
 

MASTERARBEIT 

zur Erlangung des akademischen Grades 

„Master of Science in Engineering“ 

im Studiengang Game Engineering und Simulation 

 

 

 

Signed Distance Fields in Real-Time Rendering 

 
 

 

 

 

Ausgeführt von: Michael Mroz, BSc 

Personenkennzeichen: 1410585012  

 

1. BegutachterIn: DI Stefan Reinalter 

2. BegutachterIn: Dr. Gerd Hesina 

 

Philadelphia, am 26.04.2017 

 

 

 

 



 

Eidesstattliche Erklärung 

„Ich, als Autor / als Autorin und Urheber / Urheberin der vorliegenden Arbeit, bestätige mit 

meiner Unterschrift die Kenntnisnahme der einschlägigen urheber- und 

hochschulrechtlichen Bestimmungen (vgl. etwa §§ 21, 46 und 57 UrhG idgF sowie § 11 

Satzungsteil Studienrechtliche Bestimmungen / Prüfungsordnung der FH Technikum 

Wien). 

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig angefertigt und 

Gedankengut jeglicher Art aus fremden sowie selbst verfassten Quellen zur Gänze zitiert 

habe. Ich bin mir bei Nachweis fehlender Eigen- und Selbstständigkeit sowie dem 

Nachweis eines Vorsatzes zur Erschleichung einer positiven Beurteilung dieser Arbeit der 

Konsequenzen bewusst, die von der Studiengangsleitung ausgesprochen werden können 

(vgl. § 11 Abs. 1 Satzungsteil Studienrechtliche Bestimmungen / Prüfungsordnung der FH 

Technikum Wien). 

Weiters bestätige ich, dass ich die vorliegende Arbeit bis dato nicht veröffentlicht und 

weder in gleicher noch in ähnlicher Form einer anderen Prüfungsbehörde vorgelegt habe. 

Ich versichere, dass die abgegebene Version jener im Uploadtool entspricht.“ 

 

 

 

Philadelphia, am 26.04.2017 

 

 

Ort, Datum  Unterschrift 

 

 



 

   3 

Kurzfassung 

Die Branche der Echtzeit-Computergrafik ist bestrebt die Synthetisierung von möglichst 

realistischen Bildern voranzutreiben. Viele der heute in Spielen verwendeten 

Beleuchtungs-Techniken wurden vor mehr als 20 Jahren entwickelt, doch durch die stetige 

Verbesserung der Rechenleistung von Grafikkarten in den letzten Jahren rücken nun neue 

Techniken in den Fokus. Diese Techniken sind zwar langsamer, bieten aber einen höheren 

Realismus in der Bildsynthese. Diese Masterthesis beschäftigt sich mit einer dieser neuen 

Techniken, den Distanzfeldern. Durch Distanzfelder lassen sich viele der üblichen 

Lichteffekte, wie Schatten oder Umgebungsverdeckung, auf eine viel intuitivere Weise 

berrechnen. Diese Arbeit präsentiert eine detaillierte Beschreibung der populärsten 

Distanzfeld-Effekte, sowie eine umfassende Analyse der Anwendbarkeit im Bereich der 

Spieleentwicklung. Ein besonderer Fokus wird auf die Ermittlung der Leistungsfähigkeit 

gelegt, zudem werden neuartige Algorithmen vorgestellt um die Bildsynthese zu 

beschleunigen.

Schlagwörter: Distance Fields, Real-Time Rendering, SDF, Ray marching, Sphere 

tracing, Optimizations, Culling, Deferred Rendering 
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Abstract 

In modern real-time rendering, there is a large focus on producing photorealistic qualities in 

images. Most techniques used to produce these effects were developed with older, less 

powerful hardware in mind and sacrifice visual fidelity for fast computation. Now that more 

and more powerful hardware has been developed, research into alternatives for these well-

established techniques has gained traction in the field of computer graphics. Distance 

fields are one of these contemporary alternatives, and they offer more intuitive approaches 

to well-established techniques such as ambient occlusion and object shadows. This thesis 

will give an in-depth look into the most common distance field effects and present a variety 

of acceleration techniques to show the viability of distance fields for modern game 

development. 

Keywords: Distance Fields, Real-Time Rendering, SDF, Ray marching, Sphere tracing, 

Optimizations, Culling, Deferred Rendering 
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1 Introduction 

 

Since its inception over 40 years ago, the video game industry has strived towards more 

and more realistic graphics in their games. This desire has led to the development of both 

more and more powerful rendering algorithms and graphics hardware. Still, a big gap 

exists between current real-time renderers and raytracers used for offline rendering of 

movies. There have been attempts to bridge this gap in recent years1, but real-time 

physically based global illumination still seems years away for deployment in high-end 

video games. In the meantime, a variety of other next-gen rendering approaches have 

come into focus, which aim to reduce this rendering gap. Signed distance field (SDF) 

rendering is one of these techniques. Distance fields have a variety of features which make 

them interesting for real-time rendering purposes, but their low performance compared to 

conventional algorithms has prevented their employment in all but the narrowest of cases. 

With increasing graphics processing power, signed distance fields are becoming more and 

more of an option as an enhancement or even alternative to conventional mesh-based 

rendering. Although SDFs have seen different uses in the past, from robotic obstacle 

avoidance to the visual demo scene, up until recently their use in videogames has been 

very limited.  In the past few years, there has been a resurgence and renewed interest in 

the utilization of distance fields for real time rendering. 

                                                
1 Brigade, a real-time Pathtracer. https://home.otoy.com/render/brigade 

Figure 1: The default scene in the mTec renderer. 
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This thesis will focus on the most popular rendering techniques that can be achieved with 

distance fields, accompanied with a thorough performance analysis. The first part of the 

thesis highlights the properties, generation and theory of distance fields, while the second 

part showcases our implementation of the previously described techniques: a renderer 

called mTec (Figure 1). The focus during development was set on implementing and 

expanding upon previously developed acceleration techniques in order to showcase the 

viability of distance fields for current and future generations of game engines.  It will be 

shown that by employing the correct acceleration techniques real-time distance field 

rendering is feasible on modern computers. The renderer written for this thesis is open 

source software, and can be downloaded from the internet freely2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
2 https://github.com/xx3000/mTec 
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2 Definition 

 

A distance field by itself is a very simple structure. Jones et al. define a distance field is as 

follows:  

“A distance field is a representation where at each point 

within the field we know the distance from that point to the 

closest point on any object within the domain.” [1] 

Therefore, in essence, distance fields are representations of surfaces. 

In mathematical terms a distance field function expresses the following structure, 

 

𝑑𝑖𝑠𝑡(𝑝) = 𝑠𝑖𝑔𝑛(𝑝) ∗ min
𝑥 ∈𝑆

||𝑝 − 𝑥||   

 

where S is a set of points on the surface of an object, which are themselves a subset of O, 

the points that comprise the entire surface of an object. The sign function above is defined 

as 

 

𝑠𝑖𝑔𝑛(𝑝) =  {
−1 𝑖𝑓 𝑝 ∈ 𝑂

      1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

In broader terms, a distance field can be represented by a function F, such that any point p 

that is passed will return a distance d from the object represented by the function [1].  

The distances returned by such a function can then be stored as three dimensional 

matrices, or more common for rendering purposes, as 3D textures. Each cell of the texture 

denotes the closest distance from the grid element to the nearest surface. Therefore a grid 

 

Figure 2-a: Manhattan or 

Taxicab distance.  

Distance = x+y 

 

 

Figure 1-b: Chessboard or 

Chebyshev distance.  

Distance = max(x,y) 

 

Figure 1-c: Euclidean or 

straight-line distance.    

Distance = sqrt(x²+y²) 
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element containing a value of 0 represents a surface. Signed distance fields, or SDFs, are 

an extension in which elements inside objects are represented with negative distances. 

Figure 2 illustrates a 2D slice of an SDF, containing a rectangular shape. In theory, 

different distance functions can be used to generate the field. Prominent ones include the 

Manhattan distance, Chessboard distance and Euclidean distance.  

In the context of practical SDF rendering, Euclidean distance is the representation of 

choice as it is the most physically accurate. There have been experiments with other 

distance functions such as l-norm [3], which have interesting properties and simpler 

distance functions for certain primitives. Still, the Euclidean distance remains the most 

widely used distance function for SDF rendering and it is this function that will be used for 

all further descriptions and implementations in this thesis. 
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Figure 3-a: Reference image, 4096x4096. 

 

Figure 3-b: Image converted to SDF, 64x64. 

 

Figure 3-c: Reference image reduced to 64x64 

(Photoshop CS3), rendered with alpha testing, 

bilinear filtering. 

 

Figure 3-d: SDF from 3-b, rendered with alpha 

testing, bilinear filtering. 



 

   13 

3 History 

 

Distance fields have been in use in the computer graphics field for the past 25 years. The 

theoretical groundwork for distance transforms has its roots in image processing and 

algorithms for Euclidian distance mapping have been in use since as early as 1980 [4]. As 

these early examples were rooted in image processing, all distance maps were 2D in 

nature.  In the early 90s the acceleration properties of distance fields were discovered for 

faster rendering of ray-traced fractal images. Rendering of fractals was significantly slower 

compared to solid geometry, as no ray-geometry intersection function was known. What 

could be calculated was the closest distance to the fractal’s surface, which allowed for ray 

marching with variable step sizes [5]. This essential application of distance fields in ray-

tracing will be further outlined in chapter 6.  The first usage of distance fields in the area of 

volume visualization can be traced back to the paper “Acceleration of ray-casting using 3D 

distance transforms” by Zuiderveld et al, in which distance fields are presented as a novel 

acceleration method for volume visualization. The sampling points needed for ray tracing 

are reduced by polling the distance field to determine the closest surface [6]. The idea of 

distance fields itself wasn’t limited to computer graphics: Koditschek et al. proposed a 

method of robotic navigation through potential fields in 1989 [7]. As the advantages of 

distance fields were discovered and as computing power increased, the field of application 

for distance fields diversified. Gibson utilized distance maps for the encoding of surface 

data and subsequently, rendering. This approach was used as it maintains an accurate 

surface representation even at lower-quality samplings [8] [9]. 

In the 2000s the computer 4k demo scene started to take advantage of distance fields for 

their compact renderers. The fact that geometry can be represented and rendered through 

distance functions allowed for a considerable reduction in memory usage. Complex objects 

and scenes can be created through blending of multiple distance functions into a coherent 

distance field [10]. 
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Figure 4 slisesix by Iñigo Quilez. A 4k demo, rendered by marching a distance field consisting of 

multiple primitives [10]. 

Another use of distance fields is found in the area of collision detection. Precomputed 

SDFs of static geometry can be used to quickly determine collisions, and are described for 

cloth simulation in 2003 by Fuhrmann et al [11]. 

Even though distance fields were being used in a scientific context, it wasn’t until 2007 that 

they found their way into commercial videogames. Valve Corporation proposed the use of 

2D SDFs for font rendering, allowing for the preservation of edge information in highly 

compressed textures. With their technique font images can be reduced up to 64 times and 

still maintain sharp edges without a significant performance overhead. A conventional 

image downscaled by this amount would result in a lot of blur, which would be unpleasant 

in a videogame [12].  

The two most important metrics for the performance of today’s videogames are their 

framerates as well as their memory consumption. In order to reach a framerate of 60 fps all 

game-related rendering, calculations, updates, physics and animations have to be finished 

in 16.6ms. In keeping with Moore’s law, generally speaking the speed of microprocessors 

has doubled every two years, while the speed of memory has lagged far behind [13]. 

Therefore is it crucial for modern high-performance games to reduce their memory footprint 

as much as possible, such as by keeping texture sizes small. However, the reduction of 

texture size is often accompanied with blurriness and uneven edges, as interpolation 

algorithms blend multiple image pixels into one, which results in a loss of continuity and 

smoothness of the surface normals. 

Distance fields can remedy this problem: as shown in Figure 3, a high-resolution image 

can be converted into a much smaller SDF representation. The distance field has a smooth 
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gradient across the object edge, therefore normals can be recalculated by following the 

gradient from an edge point. When rendering the distance field, the resulting edges are 

much sharper than in the reduced reference image. It is very simple to smooth the edges 

further, by applying simple anti-aliasing in a fragment shader, as described by Green [12]. 

With antialiasing, distance field textures have a similar rendering quality to high-definition 

images, while reducing file sizes by a considerable amount (32x-64x). 

As with all things, this technique has its limitations: The SDFs do not hold any color 

information whatsoever, therefore only monochromatic images can be compressed this 

way. 
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4 Related Work 

 

Even though distance fields have a long history in computing, there are only a few scientific 

works that apply these principles to modern real-time rendering. Many of the now common 

distance field effects were popularized by Inigo Quilez [10], but were mostly contained to 

the demo scene. The main contributions towards the techniques and optimizations 

presented in this thesis came from two SIGGRAPH 2015 presentations. Wright’s ‘Dynamic 

Occlusion with Signed Distance Fields’ presents a modern approach to distance field 

effects. It shows the viability of distance fields as an enhancement to regular mesh 

rendering in the context of the Unreal Engine 4 [14]. The other contributing work was 

Evans’ “Learning from failure: A Survey of Promising, Unconventional and Mostly 

Abandoned Renderers for ‘Dreams PS4’ ,a Geometrically Dense, Painterly UGC Game” 

which describes a variety of different unconventional distance field rendering techniques 

[15]. This thesis aims to merge and extend upon the techniques presented in these papers 

in order to create a modular distance field renderer. 
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5 Generating Distance Fields 

 

All distance field techniques presented in this thesis need to poll values of distances 

multiple times per execution, and as such we require a well-defined function for generating 

such values for arbitrary positions in space. A wide variety of these functions exists for 

various platonic shapes, and more complex shapes can be created through Boolean 

operations. These distance functions create what are known as implicit surfaces and these 

implicit surfaces can even be formed from transformed explicit (mesh) surfaces. There are 

many different algorithms for achieving this transformation, but the inputs and outputs are 

universally the same. A 3D texture is spanned over the domain of the mesh, and each grid 

cell is populated by the closest distance to the mesh surface, as calculated by the 

algorithm. In essence, this is a way to cache a distance field of arbitrary computational 

complexity into a structure that can be accessed easily. Both implicit distance functions as 

well as explicit mesh conversion algorithms will be further described in the following 

chapters. 

 

5.1 Implicit Surfaces 

The easiest way to create distance fields is through a distance function. Many basic 

geometric shapes have distinct and well known distance functions, and more complex 

objects are aggregates of these functions. Therefore complex scenes can be created 

through the combination of a few simple platonic primitives. This is similar to Constructive 

Solid Geometry (CSG) which is the same principle for mesh creation. Distance functions 

have different calculation complexities, but have always a point as input and the distance 

as output. The simplest implicit distance function is that of a sphere, which can be seen in 

the GLSL code snippet below. 

 

float sphere ( vec3 point,vec3 center, float radius) 

{ 

return length(point-center)-radius; 

} 

 

It is easy to see why this is the case: the distance from the surface of a sphere is just the 

distance of two points subtracted by the sphere radius. The sphere is an essential structure 

in distance fields, as every value returned from a distance function can be seen as the 

radius of an unbounding sphere placed at the specified point. This property will prove 

essential to the sphere tracing algorithm presented in chapter 6.2.  

In order to combine the distance fields of multiple primitives, a variety of functions can be 

used. The most common of which are Boolean operations like union, subtraction and 

intersection. These have the useful property of preserving Lipschitz continuity, therefore 
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maintaining correct gradients and distances across the domain. The following code 

snipped demonstrates the union function. 

 

float union( float distance1, float distance2 ) 

{ 

return min(distance1,distance2); 

} 

 

Other, more complex blending functions exist which allow for interesting effects such as 

soft blending, but caution has to be taken as these do not preserve distance field 

continuity. A good reference source for a variety of shapes, domain and blending functions 

is HG_SDF, a distance field library from the Mercury demo team3.    

After creating multiple implicit primitives, a 3D texture can be populated with distance 

values, by querying the distance functions for each discrete grid element, and combining 

the values with Boolean functions. As most distance functions themselves are quite small 

and fast to compute, the computation of distances could even be performed at run-time, by 

simply calling the functions when needed. This approach is widely used in the graphics 

demo scene as no mesh data has to be saved, resulting in tiny application sizes4.  

 

5.2 Explicit Surfaces 

Unfortunately, not every shape can be generated by an implicit function easily. A general 

distance function exists, but it is only suited for convex shapes, and is much slower than 

specialized primitive functions [16]. Concave shapes still prove difficult, and have to be 

generated as aggregates of simpler primitives. 

Almost every game developed today uses triangle meshes for geometry and world 

representation. This stems from the highly optimized vertex transformation and rendering 

pipelines on modern GPUs.  The transformation of mesh geometry into a distance field 

representation can be achieved through distance transform algorithms. The problem of 

detecting the closest point of a mesh is non-trivial, and only feasible in real time for small 

grid sizes [2]. 

A wide array of different distance transform algorithms have emerged over the past 30 

years. The naive approach for distance calculation is the brute force algorithm. For each 

grid cell, the distance to each triangle of the mesh is plotted. The shortest resulting 

distance is used as the field value. Even though this algorithm is very computationally 

expensive, it is guaranteed to yield correct results. Spatial data structures like Quadtrees 

can be used to speed up the computations [17] and the algorithm can be parallelized easily 

which makes it a good fit for GPU calculations. Faster algorithms exist, but they work on a 

                                                
3 http://mercury.sexy/hg_sdf/ 

4 http://www.shadertoy.com 
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speed/accuracy tradeoff basis. Two very popular algorithms are the Chamfer Distance 

Transform, and scan conversion methods. These algorithms will be further highlighted in 

this chapter. 

 

5.2.1 Brute Force 

The brute force algorithm is the most straight-forward of the commonly used distance 

transform algorithms. Initially the extents of the distance field grid and the distance 

between each grid element have to be chosen. Choosing a cube with equal dimensions 

(E.g. 64x64x64) leads to a lot of empty cells. The grid dimensions can be compacted by 

analyzing the to-be-converted mesh and scaling the dimensions according to the extents of 

the mesh. The same approach can be used to determine the cell-to-cell distance, except 

that it has to be identical for all spatial dimensions. If the scale of the grid cells would not 

be uniform, the grid cells themselves would stop being regular cubes, which would break 

the possibility of linearly interpolating between the cells. The dynamic grid size calculation 

is important to fit the grid as tightly as possible around the mesh, while reducing the overall 

memory footprint. 

After these setup steps, the algorithm described below can be executed. 

  

Foreach GridCell in DistanceFieldGrid: 

 Foreach Triangle in Mesh: 

  Find distance from Triangle to GridCell, save the closest one 

 

This algorithm is very simple and can be parallelized easily: when executed on a multicore 

CPU each processor can focus on a small part of the grid. 

This algorithm is used by Epic in their Unreal Engine 45 for mesh to distance field 

conversion. To speed up the computation they split the workload onto multiple processors, 

if available, and employ kd-trees as a spatial speedup structure, as suggested by Strain et 

al [17]. 

For our distance mesh conversion tool in the mTec renderer, a different approach was 

chosen: Instead of relying on the CPU for the brute force calculation, the work is relayed to 

the GPU, which is very suitable for these kind of computations with its highly parallel SIMD 

processing units. The algorithm is implemented in an OpenGL compute shader and each 

shader unit calculates a different grid cell. For further acceleration, a preprocessing step is 

introduced that calculates per-triangle data required for the distance and sign computation. 

As no state is shared between the each shader invocation this per-triangle data would 

have to be calculated again and again for each triangle. The preprocessing step is 

performed in a compute shader as well, and speeds up the overall computation by over 

200%. Our conversion tool performs all the necessary calculations entirely on the GPU and 

                                                
5  Unreal Engine 4.10.4 was used for the analysis as well as all distance field calculation tests 
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can use any mesh data, as long as the mesh is well-formed and closed. This is a general 

problem with all distance transform algorithms, as no clear “inside” and “outside” for the 

sign computation can be determined, if the mesh is not a closed surface. In such a case, 

the mesh has to be repaired first, which can be done dynamically [18]. Other speedups 

used in our tool are squared distances for comparison, which are based on a suggestion 

by Erleben et al. [2]. Further suggested speedups include the reversing of the algorithm by 

going through all triangles and computing the distance to all grid cells. This approach yields 

a speedup on the CPU, but cannot be efficiently used on the GPU due to the highly parallel 

nature of the shader units. Atomic write operations and memory barriers would have to be 

used to ensure coherency when writing to the distance grid but would also slow the 

algorithm down significantly. The highly parallel nature of shader units also prevents the 

intuitive use of CPU-based spatial data structures such as kd-trees for this algorithm. 

 

Mesh Triangles SDF Size Ue4 mTec Convert 

Cube 12 24x24x24 1.9s 0.0072s 

Teapot 2,464 128x74x89 118.4s 8.05s 

Glass 5,040 79x96x79 104.7s 11.78s 

Dragon 100,000 42x31x22 6.5s 9.97s 

Table 1 shows the distance field computation time of various meshes with our conversion 

tool, as compared to the Unreal Engine 46. It can be seen that Unreal’s kd-tree accelerated 

CPU approach excels for large polygon counts, but is considerably slower when dealing 

with larger distance fields. 

Our shader-based approach has a few practical limitations that should be noted. From 

Windows Vista onward, Microsoft employs a system to detect tasks that take long time to 

perform GPU calculations. This system is called Timeout Detection and Recovery (TDR) 

and is enabled on all Windows computers by default. When TDR detects that the GPU did 

not finish a dispatched operation within a certain timeframe (2 seconds is the preset value), 

the display driver is reinitialized and the GPU reset7. Although this is a useful mechanism 

for the average user to prevent freezes requiring a reboot, it is an obstacle for our 

purposes. When converting meshes containing a large amount of triangles, the 

computation can take longer than the preset threshold, therefore triggering TDR and 

crashing the display driver. Unfortunately it is not possible to disable TDR from the 

application itself. The only way to deactivate the system is to alter values in the Windows 

                                                
6 The Computer used for these measurements was running Windows 7 and had following hardware: 

Intel Core i5-2400 3.1 GHz Quadcore, AMD Radeon R9 200 Series, 8 GB RAM 

7 https://msdn.microsoft.com/en-us/windows/hardware/drivers/display/timeout-detection-and-

recovery 

Table 1: performance comparisons between UE4 and the mTec converter. Times in Seconds. 
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registry. The key “TdrLevel” under 

“HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\GraphicsDrivers” has to be 

set to 0 in order to disable TDR entirely. 

Another issue stems from the fact that there is a limitation on the maximal number of work 

groups that can be dispatched simultaneously. As defined by the OpenGL 4.3 core 

specification, the maximal work group count has to be at least 65535 per spatial 

dimension. This results in 2^48 work groups that can be dispatched simultaneously, which 

is more than enough for our purposes. Unfortunately this total amount cannot be used for a 

single dimension and has to be split over all three axes. The preprocessing shader is 

dispatched once for each triangle in the mesh, therefore the shader would not run for 

meshes that are larger than 2^16 triangles. In order to circumvent this limitation, the 

dispatch has to be split into multi-dimensional groups, even though only a one-dimensional 

operation is performed. The shader has to recalculate its correct index in the triangle list 

during computation. 

 

5.2.1.1 Triangle-Point Distance Calculation 

The most important step of the brute force algorithm is 

the actual distance calculation. Even though this might 

seem trivial, a point to triangle distance calculation is 

everything but. The closest point falls onto one of 

three characteristic elements of a triangle: points, 

edges and the face. The distance finding algorithm 

has to determine which triangle feature the grid cell is 

closest to, and then compute the distance between 

those two points. The most commonly used algorithm 

is laid out in the book “Real-Time Collision Detection” 

by Christer Ericson. At first, the grid cell point is 

projected onto the plane created by the triangle. Then 

the resulting projected point is converted to barycentric 

coordinates to determine if it lies within the triangle 

itself. If this is the case, the shortest distance to the 

triangle is simply the length of the vector created 

between the grid point and the projected point on the triangle. Further checks are 

necessary to find the edge or vertex closest to the projected point if this is not the case. 

When the closest feature is found, the distance of the grid cell point to this feature can be 

calculated easily. 

A different algorithm is presented by Jones [19]. Their algorithm tries to reduce the problem 

to two dimensions, by rotating the triangle onto the yz-plane. A precomputation step is 

required to find a transformation matrix which performs the required rotation. When trying 

to find the distance of a point to the triangle, the point can be simply rotated by the same 

Figure 5: The three cases for a point-

triangle distance. Closest to the 

triangle face (1), closest to an edge 

(2) and closest to a vertex (3). 
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matrix as the triangle, and its distance to the triangle plane becomes its position on the x-

axis. As with the 3D algorithm, special checks have to be performed in order to determine 

the closest feature of the triangle.  Even though the paper states otherwise, in our 

implementation the 3D algorithm has been considerably faster than the 2D approach. 

Furthermore the large amount of rotations needed by the algorithm introduced a high 

numeric instability, which lead to a lot of inaccuracies in the distance field. 

 

5.2.1.2 Computing the Sign 

After computing the distance, the sign of the 

grid cell has to be determined. A negative sign 

means that the cell lies “inside” the given mesh. 

As “inside” is only well defined for closed 

meshes, the sign computation returns incorrect 

results on thin geometry. The Unreal Engine is 

using a kd-tree for their distance calculations 

which simplifies the sign computation, which 

can be performed by casting out rays and 

comparing the normals of the intersected 

triangles. If more than 50% of the hit triangles 

are facing the grid cell, the cell is “outside” and 

the distance has therefore a positive sign [14]. 

The facing of a triangle in relation to the point 

can be computed by taking the dot product of 

the triangles’ normal with the point-triangle ray. 

On the GPU, all triangles are visible for the 

algorithm, and simply summing all triangle 

facings would yield incorrect results in all but 

the simplest cases. 

The naïve approach would be to just use the 

closest triangle for sign computation. 

Unfortunately this also yields incorrect results 

in the case when an edge or a point are the closest features of a triangle, as each vertex is 

shared by at least three triangles in a well-formed mesh, while each edge is shared by two. 

As seen in Figure 6, if the algorithm would try to find the closest triangle both would qualify 

and just the triangle ordering would determine which triangle is used for sign computation, 

even though the latter would return a different sign.  

This could be alleviated by using a pseudo-normal for the dot product instead of the actual 

normal of the triangle. This bent normal is simply the sum of the normals of all triangles 

which share the closest feature. 

Figure 6: A point (P) lies closest to a vertex 

(V), which is shared by two triangles (1, 2). 

Both triangles are equally close but their 

normals face in different directions. A normal 

is chosen based on the enumeration order of 

the triangles, resulting in errors. A pseudo-

normal (n´) can be constructed by summing 

the triangles’ normal, which reduces the 

number of incorrect results. 
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This modification alleviates the main problem, but is still insufficient in certain edge cases. 

A problem with these pseudo-normals arises when one of the faces of the mesh is 

tessellated into finer triangles, while still sharing the same vertex. The sum of all triangles 

would weigh the normal more into the direction of the face with more triangles, regardless 

how small they might be. This problem can be solved by the introduction of angle weighted 

pseudo-normals [20]. In addition to the 

summation of the normal, each normal has to 

be weighted by a value which amounts to the 

included angle of the two edges connecting to 

the closest vertex. This results in smaller 

weights for smaller triangles and larger weights 

for larger triangles (Figure 7). 

Even though this method of sign computation 

works perfectly in theory, it has a few problems 

in the actual implementation due to floating-

point inaccuracies. As IEEE floating point 

numbers have a limited precision, small, 

adjacent triangles may result in slightly 

different distances, which would prevent their 

pseudo-normal merging. Therefore a threshold 

has to be introduced, so that all points and 

distances within a certain, small range are 

correctly merged together for sign computation. 

We use a ULP-based float comparison, as 

described by Dawson8. 

Max describes a more accurate sign 

computation for special cases in “Weights for 

Computing Vertex Normals from Facet Normals”, but their algorithm is much more 

computationally expensive and was ultimately not used in mTec [21]. 

 

 

5.2.2 Chamfer Distance Transform 

A popular method for creating distance fields from images is the chamfer distance 

transform (CDT) algorithm. It uses a simple distance propagation scheme to generate the 

unsigned distance field of a monochromatic image. A 3x3 mask is moved over each pixel 

sequentially, propagating the shortest distances of its neighbors [22]. The entire distance 

field is created in two passes of moving the mask over the pixels, once from the top-left 

and the other from the bottom-right.  As this process is inherently sequential it cannot be 

                                                
8 https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ 

Figure 7: Triangle 2 from Figure 6 gets 

tessellated into triangles 2, 3, 4. As the 

Vertex (V) is now shared between 4 triangles, 

all the normal are summed for the pseudo-

normal. This results in a skewed, incorrect 

normal (n´). To produce the correct, angle-

weighted pseudo-normal (nα), each normal 

(n) has to be weighted with its corresponding 

angle (α). 
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run on graphics hardware. The resulting distance field is not very accurate due to the crude 

summation of neighboring distances. This can be improved by an extension called the 

dead reckoning algorithm (DRA) [23]. In the classical CDT, when a neighboring value is 

lower than the current cell value, the cell is simply set to this neighbor’s value plus the 

Euclidean distance to the neighbor. DRA improves this scheme by saving the neighbor that 

was chosen for each cell. When determining the value for a cell, another indirection is 

resolved by jumping to the closest neighbors’ closest neighbor, and using that value for 

further calculations. This leads to much more accurate distance fields. 

As CDT produces only unsigned distance fields, the base image has to be inverted and run 

again through the algorithm in order to produce an inverted unsigned field which can be 

composited into the final signed distance field. 

Even though the algorithm is sequential, it is still fast enough for real-time computation of 

small distance fields, as shown by Kessler [24]. 

 

5.2.3 Scan Conversion Algorithms 

The rise of programmable graphics hardware at the beginning of the 21st century led to the 

development of a wide variety of GPU accelerated distance transform algorithms 

[41][42][43]. These algorithms generally try to reduce the number of triangles that have to 

be checked during distance field calculation by generating a set of geometric prisms for the 

feature of each triangle (vertices, edges and faces). These prisms create a generalized 

Voronoi diagram, which means that all points within a prism are closer to its particular 

triangle feature than any other. These prisms can be rendered by the GPU which results in 

a fragment shader dispatch for each distance field cell contained by a prism. By definition 

the distance field of the region can be determined by calculating the distance between the 

grid cell and the prism feature. As multiple prisms may overlap, a depth testing scheme 

has to be used in order to preserve only the shortest distances. After running this 

algorithm, a single 2D distance field layer can be retrieved from the depth buffer [41]. By 

repeating this multiple times a full 3D field can be composited. Erleben et al. propose 

tetrahedra as a bounding volume, which reduces problematic cases of the algorithm, by 

directly computing the tetrahedron-layer intersections on the GPU side [2]. The parallel 

nature of these algorithms allows for distance field computation in real time. In most cases 

it is sufficient to just calculate distance fields a single time and cache it in a texture for later 

run-time use but specific cases such as dynamic destructible environments may require 

on-the-fly recalculation. 
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6 Rendering 

A scene consisting of distance fields can be rendered with quite simple algorithms. This is 

done by finding the intersections of rays shot from the camera with the surface of the field, 

denoted by a distance of 0. The resulting points can be used to approximate the surface 

normal and the distance from the camera which are essential for further lighting 

calculations. Algorithms for intersection finding of rays with distance fields have been 

widely researched for the past 30 years. The three techniques most commonly used today 

ray marching, sphere tracing and cone tracing will be presented in this chapter. They pose 

a complete departure from the standard way that meshes have been rendered in the past 

decades, and have more in common with ray tracing than rasterization. 

 

6.1 Ray Marching 

In order to render an object that is represented by a distance field, a common technique is 

to cast a ray from the camera into the SDF, until a surface is hit [25] [26]. The information 

of this surface point can then be used for further calculations (normal, material). The 

intersection point of the ray with the implicit surface can be calculated by applying a root 

finding method. This is a nontrivial mathematical problem, as there is no general root finder 

for polynoms of arbitrary degree [27], which led to the development of the ray marching 

technique by Perlin and Hoffert [28]. The intersection point with an implicit surface can be 

determined by sampling the field in fixed steps, until a value of zero (the surface) is found. 

 

For each pixel: 

 samplingPoint=O; 

while(SDF(samplingPoint) > 0) 

samplingPoint += s*D; 
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Figure 8: Comparison between the ray marching and 

sphere tracing algorithms. 15 fixed steps are needed to 

reach the object with ray marching, while sphere tracing 

reaches the surface in 7 steps. 

This is the classic ray marching 

algorithm. SDF() is the function of 

the distance field, O and D are the 

origin and direction of the ray and s 

is a fixed step size. 

The resulting samplingPoint will be 

an estimate of the intersection 

between the ray and the distance 

field object. In practical 

implementations more termination 

conditions are added to the inner 

loop. First, the distance travelled so 

far is tracked and the algorithm 

terminates if a predetermined 

maximum distance is reached. 

Secondly, a maximum number of 

steps is often enforced. This is 

done in order to ensure a 

termination of the loop in case the 

ray misses the object entirely.   

This algorithm can be parallelized 

very easily by delegating the work 

to the GPU. The calculation has to 

be done for every pixel, so it is well 

fitted for a fragment shader. Each 

invocation casts a ray and performs 

lighting and texturing operations 

according to the resulting 

intersection point. 

Unfortunately the conventional ray 

marching algorithm has multiple 

issues: As the step size is fixed, the ray can overshoot thin objects if the chosen value is 

too large, or take a long time to traverse the field if the value is too small. 

Various tweaks have been proposed for the algorithm in order to address these issues. If 

the algorithm determines that the currently sampled point lies within an object (returned 

distance is negative), the position of the point can be refined before returning it. This is 

done by reducing the step size and marching back on the ray until the sample point exits 

the object. This process can be repeated an arbitrary amount of times to get better and 

better approximations of the intersection point. 
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These refinements do not help with the potential huge amount of sample points that have 

to be checked in order to get a reasonable surface point and mitigate issues with thin 

objects. 

The sphere tracing algorithm was developed as an extension of ray marching in order to 

address these issues by taking into account inherent properties of distance fields. Ray 

marching is still the go-to solution in all cases where intersections have to be found for a 

domain in which the polled function does not represent an actual distance field. A 

prominent example is surface finding in procedural, height-map based terrain. 

 

6.2 Sphere Tracing 

The main problems of ray marching, namely the fixed step size issue were addressed by 

sphere tracing, an extension of the original algorithm developed by Hart [27]. In sphere 

tracing the step size is dynamically adjusted along the marching path, by setting it to the 

sampled value from the distance field. As the SDF holds the distance to the nearest 

surface, stepping this amount along the ray will never overshoot an object and large empty 

spaces can be traversed quickly (Figure 8). The following code snipped showcases the 

sphere tracing algorithm. 

 

For each pixel: 

samplingPoint=O; 

step = SDF(samplingPoint); 

while(step > 0) 

step=SDF(samplingPoint); 

samplingPoint += step*D; 

 

Through this simple step size adjustment the issues of overstepping are fixed. Small 

objects cannot be missed as the step size will decrease automatically when near an object 

and no further refinements are necessary as the algorithm will never overstep into the 

object itself. This is of course only the case if the sampled function itself is a correct 

distance field. The algorithm takes its name from the virtual unbounding spheres that are 

created from the ray point and the distance value. 

A disadvantage of this algorithm is the fact that the number of samples cannot be 

determined beforehand, as it is highly dependent upon the ray’s origin. If a ray passes 

parallel to an objects’ boundary, the step size is reduced and can incur a significant 

performance overhead. Therefore a maximum amount of steps should be defined as well 

as a minimum step size threshold [26].   

A scene composed of distance fields can be rendered using sphere tracing. Rendering a 

3D scene onto a 2D screen is a multi-step process, which, in modern computers, is 

governed by the GPU. 3D objects are represented in memory as triangles that form more 

complex meshes. These triangles are projected onto the screen through rasterization 
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before being passed to the fragment shader stage. A shader is executed by the GPU for 

each pixel occupying each on-screen triangle [35]. The shader is provided with information 

about the position of the fragment and triangle-specific information, like the texture 

coordinates and normal. Its task is to determine the color of the fragment, which will be 

displayed on the screen in the end, baring a discard from the following depth test and 

blending stage.  

SDF rendering through sphere tracing, as proposed by Hart can be done entirely in the 

fragment shader stage [27]. A quad covering the entire screen is passed into the rendering 

pipeline, ensuring that a fragment shader is executed for each screen pixel. Once the 

shader stage is reached, it has to be determined which object should be rendered for the 

current pixel. This is done by sphere tracing a ray from the position of the camera into the 

scene and finding its intersection with a distance field. Once an intersection point is found, 

lighting and a color can be calculated for the pixel. The algorithm is fairly simple and can 

be implemented easily. Even though results can be achieved fast, the algorithm has some 

issues which become apparent when rendering more complex scenes. 

 

float spheretrace(vec3 p, vec3 d, float push, float max, float threshold) 

{ 

float T = push; 

 vec3 P = p + d*T;  

 float steps; 

 for (int i = 0; i<max; i++) 

 { 

  float S = GetSdfDist(P); 

  T += S; 

  P = d*T; 

  if ((T > MAX_DIST) || (S < threshold)) { 

   break; 

  } 

 } 

Figure 9: Sphere tracing artefacts at various max step sizes k. The gray color marks areas where no 

surface was found due to insufficient steps. 
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 return T; 

} 

 

This is the HLSL code of the actual sphere tracing implementation used in our renderer, 

baring a few additional optimizations described more in-depth in the implementation 

chapter. 

In many cases, the intersection point returned by sphere tracing is only an estimation of the 

mathematically correct intersection, which could be acquired by root finding. The amount 

stepped on the ray is dependent on the value of the distance field at the current location. 

This results in a different amount of iterations needed to intersect the object, based on the 

direction of the ray and the surrounding distance fields, and can become problematic when 

a ray passes close by an object without actually hitting it. The step size becomes very 

small and lots of cycles are wasted just to pass by the object. A maximum amount of steps 

has to be defined in the algorithm, otherwise some pixels might take orders of magnitude 

longer to find an intersection than others. If a ray is marched along the surface of an object, 

it may run out of steps, before finding an intersection point. This results in very 

characteristic artefacts, which are especially visible when the camera is looking parallel to 

a surface (Figure 9).  

The issues are reduced by choosing a larger step threshold, but remain inherent to the 

algorithm. Increasing this threshold slows the whole algorithm down significantly and the 

correct value should be chosen carefully. Many distance field renderers in the visual demo 

scene try to hide sphere tracing artefacts by applying distance fog to the scene, which 

works well but is obviously just a workaround. The actual impact of this issue is highly 

dependent on the scene itself. It is far more apparent on a long flat plane than in a closed 

room, for example. In the distance field community ray marching and sphere tracing are 

often used interchangeably, which can lead to confusion when there is no clear indicator 

towards the referred algorithm. For the sake of clarity, this thesis will refer to these 

algorithms by their actual names. 

 

6.3 Cone Tracing 

Cone tracing is an extension of the sphere tracing algorithm. In addition to the ray, a cone 

is created and expanded in the marching direction. At each sampling step, the current cone 

radius is compared with the minimum distance from the distance field. If the SDF value is 

smaller than the current radius, the cone has intersected an object [14]. This incurs very 

little additional cost to the normal sphere trace, while providing useful intersection 

information.  
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6.4 Field Visualization 

When developing distance field renderers, it is very helpful to have different methods of 

visualizing the distance field for debugging purposes. These visualizations can help in 

quickly identifying underlying issues in a 

more intuitive way. The most basic way to 

display a distance field is completely 

independent of ray marching. By 

transforming the screen coordinate of each 

pixel into the [0,1] range and plugging the 

resulting value as a point into the distance 

function, a 2D SDF can be visualized 

easily (Figure 10). The same method can 

be applied to 3D fields by looking at single 

slices over a given timeframe. This is very 

similar to computer tomography imaging 

and can be very useful for the verification 

of the correctness of the field itself, before 

plugging it into larger scenes.  

Other ways of visualization use the data 

produced by the sphere tracing algorithm. 

The scene depth can be displayed by 

calculating the length between the ray 

origin and the intersection point, and 

normalizing it to a [0, 1] range. The 

resulting image is very similar to a regular 

z-buffer except that the values will be 

distributed linearly. Finally, a very 

interesting way of visualizing the scene 

can be achieved by recording the number 

of steps that were taken on each ray 

before hitting an object. This image will 

have bright auras around the silhouettes of 

objects, as the step sizes will get very 

small in those areas. This visualization can help in identifying choke-points in the scene 

where artefacts could occur.  

 

6.5 Material Management 

In order to map a specific texture or lighting parameters onto each rendered pixel, 

information about which pixel corresponds to which individual object is required. During 

 

Figure 10: Slice through a distance field. 

 

Figure 11: Step count visualization. 

 

Figure 12: Depth visualization. 
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sphere tracing all individual distance fields are merged through Boolean function to a single 

output value, resulting in the loss of all material information. The material id can be 

retrieved by performing a single lookup of the sphere traced intersection point and 

returning a unique id of the closest object instead of the distance. This id can then be used 

as an index to fetch relevant information or textures from a buffer. Because the classic full-

screen shader approach renders everything in a single pass, there is no easy way of using 

different lighting functions for different materials. By fetching material information from a 

buffer, the color tint and specular parameters can change, but the processing function itself 

would always stay the same. GLSL is a very basic language which does not support 

advanced features such as function pointers or polymorphy. In order to get different lighting 

calculations for different materials smaller sphere tracing renderers often resort to switch 

statements that call different functions depending on the material. This problem can be 

addressed by using the rasterized sphere tracing technique presented later in this thesis: 

as each object can be rendered in a separate draw call, the tracing shader itself could be 

unique for each material. 

 

6.6 Texturing 

Texture mapping has been used for the past 20 years in order to increase the visual fidelity 

of a drawn mesh in triangle-based renderers. This is a multi-step process, which starts by 

pre-calculating a projection of a flat texture onto the 3D triangle mesh. Each vertex of the 

mesh is assigned a Texture coordinate (also called uv coordinate), which is a 2-

dimensional vector on the range [0,1]. During the rendering of a frame, the uv values of all 

visible triangles are interpolated for each fragment and provided to the fragment shader. 

Sampling of a texture at the correct position can then be performed in the shader according 

to the interpolated uv’s [29]. 

Unfortunately, regular, uv-based texture mapping cannot be used in distance field 

rendering. SDF’s only contain information about the surface of the object, so additional 

properties like texture coordinates are not preserved. This leaves few other possibilities for 

texture mapping. The Playstation 4 game “Dreams” by MediaMolecule, which uses a 

distance field based renderer resorts to flat coloring for each object in the scene, skipping 

the problem of texturing altogether [15]. Our renderer employs tri-planar projections for 

texture mapping. This technique was developed by Geiss and Thompson for the Nvidia 

“Cascades” demo9. For tri-planar mapping, a total of three samples has to be taken from 

one or more textures. The textures are sampled by taking the world space position of the 

current fragment and performing a lookup in each spatial plane of the vector. In essence, 

this results in a 3-dimensional planar projection of the texture onto the object. The three 

resulting albedo colors are then blended according to the surface normal at the fragment. 

Tri-planar mapping is most commonly used for texturing of natural terrains and geographic 

                                                
9 https://www.slideshare.net/icastano/cascades-demo-secrets 
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features as it produces very natural-looking, continuous colors over surfaces. It is not very 

well suited for texturing of objects where the exact positioning of the texture is important. 

For example, the texturing of a model of a human face would be problematic for the 

technique, as there are well-defined areas (lips, eyes, eyebrows) that require very specific 

colors.  

 

6.7 Normal Calculation 

The surface normal is an essential information required for many shading algorithms. In 

conventional mesh rendering a normal are stored with each vertex, or can be calculated for 

each triangle through the cross product of the vertices. This approach is not possible with 

distance fields, but there are other algorithms which allow for the approximation of the 

surface normal. Our renderer uses the gradient computation technique, as described by 

Hart et al [5]. This technique can be seen in the formula below. 

 

NX = F(PX-E,Y,Z)- F(PX+E,Y,Z) 

NY = F(PX,Y-E,Z)- F(PX,Y+E,Z) 

NZ = F(PX,Y,Z-E)- F(PX,Y,Z+E) 

 

In order to approximate the normal, the field has to be polled at least six times, two times in 

each axis. More frequent polling can be performed in order to increase the precision of the 

algorithm, but this decreases the run-time performance, as every shader texture lookup is 

an expensive operation. For that reason our renderer performs the minimal amount of 

lookups. The constant factor E is used to determine the offset around the point for polling: 

increasing the value of E results in smoothed normals over an object’s surface. 

In conventional engines, rendering speed is determined by the amount of triangles that 

have to be culled, rasterized and drawn. To simulate a more detailed, rough, surface on 

otherwise flat triangles game engines often employ a technique called normal or bump 

mapping. Normal mapping modifies the normal at each rendered fragment by a value read 

from a separate texture called a normal map. This gives triangles non-uniform normal 

which matches the apparent surface albedo texture more closely. This bent normal can 

then be used in lighting calculations to increase the visual fidelity of the image [30].  

In order to use normal mapping with distance field rendering, the original technique has to 

be altered slightly. This stems from the fact that we perform tri-planar texturing to get our 

albedo color for each pixel. The modified technique requires polling the normal map three 

times, at the same positions that were used for initial texturing. These values can then be 

blended together with our initial normal which results in a new, bent normal [31]. 

One could argue that despite needing three texture lookups the technique is simpler for tri-

planar texturing than for regular uv-mapping: no values need to be precomputed, and the 

only inputs needed by the algorithm are the texture, the normal and the point in world 

space. This is compared to the most widely used normal mapping algorithm, which 
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requires the pre-computation of tangents and the transformation of values from tangent to 

object space [30].  

 

 

6.8 Meshing 

The conversion between mesh geometry and distance fields is not a one-way road. 

Similarly to distance transform algorithms, a variety of polygonisation algorithms have been 

described over the years. These allow for the transformation of implicit surfaces to a 

standard triangle mesh. The most popular algorithm in this category is the marching cubes 

algorithm. It was first presented by Lorensen and Cline in 1987 [32] for applications in the 

visualization of computer tomography data. When transforming a field with the original, 

non-modified version of marching cubes, the distance field has to be overlaid with a 3D-

grid. Each grid cell is evaluated by sampling the distance function at the eight corners of 

the cell and comparing the number and position of corner points that lie within the object 

with a lookup table. This lookup table contains a set of well-defined triangle positions which 

are used to create new triangles for the grid cell. By processing the whole grid this way a 

triangle mesh can be created from the distance field. It does not really matter if the 

sampled field is created from a 3D texture or an implicit surface function, the only 

difference being that an implicit function is continuous and could be used to create very 

high resolution meshes. Evans describes that using polygonised distance field meshes can 

be problematic in game development. In order to achieve an acceptable level of detail the 

meshes become very dense, with lots and lots of tiny triangles [15]. 
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7 Distance Field Effects 

Beyond determining the visible elements of a given scene, distance fields prove quite 

useful for the calculation of other classical real-time rendering effects, with the most 

common being presented in this chapter. This should in no way be seen as an exhaustive 

list of possible effects as many techniques are still being discovered today. The main motor 

for the development of distance field techniques is the visual demo scene and websites 

such as shadertoy10. Soft shadows and ambient occlusion are the two oldest and most 

popular techniques. These are well established in the distance field community and have 

been described in many scientific works [10] [26] [33]. The reason for their popularity lies in 

the simplicity of the underlying algorithms, as well as their inherent importance for realistic 

rendering. Other techniques that will be presented in the following chapters include sub-

surface scattering, reflections and approaches for distance field animations.   

 

7.1 Shadows 

In computer graphics shadows add a lot of realism to a scene. In the real world, shadows 

are the result of less photons being bounced and reaching the eye from a specific area 

compared to its surroundings. This is most often the case when another object occludes 

the direct path towards a light source. Even though this sounds simple in theory, there are 

many more factors which make physically-correct shadow calculation not feasible in 

today’s real-time rendering applications. Correct real-world lighting is described with the 

lighting equation [34]. With current computational means it is not possible to solve this 

equation efficiently in real time, as the sheer amount of photon data is too large to 

simulate. Therefore different techniques have been developed over the years to simulate 

shadows. In conventional, polygon real-time renderers the de-facto standard for shadow 

simulation is the shadow mapping technique as it is fast and well suited for graphics 

hardware.  

                                                
10 http://www.shadertoy.com 
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When using distance fields, shadow calculation becomes very straight-forward. In order to 

determine if a pixel lies in shadow, a ray has to be traced from the pixel position in world 

space towards the light. If the ray hits an object before reaching the light, the pixel is 

occluded. There are different methods of getting a pixel’s world-space position, as it 

depends on which type of renderer is used. Conventional renderers can use different 

methods of pixel reprojection to get its position from the depth buffer. Distance field 

renderers acquire this information automatically after tracing the scene and shadowing 

could even be performed in the same pass. In order to create approximated soft shadows, 

the scene needs to be cone traced from each pixel’s position towards the light. This trace 

returns information how close the ray has passed an occluder and a penumbra can be 

created by darkening the pixel according to that proximity information. This technique is 

demonstrated as an alternative to cascaded shadow maps by Wright [14]. The algorithm 

for calculation soft shadows can be seen in the code snippet below and is just a slight 

modification to regular sphere tracing. 

 

float SoftShadow(vec3 p, vec3 d, float maxSteps, float cutoff, float k, 

float push, float distanceToLight, float maxDist) 

{ 

p =p+d*push; 

float radius = push; 

for (int i = 0; i<maxSteps; i++) 
  { 
   float S = GetSdfDist(p); 
   closestPass = min(closestPass, (k*S / radius)); 
   radius += clamp(S, 0.02, 0.1); 
   dist +=  S; 
   p += d* S; 
   if (dist >= distanceToLight || 
                      dist>maxDist || 

 S < cutoff ) { 
    break; 

Figure 13: Soft and hard shadows. 
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   } 
  } 

return clamp(closestPass, 0, 1); 

} 

Practical implementation of Inigo Quilez‘ soft shadow formula [10] in GLSL. This is the basis which 

is used and expanded in our mTec renderer. p and d are the basis for the traced ray, the point to be 

shaded and the normalized vector towards the light source. maxSteps, cutoff and maxDist are the 

regular termination parameters from sphere tracing. They are extended by another parameter, 

distanceToLight, which is essentially just the length of the point-light vector. The push parameter is 

used to start sphere tracing a small distance away from the actual surface. Without it, the algorithm 

could get stuck as the first position might lie on the surface, thus terminating instantly. Finally the 

parameter k is used to control the softness of the resulting shadow. Small values between 2 and 20 

result in very soft shadows. 

A very distinctive artefact can be observed when the shadows of multiple objects intersect. 

The shadow of the object further away from the light source has a clearly visible bright 

outline. This is caused by the cone traces from this border region needing to pass close to 

the first object before reaching the second object. As shadow cone traces are performed 

with a much smaller maximum step threshold, the cone trace might terminate before 

reaching the second object, which would cause the shadow to appear as if there was no 

second object at all. The problem can be alleviated by increasing the maximum amount of 

steps for the cone trace, but this also leads to much slower algorithm executions, without 

solving the underlying issue. Figure 14 demonstrates the artefact for varying amounts of 

steps. A possible solution for keeping the step count low while reducing the visibility of the 

artefact is to force a fixed minimal step size after a certain distance. This can help in 

passing choke points, but might cause incorrect shadowing with thin objects. Unfortunately 

no optimal solution for this problem has yet been found, and an appropriate workaround 

has to be chosen based on the scene geometry. 

 

Figure 14: The shadow silhouette artefact at various step counts. 
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7.2 Ambient Occlusion 

Ambient occlusion tries to simulate ambient lighting in a rendered scene. In the real world, 

ambient lighting occurs due to photons bouncing off of surfaces, thus reaching areas which 

are not in direct sunlight. With this effect, rooms can be lit entirely by indirect lighting and 

shadows can have varying degrees of darkness. Simulating this effect in computer 

graphics would require tracing an enormous amount of photons, which is not feasible in 

real-time. Ambient lighting is a global effect and independent of the viewer’s position or 

look direction. It can be simulated by assuming that a surface is reached by more photons, 

the more it is exposed to its surroundings. Therefore, the floor of a room should be brighter 

than a corner. This occlusion can be precomputed offline for static objects and stored in a 

texture for run-time lookup [35]. Most real-time rendering applications feature dynamic 

geometry and animated characters, where prebaked ambient occlusion is of limited use. 

The need for fast approximation of AO lead to the development of screen-space ambient 

occlusion (SSAO) [36]. SSAO generates occlusion information by generating a number of 

points in a sphere around a pixel, and then checking them against the z-buffer. All points 

failing the z-test are assumed to lie inside of geometry. The results for each pixel are 

summed and averaged, which results in a rough AO approximation. SSAO was further 

expanded by Ritschel et al. with their introduction of screen-space directional occlusion 

(SSDO), which takes into account the direction of incoming light as well as a single bounce 

of indirect illumination [37]. These technique are fast and easy to integrate into existing 

renderers, but have limitations stemming from the fact that they operate solely in screen-

space. No information about the actual geometry is known, and artefacts occur at the 

screen borders, due to the inability to sample points outside the screen-sized z-buffer. 

In recent years, different techniques have arisen to calculate ambient occlusion through 

distance fields. They offer the advantage of being based on actual geometric information, 

while remaining very simple in principle. Two established algorithms, one by Evans [38], 

one by Wright [14] will be compared in this chapter. Furthermore we will present a 

modification to Quilez’ algorithm, which reduces incorrect occlusion in concave geometry.  

 

7.2.1 5-Tap Ambient Occlusion 

This algorithm was presented by Evans [38] and later Quilez [10]. It is a very simple 

algorithm which results in believable ambient occlusion terms. The AO factor is determined 

by tracing a cone in the normal direction of the pixel. At each step the current stepped 

distance is compared to a sample from the distance field and the difference between these 

values is weighted and added to the occlusion factor. The weight decreases the farther 

away we step from the original point, in order to ensure that closer objects contribute more 

occlusion. A maximum of 5 steps is performed before the algorithm terminates. The 

resulting algorithm is quite fast, as only one distance field check has to be performed at 

every step. Unfortunately the resulting AO factor is incorrect for concave objects. This is 
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especially visible on right-angled wall corners, which appear to have a bright stripe in the 

corner while darker in the surrounding areas. The reason for this error lies in the fact that 

the normal of points lying exactly on corners will split the corner angle exactly in half. When 

tracing along this normal, only a minimal amount of the surrounding walls will be hit. 

Fortunately this artefact is barely visible in a fully shaded and lighted scene. Therefore this 

algorithm is still a valid and cheap approach to distance field ambient occlusion.  

 

7.2.2 Multi-Ray 5 Tap Ambient Occlusion 

The desire to improve the quality of the 5 tap approach while still maintaining fast 

calculation times led to the development of the multi-ray 5 tap algorithm. It extends Quilez’ 

algorithm by performing the cone tracing in multiple directions. In addition to the normal-

aligned cone, 4 additional cones are traced in a normal-oriented hemisphere. These 

additional cones mitigate the corner-wall artefacts and provide more accurate ambient 

factors while still maintaining reasonable calculation times. The rays can be distributed 

evenly across the surface of the hemisphere through spherical Fibonacci mapping, which 

yields more natural occlusion results than fixed angle rays [45]. 

 

7.2.3 Fully Cone-Traced Ambient Occlusion 

This approach to ambient occlusion was first presented by Wright [14], and is being used in 

the Unreal Engine 4. It can be seen as an extension to the 5-tap multi-ray approach. In 

order to calculate the AO factors, 9 cones are traced in a normal-oriented hemisphere. Our 

tests gave reasonable results with 7 taps and a maximum cut-off distance of 2 units. The 

algorithm features many parameters that can be tweaked easily in order to create ambient 

occlusion of different intensities and dimensions. The runtime costs of this algorithm are 

the highest of all the presented algorithms, which stems from the fact that a lot of distance 

field lookups have to be performed, but it is also the most physically correct approach. A 

comparison of all three algorithms can be seen in Figure 15. 
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7.3 Sub-Surface Scattering 

Sub-surface scattering (SSS) is an effect that occurs naturally when light hits a specific 

surface such as human skin or marble. In this case, the incident light penetrates the 

surface rather than getting scattered immediately. The light is then absorbed or reflected 

from inside the material, which results in a soft, blurred look of the surface [46]. This effect 

is very desirable for modern videogames as it significantly increases the realism of human 

characters. In conventional real-time subsurface scattering algorithms, the soft light look is 

often simulated by blending of different colors or textures based on the incident light vector 

and the thickness of the object. There are different methods for determining the thickness 

of an object, but this can be roughly estimated by a separate thickness texture map, or 

through the pre-baked AO map [39]. 

A more accurate thickness approximation can be produced by ray marching a distance 

field. After determining the visible surface through sphere tracing or conventional 

rasterization, a ray can be traced into the object. The tracing is terminated as soon as a 

predefined maximum depth, step count or another surface is reached. The resulting 

distance that was traversed inside the object can then be used as thickness for SSS 

calculations. The aforementioned maximum thickness is a property of the object itself that 

simulates how deep the light can penetrate into the object. The lower this parameter is, the 

more solid an object will appear.  

This algorithm can be extended in order to allow for correct thickness of concave or hollow 

objects. Rather than terminating on a surface, the tracing could continue and only add the 

distance traversed while inside the object (distance that has a negative sign). With this 

modification the sphere tracing algorithm has to be given a non-zero minimal step size, as 

no further progress would be made on reaching a surface. 

The resulting thickness estimate can then be plugged into an arbitrary SSS lighting 

algorithm to get a nice translucency effect. 

 

Figure 15: Comparison of the three presented AO techniques. All images have their contrast 

increased to make the AO influences more apparent. Left Image: 5-Tap, the incorrect occlusion at 

the corner is clearly visible. Center image: Multi-Ray 5-Tap. Right Image: cone traced AO. 
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7.4 Animation 

Common matrix transformations can be applied to distance field rendered geometry 

similarly to classical triangle meshes. There are two main differences to conventional 

rendering which should be kept in mind. First, the transformation matrix has to be applied 

during ray marching multiple times, at each distance field polling step. This is much more 

expensive than mesh rendering, where the matrix transformation is applied a single time in 

the vertex shader. Secondly, only uniform scaling is possible. Non uniform scaling would 

break the linear interpolation property of distance fields.  

The most common animation approach for conventional meshes, skeletal animation, 

cannot be performed with distance fields. The main animation method for SDFs are blend 

shapes. Different animations can be generated by blending linearly between different 

distance fields. Even though this might seem very restrictive compared to triangles, quite 

unique effects are possible which would be very hard to achieve otherwise. Distance fields 

of arbitrary complexity can be morphed into each other with just a single line of code. The 

best results of morphing can be achieved by using convex objects. When morphing 

between concave objects, visible animation artefacts can occur, in which shapes start to 

materialize out of thin air. 

 

7.5 Reflections 

Reflections can be calculated easily with distance fields. In order to calculate physically 

correct reflections the reflected vector of every visible and reflection-enabled pixel needs to 

be calculated and then sphere traced. This requires the vector from the camera towards 

Figure 16: Fully reflective material through a single sphere traced light bounce. 
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the pixel in world space, as well as the world space normal. The reflection of the incident 

vector along the normal can be calculated through the formula r=i−2(n*i)n where i is the 

incident vector, and n the normalized normal vector. Luckily OpenGL as well as DirectX 

support this calculation as a build-in function in their respective shader languages. This 

reflection vector can then be used to sphere trace through the whole scene and to 

determine the contributing reflection color, which allows for fully dynamic reflections with 

arbitrary amounts of bounces. These calculations are more expensive than shadows or 

AO, as the point determined through the reflected trace still has to be textured, lighted and 

ideally also supplied with shadow and AO factors. This essentially means that the whole 

scene has to be rendered twice. This process could be optimized depending on the 

requirements of the scene. If all the reflections are glossy-diffuse in nature, the reflected 

scene could be calculated in much lower resolution, and post-processed with a blur to 

achieve believable results for a much lower cost. 
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8 Implementation 

 

The previously described techniques were implemented as a C++/OpenGL renderer. This 

renderer is called mTec, is licensed under the MIT license, and its complete code can be 

downloaded from our depot11. The goal of development was to implement and test various 

optimization techniques in order to gauge the feasibility of distance field rendering in 

modern game development or real-time visualization. These techniques will be described 

in detail, with analysis of their effects on performance. The only SDF technique described 

in the previous chapters that was not implemented in the main mTec renderer is the 

reflection effect. Only some test renderings were performed with fully reflective sphere 

traced materials, but this was eventually abandoned for the more essential techniques. The 

following chapters will give an overview over mTec’s architecture and rendering pipeline. 

 

 

 

 

 

 

                                                
11 https://github.com/xx3000/mTec 

Figure 17: mTec default scene with Cook-Torrance BRDFs. The translucency of the dragon is 

clearly visible. 
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8.1 Foundations 

Modern engines consist of many subsystems and millions lines of code. The goal of mTec 

was to keep the renderer as focused as possible, therefore skipping all but the most 

essential systems. This chapter will give a short overview over these systems, as well as 

describe the external libraries that are in use. The most important part of mTec is arguably 

the renderer, therefore a far more in depth description of this component will be given in 

the later chapters. The mathematics module, GLM, will not be described in detail, as it is 

an external library12. 

 

8.1.1 Field Converter 

The field converter is technically not connected to the main engine. It is a standalone 

executable that can be run in order to convert meshes to distance fields, which can then be 

used by mTec. Triangle meshes in the OBJ file format are read and then converted with 

the brute force method described in chapter 5.2.1 to our proprietary SDF format. Our 

distance field files are simple binary files with a header consisting of the dimensions (width, 

height and depth) of the field in object space, as well as a resolution factor. The resolution 

factor is used to convert the object space dimensions to actual world space distances. One 

could say that the resolution factor is the scale of the distance field. In order to preserve 

the linear interpolation properties of the distance field only uniform scaling is allowed. The 

file header is followed by the actual distance field grid values serialized into a one-

dimensional array. The separation of this tool was chosen deliberately in order to stay 

flexible and be able to integrate it into a conventional asset pipeline easily. As soon as a 

new mesh would be generated by an artist, a new SDF could be calculated and provided to 

the engine. 

 

                                                
12 http://glm.g-truc.net/ 

Figure 18: an overview over all mTec subsystems. The mathematics 

module is an external library. 
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8.1.2 Asset Manager 

The asset manager is responsible for loading the distance fields, textures and metadata 

from the hard drive. mTec uses simple json files for specifying relevant information of each 

renderable object. The content of such a file can be seen below. 

 

{ 

"Field" :"dragon_med", 

"Texture" : "marble", 

"Color" : [1.0,1.0,1.0,1.0], 

"FillColor" : [2.0,2.0,2.0,1.0], 

"Specular" :[8.0,164.0], 

"Density": 1.9 

} 

 

The asset manager will try to load the specified distance field and texture, as well as create 

an appropriate structure holding the files and metadata in memory. 

This module uses several external libraries for IO operations. The open-source library 

rapidJson is used for the parsing of the json object files13. To keep everything as simple as 

possible only png textures are supported, which are decoded by the lodepng library14. 

Finally, the loadOBJ class is used to load classic OBJ meshes15. It should be noted that 

only a single mesh is loaded during the entire run time of mTec: one big triangle to render 

some of the fullscreen effects to. The use of this triangle over direct compute shader based 

rendering will be further explained in the renderer chapter. 

Once the objects are loaded, all relevant textures and SDF buffers are transferred into 

GPU memory. The only information that has to be kept in main memory are the object’s 

transformation matrices, which are retransferred to the GPU on every frame. Therefore 

mTec has a low usage of main memory and the CPU as all relevant calculations are 

performed on buffers in GPU memory only. 

 

8.1.3 Input and Gameloop 

These two essential engine modules are kept as bare-bone as possible. The gameloop is a 

very simple module which is responsible for updating the game time, running an input 

module update and issuing a draw command to the renderer. The input module is 

responsible for checking for user mouse and keyboard inputs, which then get forwarded to 

                                                
13 http://rapidjson.org/index.html 

14 http://lodev.org/lodepng/ 

15 http://www.opengl-tutorial.org/beginners-tutorials/tutorial-7-model-loading/ 
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the appropriate places in the renderer. Keyboard events are propagated to the correct 

functions by events which are based on Reinalter’s type safe delegates16. 

 

8.2 The Renderer Module 

The renderer is the heart of the mTec engine. It dispatches all draw commands and 

compute shaders, is responsible for the setup and maintenance of all OpenGL states and 

buffers. This chapter will give an in-depth description of the renderer, its deferred rendering 

pipeline and all of its components.  

For more convenient interfacing with the OpenGL drivers, two external libraries are used. 

These are Freeglut17 and the GL extension wrangler library (Glew)18. Freeglut is used as a 

base framework for requesting an OpenGL context from the operating system, and as an 

interface between the OS input functions and our events. The Glew library is only used in 

mTec to provide vertical sync functionality. 

Many programming languages support file includes through preprocessor directives, but 

unfortunately this is not the case for GLSL. The lack of this essential feature makes it very 

hard to have proper separation of concerns and reuse common functions between different 

shaders. To solve this problem a custom include solution was developed for mTec, utilizing 

a general preprocessor19. The visual studio build pipeline of mTec is set up to run the GPP 

executable over the shader files before copying them to the output directory. This 

preprocessor resolves all custom include commands by directly pasting the code from the 

referenced files into the current shader which allows for compact and easy to read shader 

files during development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
16 https://blog.molecular-matters.com/2011/09/19/generic-type-safe-delegates-and-events-in-c/ 

17 http://freeglut.sourceforge.net/ 

18 http://glew.sourceforge.net 

19 https://github.com/logological/gpp 
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8.2.1 The Deferred Rendering 

Pipeline 

mTec is using a deferred architecture for 

rendering. All relevant information and effects 

are written into a buffer (the so called 

gBuffer), before being properly composited in 

a final shading step. Figure 19 visualizes the 

pipeline and all discrete steps that are 

executed for each frame. Each step consists 

of at least one shader dispatch or draw call. 

For easier visualization the diagram is divided 

into several distinct groups. Many steps in the 

pipeline are either preprocessing (ex: culling) 

or postprocessing (ex: upsampling) of the 

actual calculations or rendering effects. 

These distinct groups or modules are also 

present in the actual code. The reason for 

this is twofold: First, it enables easier 

optimization and work on a specific part of 

the pipeline while not having to touch the 

other elements. Secondly, each of these 

modules could be switched out easily for a 

conventional rendering technique, if so 

desired. The modules operate independently 

of each other, on buffers provided by the 

preceding steps. The sphere tracing step 

could easily be replaced by conventional 

rasterization of geometry, providing just depth 

and normal information to the following steps. Distance field shadows and ambient 

occlusion could be replaced by shadowmapping and SSAO, in order to improve runtime 

performance or compare these effects. Finally, the lighting step supports simple Blinn-

Phong as well as Cook-Torrance lighting modes. This could be upgraded to PBR with ray 

marched or voxel cone tracing based global illumination.  

All calculations are performed by compute shaders, except for the final lighting and 

postprocessing steps, which are fullscreen draw calls using fragment shaders. Compute 

shaders have the advantage of bypassing the regular OpenGL rendering pipeline and just 

performing calculations on buffers and data directly, which is faster than the whole trip 

through the rasterizer. A local group size of 64 threads was chosen for the compute shader 

Figure 19: The mTec deferred distance field 

rendering pipeline. All colored blocks 

correspond to seperate rendering modules. 
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calculations. This is two times the size of a GPU warp on our test system20. Empirically this 

resulted in the fastest execution times. Depending on the kind of calculation that is 

performed in each step, the compute shader ether writes its outputs directly into a texture 

through OpenGL’s ImageReadWrite system, or into a simple linear buffer. Writes into a 

buffer are used for all culling calculations, as their outputs are just arrays of indices.  

Each frame starts with the recalculation of model matrices and transfer of uniform buffers 

to the GPU. The first step, the world SDF composition, is only run on the first frame of the 

engine’s execution. During run-time the world field is only updated when necessary. Before 

sphere tracing the distance fields, the camera frustum is subdivided into many sub-

frustums and all objects are culled to these tiles. This reduces the amount of fields that 

have to be fetched in the next step. The depth of the scene as well as object normals and 

material ids are determined through sphere tracing and written into the gBuffer. 

Furthermore the thickness of SSS enabled objects is calculated in this step and added to 

the buffer. These buffers are then passed to the shadow and AO modules which are 

dispatched simultaneously, as their calculations are independent of each other. There are 

still discrete steps which have to be executed sequentially within the modules itself: both 

culling steps are run in parallel, followed by the effect calculations and finally the 

upsampling shaders. mTec’s AO module supports all three ambient occlusion calculation 

techniques described in the previous chapters but the default technique used is our hybrid 

approach and this is reflected in the culling calculations, which create object lists according 

to each pixel’s maximal AO influence range. The culling as well as the actual ambient 

occlusion calculations are performed in quarter the actual screen resolution (1/4 of width 

and height, 1/16 of the actual screen pixels). In order to increase the final visual quality, a 

bilateral filtering shader is run in the end, which upsamples the reduced buffer to full 

resolution. The same process is performed in the shadows module, which is rendered in 

half screen resolution (1/4 of the actual screen pixels) and then upsampled. Further 

undersampling results in very visible and hard to deal shadow seams in the final image 

which is why these specific dimensions where chosen. 

                                                
20 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-5-x 

Figure 20: mTec gBuffer composition. 
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After all calculations are finished, the gBuffer is passed to the shading/lighting step. This 

module performs texturing and normal mapping for each pixel and determines final pixel 

color by running the collected information through a Blinn-Phong lighting model. The more 

advanced Cook-Torrance model is supported by the renderer, but disabled by default. The 

lighting models are completely separated from the distance field techniques, therefore all 

performance evaluations were performed with Blinn-Phong lighting to reduce the 

complexity of the non-distance field calculations to a minimum. The final step in the mTec 

rendering pipeline is a post-processing step, in which temporal anti-aliasing as well as 

camera motion blur are applied to the composited image. It is a part of the renderer but 

completely decoupled from and oblivious to the presence of distance fields. A more 

detailed description of each rendering step will be given in the following chapters. 

The composition of the gBuffer can be seen in Figure 20. It has a total size of 96 bits per 

pixel. 32 bits are used for high precision depth storing, 2x16 bits for compressed normals, 

8 bits for object thickness and another 8 for the material id. The last 16 bits are evenly 

distributed amongst shadow and ambient occlusion factors. Other buffers are used, but not 

accounted for in this gBuffer calculation. These are, amongst others, the TAA history 

buffer, various culling lists, the global distance field and low-res shadow and AO buffers, 

which get upscaled and transferred to the gBuffer. It is of uttermost importance to keep the 

gBuffer as small as possible, and each bit that can be shaved off results in significant 

performance gains. As an example, during development the id and thickness fields in the 

buffer were reduced from 16 to 8 bits per entry. This reduction of the overall buffer size by 

about 4 Mb (in 1920x1080 resolution), has caused an increase in overall performance of 

about 1.2 ms for 20 objects.  

 

8.2.2 World Distance and Id Field Composition 

When sphere tracing through a scene consisting of multiple distance fields, each field may 

be polled hundreds of times, depending on the maximum number of steps and the location 

of the objects. Arbitrary distance fields that are generated by our converter tool from 

Figure 21 : The depth buffer after sphere tracing. On the left, the full algorithm with all optimizations 

is run. On the right only the world distance field is polled. The conservative distance estimate is 

clearly visible by the bulkiness of the dragon in the front. Due to the low resolution of the field, 

details like the dragon’s scales disappear. 
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meshes are kept in GPU memory as 3D textures. Our test system has a texture cache of 

24 kb21, which is too small to hold all of our fields during execution. Therefore the SDF 

textures have to be re-fetched constantly from main GPU memory, which is very slow. 

Reducing the amount of texture reads that need to be performed is essential in increasing 

sphere tracing performance. The first reduction technique that is performed in mTec is 

based on Wrights’ global SDF optimization [14]. In the first frame of execution, a shader is 

dispatched that creates a low-resolution distance which spans the entire scene, by polling 

all object fields at each grid position. A fixed value is added to the result in order to create a 

more conservative distance estimate (Figure 21).  

As an additional, novel optimization a 

second buffer with the same resolution is 

created, but is filled with the object ids at 

each grid cell instead of distances. When 

sphere tracing, instead of going over all 

fields, the algorithm polls the world 

distance field to get an estimate of the 

correct distance and this distance is used 

for further iterations, as long as it is 

above a certain threshold value. The 

threshold value is carefully chosen to be 

the size of a single grid cell, in order to 

prevent loss of detail in the final image, 

which would result from only using the low-resolution world field. If the distance is smaller 

than the threshold value, the algorithm additionally polls the world object id field in order to 

determine which object it is closest to. The resulting object is the only distance field that 

has to be polled during this iteration. Without any further modifications the resulting sphere 

tracing calculation would be much faster, but return incorrect results in cases where two 

objects are close to each other. This is caused by the fact that the id field basically 

contains indices, which cannot be interpolated linearly over the grid cells like a normal 

distance field. The ids saved in the field are only correct for the center point of the cell, 

which can lead to errors when a cell is equally close to two different objects. This problem 

is addressed in mTec by a post-processing step, which goes over the id field and 

compares the value of each cell with its direct neighbors. If the neighbors of the cell have 

different values than the cell itself, the region is considered unstable and an invalid id is 

inserted into the field (Figure 22). This creates a border region of invalid values around the 

intersection point of object field influences.  When the sphere tracing algorithm polls the id 

field and gets an invalid result, it is forced to poll all individual object fields. This is much 

slower but results in the correct distance. Further optimizations for this edge case are 

described in the culling section of the sphere tracing module chapter. The world distance 

                                                
21 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-5-x 

Figure 22: Visualization of the world id field. All 

black regions are „uncertain“, i.e. intersections 

between different field influences. 
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field is “coated” by a thin layer of negative distances along its edges in order to force a 

switch to regular object field polling should a ray leave the field. The texture sampler 

options for the field are set to clamp at the borders to enforce this behavior. In theory, both 

the distance and the object ids could be merged into a single texture. All algorithms that 

use the world distance field switch to the high-res object fields if close enough to an object. 

This means that the distance information from the world field is not used around or inside 

of objects. It could be possible to write the object id information directly into these areas 

instead of the distances. Unfortunately this approach poses a few problems. First and 

foremost, the distance field needs to be linearly interpolated in order to get accurate values 

for each polled point. If object ids would be stored in the same texture, bilinear filtering 

would be applied to them as well, which would nullify the meaning of these integer indices. 

Even if the same texture would be provided to the appropriate algorithms with two different 

filtering schemes the main issue would still be the border region, where distances switch to 

ids. In this border region inside the distance field, distances would be interpolated with 

neighboring object ids which would result in catastrophic distance overestimates. A final 

problem is the fact that algorithms poll the object id as soon as the distance field reports a 

value lower than the precision threshold. This happens in the same calculation step, with 

the same texture coordinates. Therefore we would need both distance and id information in 

the border regions, making two textures necessary.   

The field size in our test scene is fixed to a resolution of 512x256x512. This is sufficient 

and fairly high-res for a small scene like ours. The higher the resolution of the field, the 

lower can the switch-to-object threshold be without visible artefacts. Lower switching 

thresholds result in higher overall performance, as less textures need to be polled during 

sphere tracing. For big, open-world scenes a single world distance field would be too small 

to provide any significant benefits and a dynamic update approach has to be chosen. The 

field could be divided into regular-sized chunks and new chunks could be recalculated 

once the player leaves the current chunk. This would effectively generate 9 small world 

fields surrounding the player. Dynamic world distance fields for large scenes are currently 

not supported by mTec, and are a possible direction for future research.  

The world distance field would only allow for static scene geometry if it would be generated 

only a single time, at startup. To allow for object animations and morphing, the world field 

needs to be updated at run-time. Due to the high resolution of our world field, a 

recalculation of the whole field takes about 110 ms. This is passable as a start-up cost, but 

absolutely unacceptable for run-time updates, which is why mTec only recalculates 

relevant portions of the buffer during run-time. Whenever a change in an object’s 

transformation is detected, the asset manager calculates the current bounds of the object 

and generates a bounding box that is axis aligned to the world distance field. This AABB is 

then used to calculate which buffer cells have to be updated. The resulting grid cells are 

added to a list and a compute shader is dispatched for each element of this update list 

during run-time. Each update needs to add two separate entries into the update list: An 

entry for the current bounds of the object, and an entry for the bounds before the 
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transformation. This has to be done in order to avoid a “smearing” of moving objects 

across a scene. As mentioned earlier, the world field is a conservative representation of 

the actual scene: even though the actual object may have moved, it will still be rendered 

correctly as long as the distance that it has moved by is smaller than the world-to-object 

threshold value. Therefore the field does not need to be updated every frame to result in 

correct images. Different metrics could be used in order to determine when to dispatch 

updates and this is highly dependent on the scene and nature of transformations. The 

simplest approach would be to wait a fixed amount of frames before scheduling an update, 

which works surprisingly well for simple transformations in mTec. The maximum amount of 

frame that can be skipped before updating the sample scene is about 7 and any more 

result in visible object flickering. This is the case because of the high frame rate on our test 

system. Of course this naïve method only works correctly in the narrowest of cases and no 

reliable estimates can be made about its reliability for different systems, transformations 

and scenes. A better heuristic would be to calculate the difference between the original 

AABB and the AABB of the current frame. Should the difference in any frame be bigger 

than the world-to-object threshold, an update should be scheduled. This heuristic is 

independent of the renderer’s FPS and transformations performed. Overall, the cost of 

dynamically updating the world SDF is highly dependent on the amount of objects 

transformed and the update heuristic used. For the mTec sample scene, the dragon model 

is rotated at a fixed speed around its y-axis. The object distance field has a resolution of 

128x91x58 cells, which translates into 100x72x48 world grid cells that need to be updated. 

This animation takes about 0.8 ms per frame, which is just the world field recalculation 

costs averaged over all frames. This is a significant cost for such a simple animation, but 

the overall update process is fairly un-optimized in mTec, and there is still a lot of potential 

for speed ups in the future. The update cost is as high as it is because many cells have to 

be updated in the high-res world field in addition to the world id field. The performance 

could be increased drastically by reducing the world field size or the amount of cells that 

need to be recalculated.  

 

8.2.3 The Sphere Tracing Module 

Sphere tracing is used in mTec for depth finding in a scene and is performed on a full-

screen buffer in a compute shader. The shader receives the world distance field and a 

culled list of object fields and proceeds to march along a ray while checking the distance 

fields at each step until an intersection is found or a maximum amount of steps is reached. 

As the object distance fields are represented as 3D textures, multiple transformations have 

to be performed before being able to sample them in a shader. The current marching 

position in world space has to be multiplied with the objects inverse model matrix. Then 

this object-space point is scaled and divided by the SDF resolution which results in a 

coordinate that can be plugged into the shader sampler functions directly. When converting 

meshes to 3D distance textures, it is desirable to have the texture surround the mesh as 
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tightly as possible. This reduces the amount of empty, unnecessary grid cells and 

increases the effective resolution of the field. During sphere tracing however, tight fields 

lead to issues when the polling point lies well outside the texture bounds. Texture samplers 

are set to clamp texture coordinates to the [0,1] range, which would lead to a huge 

underestimation of step sizes in scenes with tight distance fields, as no matter how far our 

point would lie outside the 3D texture, it would always be clamped to texture borders. This 

problem is solved by calculating the distance between the clamped and the original, un-

clamped point, and adding it to the polled result. In the case that our point lies within the 

texture, the clamped and un-clamped points will be equal, resulting in a distance of zero 

being added to the polled value. In our implementation the algorithm steps no more than 

250 times before being terminated.  

In addition to determining a pixel’s depth, the shader proceeds to calculate the normal, the 

material id as well as the thickness of SSS-enabled materials. Normals are calculated 

through the gradient method and packed into two 16 bit fields using octahedron vector 

encoding22. Each distance field is assigned a unique material id during mTec initialization, 

which is used during the shading step of the pipeline to determine which texture and 

lighting parameters to use. This id is determined by checking which field is closest to the 

calculated pixel depth and then stored in the gBuffer. A multi-layered optimization system 

is used by the sphere tracing algorithm in order to keep texture fetches to a minimum. 

Every distance field check starts by polling the world distance field first. Only if the resulting 

value is smaller than a certain threshold a second check will be performed by polling the 

world id field. This fetched id can lead to two possible outcomes: if it is a valid object id, 

then this specific field texture will be checked and its value returned. If the id is invalid 

(because of a border region of multiple objects in the scene) the algorithm will resort to 

polling multiple field textures and checking for the smallest distance. Even in this worst 

case not all scene fields have to be checked, as a list of culled objects is used. This culling 

process is described in the following chapter. It should be noted that the world id field is not 

only used for sphere tracing but also for the determination of the final material id. 

In order to simulate sub-surface scattering, the thickness of an object has to be estimated. 

This is calculated in mTec by continuing to sphere trace the ray into the object until a 

surface or a maximum thickness is reached. The maximum thickness is a per-object 

constant which determines at what depth an object becomes fully opaque to light. 

The thickness trace could be optimized by performing it in much lower resolution, but due 

to the small maximal step count and the fact that only one specific distance field has to be 

polled at every step, it is a quite fast algorithm compared to the other techniques.  

 

 

                                                
22 https://knarkowicz.wordpress.com/2014/04/16/octahedron-normal-vector-encoding/ 
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8.2.4 Sphere Tracing Culling 

Even though the world distance and id fields results in significant speedups of sphere 

tracing, the worst case scenario of multiple field influences on a single grid cell would 

require to go over a list of all distance fields in the scene. Thankfully this list can be 

efficiently culled to include only fields that lie in the vicinity of the sphere tracing ray. The 

generation of these lists is performed in mTec before the sphere tracing step during each 

frame. The camera frustum is subdivided into 34560 sub-frustums, which corresponds to 

8x8 pixels per tile. During the uniform update step a bounding sphere and oriented 

bounding box (OBB) is calculated for each object. This bounding object list is used by the 

culling shader to perform basic intersection tests between the frustum and the objects. 

Initially a sphere-ray intersection is performed, which is then refined by an OBB 

intersection. The id of every object that passes both tests is added to the culled list. The 

culling list has 128 8-bit slots per tile. 127 of these slots can be used for the object ids, as 

the first slot contains the length of the array contained in the tile. This results in the 

maximum number of objects per scene being 127. Of course this could be increased very 

easily to any arbitrary number. It should be noted that if the array size would be increased 

to accommodate more than 256 elements, the slot size itself would have to be increased 

from 8 bit as well in order to hold more than 256 unique object ids. Changes of this kind 

should be profiled extensively to determine how well the new buffer sizes harmonize with 

the GPU caches and how it affects performance. 

 

Objects 
in scene 

No 
Optimizations 

Only 
Culling 

Only 
World 
Ids 

Only 
World 
Distance 

All 
Optimizations 

20 44.54 5.92 23.03 19.68 3.93 

40 449.01 7.46 248.97 198.96 4.52 

60 1477.26 8.81 761.68 606.7 4.96 

80 2513.91 13.73 1303.86 1009.9 6.35 

Table 2: Total sphere tracing time of the scene in ms, with various amounts of objects and 

optimization features. The algorithm results in the calculation of pixel normal, depth and id. Please 

refer to Appendix I for details on our testing setup.  

The relevant question that should be asked of all optimization schemes is how they impact 

the performance. Table 2 illustrates the sphere tracing times of a scene with various 

numbers of objects. It can be seen that by employing all three techniques in combination 

results in tremendous speedups, especially in scenes with higher object counts. 

Objectively culling has the highest impact on the overall performance, as it reduces the 

rendering time by a factor of 100 in comparison to the other techniques. However, both the 

world distance and world id field are also being used in other modules as speedup 

structures, which is why their performance impact should be evaluated over all rendering 

modules combined. These measurements were taken in the mTec sample scene and 
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different geometries, field sizes, and object positions might affect the results. Therefore a 

scene should always be profiled to determine which of the optimization techniques should 

be used in order to maximize rendering performance. 

 

8.2.5 The Shadows Module 

Soft shadows are calculated by cone tracing a ray from each pixel towards the light. The 

pixel position in world space is reconstructed from the linear depth saved in the depth part 

of the gBuffer.  In order to speed up the algorithm, the calculations are performed in half 

resolution. A post-processing step is dispatched after the main calculation is finished and 

this half-resolution buffer is upscaled using bilateral upsampling. The undersampled 

shadows calculation results in visible artefacts on edges, but these artefacts can be visibly 

reduced through TAA post-processing. The cone tracing itself employs the world id field as 

well as culled object lists as means of speeding up the algorithm. The world distance field 

is not used as our tests have shown no relevant speedups with this technique.  

 

8.2.6 Shadow Culling 

The calculation of the culled shadow object lists works similarly to the culling for sphere 

tracing. The shadow calculation dimensions are halved again, which results in the culling 

shader being run in ¼ resolution in each dimension, each culling tile covering 4 (2x2) 

shadow pixels. The shader loops over all objects in the scene and performs intersection 

tests of the object bounding spheres against a ray from the interpolated pixel depth 

towards the light. As the shadow are calculated through cones and not rays, a constant 

factor is added to all spheres in order to achieve a more conservative culling. This  

Figure 23: The results of Table 2 plotted on a graph. The y-axis uses a log scale 

for better visualization.  
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Objects 
in Scene 

No 
Optimizations 

Downscaling Culling 
World 
Ids 

All 
Optimizations 

20 38.04 11.65 6.69 18.83 2.49 

40 455.03 131.66 10.75 297.45 3.77 

60 1465.31 420.89 13.55 921.06 6.02 

80 2502.38 690.23 17.2 1596.69 10.4 

Table 3: Shadow render times in a scene with various amounts of objects. Please note that per pixel 

depth and normals are required for shadowing. Therefore these tests are run with sphere tracing 

enabled, and the sphere tracing times (Table 2, last column) are subtracted from the results. 

is a cheap way to ensure that even at the maximum cone distance no objects are culled, 

which might be relevant for soft shadowing. Because each tile averages the depth of 4 

pixels, artefacts arise on border regions with high depth disparities. The frequency of the 

appearance of these artefacts is highly dependent on the scene and objects, but in the 

mTec default scene they appear very rarely, and are alleviated through TAA 

postprocessing. This edge case could be handled by calculating the difference between 

the depths of the four tile pixels, and invalidating the culled list in cases where the 

maximum depth difference passes a certain threshold. If an invalid list is encountered by 

the cone tracing algorithm, it would fall back to checking all scene objects. 

The performance impacts of the various acceleration techniques are quite similar to the 

sphere tracing optimizations (Table 3, Figure 24). Culling has the highest impact on the 

overall performance by far. Downscaling the calculations to a quarter of the original pixels 

leads to a speedup factor of about 3.5. This is to be expected from reducing the dispatch 
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Figure 24: The results of Table 3 plotted on a graph. The y-axis uses a log scale 

for better visualization. 
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size, as the optimal factor of 4 is impossible to reach due to overhead in the non-parallel 

portion of the program. 

 

Objects 
in Scene 

No 
Optimizations 

Downscaling Culling World 
Ids 

All 
Optimizations 

20 33.28 2.78 4.14 10.91 0.93 

40 384.65 24.67 4.69 112.7 1 

60 1166.39 69.4 5.32 354.39 1.09 

80 1959.31 125.51 5.26 598.38 1.76 

Table 4: Ambient occlusion calculation times in a scene with various amounts of objects. Please 

note that per pixel depth and normals are required for ambient occlusion. Therefore these tests are 

run with sphere tracing enabled, and the sphere tracing times (Table 2, last column) are subtracted 

from the results. 
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Figure 25: The results of Table 4 plotted on a graph. The y-axis uses a log scale 

for better visualization. 
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8.2.7 The Ambient Occlusion Module 

Ambient occlusion, which is dispatched simultaneously with the shadow module, is 

calculated in ¼ of the rendering resolution. With such a low resolution, regular bilinear 

upscaling would result in very pixelated AO in the final image. Therefore, similarly to 

shadows, upsampling is performed though bilateral filtering. Even though mTec supports 

AO calculation with all three AO algorithms described in the earlier chapters, the default 

algorithm used is our hybrid approach as it has a much better performance than cone 

tracing while still maintaining good visual quality and eliminating artefacts from the naïve 5-

tap approach. The algorithm is accelerated through the world distance field, the world id 

field as well as a culled object list. In order to guarantee correct occlusion of small features 

close to the pixel itself, the world distance field is only polled if the ray has reached a 

certain distance from the original pixel position. 

 

8.2.8 Ambient Occlusion Culling 

The AO object lists are calculated using a compute shader that is dispatched in the same 

resolution as the AO shader itself. The culling algorithm is configured for the hybrid 

ambient algorithm, but could be adjusted to accommodate the other two quite easily. As 

the hybrid algorithm performs 5 taps along 5 rays in a normal-oriented hemisphere, we can 

pre-calculate the maximum influence range of every pixel. Only objects that lie within this 

range can contribute to the pixel’s ambient occlusion. A culled object list can be created 

easily by intersecting the bounding sphere of each scene object with a sphere at the pixel’s 

position with the maximum influence as its radius. 

The performance measurements reveal a similar picture to the shadows calculations, 

except that the AO calculation is much faster in general (Table 4, Figure 25). A big 

contributing factor is the much smaller dispatch size of only 1/16 of the full screen size. 

This results in speedups by a factor of over 15 for higher object counts. The culling of 

distance fields yields the highest speedups of any single optimization technique. 
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8.2.9  Bilateral Upsampling 

Lighting effects such as ambient occlusion can be calculated in lower resolutions and then 

upsampled without relevant degradation in visual quality of the final image. These 

techniques mostly produce low-frequency information, which is preserved in lower 

resolution images. Such undersampling can result in significant increases in rendering 

performance, but the question becomes how to properly upscale the low resolution image 

to match the rendering size before the composition step. A comparison of three AO images 

can be seen in Figure 26. The left image is generated through simple bilinear upsampling. 

This method is very fast, as it can be performed by the GPU automatically, but results in 

visible pixelization of the image. The visible pixels can be removed by running a Gaussian 

blur over the image after bilinear upsampling. Even small kernel sizes remove most of the 

pixelization artefacts. Unfortunately the blurring of the image leads to smearing of 

occlusion information across object boundaries. Optimally we would want an algorithm 

which blurs away the pixelization but preserves sharp edges. That is exactly what can be 

achieved through bilateral filtering [44]. This algorithm works similarly to a classical 

Gaussian blur, but every neighboring pixel in the kernel is not only weighted by its distance 

but by other geometry-aware factors. In our case the additional weighting is provided by 

the differences in depth and normal of the center to its neighboring pixels. Furthermore a 

simple tri-weight kernel as proposed by Herzog et al is used [44]. The result of this 

upsampling can be seen in the rightmost image of Figure 26. Pixel artefacts are blurred 

away while still maintaining sharp edges. 

 

8.2.10 The Lighting Module 

In the last step of the rendering pipeline the actual color of all pixels for the final image has 

to be determined. This step is done in mTec by a full-screen draw call, with all relevant 

work performed in a fragment shader. Conventionally two triangles aligned to create a full 

screen quad would be used to guarantee a fragment shader execution for each on-screen 

Figure 26: Comparison of different upsampling techniques. The left image is bilinear upsampling, 

the pixelization issues are clearly visible at object edges. The center image was upscaled with a 

Gaussian blur using a 3x3 kernel. The pixelization disappears, but the AO factor of different objects 

gets smeared across object boundaries. The right image is upscaled using bilateral filtering. The 

pixelization issues disappear, but the object boundaries stay sharp.  
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pixel. In mTec a single huge triangle is used instead. This is an optimization originally 

proposed by Bilodeau23, which aims to eliminate pixel overdraw at the diagonal when using 

a triangle-quad. The triangle is big enough to cover the entire screen and is clipped by the 

GPU in the rendering pipeline to match the screen boundaries.  

The fragment shader performs texturing and normal mapping before passing the color and 

gBuffer information to our Blinn-Phong lighting model where each pixel is correctly lighted 

according to the accumulated information. This requires the reconstructed world space 

position and the normal of the pixel. If we would just calculate the texture color based on 

the world space position, textures would start to “flow” on moving objects. This can be 

avoided by performing the tri-planar mapping in object space, and multiplying all pixel 

positions with the inverse model matrix before plugging them into the texturing calculations. 

The same adjustment has to be performed on the world space normal by multiplying it with 

the inverse transpose of the model matrix, ensuring that our normals are only rotated and 

not translated by the operation. 

Tri-planar normal mapping is performed in order to make the terrain look “rougher” and 

simulate a higher distance field resolution. Similarly to texturing, the calculations are 

performed in object space. The material properties such as texture, normal map and 

lighting parameters are retrieved by polling a buffer according to the object’s id.  

As previously noted, the lighting is calculated using the regular rendering pipeline. 

Performing this final step with a compute shader and blitting the resulting buffer into the 

default framebuffer lies well within the realm of possibility and tests with such a setup were 

performed during development. In the end the reasons for abandoning such approach 

were twofold: First, the OpenGL windowing framework used by mTec, freeglut does not 

support a default SRGB framebuffer. This leads to gamma issues when trying to blit 

directly from an SRGB texture into a linear buffer, as the blit operation does not perform 

gamma correction. The second reason for abandoning compute shader rendering lies in 

texture level-of-detail and anisotropic filtering calculations. The ability of a fragment shader 

                                                
23 https://www.slideshare.net/DevCentralAMD/vertex-shader-tricks-bill-bilodeau 

Figure 27: Comparison of compute vs fragment shader rendering. Left image: compute 

shader. Right image: fragment shader. The missing anisotropic filtering is clearly visible. 
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to choose the correct mipmap level of a texture based on pixel derivatives leads to big 

increases in visual fidelity. Anisotropic filtering in particular leads to smooth textures 

perpendicular to the viewer, and eliminates texture flickering during movement. 

Unfortunately these features cannot be used in a compute shader. The dFdx and dFdy 

functions for calculating screen space derivatives are only accessible from a fragment 

shader, and sampling a texture in a compute shader will always return a LOD-level of zero, 

ignoring mipmaps and anisotropic filtering. A comparison between both rendering 

techniques can be seen in Figure 27. 

The calculated color, normal, thickness, shadow and AO factors are then passed to the 

Blinn-Phong lighting equation. The SSS approximation is calculated in this step, by 

blending between two light colors according to the object’s thickness. The thickness 

information from the texture calculated in the sphere tracing step is plugged into the 

translucency formula presented by Barré-Brisebois et al [39]. The output of this step is a 

simple RGB buffer. At no point in the rendering pipeline is blending or a hardware depth 

buffer used, as the sphere tracing of the scene results in explicit depth finding without the 

need for multiple draw calls. 

 

8.2.11 Postprocessing 

The finalized color buffer from the lighting step could be directly transferred to the 

backbuffer if one was willing to accept ugly aliasing artefacts along object edges. In order 

to improve overall image quality and reduce the visibility of undersampling artefacts, mTec 

employs a combination of temporal anti-aliasing and static motion blur. The TAA 

implementation itself is a port of PlayDead’s TAA implementation for Unity, which was 

presented at GDC 2016 [40]. Except for a few modifications it follows the same frustum 

jitter, calculate pixel velocity, unjitter and reproject scheme. The main modification in mTec 

is that the velocity buffer is not calculated in a separate shader step, but instead the 

velocity is reprojected on the fly in the TAA shader. This increases the overall performance 

and removes the need for a dedicated velocity buffer. The same optimization could be 

performed in a regular renderer, but it would make per-object motion blur impossible. 

Conventionally object motion blur is calculated by drawing object velocities into the buffer 

Figure 28: Comparison of a rendered image with and without TAA. The left image pair demonstrates 

TAA’s blurring and anti-aliasing effect. The right image pair shows shadow bleeding artefacts from 

undersampling. These artefacts are visibly reduced through temporal anti-aliasing. 
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after the camera velocity has been calculated. In mTec, object velocities could be 

calculated in a single step, as the id of each on-screen object could be determined from an 

id buffer lookup. By caching the object transform matrices from the previous frame, the 

current velocity could be calculated in a single step without the need for multiple expensive 

draw calls. This technique for dynamic motion blur has not been implemented in mTec but 

could prove an interesting direction for future research. 

All together the whole post-processing step takes about 0.18 ms of rendering time. These 

are constant costs, independent of the number of objects or the scene setup. In addition to 

alleviating the aliasing of edges, TAA also helps in reducing the visibility of artefacts from 

undersampling of shadows and AO. Examples of this can be seen in Figure 28. These 

artefacts most commonly appear on straight edges such as the pillars in the mTec test 

scene. Although TAA reduces the apparent size of these artefacts, it also introduces a 

visible flickering on such border regions. A possible solution to the flickering of unstable 

regions is proposed by Wright [14]. In their approach the current pixel is filled with its 

blurred surroundings if it is deemed “unstable” by TAA. This solution has not been tested in 

mTec, and represents a future research direction. 

After post-processing the resulting color buffer is blitted into the backbuffer, and a buffer 

swap is performed, thus ending rendering for the current frame. 

 

Figure 29: The default scene setup that is used for all performance measurements with Blinn-Phong 

lighting, as seen here with 20 objects. 
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8.3 Performance Analysis 

The main focus of this thesis was the development of efficient ways to render distance 

fields in real time. This was a long process, in which all the different components of the 

renderer were rewritten, extended and re-tested. This chapter will give a more thorough 

look on the overall performance instead of focusing on isolated features. When rendering 

distance fields it is rather hard to get an objective measurement of the costs of a single 

object rendered in the scene. The rendering time is highly dependent on the placing of the 

objects themselves: the closer they are to each other, the more likely it is that they will 

generate invalid borders regions in the world id field, making a fallback to culled lists 

necessary. Close objects are more likely to be added to the same culling list, making AO 

and shadows calculation more expensive. After a certain object count is reached the GPU 

will hit a memory bottleneck leading to a non-linear increase in per-object costs. For all 

these reasons no perfectly objective per-object costs can be given in distance field 

rendering. The performance evaluations presented in this chapter only apply to our tested 

scene and different scenes and geometries will yield different results, within a certain 

margin. The aim of the test scene was to create a realistic scenario in order to get 

meaningful results. There were no geometry adjustments to better fit our optimization 

techniques. An in-depth look on our testing scene will be given and the results of our 

extensive performance tests will be highlighted. Finally, possible unexplored avenues for 

future optimizations will be discussed.  

 

8.3.1 On Scene Composition 

The default mTec scene used for all tests and performance evaluations is a closed room 

with pillars and a few other objects. The geometry of the room itself is entirely composed of 

implicit surfaces: the pillars are domain-repeated boxes and the walls and roof are created 

through prisms and various Boolean functions. As they are not actual 3D textures, they are 

handled in the renderer as a special case and are not included in the culling steps. When 

talking about “object count” in the scene, only regular mesh-based distance fields are taken 

into account. The room contains a Stanford dragon and Utah teapot model as well as a 

variable amount of humanoid figures. Whenever the object count is increased, more and 

more human models are placed in rows of seven behind each other. Even though the 

same base model is used, these are treated as separate entities by the renderer, and no 

data is re-used from already placed models. As far as the renderer is concerned, all the 

humanoid figures in the scene could be entirely different distance fields. Whenever an 

instancing scheme is used in order to save memory and increase performance for multiple 

copies of the same model it is explicitly mentioned in the section itself. The scene 

geometry and camera position was chosen in a way to present a “worst case” for 

performance evaluation. The whole room is in full view, and all objects are inside the 

camera frustum. The human models are pretty close together and create intersections in 
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culling and world id buffers. When moving the camera through the room, the average 

framerate is higher than in the fixed position used for measurements. 

For further specifics on testing hardware please consult Appendix I. The following table 

highlights detailed information about the actual mesh SDFs used. 

 

Model SDF Dimensions Size (Mb) Number of triangles 

Teapot 200x98x125 4.67 2464 

Dragon 128x91x58 1.29 100.000 

Human 295x350x50 9.85 2796 

 

Even though the human mesh is a low-poly model, the generated distance field has the 

highest resolution by far. The correct size for a distance field is often independent of the 

underlying mesh, and should be chosen carefully on a per-object basis. The required GPU 

memory for the scene can be calculated as 4.67+1.29+9.87*(Objects-2) Megabytes. A 

performance test run with 20 objects has therefore a GPU memory requirement of about 

183 Mb just for the 3D distance textures, a cost that can be alleviated by using object 

instancing for identical distance fields. 

It might seem that there is a high memory overhead for distance field rendering, as each 

object is represented as a 3D texture. However, when compared with regular triangle 

meshes the costs aren’t that much different. The dragon model, for example, takes 1.29 

Mb as a 3D texture. This is equal to about 14090 half precision vertices consisting of 

position and normal. The original dragon mesh model that was used for conversion 

consisted of 100.000 triangles. Overall the cost of distance fields as 3D textures is 

comparable to conventional meshes, and the truly relevant factor is the resolution chosen 

for the distance field. 

 

8.3.2 Distance Field Instancing 

It is not uncommon for video game developers to place many thousands objects in a scene 

that need to be rendered simultaneously. This is mostly the case with particle effects or 

dense vegetation, where the conventional approach of dispatching a draw call for each 

object would quickly lead to severe bottlenecks with such a big amount of calls. The 

solution to this problem came with the support of instancing in GPU hardware. Instancing, 

which has now been supported for over ten years24, allows a single mesh to be rendered 

many times with different transformation data during a single draw call. An example for this 

would be the rendering of leaves on a tree. These leaves could all be based on the same 

mesh geometry, but drawn at different positions or modified otherwise through tessellation 

or deformation. 

                                                
24 https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_instanced.txt 
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The same basic principle can be applied to rendering with distance fields: each distance 

field texture that needs to be rendered has to be present in GPU memory, but what is more 

problematic is the fact that each texture has to be checked multiple times during sphere 

tracing. This puts a heavy burden on the GPU texture cache, which needs to re-fetch the 

relevant texture data continuously and can lead to an exponential increase in render times 

over a certain object threshold. The resulting loss of performance can be seen very well in 

Figure 30. An overall improvement can be achieved by keeping the memory footprint of 

each object as small as possible, packing meshes tightly into distance textures.  

Instancing can further help with this issue. When multiple objects share the same distance 

field, the field can be uploaded to the GPU only a single time. The metadata of each object 

simply points to the same distance texture, therefore potentially saving a lot of memory.  

 

Objects Regular Instanced 

20 8.97 8.63 

40 11.1 10.23 

60 13.83 11.38 

80 20.05 12.27 

100 28.27 13.06 

 Table 5: Rendering times for various object counts. A full image with all effects is rendered for each 

measurement. 

The rendering performance was measured for various object counts and can be seen in 

Figure 30 and Table 5. The instanced measurements were performed with 3 regular 

objects (dragon, teapot and human) and a varying amount of instanced versions of the 

human model.  
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Figure 30: Render times plotted for various object counts. 



 

   65 

 

 

For low object counts, there is almost no difference between instanced and non-instanced 

rendering. The performance gap starts to become apparent for object counts above 50. At 

this point even the most optimized version of the mTec renderer hits the aforementioned 

threshold at which each additional object leads to an exponential loss of performance. This 

issue is completely mitigated through object instancing: even when rendering many 

objects, the per-objects costs remain stable at about 0.05 ms.  

 

8.3.3 Overall Performance 

As the focus of our mTec renderer was the development of various optimizations, 

rendering speed was the topmost factor for evaluating the success of a particular 

approach. In order to put the final performance into better perspective, the current renderer 

will be compared to 6 other discrete steps during development. These steps are, in 

chronological order: naïve fragment shader, deferred compute shader, tiled culling, world 

SDF, undersampling, tighter buffers and the current iteration. Each following step builds on 

the optimizations of all previous steps unless noted otherwise. A brief overview will be 

given which optimizations each step encompasses before presenting the profiling results. 

 

8.3.3.1 Naive Fragment Shader 

The first full implementation supporting all distance field features, from shadows to sub-

surface scattering was done in a single draw call. It calculated each image the most 

straightforward way, on a full-screen quad in a fragment shader. This was also the last 

iteration of mTec that could theoretically be run in WebGL/Shadertoy by switching all the 

distance textures to implicit geometry. 

 

8.3.3.2 Deferred compute Shader 

The first optimization step was the transfer from a single shader to the now used deferred 

compute shader pipeline. The final shading step was performed in a fragment shader due 

to the previously mentioned mipmapping issues. This was a simple split of the calculations 

and no further pre or post processing steps were performed. All algorithms ran in full 

resolution. 

 

8.3.3.3 Tiled Culling 

The tiled culling step encompasses the culling of distance fields to screen space tiles. The 

culling was limited to sphere tracing and AO, and shadows were still calculated naively. 

Furthermore the final shading step was optimized to use a single triangle instead of a 

quad. 
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8.3.3.4 World SDF 

In this optimization step the world distance field calculation was implemented. The world 

field was used by sphere tracing and all image effects for speedups, but it was static in 

nature so no object animations could be performed. Even though they might seem similar, 

the world id field was not included in this step and was implemented much later. 

 

8.3.3.5 Undersampling 

The next big optimization step was to decrease the resolution of the rendered shadows 

and ambient occlusion. Shadows were decreased to half and AO to a quarter of the screen 

resolution. To improve the visual quality of the final image the buffers were upsampled 

using bilateral filtering. 

 

8.3.3.6 Tighter Buffers 

In order to improve the performance with more objects in the scene, the gBuffer and 

distance buffers were compacted and streamlined in this step. Furthermore proper culling 

was added for the shadow calculation. It was here that TAA was implemented, but as 

mentioned in Appendix I this was a purely visual improvement and was always disabled for 

performance measurements. 

 

8.3.3.7 The Status Quo 

The last big optimizations that were implemented were the world id field and rasterized 

sphere tracing. The rasterized tracing technique is a bit of a special case as described in 

chapter 8.4.2. It is disabled by default for the test cases presented here, as the 

conventional sphere tracing method displayed better performance for the tested object 

counts. Especially the early iterations of mTec were too slow to render anything beyond 20 

objects, as shown in the evaluation below. A more specific comparison between the sphere 

tracing techniques at higher object counts is presented in the rasterized sphere tracing 

chapter. 

 

8.3.3.8 Evaluation 

For these comparative performance measurements the default scene was slightly modified 

by placing the human figures only in rows of three and moving them further back in the 

room hiding a few figures in higher object counts behind the backroom wall. This does not 

reduce calculation load by itself, but the more spread-out objects make it more unlikely that 

long culling lists are created. The reason for this change were the very long calculation 

times for the un-optimized versions of the renderer. The results of profiling can be seen in 

Table 6, Figure 32, Figure 31 and Figure 33. The performance of mTec has improved 

dramatically compared to the naive single shader version. Overall, the performance for 5 
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objects has improved by 500%, while the performance for 20 object has improved by 

almost 4000%. 

 

Objects Single 
Shader 

Compute 
Deferred 

Tiled 
Culling 

World 
Sdf 

Undersampling Tighter 
Buffers 

Current 

5 36.37 30.14 19.7 15.86 9.45 7.76 7.19 

10 70.54 63.06 32.05 29.05 21.1 9.13 7.22 

15 134.1 125.35 63.19 94.16 29.67 10.89 7.33 

20 298.52 319.82 154.49 160.66 59.94 12 7.53 

Table 6: Comparison of optimizations.  
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Figure 31: The performance results from Table 6 with their min/ max values highlighted. 

Figure 32: The results from Table 6 visualized as a line graph. The bend at which 

additional object costs become non-linear is clearly visible. 
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8.4 Abandoned Optimizations 

During the whole development process of mTec a wide array of other optimizations were 

implemented, evaluated and eventually abandoned. The techniques described hereafter 

have proven either less robust or simply slower than what eventually ended up in the main 

renderer. Nevertheless the ideas behind them might prove very interesting topics for future 

research. 

 

8.4.1 Rasterized Distance Field Culling 

Regular distance field culling is performed by dispatching a compute shader in 1/8 of the 

screen dimensions and checking for intersections with all the scene distance fields. The 

same could be achieved through rasterization. Object fields could be wrapped in bounding 

boxes, and then a draw call could be dispatched for each box. This box would then be 

rasterized in the rendering pipeline and a fragment shader would be dispatched for all the 

fragments of the object on screen. The shader program for generating such a culled list is 

very simple.  

 

void main()                                                                          

 {   

 ivec2 coords = ivec2(gl_FragCoord.xy); 

Figure 33: The rendering times of all modules in the current version of mTec, for 

better comparison. The data is taken from the respective module chapters. The 

„Total“ entry denotes the actual measured rendering time of the renderer running 

with all features (except TAA) enabled and not the sum of the other 

measurements.  
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 int storePos = coords.x+coords.y*renderWidth*tileLength; 

 int prev = atomicAdd(ids[storePos],1); 

 culledSDFs[storePos+prev+1] = SDFIndex; 

 } 

 

The id of the currently drawn object has to be added to the culling list, and the number of 

objects for the current tile has to be increased through an atomic add. In the end, after all 

distance fields were drawn, the resulting culling list would be identical to the single pass 

compute shader approach. This approach was implemented and tried for culling, but in the 

end abandoned as there were no clear performance benefits over the single pass 

approach. In the default scene described above the rasterization approach results in a lot 

of overdraw, as there may be up to 8 completely overlapping boxes that need to be drawn. 

Regular depth testing cannot be used, as these boxes are just conservative bounds and do 

not account for holes or concave features of the underlying distance fields. In comparison 

the simple intersection tests performed by the compute shader were faster than separate 

draw calls.  

Even though this approach has proven slower in mTec and was eventually abandoned, it 

may be worth evaluating depending on the used scene geometry. When employing general 

frustum culling this method has a few upsides over the single dispatch approach. The 

CPU-culled list for the camera frustum would need to be transferred to the GPU for the 

compute shader approach. When using multiple draw calls, the information could stay on 

the CPU side. 

 

 

 

8.4.2 Rasterized Sphere tracing 

Conventionally, depth finding in a distance field scene is performed by sphere tracing a ray 

for each on-screen pixel. This means that at all scene fields have to be checked over and 

over again, thrashing the GPUs texture cache. An alternative approach which could 

alleviate many of the issues exhibited by sphere tracing was developed for mTec. This 

technique is quite similar to the rasterized culling algorithm described in the previous 

chapter and was inspired by Evan‘s brick rendering approach [15]. It breaks the single 

sphere tracing pass down into separate draw calls: in each draw call the bounding box of a 

single distance field is drawn as actual geometry and traced (Figure 34). Because only the 

contents of the currently rendered box need to be traced, the tracing algorithm itself can be 

optimized more aggressively. The ray does not need to start from the camera, but rather 

from the pixel position in world-space, which is the ray’s intersection with the bounding box. 

This allows for the skipping of potentially a lot of empty space. Furthermore, the algorithm 

can be terminated as soon as the ray exits the box. Calculating this second intersection is 

also much easier than it would be conventionally. There is no need for transforming each 
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point on the ray into the corresponding texture space before sampling the field, as only a 

single field is traced each draw call. The entire ray can be transformed into texture space 

at the beginning of the algorithm and the entire algorithm can be run in this space. At the 

end of the calculation, the resulting surface point simply needs to be transformed back into 

world space. This reduces the amount of matrix multiplications that have to be performed 

for each object dramatically. Furthermore, it can be easily detected if the ray has passed 

through the bounding box. As long as the current point on the ray lies within the [0,1] 

bounds on all three axes, it is still valid. 

The following code is effectively a point-AABB containment test in texture space. 

 

vec3 clamped = vec3(clamp(P,0,1));  

if(lengthSqr(P-clamped) > 0) 

{ 

 break; //outside of box 

}  

 

This is much easier to compute than a conventional OBB-Ray intersection test would be. 

Objects Fullscreen Fullscreen-
inst 

Rasterized Rasterized-
inst 

20 3.93 3.93 4.13 4.05 

40 4.52 4.33 4.53 4.39 

60 4.96 4.63 5.06 4.8 

80 6.35 4.93 5.63 4.99 

100 7.82 5.3 6.06 5.92 

Table 7: Sphere tracing times with various algorithms. For these 

measurements only depth and normal was calculated for each pixel. 

Figure 34: Rasterized bounding boxes containing the sphere traced 

fields. 
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Each object is sphere traced by itself, so there can be no interferences from nearby 

objects, which allows for the maximum step count to be reduced severely without getting 

the well-known sphere tracing artefacts from rays passing close by an unrelated object 

before hitting a surface. Artefacts from large, concave objects can still occur, but these are 

much rarer, and the technique can allow for different step thresholds on a per-object basis. 

Furthermore, a much nicer cache coherency is achieved by only needing to access a 

single texture per draw call. This rasterized approach has many interesting implications for 

other techniques such as the rendering of semi-transparent objects. Transparency is rather 

hard with distance fields, as each transparent object would need to be traced and shaded 

in its own separate full-screen step in order to ensure correct blending between multiple 

semi-transparent objects. When rendering only bounding boxes, semi-transparent objects 

can be simply added on top of the previously rendered scene in the same fashion as 

conventional alpha-blended scenes. Another possibility would be hybrid rendering, where 

the whole scene is a combination of meshes and distance fields. This technique would only 

require small changes to the renderer itself by simply adding a separate shader for sphere 

tracing. 

There are a few issues with this technique which are the main reason that full-screen 

sphere tracing is still used as the main depth finding technique in mTec. The first and 

foremost issue, which has the biggest impact on performance is overdraw. In the mTec 

sample scene there are a lot of objects directly behind each other which requires these 

parts of the scene to be rasterized and drawn over and over again, even though the results 

might be discarded. In conventional renderers this is handled by a depth pre-pass and 

rejection of occluded fragments through early depth testing. Unfortunately this is much 

harder with rasterized sphere tracing. When a depth buffer and depth testing is enabled, 

the GPU wants to write the fragment’s original depth into the buffer. In our case this is the 
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Figure 35: Sphere traced performance from Table 7 plotted on a graph. 



 

   73 

surface of the bounding box and not the object contained within. The value that will be 

written to the depth buffer can be overridden manually by assigning a value to the built-in 

gl_FragDepth variable, which allows us to set the correct depth value after sphere tracing. 

This manual setting of the depth, however, leads to OpenGL automatically disabling early 

depth testing. The GPU cannot be „lied“ to, by making it pass an early depth test and then 

modifying the depth value which could lead to the rejection of the fragment. Fortunately an 

extension exists which can be used to tackle this problem. This extension is 

ARB_conservative_depth: it allows the user to specify whether the depth manually set in 

the shader will only be smaller, larger or equal to the initial value determined by 

rasterization. By specifying this inequality the GPU can perform better optimizations of the 

code which leads to a better overall performance.  

Another issue arises when the bounding box intersects the camera near plane. In that case 

the triangles are clipped, and no sphere tracing is performed. This problem can be 

alleviated by enabling depth clamping. With depth clamping enabled triangles will not get 

clipped at the near or far plane, but the problem still persists if the camera happens to be 

inside the rendered volume. Further research will be necessary into the issue in order to 

find a robust method to ensure that the boxed objects are rendered properly at all times. A 

possible solution could be for the camera to detect if it is inside a distance volume and alter 

the sphere tracing algorithm to reconstruct the correct initial marching positions from the 

back faces of the bounding box. 

The main reason why this approach is slower than our full-screen pass lies in the 

composition of our scene. The explicit distance objects cover only about 30% of the scene 

from the default viewing point, while the rest consists of the implicitly calculated room and 

columns. Even after all the object bounding boxes have been sphere traced, another full-

screen pass has to be performed just to sphere trace the implicit geometry covering the 

room. This results in the complete loss of all performance previously gained by this 

technique. When rendering just the explicit 3D textures, the whole algorithm takes about 

2.05 ms per frame, compared to 3.83 of the single pass. The single pass however, has 

very similar render times with and without the background as each pixel has to be traced 

anyway. So when rendering the whole scene, rasterized sphere tracing takes 4.13 ms 

while the single pass only needs 3.93 ms for 20 objects. This may seem like a knock-out 

criterion for this technique, but extensive performance measurements (Table 7) reveal a 

different picture. Even though rasterized tracing starts out slower than the optimized full 

screen trace, it overtakes the conventional technique at about 60 rendered objects. When 

these results are visualized in Figure 35, it can be easily seen why this is the case: the 

regular trace starts to hit the texture cache threshold and costs become exponential while 

rasterized tracing does not suffer from the same issue. Each traced field is a separate draw 

call and only a single 3D distance field has to be kept in the texture cache. So while this 

novel technique has a higher overhead to start with, it yields much better results for dense 

scenes. When using object instancing, both algorithms produce very similar rendering 

times. This leads to the conclusion that rasterized sphere tracing is a very promising 
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approach for scenes with high object counts, but more performance can be gained still by 

re-using as many objects in the scene as possible.  

Another good fit for boxed tracing might be hybrid renderers, where most screen elements 

are meshes mixed with a few distance field objects. In such cases rendering would be 

much faster and allow for easy integration into pre-existing pipelines.  

There are still many avenues for the optimization of this technique to be explored. Our full-

screen sphere tracing pass would be much slower than rasterized tracing if it were not for 

culling, world distance and id fields. The rasterization approach does not use any of these 

acceleration structures as the underlying algorithms are fundamentally different. Therefore 

any acceleration techniques that could be fitted to this algorithm could make it significantly 

faster even for small object counts in pure distance field engines. 

To summarize, rasterized sphere tracing is an alternative algorithm to classical full screen 

tracing. It has some very interesting properties which can mitigate the shortcomings of 

more classical tracing approaches. Nevertheless there are still some issues which require 

further research which is why the technique is supported by mTec, but disabled by default. 
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9 Discussion 

There are still many unsolved problems in distance field rendering. Sphere tracing, one of 

the most essential algorithms for utilizing SDFs is not 100% robust, and many artefacts still 

pop up and have to be addressed individually, depending on the rendered scene and the 

objects themselves. The novel rasterized sphere tracing technique presented in this thesis 

can help in mitigating some of these issues, but has some quirks by itself. Widely accepted 

techniques for distance field animations or texturing do not exist yet, and the techniques 

presented in this thesis are functional, but not robust enough or too narrow for the 

production of modern videogames. These are still very much open research topics in the 

distance field community. The focus of this thesis lies in the development of acceleration 

techniques for the most popular distance field rendering effects. It has been shown that by 

employing a few common techniques, the rendering performance can be increased 

significantly. Still, there is a lot more room for improvement of these and other techniques. 

A lot of performance could be gained by performing micro-optimizations of the shaders 

developed for mTec. A more in depth analysis of the shaders could identify GPU 

bottlenecks and refactoring of the algorithms to take into account hardware features such 

as coalesced memory access or GPU load-balancing could result in vast performance 

gains. The rendering is very much GPU bound as many different shaders are run every 

frame. Even small improvements in the amount of shader operations or registers used can 

have a relevant impact on performance. For larger scenes, well-established techniques 

such as frustum culling could be utilized to increase the rendering and tile-culling 

performance. Unfortunately many of the common spatial acceleration structures used for 

CPU algorithms are very hard to properly utilize in GPU calculations. Most hierarchical tree 

structures require bookkeeping of some sorts during traversal, but shader units themselves 

have a rather small amount of registers which limits the data that can be kept in memory 

efficiently. In order to accelerate sphere tracing calculations a spatial data structure would 

need to have a very low memory overhead and require as little texture reads as possible, 

as those are already a choke point. 

There is a wide variety of future research directions for the mTec renderer, from simple 

optimizations to entirely new rendering techniques. The implications of distance fields in 

combination with temporal reprojection and motion blur are intriguing, and would definitely 

warrant deeper research. Temporal amortization in particular could pose a potential way of 

increasing the general robustness of distance field rendering.  

The application of distance fields for efficient real-time rendering is still a very 

underdeveloped field. There are very many papers on the properties, calculation and 

essential techniques of SDFs, but very few that bring these techniques into a modern, 

performance driven context. This thesis should give a solid basis on the current status-quo 

of distance field rendering, and highlight possible avenues for future research into this 

fascinating topic.  
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As it stands fully-fledged distance field rendering is still not robust or fast enough for large-

scale commercial video game productions. 

Still, the simplicity of these techniques as compared to today’s industry standards make 

them compelling for rendering purposes. Single techniques such as ambient occlusion 

have a much lower performance impact and are already in use in at least one big 

commercial engine. As time progresses, algorithms and rendering hardware will improve, 

making efficient hybrid or full-on distance field rendering in game development only a 

matter of time. This author strongly believes that SDFs will find their home in game engines 

in the days to come. 
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10  Appendix I: On Testing 

Unless noted otherwise, all performance measurements were performed on a Windows 7 

PC, with an Intel Xenon E5606 Quad core CPU, an Nvidia Geforce GTX 980 GPU with the 

347.62 display driver, and 8 GB of RAM. A screen resolution of 1920x1080 was used for all 

rendering tests.  The frame rendering time is measured using the 

QueryPerformanceCounter function from the Windows API. In order to get more reliable 

results, the rendering times are averaged over a thousand successive frames. All results 

are given in milliseconds (ms), and exclude the post-processing step/TAA which has a 

fixed cost of about 0.18 ms, as explained in the post-processing chapter. 
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