
Carinthia University of Applied Sciences
School of Engineering & IT
Department of Geoinformation and
Environmental Technologies
Spatial Information Management

MASTER THESIS

SOMatic Trainer 2.0: Improved
Parallelization Concepts and GeoJSON

Integration for a Self-Organizing Map Java
Implementation

Submitted in partial fulfillment of the requirements of the academic degree
Master of Science in Engineering

Author: Fabian Georg Kowatsch, BSc.
Registration Nr: 1510362004

Internal Supervisors: FH-Prof. Dr.-Ing. Karl-Heinrich Anders
 Carinthia University of Applied Sciences, Villach, Austria

FH-Prof. Mag. Dr. Gernot Paulus, MSc. MAS
 Carinthia University of Applied Sciences, Villach, Austria

External Supervisor: Prof. Dr. André Skupin
 San Diego State University, San Diego, CA, USA

Villach, September 2017

i

Abstract

This research is focused on improving a Self-Organizing Map (SOM) Java
implementation called SOMatic, precisely the SOMatic trainer (Spöcklberger,
2013). The main parts of this enhancement are focused on decreasing computation
time through increasing the parallelization and updating the technologies as well
as enlarge the reusability of the output of this Java software. Besides the already
implemented local parallelization of the training process, this project explains the
development and usage of a parallel search of the best-matching unit (BMU) after
the training. This functionality allows the projection of data that was not part of
the training onto an existing SOM, which permits a reduction in time as well as
ensuring the whole training process does not have to be redone because of the
presence of new data that requires visualization. How the SOMatic Trainer 2.0 can
be integrated into a distributed system within a network cluster is explained in a
conceptual way. This will open the door to train big input data on local network
clusters without having the need to seek the help of super computers.

One aspect of updating the status quo from 2013 was to migrate the SOMatic
Trainer onto the latest versions of the applied programming language and
processing interface, meaning Java 8 and Processing 3. Deploying the code in a
Maven project using Java 8 assures that the change onto newer versions of the
programming language or required libraries is simplified. To further guarantee
proper usage for the future, several comments in the code were added or redefined
to better explain the usability of each variable and method. The usage of the
SOMatic Trainer is widened via the programmatic integration of the output format
“geographic JavaScript object notation” (GeoJSON). This allows one to directly
visualize the resulting SOM, as well as the BMUs in a Geographic Information
System (GIS). The geometry for each neuron in the resulting GeoJSON file is
stored behind six corner points of a hexagon. These points are computed by using
the rules of a 30-60-90 triangle. This method was applied to avoid using
mathematical functions in the code, which would have a negative impact on the
computation time. Two datasets are used to test the SOMatic Trainer 2.0 and show
its capabilities: census data from 2001 containing the municipalities of Carinthia,
Austria and multispectral data having six spectral bands for three years. The time,
as well as the quality measurements on the results of the computations using
different threads, show that increasing the parallelization, especially for a bigger
dataset, is of a high importance to be able to get the output in a reasonable amount
of time without losing too much of the quality.

Keywords: Self-Organizing Map, Parallelization, Java, GeoJSON

ii

Statutory Declaration

I hereby declare that

• this Master Thesis has been written by myself without any external
unauthorized help and that it has not been submitted to any institution to
achieve an academic grading

• I have not used sources or means without citing them in the text; any
thoughts from others or literal quotations are clearly marked

• the enclosed Master Thesis is the same version as the version evaluated by
the supervisors

• one copy of the Master Thesis is deposited and made available in the CUAS
library (§8 Austrian Copyright Law [UrhG])

I fully understand that I am responsible for the application for a patent, trademark
or ornamental design and that I have to prosecute any resultant claims myself.

__

Place and Date Signature

iii

Acknowledgements

I want to thank my family, friends, as well as colleagues and officials from CUAS
for their support throughout the five years of my studies in Villach. I got to know
several new people from different countries of the world, who also became close
friends.

The most important person that helped me to work on and finish this project was
Prof. Skupin. Through his talk in Villach, I came in contact with him, the SOM
algorithm and its broad usage. Thank you André for your support and for giving
me the opportunity to work on a project in your domain at the San Diego State
University in California. I also want to thank Tim Schempp, a US student, for his
support in our meetings.

Another thank goes to FH-Prof. Karl-Heinrich Anders, who supervised this project
during my stay in Villach and gave me critical input to my thesis. Thanks also to
FH-Prof. Gernot Paulus for his support, especially at the initial stages of the project.

Without the financial support of the Austrian Marshall Plan Foundation this project
would not have been realizable. Thanks to this institution I could afford to conduct
my research in the USA.

iv

List of Abbreviations

ANN – Artificial Neural Network

AQE – Average Quantization Error

AWS – Amazon Web Services

BMU – Best-Matching Unit

CPU – Central Processing Unit

CSV – Comma Separated Value

CUAS – Carinthia University of Applied Sciences

GB – GigaByte

GeoJSON – Geographic JavaScript Object Notation

GIS – Geographic Information System

GPU – Graphic Processing Unit

GUI – Graphical User Interface

IDE – Integrated Development Environment

IETF – Internet Engineering Task Force

JDK – Java Development Kit

JPPF – Java Parallel Processing Framework

JRE – Java Runtime Environment

JSON – JavaScript Object Notation

MPI – Message Passing Interface

MR-MPI – Map Reduced Message Passing Interface

OGC – Open Geospatial Consortium

POM – Project Object Model

PVM – Parallel Virtual Machine

QGIS – Quantum GIS

SDSU – San Diego State University

v

SLA – Service Level Agreement

SMT – Simultaneous MultiThreading

SOM – Self-Organizing Map

SVN – SubVersioN

TST – Training Surveillance Thread

XML – eXtensible Markup Language

vi

Table of Content
Abstract .. i	
Statutory Declaration .. ii	
Acknowledgements .. iii	
List of Abbreviations .. iv	
1. Introduction ... 1	

1.1 Motivation and Objective .. 1	
1.2 Problem Definition ... 3	
1.3 Research Questions ... 5	
1.4 Methodology ... 6	
1.5 Expected Results ... 7	
1.6 Thesis Structure .. 8	

2. Theoretical Background .. 9	

2.1 Self-Organizing Map .. 9	
2.2 SOM Algorithm .. 10	

2.2.1 Conventional SOM Algorithm ... 10	
2.2.2 Batch SOM Algorithm ... 12	
2.2.3 Parallelizing the SOM Algorithm ... 14	

2.4 Important Languages ... 15	
2.4.1 Java ... 15	
2.4.2 GeoJSON .. 17	

2.5 Distributed Systems .. 18	
2.5.1 OpenMPI .. 18	
2.5.2 Apache Hadoop ... 18	
2.5.3 Java Parallel Processing Framework .. 20	

3. Practical Background .. 22	

3.1 Parallel SOM Implementations ... 22	
3.1.1 Hybrid Parallel SOM Algorithm ... 22	
3.1.2 Speculative Parallel SOM Algorithm .. 24	
3.1.3 Data Partition Method for Parallel SOMs .. 25	

3.2 Network-Distributed SOM Implementations ... 26	
3.2.1 Training a SOM distributed on a PVM network 26	
3.2.2 A GPU accelerated distributed SOM implementation 29	
3.2.3 Somoclu: A parallel library for SOMs .. 30	

3.3 SOMatic ... 32	
3.3.1 SOMatic Trainer ... 33	
3.3.2 SOMatic Viewer ... 37	

4. Method of Solution ... 38	

4.1 Procedural Workflow .. 38	
4.1.1 Background .. 38	

vii

4.1.2 Method of Solution ... 39	
4.1.3 Implementation ... 39	
4.1.4 Results ... 39	

4.2 Software Upgrade ... 39	
4.2.1 From Java 6 to Java 8 .. 39	
4.2.2 From Processing 2 to Processing 3 ... 40	
4.2.3 Code Versioning and Cleanup .. 40	

4.3 GeoJSON .. 40	
4.4 Parallelization ... 41	

4.4.1 Local Parallelization: The BMU Search ... 41	
4.4.2 Distributed Parallelization: Cluster Computation in a Network 42	

4.5 Software, Tools and Libraries .. 44	
5. Implementation .. 46	

5.1 Working Java Code .. 46	
5.2 GeoJSON Output ... 46	
5.3 Geometry of the Neurons ... 48	
5.4 Integration of a parallelized BMU Search after Training 50	
5.5 Cluster computing of SOMatic ... 52	
5.6 Challenges/Problems ... 52	

6. Results ... 55	

6.1 SOMatic Trainer 2.0 ... 55	
6.2 Applying SOMatic on Test Data ... 57	

6.2.1 Carinthian Census Data .. 57	
6.2.2 Multispectral Image Data .. 60	
6.2.3 Quality and Performance Evaluation ... 61	

6.3 Cluster Computation .. 69	
7. Discussion and Conclusion ... 70	

8. Future Work ... 73	

References ... 75	

List of Figures .. 78	

List of Tables .. 79	

1

1. Introduction

Enhancing a software, in this case, means to enlarge its functionality and
productivity by improving the existing components and adding new ones. This
project focuses on a SOM Java implementation called SOMatic which has been
expanded. The Self-Organizing Map algorithm is a data mining technique to reduce
the dimensionality of data and cluster it to get a better understanding of it. It can
be applied on normalized data to be able to find relations and differences within
the data that one might not have been able to detect beforehand. Through creating
visualizations with GI-software, these characteristics of the data can be examined.
Java is the programming language in which SOMatic and the cluster computing
software are written.

1.1 Motivation and Objective

One important aspect of today’s data mining approaches is to handle the increase
in data size and its complexity. Especially image data or photos can be considered
as Big Data (Tole, 2013) because each pixel holds a certain amount of information
and the better the resolution, the higher the number of pixels. The SOM is a useful
dimensionality reduction tool when applied to multispectral or hyperspectral image
data (Jordan & Angelopoulou, 2013), as it can yield a better understanding of the
data. Therefore, it is useful to create and improve software, which uses this
technique. The SOM algorithm can be a useful tool to get from high-dimensional
data to two-dimensions through applying a reduction of the dimensions of the
input data and clustering it. It minimizes the size as well as the complexity to be
able to have a clearer view on the relations and differences within the data.
SOMatic is a Java implementation of this algorithm that was developed by a joint
student research project between the San Diego State University (SDSU) and the
Carinthia University of Applied Sciences (CUAS) in 2013. Spöcklberger (2013)
created the SOMatic Trainer, an implementation of a SOM tool with parallel training
usable as Java library for Processing or as standalone Java program. Rainer (2013)
created the SOMatic Viewer, an implementation of an interactive SOM visualization
toolset in Processing and Java. The focus in this research will rely on the
improvement of the implementation of Mr. Spöcklberger, as in his programmed
library the computational processes to create a SOM take place.

2

The motivation for this project lies partially in a decrease of the computation time
of the SOM computations through an improvement the SOMatic software
components. The updated and extended Java library should then be integrated
into a newly created Java cluster system library. This system is using the approach
to spread the computations to the machines within this cluster, where all
computations can be run in parallel. This addition in parallelization (SOMatic itself
is already applying a parallelization on multiple cores on one machine) will help to
further decrease the problem with computation time. Such an implementation
would open the door for massive parallelization processes with very large SOMs or
input data sets. Depending on the data size, the outsourcing of SOM computations
to more powerful systems or facing very long computation times would then be
obsolete.

The general objective of this project is to upgrade and extend a SOM
implementation. In particular, its computation time should be decreased and the
performance, as well as the usage of the output, increased. This improved SOM
software will be tested with census data from Carinthia from 2001 and used on
multi-temporal, multispectral image data. Within the GIS world, very large data
sets exist that can benefit from parallel and distributed computing (Hawick, et al.,
2003). This project aims to combine both these computer science technologies to
develop an efficient speedup of the computation time for SOMs via SOMatic. The
SOMatic Trainer 1.0 runs with Java 6 and is visualized with Processing 2. One
aspect of improvement is to migrate the software to the latest versions to be
applicable with Java 8 and Processing 3. This can already lead to an increase in
compatibility and capability. A performance increase can also be achieved through
the extension of the parallelization processes of the SOM computations. The first
step consists of increasing the parallelization processes on one machine. The
training process of SOMatic is already parallelized but the search of the BMU is
not. This computation takes a lot of time, especially for a large numbers of input
vectors. Therefore, the overall computation time can be decreased through a
parallelization of the BMU search. Of high interest is also to be able to apply the
parallelized BMU search after the training is finished. The integration of SOMatic
to a cluster computing system would be the second step of parallelization. With
the use of a distributed system library, the software will run on different machines
that are connected within a cluster to enlarge the computation power. This will
also help to increase the performance of SOMatic through a decrease of
computation time for large input data.

3

SOMatic is used a lot by Dr. Skupin and other students at SDSU. So far, the output
of this software is a Codebook (cod) file, which holds the trained SOM as well as
an additional .sprj file, which contains information explaining the file paths to the
in- and output data as well as the applied settings during the training. To be able
to use the SOMatic output easier in Geoinformation programs or web applications,
an output in the Geographic JavaScript Object Notation (GeoJSON) format would
be very useful.

1.2 Problem Definition

In a time span of four years from the early implementation of SOMatic until this
project, several newer programming versions were developed. Java 8 and
Processing 3 are at the time when this project is conducted, the modern versions
of these two programming languages. As one goal of this project is to expand the
usage and applicability of the SOMatic Trainer, it is clear that the integration of
newer software languages should have its place in this research. It is also easier
to extend a software with more functionality written in latest languages as the
compatibility with other software is usually just backward and not forward and the
support for elderly versions will be terminated at some point after newer versions
are public. Therefore, it is necessary to keep software up to date.

Another problem is situated in the topological alignment of the neurons within a
SOM created by SOMatic. In some visualizations, there is a horizontal shift of the
hexagonal neurons to the top, although it should always be to the right starting in
the second row and moving upwards from the bottom left. This skewed alignment
of the neurons is necessary because of their hexagonal form. The starting neuron
on position (0/0) at the bottom left should always have two neighbors. In some
visualizations, it has three neighbors. This is due to the fact that the origin is set
to top-left and not bottom left. The visualization style with having this starting
corner is not common within the geographic world. From a geographers’ point of
view, the origin should always lie in the first quadrant, meaning bottom-left.
Furthermore, each second row starting from the bottom should be shifted to the
right to fit a hexagonal structure and not any other row or column. The following
Figure 1 shows the neurons with their coordinates within a different hexagonal
alignment.

4

Figure 1 Hexagonal SOM display in coordinate system
with different alignment (Spöcklberger, 2013)

The current output of SOMatic is a. cod file, which cannot directly be integrated
into other applications like a web application for instance. This limits the software
results in its usability within other programs. Additionally, the topological
information is also not stored in the output files. Exporting the resulting SOM as
well as the final BMU vectors in a more common and compatible format, which
also supports geographic data would be of high value to increase the capabilities
and utilities of SOMatic.

The computation time of a SOM depends on the number of input vectors, also
called neurons, the number of training runs and the number of dimensions of the
input vectors. Multispectral or hyperspectral data, for example, has a high number
of input vectors with many attributes, which is referred to each pixel defined by
its corresponding spectral bands. To generalize, the computation time is increasing
with the amount of input data. SOMatic is already countering the time issue via a
parallelized training of the SOMs. Thus far, there is no functionality in the SOMatic
Trainer that allows projecting additional data onto an already created SOM. The
whole process would have to be rerun with the old input plus the additional data.
This would cost a lot of time, especially for a large input dataset with a high amount
of dimensions. The BMU search after training, which counters that problem is not
implemented yet. This step is embarrassingly parallel as no dependency between
the BMU searches for the different input vectors is given.

5

Furthermore, the different threads do not have to communicate with each other in
this finding step. Its sole purpose is to find the best suitable SOM neuron for each
input vector via calculating the shortest distance of all the different attributes to
it. A parallelized integration of this process within the software would lead to a
significant decrease in the overall computation time, as not the whole process
would have to be rerun when newer data of the same type should be visualized,
but only an additional BMU search.

The possibility to distribute the computing processes in SOMatic not only on
different threads but also on different machines within a cluster has not been
touched as yet. Very large input datasets can also take a long time on parallelized
local computations. Nevertheless, setting up and distributing the different
computation processes in a distributed system takes time as well. It is important
to find a threshold which defines what the lower margin in data size is to achieve
a useful speedup when using SOMatic to compute SOMs distributed in a network
cluster.

Depending on the applied parallelization technique, the quality of the output SOM
can suffer from a partitioned computation. This problem is getting worse with an
increase in the number of partitions and a decrease in the number of training runs
performed within SOMatic. Especially a parallelization beyond one machine can
raise the negative effect as the number of partitions could increase up to the
number of available cores on all machines within the network cluster. To find an
acceptable balance factor between quality and computation time will be crucial
when running SOMatic in a parallel environment.

1.3 Research Questions

The following four research questions are planned to be answered within this
project:

How can the output of SOMatic be more useful for further usage (in the GIS world)?

How can SOMatic be integrated into a cluster computing network?

What is the data size threshold beyond which it is faster to run SOMatic in a
network cluster on different machines than on one machine?

What is the right balance factor between computation time and quality of the
output SOM?

6

1.4 Methodology

The planned steps in the implementation phase of this project are as follows:

1. fixing and upgrading the status quo of SOMatic

Software version upgrades to run on the latest Java and Processing versions are
useful to get a wider compatibility with other software and to improve the efficiency
of the own software. A change of the used libraries in the Java code to version
eight as well as the run with the integrated development environment (IDE) of
Processing 3 will be applied in this step. Through the migration, some parts of the
code might have to be modified or added depending on the version compatibility.
The horizontal shift in the SOMs should always be to the right in each second row
starting from bottom left. This issue will be tackled in the Java code where the
SOM is created.

2. get SOM results in a geographic information software compatible format like
GeoJSON

The two output GeoJSON files will represent the SOM after the final training stage
and the BMUs for each input vector. This means they will be created after the finish
of all computations within SOMatic. One GeoJSON object in the first file will
represent one neuron and hold information about its 2D location as well as the
trained data values. The GeoJSON objects in the second file will contain the BMUs.
The format GeoJSON is predestinated in a way as it would be relatively easy to
store each neuron as a GeoJSON object and is highly compatible with today’s web
applications when used Java or JavaScript.

3. extend the Software through implementing a parallelized computation of the
best-matching unit (BMU)

The parallelized search for the BMU will be achieved through a data partition of the
available input vectors, which can also be described as a divide and conquer
approach. Each processor will find the BMUs in the SOM for its part of the input
data.

4. extend the parallelization beyond one machine

The SOMatic computations will be distributed onto different machines connected
in a network cluster. An existing library like Java Parallel Processing Framework
(JPPF) will be used to achieve a distribution amongst several machines. JPPF is a
software that enables programs with large processing power requirements to be
run on different computers to reduce their processing time by a great amount. A
master-slave structure will be applied, where two different approaches are
possible. In the first one, each slave runs the whole process and sends its results
to the master, which averages them.

7

In the second approach, the master distributes the initial SOM as well as equal-
sized parts of the input vectors to each slave. The slaves send the master
intermediate results, which are aggregated and redistributed to the slaves to
ensure a higher quality. The end results will again be put together by the master.

5. validate the effects of parallelization on the speed and quality and apply
SOMatic on data

It is important to identify the level of parallelization for a certain input data size.
The quality of the results will also be evaluated via quality metrics like the average
quantization error (AQE). The SOM algorithm will be used to apply a dimensionality
reduction on data like census data and multispectral data.

1.5 Expected Results

The main result of this project will be an upgraded and extended SOMatic Java
library. It will use the latest version of Java and run with the latest version of
Processing. The new SOMatic output will also be available as a GeoJSON file.
GeoJSON is a wide spread geographic file format, which can easily be integrated
into web applications. This will assure that the benefits of using SOMatic over other
SOM implementations will yield increased functionality by a significant amount.
Through extending the parallelization on a local and distributed basis, the
computation time for SOMs is further decreasing. The search of the BMU after
training will be parallelized locally.

The search of the BMU can be described as the second primary process in the SOM
algorithm besides the training. Its computation on multiple cores will decrease the
overall computation time greatly. Within a distributed systems framework like
JPPF, a new Java library will be created where SOMatic will be used to apply a
cluster computation on different machines connected within a network. It will use
a master-slave architecture to control and distribute the computation tasks. This
newly created library should also be portable to any other network cluster and
should easily be adaptable to other parallelizable software processes. It should be
platform independent as well. Its only requirements will be Java, JPPF and a
connected network cluster. The achieved speedups, as well as quality decreases,
will be visualized in diagrams and evaluated with quality metrics.

It is of high importance, that the time and quality decrease are balanced. The user
will also be able to directly tackle this topic as it should be possible for her or him
to choose the level of parallelization and with this way control the speed increase
versus quality decrease.

8

1.6 Thesis Structure

This thesis gives in the first chapter an introduction to the topic and research field
of the project. Following on that are the relevant literature and best practice
examples in the chapters two and three, a workflow in chapter four, the
explanation of the implementation processes in chapter five and results of the
extended software in chapter six. This report is rounded up with a discussion and
conclusion of the methods and results in chapter seven as well as possible
expansions of the software for the future in the chapter eight.

9

2. Theoretical Background

This chapter describes the topics, which were tackled in a theoretical approach to
deepen the knowledge in them. It starts with the SOM and the SOM algorithm,
where the main computation steps, as well as the possibility for parallelization, are
explained. After that, the important languages are explained, before getting to the
end of this section, where different distributed system libraries and methods are
explained.

2.1 Self-Organizing Map

The SOM was developed by Professor Toivo Kohonen in 1981 and is a useful tool
to visualize high-dimensional data (Kohonen, 1998). It is an Artificial Neural
Network (ANN), which is based on unsupervised machine learning.

The difference to supervised learning lies in the unknown information about the
output. The input data is described via neurons usually displayed in a two-
dimensional grid that can also be seen as a map. This feature map can be helpful
to analyze and detect features within the input space (Lawrence, et al., 1999).
Therefore, the SOM can be used to identify clusters of the input data as it provides
a visual representation of similar data instances (Wittek, et al., 2016).

The most common neuron structures of a SOM are either rectangular or hexagonal,
where the second one provides a higher quality (isotropy) in visualization
(Kohonen, 1998). The following figure gives an example of the application
possibility of the SOM. It shows a part of the SOM that was trained with data
contained in over two million medical publications (Skupin, et al., 2013). The whole
SOM consists out of 75,000 neurons and has 2300 dimensions, which represent
the top ten percent of the most frequent terms used in the medical publications.

10

Figure 2 SOM created out of words in medical publications (Skupin, et al., 2013)

2.2 SOM Algorithm

Kohonen, the inventor of the SOM, describes the central idea of the SOM algorithm
is that every input data item selects the best matching neuron to itself. This
neuron, as well as a part of its spatial neighbors, will then be modified for a better
matching (Kohonen, 2013). Figure 3 shows the sequence of the SOM algorithm for
one training epoch. The following sections describe two different types of the SOM
algorithm using formulas derived from Lawrence, et al (1999).

To explain the steps mathematically, we assume a set of input vectors x and assign
a weight vector wk, k = 1,...,K to each of the K nodes randomly within the
initialized SOM. A time index t is introduced, which also stands for the training run.
This means x(t) is an input vector used in the algorithm at time t and wk(t) is the
associated neuron weight vector at time t. The initial values for the neuron weights
are assigned randomly.

2.2.1 Conventional SOM Algorithm

In this version of the SOM algorithm, the weights of the neurons are updated
recursively after the use of one input vector (Lawrence, et al., 1999). After the
selection of one input vector the distance from this vector, to all neurons in the
SOM is computed. The neuron with the smallest distance to the input vector is
chosen as the BMU. Its weights, as well as those of the neighboring neurons, are
updated so that they become more similar to the input vector. Figure 3 shows this
linear procedure, which represents one training iteration of the SOM algorithm.

11

Figure 3 Explanation of one training iteration of the SOM algorithm

To compute the distance from the input vector to the neurons the Euclidian, Cosine
or Manhattan distance functions are commonly used and also available within the
SOMatic trainer (Spöcklberger, 2013). The following formula is using the Euclidian
distance.

(1)

Subsequently, the minimum out of these distances is selected. The neuron that is
associated with this distance is called the BMU of this input vector at this training
iteration. Together with the distance computations, these two steps make up the
BMU search. The distance to the BMU is here denoted with the subscript c.

(2)

The weights of this neuron, as well as those of its neighbors, are updated with the
formula

(3)

where α(t) is referred to the learning-rate factor and hck(t) is the neighborhood
function. The learning-rate factor is regulating the amount of changes in the
weight vectors and is reduced in a monotone way as the training progresses. The
neighborhood function defines the magnitude of change of wk(t) to an input
vector, which is most closely similar to wc(t). It is usually a decreasing function
with respect to the increase in distance from node c to k. The standard Gaussian
neighborhood function is

12

(4)

where rk and rc are referred to the coordinates of the node k and the current BMU
c. The width of the neighborhood function is described by σ(t) and also decreases
as the training process goes on, usually from a distance of one dimension of the
2D plane down to the size of a neuron.The explained formulas are used in Figure
4 and explain the conventional SOM algorithm with a pseudo-code.

Figure 4 Pseudo-code representing the conventional SOM algorithm (Lawrence, et al., 1999)

2.2.2 Batch SOM Algorithm

The difference to the conventional SOM algorithm lies in the updating of the
weights, which are updated after one epoch, also called one batch. One epoch is
reached after the whole input data, respectively the input vectors were used one
time. This means that here, the BMUs for all input vectors are searched and
afterward its weights and those of its respective neighbors are updated. The BMU
search is an embarrassingly parallel process, meaning that each search is
completely independent of the others and no communication has to take place
between the processors working on this task. The information, to which input
vector one neuron is the BMU has to be stored in a list, but this operation does not
involve any computation. Hence, the batch is faster than the conventional version
as it has less computational effort by only making an update of the weights once
per epoch compared to once per BMU search. Furthermore, the batch version does
not require any specifications of the learning rate factor (Kohonen, 1998).

13

The following formulas are obtained from the same source as those in the prior
section (Lawrence, et al., 1999). The weights are updated with the formula

(5)

The result wk(tf) are the mentioned weights, t0 and tf mark the start and finish of
the current epoch. To compute the winning node the formulas

(6)

(7)

are used. wk(t0) refers to the weight vectors that were computed in the final step
of the previous epoch. The in (4) described neighborhood functions are using the
winning nodes from (7). The width of the neighborhood function is also decreasing
monotonically throughout the training phase as it is in the conventional algorithm.
The following Figure 5 represents these formulas in a pseudo-code example.

Figure 5 Pseudo-code representation of the batch SOM algorithm (Lawrence, et al., 1999)

14

One drawback of the batch computation is the failure of the good organization of
code-vectors, which are distributed in a special shape like the one of a “W” (Fort,
et al., 2002). Figure 6 and Figure 7 show this behavior in comparison to the result
of the conventional on-line SOM algorithm. Both computations were using the
same initial state of the neurons.

Figure 6 Starting state (left) and 2D comparison of the results of the on-line (middle) and the batch
computation (right) (Fort, et al., 2002)

Figure 7 Starting state (left) and 3D comparison of the results of the on-line (middle) and the batch
computation (right) (Fort, et al., 2002)

2.2.3 Parallelizing the SOM Algorithm

In general, there are two different approaches to apply a parallelization: data or
network partitioning (Lawrence, et al., 1999). As the name tells it already the input
data is split up in the data partition method onto different threads or machines. It
is of high importance to make the partitions of an equal size to prevent latency.
So each processor should work with the same amount of data. The network, in this
case, the neurons, needs to be available to all threads either as a copy or through
accumulators that are pending updates to the map (Skupin, et al., 2013). After
the individual weight updates of the neurons of each processor, the outputs have
to be merged together and redistributed in order to maintain an up-to-date SOM
and be able to continue with the training. Therefore, the batch version of the SOM
algorithm is more suitable for the data partition approach as the updates are only
computed after one epoch. This reduces the overall computation time as the merge
and redistribution of the updated neurons cost communication time.

15

Depending on the frequency of the merge (if not using the batch-version), the
result of this method can be different compared to a linear implementation. The
advantage of the data partitioning is its effectiveness on a large amount of input
data like in Skupin et. al (2013). Some other examples of this method are also
described in these two theses (Silva & Marques, 2007) (Yang & Ahuja, 1999).

In the network partitioning method, the neurons are split up. So each processor is
just using and applying computations on a defined part of the SOM. Therefore, the
input data has to be accessible by or copied to all processors. In one version of
this method (Lawrence, et al., 1999), each processor makes the BMU search for
the same input vector for its set of neurons. The overall BMU is then found by
comparing the BMUs of each processor and picking the neuron with the minimum
distance to the input vector out of them. After that, each processor is then
updating its affected neurons. An advantage of this method is that it produces an
exact agreement (within a round-off error) with the conventional algorithm
(Lawrence, et al., 1999). The downside, however, is that the processing of each
input vector produces a latency through communication and also updating of the
weight vectors. This results usually in a longer computation time compared to the
data partitioning method. The third form of parallelization, dividing the training
runs onto different processors, is applied in SOMatic (Spöcklberger, 2013) and
explained in section 3.3.1 in this thesis.

2.4 Important Languages

2.4.1 Java

Java is an object oriented, concurrent and class-based programming language,
which is one of the most used programming languages worldwide. It was originally
developed by the Sun Microsystems, which has been acquired by Oracle
(Wikimedia Foundation Inc., 2017). The syntax of this programming language has
its origin mostly in the languages C and C++. The latest version of Java is Java 8.
The following Figure 8 shows a basic “Hello World” example written in Java.

Figure 8 Java "Hello World" example code

16

The filename in Java must be equal to the public class name it contains. So
“HelloWorldExample.java” has to be the name of the file that contains this code.
Before the code can be run it has to be compiled. Compiling is the transitioning of
the code from a human-readable language to a machine-readable language. After
this step, a new file appears, which has the ending “.class” and contains the
information of the “.java” file in a machine-understandable language. As shown in
the example, the main method is used in Java to obtain a result of the code and
display it for example on the console. The comments can be written after two
forward slashes as shown in the example, or also between a forward slash plus an
asterisk.

There exist several keywords in Java and some of them are shown in the code
snippet above written in a wine-red color: public, class, static and void. The
keyword public means, that the following method or class or variable can be
accessed from outside of the method or class where it is located. The term for this
keyword is access level modifier. There are also other access level modifiers:
protected and private. These two limit the access to inherited classes (protected)
or only the class or method where the variable or method is located (private). The
next keyword “class” refers to the first level in the Java code. One .java file can
contain several classes, but only one public class, which must have the same name
as the file.

A method that is called “static” cannot access other class members, which are not
static. Furthermore, it is not possible to create instances from this method. This
means, that there can only exist one version, which is associated with the class it
is located in. The last keyword “void” is referred to the return value of a method.
When a method is written as “void”, it means that it does not return any value.
The main method, for example, has to be a void method. As the library of SOMatic
(Spöcklberger, 2013) is written in Java, there was no other language choice
possible to choose in this project. This programming language is the main language
besides python that is taught at CUAS in Villach and also used a lot in San Diego,
which is one important reason why it is used.

17

2.4.2 GeoJSON

GeoJSON is a data format used for the encoding of different geographic data
structures using JavaScript Object Notation (JSON) (Butler, et al., 2016). It was
first introduced in 2008 and differs from other GIS standards in a way that it was
written and maintained by a working group of developers and not by a formal
standards organization (Wikimedia Foundation Inc., 2017). GeoJSON supports
seven different geometry types: Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon and GeometryCollection, which refer to the
definitions of the Open Geospatial Consortium (OGC) (1999). Within Figure 9 one
can see an example of how GeoJSON looks like. It shows a “FeatureCollection”
that contains three features having different geometries.

Figure 9 GeoJSON example

Within the literature research for this project, no SOM implementation could be
found that exports the output in the GeoJSON format. A total of two GeoJSON files
will be created as an extension to SOMatic. The first one holding the finalized
neurons of the SOM after the training and the second one holding the BMUs also
after the final training. The neurons will be stored as features of the type polygon
and having their attribute values in the “properties” of the corresponding GeoJSON
object.

18

2.5 Distributed Systems

2.5.1 OpenMPI

The Open Message Passing Interface (MPI) project is developed and maintained
as an open source project by a consortium of academic, research and industry
partners (Open MPI Project Team, 2017). It combines the technologies from four
other MPI projects and aims to use them to create a world class open-source MPI
implementation (Wikimedia Foundation Inc., 2017). An MPI can be used to setup
a communication between different parallel computing sources. Although it was
used in one best-practice example (Wittek & Darányi, 2012) that is also explained
in section 3.2.2, this technology is seen as not applicable for this project and time
scope as it only has libraries written in C, C++, or Fortran and would, therefore,
require more time than available.

2.5.2 Apache Hadoop

The Apache Hadoop project software is used within distributed computing to
process large data sets across computers in a cluster using simple programming
models (Apache Foundation, 2017). It is designed to detect and handle failures of
nodes in the cluster and has, therefore, a high availability. Hadoop uses the
MapReduce programming model, which is an associated implementation to handle
big data sets with a parallel, distributed algorithm within a cluster (Dean &
Ghemawat, 2004). The “map” is a function specified by the user that generates
out of one key/value pair a set of key/value pairs and the “reduce” function merges
all intermediate values, which are associated with the same intermediate key
(Dean & Ghemawat, 2004).

Figure 10 shows an implementation of the MapReduce programming model that
was used by Google. The first step is to split (also called fork) the input data into
M pieces. One of the two main components (called copies in MapReduce), the
master, is assigning M map tasks and R reduce tasks to the second main
component called workers. These workers need to be idle to get a task assigned
to them. Those workers who got a map task assigned to them read the content of
the corresponding input split and parses key/value pairs to the user-defined map
function. The map function produces also intermediate key/value pairs, which are
buffered in memory. These buffered pairs are periodically forked into R regions
and written to the disk by the partitioning function. The master gets the location
of these pairs and forwards them to the reduce workers. The reduce workers read
the data and sort it depending on the keys as data with the same key will be
grouped together.

19

For each unique key, the reduce worker passes the key as well as the
corresponding set of intermediate values to the reduce function that has been
defined by the user. The output of this reduction is then written to an output file.
After all the map and reduce tasks have been completed, the MapReduce call in
the program of the user returns back to the user code (Dean & Ghemawat, 2004).

Figure 10 Example of the flow of a MapReduce operation (Dean & Ghemawat, 2004)

Apache Hadoop is also written in Java and would, therefore, fit this project looking
at it from this perspective. However, it has been noted that the MapReduce queries
usually take several minutes or more and are best used in offline-modus without
a human sitting in front of the PC (White, 2015).

20

2.5.3 Java Parallel Processing Framework

JPPF is a Java library that is used to run applications on any number of computers.
It splits the task into smaller parts, which can be executed in parallel. It works on
any operation system (OS) that supports Java (JPPF.org, 2016). The network
topology consists of three different components: client(s), server(s) and nodes.
The following Figure 11 gives a possible setup of this topology.

Figure 11 Overview of a JPPF network topology (JPPF.org, 2016)

One network can consist of several servers, clients and nodes. The clients submit
the work to a server. There, it enters a job queue and the server filters on the
available nodes. Via a load balancing mechanism, the tasks are distributed to the
nodes, which perform the task and send the result back to the server. The last
step is the sending of the result from the server back to each client. Figure 12
shows this stepwise workflow within the JPPF topology.

21

Figure 12 Job-Workflow in the JPPF topology (JPPF.org, 2016)

Parallelism occurs within the JPPF network topology at all three components. On
the client-side, a configured pool of connections allows the sending of multiple
concurrent jobs to one server at the same time. The size of this pool determines
the number of jobs that can be sent. Through multiple clients, another form of
parallelism is given as they can also send their workload to a server at the same
time. The third appearance of parallelism on the client-side takes place if a mixed
local and remote computation are enabled. JPPF offers the possibility to execute a
job on a node and on the client at the same time to increase the computing power.
On the server-side, parallelism can be achieved through a connection to more than
one client and/or more than one node. The server has an important role in the
network as it regulates the workload to each node with a load balancing
mechanism. This assures, that the amount of the work to compute is distributed
equally to all nodes in the cluster. Another mechanism called Service Level
Agreement (SLA) can be defined by the user and tells the server to which node a
particular job should not be distributed.

22

This can be useful if the cluster is heterogeneous considering the nodes and the
user has concerns about performing particular jobs on some nodes. The user can
also define the size of the network thread pool, which defines with how many nodes
one server can communicate in parallel. If a system consists of more than one
server, then one of them sees the other one as a client if the connection is one-
directional. If it is bidirectional, then both servers can act as server and client
depending on who sends a job to whom (JPPF.org, 2016). The node-side exploits
parallel processing via using a thread pool to compute the received tasks. The size
of this pool accounts the actual number of available processors on a specific node.

As JPPF is written in Java and seems to be an easy to understand and use tool to
setup and run distributed computations in a cluster it is seen as most suitable for
a usage within this project. One does also not have to think about the details
considering message passing and load balancing. This is implemented and applied
automatically in JPPF. Furthermore, it looks applicable to integrate SOMatic into a
JPPF library to be able to use this SOM implementation within a network cluster.

3. Practical Background

This chapter is divided into three sections explaining different best-practice
examples: parallel SOM implementations on a local machine in 3.1, distributed
SOM implementations onto different machines within a network cluster in 3.2 and
the SOMatic software in 3.3.

3.1 Parallel SOM Implementations

Six different parallel implementations of the SOM algorithm were chosen as an
important literature basis of this thesis and are described within the following
pages.

3.1.1 Hybrid Parallel SOM Algorithm

The method to apply the SOM algorithm explained here focuses on a mixture of
the two common approaches to gain a speedup in computation time of a SOM:
data-partitioning and network-partitioning (Silva & Marques, 2007). The batch
data-partitioning algorithm is used at the beginning to obtain a first ordering of
the topology of the map. After this initial global ordering, the BMUs are distributed
in an adequate way globally over the map.

23

Via calculating an input data histogram, the map is segmented into different parts,
which is referred to the network-partitioning method. The histogram is needed to
be sure that the partitioning is executed in a balanced way. The number of
segmentations is equal to the number of the available processing nodes. Each node
is then focusing only on its part of the partition until a new segmentation is applied.

The reason behind this method is the fact, that the position of the BMU for each
input pattern is generally situated in a small area of the map and therefore situated
in the region allocated to one of the nodes. If the winning neuron for an input
pattern is located in a contiguous region, it can lead to some errors. These errors
are therefore weakened due to the following segmentation stage that repeats the
process again. As the size of the number of neighbors which are considered is
decreasing by time, the frequency of updates in these bordering regions is going
down as well. It was tested with a pre-processed dataset, which resulted in 106
attributes for 6054 randomly chosen input vectors. Figure 13 shows the execution
times of this method for different neuron sizes compared with the times of the
classical Batch data-partition method (Kohonen, 1993).

Figure 13 Execution times of data-partition vs. hybrid method (Silva & Marques, 2007)

The results of this method cannot be equal to the results of a normal data-partition
approach, but the similarity level is very high. Additionally, the obtained
information out of these outcomes is preserved as well. In view of the fact that
the average speed-up of this method compared to the batch data-partition method
is 1.27, its usage for large maps whilst accepting some small discrepancy in the
results can be confirmed.

24

3.1.2 Speculative Parallel SOM Algorithm

In this paper, the members propose a new method of a parallel approach of the
SOM algorithm, which outperforms classic map-partitioning implementations
(Garcia, et al., 2006). They used simultaneous multithreading (SMT) processors,
which opens the possibility to work on several instructions at the same time. This
increases the efficiency of the processors computing powers because the
operational latencies are hidden. These processors can be described as a set of
logical processors, which split some resources among them. The code used in this
project comes from the SOM-PAK (Kohonen, et al., 1996) implementation
originally coded at the Helsinki University of Technology. This alternative
implementation (Garcia, et al., 2006) uses the assumption, that it is possible to
train two consecutive winning nodes in parallel if their neighborhoods are not
overlapping. The finding of the BMU is always performed in parallel and the training
of their respective neighborhoods is dependent on a possible sharing of the same
nodes. If they do not overlap, the master, as well as the slave of the architecture,
can compute the training process, but if they do overlap, the slave has to wait until
the master has finished its updating. An overlap also means that the speculation
has been wrong. After the update, the master and the slave switch their roles. This
master-slave architecture can be seen in Figure 14.

Figure 14 Master-slave architecture in a speculative parallel SOM algorithm (Garcia, et al., 2006)

25

As the chances of overlapping are decreasing during training due to the decrease
of the size of the radius, which determines how many nodes are updated around
the BMU, the speculation starts after ten percent of the iterations have been
finished. In the initial warm-up phase, a map-partitioning approach is applied on
the threads in parallel. The disadvantage here is that with a wrong speculation
some resources were used to useless computations, which have to be re-executed.
The advantage is an average increase in the speedup of 5 compared to the original
SOM-PAK code.

3.1.3 Data Partition Method for Parallel SOMs

To apply a data partition approach is another possibility to achieve a parallelizable
structure (Yang & Ahuja, 1999). This implementation achieves an average speed
up of 3.15 by partitioning the training vectors into clusters, which are then
assigned to processors for computing. It is based on the observation of the
dynamic behavior and the characteristics of the neighborhood function in the SOM
algorithm by Kohonen (Kohonen, et al., 1996).

The algorithm is described as follows (Yang & Ahuja, 1999): N is the number of
processors, I the number of input vectors and M2 the number of nodes in the map.
The input vectors should be clustered into N clusters so that each processor can
use one of these clusters as input data and the maps can be formed concurrently.
Each processor should have about 1/N input vectors. This approach can be
considered as a divide-and-conquer method as it decomposes the original problem
into a set of subproblems which can be solved at the same time. The aim of this
method can be described as dividing the original problem into N sub-problems
such that they can be processed in parallel. A disturbance of this parallelization
only arises if the neighboring nodes of one winning node are not within the same
sub-map. The downside here is that the processors need to communicate with
each other because of this possibility. This process makes sure that the overall
consistency is still given. One processor informs in such a case the others to update
the weights of their nodes as the neighboring function of the winning node overlaps
with the nodes, which are in one or more other processors. This project tries to
divide the problem in such a way that the occurrences of these overlapping cases
are rare.

This data partition algorithm tries to make a good usage of the two training phases
of the SOM. In the first phase, a coarse training takes place where the reference
vectors are roughly ordered. The second phase is then the fine tuning of the values
of the reference vectors. Furthermore, the neighborhood radius decreases from
the first to the second phase but the computation time increases a lot. It is more
than ten times longer than the first phase. The data is partitioned after the first
phase as the mapping of the input vectors to the nodes is rather stabilized at that
point and the neighborhood function (the radius) is smaller in the second phase.

26

In the testing of this implementation, the task was to solve an image coding
problem via mapping 2048 training vectors into an 8x8 SOM using four processors.
Their results show that the probability of the need to synchronize the different
weight matrices in the sub-maps lies at roughly five percent. The achieved speedup
can be numbered at 3.15 compared to running the algorithm on a single processor.

Figure 15 a comparison between the original image, the result of applying the
conventional SOM and the result with the parallel SOM algorithm. This proves that
the increase in speedup does not trade with a decrease in quality.

Figure 15 Comparison of raw image, conventional SOM and parallel SOM (Yang & Ahuja, 1999)

3.2 Network-Distributed SOM Implementations

This chapter gives two examples of a cluster computation of the SOM algorithms,
where connected machines within a network were used. The second example also
explains how SOMs can also be computed with the help of graphic processing units
(GPUs).

3.2.1 Training a SOM distributed on a PVM network

A distribution of the computations within a SOM to several PCs using a Parallel
Virtual Machine (PVM) network is described by Bandeira, et al. (1998). PVM
enables to use connected computers that can have different operation systems like
UNIX or Windows as a single UNIX machine via using the programming language
C for instance. In this project they used PCs of the computer laboratories in their
University to train the SOM networks. Given a number of processors Np, a
coordinator process within Np called C, the number Nt of each training pattern xi
and neurons that form a SOM Nn, the approach of this implementation is described
in five steps (Bandeira, et al., 1998):

27

1) Assigning of the neurons: The Nn neurons are assigned to the processors in a
way that each one of them gets approximately the same number of neurons (Np /
Nn). Furthermore, they should be evenly distributed over the processors for any
given area of the SOM.
2) Setup of the training set: All of the Nt patterns are send together with the initial
training parameters to each processor.
3) Training of the neurons: For each xi in the training set, 3 phases are computed.
The first one is called calculation phase. Here, the local winner neurons are
calculated. This phase runs in parallel as each processor calculates that for its
neurons. The second phase is the voting phase, where the processors send the
coordinates their winner neuron to the coordinator process C. This coordinator
selects the global winner and distributes its location back to the processors. In the
third phase each processor updates the neurons according to the update function
(update phase). Additionally, the training parameters are also updated.
4) Repetition of step 3 until a stopping criteria is met.
5) Sending of all neurons back to the coordinator.

Within this experiment a network with up to 12 PCs was used. The possible
speedup was highly depending on the processing load that was required before
each synchronization in the update phase. Therefore, very large pattern vectors
with 1024 features were used and the number of neurons on the map was varied.
The size of the maps varied from 5x5, 10x10, 20x20 and 40x40 squares, where
the numbers refer to the neurons meaning a 5x5 square consists of 25 neurons.
The decrease of the radius per training run was set at one unit, which means that
a map with 5x5 neurons would have 5xNt iterations on the patterns and the biggest
one would have 40xNt runs. Therefore, the number of training patterns was
decreased with an increase in map size in order to counter the rise of computation
time that would occur within that radius decrease. The numbers of training
patterns were chosen in a way that each map would require four times more
calculations than the previous one had.

Figure 16 shows the curves computation time. The horizontal axis refers to the
number of machines and the vertical axis to the computation time given in
seconds. What can be observed here is the fact that there is not a speedup in each
SOM size. In fact, the computation time of the smaller two (5x5 and 10x10) is
increasing with an increase in the number of machines used for computation. This
is mainly caused by the amount of communication, which increases with the
number of machines. These two map sizes are simply too small to get a decrease
in computing time via distributing its workload on several machines. The decrease
in time of the 20x20 and especially the 40x40 map are on the other hand
remarkable. This result confirms the claim, that the SOM algorithm can be
distributed onto different machines in a network cluster in an efficient way.

28

Figure 16 Curves of computation time (Bandeira, et al., 1998)

Table 1 also shows the execution times for each map size and each number of PCs
used for computing as precise numbers. This can basically be seen as a numerical
representation of Figure 16. The values within the table are again seconds. The
fact, that the computation time can only be decreased down to a certain threshold
through a rise of the amount of nodes within a cluster is shown here in more detail
with the exact numbers. Through comparing the computation times with ten and
twelve PCs one can see that this increase only lead in the biggest SOM to a further
decrease in computation time. It will also be of importance to find the optimal
number of cluster nodes for specific SOM and input data sizes for SOMatic.

Table 1 Execution times for different map sizes and numbers of PCs (Bandeira, et al., 1998)

29

3.2.2 A GPU accelerated distributed SOM implementation

Another approach to achieve a speedup is to run the computations on GPUs and
distribute them (Wittek & Darányi, 2012). Within this research project a
MapReduce-based (Dean & Ghemawat, 2004) implementation of SOMs is
distributed on GPUs within a network size of eight nodes. These SOMs build on
another project’s (Sul & Tovchigrechko, 2011) batch formula of updating the
weights. These weight updates are performed for each node and moved to the
GPU with a matrix-based Euclidian distance matrix, which is faster than just
computing this distance for each node. An algorithm (Li, et al., 2010) (van de
Sande, et al., 2011) is used to decompose the steps into operations on the matrix
level. Usually the computation of the Euclidian distance includes the square root.
This operation is omitted here as it is time expensive to compute it on the GPU. As
network cluster eight nodes from the Amazon Web Services (AWS) were used.
AWS provides nodes, which are close in physical space and connected with a high-
speed connection. The hardware of one node consists amongst others of two Intel
Xeon X5570 quad-core central processing units (CPUs) with 23 gigabyte (GB) of
memory and NVidia Tesla M2050, where one graphic card has 448 CUDA cores
and 3 GB of device memory.

As software to distribute the algorithm on the nodes in the cluster the MPI (Snir,
et al., 1996) and map-reduced message passing interface (MR-MPI) are used. To
run the computations on the GPUs the NVidia CUDA (NVidia Corporation, 2014)
framework was used. As input data about 35 million terms of a collection of about
84,000 PhD theses were analyzed. The number of dimensions was reduced to 200
via applying a random projection. As a result of the huge data size, it was only
possible to run this implementation on all eight nodes, because the memory of the
GPUs would otherwise not be sufficient enough. The size of the SOM had also been
limited to 100 neurons. The execution time results and speedup factors are showed
in Figure 17.

Figure 17 Execution time comparison between GPU and CPU (Wittek & Darányi, 2012)

30

The GPU approach of distributing the SOM algorithm shows, that a remarkable
speedup can be achieved when moving from CPU to GPU. However, it has a tighter
limitation considering data sizes and it is easier to find and setup a network that
uses CPUs for computation than GPUs.

3.2.3 Somoclu: A parallel library for SOMs

The name Somoclu is derived from “SOM on cluster” and is a parallel
implementation of the SOM algorithm (Wittek, et al., 2016). It is written in C++
and can be used via a command-line interface or wrappers written in the
programming languages R, Python and Matlab. With the command-line interface
it is also possible to distribute the computations within a network cluster onto
different machines. Somoclu builds up on two former implementations using
MapReduce (Sul & Tovchigrechko, 2011) and distributed GPU computations
(Wittek & Darányi, 2012). The MapReduce calls were replaced by MPI but within
the multi-core process, MPI was replaced by OpenMP (Dagum & Menon, 1998),
which increases its speed. Via OpenMP, each thread can work on the same SOM in
contrary to MPI, where each thread holds a copy of the whole SOM. To implement
the GPU kernel a library named Thrust (Bell & Hoberock, 2011) was used. The GPU
implementation is not only using GPUs. The weight updates can be done in a faster
way with CPUs because they can run an MPI process on each core whereas one
GPU can only run one MPI process. The difference is that two GPUs have four times
more data to process than eight CPU cores within the MPI processes. For that
reason, the kernel is hybridized meaning the CPU cores are also used for the weight
updates in the GPU implementation.

The distribution of the computations onto different machines within a cluster
follows the master-slave architecture. A simple setup of this topology is displayed
in Figure 18. The data is distributed to all nodes in an equal size. The finding of
the BMU takes place without intermediate network communication at all as each
search of the minimum distance is an independent process. The updates of the
weights within the training stage require a two-way communication between the
master and the slaves. Once the slaves are finished with their updates, they send
their local changes to the master node, which accumulates them to the SOM. This
new SOM is then distributed to each slave to compute the next training epoch. The
change to a former distributed GPU computation (Wittek & Darányi, 2012) lies
here in the use of ordinary MPI without the help of the MapReduce library.

31

Figure 18 Overview of a master-slave architecture

To test the implementation a SOM with a size of 50x50 and 200x200 neurons was
created. The number of the input vectors ranged from 12,500 to 100,000 and the
dimensionality was set on 1,000. The random data instances consist of five percent
non-zero values. Each machine in the network cluster had 22GB of memory, two
Intel Xeon X5570 quad-core CPUs and two NVIDIA Tesla M2050 GPUs. The
operation system was Ubuntu 12.04. The GPU implementation was about two
times faster than the CPU version. This difference is not as high as only one GPU
could be used as the Thrust template library is not efficient for two-dimensional
data structures (Wittek, et al., 2016). The following Figure 19 shows the
comparison between the CPU, the GPU and the single-core R package created by
Kohonen (Wehrens & Buydens, 2007) on the SOM with 2500 neurons. Figure 20
shows the CPU and GPU time for the SOM with 40000 neurons.

Figure 19 Runtime comparison on a 50x50 sized SOM (Wittek, et al., 2016)

32

Figure 20 Runtime comparison on a 200x200 sized SOM (Wittek, et al., 2016)

The problem with updating the same neuron by different threads is said to be
countered via a threshold presumably meaning that they cannot overlap each
other. This should lead to a performance increase without a quality decrease
(Wittek, et al., 2016). It is not mentioned how a possible update of the same
neuron is handled, which can be solved for example with a lock of this neuron like
implemented in the SOMatic trainer (Spöcklberger, 2013)

3.3 SOMatic

SOMatic can be divided into two parts: the trainer and the viewer. The trainer is a
Java library that implements a SOM algorithm and applies a parallelized training
phase (Spöcklberger, 2013). The viewer is used to visualize the created SOMs of
the trainer with Processing (Rainer, 2013). Both were developed together in 2013
by a joint research project between SDSU in San Diego and CUAS in Villach by two
students from Carinthia. The SOMatic trainer has a parallel training
implementation but it is listed here in its own section together with the SOMatic
viewer as SOMatic can be seen as the basis of this research project.

33

3.3.1 SOMatic Trainer

An important purpose of the development of the SOMatic trainer was to fit between
self-contained SOM software and generic or outdated libraries (Spöcklberger,
2013). Therefore, it is implemented as a Java library and includes parallelized
computations to be able to deal with bigger input data in a faster way. The training
within this SOM application can be run on multiple cores on one machine to speed
up the computation.

True parallelization of the computations can be achieved within a CPU containing
two or more processing cores. The user can choose how many cores he wants to
use when running the SOMatic trainer. Figure 21 shows the parameters, which
need to be set to run the trainer (applied in the IDE Eclipse). The first two are
strings and include the path to the input and output file. Parameters three and four
define the size of the SOM, so for example if both of these values are 20, the SOM
has a size of 400 neurons. The next parameter is the alpha value or also called
learning rate factor. It controls the magnitude of the correction of the weights of
the neighboring neurons (Lawrence, et al., 1999) and has to be between zero and
one. The radius defines the influence size of the changes that are applied after
finding a BMU. It usually decreases after each training epoch. The “iterations”
value stands for the number of training runs and is in contrary to the radius usually
increasing after an epoch. The user can also choose between the Euclidian,
Manhattan, or Cosine distance, which is set with the integer “simMeasure”. A one
means Euclidian, a two Cosine and a three Manhattan. The last parameter defines
the number of threads, which are used to do the training of the SOM.

Figure 21 Parameters needed to run the SOMatic trainer

As one goal is to generate an additional output of SOMatic trainer in the form of a
GeoJSON file, it is important to take a closer look at the in- and output data that
the current implementation requires and produces. To be able to run this software,
the input data has to adhere to a particular format. The file formats can either be
comma separated value (CSV) or a SOM_PAK (Kohonen, et al., 1996) data file. In
csv files, each line has to represent one input data item. Only the first row is not
interpreted that way as it should contain the attribute names. The columns can be
characters or numbers and include the attributes of each item. SOMatic can only
deal with numerical numbers in the computation though but characters would not
through an error.

34

The difference to the SOM_PAK data file is that the first line includes just one
number, which represents the number of attributes. The attributes themselves are
listed in the second line with “#atts” starting this line. The attribute names cannot
be divided with spaces, so one needs to use underscores or a hyphen instead. As
output, the SOMatic trainer produces two files: a codebook (.cod) and a .sprj file.
The first one holds the information about the final SOM, which is similar to the
data file and is also derived from SOM_PAK. The second one serves as information
about the applied settings and parameters, which were used in this run. The
following Figure 22 shows an example of the .sprj file.

Figure 22 Example of a .sprj output file

The parallelization is a major interest of this research project and that is why it
was also deeply analyzed in the SOMatic trainer (Spöcklberger, 2013)
implementation. In general, it has two purposes: to speed up the training through
the integration of more threads and to monitor its progress. An additional training
surveillance thread (TST) is created and used to follow the advance of the training
process within a progress bar object. Its main usage is to give the time progress
as feedback to the user who can then better estimate when SOMatic will be
finished. The following Figure 23 visualizes the sequence and purposes of the
threads used within the training of the SOM.

35

Figure 23 Sequence of the training threads within the SOMatic trainer (Spöcklberger, 2013)

Depending on the initial settings given by the user, a certain number of threads is
created from a thread pool. The number of training iterations is then divided by
the number of threads so that each thread has the same amount of work to do.
Figure 24 displays the overview of how the parallelization is implemented in
SOMatic. It shows how the computation within one step of the training process
running 20,000 iterations is divided onto two threads. How one iteration looks like
has been explained in Figure 3.

Figure 24 One training step parallelized onto two threads in SOMatic

36

The process of updating a neuron when two or more threads also seek to update
the same neuron is still executed sequentially. This produces latency as the other
thread(s) are forced to wait until the first thread finished the updating. Reading
works in parallel, but the updating is a process of writing and therefore cannot be
performed in parallel as this would lead to inconsistencies. Figure 25 gives a visual
expression of the overlapping of the neighborhoods, where the latency issue could
occur. The light-red and light-blue neurons represent the neighborhoods around
two neurons (red and blue), which were found as BMUs by two processors.
Neurons, which are situated in the shared neighborhood colored in purple can
cause a delay of the weight-updating if both threads want to update the same
neuron at the same time. This issue is more likely to happen in the early stages of
the training when the neighborhood radius is still relatively high and/or when the
number of threads that work in parallel on the SOM is higher.

Figure 25 Neighborhood overlapping (purple neurons) of two BMUs (red and dark blue) in parallel
training

The achieved speedup through using this architecture is almost proportional to the
number of training threads. What delays the computation are the initialization and
start of the threads from the thread pool, other processes running on that machine
at that moment and the previously described issue with the simultaneous neuron
update. The testing showed that through the parallelization it can be up to 9.14
times faster compared to a sequential training with only one thread.

37

To measure the quality of the output SOMs, a function computing the AQE is
included within the SOMatic Trainer. It computes the difference in attribute space
between each input vector and its corresponding BMU and averages the results. It
was used by Spöcklberger (2013) and will be used in this project as well to be able
to validate the quality of the resulting SOMs. Spöcklberger also created a graphical
user interface (GUI) in Java, which is also usable in Processing so the user can run
the trainer easier as a Java application, but also to show the compatibility of the
library with other IDEs.

3.3.2 SOMatic Viewer

The SOMatic Viewer (Rainer, 2013) is an interactive SOM visualization tool which
is implemented for Processing and also as standalone Java application. The user
can choose between seven SOM visualization techniques like k-means clustering
or component planes. To compute the SOMs, the viewer uses the SOMatic trainer
(Spöcklberger, 2013). Before this project, there was no other SOM visualization
software using Processing. The SOMatic viewer was developed along with the
trainer and has therefore to be mentioned additionally when one is talking about
SOMatic. This research is not concerned with the viewer because the focus lies
solely in the computational aspects of the SOMs, which is implemented within the
trainer.

38

4. Method of Solution

This chapter explains the overall project workflow in detail with charts to get a
graphical view of the processes that will be implemented and how they interact
with each other. It also shows the approach on how to solve the core problems
and gives explanations on how it is planned to answer the research questions.

4.1 Procedural Workflow

The following Figure 26 gives an overview of the procedural workflow, which serves
as the guideline how this project is organized.

Figure 26 Project workflow overview

4.1.1 Background

The first step is to analyze previous case studies. This includes analyzing best-
practice examples as well as taking a deeper look into the theoretical background,
which is needed to conduct this research project. This step is required in order to
answer the following questions: What implementations exist that use similar
concepts and techniques? What approaches to solve the problems in this project
could be found in these best-practice examples? What are the important
technologies and techniques needed to conduct a research project in this field?

39

4.1.2 Method of Solution

This phase gives answers to the “how” questions in this project: How does the
workflow of this project look? How will the code be updated and migrated to newer
software versions? How can the original SOMatic output be exported in the
GeoJSON format? How can one implement the parallelization of the BMU search?
How will the integration of SOMatic into a cluster computing system look?

4.1.3 Implementation

This section is focused on implementing the planned steps in the method of
solution. It explains the applied programming models and code, mostly in the Java
language. To get a better understanding of the connections and preconditions
within the software, flowcharts are utilized. The newly added methods are
repeatedly tested with samples of data to ensure the persistence of its
functionality. This answers the question: What are the programmed methods that
are required to achieve the expected functionalities?

4.1.4 Results

The last step is to validate the programmed software and explain its functionalities
via using data and visualizing it. This will be achieved with running the SOMatic
Trainer 2.0 using multispectral image data and census data and looking at the time
and error measurements. Therefore, it should answer following questions: To what
extent did the usage and performance of SOMatic increase? What is the quality of
the output?

4.2 Software Upgrade

4.2.1 From Java 6 to Java 8

The original SOMatic Trainer (Spöcklberger, 2013) was developed with Java 6. It
used the system libraries as well as the Java runtime environment (JRE) of version
six. The upgrading process is consisting of a change of all the system libraries as
well as the used JRE to version eight. This can be done within the Eclipse IDE,
where the library settings of the SOMatic Trainer Project can be modified.

40

After rebuilding the project, the IDE would highlight code that might have to be
changed in order to be executable with the JRE eight. It is not planned to work
through the whole code in detail and replace elderly (also called deprecated) code
with newer classes or methods. The purpose of this migration is to assure that the
code still runs using the latest libraries and runtime environment.

4.2.2 From Processing 2 to Processing 3

As the SOMatic Trainer library (Spöcklberger, 2013) is also used with Processing,
it is critical to guarantee its compatibility with the latest Processing version as well.
The upgraded Java library should still be executable within the Processing 3 IDE
and code, which represent the latest version at this point in time. After applying
the Java migration, the Processing migration will be carried out and tested as well.

4.2.3 Code Versioning and Cleanup

The starting point for coding within this project won’t be the latest code version of
SOMatic but the last one with the needed functionalities. Therefore, it will be
necessary to walk through earlier versions of the code via the versioning tool
Apache Subversion (SVN), which was used in the last implementation and will also
be used in this one. Furthermore, each line of the code will be reviewed and those
not needed or any unnecessary fragments will be deleted to reduce the size of it.
Some comments may also be added to make it easier to understand for this
implementation and possible future projects as well.

4.3 GeoJSON

One key aspect of the software enhancements of SOMatic is to include GeoJSON
as a secondary output format apart from codebook files. It will be possible to
visualize the trained SOM as well as the BMUs of this computation without any
further processing in a browser or Geoinformation program like Quantum GIS
(QGIS). Additionally, the trained SOM will be reusable as the GeoJSON output will
be able to serve as input for another SOMatic computation. The reusability of the
SOMatic output was thus far a bottleneck and will be improved through including
a functionality to read-in the output in the GeoJSON format, additionally to the
already existing function to read-in a codebook file. These functions will be
programmed in additional methods in the Java code within the Eclipse IDE.

41

4.4 Parallelization

4.4.1 Local Parallelization: The BMU Search

The BMU search is a process in the SOM algorithm that is embarrassingly parallel
as already described in section 2.2 in this thesis. This means, that all available
computing resources can be used for computation and no communication has to
take place between them during the process of computing the distance. As the
SOMatic Trainer (Spöcklberger, 2013) uses a parallelization of the training steps
and no batch computation, the parallel implementation described by Lawrence et
al (1999) cannot be applied here.

A more effective way of searching the BMU can be achieved with a data-partition
approach, like it is used in the batch computation of the SOM algorithm described
in section 2.2.3. It is not applicable during training because of the different
parallelization technique in the SOMatic trainer, but it can be used after the whole
training process is finished. As input serve the final SOM which gets copied, and
the input data vectors which get split up equally (or +/- some vectors depending
on remainder) among the available, or by the user predefined, number of threads
as shown in Figure 27 for the computation with two threads. The SOM gets copied
onto both threads into their respective memory. The BMUs are then stored in a
GeoJSON file, which holds only the BMUs, additionally to the second GeoJSON file
containing all neurons of the final SOM. So the output of this BMU projection of
new input vectors on a trained SOM will only consist of one new GeoJSON file
holding the BMUs for the newly projected data.

Figure 27 Example for Data parallelization approach in the BMU search

42

4.4.2 Distributed Parallelization: Cluster Computation in a Network

The following diagrams were created to be able to understand the principle
components and steps that are behind the distributed computations using SOMatic
on several machines in a network cluster. The system consists of two main
components: the master machine, which controls and distributes the whole work
and the computation nodes, also called “slave machines”. The responsibility of
each slave is to execute the job, which gets assigned to it. To be able to use this
cluster, there are several prerequisites considering the software of the machines:
To run the latest version of JPPF (5.2) it is required to have at least Java 7 as well
as Apache Ant 1.7 installed and the environment variables in the settings set to
the root folders of the respective installations. The “JAVA_HOME” variable has to
point to the java development kit (JDK) installation folder (not to the JRE folder,
otherwise it will not work) and the “ANT_HOME” variable has to point to the Ant
installation folder. A copy of the SOMatic library is also needed at each machine.
Furthermore, the network nodes should all have access to a shared file system to
eliminate the time and amount that would be needed to transfer the data to and
from each machine otherwise.

There are two different scenarios that will be implemented here: In the first one,
all slaves run SOMatic on the same input data and SOM once and its resulting
SOMs will then be combined after the computations are finished by the master
machine. This will be used as an introducing step to JPPF. It is necessary to
understand the basics behind using such a software to be able to continue with
further developments. As shown in Figure 28, the steps of the first scenario are
the following: The first one is to initialize a random SOM based on the input data.
After that the slave nodes get that SOM as well as the input data and then each of
them running the algorithm on copies of them, so all of them can do it at the same
time. The last step is to combine the results.

Figure 28 Scenario one of the distributed computation of SOMatic

43

The second scenario involves a random partition of the input data onto each slave
and a repeated using of the SOMatic algorithm in a certain number of iterations.
The combined SOM after one iteration serves as input for the next iteration. The
following Figure 29 describes the second scenario in detail.

Figure 29 Scenario two of the distributed computation of SOMatic

The following workflow displayed in Figure 30 shows how the SOMatic Trainer could
be integrated into JPPF. It has the same principles as the workflows shown in
Figure 28 and Figure 29 but is more detailed by including the JPPF architecture
with jobs and tasks. After executing the first four steps of the Trainer, namely
reading in the input data, creating the training vectors, normalizing them and
initializing of the random SOM, the next step is to create tasks and add them to a
newly created job. The number of tasks should be the same as the number of
nodes that are usable within the cluster. Until here, everything should be
performed on the server.

When the job is executed via typing the command “ant” in the console at the
location of the application, the tasks are sent to the nodes, which should then
perform the training of the SOM. In the first scenario, they should only train it
once by using the whole input data. After the tasks are finished, the SOMs are
merged to one SOM, which is the final result here. In the second scenario, each
task gets a different part of the input data assigned for the training. After the job
is finished, the SOMs get merged and another job as well as new tasks are created,
which have this time the merged SOM and a different distribution of the training
data as input. The amount of iterations this process will take can be predefined by
the user.

44

Figure 30 Workflow of the JPPF Implementation of the SOMatic Trainer

4.5 Software, Tools and Libraries

The main software that will be used within this project is the IDE Eclipse. It is an
open source software that is widely used for programming, especially within the
Java development world. Two versions of that software will be used in this project:
Eclipse Neon in San Diego and Eclipse Oxygen in Villach. To keep a version tracking
of the programming progress the open source software Apache Subversion (SVN)
will be used. This is inevitable as the former implementation of the SOMatic Trainer
(Spöcklberger, 2013) was also using this version tracking tool and therefore this
project will continue with its usage. Another program that is also open source and
is going to create the visualizations of the GeoJSON output is a known GIS called
QGIS. The exact version of that software is 2.12 Lyon.

In the IDE Eclipse, there is one main tool that helps to control the dependencies
from the Java code to different libraries. This tool is called Apache Maven and is
directly implemented within Eclipse. Instead of a Java Project, the code will be
written in a Maven Project. The dependencies have to be written in an extensible
markup language (XML) file called project object model (POM).

It dynamically adds the libraries to the project without having the need to
download and define the exact path to them in the build-path setting in the Project.
Figure 31 shows the integration of the Processing library in the POM.xml file. The
core library with the version 3.2.3 is referenced, as one prerequisite of the upgrade
of the SOMatic Trainer is to be able to be compatible with Processing 3.

45

As a cluster computation framework JPPF will be used. The version 5.2 will be
setup locally and on a machine cluster in San Diego, where the implementation
will be tested on. To be able to execute a JPPF task, Apache Ant is needed as well,
to be precise at least in the version 1.8 (which was used here).

Figure 31 Example of a library dependency in a Maven POM.xml file

Apart from the Processing core library, there are only two other libraries (besides
the Java system libraries), which are used for this Eclipse project: junit 3.8.1 and
json-simple 1.1.1. The first one is automatically created in the POM.xml file and
referenced by Maven. The second one will be needed to create the GeoJSON
output.

When it comes to measuring the output SOMs of the SOMatic Trainer, the main
tool to evaluate its accuracy is the AQE. It computes the difference between the
attribute values from the input vectors to all their respective BMUs, adds them up
and divides them by the number of input vectors to get the average. This gives
also a good indication about how good a SOM describes the input dataset. The
functionality of computing the AQE is already implemented within the SOMatic
Trainer.

46

5. Implementation

This chapter describes the performed programming and how the methods are
applied within this project.

5.1 Working Java Code

Before being able to start with programming the extensions one needs a working
programming code. A version tracking tool called SVN was used when
implementing the software and will also continually be in use. Via the command
“checkout” different revisions where obtained and tested on their functionality in
Eclipse. These revisions refer to different stages of the code.

The needed revision should have the same functionality as the jar file that was
used so far to compute SOMs. To reach that goal, the newest version of the
SOMatic trainer (where the Java classes were available) was compared with older
versions. Through investigating the comments, which were written when a new
revision was uploaded to SVN, it turned out that the needed revision should be
around 70. After checking several versions, the code that matches the jar file was
obtained at revision 74. This code served as the basis of this project.

To be able to handle the libraries in an efficient way, a Maven project was created
where all the Java classes were imported. Furthermore, the folder structure of the
classes, also called packages in Eclipse has been adapted so that it is more clear
which classes are responsible for what part within the Maven project. The needed
dependencies were added in the pom.xml file, namely the processing core v3.2.3
and later also the json-simple 1.1.1 libraries.

5.2 GeoJSON Output

As an addition to the codebook file created by the SOMatic trainer, the output is
also stored in two GeoJSON files. To achieve that, the class
FileWriter.java was extended with two methods: “writeSomToGeoJson()” and
“writeBMUstoGeoJson()”. The first one writes the whole SOM, so the neurons with
their geometry plus the attributes after training into a newly created GeoJSON file.
It creates the needed JSON objects and arrays and fills them with data retrieved
from the geometry computation (details see section 5.3) and from the neurons,
which hold the attribute values.

47

The second method is using the same geometry of the whole SOM but is only
showing which neuron is the BMU for which input vector. This is done by indicating
the corresponding input vector(s) in the BMU neurons. Each one of them gets a
random point within the polygon assigned to it. This is needed in case two or more
input vectors share the same BMU, so they would not be displayed one above the
other, but get distinct coordinates assigned to them. Figure 32 shows how the
polygon coordinates are extracted and written into JSON arrays. This piece of code
is used in both GeoJSON writing methods. After getting filled with coordinates, the
double array “cords” is walked over in a for loop, which starts at 0 and increments
each step by 2 as two following values in that array refer to one coordinate pair of
one hexagonal corner point. Each coordinate pair is stored in an own JSON array.
These arrays are then stored in a JSON array called “innerCoords”, which is then
added to another array called “outerCoords” in the last line in the here represented
figure. This structure is needed to be able to add for example the points of a hole
within the polygon, which is defined within the GeoJSON compliances and therefore
has to be compliant with them.

Figure 32 Java code example showing the writing of the polygon coordinates into JSON Arrays

It is also possible to use a codebook file as an input and create a GeoJSON file
from it. This is implemented in the method “fromCodToGeoJson()”. It reads the
parameters from the first, the attribute names from the second and the attribute
values from the following lines in and creates a new SOM out of this data. Then
this SOM is written to a GeoJSON file using the method “writeSomToGeoJson()”.

48

5.3 Geometry of the Neurons

To compute an exact geometry for the neurons in a 2D coordinate system two
functions had to be implemented. One function is to place each neuron at an x/y
position in a coordinate system starting at bottom left and one to create hexagonal
polygons around these coordinates. This is needed as it should be possible to
visualize the content of the GeoJSON file immediately without any further
processing. Basically each neuron is represented as a polygon with a hexagonal
shape that has a midpoint and six corner points. The distance between two mid
points of two neighboring neurons is one times the scaling factor, which can be
defined by the user to enlarge or minimize the size of the visualized SOM.

The Cartesian point coordinates representing their centroids are computed via
using the ID of the respective neuron and the size of the SOM on the x-axis. The
x values are whole numbers starting at zero and going till the number of neurons
on the x-axis. The y values are harder to compute as they need to be multiplied
with a factor to fit in between the space of the two neurons below in every second
row as it can be observed in Figure 33. This factor is one divided by the sinus of
60. In reference to the following figure, the centroid of the neuron with ID 0 has
the coordinates (0/0), neuron 1 has (1/0) and neuron 2 (2/0). The neuron with
the ID 3 in the second row from the bottom has the coordinates (0.5/1*1/sin(60))
and neuron 4 is at (1.5/1*1/sin(60)). These exact coordinates are needed in order
to clearly define the location of the corner points to be able to compute the
polygonal representation of the SOM correctly.

Figure 33 Hexagonal neuron alignment example with applied numeration

The polygon coordinates, respectively the corner points are basically created based
on the centroid coordinates via using the rules of 30-60-90 triangles as illustrated
in Figure 34. The angle of 𝛼 is always 30 and the angle of β always 60 degrees.
The first edge between 𝛼 and β is always two times the second edge between the
right angle and β (called x). The third edge between the right angle and 𝛼 is always
the second edge times the square root of three.

49

These characteristics of this triangle allow it to compute all edges by only knowing
the length of one of the three without the need of using a sine, cosine or tangent
function. That makes it easier to implement and helps to reduce the computation
time. The connection is made via using the third edge, which is half the distance
between two neighboring neurons, or 0.5 times the scaling factor.

Figure 34 Characteristics of a 30-60-90 degree triangle

Figure 35 shows the 30-60-90 degree triangle used in a hexagon. The coordinates
are computed using mainly two values: the distance from the centroid to an edge,
which is 0.5 times the scaling factor (s), or x*√3 because the length between the
centroids of two directly neighboring neurons is always 1*s. This distance is then
divided by the square root of three to get the distance from a corner point to the
middle of an edge (x). Then it is just an adding or subtracting of these values from
the coordinates of the centroid to compute the coordinates of the hexagon starting
at the top and moving counter-clockwise around. The first point has to be added
again and the points have to be counter-clockwise in the array to match the
specifications of the GeoJSON standard format. If the in Figure 35 shown neuron
has the ID 0, the coordinates with a scaling factor of 2 for point A are (0/1.15),
for B (-1/0.58), C (-1/-0.58), D (0/-1.15), E (1/-0.58) and F (1/0.58).

50

Figure 35 Usage of the 30-60-90 degree triangle characteristics within a hexagon

5.4 Integration of a parallelized BMU Search after Training

The functionality to apply a BMU search after training was not existent thus far.
The here mentioned BMU search is not applied during training, but afterwards
when other data, which was not part of the training data, needs to be projected
onto a particular SOM. It can exploit the full parallel computation possibilities of
the machine that is used in this scenario.

The user can define via a variable how many processors he or she would like to
use to make a BMU search with the defined dataset onto the trained SOM. This
option is still available as the setup and initializing of the different processes
consume some time as well. If the dataset is not that big, it is not necessary to
initialize many processors.

This parallelization follows the common data-partition method. The input data is
read in, normalized and then split up onto a defined number of parts, which
represents the amount of processors that will be used here. This is easy when
there is a certain number of input vectors that can be divided by a certain number
of threads without a remainder, for example having 20,000 input vectors and four
threads.

51

When there are some remaining input vectors, the code gets a bit more
complicated. Figure 36 shows the part of the code that handles the division of the
input data and the issue with a possible remainder. “nTVs” is the number of input
vectors, which gets divided by the number of threads “nThreads”. That quotient
gets then saved in the variable “sParts” in line 206. As the data type of “sParts” is
an integer, it is always a whole number without a remainder. The size of the
remainder is computed via subtracting the number of input vectors with the
product of the number of divisions times the number of threads in line 208. The
parts of the input data get than copied into an array of training vectors in line 212
stepwise for each thread with the precomputed size and copied into an arraylist
called “tvParts”, which stores all the parts of the input vectors. The second half of
the code example is only used when there is a remainder, which is checked in line
217. In the lines 221 and 222 the last two arrays are removed as there was an
additional one created in the for-loop with the size of the remainder and the second
last one will be changed. This array will get the last full share plus the remaining
training vectors and be added again to the arraylist. This can be observed in the
lines 224 and 226.

Figure 36 Code-excerpt of the parallelized BMU search after training

Every processor walks through its respective part and searches the BMU for each
input vector. The code for this computation is the same as for the BMU search in
the training process. The information which neuron is a BMU for which input vector
is stored in the Neuron Java object and then readout when exported into the BMU
GeoJSON file. The output of this computation can only be stored in the
“bmus.geojson” file as it does not change any attributes but shows the BMUs for
a given set of input vectors on an already trained SOM.

52

5.5 Cluster computing of SOMatic

Before being able to start programming, some prerequisites had to be fulfilled. The
first step was to get a get a local setup of the needed software, namely JPPF and
Apache Ant. The build paths for Java and Ant had to be set to the bin folders of
the named software to be able to run JPPF via the command shell. Once everything
was setup, the next step was to get the tutorial from JPPF (JPPF.org, 2017) up and
running locally. This was relatively easy with the help of using the online
documentation. The code of the tutorial can also serve as a starting point for
individual development, which was the case here. The tutorial was copied into a
newly created folder called somatic.

There were three libraries, which were needed here: processing-core.jar and json-
simple.jar to be able to use the SOMatic Trainer and of course the Trainer itself,
so somatic_2.0.jar. These three were copied into the lib folder of the JPPF somatic
project folder. It also contains a source folder with two classes: Task.java and
Runner.java. The task is created within the runner and sent to the nodes when a
job is executed. The runner is running on the server and serves as the main control
class that creates a job and task objects, executes them and processes the
execution results, which get sent back by the nodes.

The code itself was setup as explained in Figure 30 in section 4.4.2. It could not
be tested because the execution did not work at all in the first runs. After several
error solving, it ran through but did not produce any output. The problems are
documented and explained at the end of the next section 5.6.

5.6 Challenges/Problems

The first challenge in the implementation phase was to find out which revision from
SVN was the wanted one to get a starting point for the programming. The most
recent version was not suitable as it was not rounded up but had unfinished
functions, which caused the SOMatic trainer to not run through properly.
Therefore, the decision was made to use that revision as a starting point, which is
reflected by the jar file used by Dr. Skupin in recent years.

The first step was to work through the notes provided at each revision to get an
overview of the implemented functions. As an additional support, the available
classes in the jar file were compared to those in prior SVN revisions. It turned out
that the needed classes were available after revision 70. So this one was retrieved
and tested in Eclipse. The output in the console was compared to the output of
using the jar file.

53

They were not the same and so the next step was to compare the code itself from
revision 70 to the newest revision via Tortoise Merge, a tool from SVN to be able
to make such comparisons. Through a stepwise copying of newer code parts and
testing them in Eclipse, the wanted functionality should be achievable. This method
was not working though and therefore, it was thrown over again.

The next approach to get a working Java code was checking out different revisions
and running them in Eclipse. Starting at revision 71 and going upwards, each one
was checked out and tested in Eclipse. Revision 74 turned out to be the one that
matches exactly the functionality and output of the working jar file. This was
checked with comparing the processing outputs in the console in Eclipse, as well
as the resulting codebook files.

The second bigger challenge was to get the SOMatic trainer output in a GeoJSON
standardized format like it is explained by Butler (2016). The JSON has to be
written and organized in a certain way to be able to be GeoJSON compliant. Apart
from having the needed JSON objects included like “type” or “features”, it also
matters what is stored in a JSON object and what in a JSON array. The “features”
contain one JSON array, but the “properties” of the objects within that array are
only written in one JSON object and cannot be written in an Array. The following
Figure 37 shows this specification with an example from the spec sheet (Butler, et
al., 2016). One has to look at the “[” bracket after “features”, which indicates the
start of a JSON array, whereas the “{” bracket indicates a JSON object.

Figure 37 GeoJSON example (Butler, et al., 2016)

54

Another criteria was to write the coordinates of the corner-points of a polygon
counter-clockwise into the object. This was met with initial issues, but was later
resolved with some changes in the sequence of the corner-points computation
within the Java code. Additionally, the first point has to be the same as the last
point, so the polygon is closed again. This point has to be twice in the array and it
has to have the same coordinates.

The work with a cluster computation, where the goal is to achieve a distributed
computation using different machines turned out to be a bigger challenge than
expected. What did not come out through the literature research and
methodological considerations in earlier stages of the project was the need for
having serializable objects in a distributed environment. Only then it is possible to
pass Java objects, like a SOM object for example, between the server and the
nodes. An attempt to fix that was made through adding the “implements
serializable” at the header of each class but that alone was not enough. After
writing that piece of code to each class it ran through without an error but the
training did not work as there were no time differences when changing the
parameters and the resulting SOMs from the nodes where empty as well. The
method to control the parameters with using a singleton design pattern in the class
“Global.java” is not applicable within a distributed environment, where more
instances would be necessary.

Due to the prolongation of the implementation of the GeoJSON functionality, there
was not much time left at the end for solving the issues that came up in the
programming and testing of the cluster computing functionality. This does not
mean that the problems were unsolvable but due to a lack of time and the need
to round the project up and continuing with the thesis itself, it was not possible to
finish this implementation step.

55

6. Results

Here, the outputs of the project as well as the applying of the SOMatic Trainer 2.0
onto two test datasets with the creation of a time and quality evaluation are shown
and explained.

6.1 SOMatic Trainer 2.0

The following Figure 38 displays a class diagram showing the classes that are now
included in the newly SOMatic Trainer 2.0 as well as their corresponding packages.
Some classes were renamed and moved into other or newly created packages to
better fit the overall structure of the Maven project in Eclipse. There are six
packages containing a total of 16 classes. Newly added were only the two main
classes “Main” and “TestMain”. The other 14 were already existent in the original
SOMatic Trainer. Furthermore, not all of the attributes and functions of the
different classes are included here, only the most important ones. The following
classes were modified or extended within this project: all classes in the packages
“org.somatic.entities” and “org.somatic.main” and the classes “SOMatic”, “Global”,
“FileReader” and “FileWriter”. The other classes were not changed and therefore
are the same as in version 1.0.

Figure 38 Class diagram of the SOMatic Trainer 2.0

56

The whole project is using the Java runtime engine (JRE) eight and its system
libraries, meaning it is compatible with the latest Java version, as well as with the
latest Processing version, which was also tested within the IDE having the same
name. The class “FileWriter” is now able to export two GeoJSON files. The first
GeoJSON file contains the neurons after the training is finished. Each neuron is
represented by one GeoJSON object holding the attribute values as well as the
geometry of the neuron as a polygon. How the geometry is computed is explained
in the chapter 5.3. The attribute values are extracted from the trained SOM and
written alongside its respective attribute name into a GeoJSON object. The second
GeoJSON output file contains those neurons of the SOM that are the BMU for one
or more of the input vectors. These neurons are of special interest as they show
where the input data is located in the trained SOM. This GeoJSON file contains as
many neuron objects as there are input vectors. The information which neuron is
the BMU for what input vector is stored in the Neuron object in the code and
extracted from there. Visualizations of using these GeoJSON output files are shown
and explained in the following chapters 6.2.1 and 6.2.2.

The SOMatic Trainer 2.0 allows a projection of data onto an already existing SOM
via a parallelized BMU search after training. This function is opening the door to
visualize data that was not part of the training without redoing the whole training
process. At the end of the chapter 6.2.3 the results of using this functionality on
test data are shown and explained in detail. The distribution of the computation
processes onto different machines within a network cluster could not be finished
within the scope of this project. The progress of the implementation of that part
and the faced challenges are explained at the end of chapter five and also
discussed in chapter 7.

57

6.2 Applying SOMatic on Test Data

6.2.1 Carinthian Census Data

The first dataset that is used for visualizing the GeoJSON output is census data
from the Austrian federal state Carinthia. It has 43 attributes representing various
categories like size, or number of people in different age and sex categories. There
are 132 input vectors representing all municipalities inside this dataset. It was also
used to present the result of the first implementation of the SOMatic Trainer by
Spöcklberger (2013). The following Figure 39 illustrates the BMU GeoJSON file,
visualized in QGIS and showing the names of the municipalities. It was trained
with the following training parameters: neurons on x = 30, neurons on y = 30,
alpha value = 0.04, radius = 30, iterations in first run = 100000, similarity
measure = 2, number of threads = 4, rounding = true, scaling factor = 2, training
runs = 3, iterations in second run = 200000 and iterations in third run = 500000.
The value 2 at the similarity measure means that the Cosine similarity was
computed. The radius was decreased in the second run by 50% and in the third
run by 80%. The machine on which these parameters were applied and that
created the visualizations has 16 gigabyte of RAM and an Intel Xeon E5-1603
processor with four cores and threads and 2.8 GHz.

The in Figure 39 shown SOM represents a part of the content of the
“bmus.geojson” output file, which is created by the SOMatic Trainer. What it is not
showing is the ID and the vector count of each neuron. Every neuron knows for
which and how many input vectors it is the BMU. Apart from adapting the colors
and displaying the input vector names, nothing else was changed after the
GeoJSON file was loaded into QGIS. There are two things that can be mentioned
here from just looking at the result. The first one is the fact that cities like
Klagenfurt, Villach and Wolfsberg are in the top-right region of the SOM. Therefore,
they are different from the other municipalities, which can easily be explained by
their bigger size in population. The second thing that can be pointed out here is
the closeness of the municipalities Trebesing and Kleblach-Lind on the left outline
of the displayed SOM. They are both smaller municipalities in two different valleys
but have apparently a lot in common.

58

Figure 39 Carinthian census data: BMU GeoJSON visualization from QGIS

The next two figures will show visualizations from the distribution of two attribute
values over the SOM. Figure 40 visualizes the distribution of an attribute giving
the ratio of the Austrian citizens within each municipality. The classification method
is natural breaks and it uses eight classes. One can identify a general decrease in
the ratio of Austrian citizens when moving from bottom-left and left to top-right.
This can be explained by the fact that cities, located in the top-right of the SOM,
are usually more international than rural areas. Almost a complete inversion of the
colors of the neurons can be observed when looking at the attribute that describes
the ratio of non-EU citizens displayed in Figure 41. Again eight classes and the
natural breaks classification method were used to create this visualization.

59

Figure 40 Carinthian census data: Distribution of ratio of Austrian citizens

Figure 41 Carinthian census data: Distribution of ratio of non-EU citizens

60

6.2.2 Multispectral Image Data

The second dataset, which was used here in order to run the SOMatic Trainer and
test its capabilities is multispectral image data. It is derived from the Landsat
Thematic Mapper and consists of six color bands for three different years (1993,
2003 and 2013) always taken in April. The region, where the images were taken,
is situated in the north of San Diego and called Batiquitos Lagoon. The following
figure shows the three images in their true colors. Multispectral data can be used
to detect and visualize changes in a better way. One can see on these three images
going from left to right that the man-made objects like houses are increasing,
especially in the top-right region of the images.

Figure 42 True color images from the Batiquitos Lagoon in the North of SD showing this region in
April 1993 (left), 2003 (middle) and 2013 (right)

Looking at the multispectral data, the first band represents the blue spectral
channel with a wavelength of 0.45 to 0.52 micrometers, the second one the green
channel with a wavelength of 0.52 to 0.6 and the third one the red channel with a
wavelength of 0.63 to 0.69, the fourth one the near infrared going from 0.76 to
0.9, the fifth one the shortwave infrared one from 1.55 to 1.75 and the sixth band
containing the shortwave infrared two with a wavelength from 2.08 to 2.35. This
makes 18 attributes for each of the 90955 pixels of which these images consist.
Each band was normalized to a scale from zero to one, where the lowest value
becomes a zero and the highest one a one.

61

This dataset was only used for testing the computation times and quality
measurements of the SOMatic Trainer, which is described in the following chapter
6.2.3. It would be possible for example to create GeoJSON visualizations from it
and use them together with the input pixels to make the changes within the
different time slices visible, but this analyzation was out of the scope of this
project.

6.2.3 Quality and Performance Evaluation

When it comes to the quality and correctness of a SOM, there are several methods
that one could use to measure them. If some characteristics of the input data are
already known in advance, then they can be used as a rough measure, as also
Spöcklberger (2013) was mentioning in his thesis when he was using the same
data source. Looking at the Carinthia census data again, the two biggest cities
Klagenfurt and Villach are quite different from the other municipalities because
they have about 60.000 and 100.000 inhabitants, which is more than six times of
the mean of the other ones. So these two cities have to be somehow close to each
other in the resulting SOM, which is the case in the given visualizations shown in
6.2.1. Another measure for the quality of a SOM is the AQE. The following

Table 2 shows the number of the run, the needed computation time in milliseconds
and the AQE value for ten runs using the same parameters as described at the
begin of chapter 6.2.1. The time includes the training of the SOM, the computation
time for the AQE and the time it needs to write the three output files, so the two
GeoJSON and the codebook file. The mean values show an average runtime of
almost 54 seconds with an average AQE of 0.00137. The table and also the
diagrams following later on have commas instead of points because of the German
Microsoft Office software. The differences in the time and AQE values between the
different test runs are quite low because the machine to run SOMatic was not
running any other program than Eclipse.

62

nRun	 Time	 AQE	
1	 54973	 0,001270532	
2	 53576	 0,001464563	
3	 53596	 0,001306308	
4	 53651	 0,001645782	
5	 54148	 0,001288336	
6	 53638	 0,001289085	
7	 53591	 0,001678092	
8	 53425	 0,001388482	
9	 53984	 0,001338515	
10	 53928	 0,001060707	

Mean	 53851	 0,00137304	

Table 2 Mean of the computation time (in ms) and AQE for ten computation runs using the
Carinthia census data

When the AQE values are compared to the results of Spöcklberger (2013) using
the same data, there is a significant decrease form the former computation to the
one presented here. It is not known which parameters he was using, so this might
be the reason why they are different. Spöcklberger was also comparing the AQE
values he got with SOMatic to the ones from SOM_PAK. The lowest value is at 0.11
when using SOMatic with four threads using 10 million training runs. The here
shown values were computed by using 800,000 training runs in three training
steps. This shows that the AQE is quite low meaning the quality of the output SOM
is relatively high.

The next tests with the Carinthian census data were done with the same
parameters, except for the number of threads, which was changed to one, two,
four, six, eight and sixteen. The computation time and AQE was measured again.
For using six and more threads, the machine had to be changed in order to be able
to test it properly. A server in CUAS was used, which has two Intel Xeon E5-2620
v4 CPUs with 2.10 GHz and eight cores each allowing to run 32 threads in parallel.
In theory, it should be possible to run 32 threads with this hardware but only up
to 16 threads could be used in Eclipse. Each thread number was run ten times.
The mean values out of these computations were used to create most diagrams in
this section. For some visualizations, the median had to be used as the mean would
have been influenced by some outliers, which were most likely caused by some
background computations on the server.

63

Figure 43 visualizes the computation time in milliseconds with the corresponding
speedup for six different numbers of threads. When looking at the blue line, one
can see a clear decrease in the computation time with an increase in the number
of threads. This decrease is higher at the beginning but slowing down with
increasing numbers of threads. When using one thread the training took 280558
milliseconds, which is about four minutes and 41 seconds but with sixteen threads,
the time was reduced to 26 seconds. The grey line is showing the time speedup in
percent in reference to the usage of one thread. The biggest step is from one to
two threads with almost 60 percent speedup. The highest speedup in the test runs
could be achieved with sixteen threads, where it is at 91 percent. The curve is
getting smoother with a higher number of threads and will presumably go down
again as the time of setting up the threads and creating the partitions is also
increasing. The drop in the speedup, respectively the increase in the computation
time from four to six threads lies behind the change of the machine. This could by
caused by a slower processor in the server compared to the local machine when
using a lower number of threads. The connection to the server was established via
a local machine but this should not have a negative effect on the computation time
as this was measured in Eclipse running at the server.

Figure 43 Computation time and speedup for Carinthian census data

280558

114515

53851 54712 43442 25560
0

59,18

80,81 80,50 84,52 90,89

0

20

40

60

80

100

0

50000

100000

150000

200000

250000

300000

1 2 4 6 8 16

Ti
m
e	
Sp
ee
du

p	
in
	%

Ti
m
e	
in
	m

s

Number	of	Threads

Computation	Time	and	Speedup	for	Carinthian	
Census	Data

Time Time	Speedup

64

The following Figure 44 shows the computation times as well as the relative
changes in the AQE for a different number of threads. The blue line shows again
the computation times. The orange line shows the AQE. In general, it is increasing
apart from an outlier at four threads. When the AQE for one thread is used as a
reference value, the AQE increases about ten percent at eight threads and about
21 percent at 16 threads. In absolute values, all AQEs are three digits behind the
comma but nevertheless this shows that the AQE is increasing with a rise of the
number of threads using the same parameters and input data.

Figure 44 Computation time and AQE difference for Carinthian census data

280558

114515

53851 54712 43442 255600 0,35 -1,20

7,77
10,28

20,72

-3

2

7

12

17

22

0

50000

100000

150000

200000

250000

300000

1 2 4 6 8 16
AQ

E	
Ch

an
ge
	in

	%

Ti
m
e	
in
	m

s

Number	of	Threads

Computation	Time	and	AQE	Difference	for	
Carinthian	Census	Data

Time Relative	AQE	Difference

65

All computations with the second dataset, the multispectral data, were run using
the server at CUAS. The applied parameters are listed at the end of the prior
chapter 6.2.2. To get a more detailed result considering the computation time, this
value was split up into two values for the training: the training time itself and the
total time, which contains also the computation of the AQE and the writing to the
three output files. The time for the BMU search after training was split up into
three values: the BMU search time, the AQE search time and the time for the
writing of the “bmus.geojson” file.

When testing the time and error for the multispectral data, one, four, eight and
sixteen threads were used ten times each. To use the BMU projection after training
and compare the results, the same multispectral input data was split up into two
parts: one part containing one fifth (18191 vectors) and the other part the
remaining four fifth (72764 vectors) of the original dataset.

These two datasets where created programmatically via Java and have an evenly
distributed content. The bigger dataset was trained using SOMatic with the
following parameters: neurons on x = 270, neurons on y = 270, alpha value =
0.04, radius = 270, iterations in first run = 10000, similarity measure = 2, number
of threads = 4, rounding = true, scaling factor = 2, training runs = 3, iterations in
second run = 20000 and iterations in third run = 50000. After the training, the
smaller dataset was projected onto the output SOM of the training using the
parallelized BMU search. All computations were run on the server.

66

The following diagram shows the computation time split up into the training plus
the computation of the AQE and the writing as well as the speedup for the bigger
part of the multispectral data. The training time is significantly decreasing with a
higher number of threads, which corresponds to an increase in the speedup.
Compared to one thread, which represents a serial computation, the speedup
increases almost 66 when using four, 79 when using eight and 87 percent when
using sixteen threads. There is almost no change in the AQE plus writing time due
to the fact that these values are mostly reliable on the size of the input data. The
total time that the SOMatic Trainer took to create the output files and compute the
AQE are then the blue and green values combined for each thread. This means for
one thread, the mean runtime was 1069851 milliseconds, or almost 18 minutes.

Figure 45 Computation times and speedup for bigger part of the multispectral data

692953

237936
147645

88537

376898 383592 377851 377803

0

65,66

78,69
87,22

0

20

40

60

80

100

0
100000
200000
300000
400000
500000
600000
700000
800000

1 4 8 16

Sp
ee

up
d	
in
	%

Ti
m
e	
in
	m

s

Number	of	Threads

Computation	Times	and	Speedup	for	4/5	of	the	
Multispectral	Data

Training	Time AQE	+	Writing	Time Speedup

67

The second value that differs with the thread number is the AQE. Figure 46
visualizes the relative AQE difference compared to the usage of one thread as well
as the training time again as a reference. In relative values, the rise of the AQE is
quite significant with an increase of 166.58 percent when using four and up to
242.46 percent when using sixteen threads. This means that the output SOM when
using 16 threads is almost two and a half times worse than the output when using
a serial computation according to the AQE. In absolute values, the differences are
three or two digits behind the comma. Compared to the results for the Carinthia
census data, this is a much higher decrease in quality, which can partially be
explained by using the factor of ten less training steps for each of the three training
runs. Nevertheless, it is showing that the quality of the SOM is decreasing when
the number of threads is increasing.

Figure 46 Training time and AQE difference for bigger part of multispectral data

692953

237936
147645 88537

0

166,58

230,08 242,46

0

100

200

300

0

200000

400000

600000

800000

1 4 8 16
AQ

E	
Ch

an
ge
	in
	%

Ti
m
e	
in
	m

s

Number	of	Threads

Training	Time	and	AQE	Difference	for	4/5	of	the	
Multispectral	Data

Training	Time Relative	AQE	Difference

68

The next figures look at the time and quality values for the projection of the smaller
part of the multispectral data onto the SOM created by the bigger part. The first
one shows the median values for the four different thread numbers for the BMU
search time and the speedup of this computation step. As a reminder, this is only
the time for the BMU search, so the computation time for the AQE and the writing
of the output file is not included in this value. This diagram is using median values
because the mean would get distorted by some values, which were way different
from most of the others. This could be due to some activity on the server at the
background. The BMU computation time can be significantly decreased via
increasing the number of threads. Via applying a parallelization on 16 threads, the
search time could be reduced by about 86 percent. The difference between eight
and 16 threads is quite small because of the already low times of around ten and
a bit under nine seconds. As already mentioned it also takes time to setup a thread
pool and start the threads from there, meaning that the time differences decrease
if the ratio between data size (18191 vectors in this case) and number of threads
decreases as well. This implies that the grey curve will presumably go down and
the blue curve go up again if the level of parallelization would be further increased
here.

Figure 47 Median BMU search time and speedup for smaller part of multispectral data

61308

21776
10274 8769

0

64,48
83,24 85,70

0
20
40
60
80
100

0

20000

40000

60000

80000

1 4 8 16 Ti
m
e	
Sp

ee
du

p	
in
	%

Ti
m
e	
in
	m

s

Number	of	Threads

Median	BMU	Search	Time	and	Speedup	for	1/5	
of	the	Multispectral	Data

Median	BMU	Search	Time Speedup

69

When looking at the orange line showing the AQE change in the BMU computations
displayed in Figure 48, one can see that it grows with a higher number of threads.
When compared to the changes in Figure 46 though, an increase in parallelization
here does not harm the quality of the result of the projection too much. In fact,
the quality shrinks between a serial computation and using four threads by about
one fourth, but does not decrease much more when increasing the thread number
to eight or sixteen.

Figure 48 Median BMU search time and AQE difference for smaller part of multispectral data

The computation times for the AQE as well as the writing of the output files are
not visualized specifically because they did not have a big fluctuation range within
the test runs, apart from one outlier, which has as already mentioned presumably
something to do with background computations on the server.

6.3 Cluster Computation

It was planned to have a cluster computation project that could run the SOMatic
Trainer on a simple basis on different network clusters having the prerequisites
setup and running. Actually, there is no implemented result in the cluster
computation as it could not be finished as explained in 5.5 and 5.6. The output
here are the architecture and workflows described in 4.4.2 and through continuing
with the explained implementation steps, it should be achievable to get the
SOMatic Trainer up and running in a JPPF cluster computing environment.

61308

21776
10274 8769

0

25,18
30,95 31,31

0

10

20

30

0

20000

40000

60000

80000

1 4 8 16

AQ
E	
Ch

an
ge
	in
	%

Ti
m
e	
in
	m

s

Number	of	Threads

Median	BMU	Search	Time	and	AQE	Difference	
for	1/5	of	the	Multispectral	Data

Median	BMU	Search	Time Relative	AQE	Difference

70

7. Discussion and Conclusion

The first research question how the output of SOMatic can be more useful for
further usage (in the GIS world) can be answered with the integration of the
GeoJSON component. The SOMatic trainer is in respect to the literature review for
this project the first SOM implementation, which is able to import and export
GeoJSON. There exists another one that can use JSON as input and output (Zasso,
2016) but not the geographic version of it. To integrate that functionality was of
high importance within this implementation as GeoJSON is a standardized format
by the Internet Engineering Task Force (IETF) and easy to integrate in GI-
applications as well as web applications and other software. The XML format could
have served as another solution but it lacks the geographic part. With GeoJSON it
is easy to store and extract geographic features like points, lines, or polygons. The
objects can be visualized in a GIS or web interface together with their respective
attributes quite easily. As the background of the project member and the advisors
lies in the GIS world, the decision to use GeoJSON instead of any other data store
format was made with ease. The visualizations of the census data show that this
data format is suited as an additional output format for the SOMatic Trainer.

To be able to apply the integration of the GeoJSON output directly into a GIS or
web interface the geometry is stored as polygons. This increases the size of the
GeoJSON by a significant amount, as for each neuron not only one coordinate pair
has to be stored (the mid-point) but seven (six corner points plus the first one
again so the polygon is closed). The geometry for the “bmus.geojson” file is even
bigger because it stores not only the whole output SOM as polygons, but also the
point coordinates for each input vector in its respective BMU. The purpose of this
implemented structure is for the output to be usable immediately without further
processing or computations. This is the reason why the neurons of the SOM are
stored as polygons and not as points or why the input vectors also have
coordinates assigned to them and not just the ID of the corresponding BMU.

The second and third research questions refer to how SOMatic could be integrated
into a cluster computing network and what the threshold is beyond which it is
better to train SOMs with SOMatic within a cluster network than on one machine
These two cannot be answered to full satisfaction, or not at all. The cluster
computation functionality is worked out in theory and described via diagrams and
two scenarios. The first scenario is rather for testing purposes and does not
necessarily lead to an increase in the quality of the SOM as without a data
partitioning, the slaves can eventually find different BMUs for the same data
vector. This could lead to a total different evolution of the attribute vectors of the
neurons and therefore, the output SOM itself can also look differently.

71

Via the usage of a data partition method, the second scenario is certainly applicable
since it has already been described in several best practice examples (Skupin, et
al., 2013) (Yang & Ahuja, 1999). Unexpected events and a prolonged
implementation of the prior programming steps lead to the fact that the cluster
computation could not be finished within this project. The JPPF framework turned
out to be more complex and the main issue is centered about the way the SOMatic
trainer is implemented with using a global class to have access to and control all
parameters throughout the whole training process. To be able to function in a
cluster environment, the objects need to be serializable on the one hand, and not
dependent onto one class on the other hand. In the first version it was not intended
to use the SOMatic Trainer in a distributed environment. JPPF can only handle
serializable traffic within its architecture. Sending objects like a SOM in Java was
thus not possible. More robust software and compatibility testing in earlier stages
of the project or more time at the end would have been possible solutions to be
able to develop a strategy to work around the problems that came up considering
the SOMatic Trainer and JPPF.

The fourth research question about the right balance factor between computation
time and quality of the output SOM is answered with the diagrams in the section
6.2.3. Depending on the data size and available time, one can argue about a higher
or lower level of parallelization during the training of the SOM. What comes out
undoubtedly is the clear time decrease when applying parallelization. The speedup
for all three test scenarios were about 90 percent when using 16 threads compared
to a serial computation, which is a significant decrease in computation time. When
looking at the quality, the AQE can serve as a good indicator for the correctness
of the output SOM. The results show that its value is in a direct proportion to the
number of threads. When looking at the census data, the increase was far lower
than compared to the test runs of the multispectral data (20 compared to 242
percent). This would imply that a higher amount of training runs has a diminishing
effect on the increase of the AQE over a higher number of threads.

As more training runs cause a more similar output SOM compared to the input
data and the AQE computes the average difference between them, this diminishing
effect should definitely be considered when opting for a good balance factor
between quality and time. The quality should therefore be able to uphold when
increasing the number of training runs with the number of threads at the same
time. More quality measuring tools though would be helpful for further analyzation
of the correctness of a SOM. Furthermore, not all possible thread numbers were
tested. The intermediate values for the non-visualized thread numbers are
therefore unknown, but would presumably lie in between the computed values.
When it comes to projecting new data onto an existing SOM via the BMU search
after training, the results show that the quality, visualized through the AQE, suffers
less from an increase in parallelization.

72

The integration of the BMU search after training into SOMatic 2.0 is helpful as it
allows to visualize data that was not part of the training. It can be very useful in a
working deployment that consists of large SOMs to be able to track and monitor
movement (changes) in a hyperspectral space. The projection of 25 percent of the
original data size used to train the SOM as shown in Figure 48 produces a relative
increase of the AQE of 31.31 percent when a serial computation is compared to a
parallel one with using sixteen threads. This increase is way lower than the rise of
the error in training, which lies at 242.46 percent for sixteen threads. It shows
that applying this technique does not cause a big loss in quality when compared
to the quality decrease if the thread numbers are increased in the training. This of
course can only be stated as true for the applied size of the test data. If the ratio
between the data to project and the trained data is too high, or the vectors are
too different, the quality would supposedly suffer more.

The SOMatic Trainer 2.0 is exploiting the parallelization functionality using the
conventional SOM training on one machine to its maximum, as also the BMU
projection is integrated and parallelized. The batch training on the other hand,
described in section 2.2.2, is not used in the 2.0 version as it was not part of the
goals in this project. The advantages of this SOM training computation though,
especially when looking at the simpler parallelization of the batch processes are
definitely not to underestimate. An integration of this computation form would not
have been possible within the scope of this project but should definitely be
considered in the implementation of a SOMatic Trainer 2.1 or 3.0. It is not sure, if
a parallelized batch training is faster than the parallelization as it is implemented
in 2.0 but what can definitely not occur in a batch training is the issue with two or
more threads trying to update the same neuron at the same time if the updates
are then performed sequentially. If they should also be performed in parallel, this
possible latency could occur as well but as this weight update is only performed
once per batch, it might not be needed to parallelize the update.

Within this project, the programming language number one was Java as the
SOMatic Trainer, as well as JPPF are written in this language. This is rather different
to other SOM implementations, where hardware-closer programming languages
like C++ (Wittek, et al., 2016) are used. The main reason why this one is written
in Java is the fact, that the knowledge of the people who use it and the people who
wrote and extended it is highest in the Java world. The argument, that hardware-
closer programming languages might be faster performance wise can be countered
by the exploited speed-ups, which can be achieved by using different
parallelization techniques.

73

The starting point was not to create diagrams for a new application to program but
an already existing piece of software that meant to be updated and extended. That
is quite different to a task where you have to start from scratch and has some
advantages but also disadvantages. One could say that it is easier, because you
have already a working program but that also comes with a limitation on the
technologies that you would like to apply and integrate in your project.

8. Future Work

In a possible SOMatic 3.0 implementation, it would be very convenient to add to
the conventional algorithm the batch version (described in section 2.2.2) because
of two main reasons: it is faster and also easier to parallelize. The user of the
library could then choose which computation method she or he wants to use and
could maybe also compare the results of them. Another part of a future extension
would be to restructure the class structure and parameter usage within the
SOMatic Trainer as with the current usage of the class Global.java, it is not possible
to integrate it directly into a cluster computation system. The parallelization on
one machine is with an integration of the batch computation already heavily
exploited. Therefore, to achieve a further speed up and be able to process more
data, the structure has to be rethought and changed. This could be achieved for
example with a more object oriented approach, which would allow to have several
SOM objects and therefore computations within the same Java code.

The split up of the computation times in the results show that the computation of
the AQE is directly proportional to the data size. The AQE could easily be
parallelized as well through applying a data partition approach in its
implementation. Each thread could compute the sum of the differences between
the input vectors and their corresponding BMUs in attribute space for its part of
the data and these values would then be summed up and averaged at the end
giving the final AQE for the whole SOM. As it only computes the difference in
attribute space, this computation is also embarrassingly parallel. That means in
this case the full parallelization of a local machine could be used and the output
will not suffer any quality loss through an increased parallelization. Alongside with
the AQE, a second or third technique to rate the quality of an output SOM like the
topographic product or the topographic error (Pölzlbauer, 2004) would be of
interest as well. What was not tested in the evaluation of this project were the
effects of different parameters onto the quality using two or more data sets of the
same type. With the integration of more quality measurements, the results when
testing different parameters would probably lead to a better understanding of
which parameter setting fits which data size the most.

74

Another parallelization technique for the BMU search, which came up through the
literature search and was thought through in the conceptual phase but not
implemented afterwards is described in Figure 49. The neurons of the SOM can be
split up evenly on the threads that will be used in the BMU search. Each thread
can then compute the BMU for its set of neurons and the winner neuron is found
by computing the minimum of these local BMUs. It was not implemented because
as of the current way parallelization works in the SOMatic Trainer (through dividing
the training steps as described in section 3.3.1) each thread would then need to
create at least one other thread to be able to distribute the neurons among these
two or more threads. It would be of interest to implement that parallelization
technique in a batch version of the SOM algorithm and compare it with a data
partitioning approach in respect to which of the two methods is faster or slower
and more or less accurate. The following figure shows the workflow to implement
a parallel BMU search in the training process of the SOMatic trainer for one input
vector using a SOM with 150 neurons.

Figure 49 Workflow of parallel BMU search in the training process of SOMatic

The current GeoJSON SOM output of the SOMatic Trainer is always stored as
polygons. If the user of that software does not need polygons but still wants to
make use of the GeoJSON output, it would be nice to store the neurons only as
points to minimize the data size. One step further would be to provide three
options: a GeoJSON output with polygons, a GeoJSON output with points and a
pure JSON output without any geometry. This would help to enlarge the possible
fields of application for the SOMatic JSON output.

75

References

Apache Foundation, 2017. Apache Hadoop. [Online] Available at:
http://hadoop.apache.org/ [Accessed 02 April 2017].

Bandeira, N., Lobo, V. J. & Moura-Pires, F., 1998. Training a Self-Organizing Map
distributed on a PVM network. Lisbon, IEEE Conference Publications, pp. 457 -
461.

Bell, N. & Hoberock, J., 2011. Thrust: A productivity-oriented li- brary for cuda.
In: GPU Computing Gems: Jade Edition. Morgan Kaufmann, pp. 359-373.

Bullinaria, J. A., 2004. Self Organizing Maps: Algorithms and Applications.

Butler, H. et al., 2016. The GeoJSON Format.

Dagum, L. & Menon, R., 1998. OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Computational Science & Engineering, January,
5(1), pp. 46-55.

Dean, J. & Ghemawat, S., 2004. MapReduce: Simplified Data Processing on
Large Clusters. San Francisco, USENIX Association, pp. 137-150.

Fort, J.-C., Patrick, L. & Marie, C., 2002. Advantages and drawbacks of the Batch
Kohonen algorithm. Bruges, Belgium, ESANN 2002, pp. 223-230.

Garcia, C., Prieto, M. & Pascual-Montano, A., 2006. A Speculative Parallel
Algorithm for Self-Organizing Maps. Jülich, John von Neumann Institute for
Computing, pp. 615-622.

Hawick, K. A., Coddington, P. D. & James, H. A., 2003. Distributed frameworks
and parallel algorithms for processing large-scale geographic data. Parallel
Computing, October, 29(10), pp. 1297–1333.

Jordan, J. & Angelopoulou, E., 2013. hyperspectral image visualization with a 3D
self-organizing map, Erlangen.

JPPF.org, 2016. JPPF v5.2 Manual.

JPPF.org, 2017. A first taste of JPPF. [Online] Available at:
http://www.jppf.org/doc/5.2/index.php?title=A_first_taste_of_JPPF [Accessed 13
06 2017].

Kohonen, T., 1990. The Self-Organizing Map. IEEE.

Kohonen, T., 1993. Things you haven't heard about the Self-Organizing Map.
Piscataway, NJ, IEEE, pp. 1147-1156.

76

Kohonen, T., 1998. The self-organizing map. Neurocomputing, Volume 21, pp. 1-
6.

Kohonen, T., 2013. Essentials of the self-organizing map. In: Elsevier, ed. Neural
Networks 37. Elsevier, pp. 52-65.

Kohonen, T., Hynninen, J., Kangas, J. & Laaksonen, J., 1996. SOM-PAK: The
self-organizing map program package, Helsinki.

Lawrence, R. D., Almasi, G. S. & Rushmeier, H. E., 1999. A Scalable Parallel
Algorithm for Self-Organizing Maps with Applications to Sparse Data Mining
Problems. Data Mining and Knowledge Discovery, Volume 3, pp. 171–195.

Li, Q., Kecman, V. & Salman, R., 2010. A chunking method for Euclidean
distance matrix calculation on large dataset using multi-GPU. Washington, DC,
pp. 208-213.

Minhoe, K., Souhwan, J. & Minho, P., 2015. A Distributed Self-Organizing Map for
DoS Attack Detection. Soongsil University Seoul.

NVidia Corporation, 2014. Compute Unified Device Architecture Programming
Guide 6.0.

Open GIS Consortium Inc., 1999. OpenGIS Simple Feature Specification For SQL.
Open GIS Consortium (OGC).

Open MPI Project Team, 2017. Open MPI. [Online] Available at:
https://www.open-mpi.org/ [Accessed 02 April 2017].

Pölzlbauer, G., 2004. Survey and Comparison of Quality Measures for Self-
Organizing Maps, Vienna.

Rainer, M., 2013. SOMatic Viewer: Implementation of an interactive self-
organizing map visualization toolset in Processing and Java. Villach: Carinthia
University of Applied Sciences.

Silva, B. & Marques, N., 2007. A Hybrid Parallel SOM Algorithm for Large Maps in
Data-Mining. Guimaraes, IEEE Guimaraes.

Skupin, A., Biberstine, J. R. & Börner, K., 2013. Visualizing the Topical Structure
of the Medical Sciences: A Self-Organizing Map Approach. PLoS ONE, March,
8(3).

Snir, M. et al., 1996. MPI–The Complete Reference: The MPI Core.
Cambridge(Massachusetts): The MIT Press.

Spöcklberger, M., 2013. SOMatic Trainer: Implementation of a Self-Organizing
Map Tool with Parallel Training for Processing applied to Carinthian Municipality
Census Data. Villach: Carinthia University of Applied Sciences.

77

Sul, S.-J. & Tovchigrechko, A., 2011. Parallelizing BLAST and SOM algorithms
with MapReduce-MPI library. IEEE International Parallel & Distributed Processing
Symposium, 16-20 May, pp. 476-484.

Tole, A. A., 2013. Big Data Challenges. Database Systems Journal, 03, Volume
IV, pp. 31-40.

van de Sande, K. E. A., Gevers, T. & Snoek, C. G. M., 2011. Empowering visual
categorization with the GPU. IEEE Transactions on Multimedia, February, 13(1),
pp. 60-70.

Wehrens, R. & Buydens, L. M. C., 2007. Self- and super-organizing maps in R:
The kohonen package. Journal of Statistical Software, October, 21(5), pp. 1-19.

White, T., 2015. Hadoop: The definitive Guide. 4th Edition ed. Sebastopol(CA):
O'Reilly Media Inc..

Wikimedia Foundation Inc., 2017. Open MPI. [Online] Available at:
https://en.wikipedia.org/wiki/Open_MPI [Accessed 02 April 2017].

Wikimedia Foundation Inc., 2017. Wikipedia: GeoJSON. [Online] Available at:
https://en.wikipedia.org/wiki/GeoJSON [Accessed 31 03 2017].

Wikimedia Foundation Inc., 2017. Wikipedia: Java (programming language).
[Online] Available at:
https://en.wikipedia.org/wiki/Java_(programming_language) [Accessed 19 02
2017].

Wittek, P. & Darányi, S., 2012. A GPU-Accelerated Algorithm for Self-Organizing
Maps in a Distributed Environment. Bruges, pp. 609-614.

Wittek, P., Gao, S. C., Lim, I. S. & Zhao, L., 2016. Somoclu: An Efficient Parallel
Library for Self-Organizing Maps. University of Boras, ICFO - The Institute of
Photonic Sciences, Tsinghua University, Bangor University: s.n.

Yang, M.-H. & Ahuja, N., 1999. A Data Partition Method for Parallel Self-
Organizing Map. Washington DC, pp. 1929-1933.

Zasso, M., 2016. github. [Online] Available at: https://github.com/mljs/som
[Accessed 18 07 2017].

78

List of Figures
	

Figure	1	Hexagonal	SOM	display	in	coordinate	system		with	different	alignment	(Spöcklberger,	2013)	4	
Figure	2	SOM	created	out	of	words	in	medical	publications	(Skupin,	et	al.,	2013)	...	10	
Figure	3	Explanation	of	one	training	iteration	of	the	SOM	algorithm	..	11	
Figure	4	Pseudo-code	representing	the	conventional	SOM	algorithm	(Lawrence,	et	al.,	1999)	12	
Figure	5	Pseudo-code	representation	of	the	batch	SOM	algorithm	(Lawrence,	et	al.,	1999)	13	
Figure	6	Starting	state	(left)	and	2D	comparison	of	the	results	of	the	on-line	(middle)	and	the	batch	

computation	(right)	(Fort,	et	al.,	2002)	...	14	
Figure	7	Starting	state	(left)	and	3D	comparison	of	the	results	of	the	on-line	(middle)	and	the	batch	

computation	(right)	(Fort,	et	al.,	2002)	...	14	
Figure	8	Java	"Hello	World"	example	code	...	15	
Figure	9	GeoJSON	example	...	17	
Figure	10	Example	of	the	flow	of	a	MapReduce	operation	(Dean	&	Ghemawat,	2004)	19	
Figure	11	Overview	of	a	JPPF	network	topology	(JPPF.org,	2016)	..	20	
Figure	12	Job-Workflow	in	the	JPPF	topology	(JPPF.org,	2016)	..	21	
Figure	13	Execution	times	of	data-partition	vs.	hybrid	method	(Silva	&	Marques,	2007)	23	
Figure	14	Master-slave	architecture	in	a	speculative	parallel	SOM	algorithm	(Garcia,	et	al.,	2006)	24	
Figure	15	Comparison	of	raw	image,	conventional	SOM	and	parallel	SOM	(Yang	&	Ahuja,	1999)	26	
Figure	16	Curves	of	computation	time	(Bandeira,	et	al.,	1998)	..	28	
Figure	17	Execution	time	comparison	between	GPU	and	CPU	(Wittek	&	Darányi,	2012)	29	
Figure	18	Overview	of	a	master-slave	architecture	...	31	
Figure	19	Runtime	comparison	on	a	50x50	sized	SOM	(Wittek,	et	al.,	2016)	...	31	
Figure	20	Runtime	comparison	on	a	200x200	sized	SOM	(Wittek,	et	al.,	2016)	..	32	
Figure	21	Parameters	needed	to	run	the	SOMatic	trainer	...	33	
Figure	22	Example	of	a	.sprj	output	file	...	34	
Figure	23	Sequence	of	the	training	threads	within	the	SOMatic	trainer	(Spöcklberger,	2013)	35	
Figure	24	One	training	step	parallelized	onto	two	threads	in	SOMatic	..	35	
Figure	25	Neighborhood	overlapping	(purple	neurons)	of	two	BMUs	(red	and	dark	blue)	in	parallel	training	36	
Figure	26	Project	workflow	overview	...	38	
Figure	27	Example	for	Data	parallelization	approach	in	the	BMU	search	...	41	
Figure	28	Scenario	one	of	the	distributed	computation	of	SOMatic	..	42	
Figure	29	Scenario	two	of	the	distributed	computation	of	SOMatic	..	43	
Figure	30	Workflow	of	the	JPPF	Implementation	of	the	SOMatic	Trainer	..	44	
Figure	31	Example	of	a	library	dependency	in	a	Maven	POM.xml	file	...	45	
Figure	32	Java	code	example	showing	the	writing	of	the	polygon	coordinates	into	JSON	Arrays	47	
Figure	33	Hexagonal	neuron	alignment	example	with	applied	numeration	...	48	
Figure	34	Characteristics	of	a	30-60-90	degree	triangle	...	49	
Figure	35	Usage	of	the	30-60-90	degree	triangle	characteristics	within	a	hexagon	..	50	
Figure	36	Code-excerpt	of	the	parallelized	BMU	search	after	training	...	51	
Figure	37	GeoJSON	example	(Butler,	et	al.,	2016)	...	53	
Figure	38	Class	diagram	of	the	SOMatic	Trainer	2.0	..	55	
Figure	39	Carinthian	census	data:	BMU	GeoJSON	visualization	from	QGIS	..	58	
Figure	40	Carinthian	census	data:	Distribution	of	ratio	of	Austrian	citizens	...	59	
Figure	41	Carinthian	census	data:	Distribution	of	ratio	of	non-EU	citizens	...	59	
Figure	42	True	color	images	from	the	Batiquitos	Lagoon	in	the	North	of	SD	showing	this	region	in	April	1993	

(left),	2003	(middle)	and	2013	(right)	..	60	

79

Figure	43	Computation	time	and	speedup	for	Carinthian	census	data	...	63	
Figure	44	Computation	time	and	AQE	difference	for	Carinthian	census	data	..	64	
Figure	45	Computation	times	and	speedup	for	bigger	part	of	the	multispectral	data	66	
Figure	46	Training	time	and	AQE	difference	for	bigger	part	of	multispectral	data	...	67	
Figure	47	Median	BMU	search	time	and	speedup	for	smaller	part	of	multispectral	data	68	
Figure	48	Median	BMU	search	time	and	AQE	difference	for	smaller	part	of	multispectral	data	69	
Figure	49	Workflow	of	parallel	BMU	search	in	the	training	process	of	SOMatic	..	74	

List of Tables

Table	1	Execution	times	for	different	map	sizes	and	numbers	of	PCs	(Bandeira,	et	al.,	1998)	28	
Table	2	Mean	of	the	computation	time	(in	ms)	and	AQE	for	ten	computation	runs	using	the	Carinthia	census	

data	...	62	

