used. The first dataset is the Australian

Defense Force Academy Linux Dataset (ADFA-LD) [37] which consists of normal behavior

traffic and different attacks against an Ubuntu Linux server [38]. This dataset belongs to

traditional network data which could occur in an analogous way in the information and

communication technology (ICT) part of a smart grid network. The second dataset,

belonging to the energy part of smart grids, is the Industrial Control System Power System

Dataset (ICS-PSD) [39] [40] [41] [42] which contains different event types. These event

types are No Events, Natural Events and Attack Events. Additionally, both ADFA-LD and

ICS-PSD include multiple classes to distinguish different attack types respectively events

[37] [39]. Nonetheless, this research project deals only with the binary classification problem

and will not investigate the multiclass classification problem for these datasets.

In the following subsections, both datasets will be explained. This explanation will contain

a detailed description of the datasets, the dataset structure and quantities, the imbalance ratio,

a processing description and a literature review on previous performances.

4.1 ADFA-LD

The ADFA-LD was made for anomaly based intrusion detection systems and created due to

missing datasets containing contemporary attack protocols. One example of an outdated

dataset is the Knowledge Discovery and Data Mining (KDD) dataset [43] which was

generated in 1998 and was historically the most used dataset for IDS research. Prior to the

generation of the ADFA-LD, there were some other not so successful attempts to generate

and establish a contemporary and standard dataset for IDS research (e.g., the UNM dataset

[44]). However, to generate the ADFA-LD, an Ubuntu Linux Server Version 11.04 was used

as operating system. To allow different attacks, Apache Version 2.2.17 [45] with PHP

Version 5.3.5 [46] and MySQL in Version 14.14 [47] were installed and started. The File

Transfer Protocol (FTP) [48] and the Secure Shell (SSH) [49] services were enabled, too.

To add additional vulnerability, TikiWiki Version 8.1 [50] was installed and started. After

the full installation of the software and the installation of all available patches, different

payloads to attack the operating system were generated [37] [51].

Datasets 49

These payloads include password brute forcing, adding new superusers, a Java Based

Meterpreter, a Linux Meterpreter Payload and a C100 Webshell. The vectors used for the

password brute force attack were FTP by Hydra and SSH by Hydra. A client-side poisoned

executable vector was used for both adding new superusers and to transfer the Linux

Meterpreter Payload. To get a Java Based Meterpreter session, a TikiWiki vulnerability

exploit was sent to the server. Finally, for the C100 Webshell payload a PHP Remote File

Inclusion vulnerability was exploited. Altogether, these payloads and attack vectors

represent current practices and tools to exploit a system. Considering the preparation of the

server, a realistic defense environment was provided, too. Through several tests with

different algorithms and the comparison with the KDD dataset, the ADFA-LD was validated

as challenging and representative dataset for current cyber-attacks [37] [51].

Data structure

During normal operations like web browsing or document operations 833 traces of system

calls for normal training data and 4373 traces of system calls for normal validation data were

collected. The normal training data traces contain only traces with a file size between 300

Bytes and 6 Kilobytes while the normal validation data traces contain traces with a file size

between 300 Bytes and 10 Kilobytes. The separation was done as trade-off between data

fidelity and processing time. Since the goal of this research project is to gain the best

detection rate, all normal data traces will be combined. This results in a total of 5206 normal

behavior traces which will be classified as class 0 respectively negatives. For the generation

of the attack data, ten attacks were executed for each attack vector, which results in totally

746 attack data traces denoted as class 1 respectively positives. Consequently, the

imbalanced ratio is approximately 1:7 [37]. The whole dataset is offered as a download at

[52]. The downloaded file contains a separate subfolder for attack data, training data and

validation data. Furthermore, the attack data folder contains subfolders for all different

payloads and attack vectors. In all these subfolders are different amounts of text files

contained. However, each single data example is an individual file and equals a system call

trace whereby the term ‘trace’ refers to a sequence of single system calls for a privileged

process. Each different system call has a different unique system call identification (ID). So,

a sequence of system call IDs is saved for each system call trace and is therefore a single

data example [51]. More information about the system call extraction can be found in [53].

Datasets 50

Processing

Since system call traces have different lengths, it is not possible to process them directly

with a machine learning algorithm. Different solutions to bypass this problem consider trace

lengths, the usage of common patterns or to count the frequencies. In [51] the author stated,

that the trace length is not an effective way to find anomalies. Whereas common patterns

like consecutive system call IDs are effective but highly time-consuming.

Thus, a frequency based counting to gain a common sample length for system call traces is

used. Therefore, the adapted dataset will consist of the same number of features as system

call IDs. In case of the ADFA-LD, the highest system call ID is 340. Consequently, each

data instance has 341 features, starting with the system call ID 0. For each file respectively

system call trace, a row with 341 zero value entries is created. Now each occurrence of a

system call ID in the trace increases the according (system call ID) feature by 1. After the

processing of a trace, the row is added either to a matrix containing normal data or to a matrix

containing attack data. So, two 𝑚 𝑥 𝑛 matrices were created with m as the number of either

normal or attack data instances and n as the number of features.

Through further investigations, it was found that some system call IDs never occur within

all system call traces. Hence, both matrices were combined and the system call IDs

respectively feature IDs with column sums equal 0 were extracted. Afterwards the found

system call ID columns were removed from both the normal and attack data matrices. This

adjustment has no impact to the detection rate but results in a higher performance due to the

reduced feature space. Finally, the created matrices are stored to the local machine to save

processing time. During the runtime of the program the data is stored in dictionaries.

Previous performance

Regarding to [54] the highest percentage achieved for the ADFA-LD measured by the area

under the curve for a ROC curve is 95.32%. This value was achieved by a classification with

a semantic Extreme Learning Machine [55]. In comparison, 88.93%, 76.22% and 86.87%

were achieved with a semantic SVM, a syntactic Hidden Markov Model [56] and the

Sequence Time-Delay Embedding 10 method [54] respectively. More results with different

approaches can be found in [57], [37] and [51] in form of ROC plots without attached values.

Datasets 51

4.2 ICS-PSD

Disturbances in power systems occur not only by natural events, but additionally by man-

made events. Even though power systems were built with redundancies, computer security

was not considered as relevant firstly. Through the emergence of smart grid networks, a lot

of different intrusion detection techniques were developed. However, all the different

approaches are limited to individual devices or attacks or they are very expensive to

implement. So, with the ICS-PSD and the used network for the dataset generation it was

intended to have a possibility to test various anomaly detection methods for power systems

and to detect both natural and malicious events [39].

Figure 32: Network diagram for the ICS-PSD [39]

Figure 32 shows the power system framework with different device types used to generate

the ICS-PSD. For example, the components G1 and G2 represent power generators. The

components BR1 to BR4 are breakers with a single line between BR1 and BR2 and another

line between BR3 and BR4. The Intelligent Electronic Devices (IEDs) R1 to R4 can switch

these breakers on or off automatically. Additionally, the IEDs have a distance protection

scheme to trip a breaker once a fault is detected. Finally, it is possible to trip breakers via the

IEDs manually. For all state changes, the IEDs submit information to the control system

through a substation switch and a router. Beside the control system, there are different

network monitoring systems such as a Snort [58] and Syslog [59] server and also data

acquisition systems. However, all following attack scenarios assume that an attacker has

already gained access to the substation switch [39].

Datasets 52

To generate disturbances, five different scenarios were performed. These scenarios are a

short-circuit-fault, a line-maintenance, a remote tripping command injection, a relay setting

change and a data injection. While the short-circuit-fault, which is a short in a power line,

and the line maintenance belong to the natural events, the other scenarios belong to the attack

events. During a remote tripping command injection, the attacker sends a command to an

IED to open a breaker. With the relay setting change the attacker disables the distance

protection scheme for the IEDs in what way they cannot trip for valid commands or faults.

Finally, the data injection simulates a valid fault by changing different values which causes

a black-out [39].

Data structure

The dataset is offered at [60] as multi-class dataset with 8 different natural events, 28

different attack events and a single class with no events. Additionally, the dataset is offered

as Ternary-class dataset with natural events, attack events and no events and finally as

Binary-class dataset where the normal and natural events were grouped together to one class

and the attack events represent the other class [39].

As previously stated, this research project covers only the binary classification problem.

Nonetheless, the Ternary-class dataset was downloaded and grouped to two different binary

datasets. The first dataset equals the Binary-class dataset from [60] and groups the normal

and natural events to class 0 respectively negatives while the attack events represent class 1

respectively positives. The second dataset groups the natural and attack events to class 1

respectively positives while the normal events represent class 0 respectively negatives. The

first binary dataset is denoted as ICS-PSD-NNvA and the second one as ICS-PSD-NvNA.

Now the downloaded archive contains 15 different comma-separated values (CSV) files with

thousands of individual samples for each distinct event. In total, there are 4405 normal

events, 18309 natural events and 55663 attack events. To work with a similar data amount

as the ADFA-LD for better comparisons and a decent processing time, just the first CSV file

is used. This file contains 173 normal events, 927 natural events and 3866 attack events. In

case of the ICS-PSD-NNvA, class 0 consists of 1100 samples and class 1 of 3866 samples

consequently. So, the imbalanced ratio for this dataset is approximately 1:3.50. In contrast,

class 0 of the ICS-PSD-NvNA consists of 173 samples while class 1 consists of 4793

samples. This results in an imbalanced ratio of approximately 1:27.70.

Datasets 53

Each of the datasets has 129 columns and 128 features with 116 different measurements

from four phasor measurement units (PMUs). The remaining 12 features consist of control

panel logs, Snort alerts and relay logs for the PMUs. The last entry is a marker for the event

type to classify if it is a normal event, a natural event or an attack event.

Processing

For the simple reason that the dataset is a single CSV file and each data entry has the same

number of features, it is sufficient to iterate over each data entry in this file. Just the last

column entry must be separated to distinguish between the event type. However, there are a

few entries with an infinite value. Since the machine learning algorithms are not able to deal

with any data types but numbers, it is necessary to substitute these values. There is no

difference whichever number is substituted. The only two important things to consider are

that firstly the substituted number remains the same for each substitution and secondly the

number differs from any other containing number. Since all values are greater than or equal

to zero, the easiest way is to choose a negative number. In this case minus one was chosen.

Now, three different matrices, one for each event type, are created and each data entry is

stored in the related matrix. Finally, the created matrices are stored in the local machine

exactly like the ADFA-LD and will be handled as dictionaries during the runtime, too.

Furthermore, the stored matrices can be loaded either as ICS-PSD-NNvA or as ICS-PSD-

NvNA during runtime and will be accordingly grouped during the import process.

Previous performance

Despite a literate review, no prior classification results for the generated ICS-PSD-NNvA

were found. However, for the ICS-PSD-NvNA there are different performances in [39]

available. The highest F-Measure percentage for the ICS-PSD-NvNA is approximately 92%

(estimated from a plot) and was achieved with the AdaBoost+JRipper classifier. However,

there was a higher percentage of 95.5% achieved for the Ternary-class dataset. Apart from

[39], no other performance evaluations were found.

The next chapter briefly describes the development environment (e.g., programing language,

development tools, project structure).

Development environment 54

5 Development environment

The data processing as well as any other pattern recognition procedures such as

preprocessing, classification/prediction and evaluation are implemented with the Python

programing language [61] in version 3.6.0 which is for now one of the latest versions. Since

there are many different packages used, the Anaconda Distribution [62] is installed. The

Anaconda Distribution is a package manager, an environment manager and a Python

distribution, including over 720 open source packages. The Jetbrains PyCharm [63]

integrated development environment (IDE) is used for the source code development.

The necessary packages to run the full program are stated in the following list:

• NumPy [64] >= 1.11.2

• SciPy [65] >= 0.18.1

• Scikit-Learn [66] >= 0.18.1

• Matplotlib [67] >= 2.0.0

• Imbalanced-Learn [68] >= 0.2.1

• CostsensitiveClassification [36] >= 0.5.0

NumPy is a useful and efficient structure for numerical works with arrays and to manipulate

matrices. So, NumPy arrays are used to store all the data and targets from the different

datasets and for various calculations as well. SciPy contains modules for scientific work like

linear algebra, integration, interpolation and image processing. Both NumPy and SciPy are

required to install Scikit-Learn, which is used as the main library for all pattern recognition

tasks. Scikit-Learn is a very powerful machine learning library featuring for example

classification, regression, clustering, dimensionality reduction, model selection and

preprocessing. With the Matplotlib module it is possible to generate diverse types of plots.

For this research project, Matplotlib is used to generate ROC curves. Finally, Imbalanced-

Learn and CostsensitiveClassification are both libraries to execute different tests with the

imbalanced datasets. The Imbalanced-Learn package supports various models for under-

sampling, over-sampling and hybrid-sampling. The CostsensitiveClassification library

offers models for cost-sensitive classification problems with methods featuring for example

cost-sensitive weighting, thresholding and classifiers with built-in cost-sensitive algorithms

[64] [65] [66] [67] [68] [36].

Development environment 55

The program itself contains three different main modules which are denoted as “data”,

“experiments” and “toolbox” and additionally two folders which are denoted as “doc” and

“solutions”. The whole structure is illustrated in Figure 33. The “data” module contains one

file for all operations for the ADFA-LD and one file for both datasets of the ICS-PSD.

Furthermore, this module contains a subfolder for the downloaded raw data and a subfolder

for the converted data sets which are stored there after the import process. The “experiments”

module contains four submodules, one module for each experiment type. The different

experiments are basic evaluations, a grid search, k-fold cross validations and a smart grid

hierarchy simulation. For each of these experiments and for each dataset type an own file is

created to set various parameters and to start the tests. All these experiments will be

explained explicitly in the next chapters. The “toolbox” module contains two python scripts.

The “helper” script contains various functions for easier processing such as calculating and

saving different metrics, generating and saving ROC plots and also a setup of different tests.

The “evaluation” script contains different core functionalities for the experiments.

Figure 33: Python project structure

Finally, the “doc” directory contains a project documentation built with Sphinx [69] and the

“solution” folder contains all achieved rates during the experiments.

Method screening 56

6 Method screening

The main goal of this research project is to implement anomaly detection methods for

imbalanced data sets in a smart grid hierarchy and to evaluate their performance. So, the first

task is to investigate the mentioned imbalanced data methods for the previously described

datasets. This task will be described within this chapter from beginning to end. Additionally,

this chapter is divided into three parts. The first section will describe the process of testing

different classifiers and preprocessing (scaling) methods with a simple stratified sampling to

get a first impression of the performance of the three datasets ADFA-LD, ICS-PSD-NvNA

and ICS-PSD-NNvA. After this process, the best scaling method will be chosen for all

further tests. Then, in the second section, ensemble classifiers will be added to the classifier

set and a grid search with k-fold cross validation in the hyper-parameter space for each

individual classifier will be executed to find the best individual performance. Finally, in the

last section, the methods sampling and cost-sensitive learning for imbalanced data will be

tested and evaluated with k-fold cross validation. In this last subchapter, a method will be

chosen, which will then be used for the smart grid hierarchy test implementation.

Figure 34: Basic method screening process

Method screening 57

If we consider the steps in the pattern recognition cycle, the first steps are feature extraction

and preprocessing. Since the feature extraction process was described in the chapter about

the datasets, all steps performed within these three sections will start with preprocessing and

will end with performance evaluations. These steps are illustrated in Figure 34. So, after the

dataset is loaded and the data is preprocessed, the next step is to split the data in training and

test data. Once the classifier is trained with the training data, the test data is predicted with

the trained classifier. Finally, the predictions for the testing data will be evaluated with the

introduced performance metrics. The steps from splitting to prediction will be repeated 𝑛

times for a more robust performance. Anyway, the described cycle must be executed for

each single preprocessing, splitting, sampling and also classifier.

However, to execute the tests for each subcategory, two files are used. The first file is located

in the experiments module and the related experiment. This file is named after the dataset

and contains the basic setup for the tests, such as the number of iterations, the fold size,

scaling methods, the used classifiers and so on. This file enables an easy adoption of the test

setup. The second file, namely evaluations, is located in the toolbox module and provides all

the necessary tasks for the related subchapter purpose.

6.1 Classifier and sampling tests

First of all, before any test can be executed, it is necessary to define a set of classifiers, which

will be used for all tests and comparisons. The following single classifiers were chosen:

• Decision trees (DT)

• k-nearest neighbor (k-NN)

• Quadratic Discriminant Analysis (QDA)

• Multilayer Perceptrons (MLP)

• Support vector machines with a linear kernel (linSVM) and a RBF kernel (rbfSVM)

For the first tests, all the classifiers will be used with their default (hyper-)parameters. As

previously stated, the first step once the data is loaded is to preprocess the data. To find the

best possible method, all different scaling methods, namely interval fit in the range of [0,1],

z-score scaling (standardization) and arctangent scaling were tested and compared to the

performance of the unscaled data for each dataset. The interval fit method and the z-score

scaling methods are directly implemented in the Scikit-Learn module “preprocessing”.

Method screening 58

The arctangent scaling is not directly implemented and must be programmed. To get the

arctangent scaled data (denoted as 𝑎) the standardized data (denoted as 𝑠) is scaled by

𝑎 =

2

𝜋
∗ tan−1(𝑠) (6.1)

Then, for each dataset the data is split into training and test data and targets with stratified

sampling with a 70:30 training/test split. To execute this task, the built-in function

“train_test_split” from the module “model_selection” in Scikit-Learn is used. Once the data

is split, the training data and targets are used to train the classifiers and then the trained

classifier is used to predict the test data split. The related functions are directly built-in in

the classifiers and are denoted as “fit” and “predict”. The parameters for the “fit” function

are the training data and the training targets and the only parameter for the “predict” function

is the test data set. Finally, the performance is evaluated by comparing the original

respectively correct test targets with the predicted targets. For a more robust result, the

process is repeated 10 times and then the performance is simply averaged.

Figure 35: Test-setup for scaling and classifier tests

Method screening 59

This test setup is illustrated in Figure 35. So, each dataset is scaled separately to an interval

[0,1], is standardized and arctangent scaled. Including the unscaled dataset, this means that

for each dataset four different scaling methods exist. Consequently, 12 different datasets will

be tested. Since we use 6 different classifiers, this leads to 72 iterations in total to execute

the whole test setup a single time. Since the test is repeated 10 times for a more robust

solution, the basic test setup needs 240 iterations for each dataset and 720 total iterations to

complete all tests. For further clarification, the algorithm “basic_evaluation_binary” is stated

in Listing 5 in Appendix A. If all parameters are passed correctly, a dictionary for the results

is created. For each classifier, a dictionary is created and within such a classifier dictionary

another dictionary for all the different scaling types is created. Then, a single scaling rate is

initialized as a 2x2 matrix with zero values to store the confusion matrix. Next, a for-loop

executes the test 𝑛 times. Within this for-loop, the first step is to split the data in training and

test data and targets with stratified random sampling. Then, the data is scaled for each passed

scaling type. Once we have the split and scaled datasets, the training and prediction tasks are

executed for each passed classifier and scaling type. Then, the confusion matrix from the

predicted targets is calculated with a built-in function “confusion_matrix” in the module

“metrics” in Scikit-Learn and is added to the related rates in the previously created

dictionary. Once all 𝑛 iterations are finished, the rates are divided by the number of iterations

to get the average performance for each classifier. Finally, the rates dictionary is returned.

Now, this test-setup is evaluated with TPR, TNR and ACC. For each dataset, an own table

will show the performances for the stated classifiers DT, k-NN, MLP, QDA, linSVM and

rbfSVM and each scaling type. The performance for the ADFA-LD is shown in Table 4. In

general, a satisfactory performance is achieved with the out-of-the-box classifiers for the

ADFA-LD. Especially the decision tree, k-NN and MLP classifiers have a high accuracy

with approximately 95%. Since the positives in the ADFA-LD are the minority class and the

negatives are the majority class, the performances for TPR and TNR behave as expected.

The TNR (detection rate for negatives respectively for the majority class) for these three

classifiers is about 97% and the TPR (detection rate for positives respectively minority class)

is between approximately 79% and 84%. In case of decision trees and k-NN, the scaling of

the data has little to no impact on the performance and lies within the fluctuation margin

through random sampling. On the other hand, the MLP classifier shows little improvements

for the interval fit and good improvements for standardization and arctangent scaling.

Method screening 60

unscaled interval-fit [0,1] z-score scaling arctangent scaling

 TPR TNR ACC TPR TNR ACC TPR TNR ACC TPR TNR ACC

DT 0.8103 0.9697 0.9497 0.8147 0.9705 0.9510 0.8121 0.9702 0.9504 0.8063 0.9707 0.9501

k-NN 0.8388 0.9736 0.9567 0.8317 0.9704 0.9530 0.8433 0.9718 0.9557 0.8491 0.9778 0.9616

MLP 0.7911 0.9793 0.9557 0.8272 0.9800 0.9609 0.8545 0.9802 0.9644 0.8536 0.9832 0.9670

QDA 0.9710 0.4738 0.5371 0.9688 0.5061 0.5641 0.9656 0.4967 0.5555 0.9741 0.4652 0.5291

linSVM 0.7344 0.9360 0.9107 0.3754 0.9834 0.9072 0.8174 0.9618 0.9437 0.8183 0.9720 0.9527

rbfSVM 0.3179 0.9971 0.9119 0.0000 1.0000 0.8746 0.5330 0.9855 0.9287 0.0009 0.9999 0.8746

Table 4: Basic evaluation results - ADFA-LD

The QDA classifier steps out of the line and shows a bad accuracy of 53.71%. However, the

performance for the minority class is with 97.10% very high and with 47.38% for the

majority class very low. Since there are a lot more majority instances, the accuracy is

decreased. This example shows perfectly the low validity of the accuracy score. A high

detection rate for the majority class enables a good accuracy score while a good performance

for the minority class does not lead to a high accuracy score necessarily. Nevertheless, in

combination with TPR and TNR the validity is still good enough to choose the best scaling

method after comparison of all performances. However, interval fit and z-score scaling show

a slight improvement for the minority class detection rate for the QDA classifier while the

arctangent scaling has no impact.

The SVM with linear kernel achieves an accuracy of 91.07% with a TNR of 93.60% and a

TPR of 73.44%. So, the performance is significantly worse than in comparison to the DT,

the k-NN and the MLP classifiers. But the z-score scaling and arctangent scaling improve

the performance in such a way that the gap is nearly closed. On the other hand, by using the

interval fit method, the performance for the TPR drops significantly. Finally, the SVM with

RBF kernel has the best detection rate for the majority class with a TNR of 99.71% but

unfortunately a very low detection rate for the minority class with a TPR of 31.79%. This

leads to a total accuracy of 91.19%. This behavior is even more intense with the use of the

interval fit method and arctangent scaling. With interval fit all majority examples are

detected and no single minority instance is correctly predicted and with arctangent scaling

nearly all majority instances and only a few minority instances are detected. With z-score

scaling the performance is more balanced by achieving a good detection rate for the majority

class and nearly a doubled detection rate of the minority class in comparison to the unscaled

data. In general, the low performances for the SVMs are unexpected since they usually show

a good generalization ability out-of-the-box. But this circumstance will be investigated in

the next subchapter.

Method screening 61

However, with the ADFA-LD alone, no statement for the best scaling method is possible but

there are little advantages for z-score scaling and arctangent scaling, since they show better

improvements for single classifiers. Especially the classifiers with an already good

performance showed even a slight performance improvement using standardization or

arctangent scaling.

unscaled interval-fit [0,1] z-score scaling arctangent scaling

 TPR TNR ACC TPR TNR ACC TPR TNR ACC TPR TNR ACC

DT 0.9945 0.8519 0.9895 0.9946 0.8365 0.9891 0.9950 0.8404 0.9896 0.9942 0.8423 0.9889

k-NN 0.9926 0.6750 0.9815 0.9954 0.8327 0.9897 0.9958 0.8385 0.9903 0.9967 0.8481 0.9915

MLP 0.9316 0.1135 0.9030 0.9946 0.1712 0.9658 0.9958 0.8385 0.9903 0.9967 0.8481 0.9915

QDA 0.9955 0.8250 0.9895 0.9955 0.8259 0.9895 0.9955 0.8250 0.9895 0.9967 0.8135 0.9903

linSVM 0.9993 0.0000 0.9644 0.9991 0.0019 0.9643 0.9892 0.2692 0.9640 0.9944 0.5423 0.9786

rbfSVM 0.9998 0.0019 0.9650 1.0000 0.0000 0.9651 1.0000 0.0000 0.9651 1.0000 0.0000 0.9651

Table 5: Basic evaluation results – ICS-PSD-NvNA

Next, the performance for the ICS-PSD-NvNA is shown in Table 5. First of all, for this

dataset the positives are the majority class and the negatives are the minority class. In

general, the performance for this dataset is very high. The highest accuracy of 99.15% was

achieved with arctangent scaling and the k-NN and MLP classifiers with a TPR of 99.67%

and a TNR of 84.81%. Since these classifiers are out-of-the-box single classifiers without

hyper-parameter changes, the achieved performance is very good. Another remarkable note

in terms of scaling is, that the MLP classifier achieved without scaling only an accuracy of

90.30% with a TPR of 93.16% and a TNR of 11.35%. Like the ADFA-LD, the decision tree

achieved a very good performance for the ICS-PSD-NvNA. With an accuracy of 98.95%

and a TPR of 99.45% and a TNR of 85.19% the DT is even the best classifier for the unscaled

data. Surprisingly, the QDA classifier reached a similar performance than the decision tree

although this classifier performed not very good for the ADFA-LD. The performance

through scaling was not improved for neither the decision tree nor the QDA classifier. While

the k-NN classifier achieved a medium performance in comparison to the best classifiers for

unscaled data, the performance for the scaled datasets is much better. As previously stated,

the k-NN rule achieved even the best performance with arctangent scaling. Both SVM

classifiers show a similar behavior as the ADFA-LD. While they achieve nearly 100% or

even 100% detection rate for the majority class, the detection rate for the minority class is

smaller than 1% or even 0%. Only with z-score and arctangent scaling the detection rate for

the minority class was raised while the performance for the majority class is similar. But

again, the performance for both SVM classifiers seems too low.

Method screening 62

Overall, both z-score scaling and arctangent scaling are again superior to interval fit scaling

and unscaled data. However, the arctangent scaling method is even slightly better than the

z-score scaling method.

unscaled interval-fit [0,1] z-score scaling arctangent scaling

 TPR TNR ACC TPR TNR ACC TPR TNR ACC TPR TNR ACC

DT 0.9453 0.8270 0.9191 0.9450 0.8209 0.9175 0.9441 0.8312 0.9191 0.9454 0.8252 0.9188

k-NN 0.9370 0.6752 0.8790 0.9407 0.7461 0.8976 0.9459 0.7355 0.8993 0.9423 0.7276 0.8948

MLP 0.9802 0.0255 0.7687 0.9731 0.0961 0.7789 0.9437 0.5424 0.8548 0.9363 0.5358 0.8476

QDA 0.3816 0.9452 0.5064 0.3838 0.9436 0.5078 0.3853 0.9224 0.5087 0.3950 0.9442 0.5166

linSVM 0.8037 0.2009 0.6702 0.9823 0.0694 0.7801 0.9357 0.1855 0.7695 0.9604 0.1564 0.7823

rbfSVM 0.9997 0.0206 0.7829 0.9450 0.8209 0.9175 0.9949 0.0506 0.7858 1.0000 0.0000 0.7785

Table 6: Basic evaluation results – ICS-PSD-NNvA

The performance for the ICS-PSD-NNvA is shown in Table 6. The ICS-PSD-NNvA has

again more positive instances than negative instances. The performance for the best

classifiers DT and k-NN is very good, but worse than the ICS-PSD-NvNA. This seems

reasonable, since in the ICS-PSD-NNvA the normal and natural event data are combined to

the negative class. For the unscaled data, the decision tree achieves an accuracy of 91.91%

with a TPR of 94.53% and a TNR of 82.70% while the k-NN rule achieves an accuracy of

87.90% with a TPR of 93.70% and a TNR of 67.52%. Even for these two classifiers, the

detection rate for the minority class has large varieties. However, the other classifiers have

a very bad performance. Even if the MLP and rbfSVM achieve an accuracy between 76%

and 79% with a TPR between 98% and 100%, the TNR for both is only between 2% and

3%. The linSVM achieves also only approximately 2% TNR and 80% TPR which results in

an accuracy of 67.02%. The QDA demonstrates the same behavior than in the ADFA-LD.

The detection rate for the minority class is with 94.52% very high while the detection rate

for the majority class with only 38.16% is very low. This results in a total accuracy of

50.64%. The scaling behavior is similar to the other datasets. The interval fit method shows

slight improvements especially for the k-NN, MLP and both SVM classifiers. The same

behavior occurs for z-score scaling and arctangent scaling but again the improvements are

better than the interval fit method. Still, the performance for the SVM is surprisingly low.

In general, the decision tree classifier performs very well for all three datasets but shows no

improvements with the scaling methods. While the k-NN rule has also a good performance

for all datasets, the performance improvements with scaling are high (especially through z-

score scaling and even more through arctangent scaling). So, the k-NN rule performed

overall for two out of the three datasets better than the decision tree classifier.

Method screening 63

The same behavior occurs for the MLP classifier. Consequently, the three classifiers DT, k-

NN an MLP showed the best performances. The k-NN rule and the MLP classifier achieved

also a remarkable improvement through scaling, especially with arctangent scaling. On the

other hand, QDA shows an odd behavior by having very high detection rates for the minority

class for the datasets ADFA-LD and the ICS-PSD-NNvA and low detection rates for the

majority class. Another strange behavior for the QDA classifier is that this classifier ranks

simultaneously to the two best classifiers for the ICS-PSD-NvNA. Even though the scaling

improved the performance for both SVM classifiers, the performance is still bad and

unexpected low for all three datasets. Anyway, the performance improvements by scaling

are very good. Since the best improvements were achieved by the arctangent scaling method,

further test will use this method only.

This section investigated only the basic performance for the datasets and the different scaling

methods. So, in the next subchapter the full range of classifiers, including ensemble learners,

will be used. Additionally, to improve the performance for all classifiers, a full k-fold cross

validation grid search will be executed. After this, a full test for the three datasets with k-

fold cross validation and the ensemble learners will be performed. The results of this test

will be the foundation for the comparison with all imbalanced data methods.

6.2 Ensembles and hyper-parameter grid-search

Now, some ensemble learners will be added to the classifier kit. Since the decision tree

classifier has a stable high performance, this classifier will be used as base learner for all

non-voting ensemble classifiers. Voting classifiers will be used as well but since they do not

have any parameters to tune they will be used the first time in the k-fold cross validation test

setup. So, the used classifiers for the grid search are

• Decision tree (DT)

• k-nearest neighbor (k-NN)

• Quadratic Discriminant Analysis (QDA)

• Multilayer Perceptrons (MLP)

• Support vector machine (SVM)

• AdaBoost with decision trees as base learners (DTBoost)

• Bagging with decision Trees as base learners (DTBagg)

• Random forest (RForest)

Method screening 64

All of these classifiers have different hyper-parameters which will be explained

subsequently. Prior to that, the basic process of a grid search CV is illustrated in Figure 36.

Figure 36: Basic grid search cross validation process

So, to execute a single iteration of a grid search cross validation, a dataset is loaded and is

then preprocessed with arctangent scaling as elaborated in the previous subchapter. Then, a

classifier and a set of related defined parameters is used for the cross validation with this

parameter set. Luckily, Scikit-Learn offers in the “model_selection” module a function for

a grid search cross validation, namely “GridSearchCV”. To use this function, one must pass

the used classifiers, the parameters, the number of folds and a scoring function.

The scoring function offers different default metrics such as the accuracy score to compare

the achieved performances for different parameter sets. Since no appropriate metric for

imbalanced data is available, a custom scorer function was created and is stated in Listing 6

in Appendix A. This custom scorer function calculates both the F1-Measure and G-mean

and averages the performance.

Back to the execution of a single grid search iteration, the next step is to extract the

performances. To evaluate the performance, it is only necessary to train respectively fit the

grid search classifier with each set of the chosen parameter sets. The built-in function

“GridSearchCV” offers an attribute which is called “best_params_” which returns the mean

performance and standard deviation for the 𝑘 folds for a specific parameter set. This process

is then repeated for each parameter set and for each classifier. For example, let us consider

the k-NN rule which has a hyper-parameter called “n_neighbors”. This parameter simply

represents the number of neighbors. So, if we want to evaluate the performance of this

classifier with neighbors from 1 to 9, this single process is repeated 9 times.

Method screening 65

The first iteration performs the cross validation with 1-NN, the next iteration with 2-NN, the

next with 3-NN and so on. If we would add another parameter with two different possible

values, the cross validation would be executed 18 times since each parameter is combined

with each other. Once all parameter sets are evaluated, the best set can be chosen. Since k-

fold cross validation is used for the performance evaluation, overfitting is avoided.

The source code for the generation of the classifiers with all related parameters for the grid

search cross validation is shown Listing 7 in Appendix A. In general, a parameter set is

defined as dictionary with the name of the hyper-parameter as key and a list of parameter

values as value. Additionally, a dictionary for each classifier is created. While the key is the

name of the classifier, the first value contains the classifier itself and the second value

contains the parameter dictionary set.

First of all, the parameters chosen for the DT classifier are “criterion”, “min_samples_split”,

“max_depth”, “min_samples_leaf” and “max_leaf_nodes”. The “criterion” parameter

measures the quality of a split and offers the criteria “gini” and “entropy”. The default

parameter is “gini”. So, both criteria will be used for the grid search. Next,

“min_samples_split” defines the number of samples required to split an internal node. The

default parameter is 2 and the values 5 and 10 are added to the grid search. The parameter

“max_depth” defines the maximum depth of the tree. The default parameter is “None” which

means that nodes are expanded until all leaves contain less than “min_samples_split”

samples or until all leaves are pure. The parameter “None” is extended by the values 5, 10

and 20 for the grid search. The parameter “min_samples_leaf” defines the minimum number

of samples required to be at a leaf node. The default value is 1 and is extended by 2 and 5

for the grid search. Finally, the “max_leaf_nodes” parameter grows the leaves of a tree

limited by these values. The default value is “None” which means that there is no stopping

criterion. For the grid search, the “None” value is extended by 20 and 50 [70].

Now, all parameters and values are defined. The parameter “criterion” has 2 values, the

parameter “min_samples_split” has 3 values, the parameter “max_depth” has 4 values, the

parameter “min_samples_leaf” has 3 values and the parameter “max_leaf_nodes” has also 3

values. This leads to 2 ∗ 3 ∗ 4 ∗ 3 ∗ 3 = 216 different combinations for the decision tree

classifier.

Method screening 66

For the k-NN classifier, only the two parameters “n_neighbors” and “weights” are used.

While “n_neighbors” defines the number of neighbors to use (default=5), the parameter

“weights” is used to define a weight function for the prediction. Therefore, it is possible to

choose between “uniform”, which weighs all points in the neighborhood equally, “distance”,

which weighs the points by the inverse of their distance or a custom weight function. The

default value is uniform [71]. For the grid search, this value will be extended by the

“distance” weight function. Additionally, a range of neighbors between 1 and 9 will be used

for the “n_neighbors” parameter. This leads to 2 ∗ 9 = 18 different combinations for the k-

NN classifier.

This process is repeated for all other classifiers with their related parameters. The

descriptions for the parameter definitions for the QDA classifier can be found in [72], for

the MLP classifier in [73], for the SVM classifier in [74], for the AdaBoost classifier in [75],

for the bagging classifier in [76] and for the random forest classifier in [77].

However, this leads to 11 different combinations for the QDA classifier, to 10 ∗ 3 ∗ 3 = 90

different combination for the MLP classifier, to 1 ∗ 4 ∗ 13 + 1 ∗ 4 = 56 different

combination for the SVM classifier and to 10 ∗ 12 ∗ 2 = 240 different combination for the

random forest classifier.

Figure 37: Test-setup for the grid search cross validation

Method screening 67

Since both the AdaBoost and the bagging classifier use the decision tree classifier as base

learner, a grid search for the decision tree itself would result in redundant workload. So, the

decision tree grid search was executed beforehand. The best performance for the decision

tree for all datasets was achieved with a changed “criterion” parameter. The changed value

is “entropy” while the rest of the parameters remain with their default values. Thus, 218

additional feature combinations can be avoided for both the AdaBoost and bagging

classifiers. So, it is only necessary to investigate the number of used base learners

(“n_estimators”). Instead of 2,180 different combinations, only 10 different combinations

for both DTBoost and DTBagg remain.

The combination of all parameters and the used classifiers are shown in Figure 37. Since a

5-fold cross validation with 10 repetitions is executed for each parameter set, 50 iterations

are necessary for each parameter set and for each classifier. This results for each dataset in

641 different parameter sets and 32,550 iterations and for all three datasets together in 97,650

iterations to execute the full grid search cross validation.

The function to execute these 97,650 iterations is stated in Listing 1.

def grid_search(data, targets, iterations, number_of_folds,

 number_of_threads, use_DT, use_kNN, use_QDA, use_MLP, use_SVM,

 use_DTBoost, use_DTBagg, use_RForest, save_dir=''):

 # generate grid search classifiers and params for the search

 grid_search_classifiers = __generate_grid_search_classifiers(use_DT,

 use_kNN, use_QDA, use_MLP, use_SVM,

 use_DTBoost, use_DTBagg, use_RForest)

 # arctangent scaling

 data = preprocessing.StandardScaler().fit_transform(data)

 data = (2 * np.arctan(data)) / np.pi

 for key, value in grid_search_classifiers.items():

 best_params = []

 results = []

 for x in range(0, iterations):

 # shuffle data

 data, targets = shuffle(data, targets)

 # set-up for grid search with stratified k-fold cross validation

 and f1 + gmean comparison

 clf = GridSearchCV(estimator=value['classifier'],

 param_grid=value['parameter'], cv=number_of_folds,

 n_jobs=number_of_threads, scoring=make_scorer(

 score_func=__custom_scorer_mixed_f1_gmean,

 greater_is_better=True))

 # calculate the different parameter performances

 clf.fit(data, targets)

Method screening 68

 # append results to the list

 best_params.append(json.dumps(str(clf.best_params_)))

 results.append(clf.cv_results_)

 # calculate averages

 all_means = []; all_stds=[];

 for result in results:

 all_means.append(result['mean_test_score'])

 all_stds.append(result['std_test_score'])

 average_means = [np.mean(x) for x in zip(*all_means)]

 average_stds = [np.mean(x) for x in zip(*all_stds)]

 params = clf.cv_results_['params']

 sorted_index = np.argsort(average_means)[::-1]

 average_means = np.array(average_means)[sorted_index]

 average_stds = np.array(average_stds)[sorted_index]

 params = np.array(params)[sorted_index]

 # print solution or save solution to file

 …

Listing 1: Grid search execution function

To execute this function successfully, the following parameters are necessary:

• data [numpy matrix]: Numpy dataset matrix (columns=features)

• targets [numpy matrix]: Numpy target matrix (each row = one target)

• iterations [int value ≥ 𝟏]: The number of repetitions for the CV grid search

• number_of_folds [int value > 𝟏]: The number of folds for a single grid search

• number_of_threads [int value ≥ 𝟏]: The number of threads to use

• use_classifier (any) [boolean]: True if the individual classifier should be generated

• save_dir [string]: If empty, performances are printed. Otherwise the results are

stored in the given path. Default = empty string

First of all, the previously described function from Listing 7 is executed to generate the

dictionary with all classifiers and parameters for which the grid search cross validation

should be executed. Afterwards, the data is preprocessed with arctangent scaling. Then the

function iterates over a for-loop for each single classifier. For each classifier, a list with the

best parameters and the results is created to store all results which will be generated in

another for-loop with 10 iterations. So, for each iteration in each classifier, the grid search

cross validation is executed. Before the execution, the data is shuffled with the built-in

function “shuffle” from the module “utils” in Scikit-Learn to generate more randomness and

to avoid overfitting. Then, the parameters with their achieved performances are appended to

the previously created list.

Method screening 69

After the 10 iterations, the performances and standard deviations are summed up and

averaged. Finally, the performances are either printed or saved. This process is then repeated

for each classifier and then for each dataset. Additional to the performance for each

parameter set, the best parameter set in each iteration is chosen and the output shows how

often a specific parameter set was chosen.

An example output for the k-NN classifier and the ADFA-LD is shown in Listing 2. This

example shows, that the parameter “n_neighbors” with the value 4 and the distance weight

function was chosen 6 of 10 times as the best classifier with an averaged performance over

10 iterations for F1-Measure and G-Mean of 89.20% and a standard deviation of 3%. Both

the k-NN classifier with either 3 or 6 neighbors and also the distance weight function were

chosen 2 of 10 times as best classifiers. This implies, that in general the distance weight

function results in better performance than the uniform weight function. This behavior is

confirmed if we look in the single results for each parameter set.

Best parameters set for KNeighbors found on development set:

"{'n_neighbors': 4, 'weights': 'distance'}": 6/10

"{'n_neighbors': 3, 'weights': 'distance'}": 2/10

"{'n_neighbors': 6, 'weights': 'distance'}": 2/10

Average grid scores on development set:

0.892 (+/-0.030) for {'n_neighbors': 4, 'weights': 'distance'}

0.890 (+/-0.029) for {'n_neighbors': 3, 'weights': 'distance'}

0.890 (+/-0.028) for {'n_neighbors': 6, 'weights': 'distance'}

0.887 (+/-0.030) for {'n_neighbors': 5, 'weights': 'distance'}

0.885 (+/-0.030) for {'n_neighbors': 7, 'weights': 'distance'}

0.885 (+/-0.029) for {'n_neighbors': 8, 'weights': 'distance'}

0.884 (+/-0.030) for {'n_neighbors': 1, 'weights': 'distance'}

0.884 (+/-0.030) for {'n_neighbors': 1, 'weights': 'uniform'}

0.882 (+/-0.028) for {'n_neighbors': 2, 'weights': 'distance'}

0.881 (+/-0.029) for {'n_neighbors': 3, 'weights': 'uniform'}

0.873 (+/-0.030) for {'n_neighbors': 5, 'weights': 'uniform'}

0.870 (+/-0.033) for {'n_neighbors': 2, 'weights': 'uniform'}

0.869 (+/-0.029) for {'n_neighbors': 4, 'weights': 'uniform'}

0.864 (+/-0.032) for {'n_neighbors': 6, 'weights': 'uniform'}

0.864 (+/-0.030) for {'n_neighbors': 7, 'weights': 'uniform'}

0.854 (+/-0.037) for {'n_neighbors': 8, 'weights': 'uniform'}

 Listing 2: Grid search cross validation performance output

This example shows only 18 different parameter sets for one classifier and one dataset. Thus,

it is not possible to show the full performance outputs for each dataset, all classifiers and

each parameter combination. Hence, only the best parameters with the chosen parameters

and the achieved performances for each classifier and dataset will be stated subsequently.

The choices for the ADFA-LD can be found in Table 7, the choices for the ICS-PSD-NvNA

are stated in Table 8 and the choices for the ICS-PSD-NNvA can be found in Table 9.

Method screening 70

 DT k-NN QDA MLP SVM DTBoost DTBagg RForest

selected times 5 / 10 6 / 10 10 / 10 1 / 10 6 / 10 3 / 10 5 / 10 2 / 10

 mean performance 0.8610 0.9000 0.7590 0.9010 0.8980 0.8940 0.9010 0.9070

standard deviation 0.0370 0.0320 0.0260 0.0230 0.0310 0.0400 0.0310 0.0210

criterion entropy - - - - entropy entropy entropy

min_sample_split 2 - - - - 2 2 -

max_depth None - - - - None None -

min_samples_leaf 1 - - - - 1 1 -

max_leaf_nodes None - - - - None None -

n_neighbors - 3 - - - - - -

weights - distance - - - - - -

reg_param - - 0.001 - - - - -

hidden_layer_sizes - - - 500 - - - -

solver - - - lbfgs - - - -

learning_rate - - - constant - - - -

kernel - - - - rbf - - -

C - - - - 100 - - -

gamma - - - - 1 - - -

n_estimators - - - - - 90 80 70

max_features - - - - - - - 0.4

Table 7: Best parameter values for each classifier for the ADFA-LD

 DT k-NN QDA MLP SVM DTBoost DTBagg RForest

selected times 1 / 10 10 / 10 7 / 10 1 / 10 8 / 10 3 / 10 2 / 10 1 / 10

 mean performance 0.9650 0.9880 0.9730 0.9780 0.9810 0.9700 0.9820 0.9850

standard deviation 0.0310 0.0160 0.0240 0.0210 0.0190 0.0280 0.0220 0.0200

criterion entropy - - - - entropy entropy entropy

min_sample_split 2 - - - - 2 2 -

max_depth None - - - - None None -

min_samples_leaf 1 - - - - 1 1 -

max_leaf_nodes None - - - - None None -

n_neighbors - 2 - - - - - -

weights - uniform - - - - - -

reg_param - - 10^(-7) - - - - -

hidden_layer_sizes - - - 300 - - - -

solver - - - lbfgs - - - -

learning_rate - - - constant - - - -

kernel - - - - rbf - - -

C - - - - 1000 - - -

gamma - - - - 0.1 - - -

n_estimators - - - - - 40 40 40

max_features - - - - - - - sqrt

Table 8: Best parameter values for each classifier for the ICS-PSD-NvNA

 DT k-NN QDA MLP SVM DTBoost DTBagg RForest

selected times 5 / 10 10 / 10 10 / 10 1 / 10 10 / 10 X / 10 X / 10 2 / 10

 mean performance 0.9280 0.9360 0.7170 0.9280 0.9260 0.9280 0.9530 0.9540

standard deviation 0.0220 0.0120 0.0290 0.0140 0.0200 0.0120 0.0120 0.0140

criterion entropy - - - - entropy entropy entropy

min_sample_split 2 - - - - 2 2 -

max_depth None - - - - None None -

min_samples_leaf 1 - - - - 1 1 -

max_leaf_nodes None - - - - None None -

n_neighbors - 2 - - - - - -

weights - distance - - - - - -

reg_param - - 0.1 - - - - -

hidden_layer_sizes - - - 400 - - - -

solver - - - lbfgs - - - -

learning_rate - - - constant - - - -

kernel - - - - rbf - - -

C - - - - 1000 - - -

gamma - - - - 1 - - -

n_estimators - - - - - 30 50 40

max_features - - - - - - - sqrt

Table 9: Best parameter values for each classifier for the ICS-PSD-NNvA

Method screening 71

Since this performance is based on the average score of the F-Measure and G-Mean metrics,

we cannot compare this performances with the basic evaluation performances from the last

chapter. However, the found parameters lay the foundation for all future tests and evaluations

in the next subchapter, in which all performances will be evaluated by classifiers which are

configured with these parameters. First, the three datasets will be evaluated with k-fold cross

validation by the optimized classifiers and then the performance will be compared to the

basic evaluation to demonstrate the performance improvement through the grid search. Then,

all imbalanced data method tests will be executed and the achieved performances will be

compared among each other to choose the best method for the smart grid hierarchy test

implementation.

6.3 Imbalanced methods evaluation

The final set of classifiers for all tests with original data and imbalanced data methods are

• k-nearest neighbor (k-NN)

• Quadratic Discriminant Analysis (QDA)

• Multilayer Perceptrons (MLP)

• Support vector machine (SVM)

• AdaBoost with decision trees as base learners (DTBoost)

• Bagging with decision trees as base learners (DTBagg)

• Random forest (RForest)

• Plurality voting (PlurVt)

• Weighted voting (WeighVt)

Since both DTBoost and DTBagg are using decision trees as their base learners, the single

decision tree classifier will not be used any longer. But therefore, the two voting classifiers,

plurality and weighted voting, will be added to the set of classifiers.

As illustrated in Figure 38, the tests can be distinguished by the use of original data and

sampled data. If the original data is used, a normal test or one of the three different used

cost-sensitive learning tests (weighting, thresholding and cost classifiers) can be executed.

If the data distribution is changed, various data sampling tests can be executed. The sampling

methods used in this research project can be divided into 11 under-sampling methods, 3

over-sampling methods and 2 hybrid-sampling methods, all introduced previously.

Method screening 72

Figure 38: Test-setup for normal, cost-sensitive and sampling tests

However, each method uses several classifiers to evaluate the performance. While the

normal execution and all sampling methods can use all 9 previously stated classifiers, the

cost-sensitive learning methods have restricted possibilities. The cost-sensitive weighting

method is only executable for selected classifiers such as decision trees and SVMs.

Therefore, the weighted classifier set consists of the classifiers SVM, DTBoost, DTBagg,

RForest and the two voting classifiers PlurVt and WeighVt. Since thresholding is only

possible for classifiers which can produce probability outputs, the classifier set is restricted

to the classifiers k-NN, MLP, QDA, SVM, DTBoost, DTBagg and RForest (voting

classifiers cannot produce probability outputs). The cost-sensitive classifier set, with directly

built-in cost-sensitivity, consists of a decision tree, bagging, pasting, random forests and

random patches. This setup leads for each dataset to 20 different scenarios (1 normal

execution scenario, 1 cost-sensitive weighting scenario, 1 cost-sensitive thresholding

scenario, 1 cost-sensitive classifier set, 11 under-sampling methods, 3 over-sampling

methods and 2 hybrid-sampling methods) and to 171 different rounds through the amount of

used classifiers (9 classifiers for normal execution, 6 classifiers for cost-sensitive weightings,

7 classifiers for cost-sensitive thresholding, 5 cost-sensitive classifiers, 9 classifiers for 11

under-sampling methods, 3 over-sampling methods and 2 hybrid-sampling methods).

Method screening 73

Each round is executed with a 5-fold cross validation and 20 repetitions to create robust

classifiers. This means that each round needs 100 iterations to accomplish the evaluation and

to obtain the performance. Consequently, each dataset needs 17,100 iterations to perform all

different test setups. This leads to 51,300 total iterations.

To evaluate all classifiers and scenarios, two wrapper functions were built. The first wrapper

function executes a full scenario and the second wrapper executes all scenarios one by one.

So, the complete test setup including all evaluations for un-sampled data and original

classifiers, cost-sensitive learning methods and sampling methods is illustrated as process

flow in Figure 39.

Figure 39: Process of complete test setup for all evaluations

To execute all scenarios (normal execution, cost-sensitive learning methods and sampling

techniques), wrapper 2 defines all single classifiers and ensemble learners, the single

classifiers and ensemble learners with integrated costs and all cost-sensitive classifiers.

Then, each scenario is executed one by one. First, the normal scenario without any changes

at the data distribution or any cost-sensitive integrations is simulated.

Method screening 74

Then, the three cost-sensitive learning scenarios (weighting, thresholding, cost-sensitive

classifiers) are performed. Next, all different sampling technique scenarios including 11

under-sampling methods, 3 over-sampling methods and 2 hybrid-sampling methods are

executed.

To execute a single scenario, wrapper 1 starts with executing the performance evaluation

method (stated in Listing 8 in Appendix A) for all single classifiers and ensemble learners

except the voting classifiers. This is necessary, since the weighted voting classifier needs the

performance weights from the other classifiers to create the classifier. So, the weights based

on the performances from all single classifiers and non-voting ensemble learners are

calculated. Then, the plurality voting classifier with all used classifiers and the weighted

voting classifier with the same classifiers and the calculated weights are created. Finally, the

evaluation process (Listing 8 in Appendix A) is executed for the plurality and the weighted

voting classifier. First in the evaluation process – similar to the basic evaluation – the

function creates a dictionary with rates for all classifiers and also different dictionaries for

the confusion matrix and the TPR and FPR performances for the ROC plot. Then, for 𝑛

iterations the evaluation process is executed. The passed data and targets are split into 𝑘

stratified and random sampled folds with the built-in function “StratifiedKFold” from Scikit-

Learn in the module “model_selection”. Then, for each fold, the performance for the given

scenario is executed. If it is a sampling scenario, the training data and training targets will

be sampled with the passed method. Afterwards, for each classifier, it is determined if either

a cost-sensitive classifier is used or not. If a cost-sensitive classifier is used, the related cost-

matrix is generated and the cost-sensitive classifier is trained by the original training data. If

no cost-sensitive classifier is used, the classifier is trained with the either sampled or original

training data by the “fit” method. Since the cost-sensitive thresholding method changes the

threshold once a classifier is trained, the next decision is to make at this point. So, if

thresholding should be used, the next step instead of proceeding to the prediction is to

substitute the training and test data by their predicted probabilities. Therefore, the built-in

function “predict_proba” of the classifier is used (only available if the classifier can predict

probabilities). Then, the related cost-matrix is generated and the thresholding class is trained

by the predicted probabilities for the training data, the cost-matrix and the training targets.

Finally, either the test data or the predicted probabilities are used for the prediction.

Method screening 75

Next, the performances are evaluated and added to the rates dictionary. As soon as all folds

and iterations for all classifiers are executed, the performances are divided by the iterations

and finally returned. Then, to calculate various metrics for the gained rates, the function

stated in Listing 9 in Appendix A is used. This function simply extracts the TP, FP, TN and

FN to calculate all used performance metrics. Then the ACC, FPR, FNR, F1-Measure and

G-Mean metrics are returned.

To generate a ROC plot with the collected TPR, FPR and AUC values, the function stated

in Listing 10 in Appendix A is used. Therefore, the Matplotlib module “pyplot”, denoted as

“plt”, is used. A diagonal line is added to represent a guessing classifier. Additional to the

True Positive Rate on the y-axis and the False Positive Rate on the x-axis, the AUC

performance metric is added in the lower right corner. Finally, the ROC curve is either

showed or saved.

Normal scenario without imbalanced data methods

First of all, let us have a look at the performances achieved for the normal scenario, which

was executed based on the process illustrated in Figure 34 without any adaptions. Thus, we

can firstly compare the achieved performance to the basic evaluation and secondly compare

the achieved performance of the ensemble learners to the single classifiers. As reminder and

for an easier compare, all performances with arctangent scaling from the basic evaluation

for all datasets are combined and stated in Table 10.

ADFA-LD ICS-PSD-NvNA ICS-PSD-NNvA

 TPR TNR ACC TPR TNR ACC TPR TNR ACC

k-NN 0.8491 0.9778 0.9616 0.9967 0.8481 0.9915 0.9423 0.7276 0.8948

MLP 0.8536 0.9832 0.9670 0.9967 0.8481 0.9915 0.9363 0.5358 0.8476

QDA 0.9741 0.4652 0.5291 0.9967 0.8135 0.9903 0.3950 0.9442 0.5166

linSVM 0.8183 0.9720 0.9527 0.9944 0.5423 0.9786 0.9604 0.1564 0.7823

rbfSVM 0.0009 0.9999 0.8746 1.0000 0.0000 0.9651 1.0000 0.0000 0.7785

Table 10: Basic evaluation results – all datasets with arctangent scaling

In general, all upcoming presented performances will consist of the metrics FPR, FNR, the

ROC AUC (denoted as AUC), the ACC, the F1-Measure (denoted as F1) and the G-Mean

(denoted as G). To compare these metrics with the metrics TPR, TNR and ACC from the

basic evaluation, the FNR is simply to consider as the complementary metric to TPR and the

FPR is simply to consider the complementary metric to TNR.

Method screening 76

Now, the achieved performance for the ADFA-LD is stated in Table 11. As we can see, the

overall performance improvement through the parameter grid search is quite good. For

example, the k-NN classifier achieved a 2.50% higher TPR (1-FNR) and a 0.50% higher

TNR (1-FPR). The MLP classifier has an 1.30% higher TPR and about the same TNR. Even

if the ACC improvements for k-NN and MLP classifiers are not high, the performance for

the minority class was improved remarkable. The QDA classifier performs still not well.

ADFA-LD FPR FNR AUC ACC F1 G

Single

classifiers

k-NN 0.0186 0.1251 0.9281 0.9680 0.8728 0.9266

MLP 0.0165 0.1334 0.9250 0.9689 0.8746 0.9232

QDA 0.1661 0.0319 0.9010 0.8507 0.6191 0.8985

SVM 0.0133 0.1443 0.9212 0.9703 0.8783 0.9189

Ensemble

classifiers

DTBoost 0.0135 0.1487 0.9189 0.9695 0.8751 0.9164

DTBagg 0.0111 0.1444 0.9223 0.9722 0.8852 0.9199

RForest 0.0097 0.1436 0.9233 0.9735 0.8901 0.9209

PlurVt 0.0107 0.1176 0.9358 0.9759 0.9017 0.9343

WeighVt 0.0099 0.1190 0.9355 0.9764 0.9034 0.9339

Table 11: K-fold cross validation results - ADFA-LD

But we could actually achieve the expected performance for the SVM classifier. Now the

SVM is an equally good classifier and achieves noteworthy results. However, this is the first

time we see the performances of the ensemble learners in comparison with the single

classifiers. The DTBagg and RForest classifiers were able to improve the detection rate for

the majority class but at the expense of a reduced detection rate for the minority class. The

ACC metric for the DTBagg and RForest ensemble learners are higher than each single

classifier but on the other hand each AUC metric of these ensemble learners is lower than

the AUC metric of the k-NN and MLP classifiers. The SVM and DTBoost classifiers have

about the same performance. However, the voting classifiers were able to achieve the best

performances by far. They could achieve approximately a 3 to 8% lower FPR and a 1 to 3%

lower FNR in comparison to the k-NN, MLP and SVM single classifiers. But they even

outperform the other ensemble learners. In terms of the AUC metric, the best classifier was

the plurality voting classifier with 93.58%.

The achieved performance for the ICS-PSD-NvNA is stated in Table 12. Even if the

performance for this classifier was already very good, through the parameter grid search the

performance was even increased.

Method screening 77

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

Single

classifiers

k-NN 0.0428 0.0030 0.9771 0.9956 0.9977 0.9769

MLP 0.0844 0.0038 0.9559 0.9934 0.9966 0.9551

QDA 0.0870 0.0120 0.9505 0.9854 0.9924 0.9498

SVM 0.0512 0.0073 0.9707 0.9912 0.9954 0.9705

Ensemble

classifiers

DTBoost 0.0451 0.0006 0.9771 0.9979 0.9989 0.9769

DTBagg 0.0694 0.0010 0.9648 0.9967 0.9983 0.9642

RForest 0.0656 0.0004 0.9669 0.9973 0.9986 0.9664

PlurVt 0.0387 0.0006 0.9803 0.9980 0.9990 0.9801

WeighVt 0.0425 0.0004 0.9785 0.9982 0.9991 0.9783

Table 12: K-fold cross validation results - ICS-PSD-NvNA

While the detection rate for the majority class is still close to 100%, the detection rate for

the minority class was improved by 11% for the k-NN classifier and by nearly 7% for the

MLP classifier. The QDA classifier detected 1% less majority instances but therefor was

able to detect 10% more minority instances. Again, the SVM classifier improved the

performance drastically. The ensemble learners raised the already very high detection rate

for the majority class to over 99.90%. While the DTBoost and both voting classifiers were

able to improve the detection rate for the minority class to over 95% (similar to k-NN),

DTBagg and RForest detected just about 93% of the minority instances. This is better than

the MLP and QDA classifier but worse than the others. Again, the plurality voting classifier

achieved with 98.03% the best performance in terms of the AUC metric.

The achieved performance for the ICS-PSD-NNvA is stated in Table 13. The behavior is

similar to the other two datasets. Through grid search a quite good performance

improvement was achieved.

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

Single

classifiers

k-NN 0.1370 0.0393 0.9119 0.9391 0.9609 0.9106

MLP 0.1585 0.0429 0.8993 0.9315 0.9560 0.8974

QDA 0.1779 0.3946 0.7138 0.6534 0.7312 0.7055

SVM 0.1935 0.0195 0.8935 0.9419 0.9634 0.8893

Ensemble

classifiers

DTBoost 0.1915 0.0411 0.8837 0.9256 0.9525 0.8805

DTBagg 0.1188 0.0152 0.9330 0.9618 0.9757 0.9315

RForest 0.1173 0.0150 0.9338 0.9623 0.9760 0.9324

PlurVt 0.1205 0.0186 0.9304 0.9588 0.9737 0.9290

WeighVt 0.1297 0.0171 0.9266 0.9580 0.9733 0.9249

Table 13: K-fold cross validation results - ICS-PSD-NNvA

Method screening 78

The k-NN classifier improved its accuracy by over 4% by detecting 1.80% more majority

instances and 13.50% more minority instances. The MLP classifier performed even better

and achieved an 8.40% higher accuracy by detecting 2% more majority instances and nearly

31% more minority instances. The performance for the QDA classifier is still bad. Again,

the performance for the SVM classifier was improved to an equal level. The detection rate

for majority instances is better but in expense of the detection rate for the minority instances.

Except DTBoost, the ensemble learner performances are a lot better than the performances

of the single classifiers. They improved the amount of detected majority instances by 0.50

to 2.50% and the amount of detected minority instances up to 7.60%. This time, a non-voting

ensemble learner, namely the RForest classifier, achieved the best AUC with 93.38%.

All in all, it was shown that the parameter grid search was very effective to boost the

performance of the classifiers. The behavior was for all datasets similar but only a different

range of improvements is to consider. Beside that, the ensemble learners showed also for all

datasets an even better performance than the single classifiers.

Next, all the imbalanced data methods will be executed and compared to these performances.

Finally, the best method will be selected for the smart grid hierarchy setup.

Imbalanced data methods performances

To this point, all performances were achieved with the help of the NumPy [64], SciPy [65],

Matplotlib [67] and especially the Scikit-Learn [66] package. To execute the cost-sensitive

learning methods, the CostsensitiveClassification package [36] includes the stated cost-

sensitive classifiers and was also used to perform thresholding. To add weights to the

classifiers, the classifiers within the Scikit-Learn package could be used. Finally, for all

sampling methods, the Imbalanced-Learn package [68] was used.

Before the performances from the imbalanced data methods will be compared to the normal

scenario, let us consider that all the previous evaluations were performed by the

straightforward process illustrated in Figure 34. To execute the imbalanced methods, some

individual changes in this process were necessary. Therefore, each individual changed

process will be illustrated separately. The changes will be outlined with red color.

Method screening 79

Figure 40: Cost-sensitive weighting and classifiers evaluation process

Let us start with the changes for cost-sensitive weighting and cost-sensitive classifiers. The

changes for both methods are illustrated in Figure 40, since the changes are similar and only

different classifiers are used. So, the only relevant change is that a cost-matrix is created

which is either directly integrated into the classifier (weighting) or passed to train the cost-

sensitive classifier. The rest of the process remains the same.

Figure 41: Cost-sensitive thresholding evaluation process

Method screening 80

More changes are necessary for cost-sensitive thresholding (see Figure 41). Once the original

classifier is trained, the classifier is used to predict probabilities for test and training data.

Then, a cost-matrix is created and the thresholding classifier is trained by the predicted

training data probabilities and the cost-matrix. Finally, the targets are predicted with the

thresholding classifier by the predicted test data probabilities.

Figure 42: Sampling evaluation process

To execute the evaluation process with sampling methods, only a single change is necessary.

As illustrated in Figure 42, the training data is sampled with the according sampling method

and then the classifier is trained with the sampled training data.

As stated, there are 20 different scenarios for each dataset. So, not each performance result

will be stated in the following pages. Instead, only the best method for each sampling type

and the three cost-sensitive methods will be shown and compared to the normal scenario.

Nevertheless, all performance results can be found in the Appendix. The results for the

ADFA-LD are stated in Appendix B, the results for the ICS-PSD-NvNA can be found in

Appendix C and the results for the ICS-PSD-NNvA are listed in Appendix D.

Method screening 81

Since the comparison of all performance metrics would be beyond the scope, the AUC, FPR

and FNR metrics were chosen for the comparison. The AUC metric was chosen because the

ACC and also the F1-Measure are too biased related to a single class. Since the G-mean

evaluates similar metrics (square of TPR multiplied by TNR) than the AUC (curve area for

TPR and FPR with different thresholds) and the results for both metrics are quite similar, the

AUC was chosen because the performance can be illustrated additionally with the ROC plot.

The FPR and the FNR metrics were chosen as addition to the AUC metric for a better

comparison of the detection rate for both the minority and majority class. Based on this

metrics, the best under-, over- and hybrid-sampling methods were chosen.

After the presentation of the results, each dataset will be individually compared by the

different imbalanced data methods. Additionally, the results from the imbalanced data

methods from each dataset will be compared to the normal scenario. Then, the different

imbalanced data methods will be compared over all datasets. Finally, the best method will

be chosen. This method will then be used for the final test, the smart grid hierarchy model.

Now, let us finally come to the results for the imbalanced data methods. The results for all

test scenarios for the ADFA-LD are stated in Table 14, the results for the ICS-PSD-NvNA

are stated in Table 15 and the results for the ICS-PSD-NNvA are stated in Table 16.

If we compare the imbalanced data method performances for the ADFA-LD (Table 14) to

the results from the normal scenario (Table 11), then all sampling methods were able to

improve the AUC score. On the other hand, nearly all cost-sensitive learning methods

decreased the performance. Let us start with the RENN under-sampling method, which was

chosen as the best under-sampling method. This method was able to improve the AUC

performance of each single classifier and ensemble learner. An improvement of the AUC

between 0.30% and 1.50% was achieved by a more balanced detection rate. For the normal

scenario, the common (without QDA) false detection rate for the majority class (FPR) is

between 1 and 2% and for the minority class (FNR) between 11 and 15%. With RENN

under-sampling, the common FPR is now between 4 and 7% and the FNR remains only

between 2 and 10%. This means, that there are less detected majority instances but therefore

a lot more detected minority instances. To highlight this, the average AUC was raised from

92.35% (FPR 2.99%, FNR 12.31%) to 93.30% (FPR 6.47%, FNR 6.94%). This behavior is

exactly as expected and improves the overall detection rate (based on the AUC metric) while

a much better detection rate for the minority class was achieved.

Method screening 82

ADFA-LD FPR FNR AUC ACC F1 G
U

n
d

er
-s

am
p

li
n

g
:

R
ep

ea
te

d
E

d
it

ed
-

N
ea

re
st

N
ei

g
h

b
o

u
r

(R
E

N
N

)

k-NN 0.0663 0.0603 0.9367 0.9345 0.7824 0.9367

MLP 0.0583 0.0660 0.9379 0.9407 0.7980 0.9379

QDA 0.1633 0.0288 0.9040 0.8536 0.6245 0.9015

SVM 0.0542 0.0777 0.9341 0.9428 0.8018 0.9340

DTBoost 0.0546 0.1018 0.9218 0.9394 0.7881 0.9215

DTBagg 0.0435 0.0883 0.9341 0.9509 0.8230 0.9338

RForest 0.0386 0.0839 0.9387 0.9557 0.8384 0.9385

PlurVt 0.0514 0.0613 0.9437 0.9474 0.8173 0.9437

WeighVt 0.0523 0.0564 0.9456 0.9472 0.8174 0.9456

O
v

er
-s

am
p

li
n

g
:

A
D

A
S

Y
N

k-NN 0.0407 0.0735 0.9429 0.9552 0.8383 0.9428

MLP 0.0347 0.0849 0.9402 0.9590 0.8484 0.9399

QDA 0.2209 0.0392 0.8699 0.8019 0.5487 0.8652

SVM 0.0339 0.0929 0.9366 0.9587 0.8462 0.9361

DTBoost 0.0229 0.1176 0.9297 0.9652 0.8641 0.9285

DTBagg 0.0274 0.0887 0.9420 0.9649 0.8670 0.9415

RForest 0.0237 0.0928 0.9418 0.9677 0.8755 0.9411

PlurVt 0.0283 0.0697 0.9510 0.9665 0.8746 0.9508

WeighVt 0.0254 0.0745 0.9500 0.9684 0.8802 0.9497

H
y
b
ri

d
-s

am
p
li

n
g
:

S
M

O
T

E
T

o
m

ek

k-NN 0.0385 0.0721 0.9447 0.9573 0.8448 0.9446

MLP 0.0263 0.1092 0.9322 0.9633 0.8588 0.9313

QDA 0.1458 0.0464 0.9039 0.8667 0.6420 0.9025

SVM 0.0257 0.1200 0.9272 0.9625 0.8547 0.9260

DTBoost 0.0196 0.1284 0.9260 0.9668 0.8680 0.9244

DTBagg 0.0212 0.1098 0.9345 0.9677 0.8734 0.9334

RForest 0.0175 0.1056 0.9385 0.9715 0.8872 0.9375

PlurVt 0.0212 0.0867 0.9460 0.9706 0.8862 0.9455

WeighVt 0.0199 0.0874 0.9464 0.9717 0.8898 0.9458

C
o
st

-s
e
n

si
ti

v
e

w
ei

g
h

ti
n

g

SVM 0.0219 0.2355 0.8713 0.9514 0.7976 0.8647

DTBoost 0.0150 0.1543 0.9154 0.9676 0.8674 0.9127

DTBagg 0.0118 0.1451 0.9215 0.9715 0.8826 0.9191

RForest 0.0101 0.1442 0.9228 0.9731 0.8885 0.9204

PlurVt 0.0083 0.1638 0.9140 0.9722 0.8830 0.9106

WeighVt 0.0093 0.1451 0.9228 0.9737 0.8905 0.9203

C
o

st
-s

en
si

ti
v

e

th
re

sh
o

ld
in

g

k-NN 0.0415 0.0791 0.9397 0.9538 0.8332 0.9395

MLP 0.0183 0.1830 0.8993 0.9610 0.8402 0.8955

QDA 0.0195 0.1218 0.9293 0.9677 0.8719 0.9279

SVM 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955

DTBoost 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955

DTBagg 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278

RForest 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278

C
o

st
-

se
n

si
ti

v
e

cl
a
ss

if
ie

rs
 DT 0.0256 0.4955 0.7395 0.9155 0.5996 0.7011

Bagging 0.0864 0.1014 0.9061 0.9117 0.7185 0.9061

Pasting 0.0965 0.0879 0.9078 0.9046 0.7056 0.9078

RForest 0.0879 0.0839 0.9141 0.9126 0.7244 0.9141

RPatches 0.1215 0.0753 0.9016 0.8843 0.6671 0.9013

Table 14: Results for imbalanced data methods – ADFA-LD

Method screening 83

Although the RENN under-sampling for the ADFA-LD achieved the best detection rates for

the minority class, with ADASYN over-sampling the AUC score could be raised again. So,

an average AUC of 93.38% was achieved with an average FPR of 5.09% and an average

FNR of 8.15%. Comparing the best single classifiers, the normal scenario achieved an AUC

of 93.58% with the plurality voting classifier, the RENN under-sampling achieved an AUC

of 94.56% with the weighted voting classifier and through ADASYN over-sampling the

plurality voting classifier achieved an AUC score of 95.10%. However, SMOTETomek

hybrid-sampling achieved also for each classifier a better AUC score than the normal

scenario. But, the detection rate for the minority class is worse than the detection rate with

under- or over-sampling. Anyway, a slightly better detection rate for the majority class was

achieved. Nevertheless, the best classifier from SMOTETomek hybrid-sampling achieved

just a 0.10% better performance than the best classifier from RENN under-sampling and a

0.50% worse performance than ADASYN over-sampling.

The cost-sensitive weighting had only insignificant impact on the performance. While

individual classifiers are slightly better, other classifiers are slightly worse and the voting

classifiers achieve also a worse performance since there are less single classifiers to consider

for the voting. So, the overall performance of cost-sensitive weighting is worse than the

normal scenario. Also, with cost-sensitive thresholding, the performance of each classifier

but k-NN and QDA was decreased. The k-NN classifier with thresholding achieved an over

1% higher AUC by detecting 2.30% less majority instances but nearly 5% more minority

instances. The curious behavior of the QDA classifier continues, since this classifier

improved the AUC score by nearly 3% with an over 14% higher detection rate for the

majority class and a 9% lower detection rate for the minority class. Anyway, the overall

lower performance through thresholding seems very inconsistent. But the decreasing

performance is unfortunately continued with the cost-sensitive classifiers. While the

decision tree with built-in cost-sensitiveness performs at the very worst, the other cost-

sensitive classifiers can achieve at least an AUC score barely over 90% with at least more

balanced detection rates. All in all, the cost-sensitive classifiers are very disappointing, since

cost-sensitive weighting achieved only a similar performance to the normal scenario and

thresholding and the cost-sensitive classifiers even decreased the performance. However, the

sampling methods compensate this bad performance. Regarding the best method among

them, the decision is not easy to make.

Method screening 84

Plurality voting classifier – normal scenario Plurality voting classifier – ADASYN

Compared only based on the AUC metric, ADASYN over-sampling has definitely the best

performance even when RENN under-sampling achieved just a 0.50% lower AUC score

while having generally a higher detection rate for the minority class. Nevertheless,

ADASYN over-sampling achieved with the plurality voting classifier the best AUC

performance for the ADFA-LD. A comparison between the normal scenario and ADASYN

over-sampling is illustrated through ROC plots in Figure 43. A close inspection reveals that

the higher TPR emerges as a direct consequence of the lower FPR.

Figure 43: ROC plots –Best normal vs. imbalanced method (ADFA-LD)

The performance of the normal scenario for the ICS-PSD-NvNA is stated in Table 12.

Compared to the results from the imbalanced data methods from Table 15, the behavior is

similar to the ADFA-LD. But the first difference is that not the RENN method performed

best among the under-sampling methods. Instead, the CNN under-sampling method

achieved the best results. Anyway, the behavior is similar. The detection rate for the minority

class was improved by up to 5% which leads for example for the k-NN classifier to a

detection rate of over 99% while the detection rate for the majority class was decreased by

up to 14% in an exceptional case and by up to 3.50% for the rest of the classifiers. This leads

in general to a better AUC score for nearly all classifiers.

Again, ADASYN was chosen as the best over-sampling method. In average, the detection

rate of the majority class was just slightly decreased while the detection rate for the minority

class was improved remarkable.

Method screening 85

ICS-PSD-NvNA FPR FNR AUC ACC F1 G
U

n
d

er
-s

am
p

li
n

g
:

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o

u
r

(C
N

N
)

k-NN 0.0069 0.1433 0.9247 0.8614 0.9227 0.9223

MLP 0.0520 0.0358 0.9560 0.9636 0.9808 0.9560

QDA 0.0633 0.0121 0.9623 0.9861 0.9928 0.9620

SVM 0.0234 0.0414 0.9676 0.9592 0.9784 0.9676

DTBoost 0.0142 0.0256 0.9800 0.9748 0.9868 0.9801

DTBagg 0.0176 0.0222 0.9800 0.9780 0.9885 0.9801

RForest 0.0188 0.0207 0.9801 0.9793 0.9892 0.9802

PlurVt 0.0150 0.0152 0.9847 0.9848 0.9920 0.9849

WeighVt 0.0162 0.0120 0.9857 0.9878 0.9936 0.9859

O
v

er
-s

am
p

li
n

g
:

A
D

A
S

Y
N

k-NN 0.0355 0.0044 0.9799 0.9945 0.9971 0.9799

MLP 0.0723 0.0063 0.9607 0.9914 0.9956 0.9602

QDA 0.0780 0.0871 0.9174 0.9132 0.9531 0.9174

SVM 0.0442 0.0083 0.9737 0.9905 0.9950 0.9736

DTBoost 0.0228 0.0019 0.9876 0.9974 0.9986 0.9876

DTBagg 0.0246 0.0029 0.9862 0.9964 0.9981 0.9862

RForest 0.0231 0.0018 0.9874 0.9974 0.9987 0.9875

PlurVt 0.0205 0.0020 0.9886 0.9974 0.9986 0.9887

WeighVt 0.0159 0.0015 0.9912 0.9980 0.9990 0.9913

H
y
b
ri

d
-s

am
p
li

n
g
:

S
M

O
T

E
T

o
m

ek

k-NN 0.0321 0.0041 0.9819 0.9950 0.9974 0.9818

MLP 0.0540 0.0063 0.9698 0.9920 0.9959 0.9695

QDA 0.1043 0.0100 0.9428 0.9867 0.9931 0.9417

SVM 0.0540 0.0064 0.9698 0.9920 0.9958 0.9695

DTBoost 0.0280 0.0014 0.9852 0.9977 0.9988 0.9852

DTBagg 0.0341 0.0035 0.9812 0.9955 0.9977 0.9811

RForest 0.0309 0.0022 0.9834 0.9968 0.9983 0.9833

PlurVt 0.0182 0.0020 0.9898 0.9974 0.9987 0.9899

WeighVt 0.0231 0.0013 0.9877 0.9979 0.9989 0.9877

C
o
st

-s
e
n

si
ti

v
e

w
ei

g
h

ti
n

g

SVM 0.0633 0.0057 0.9655 0.9922 0.9960 0.9650

DTBoost 0.0436 0.0008 0.9778 0.9977 0.9988 0.9775

DTBagg 0.0789 0.0016 0.9597 0.9957 0.9978 0.9590

RForest 0.0780 0.0007 0.9607 0.9966 0.9983 0.9599

PlurVt 0.0286 0.0009 0.9852 0.9982 0.9991 0.9852

WeighVt 0.0393 0.0003 0.9802 0.9983 0.9991 0.9800

C
o

st
-s

e
n

si
ti

v
e

th
re

sh
o

ld
in

g

k-NN 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787

MLP 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651

QDA 0.0373 0.0728 0.9449 0.9284 0.9615 0.9448

SVM 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651

DTBoost 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651

DTBagg 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787

RForest 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787

C
o

st
-

se
n

si
ti

v
e

cl
a
ss

if
ie

rs
 DT 0.5477 0.0160 0.7181 0.9655 0.9822 0.6671

Bagging 0.0740 0.0283 0.9488 0.9701 0.9843 0.9486

Pasting 0.0546 0.0313 0.9570 0.9679 0.9831 0.9570

RForest 0.0572 0.0282 0.9573 0.9708 0.9847 0.9572

RPatches 0.0497 0.0310 0.9596 0.9684 0.9834 0.9596

Table 15: Results for imbalanced data methods – ICS-PSD-NvNA

Method screening 86

Plurality voting classifier – normal scenario Weighted voting classifier – ADASYN

For example, the weighted voting classifier, which is the best individual classifier for the

ICS-PSD-NvNA, increased the AUC score through oversampling from 97.85% (FPR 4.25%,

FNR 0.04%) to 99.12% (FPR 1.59%, FNR 0.15%) with nearly the same detection rate for

the majority class. This is a desirable result since the accuracy stays the same while a crucial

increased detection rate for the minority class was achieved. But also, the rest of the

classifiers (except QDA) improved their performances, whereby the ensemble learners were

able to raise the AUC score the most (over 2%). Also, the SMOTETomek hybrid-sampling

method improved the performance of nearly all classifiers and again the ensemble learners

improved their already superior performance at most. The best classifier within the hybrid-

sampling method is the plurality voting classifier with an AUC of 98.98%, which is just

0.14% lower than the best classifier within over-sampling.

The cost-sensitive learning methods were again not able to keep up with the sampling

methods. The cost-sensitive weighting showed about the same performance than the normal

scenario. Only the voting classifiers were slightly worse due to the small number of

participating classifiers. While the cost-sensitive thresholding method were able to balance

the detection rates for the k-NN, QDA, DTBagg and RForest classifiers a bit, the

performance for the MLP, SVM and DTBoost classifiers decreased drastically. Finally, the

cost-sensitive classifiers caused an overall worse AUC score but therefore a more balanced

detection rate. But again, the decision tree classifier is the worst classifier.

However, the choice of the best method was not as difficult as for the ADFA-LD. The

ADASYN over-sampling method achieved the best performance in all categories.

Figure 44: ROC plots – Best normal vs. imbalanced method (ICS-PSD-NvNA)

Method screening 87

A comparison between the normal scenario and the ADASYN over-sampling is illustrated

through ROC plots in Figure 44. Even if the AUC score was improved by only 1.09%, one

can see how close this comes to an ideal performance.

The last dataset, the ICS-PSD-NNvA is compared between the performances of the normal

scenario from Table 13 and the performances of the imbalanced data methods from Table

16. Since the behavior is very similar to the other two datasets, the performances for this

dataset will be compared less detailed. This time, NCR under-sampling was the best under-

sampling method and was able to improve the AUC score for nearly each classifier. Again,

the under-sampling method was able to detect the most minority instances compared to over-

sampling and hybrid-sampling. Anyway, ADASYN over-sampling achieved again the best

performance among the over-sampling methods and gained also the overall best

performance. Instead of one of the voting classifiers, the random forest classifier achieved

the best performance among the different classifiers. So, the best AUC score was improved

from 93.38% (normal scenario) to 95.08% (ADASYN over-sampling). Also, similar to the

previous evaluations, SMOTETomek was the best hybrid-sampling method and performed

in terms of AUC better than NCR under-sampling and only slightly worse than ADASYN

over-sampling.

While the cost-sensitive weighting method is comparable to the normal scenario, cost-

sensitive thresholding and the cost-sensitive classifiers stepped completely out of the line.

Thresholding tuned the threshold for the k-NN, MLP, QDA and SVM classifiers in such a

way, that all minority instances were detected but no single majority instance. This time, not

only the cost-sensitive decision tree classifier performs badly but all cost-sensitive classifiers

are in an agreement about a terrible performance.

However, a comparison between the normal scenario and the best method, the ADASYN

over-sampling, is illustrated through ROC plots in Figure 45. Now we can see that the

minority and the majority classes are interchanged since the curve behaves exactly inversely

since the TPR decreases while the FPR improves. However, the AUC score was improved

by 1.70%.

Method screening 88

ICS-PSD-NNvA FPR FNR AUC ACC F1 G
U

n
d

er
-s

am
p

li
n

g
:

N
ei

g
h

b
o

u
rh

o
o

d
-

C
le

a
n

in
g

R
u

le

(N
C

R
)

k-NN 0.0917 0.1046 0.9018 0.8982 0.9320 0.9018

MLP 0.1179 0.0897 0.8962 0.9040 0.9366 0.8961

QDA 0.3039 0.3047 0.6957 0.6955 0.7805 0.6957

SVM 0.1620 0.0566 0.8907 0.9201 0.9484 0.8891

DTBoost 0.1521 0.0680 0.8899 0.9134 0.9437 0.8890

DTBagg 0.0830 0.0494 0.9338 0.9432 0.9630 0.9336

RForest 0.0785 0.0455 0.9380 0.9472 0.9657 0.9378

PlurVt 0.0849 0.0624 0.9264 0.9327 0.9559 0.9263

WeighVt 0.0856 0.0634 0.9255 0.9316 0.9552 0.9254

O
v

er
-s

am
p

li
n

g
:

A
D

A
S

Y
N

k-NN 0.1260 0.0443 0.9148 0.9376 0.9598 0.9139

MLP 0.1327 0.0574 0.9049 0.9259 0.9519 0.9042

QDA 0.8764 0.0725 0.5255 0.7494 0.8521 0.3386

SVM 0.1617 0.0246 0.9069 0.9451 0.9651 0.9043

DTBoost 0.1820 0.0903 0.8639 0.8894 0.9276 0.8627

DTBagg 0.0932 0.0574 0.9247 0.9347 0.9574 0.9245

RForest 0.0477 0.0508 0.9508 0.9499 0.9672 0.9508

PlurVt 0.1007 0.0318 0.9338 0.9530 0.9697 0.9331

WeighVt 0.1022 0.0330 0.9324 0.9516 0.9689 0.9317

H
y
b
ri

d
-s

am
p
li

n
g
:

S
M

O
T

E
T

o
m

ek

k-NN 0.1162 0.0511 0.9163 0.9345 0.9575 0.9158

MLP 0.1440 0.0562 0.8999 0.9243 0.9510 0.8988

QDA 0.0675 0.6118 0.6603 0.5088 0.5517 0.6017

SVM 0.1824 0.0243 0.8966 0.9407 0.9624 0.8931

DTBoost 0.1703 0.0701 0.8798 0.9077 0.9401 0.8784

DTBagg 0.0785 0.0343 0.9436 0.9559 0.9715 0.9433

RForest 0.0756 0.0321 0.9462 0.9583 0.9731 0.9459

PlurVt 0.0852 0.0329 0.9409 0.9555 0.9713 0.9406

WeighVt 0.0988 0.0286 0.9363 0.9559 0.9716 0.9357

C
o
st

-s
e
n

si
ti

v
e

w
ei

g
h

ti
n

g

SVM 0.1959 0.0184 0.8929 0.9423 0.9636 0.8885

DTBoost 0.1057 0.1347 0.8798 0.8717 0.9131 0.8797

DTBagg 0.1345 0.0135 0.9260 0.9597 0.9744 0.9241

RForest 0.1294 0.0111 0.9297 0.9627 0.9763 0.9278

PlurVt 0.0985 0.0197 0.9409 0.9629 0.9762 0.9401

WeighVt 0.1425 0.0094 0.9240 0.9611 0.9754 0.9216

C
o

st
-s

e
n

si
ti

v
e

th
re

sh
o

ld
in

g

k-NN 0.0960 0.0852 0.9094 0.9124 0.9421 0.9094

MLP 0.0000 1.0000 0.5000 0.2215 nan 0.0000

QDA 0.0000 1.0000 0.5000 0.2215 nan 0.0000

SVM 0.0000 1.0000 0.5000 0.2215 nan 0.0000

DTBoost 0.0000 1.0000 0.5000 0.2215 nan 0.0000

DTBagg 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967

RForest 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967

C
o

st
-

se
n

si
ti

v
e

cl
a
ss

if
ie

rs
 DT 0.6166 0.0817 0.6509 0.7998 0.8772 0.5934

Bagging 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874

Pasting 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874

RForest 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874

RPatches 0.1400 0.2490 0.8055 0.7751 0.8387 0.8036

Table 16: Results for imbalanced data methods – ICS-PSD-NNvA

Method screening 89

Random Forest Classifier – normal scenario Random Forest Classifier – ADASYN

Random forest classifier – normal scenario Random forest classifier – ADASYN

Figure 45: ROC plots – Best normal vs. imbalanced method (ICS-PSD-NNvA)

In general, the cost-sensitive classifiers are basically good for balancing the detection rates

respectively improve the detection rate for the minority class but they are prone to over-

balance the rates and so it is possible that the performance drops heavily. The sampling

methods provide a very constant improvement in comparison to the normal scenario. The

under-sampling methods achieved an overall higher AUC score and were mostly able to

detect the most minority class instances among the sampling methods. On the other hand,

the over-sampling method is the superior method and can achieve every time the best scores.

Last but not least, the hybrid-sampling method keeps the performance somewhere between

under- and over-sampling. In general, not only over-sampling is the superior method,

especially ADASYN performed outstanding and achieved the best performances overall for

each of the three datasets. While this is the same for SMOTETomek hybrid-sampling, the

best under-sampling method was different for each dataset. However, it is suggested to use

ADASYN over-sampling for the smart grid IDS implementation, which will be introduced

subsequently, since it is the most promising imbalanced data method.

Hierarchical smart grid IDS communication system 90

7 Hierarchical smart grid IDS communication system

In this chapter, a hierarchical smart grid IDS will be built to simulate a communication flow.

To evaluate the performance of this communication system, the ADFA-LD will be used to

provide normal and attack data. One simulation round will use the unchanged data set and

another simulation round will use the previously chosen best imbalanced data method,

namely ADASYN over-sampling. Then, the two performances for the smart grid IDS will

be compared.

To execute a single simulation round, a process as illustrated in Figure 46 is executed. The

yellow outlined tasks state optional processes, since the first round is executed without over-

sampling. Anyway, in each simulation round the test data is predicted by a hierarchical smart

grid IDS communication system (outlined in red).

Figure 46: Hierarchical smart grid IDS simulation process

So, the red outlined part represents a three-layer hierarchy smart grid architecture which will

be built similar to the hierarchical smart grid IDS system as illustrated in Figure 5 and

described in [18]. Since the used architecture and communication flow for this hierarchical

smart grid IDS are very complex, a prototypical implementation with a more simplified

communication flow will be created. Therefore, the created prototype uses only a single IDS

at each layer and is simulated only by if/else decisions.

Hierarchical smart grid IDS communication system 91

For a better understanding of the created three-layer smart grid architecture, a single decision

process for a single data instance is illustrated in Figure 47.

Figure 47: Hierarchical smart grid communication flow and decision process

This process illustrates the communication flow of a single data instance and at this point

we assume that the classifiers are already trained. Now, a single data instance is passed at

first to the HAN layer. Since the devices used in HANs (e.g., smart meters) have usually a

low-performance, just the two fastest (measured during the method screening process) but

still well performing classifiers were chosen for the HAN IDS. The used classifiers are the

k-NN and the SVM classifier. The single data instance is then predicted with both classifiers.

If both the k-NN and the SVM classifiers predict the same class, then this prediction is a

final decision. If they disagree in their decision, the data instance is passed to the next layer.

Within the NAN layer, the data instance is now predicted from an IDS with four different

classifiers, namely k-NN, MLP, SVM and RForest. If the majority of the classifiers decide

for one class, then this class is the final decision. On the other hand, if two of the classifiers

predict one class and the other two classifiers predict the other class, then the data instance

is again forwarded to the next and last layer. In the WAN layer, the data instance is predicted

by the plurality voting classifier. Since this is the last layer, no further decision is necessary.

Consequently, the predicted class is the final decision.

Hierarchical smart grid IDS communication system 92

However, to perform the simulation at all, an own module “sg_hierarchy_simulation” was

developed. This module contains two scripts “model” and “simulation”. The “model” script

contains the training and the prediction functions and the “simulation” script contains the

simulation routine to execute the “model” functions for 𝑛 rounds and to evaluate the

performances.

The function for a complete simulation round (either with or without over-sampling) is stated

in Listing 11 in Appendix A. Basically, the data is scaled and performance values are created.

Then, the process of splitting data, over-sampling (if true), training and predicting is

executed for 𝑛 rounds to finally get an average performance. However, the training and

prediction functions are the most important parts for the hierarchical smart grid IDS (red

outline section in Figure 46) and will be explained subsequently.

The function to create the classifiers and to train them is stated in Listing 3.

def build_and_train_classifier_2HAN_4NAN_voteWAN(data, targets):

 # load HAN classifier + training

 HAN_clf = __get_classifier(use_kNN=True, use_SVM=True)

 for key, classifier in HAN_clf.items():

 classifier.fit(data, targets)

 # load NAN classifier + training

 NAN_clf = __get_classifier(use_kNN=True, use_MLP=True, use_SVM=True,

 use_RForest=True)

 for key, classifier in NAN_clf.items():

 classifier.fit(data, targets)

 # load WAN classifier + training

 WAN_clf = __get_classifier(use_kNN=True, use_QDA=True, use_MLP=True,

 use_SVM=True, use_DTBoost=True, use_DTBagg=True,

 use_RForest=True)

 estimators = []

 for key, classifier in sorted(WAN_clf.items()):

 estimators.append((key, classifier))

 WAN_clf = VotingClassifier(estimators=estimators, voting='hard')

 WAN_clf.fit(data, targets)

 return HAN_clf, NAN_clf, WAN_clf

Listing 3: Create and train smart grid hierarchy classifiers

This function creates and trains the classifiers only for the introduced architecture (2 HAN

classifiers, 4 WAN classifiers and a single WAN voting classifier). If a different architecture

should be used (e.g., 2 HAN classifiers, 6 WAN classifiers and 2 WAN classifier), it is only

necessary to create another function which creates the classifiers for the desired architecture.

Hierarchical smart grid IDS communication system 93

To finally evaluate the full test dataset, the process of a single data decision, as previously

described and illustrated in Figure 47, needs to be repeated for all test data instances.

Additionally, a few evaluation variables are used to evaluate the performance of the whole

training data set (e.g., for each layer, the correct predicted instances and amount of passed

instances are measured). The function to execute these tasks is stated in Listing 4.

def model_evaluation_2HAN_4NAN_voteWAN(data, targets, HAN_clf, NAN_clf,

WAN_clf):

 predictions = []

 HAN_correct = 0

 NAN_correct = 0

 WAN_correct = 0

 from_han_to_nan = 0

 from_nan_to_wan = 0

 pos = 0

 for single_instance in data:

 # HAN prediction

 HAN_predicts = []

 for key, classifier in HAN_clf.items():

 HAN_predicts.append(classifier.predict(single_data))

 if HAN_predicts[0] == HAN_predicts[1]:

 prediction = HAN_predicts[0]

 predictions.append(prediction)

 if prediction == targets[pos]:

 HAN_correct += 1

 else:

 # HAN classifier in disagreement

 from_han_to_nan += 1

 NAN_predicts = []

 for key, classifier in NAN_clf.items():

 NAN_predicts.append(classifier.predict(single_data))

 negatives = 0

 positives = 0

 for NAN_predict in NAN_predicts:

 if NAN_predict == 0:

 negatives += 1

 else:

 positives += 1

 if positives > negatives:

 prediction = 1

 if prediction == targets[pos]:

 NAN_correct += 1

 elif negatives > positives:

 prediction = 0

 if prediction == targets[pos]:

 NAN_correct += 1

 else:

 # equal votes for NAN classifier

 from_nan_to_wan += 1

 prediction = WAN_clf.predict(single_data)

 if prediction == targets[pos]:

 WAN_correct += 1

 predictions.append(prediction)

 pos += 1

Hierarchical smart grid IDS communication system 94

 # calculate accuracies

 HAN_total = len(targets) - from_han_to_nan

 NAN_total = from_han_to_nan - from_nan_to_wan

 WAN_total = from_nan_to_wan

 HAN_accuracy = HAN_correct / HAN_total

 NAN_accuracy = NAN_correct / NAN_total

 if WAN_total > 0:

 WAN_accuracy = WAN_correct / WAN_total

 else:

 WAN_accuracy = 1

 return np.asarray(predictions, dtype=int), HAN_total, HAN_accuracy,

 NAN_total, NAN_accuracy, WAN_total, WAN_accuracy

Listing 4: Hierarchical smart grid model evaluation process

8

To execute this function successfully, the following parameters are necessary:

• data [numpy matrix]: Numpy dataset matrix (columns=features)

• targets [numpy matrix]: Numpy target matrix (each row = one target)

• HAN_clf [dictionary]: All trained classifiers used for the HAN layer. The name of

the classifiers as key for each entry and the classifier itself as value.

• NAN_clf [dictionary]: All trained classifiers used for the NAN layer. The name of

the classifiers as key for each entry and the classifier itself as value.

• WAN_clf [dictionary]: All trained classifiers used for the WAN layer. The name of

the classifiers as key for each entry and the classifier itself as value.

At the end, this function returns the amount of classified data instances at each layer, the

achieved accuracy at each layer and the list with the final predictions. These values are used

to evaluate the performance of the hierarchy itself and to compare the performances with the

simple train and fit tests from the previous chapter and between the normal simulation and

the simulation with over-sampled training data. Again, to use a different architecture, it is

only necessary to create another function with the desired if/else architecture.

However, the processed data instances and the accuracy for these instances are stated in

Table 17 for each hierarchy layer.

HAN

predictions

HAN

accuracy

NAN

predictions

NAN

accuracy

WAN

predictions

WAN

accuracy

ADFA-LD

original
1161.54 97.92% 19.14 83.32% 10.32 74.22%

ADDA-LD

sampled
1143.56 97.03% 32.04 82.92% 15.40 69.57%

Table 17: Data instances and accuracy for the hierarchy layers in the smart grid IDS

Hierarchical smart grid IDS communication system 95

So, in total 1,191 test data instances were processed. Since the smart grid IDS detection

process was repeated 100 times, the amount of processed data for each hierarchy layer has

decimals. However, the number of processed instances within the HAN layer is very high.

In the simulation process with un-sampled training data, on average 1,161.54 data instances

were processed in the HAN. This means, that less than 30 instances were passed to next layer

(or less than 2.50%). For the simulation round with over-sampled training data the number

of processed instances at the HAN layer is 1,143.56 averaged. Less than 48 data instances

or less than 4% were passed to the next layer. But this fact is only remarkable since the total

accuracy at this layer is very high. The simulation with the original training data achieved

an accuracy of 97.92% within the HAN layer and the simulation with the over-sampled

training data achieved an accuracy of 97.03%. The first comparison of this accuracy already

implies, that the behavior for the over-sampled data might be similar as described in the

previous chapter. However, for the scenario with the original data, the NAN layer processed

over 19 data instances from the approximately remaining 30 (approximately 65% of the

remaining instances). This was accomplished with a total accuracy of 83.32%. On the other

hand, the scenario with the over-sampled training data processed over 32 instances from the

averaged 47.44 remaining instances (approximately 67.50% of the remaining instances). The

total accuracy at the NAN layer for these instances is 82.92%. The WAN layer processed

only 10.32 data instances for the round with original data with an achieved accuracy of

74.22% and only 15.40 data instances for the round with over-sampled data with an achieved

accuracy of 69.57%. So, even the supposed difficult to predict instances which were passed

to the next layers were predicted with an acceptable accuracy.

Finally, the performance metrics for the complete smart grid communication model are

stated in Table 18. As assumed, the behavior of the smart grid communication system is

similar to a common prediction process from the previous chapter.

 FPR FNR AUC ACC F1 G

ADFA-LD

original
1.18% 11.96% 93.46% 97.48% 89.68% 93.27%

ADDA-LD

sampled
3.23% 6.97% 94.90% 96.30% 86.34% 94.88%

Table 18: Performance results for the smart grid IDS

Hierarchical smart grid IDS communication system 96

ADFA-LD (unsampled) ADFA-LD (over-sampled)

For the simulation with unchanged methods, the detection rate for the minority class is at

88.04% and the detection rate for the majority class is at 98.82%. This leads to an AUC score

of 93.46%. Through over-sampling the training data for the simulation process the AUC

score was raised to 94.90%. This score was achieved with a detection rate of 93.03% for the

minority class and a detection rate of 96.77% for the majority class. So, the 1.44% higher

AUC score with 5% more detected minority instances is achieved at the expense of a 1.18%

lower accuracy score.

The ROC plots for both scenarios are illustrated Figure 48. These plots show visually the

change of the detection rates for minority and majority class which led to a higher AUC

score.

Figure 48: ROC plots for the best performers in the smart grid IDS

Finally, if we compare this performance to the results from the previous chapter, we can see

that the performance of the smart grid IDS communication system achieves the same results

as the respective best classifier. This means, the smart grid IDS communication system

achieves for both scenarios a similar performance as their respective voting classifiers from

the previous chapter.

Conclusion 97

8 Conclusion

The goal of this research project was to investigate imbalanced data methods and to use these

methods for anomaly detection in smart grids. For this purpose, two different datasets were

chosen, whereby one dataset consists of normal network data and cyber-attacks and the other

dataset consists of normal, natural and attack events. Both datasets were evaluated with a

selection of classifiers. These classifiers were tested with their default parameters and then

a grid search was executed to improve their performance. In general, it is a promising idea

to execute a grid search within the hyper-parameter space since the performance were

improved for all datasets and all classifiers. Then, the performance for all datasets were

evaluated with various imbalanced data methods. Therefore, sampling methods such as

under-sampling, over-sampling and hybrid-sampling and also cost-sensitive learning

methods such as weighting, thresholding and cost-sensitive classifiers were tested. While the

performance for the cost-sensitive learning methods were disappointing, the sampling

methods fulfilled their expectations. Especially through over-sampling they were able to

improve the detection rate of the minority class while the detection rate for majority class

nearly remained. Overall, this behavior led to an improved AUC score.

After the exploration of all methods, the best method for the ADFA-LD was chosen to build

a smart grid IDS. To build the smart grid IDS, a hierarchical three-layer communication

system were constructed with if/else conditions. Then, both the best common method and

the best chosen imbalanced data method were evaluated for the built smart grid IDS. The

expectation was, that the imbalanced data method outperforms existing approaches. If we

consider the AUC score, this goal was definitely reached. The behavior for the three-layer

smart grid IDS with ADASYN over-sampling was similar to a common evaluation and so

the detection rate for the minority class was improved while the performance for the majority

class was just slightly worse. This led to an overall better AUC score of 1.50%.

But the hierarchical smart grid IDS itself was also able to improve the overall performance.

So, the performance for both methods match their respective best performing classifier,

namely the plurality voting classifier. Consequently, a higher performance was achieved

only through the use of the hierarchical three-layer smart grid IDS. This performance was

again improved through ADASYN over-sampling which led finally to the overall best

performance.

Conclusion 98

To extend this work, one might experiment with various combinations of classifiers and

structures for the hierarchical smart grid IDS to improve the performance. Another

possibility would be to add some ensemble solution classifiers to the classifier set or to add

some classifiers from the algorithm-level solutions (e.g., kernel-based learning framework,

one-class learning approach or active learning approach). Finally, one could change the

prototypical implementation with if/else conditions to a real smart grid communication

system as created in [18].

Bibliography 99

9 Bibliography

[1] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig und B. Sinopoli, „Cyber–

Physical Security of a Smart Grid Infrastructure,“ Proceedings of the IEEE, Bd. 100, Nr. 1, pp.

195 - 209, January 2012.

[2] R. Berthier, W. H. Sanders und H. Khurana, „Intrusion Detection for Advanced Metering

Infrastructures: Requirements and Architectural Directions,“ in IEEE International Conference

on Smart Grid Communications, Gaithersburg, MD, USA, 2010.

[3] 50Hertz Transmission GmbH, „50Hertz Stromkreuzungen,“ [Online]. Available:

http://www.50hertz.com/Portals/3/Galerien/Broschueren/50Hertz_BR_Stromkreuzungen-

DE-Web.pdf. [Accessed 16 May 2017].

[4] Deutsches Bundesministerium für Wirtschaft und Energie, „Dossier Netze und Netzausbau,“

[Online]. Available: https://www.bmwi.de/Redaktion/DE/Dossier/netze-und-netzausbau.html.

[Accessed 16 May 2017].

[5] M. Orcutt, „How a Smarter Grid Can Prevent Blackouts - and Cut Your Energy Bills,“ August

2010. [Online]. Available: http://www.popularmechanics.com/science/energy/a6013/how-a-

smarter-grid-can-prevent-blackouts/. [Accessed 16 May 2017].

[6] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati und G. P. Hancke, „Smart

Grid Technologies: Communication Technologies and Standards,“ IEEE Transactions on

Industrial Informatics, Bd. 7, Nr. 4, pp. 529-539, November 2011.

[7] H. Farhangi, „The Path of the Smart Grid,“ IEEE power & energy magazine, pp. 18-28, 2010.

[8] National Energy Technology Laboratory und Office of Electricity Delivery & Energy

Reliabily, „Advanced Metering Infrastructure,“ U.S. Department of Energy, 2008.

[9] R. Ma, H.-H. Chen und Y.-R. Huang, „Smart Grid Communication: Its Challenges and

Opportunities,“ IEEE Transactions on Smart Grid, Bd. 4, Nr. 1, pp. 36-46, March 2013.

[10] Y. Yan, H. Sharif und D. Tipper, „Survey on Smart Grid Communication Infrastructures:

Motivations, Requirements and Challenges,“ IEEE COMMUNICATIONS SURVEYS &

TUTORIALS, Bd. 1, pp. 5-20, 2013.

[11] H. F. Tipton, Official (ISC)2 Guide to the CISSP CBK, Bd. 2, Boca Raton, FL: Tayler &

Francis Group, 2010.

[12] SANS Institute, „Intrusion Detection Systems: Definition, Need and Challenges,“ SANS

Institute, Bethesda, 2001.

[13] SANS Institute, „Understanding Intrusion Detection Systems,“ SANS Institute, Bethesda,

2001.

[14] T. Boyles, CCNA Security Study Guide, Indianapolis, IN: Wiley, 2010.

[15] F. M. Tabrizi und K. Pattabiraman, „A Model-Based Intrusion Detection System for Smart

Meters,“ in International Symposium on High-Assurance Systems Engineering, Miami Beach,

FL, USA, 2014.

Bibliography 100

[16] R. Mitchell und I.-R. Chen, „Behavior-Rule Based Intrusion Detection Systems for Safety

Critical Smart Grid Applications,“ IEEE Transactions on Smart Grid, pp. 1254-1263, 29 April

2013.

[17] O. Linda, M. Manic und T. Vollmer, „Improving cyber-security of smart grid systems via

anomaly detection and linguistic domain knowledge,“ in International Symposium on Resilient

Control Systems, Salt Lake City, UT, USA, 2012.

[18] Y. Zhang, L. Wang, W. Sun, R. C. Green II und M. Alam, „Distributed Intrusion Detection

System in a Multi-Layer Network Architecture of Smart Grids,“ IEEE Transactions on Smart

Grid, pp. 796-808, 29 July 2011.

[19] R. O. Duda, P. E. Hart und D. G. Stork, Pattern Classification (2nd Edition), Wiley-

Interscience, 2000.

[20] A. K. Jain, R. P. Duin und J. Mao, „Statistical Pattern Recognition: A Review,“ IEEE

Transactions on Pattern Analysis and Machine Intelligence, Bd. 22, Nr. 1, pp. 4-37, January

2000.

[21] A. R. Webb, Statistical Pattern Recognition, Second Edition, John Wiley & Sons, Ltd., 2002.

[22] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „Tuning the hyper-parameters of an estimator,“ [Online]. Available: http://scikit-

learn.org/stable/modules/grid_search.html. [Accessed 31 May 2017].

[24] T. Whitney, „Classification,“ [Online]. Available:

http://trevorwhitney.com/data_mining/classification. [Accessed 2 June 2017].

[25] OpenCV dev team, „Introduction to Support Vector Machines,“ [Online]. Available:

http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html.

[Accessed 2 June 2017].

[26] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, Boca Raton, FL: Taylor &

Francis Group, LLC, 2012.

[27] H. He und E. A. Garcia, „Learning from Imbalanced Data,“ IEEE Transactions on Knowledge

and Data Engineering, Bd. 21, Nr. 9, pp. 1263-1284, September 2009.

[28] B. Zhu, B. Baesens und S. K. vanden Broucke, „An empirical comparison of techniques for

the class imbalance problem in churn prediction,“ Information Sciences, Bd. 408, pp. 84-99,

October 2017.

[29] S. Shekarforoush, R. Green und R. Dyer, „Classifying Commit Messages: A Case Study in

Resampling Techniques,“ in International Joint Conference on Neural Networks, Anchorage,

Alaska, 2017.

[30] G. Lemaitre , F. Nogueira und C. K. Aridas, „Imbalanced-learn: A Python Toolbox to Tackle

the Curse of Imbalanced Datasets in Machine Learning,“ Journal of Machine Learning

Research, Bd. 18, Nr. 17, pp. 1-5, 2017.

[31] I. Tomek, „An Experiment with the Edited Nearest-Neighbor Rule,“ IEEE Transactions on

Systems, Man, and Cybernetics, Bde. %1 von %2SMC-6, Nr. 6, pp. 448-452, June 1976.

Bibliography 101

[32] B. Zadrozny, J. Langford und N. Abe, „Cost-sensitive learning by cost-proportionate example

weighting,“ in Third IEEE International Conference on Data Mining, Melbourne, FL, USA,

2003.

[33] P. Branco, L. Torgo und R. P. Ribeiro, „A Survey of Predictive Modeling on Imbalanced

Domains,“ ACM Computing Surveys, Bd. 49, Nr. 2, p. Article No. 31, November 2016.

[34] P. Domingos, „MetaCost: a general method for making classifiers cost-sensitive,“ KDD '99

Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 155-164, August 1999.

[35] V. S. Sheng und C. X. Ling, „Thresholding for Making Classifiers Cost-sensitive,“

Proceedings of the 21st national conference on Artificial intelligence, Bd. 1, pp. 476-481, July

2006.

[36] A. Correa Bahnsen, „Example-Dependent Cost-Sensitive Classification with Applications in

Financial Risk Modeling and Marketing Analytics,“ University of Luxembourg, 2015.

[37] G. Creech und J. Hu, „Generation of a new IDS test dataset: Time to retire the KDD collection,“

in Wireless Communications and Networking Conference (WCNC), Shangai, China, 2013.

[38] Canonical Ltd. Ubuntu, „Ubuntu,“ [Online]. Available: https://www.ubuntu.com/. [Accessed

10 May 2017].

[39] R. C. Borges, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari und S. Pan, „Machine

Learning for Power System Disturbance and Cyber-attack Discrimination,“ in International

Symposium on Resilient Control Systems, Denver, Colorado, 2014.

[40] S. Pan, T. Morris und U. Adhikari, „Developing a Hybrid Intrusion Detection System Using

Data Mining for Power Systems,“ IEEE Transactions on Smart Grid, Bd. 6, Nr. 6, pp. 3104-

3113, 18 March 2015.

[41] S. Pan, T. Morris und U. Adhikari, „Classification of Disturbances and Cyber-Attacks in Power

Systems Using Heterogeneous Time-Synchronized Data,“ IEEE Transactions on Industrial

Informatics, Bd. 11, Nr. 3, pp. 650-662, 8 April 2015.

[42] S. Pan, T. Morris und U. Adhikari, „A Specification-based Intrusion Detection Framework for

Cyber-physical Environment in Electric Power System,“ International Journal of Network

Security, Bd. 17, Nr. 2, pp. 174-188, March 2015.

[43] I. University of California, „The UCI KDD Archive - KDD Cup 1998 Data,“ , 16 February

1999. [Online]. Available: https://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

[Accessed 10 May 2017].

[44] University of New Mexico - Computer Science Department, „Computer Immune Systems -

Data Sets and Software,“ [Online]. Available: https://www.cs.unm.edu/~immsec/data-

sets.htm. [Accessed 10 May 2017].

[45] „The Apache Software Foundation,“ [Online]. Available: https://www.apache.org/. [Accessed

10 May 2017].

[46] The PHP Group, „PHP,“ [Online]. Available: https://secure.php.net/. [Accessed 10 May 2017].

[47] Oracle Corporation, „MySQL,“ [Online]. Available: https://www.mysql.com/. [Accessed 10

May 2017].

Bibliography 102

[48] J. Posel und J. Reynolds, „File Transfer Protocol (FTP) - RFC 959,“ October 1985. [Online].

Available: https://www.ietf.org/rfc/rfc959.txt. [Accessed 10 May 2017].

[49] T. Ylonen, SSH Communications Security Corp, C. E. Lonvick und Cisco Systems Inc., „The

Secure Shell (SSH) Transport Layer Protocol - RFC 4253,“ January 2006. [Online]. Available:

https://tools.ietf.org/rfc/rfc4253.txt. [Accessed 10 May 2017].

[50] Tiki Software Community Association, „tiki wiki cms groupware,“ [Online]. Available:

https://tiki.org/tiki-index.php. [Accessed 10 May 2017].

[51] M. Xie und J. Hu, „Evaluating Host-Based Anomaly Detection Systems: A Preliminary

Analysis of ADFA-LD,“ in International Congress on Image and Signal Processing (CISP),

Hangzhou, China, 2013.

[52] Australian Defence Force Academy, „The ADFA Intrusion Detection Datasets,“ 31 October

2013. [Online]. Available: https://www.unsw.adfa.edu.au/australian-centre-for-cyber-

security/cybersecurity/ADFA-IDS-Datasets/. [Accessed 11 May 2017].

[53] S. Forrest, S. A. Hofmeyr, A. Somayaji und T. A. Longstaff, „A sense of self for Unix

processes,“ in IEEE Symposium on Security and Privacy, 1996.

[54] G. Creech, „Developing a high-accuracy cross platform Host-Based Intrusion Detection

System capable of reliably detecting zero-day attacks,“ The University of New South Wales,

2013.

[55] G.-B. Huang, Q.-Y. Zhu und C.-K. Siew, „Extreme learning machine: a new learning scheme

of feedforward neural networks,“ in IEEE International Joint Conference on Neural Networks,

Budapest, Hungary, 2004.

[56] L. Rabiner und B. Juang, „An introduction to hidden Markov models,“ IEEE ASSP Magazine,

Bd. 3, Nr. 1, pp. 4-16, 1 January 1986.

[57] G. Creech und J. Hu, „A Semantic Approach to Host-based Intrusion Detection Systems Using

Contiguous and Discontiguous System Call Patterns,“ IEEE Transactions on Computers, Bd.

63, Nr. 4, pp. 807-819, 24 January 2013.

[58] Cisco and/or its affiliates, „SNORT,“ [Online]. Available: https://www.snort.org/. [Accessed

11 May 2017].

[59] R. Gerhards, „The Syslog Protocol - RFC 5424,“ March 2009. [Online]. Available:

https://tools.ietf.org/rfc/rfc5424.txt. [Accessed 11 May 2017].

[60] T. Morris, „Industrial Control System (ICS) Cyber Attack Datasets,“ [Online]. Available:

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets. [Accessed 11 May 2017].

[61] Python Software Foundation, „Python,“ [Online]. Available: https://www.python.org/.

[Accessed 12 May 2017].

[62] Continuum Analytics, Inc., „Anaconda,“ [Online]. Available: https://www.continuum.io/.

[Accessed 12 May 2017].

[63] JetBrains s.r.o., „PyCharm Python IDE for Professional Developers,“ [Online]. Available:

https://www.jetbrains.com/pycharm/. [Accessed 12 May 2017].

[64] S. van der Walt, S. C. Colbert und G. Varoquaux, „The NumPy Array: A Structure for Efficient

Numerical Computation,“ Computing in Science & Engineering, pp. 22-30, 2011.

Bibliography 103

[65] E. Jones, T. Oliphant, P. Peterson und others, „SciPy: Open source scientific tools for Python,“

[Online]. Available: https://www.scipy.org/. [Accessed 12 May 2017].

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.

Perrot und E. Duchesnay, „Scikit-learn: Machine Learning in Python,“ Journal of Machine

Learning Research, pp. 2825-2830, October 2011.

[67] J. D. Hunter, „Matplotlib: A 2D Graphics Environment,“ Computing in Science & Engineering,

pp. 90-95, 2007.

[68] G. Lemaitre, F. Nogueira und C. K. Aridas, „Imbalanced-learn: A Python Toolbox to Tackle

the Curse of Imbalanced Datasets in Machine Learning,“ Journal of Machine Learning

Research, Bd. 18, Nr. 17, pp. 1-5, 2017.

[69] Georg Brandl and the Sphinx team, „Sphinx: Python Documentation generator,“ [Online].

Available: http://www.sphinx-doc.org/en/stable/authors.html. [Accessed 13 May 2017].

[70] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.tree.DecisionTreeClassifier,“ [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html. [Accessed 13

June 2017].

[71] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.neighbors.KNeighborsClassifier,“ [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html. [Accessed

13 June 2017].

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis,“ [Online]. Available:

http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.

QuadraticDiscriminantAnalysis.html. [Accessed 13 June 2017].

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.neural_network.MLPClassifier,“ [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html. [Accessed

13 June 2017].

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.svm.SVC,“ [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html. [Accessed 13 June 2017].

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.ensemble.AdaBoostClassifier,“ [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html. [Accessed 13

June 2017].

[76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.ensemble.BaggingClassifier,“ [Online]. Available: http://scikit-

Bibliography 104

learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html. [Accessed 13

June 2017].

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher und

P, „sklearn.ensemble.RandomForestClassifier,“ [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

[Accessed 13 June 2017].

Appendix 105

Appendix A: Source code

Following, some used functions from the created Python program will be stated. The

functions are referenced and explained within the research project.

Basic evaluation function (scaling and classifier tests)

def basic_evaluation_binary(data, targets, classifiers,

 training_share=0.5, iterations=10, use_unscaled_data,

 use_interval_scaled_data, use_zscore_scaled_data,

 use_atan_scaled_data):

 # create empty dictionary for rates

 rates = {}

 for key in classifiers.keys():

 rates[key] = {}

 if use_unscaled_data:

 rates[key]['unscaled'] = np.zeros((2, 2))

 if use_interval_scaled_data:

 rates[key]['interval'] = np.zeros((2, 2))

 if use_zscore_scaled_data:

 rates[key]['zscore'] = np.zeros((2, 2))

 if use_atan_scaled_data:

 rates[key]['atan'] = np.zeros((2, 2))

 for x in range(0, iterations):

 # random sampling

 train_unscaled, test_unscaled, train_targets, test_targets =

 train_test_split(data, targets, test_size=1-training_share,

 stratify=targets)

 # scaling

 if use_interval_scaled_data:

 scaler = preprocessing.MinMaxScaler().fit(train_unscaled)

 train_interval = scaler.transform(train_unscaled)

 test_interval = scaler.transform(test_unscaled)

 if use_zscore_scaled_data:

 scaler = preprocessing.StandardScaler().fit(train_unscaled)

 train_zscore = scaler.transform(train_unscaled)

 test_zscore = scaler.transform(test_unscaled)

 if use_atan_scaled_data:

 if not use_zscore_scaled_data:

 scaler =

 preprocessing.StandardScaler().fit(train_unscaled)

 train_zscore = scaler.transform(train_unscaled)

 test_zscore = scaler.transform(test_unscaled)

 train_atan = (2 * np.arctan(train_zscore)) / np.pi

 test_atan = (2 * np.arctan(test_zscore)) / np.pi

 # prediction and metric calculation

 for key, classifier in classifiers.items():

 if use_unscaled_data:

 rates[key]['unscaled'] +=

 metrics.confusion_matrix(test_targets,

 classifier.fit(train_unscaled,

 train_targets).predict(test_unscaled))

 if use_interval_scaled_data:

 rates[key]['interval'] +=

 metrics.confusion_matrix(test_targets,

 classifier.fit(train_interval,

Appendix 106

 train_targets).predict(test_interval))

 if use_zscore_scaled_data:

 rates[key]['zscore'] +=

 metrics.confusion_matrix(test_targets,

 classifier.fit(train_zscore,

 train_targets).predict(test_zscore))

 if use_atan_scaled_data:

 rates[key]['atan'] +=

 metrics.confusion_matrix(test_targets,

 classifier.fit(train_atan,

 train_targets).predict(test_atan))

 # divide rates by iterations to get the mean

 for key in classifiers.keys():

 if use_unscaled_data:

 rates[key]['unscaled'] /= iterations

 if use_interval_scaled_data:

 rates[key]['interval'] /= iterations

 if use_zscore_scaled_data:

 rates[key]['zscore'] /= iterations

 if use_atan_scaled_data:

 rates[key]['atan'] /= iterations

 return rates

Listing 5: Basic evaluation function (scaling and classifier tests)

To execute this function successfully, the following parameters are necessary:

• data [numpy matrix]: Numpy dataset matrix (columns=features)

• targets [numpy matrix]: Numpy target matrix (each row = one target)

• classifiers [dictionary]: The name of the classifiers as key for each entry and the

classifier itself as value; the evaluation is executed for each classifier

• training_share [double value > 𝟎 𝒂𝒏𝒅 < 𝟏]: The percentage of data which should

be used to train the classifier

• iterations [int value ≥ 𝟏]: The number of repetitions for a single evaluation process

• use_unscaled_data [boolean]: True if unscaled data should be used for the

evaluation

• use_interval_scaled_data [boolean]: True if the data should be fitted to the interval

[0,1] and used for the evaluation

• use_zscore_scaled_data [boolean]: True if the data should be z-score scaled

(standardized) and used for the evaluation

• use_atan_scaled_data [boolean]: True if the data should be arctangent scaled and

used for the evaluation

Appendix 107

Custom scorer function for the GridSearchCV

def __custom_scorer_mixed_f1_gmean(targets, predictions):

 rates = metrics.confusion_matrix(targets, predictions)

 TN = rates[0][0]; FP = rates[0][1];

 FN = rates[1][0]; TP = rates[1][1];

 # calculate F1 performance metrics

 if (TP + FN == 0) or (TP + FP == 0):

 F1 = 0

 else:

 Recall = TP / (TP + FN)

 Precision = TP / (TP + FP)

 if Recall == 0 or Precision == 0:

 F1 = 0

 else:

 F1 = (2 * Precision * Recall) / (Precision + Recall)

 # calculate Gmean performance metrics

 if (TP + FN == 0) or (TN + FP == 0):

 Gmean = 0

 else:

 Recall = TP / (TP + FN)

 Specifity = TN / (TN + FP)

 Gmean = (Recall * Specifity) ** (1 / 2)

 return np.mean([F1, Gmean])

Listing 6: Custom scorer function for the GridSearchCV

Generation of grid search classifiers and parameters

def __generate_grid_search_classifiers(use_DT, use_kNN, use_QDA, use_MLP,

 use_SVM, use_DTBoost, use_DTBagg,

 use_RForest):

 grid_search_classifiers = {}

 if use_DT:

 grid_search_classifiers['DT'] = {}

 grid_search_classifiers['DT']['classifier'] =

 DecisionTreeClassifier()

 grid_search_classifiers['DT']['parameter'] = \

 {

 "criterion": ["gini", "entropy"],

 "min_samples_split": [2, 5, 10],

 "max_depth": [None, 5, 10, 20],

 "min_samples_leaf": [1, 2, 5],

 "max_leaf_nodes": [None, 20, 50]

 }

 if use_kNN:

 grid_search_classifiers['k-NN'] = {}

 grid_search_classifiers['k-NN']['classifier'] =

 KNeighborsClassifier()

 grid_search_classifiers['k-NN']['parameter'] = \

 {

 "n_neighbors": np.arange(1, 9),

 "weights": ['uniform', 'distance'],

 }

Appendix 108

 if use_QDA:

 grid_search_classifiers['QDA'] = {}

 grid_search_classifiers['QDA']['classifier'] =

 QuadraticDiscriminantAnalysis()

 grid_search_classifiers['QDA']['parameter'] =

 {

 "reg_param": np.concatenate([np.zeros(1), np.logspace(-

 10, 0, 11)])

 }

 if use_MLP:

 grid_search_classifiers['MLP'] = {}

 grid_search_classifiers['MLP']['classifier'] = MLPClassifier()

 grid_search_classifiers['MLP']['parameter'] = \

 {

 "hidden_layer_sizes": np.arange(100, 1001, 100),

 "solver": ['lbfgs', 'sgd', 'adam'],

 "learning_rate": ['constant', 'invscaling', 'adaptive']

 }

 if use_SVM:

 grid_search_classifiers['SVM'] = {}

 grid_search_classifiers['SVM']['classifier'] = SVC()

 grid_search_classifiers['SVM']['parameter'] = \

 [

 {

 'kernel': ['rbf'],

 'C': [1, 10, 100, 1000],

 'gamma': np.logspace(-9, 3, 13)

 },

 {

 'kernel': ['linear'],

 'C': [1, 10, 100, 1000]

 }

]

 if use_DTBoost:

 grid_search_classifiers['DTBoost'] = {}

 grid_search_classifiers['DTBoost']['classifier'] =

 AdaBoostClassifier(base_estimator= \

 DecisionTreeClassifier(criterion="entropy"))

 grid_search_classifiers['DTBoost']['parameter'] =

 {

 "n_estimators": np.arange(10, 101, 10)

 }

 if use_DTBagg:

 grid_search_classifiers['DTBagg'] = {}

 grid_search_classifiers['DTBagg']['classifier'] = BaggingClassifier(

 base_estimator=DecisionTreeClassifier(criterion="entropy"))

 grid_search_classifiers['DTBagg']['parameter'] =

 {

 "n_estimators": np.arange(10, 101, 10)

 }

 if use_RForest:

 grid_search_classifiers['RandomForest'] = {}

 grid_search_classifiers['RandomForest']['classifier'] =

 RandomForestClassifier()

 grid_search_classifiers['RandomForest']['parameter'] = \

 {

 "n_estimators": np.arange(10, 101, 10),

 "max_features": ['sqrt', None, 0.01, 0.1, 0.2, 0.3, 0.4,

 0.5, 0.6, 0.7, 0.8, 0.9],

 "criterion": ['gini', 'entropy'],

 }

 return grid_search_classifiers

Listing 7: Generation of grid search classifiers and parameters

Appendix 109

K-fold cross validation for normal, cost-sensitive and sampling tests

def k_fold_cv_binary(data, targets, clfs, folds, iterations,

 use_thresholding=False, use_cost_models=False, sampling=None):

 rates = {}

 for key in clfs.keys():

 rates[key] = {}

 rates[key]['cm'] = np.zeros((2, 2))

 rates[key]['roc'] = {}

 rates[key]['roc']['FPR'] = np.linspace(0, 1, 2501)

 rates[key]['roc']['TPR'] = []

 for x in range(0, iterations):

 # k-fold sampling // iterate over each fold

 skf = StratifiedKFold(n_splits=folds, shuffle=True)

 for train_index, test_index in skf.split(data, targets):

 # set train and test data for this fold

 train_data, test_data = data[train_index], data[test_index]

 train_targets, test_targets = targets[train_index],

 targets[test_index]

 if sampling != None:

 train_data, train_targets = sampling.fit_sample(train_data,

 train_targets)

 # prediction and metric calculation

 for key, classifier in clfs.items():

 if not use_cost_models:

 pred_clf = classifier.fit(train_data, train_targets)

 if use_thresholding and not hasattr(pred_clf, 'voting'):

 train_data = pred_clf.predict_proba(train_data)

 test_data = pred_clf.predict_proba(test_data)

 cost_mat = __generate_imb_cost_mat(train_targets)

 pred_clf = ThresholdingOptimization().fit(train_data,

 cost_mat, train_targets)

 else:

 costs = __generate_imb_cost_mat(train_targets)

 pred_clf = classifier.fit(train_data, train_targets, costs)

 # predict the test data

 prediction_targets = pred_clf.predict(test_data)

 # calculate metrics and store them in dict

 rates[key]['cm'] += metrics.confusion_matrix(test_targets,

 prediction_targets)

 fpr, tpr, th_roc = metrics.roc_curve(test_targets,

 prediction_targets)

 rates[key]['roc']['TPR'].append(

 np.interp(rates[key]['roc']['FPR'], fpr, tpr))

 rates[key]['roc']['TPR'][-1][0] = 0.0

 # divide rates by iterations to get the average of the whole evaluation

 for key in clfs.keys():

 rates[key]['cm'] /= iterations

 rates[key]['roc']['TPR'] = np.mean(rates[key]['roc']['TPR'], axis=0)

 rates[key]['roc']['AUC'] = metrics.auc(rates[key]['roc']['FPR'],

 rates[key]['roc']['TPR'])

 return rates

Listing 8: K-fold cross validation for normal, cost-sensitive and sampling tests

Appendix 110

To execute this function successfully, the following parameters are necessary:

• data [numpy matrix]: Numpy dataset matrix (columns=features)

• targets [numpy matrix]: Numpy target matrix (each row = one target)

• clfs [dictionary]: The name of the classifiers as key for each entry and the classifier

itself as value; the evaluation is executed for each classifier

• folds [int value > 𝟏]: The number of fold for a single grid search

• iterations [int value ≥ 𝟏]: The number of repetitions for the CV grid search

• use_thresholding [boolean]: True if thresholding should be performed to adapt the

fit and predict behavior. Default: False

• use_cost_models [boolean]: True if cost classifiers are passed to adapt the fit and

predict behavior. Default: False

• sampling [Sampling Class]: If a sampling method should be used, pass the sampling

class to this parameter. Default: None

Confusion matrix performance evaluation function

def cm_performance_evaluation(rates):

 # calculate performance metrics

 TN = rates[0][0];

 FP = rates[0][1];

 FN = rates[1][0];

 TP = rates[1][1];

 Precision = TP / (TP + FP)

 Recall = TP / (TP + FN)

 Specifity = TN / (TN + FP)

 ACC = (TP + TN) / (TP + TN + FP + FN)

 FPR = 1 - Specifity

 FNR = 1 - Recall

 F1_Score = (2 * Precision * Recall) / (Precision + Recall)

 G_mean = (Recall * Specifity) ** (1 / 2)

 return ACC, FPR, FNR, F1_Score, G_mean

Listing 9: Confusion matrix performance evaluation function

Appendix 111

ROC curve generation function

def roc_plot(dataset_name, classifier_name, rates_FPR, rates_TPR,

rates_AUC, save_plot=False, base_path="", scaling_name=""):

 plt.figure(figsize=(5, 5))

 plt.title('ROC: ' + dataset_name + ' - ' + classifier_name)

 plt.plot(rates_FPR, rates_TPR, 'b', label='AUC = %0.4f' % rates_AUC)

 plt.legend(loc='lower right')

 plt.plot([0, 1], [0, 1], 'r--')

 plt.xlim([-0.1, 1.1])

 plt.ylim([-0.1, 1.1])

 plt.ylabel('True Positive Rate')

 plt.xlabel('False Positive Rate')

 plt.grid(True)

 if save_plot:

 …

 else:

 plt.show()

 plt.close()

Listing 10: ROC curve generation function

Hierarchical smart grid IDS simulation process

def simulate(data, targets, training_size, iterations, sampling):

 # preprocess data (atan scaling)

 data = preprocessing.StandardScaler().fit_transform(data)

 data = (2 * np.arctan(data)) / np.pi

 # evaluation values

 rates = {}

 rates['cm'] = np.zeros((2, 2))

 rates['roc'] = {}

 rates['roc']['FPR'] = np.linspace(0, 1, 2501)

 rates['roc']['TPR'] = []

 HAN_total = 0

 HAN_accuracy = 0

 NAN_total = 0

 NAN_accuracy = 0

 WAN_total = 0

 WAN_accuracy = 0

 # execute simulation for x rounds

 for x in range(iterations):

 # split data

 data_train, data_test, targets_train, targets_test =

 train_test_split(data, targets, train_size=training_size)

 # oversampling for training data

 if sampling:

 data_train, targets_train = ADASYN().fit_sample(data_train,

 targets_train)

Appendix 112

 # build and train classifier for sg architecture

 HAN_clf, NAN_clf, WAN_clf =

 build_and_train_classifier_2HAN_4NAN_voteWAN(data_train, targets_train)

 # run model simulation for sg architecture

 prediction, HAN_total_round, HAN_accuracy_round, NAN_total_round,

 NAN_accuracy_round, WAN_total_round, WAN_accuracy_round = \

 model_evaluation_2HAN_4NAN_voteWAN(data_test, targets_test, HAN_clf,

 NAN_clf, WAN_clf)

 # add performance values

 …

 # divide performance values by iterations to get the average performance

 …

 # calculate performance measures

 ACC, FPR, FNR, F1_Score, G_mean = cm_performance_evaluation(rates['cm'])

Listing 11: Hierarchical smart grid IDS simulation process

To execute this function successfully, the following parameters are necessary:

• data [numpy matrix]: Numpy dataset matrix (columns=features)

• targets [numpy matrix]: Numpy target matrix (each row = one target)

• training_size [double value > 𝟎 𝒂𝒏𝒅 < 𝟏]: The percentage of data which should

be used to train the classifiers

• iterations [int value ≥ 𝟏]: The number of repetitions for a single evaluation process

• sampling [boolean]: True, if ADASYN over-sampling should be used

Appendix 113

Appendix B: ADFA-LD results

ADFA-LD results

ADFA-LD FPR FNR AUC ACC F1 G

Single

classifiers

k-NN 0.0186 0.1251 0.9281 0.9680 0.8728 0.9266

MLP 0.0165 0.1334 0.9250 0.9689 0.8746 0.9232

QDA 0.1661 0.0319 0.9010 0.8507 0.6191 0.8985

SVM 0.0133 0.1443 0.9212 0.9703 0.8783 0.9189

Ensemble

classifiers

DTBoost 0.0135 0.1487 0.9189 0.9695 0.8751 0.9164

DTBagg 0.0111 0.1444 0.9223 0.9722 0.8852 0.9199

RForest 0.0097 0.1436 0.9233 0.9735 0.8901 0.9209

PlurVt 0.0107 0.1176 0.9358 0.9759 0.9017 0.9343

WeighVt 0.0099 0.1190 0.9355 0.9764 0.9034 0.9339

Table 19: ADFA-LD results

ADFA-LD results (Under-sampling)

ADFA-LD FPR FNR AUC ACC F1 G

R
a
n

d
o
m

-

U
n

d
er

S
a
m

p
le

r

(R
U

S
)

k-NN 0.1091 0.0411 0.9249 0.8994 0.7050 0.9243

MLP 0.0802 0.0615 0.9291 0.9222 0.7514 0.9291

QDA 0.1548 0.0284 0.9084 0.8611 0.6368 0.9062

SVM 0.0676 0.0607 0.9358 0.9333 0.7792 0.9358

DTBoost 0.0961 0.0702 0.9168 0.9071 0.7150 0.9167

DTBagg 0.0896 0.0486 0.9309 0.9155 0.7385 0.9307

RForest 0.0830 0.0456 0.9357 0.9217 0.7535 0.9355

PlurVt 0.0821 0.0407 0.9386 0.9231 0.7577 0.9384

WeighVt 0.0795 0.0405 0.9400 0.9254 0.7633 0.9398

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o
u

r

(C
N

N
)

k-NN 0.0746 0.0922 0.9166 0.9232 0.7477 0.9165

MLP 0.0680 0.1122 0.9099 0.9265 0.7517 0.9096

QDA 0.1651 0.0413 0.8968 0.8504 0.6164 0.8946

SVM 0.0314 0.1068 0.9309 0.9591 0.8456 0.9301

DTBoost 0.0957 0.1148 0.8947 0.9019 0.6934 0.8947

DTBagg 0.0621 0.1116 0.9131 0.9317 0.7653 0.9128

RForest 0.0531 0.1063 0.9203 0.9402 0.7894 0.9199

PlurVt 0.0332 0.0886 0.9391 0.9599 0.8506 0.9387

WeighVt 0.0345 0.0812 0.9422 0.9596 0.8509 0.9419

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r

(E
N

N
)

k-NN 0.0476 0.0796 0.9364 0.9484 0.8172 0.9363

MLP 0.0414 0.0831 0.9378 0.9534 0.8315 0.9375

QDA 0.1635 0.0294 0.9036 0.8533 0.6239 0.9011

SVM 0.0373 0.0947 0.9340 0.9555 0.8361 0.9336

DTBoost 0.0425 0.1192 0.9192 0.9479 0.8091 0.9184

DTBagg 0.0291 0.1027 0.9341 0.9617 0.8544 0.9334

RForest 0.0265 0.1011 0.9362 0.9642 0.8628 0.9355

PlurVt 0.0349 0.0757 0.9447 0.9600 0.8528 0.9445

WeighVt 0.0354 0.0745 0.9451 0.9597 0.8520 0.9449

Appendix 114

ADFA-LD FPR FNR AUC ACC F1 G
R

ep
ea

te
d

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r

(R
E

N
N

)
k-NN 0.0663 0.0603 0.9367 0.9345 0.7824 0.9367

MLP 0.0583 0.0660 0.9379 0.9407 0.7980 0.9379

QDA 0.1633 0.0288 0.9040 0.8536 0.6245 0.9015

SVM 0.0542 0.0777 0.9341 0.9428 0.8018 0.9340

DTBoost 0.0546 0.1018 0.9218 0.9394 0.7881 0.9215

DTBagg 0.0435 0.0883 0.9341 0.9509 0.8230 0.9338

RForest 0.0386 0.0839 0.9387 0.9557 0.8384 0.9385

PlurVt 0.0514 0.0613 0.9437 0.9474 0.8173 0.9437

WeighVt 0.0523 0.0564 0.9456 0.9472 0.8174 0.9456

A
ll

-K
N

N

k-NN 0.0585 0.0695 0.9360 0.9401 0.7957 0.9360

MLP 0.0514 0.0738 0.9374 0.9458 0.8108 0.9374

QDA 0.1633 0.0294 0.9036 0.8535 0.6241 0.9011

SVM 0.0464 0.0854 0.9341 0.9487 0.8172 0.9339

DTBoost 0.0483 0.1079 0.9219 0.9442 0.8004 0.9214

DTBagg 0.0369 0.0932 0.9349 0.9560 0.8378 0.9345

RForest 0.0330 0.0914 0.9378 0.9596 0.8495 0.9373

PlurVt 0.0433 0.0698 0.9434 0.9534 0.8335 0.9434

WeighVt 0.0436 0.0655 0.9455 0.9537 0.8349 0.9454

In
st

a
n

ce
H

a
rd

n
es

s-

T
h

re
sh

o
ld

 (
IH

T
)

k-NN 0.0910 0.0534 0.9278 0.9138 0.7335 0.9277

MLP 0.0772 0.0607 0.9311 0.9249 0.7581 0.9310

QDA 0.1658 0.0255 0.9043 0.8518 0.6224 0.9016

SVM 0.0667 0.0716 0.9308 0.9326 0.7756 0.9308

DTBoost 0.0886 0.0816 0.9149 0.9123 0.7241 0.9149

DTBagg 0.0765 0.0639 0.9298 0.9251 0.7580 0.9298

RForest 0.0701 0.0573 0.9363 0.9315 0.7753 0.9363

PlurVt 0.0762 0.0483 0.9378 0.9273 0.7665 0.9377

WeighVt 0.0750 0.0475 0.9387 0.9284 0.7694 0.9386

N
ea

rM
is

s
(N

M
)

v
er

si
o
n

 1

k-NN 0.5422 0.1140 0.6719 0.5115 0.3126 0.6369

MLP 0.5061 0.1134 0.6903 0.5431 0.3273 0.6617

QDA 0.7159 0.4902 0.3969 0.3124 0.1567 0.3806

SVM 0.7257 0.1040 0.5852 0.3523 0.2575 0.4958

DTBoost 0.4547 0.1211 0.7121 0.5871 0.3480 0.6923

DTBagg 0.2859 0.1231 0.7955 0.7345 0.4530 0.7914

RForest 0.3051 0.1215 0.7867 0.7179 0.4384 0.7813

PlurVt 0.5604 0.1182 0.6607 0.4950 0.3045 0.6226

WeighVt 0.5508 0.1194 0.6649 0.5033 0.3077 0.6289

N
ea

rM
is

s
(N

M
)

v
er

si
o

n
 2

k-NN 0.5197 0.0843 0.6980 0.5349 0.3305 0.6632

MLP 0.4217 0.0682 0.7551 0.6226 0.3824 0.7341

QDA 0.5732 0.1741 0.6263 0.4768 0.2836 0.5937

SVM 0.7413 0.0645 0.5971 0.3436 0.2632 0.4920

DTBoost 0.3886 0.0853 0.7631 0.6494 0.3955 0.7479

DTBagg 0.2898 0.0871 0.8115 0.7356 0.4640 0.8052

RForest 0.2995 0.0827 0.8089 0.7277 0.4579 0.8016

PlurVt 0.4938 0.0779 0.7141 0.5583 0.3436 0.6832

WeighVt 0.4962 0.0769 0.7135 0.5564 0.3428 0.6820

Appendix 115

ADFA-LD FPR FNR AUC ACC F1 G

T
o

m
ek

L
in

k
s

k-NN 0.0229 0.1117 0.9327 0.9660 0.8675 0.9316

MLP 0.0209 0.1188 0.9301 0.9668 0.8695 0.9288

QDA 0.1661 0.0322 0.9009 0.8507 0.6191 0.8984

SVM 0.0169 0.1349 0.9241 0.9683 0.8725 0.9222

DTBoost 0.0163 0.1359 0.9239 0.9687 0.8739 0.9220

DTBagg 0.0134 0.1331 0.9267 0.9716 0.8844 0.9248

RForest 0.0114 0.1311 0.9287 0.9736 0.8919 0.9268

PlurVt 0.0141 0.1057 0.9401 0.9744 0.8975 0.9390

WeighVt 0.0137 0.1074 0.9394 0.9746 0.8979 0.9383

O
n

eS
id

ed
S

el
ec

ti
o

n
s

(O
S

S
)

k-NN 0.0233 0.1149 0.9309 0.9652 0.8644 0.9297

MLP 0.0209 0.1194 0.9299 0.9668 0.8692 0.9286

QDA 0.1670 0.0320 0.9005 0.8499 0.6179 0.8980

SVM 0.0166 0.1304 0.9265 0.9691 0.8760 0.9247

DTBoost 0.0162 0.1357 0.9240 0.9688 0.8741 0.9221

DTBagg 0.0129 0.1345 0.9263 0.9719 0.8852 0.9243

RForest 0.0112 0.1340 0.9274 0.9734 0.8909 0.9253

PlurVt 0.0144 0.1067 0.9395 0.9741 0.8962 0.9383

WeighVt 0.0138 0.1091 0.9385 0.9743 0.8967 0.9373

N
ei

g
h

b
o
u

rh
o
o
d

-

C
le

a
n

in
g
R

u
le

(N
C

R
)

k-NN 0.0376 0.0899 0.9362 0.9558 0.8378 0.9359

MLP 0.0339 0.0893 0.9384 0.9591 0.8482 0.9380

QDA 0.1641 0.0298 0.9030 0.8527 0.6229 0.9005

SVM 0.0289 0.1075 0.9318 0.9613 0.8525 0.9310

DTBoost 0.0384 0.1233 0.9191 0.9509 0.8174 0.9181

DTBagg 0.0232 0.1099 0.9335 0.9660 0.8677 0.9325

RForest 0.0206 0.1078 0.9358 0.9685 0.8766 0.9348

PlurVt 0.0273 0.0866 0.9431 0.9653 0.8683 0.9426

WeighVt 0.0271 0.0850 0.9440 0.9656 0.8697 0.9435

Table 20: ADFA-LD results (Under-sampling)

ADFA-LD results (Over-sampling)

ADFA-LD FPR FNR AUC ACC F1 G

R
a

n
d

o
m

-

O
v
er

S
a

m
p

le
r

(R
O

S
)

k-NN 0.0358 0.0802 0.9420 0.9587 0.8480 0.9418

MLP 0.0289 0.0973 0.9369 0.9625 0.8580 0.9363

QDA 0.1685 0.0319 0.8998 0.8486 0.6158 0.8972

SVM 0.0285 0.1130 0.9292 0.9609 0.8504 0.9283

DTBoost 0.0147 0.1475 0.9189 0.9687 0.8721 0.9165

DTBagg 0.0191 0.1197 0.9306 0.9683 0.8744 0.9292

RForest 0.0146 0.1129 0.9362 0.9730 0.8919 0.9350

PlurVt 0.0194 0.0861 0.9472 0.9722 0.8920 0.9467

WeighVt 0.0175 0.0867 0.9479 0.9738 0.8975 0.9473

Appendix 116

ADFA-LD FPR FNR AUC ACC F1 G

S
M

O
T

E

k-NN 0.0394 0.0732 0.9437 0.9564 0.8420 0.9436

MLP 0.0268 0.1077 0.9327 0.9630 0.8582 0.9319

QDA 0.1465 0.0469 0.9033 0.8660 0.6406 0.9019

SVM 0.0267 0.1188 0.9273 0.9617 0.8524 0.9261

DTBoost 0.0204 0.1286 0.9255 0.9661 0.8656 0.9240

DTBagg 0.0225 0.1109 0.9333 0.9664 0.8689 0.9322

RForest 0.0184 0.1048 0.9384 0.9708 0.8849 0.9374

PlurVt 0.0220 0.0838 0.9471 0.9702 0.8852 0.9466

WeighVt 0.0204 0.0875 0.9460 0.9712 0.8882 0.9454

A
D

A
S

Y
N

k-NN 0.0407 0.0735 0.9429 0.9552 0.8383 0.9428

MLP 0.0347 0.0849 0.9402 0.9590 0.8484 0.9399

QDA 0.2209 0.0392 0.8699 0.8019 0.5487 0.8652

SVM 0.0339 0.0929 0.9366 0.9587 0.8462 0.9361

DTBoost 0.0229 0.1176 0.9297 0.9652 0.8641 0.9285

DTBagg 0.0274 0.0887 0.9420 0.9649 0.8670 0.9415

RForest 0.0237 0.0928 0.9418 0.9677 0.8755 0.9411

PlurVt 0.0283 0.0697 0.9510 0.9665 0.8746 0.9508

WeighVt 0.0254 0.0745 0.9500 0.9684 0.8802 0.9497

Table 21: ADFA-LD results (Over-sampling)

ADFA-LD results (Hybrid-sampling)

ADFA-LD FPR FNR AUC ACC F1 G

S
M

O
T

E
T

o
m

ek

k-NN 0.0385 0.0721 0.9447 0.9573 0.8448 0.9446

MLP 0.0263 0.1092 0.9322 0.9633 0.8588 0.9313

QDA 0.1458 0.0464 0.9039 0.8667 0.6420 0.9025

SVM 0.0257 0.1200 0.9272 0.9625 0.8547 0.9260

DTBoost 0.0196 0.1284 0.9260 0.9668 0.8680 0.9244

DTBagg 0.0212 0.1098 0.9345 0.9677 0.8734 0.9334

RForest 0.0175 0.1056 0.9385 0.9715 0.8872 0.9375

PlurVt 0.0212 0.0867 0.9460 0.9706 0.8862 0.9455

WeighVt 0.0199 0.0874 0.9464 0.9717 0.8898 0.9458

S
M

O
T

E
E

N
N

k-NN 0.0340 0.0824 0.9418 0.9599 0.8515 0.9414

MLP 0.0225 0.1194 0.9290 0.9653 0.8642 0.9278

QDA 0.1398 0.0481 0.9061 0.8717 0.6504 0.9049

SVM 0.0223 0.1301 0.9238 0.9642 0.8591 0.9222

DTBoost 0.0215 0.1466 0.9160 0.9628 0.8519 0.9138

DTBagg 0.0183 0.1210 0.9303 0.9688 0.8761 0.9289

RForest 0.0146 0.1152 0.9351 0.9728 0.8907 0.9337

PlurVt 0.0177 0.0970 0.9427 0.9724 0.8912 0.9418

WeighVt 0.0167 0.0976 0.9428 0.9731 0.8939 0.9420

Table 22: ADFA-LD results (Hybrid-sampling)

Appendix 117

ADFA-LD results (Cost-sensitive learning)

ADFA-LD FPR FNR AUC ACC F1 G
W

ei
g

h
te

d

SVM 0.0219 0.2355 0.8713 0.9514 0.7976 0.8647

DTBoost 0.0150 0.1543 0.9154 0.9676 0.8674 0.9127

DTBagg 0.0118 0.1451 0.9215 0.9715 0.8826 0.9191

RForest 0.0101 0.1442 0.9228 0.9731 0.8885 0.9204

PlurVt 0.0083 0.1638 0.9140 0.9722 0.8830 0.9106

WeighVt 0.0093 0.1451 0.9228 0.9737 0.8905 0.9203

T
h

re
sh

o
ld

in
g

k-NN 0.0415 0.0791 0.9397 0.9538 0.8332 0.9395

MLP 0.0183 0.1830 0.8993 0.9610 0.8402 0.8955

QDA 0.0195 0.1218 0.9293 0.9677 0.8719 0.9279

SVM 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955

DTBoost 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955

DTBagg 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278

RForest 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278

C
o
st

-

se
n

si
ti

v
e

cl
a
ss

if
ie

r

DT 0.0256 0.4955 0.7395 0.9155 0.5996 0.7011

Bagging 0.0864 0.1014 0.9061 0.9117 0.7185 0.9061

Pasting 0.0965 0.0879 0.9078 0.9046 0.7056 0.9078

RForest 0.0879 0.0839 0.9141 0.9126 0.7244 0.9141

RPatches 0.1215 0.0753 0.9016 0.8843 0.6671 0.9013

Table 23: ADFA-LD results (Cost-sensitive learning)

Appendix 118

Appendix C: ICS-PSD-NvNA results

ICS-PSD-NvNA results

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

Single

classifiers

k-NN 0.0428 0.0030 0.9771 0.9956 0.9977 0.9769

MLP 0.0844 0.0038 0.9559 0.9934 0.9966 0.9551

QDA 0.0870 0.0120 0.9505 0.9854 0.9924 0.9498

SVM 0.0512 0.0073 0.9707 0.9912 0.9954 0.9705

Ensemble

classifiers

DTBoost 0.0451 0.0006 0.9771 0.9979 0.9989 0.9769

DTBagg 0.0694 0.0010 0.9648 0.9967 0.9983 0.9642

RForest 0.0656 0.0004 0.9669 0.9973 0.9986 0.9664

PlurVt 0.0387 0.0006 0.9803 0.9980 0.9990 0.9801

WeighVt 0.0425 0.0004 0.9785 0.9982 0.9991 0.9783

Table 24: ICS-PSD-NvNA results

ICS-PSD-NvNA results (Under-sampling)

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

R
a
n

d
o
m

-

U
n

d
er

S
a
m

p
le

r

(R
U

S
)

k-NN 0.0032 0.1511 0.9227 0.8541 0.9182 0.9199

MLP 0.0266 0.0584 0.9574 0.9427 0.9694 0.9573

QDA 0.0691 0.0102 0.9603 0.9877 0.9936 0.9599

SVM 0.0110 0.0604 0.9642 0.9413 0.9687 0.9640

DTBoost 0.0069 0.0479 0.9725 0.9536 0.9754 0.9724

DTBagg 0.0078 0.0587 0.9666 0.9430 0.9696 0.9664

RForest 0.0040 0.0586 0.9685 0.9433 0.9697 0.9683

PlurVt 0.0052 0.0479 0.9733 0.9536 0.9754 0.9732

WeighVt 0.0095 0.0370 0.9766 0.9640 0.9810 0.9766

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o
u

r

(C
N

N
)

k-NN 0.0069 0.1433 0.9247 0.8614 0.9227 0.9223

MLP 0.0520 0.0358 0.9560 0.9636 0.9808 0.9560

QDA 0.0633 0.0121 0.9623 0.9861 0.9928 0.9620

SVM 0.0234 0.0414 0.9676 0.9592 0.9784 0.9676

DTBoost 0.0142 0.0256 0.9800 0.9748 0.9868 0.9801

DTBagg 0.0176 0.0222 0.9800 0.9780 0.9885 0.9801

RForest 0.0188 0.0207 0.9801 0.9793 0.9892 0.9802

PlurVt 0.0150 0.0152 0.9847 0.9848 0.9920 0.9849

WeighVt 0.0162 0.0120 0.9857 0.9878 0.9936 0.9859

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r

(E
N

N
)

k-NN 0.0431 0.0083 0.9743 0.9905 0.9950 0.9742

MLP 0.0780 0.0053 0.9583 0.9921 0.9959 0.9576

QDA 0.0824 0.0119 0.9529 0.9857 0.9925 0.9522

SVM 0.0474 0.0088 0.9719 0.9898 0.9947 0.9717

DTBoost 0.0355 0.0024 0.9810 0.9964 0.9982 0.9809

DTBagg 0.0676 0.0038 0.9643 0.9940 0.9969 0.9638

RForest 0.0584 0.0027 0.9694 0.9954 0.9976 0.9691

PlurVt 0.0324 0.0030 0.9823 0.9960 0.9979 0.9822

WeighVt 0.0353 0.0024 0.9812 0.9964 0.9982 0.9810

Appendix 119

ICS-PSD-NvNA FPR FNR AUC ACC F1 G
R

ep
ea

te
d

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r

(R
E

N
N

)
k-NN 0.0399 0.0096 0.9752 0.9893 0.9944 0.9751

MLP 0.0725 0.0064 0.9605 0.9913 0.9955 0.9600

QDA 0.0772 0.0119 0.9554 0.9858 0.9926 0.9549

SVM 0.0384 0.0094 0.9760 0.9896 0.9946 0.9760

DTBoost 0.0347 0.0033 0.9809 0.9956 0.9977 0.9809

DTBagg 0.0746 0.0044 0.9604 0.9931 0.9964 0.9599

RForest 0.0584 0.0037 0.9688 0.9944 0.9971 0.9686

PlurVt 0.0335 0.0033 0.9815 0.9957 0.9977 0.9815

WeighVt 0.0350 0.0030 0.9810 0.9959 0.9979 0.9809

A
ll

-K
N

N

k-NN 0.0451 0.0080 0.9734 0.9907 0.9952 0.9733

MLP 0.0717 0.0055 0.9613 0.9921 0.9959 0.9608

QDA 0.0844 0.0119 0.9518 0.9856 0.9925 0.9512

SVM 0.0431 0.0087 0.9741 0.9901 0.9949 0.9740

DTBoost 0.0341 0.0022 0.9818 0.9967 0.9983 0.9817

DTBagg 0.0688 0.0039 0.9636 0.9938 0.9968 0.9631

RForest 0.0552 0.0031 0.9708 0.9951 0.9974 0.9705

PlurVt 0.0373 0.0027 0.9800 0.9961 0.9980 0.9799

WeighVt 0.0376 0.0025 0.9799 0.9963 0.9981 0.9798

In
st

a
n

ce
H

a
rd

n
es

s-

T
h

re
sh

o
ld

 (
IH

T
)

k-NN 0.0263 0.0276 0.9730 0.9725 0.9855 0.9731

MLP 0.0240 0.0370 0.9694 0.9634 0.9807 0.9695

QDA 0.0777 0.0115 0.9554 0.9861 0.9928 0.9548

SVM 0.0211 0.0241 0.9773 0.9760 0.9874 0.9774

DTBoost 0.0136 0.0388 0.9737 0.9621 0.9800 0.9737

DTBagg 0.0367 0.0446 0.9592 0.9556 0.9765 0.9593

RForest 0.0249 0.0437 0.9656 0.9569 0.9772 0.9657

PlurVt 0.0150 0.0329 0.9759 0.9677 0.9830 0.9760

WeighVt 0.0223 0.0301 0.9737 0.9702 0.9843 0.9738

N
ea

rM
is

s
(N

M
)

v
er

si
o
n

 1

k-NN 0.0168 0.5218 0.7306 0.4958 0.6467 0.6857

MLP 0.0590 0.5040 0.7185 0.5115 0.6621 0.6832

QDA 0.1757 0.6284 0.5979 0.3874 0.5393 0.5534

SVM 0.0197 0.7634 0.6084 0.2625 0.3825 0.4816

DTBoost 0.0127 0.3859 0.8006 0.6271 0.7607 0.7786

DTBagg 0.0231 0.4258 0.7755 0.5883 0.7292 0.7490

RForest 0.0182 0.3893 0.7961 0.6236 0.7580 0.7743

PlurVt 0.0084 0.5085 0.7415 0.5089 0.6589 0.6981

WeighVt 0.0104 0.5024 0.7435 0.5147 0.6644 0.7017

N
ea

rM
is

s
(N

M
)

v
er

si
o

n
 2

k-NN 0.0000 0.8966 0.5517 0.1346 0.1874 0.3216

MLP 0.0066 0.8808 0.5563 0.1497 0.2130 0.3441

QDA 0.0095 0.7930 0.5987 0.2343 0.3429 0.4528

SVM 0.0020 0.8948 0.5516 0.1363 0.1904 0.3240

DTBoost 0.0084 0.6915 0.6500 0.3323 0.4714 0.5531

DTBagg 0.0064 0.7002 0.6467 0.3240 0.4612 0.5458

RForest 0.0023 0.8762 0.5607 0.1542 0.2203 0.3514

PlurVt 0.0055 0.8846 0.5549 0.1460 0.2069 0.3388

WeighVt 0.0058 0.8853 0.5544 0.1453 0.2058 0.3377

Appendix 120

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

T
o

m
ek

L
in

k
s

k-NN 0.0405 0.0029 0.9783 0.9958 0.9978 0.9781

MLP 0.0824 0.0037 0.9569 0.9936 0.9967 0.9562

QDA 0.0792 0.0117 0.9545 0.9859 0.9927 0.9540

SVM 0.0526 0.0076 0.9699 0.9909 0.9953 0.9697

DTBoost 0.0431 0.0007 0.9780 0.9978 0.9989 0.9779

DTBagg 0.0723 0.0009 0.9634 0.9966 0.9983 0.9628

RForest 0.0682 0.0004 0.9656 0.9972 0.9986 0.9651

PlurVt 0.0379 0.0004 0.9808 0.9983 0.9991 0.9807

WeighVt 0.0402 0.0005 0.9796 0.9981 0.9990 0.9795

O
n

eS
id

ed
S

el
ec

ti
o

n
s

(O
S

S
)

k-NN 0.0390 0.0044 0.9782 0.9944 0.9971 0.9781

MLP 0.0867 0.0042 0.9546 0.9930 0.9964 0.9537

QDA 0.0815 0.0115 0.9535 0.9861 0.9928 0.9529

SVM 0.0517 0.0083 0.9699 0.9902 0.9949 0.9697

DTBoost 0.0436 0.0010 0.9777 0.9975 0.9987 0.9774

DTBagg 0.0789 0.0011 0.9600 0.9962 0.9980 0.9592

RForest 0.0679 0.0005 0.9658 0.9971 0.9985 0.9652

PlurVt 0.0364 0.0006 0.9815 0.9982 0.9991 0.9813

WeighVt 0.0396 0.0006 0.9798 0.9980 0.9990 0.9797

N
ei

g
h

b
o
u

rh
o
o
d

-

C
le

a
n

in
g
R

u
le

(N
C

R
)

k-NN 0.0410 0.0049 0.9770 0.9939 0.9968 0.9769

MLP 0.0815 0.0044 0.9570 0.9929 0.9963 0.9563

QDA 0.0812 0.0117 0.9536 0.9859 0.9926 0.9529

SVM 0.0486 0.0077 0.9718 0.9908 0.9952 0.9716

DTBoost 0.0355 0.0017 0.9813 0.9972 0.9985 0.9812

DTBagg 0.0702 0.0020 0.9638 0.9956 0.9977 0.9633

RForest 0.0595 0.0014 0.9694 0.9965 0.9982 0.9691

PlurVt 0.0347 0.0016 0.9818 0.9973 0.9986 0.9817

WeighVt 0.0425 0.0015 0.9780 0.9971 0.9985 0.9778

Table 25: ICS-PSD-NvNA results (Under-sampling)

ICS-PSD-NvNA results (Over-sampling)

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

R
a

n
d

o
m

-

O
v
er

S
a

m
p

le
r

(R
O

S
)

k-NN 0.0428 0.0032 0.9770 0.9954 0.9976 0.9768

MLP 0.0425 0.0063 0.9756 0.9924 0.9961 0.9754

QDA 0.0818 0.0116 0.9534 0.9860 0.9927 0.9527

SVM 0.0480 0.0072 0.9724 0.9914 0.9955 0.9722

DTBoost 0.0494 0.0008 0.9749 0.9975 0.9987 0.9746

DTBagg 0.0517 0.0023 0.9730 0.9960 0.9979 0.9727

RForest 0.0503 0.0012 0.9743 0.9971 0.9985 0.9740

PlurVt 0.0303 0.0012 0.9842 0.9977 0.9988 0.9841

WeighVt 0.0324 0.0010 0.9833 0.9979 0.9989 0.9832

Appendix 121

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

S
M

O
T

E

k-NN 0.0306 0.0045 0.9824 0.9946 0.9972 0.9824

MLP 0.0566 0.0060 0.9686 0.9922 0.9959 0.9683

QDA 0.1000 0.0102 0.9449 0.9867 0.9931 0.9438

SVM 0.0526 0.0064 0.9704 0.9920 0.9958 0.9702

DTBoost 0.0260 0.0015 0.9862 0.9977 0.9988 0.9862

DTBagg 0.0367 0.0033 0.9800 0.9955 0.9977 0.9799

RForest 0.0301 0.0021 0.9839 0.9970 0.9984 0.9838

PlurVt 0.0202 0.0020 0.9888 0.9974 0.9986 0.9889

WeighVt 0.0220 0.0012 0.9883 0.9981 0.9990 0.9884

A
D

A
S

Y
N

k-NN 0.0355 0.0044 0.9799 0.9945 0.9971 0.9799

MLP 0.0723 0.0063 0.9607 0.9914 0.9956 0.9602

QDA 0.0780 0.0871 0.9174 0.9132 0.9531 0.9174

SVM 0.0442 0.0083 0.9737 0.9905 0.9950 0.9736

DTBoost 0.0228 0.0019 0.9876 0.9974 0.9986 0.9876

DTBagg 0.0246 0.0029 0.9862 0.9964 0.9981 0.9862

RForest 0.0231 0.0018 0.9874 0.9974 0.9987 0.9875

PlurVt 0.0205 0.0020 0.9886 0.9974 0.9986 0.9887

WeighVt 0.0159 0.0015 0.9912 0.9980 0.9990 0.9913

Table 26: ICS-PSD-NvNA results (Over-sampling)

ICS-PSD-NvNA results (Hybrid-sampling)

ICS-PSD-NvNA FPR FNR AUC ACC F1 G

S
M

O
T

E
T

o
m

ek

k-NN 0.0321 0.0041 0.9819 0.9950 0.9974 0.9818

MLP 0.0540 0.0063 0.9698 0.9920 0.9959 0.9695

QDA 0.1043 0.0100 0.9428 0.9867 0.9931 0.9417

SVM 0.0540 0.0064 0.9698 0.9920 0.9958 0.9695

DTBoost 0.0280 0.0014 0.9852 0.9977 0.9988 0.9852

DTBagg 0.0341 0.0035 0.9812 0.9955 0.9977 0.9811

RForest 0.0309 0.0022 0.9834 0.9968 0.9983 0.9833

PlurVt 0.0182 0.0020 0.9898 0.9974 0.9987 0.9899

WeighVt 0.0231 0.0013 0.9877 0.9979 0.9989 0.9877

S
M

O
T

E
E

N
N

k-NN 0.0280 0.0095 0.9812 0.9899 0.9947 0.9812

MLP 0.0483 0.0078 0.9719 0.9908 0.9952 0.9717

QDA 0.0991 0.0101 0.9454 0.9868 0.9931 0.9443

SVM 0.0468 0.0078 0.9726 0.9908 0.9952 0.9725

DTBoost 0.0251 0.0040 0.9854 0.9953 0.9976 0.9854

DTBagg 0.0329 0.0063 0.9803 0.9927 0.9962 0.9803

RForest 0.0266 0.0049 0.9842 0.9944 0.9971 0.9842

PlurVt 0.0231 0.0044 0.9861 0.9949 0.9974 0.9862

WeighVt 0.0214 0.0041 0.9872 0.9953 0.9976 0.9872

Table 27: ICS-PSD-NvNA results (Hybrid-sampling)

Appendix 122

ICS-PSD-NvNA results (Cost-sensitive learning)

ICS-PSD-NvNA FPR FNR AUC ACC F1 G
W

ei
g

h
te

d

SVM 0.0633 0.0057 0.9655 0.9922 0.9960 0.9650

DTBoost 0.0436 0.0008 0.9778 0.9977 0.9988 0.9775

DTBagg 0.0789 0.0016 0.9597 0.9957 0.9978 0.9590

RForest 0.0780 0.0007 0.9607 0.9966 0.9983 0.9599

PlurVt 0.0286 0.0009 0.9852 0.9982 0.9991 0.9852

WeighVt 0.0393 0.0003 0.9802 0.9983 0.9991 0.9800

T
h

re
sh

o
ld

in
g

k-NN 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787

MLP 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651

QDA 0.0373 0.0728 0.9449 0.9284 0.9615 0.9448

SVM 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651

DTBoost 0.0208 0.4022 0.7885 0.6111 0.7480 0.7651

DTBagg 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787

RForest 0.0393 0.0029 0.9789 0.9958 0.9978 0.9787

C
o
st

-

se
n

si
ti

v
e

cl
a
ss

if
ie

r

DT 0.5477 0.0160 0.7181 0.9655 0.9822 0.6671

Bagging 0.0740 0.0283 0.9488 0.9701 0.9843 0.9486

Pasting 0.0546 0.0313 0.9570 0.9679 0.9831 0.9570

RForest 0.0572 0.0282 0.9573 0.9708 0.9847 0.9572

RPatches 0.0497 0.0310 0.9596 0.9684 0.9834 0.9596

Table 28: ICS-PSD-NvNA results (Cost-sensitive learning)

Appendix 123

Appendix D: ICS-PSD-NNvA results

ICS-PSD-NNvA results

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

Single

classifiers

k-NN 0.1370 0.0393 0.9119 0.9391 0.9609 0.9106

MLP 0.1585 0.0429 0.8993 0.9315 0.9560 0.8974

QDA 0.1779 0.3946 0.7138 0.6534 0.7312 0.7055

SVM 0.1935 0.0195 0.8935 0.9419 0.9634 0.8893

Ensemble

classifiers

DTBoost 0.1915 0.0411 0.8837 0.9256 0.9525 0.8805

DTBagg 0.1188 0.0152 0.9330 0.9618 0.9757 0.9315

RForest 0.1173 0.0150 0.9338 0.9623 0.9760 0.9324

PlurVt 0.1205 0.0186 0.9304 0.9588 0.9737 0.9290

WeighVt 0.1297 0.0171 0.9266 0.9580 0.9733 0.9249

Table 29: ICS-PSD-NNvA results

ICS-PSD-NNvA results (Under-sampling)

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

R
a
n

d
o
m

-

U
n

d
er

S
a
m

p
le

r

(R
U

S
)

k-NN 0.0757 0.1528 0.8858 0.8643 0.9067 0.8849

MLP 0.0981 0.1516 0.8751 0.8602 0.9043 0.8747

QDA 0.0817 0.5472 0.6856 0.5559 0.6135 0.6448

SVM 0.1224 0.1121 0.8827 0.8856 0.9236 0.8827

DTBoost 0.1005 0.1518 0.8739 0.8596 0.9039 0.8735

DTBagg 0.0485 0.1281 0.9117 0.8895 0.9248 0.9108

RForest 0.0455 0.1134 0.9206 0.9016 0.9335 0.9199

PlurVt 0.0527 0.1274 0.9099 0.8891 0.9245 0.9092

WeighVt 0.0537 0.1216 0.9124 0.8934 0.9277 0.9117

C
o

n
d

en
se

d
-

N
ea

re
st

N
ei

g
h

b
o
u

r

(C
N

N
)

k-NN 0.1180 0.0554 0.9133 0.9307 0.9550 0.9128

MLP 0.1429 0.1404 0.8583 0.8590 0.9047 0.8583

QDA 0.0660 0.8600 0.5370 0.3159 0.2417 0.3617

SVM 0.1758 0.0904 0.8669 0.8907 0.9284 0.8659

DTBoost 0.1266 0.2162 0.8286 0.8036 0.8614 0.8274

DTBagg 0.0959 0.1823 0.8609 0.8369 0.8864 0.8599

RForest 0.0901 0.1527 0.8786 0.8611 0.9048 0.8780

PlurVt 0.0895 0.1143 0.8981 0.8912 0.9269 0.8980

WeighVt 0.0969 0.0853 0.9089 0.9121 0.9419 0.9089

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r

(E
N

N
)

k-NN 0.0793 0.1330 0.8939 0.8789 0.9177 0.8935

MLP 0.1010 0.1125 0.8933 0.8900 0.9263 0.8932

QDA 0.3795 0.2759 0.6723 0.7011 0.7905 0.6703

SVM 0.1449 0.0784 0.8884 0.9069 0.9391 0.8877

DTBoost 0.1280 0.0827 0.8946 0.9072 0.9390 0.8943

DTBagg 0.0725 0.0720 0.9278 0.9279 0.9525 0.9278

RForest 0.0662 0.0666 0.9336 0.9335 0.9562 0.9336

PlurVt 0.0757 0.0851 0.9196 0.9169 0.9449 0.9196

WeighVt 0.0701 0.0884 0.9207 0.9156 0.9439 0.9207

Appendix 124

ICS-PSD-NNvA FPR FNR AUC ACC F1 G
R

ep
ea

te
d

E
d

it
ed

-

N
ea

re
st

N
ei

g
h

b
o

u
r

(R
E

N
N

)
k-NN 0.0603 0.1717 0.8840 0.8530 0.8977 0.8823

MLP 0.0802 0.1522 0.8838 0.8637 0.9064 0.8830

QDA 0.6244 0.1803 0.5976 0.7213 0.8208 0.5549

SVM 0.1241 0.1020 0.8869 0.8931 0.9290 0.8869

DTBoost 0.1087 0.1078 0.8918 0.8920 0.9279 0.8918

DTBagg 0.0586 0.1128 0.9143 0.8992 0.9320 0.9139

RForest 0.0506 0.1030 0.9232 0.9086 0.9386 0.9228

PlurVt 0.0571 0.1194 0.9117 0.8944 0.9285 0.9112

WeighVt 0.0497 0.1326 0.9089 0.8858 0.9220 0.9079

A
ll

-K
N

N

k-NN 0.0687 0.1496 0.8909 0.8683 0.9095 0.8899

MLP 0.0920 0.1287 0.8896 0.8794 0.9184 0.8894

QDA 0.5108 0.2282 0.6305 0.7092 0.8052 0.6145

SVM 0.1362 0.0882 0.8878 0.9011 0.9349 0.8875

DTBoost 0.1161 0.0936 0.8951 0.9014 0.9347 0.8951

DTBagg 0.0634 0.0900 0.9233 0.9159 0.9439 0.9232

RForest 0.0575 0.0830 0.9297 0.9227 0.9486 0.9297

PlurVt 0.0683 0.0989 0.9164 0.9079 0.9384 0.9163

WeighVt 0.0613 0.1076 0.9155 0.9026 0.9345 0.9152

In
st

a
n

ce
H

a
rd

n
es

s-

T
h

re
sh

o
ld

 (
IH

T
)

k-NN 0.0312 0.4067 0.7810 0.6765 0.7406 0.7581

MLP 0.0410 0.3792 0.7899 0.6957 0.7606 0.7716

QDA 0.3808 0.3243 0.6475 0.6632 0.7575 0.6469

SVM 0.0169 0.4558 0.7637 0.6414 0.7027 0.7315

DTBoost 0.0342 0.3997 0.7831 0.6813 0.7457 0.7614

DTBagg 0.0245 0.3935 0.7910 0.6883 0.7518 0.7692

RForest 0.0175 0.4129 0.7848 0.6747 0.7375 0.7595

PlurVt 0.0159 0.4066 0.7887 0.6799 0.7427 0.7641

WeighVt 0.0174 0.4050 0.7888 0.6809 0.7438 0.7646

N
ea

rM
is

s
(N

M
)

v
er

si
o
n

 1

k-NN 0.0300 0.4295 0.7702 0.6590 0.7226 0.7439

MLP 0.0583 0.4966 0.7226 0.6005 0.6624 0.6885

QDA 0.7850 0.1867 0.5142 0.6808 0.7987 0.4182

SVM 0.0240 0.5012 0.7374 0.6045 0.6626 0.6977

DTBoost 0.0419 0.4481 0.7550 0.6419 0.7059 0.7272

DTBagg 0.0097 0.4081 0.7911 0.6802 0.7424 0.7656

RForest 0.0066 0.4235 0.7849 0.6688 0.7305 0.7567

PlurVt 0.0113 0.4131 0.7878 0.6759 0.7382 0.7618

WeighVt 0.0125 0.4307 0.7784 0.6620 0.7239 0.7498

N
ea

rM
is

s
(N

M
)

v
er

si
o

n
 2

k-NN 0.0324 0.6480 0.6598 0.4883 0.5171 0.5836

MLP 0.0357 0.6542 0.6551 0.4828 0.5100 0.5775

QDA 0.4715 0.4754 0.5265 0.5254 0.6325 0.5265

SVM 0.0211 0.6708 0.6541 0.4731 0.4931 0.5677

DTBoost 0.0277 0.6464 0.6629 0.4906 0.5194 0.5863

DTBagg 0.0171 0.6513 0.6658 0.4892 0.5153 0.5855

RForest 0.0103 0.6592 0.6653 0.4845 0.5073 0.5808

PlurVt 0.0174 0.6597 0.6615 0.4826 0.5059 0.5783

WeighVt 0.0190 0.6554 0.6628 0.4856 0.5105 0.5814

Appendix 125

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

T
o

m
ek

L
in

k
s

k-NN 0.1280 0.0504 0.9108 0.9324 0.9563 0.9100

MLP 0.1496 0.0493 0.9005 0.9285 0.9539 0.8991

QDA 0.1996 0.3785 0.7110 0.6612 0.7407 0.7053

SVM 0.1895 0.0238 0.8934 0.9395 0.9617 0.8895

DTBoost 0.1866 0.0463 0.8836 0.9226 0.9505 0.8808

DTBagg 0.1110 0.0203 0.9344 0.9596 0.9742 0.9333

RForest 0.1098 0.0190 0.9356 0.9609 0.9750 0.9345

PlurVt 0.1086 0.0256 0.9329 0.9560 0.9718 0.9320

WeighVt 0.1172 0.0242 0.9293 0.9552 0.9713 0.9281

O
n

eS
id

ed
S

el
ec

ti
o

n
s

(O
S

S
)

k-NN 0.1310 0.0514 0.9088 0.9309 0.9553 0.9079

MLP 0.1499 0.0503 0.8999 0.9276 0.9533 0.8985

QDA 0.1974 0.3807 0.7110 0.6599 0.7393 0.7050

SVM 0.1906 0.0247 0.8923 0.9385 0.9611 0.8884

DTBoost 0.1877 0.0471 0.8826 0.9217 0.9499 0.8798

DTBagg 0.1115 0.0205 0.9340 0.9593 0.9740 0.9329

RForest 0.1082 0.0193 0.9362 0.9610 0.9751 0.9352

PlurVt 0.1100 0.0256 0.9322 0.9557 0.9716 0.9312

WeighVt 0.1185 0.0237 0.9289 0.9553 0.9714 0.9277

N
ei

g
h

b
o
u

rh
o
o
d

-

C
le

a
n

in
g
R

u
le

(N
C

R
)

k-NN 0.0917 0.1046 0.9018 0.8982 0.9320 0.9018

MLP 0.1179 0.0897 0.8962 0.9040 0.9366 0.8961

QDA 0.3039 0.3047 0.6957 0.6955 0.7805 0.6957

SVM 0.1620 0.0566 0.8907 0.9201 0.9484 0.8891

DTBoost 0.1521 0.0680 0.8899 0.9134 0.9437 0.8890

DTBagg 0.0830 0.0494 0.9338 0.9432 0.9630 0.9336

RForest 0.0785 0.0455 0.9380 0.9472 0.9657 0.9378

PlurVt 0.0849 0.0624 0.9264 0.9327 0.9559 0.9263

WeighVt 0.0856 0.0634 0.9255 0.9316 0.9552 0.9254

Table 30: ICS-PSD-NNvA results (Under-sampling)

ICS-PSD-NNvA results (Over-sampling)

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

R
a

n
d

o
m

-

O
v
er

S
a

m
p

le
r

(R
O

S
)

k-NN 0.1395 0.0390 0.9107 0.9387 0.9607 0.9093

MLP 0.1416 0.0536 0.9024 0.9269 0.9527 0.9013

QDA 0.0735 0.5628 0.6819 0.5456 0.5997 0.6364

SVM 0.1953 0.0184 0.8931 0.9424 0.9637 0.8888

DTBoost 0.1524 0.0671 0.8902 0.9140 0.9441 0.8892

DTBagg 0.0932 0.0237 0.9416 0.9609 0.9749 0.9409

RForest 0.0882 0.0208 0.9455 0.9643 0.9771 0.9449

PlurVt 0.0957 0.0239 0.9402 0.9602 0.9745 0.9395

WeighVt 0.1089 0.0204 0.9354 0.9600 0.9744 0.9343

Appendix 126

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

S
M

O
T

E

k-NN 0.1175 0.0478 0.9174 0.9368 0.9591 0.9167

MLP 0.1481 0.0550 0.8984 0.9244 0.9511 0.8972

QDA 0.0683 0.6117 0.6600 0.5087 0.5517 0.6015

SVM 0.1849 0.0229 0.8961 0.9413 0.9628 0.8925

DTBoost 0.1652 0.0703 0.8822 0.9087 0.9406 0.8810

DTBagg 0.0816 0.0318 0.9433 0.9571 0.9724 0.9429

RForest 0.0746 0.0309 0.9473 0.9594 0.9738 0.9470

PlurVt 0.0865 0.0310 0.9413 0.9567 0.9721 0.9409

WeighVt 0.0993 0.0266 0.9370 0.9573 0.9726 0.9363

A
D

A
S

Y
N

k-NN 0.1260 0.0443 0.9148 0.9376 0.9598 0.9139

MLP 0.1327 0.0574 0.9049 0.9259 0.9519 0.9042

QDA 0.8764 0.0725 0.5255 0.7494 0.8521 0.3386

SVM 0.1617 0.0246 0.9069 0.9451 0.9651 0.9043

DTBoost 0.1820 0.0903 0.8639 0.8894 0.9276 0.8627

DTBagg 0.0932 0.0574 0.9247 0.9347 0.9574 0.9245

RForest 0.0477 0.0508 0.9508 0.9499 0.9672 0.9508

PlurVt 0.1007 0.0318 0.9338 0.9530 0.9697 0.9331

WeighVt 0.1022 0.0330 0.9324 0.9516 0.9689 0.9317

Table 31: ICS-PSD-NNvA results (Over-sampling)

ICS-PSD-NNvA results (Hybrid-sampling)

ICS-PSD-NNvA FPR FNR AUC ACC F1 G

S
M

O
T

E
T

o
m

ek

k-NN 0.1162 0.0511 0.9163 0.9345 0.9575 0.9158

MLP 0.1440 0.0562 0.8999 0.9243 0.9510 0.8988

QDA 0.0675 0.6118 0.6603 0.5088 0.5517 0.6017

SVM 0.1824 0.0243 0.8966 0.9407 0.9624 0.8931

DTBoost 0.1703 0.0701 0.8798 0.9077 0.9401 0.8784

DTBagg 0.0785 0.0343 0.9436 0.9559 0.9715 0.9433

RForest 0.0756 0.0321 0.9462 0.9583 0.9731 0.9459

PlurVt 0.0852 0.0329 0.9409 0.9555 0.9713 0.9406

WeighVt 0.0988 0.0286 0.9363 0.9559 0.9716 0.9357

S
M

O
T

E
E

N
N

k-NN 0.0645 0.1508 0.8924 0.8684 0.9095 0.8913

MLP 0.0892 0.1292 0.8908 0.8797 0.9185 0.8906

QDA 0.0672 0.5598 0.6865 0.5493 0.6033 0.6408

SVM 0.1296 0.0892 0.8906 0.9019 0.9353 0.8904

DTBoost 0.1046 0.1132 0.8911 0.8887 0.9254 0.8911

DTBagg 0.0462 0.1105 0.9216 0.9037 0.9350 0.9211

RForest 0.0380 0.1027 0.9296 0.9116 0.9405 0.9291

PlurVt 0.0485 0.1208 0.9153 0.8952 0.9289 0.9146

WeighVt 0.0525 0.1180 0.9148 0.8965 0.9299 0.9142

Table 32: ICS-PSD-NNvA results (Hybrid-sampling)

Appendix 127

ICS-PSD-NNvA results (Cost-sensitive learning)

ICS-PSD-NNvA FPR FNR AUC ACC F1 G
W

ei
g

h
te

d

SVM 0.1959 0.0184 0.8929 0.9423 0.9636 0.8885

DTBoost 0.1057 0.1347 0.8798 0.8717 0.9131 0.8797

DTBagg 0.1345 0.0135 0.9260 0.9597 0.9744 0.9241

RForest 0.1294 0.0111 0.9297 0.9627 0.9763 0.9278

PlurVt 0.0985 0.0197 0.9409 0.9629 0.9762 0.9401

WeighVt 0.1425 0.0094 0.9240 0.9611 0.9754 0.9216

T
h

re
sh

o
ld

in
g

k-NN 0.0960 0.0852 0.9094 0.9124 0.9421 0.9094

MLP 0.0000 1.0000 0.5000 0.2215 nan 0.0000

QDA 0.0000 1.0000 0.5000 0.2215 nan 0.0000

SVM 0.0000 1.0000 0.5000 0.2215 nan 0.0000

DTBoost 0.0000 1.0000 0.5000 0.2215 nan 0.0000

DTBagg 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967

RForest 0.1759 0.0244 0.8999 0.9421 0.9633 0.8967

C
o
st

-

se
n

si
ti

v
e

cl
a
ss

if
ie

r

DT 0.6166 0.0817 0.6509 0.7998 0.8772 0.5934

Bagging 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874

Pasting 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874

RForest 0.1453 0.2745 0.7901 0.7541 0.8212 0.7874

RPatches 0.1400 0.2490 0.8055 0.7751 0.8387 0.8036

Table 33: ICS-PSD-NNvA results (Cost-sensitive learning)

