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Abstract 
 

This research is focused on improving a Self-Organizing Map (SOM) Java 
implementation called SOMatic, precisely the SOMatic trainer (Spöcklberger, 
2013). The main parts of this enhancement are focused on decreasing computation 
time through increasing the parallelization and updating the technologies as well 
as enlarge the reusability of the output of this Java software. Besides the already 
implemented local parallelization of the training process, this project explains the 
development and usage of a parallel search of the best-matching unit (BMU) after 
the training. This functionality allows the projection of data that was not part of 
the training onto an existing SOM, which permits a reduction in time as well as 
ensuring the whole training process does not have to be redone because of the 
presence of new data that requires visualization. How the SOMatic Trainer 2.0 can 
be integrated into a distributed system within a network cluster is explained in a 
conceptual way. This will open the door to train big input data on local network 
clusters without having the need to seek the help of super computers. 

One aspect of updating the status quo from 2013 was to migrate the SOMatic 
Trainer onto the latest versions of the applied programming language and 
processing interface, meaning Java 8 and Processing 3. Deploying the code in a 
Maven project using Java 8 assures that the change onto newer versions of the 
programming language or required libraries is simplified. To further guarantee 
proper usage for the future, several comments in the code were added or redefined 
to better explain the usability of each variable and method. The usage of the 
SOMatic Trainer is widened via the programmatic integration of the output format 
“geographic JavaScript object notation” (GeoJSON). This allows one to directly 
visualize the resulting SOM, as well as the BMUs in a Geographic Information 
System (GIS). The geometry for each neuron in the resulting GeoJSON file is 
stored behind six corner points of a hexagon. These points are computed by using 
the rules of a 30-60-90 triangle. This method was applied to avoid using 
mathematical functions in the code, which would have a negative impact on the 
computation time. Two datasets are used to test the SOMatic Trainer 2.0 and show 
its capabilities: census data from 2001 containing the municipalities of Carinthia, 
Austria and multispectral data having six spectral bands for three years. The time, 
as well as the quality measurements on the results of the computations using 
different threads, show that increasing the parallelization, especially for a bigger 
dataset, is of a high importance to be able to get the output in a reasonable amount 
of time without losing too much of the quality. 
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1. Introduction 
 

Enhancing a software, in this case, means to enlarge its functionality and 
productivity by improving the existing components and adding new ones. This 
project focuses on a SOM Java implementation called SOMatic which has been 
expanded. The Self-Organizing Map algorithm is a data mining technique to reduce 
the dimensionality of data and cluster it to get a better understanding of it. It can 
be applied on normalized data to be able to find relations and differences within 
the data that one might not have been able to detect beforehand. Through creating 
visualizations with GI-software, these characteristics of the data can be examined. 
Java is the programming language in which SOMatic and the cluster computing 
software are written. 

 

1.1 Motivation and Objective 
 

One important aspect of today’s data mining approaches is to handle the increase 
in data size and its complexity. Especially image data or photos can be considered 
as Big Data (Tole, 2013) because each pixel holds a certain amount of information 
and the better the resolution, the higher the number of pixels. The SOM is a useful 
dimensionality reduction tool when applied to multispectral or hyperspectral image 
data (Jordan & Angelopoulou, 2013), as it can yield a better understanding of the 
data. Therefore, it is useful to create and improve software, which uses this 
technique. The SOM algorithm can be a useful tool to get from high-dimensional 
data to two-dimensions through applying a reduction of the dimensions of the 
input data and clustering it. It minimizes the size as well as the complexity to be 
able to have a clearer view on the relations and differences within the data. 
SOMatic is a Java implementation of this algorithm that was developed by a joint 
student research project between the San Diego State University (SDSU) and the 
Carinthia University of Applied Sciences (CUAS) in 2013. Spöcklberger (2013) 
created the SOMatic Trainer, an implementation of a SOM tool with parallel training 
usable as Java library for Processing or as standalone Java program. Rainer (2013) 
created the SOMatic Viewer, an implementation of an interactive SOM visualization 
toolset in Processing and Java. The focus in this research will rely on the 
improvement of the implementation of Mr. Spöcklberger, as in his programmed 
library the computational processes to create a SOM take place.  
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The motivation for this project lies partially in a decrease of the computation time 
of the SOM computations through an improvement the SOMatic software 
components. The updated and extended Java library should then be integrated 
into a newly created Java cluster system library. This system is using the approach 
to spread the computations to the machines within this cluster, where all 
computations can be run in parallel. This addition in parallelization (SOMatic itself 
is already applying a parallelization on multiple cores on one machine) will help to 
further decrease the problem with computation time. Such an implementation 
would open the door for massive parallelization processes with very large SOMs or 
input data sets. Depending on the data size, the outsourcing of SOM computations 
to more powerful systems or facing very long computation times would then be 
obsolete. 

The general objective of this project is to upgrade and extend a SOM 
implementation. In particular, its computation time should be decreased and the 
performance, as well as the usage of the output, increased. This improved SOM 
software will be tested with census data from Carinthia from 2001 and used on 
multi-temporal, multispectral image data. Within the GIS world, very large data 
sets exist that can benefit from parallel and distributed computing (Hawick, et al., 
2003). This project aims to combine both these computer science technologies to 
develop an efficient speedup of the computation time for SOMs via SOMatic. The 
SOMatic Trainer 1.0 runs with Java 6 and is visualized with Processing 2. One 
aspect of improvement is to migrate the software to the latest versions to be 
applicable with Java 8 and Processing 3. This can already lead to an increase in 
compatibility and capability. A performance increase can also be achieved through 
the extension of the parallelization processes of the SOM computations. The first 
step consists of increasing the parallelization processes on one machine. The 
training process of SOMatic is already parallelized but the search of the BMU is 
not. This computation takes a lot of time, especially for a large numbers of input 
vectors. Therefore, the overall computation time can be decreased through a 
parallelization of the BMU search. Of high interest is also to be able to apply the 
parallelized BMU search after the training is finished. The integration of SOMatic 
to a cluster computing system would be the second step of parallelization. With 
the use of a distributed system library, the software will run on different machines 
that are connected within a cluster to enlarge the computation power. This will 
also help to increase the performance of SOMatic through a decrease of 
computation time for large input data.  
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SOMatic is used a lot by Dr. Skupin and other students at SDSU. So far, the output 
of this software is a Codebook (cod) file, which holds the trained SOM as well as 
an additional .sprj file, which contains information explaining the file paths to the 
in- and output data as well as the applied settings during the training. To be able 
to use the SOMatic output easier in Geoinformation programs or web applications, 
an output in the Geographic JavaScript Object Notation (GeoJSON) format would 
be very useful. 

 

1.2 Problem Definition 
 

In a time span of four years from the early implementation of SOMatic until this 
project, several newer programming versions were developed. Java 8 and 
Processing 3 are at the time when this project is conducted, the modern versions 
of these two programming languages. As one goal of this project is to expand the 
usage and applicability of the SOMatic Trainer, it is clear that the integration of 
newer software languages should have its place in this research. It is also easier 
to extend a software with more functionality written in latest languages as the 
compatibility with other software is usually just backward and not forward and the 
support for elderly versions will be terminated at some point after newer versions 
are public. Therefore, it is necessary to keep software up to date.  

Another problem is situated in the topological alignment of the neurons within a 
SOM created by SOMatic. In some visualizations, there is a horizontal shift of the 
hexagonal neurons to the top, although it should always be to the right starting in 
the second row and moving upwards from the bottom left. This skewed alignment 
of the neurons is necessary because of their hexagonal form. The starting neuron 
on position (0/0) at the bottom left should always have two neighbors. In some 
visualizations, it has three neighbors. This is due to the fact that the origin is set 
to top-left and not bottom left. The visualization style with having this starting 
corner is not common within the geographic world. From a geographers’ point of 
view, the origin should always lie in the first quadrant, meaning bottom-left. 
Furthermore, each second row starting from the bottom should be shifted to the 
right to fit a hexagonal structure and not any other row or column. The following 
Figure 1 shows the neurons with their coordinates within a different hexagonal 
alignment.  
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Figure 1 Hexagonal SOM display in coordinate system  
with different alignment (Spöcklberger, 2013) 

The current output of SOMatic is a. cod file, which cannot directly be integrated 
into other applications like a web application for instance. This limits the software 
results in its usability within other programs. Additionally, the topological 
information is also not stored in the output files. Exporting the resulting SOM as 
well as the final BMU vectors in a more common and compatible format, which 
also supports geographic data would be of high value to increase the capabilities 
and utilities of SOMatic. 

The computation time of a SOM depends on the number of input vectors, also 
called neurons, the number of training runs and the number of dimensions of the 
input vectors. Multispectral or hyperspectral data, for example, has a high number 
of input vectors with many attributes, which is referred to each pixel defined by 
its corresponding spectral bands. To generalize, the computation time is increasing 
with the amount of input data. SOMatic is already countering the time issue via a 
parallelized training of the SOMs. Thus far, there is no functionality in the SOMatic 
Trainer that allows projecting additional data onto an already created SOM. The 
whole process would have to be rerun with the old input plus the additional data. 
This would cost a lot of time, especially for a large input dataset with a high amount 
of dimensions. The BMU search after training, which counters that problem is not 
implemented yet. This step is embarrassingly parallel as no dependency between 
the BMU searches for the different input vectors is given.  
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Furthermore, the different threads do not have to communicate with each other in 
this finding step. Its sole purpose is to find the best suitable SOM neuron for each 
input vector via calculating the shortest distance of all the different attributes to 
it. A parallelized integration of this process within the software would lead to a 
significant decrease in the overall computation time, as not the whole process 
would have to be rerun when newer data of the same type should be visualized, 
but only an additional BMU search. 

The possibility to distribute the computing processes in SOMatic not only on 
different threads but also on different machines within a cluster has not been 
touched as yet. Very large input datasets can also take a long time on parallelized 
local computations. Nevertheless, setting up and distributing the different 
computation processes in a distributed system takes time as well. It is important 
to find a threshold which defines what the lower margin in data size is to achieve 
a useful speedup when using SOMatic to compute SOMs distributed in a network 
cluster. 

Depending on the applied parallelization technique, the quality of the output SOM 
can suffer from a partitioned computation. This problem is getting worse with an 
increase in the number of partitions and a decrease in the number of training runs 
performed within SOMatic. Especially a parallelization beyond one machine can 
raise the negative effect as the number of partitions could increase up to the 
number of available cores on all machines within the network cluster. To find an 
acceptable balance factor between quality and computation time will be crucial 
when running SOMatic in a parallel environment. 

 

1.3 Research Questions 
 

The following four research questions are planned to be answered within this 
project: 

How can the output of SOMatic be more useful for further usage (in the GIS world)? 

How can SOMatic be integrated into a cluster computing network? 

What is the data size threshold beyond which it is faster to run SOMatic in a 
network cluster on different machines than on one machine? 

What is the right balance factor between computation time and quality of the 
output SOM? 
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1.4 Methodology 
 

The planned steps in the implementation phase of this project are as follows: 

1. fixing and upgrading the status quo of SOMatic 
 

Software version upgrades to run on the latest Java and Processing versions are 
useful to get a wider compatibility with other software and to improve the efficiency 
of the own software. A change of the used libraries in the Java code to version 
eight as well as the run with the integrated development environment (IDE) of 
Processing 3 will be applied in this step. Through the migration, some parts of the 
code might have to be modified or added depending on the version compatibility. 
The horizontal shift in the SOMs should always be to the right in each second row 
starting from bottom left. This issue will be tackled in the Java code where the 
SOM is created. 

2. get SOM results in a geographic information software compatible format like 
GeoJSON 

 
The two output GeoJSON files will represent the SOM after the final training stage 
and the BMUs for each input vector. This means they will be created after the finish 
of all computations within SOMatic. One GeoJSON object in the first file will 
represent one neuron and hold information about its 2D location as well as the 
trained data values. The GeoJSON objects in the second file will contain the BMUs. 
The format GeoJSON is predestinated in a way as it would be relatively easy to 
store each neuron as a GeoJSON object and is highly compatible with today’s web 
applications when used Java or JavaScript. 

3. extend the Software through implementing a parallelized computation of the 
best-matching unit (BMU)  
 

The parallelized search for the BMU will be achieved through a data partition of the 
available input vectors, which can also be described as a divide and conquer 
approach. Each processor will find the BMUs in the SOM for its part of the input 
data.  

4. extend the parallelization beyond one machine 
 

The SOMatic computations will be distributed onto different machines connected 
in a network cluster. An existing library like Java Parallel Processing Framework 
(JPPF) will be used to achieve a distribution amongst several machines. JPPF is a 
software that enables programs with large processing power requirements to be 
run on different computers to reduce their processing time by a great amount. A 
master-slave structure will be applied, where two different approaches are 
possible. In the first one, each slave runs the whole process and sends its results 
to the master, which averages them.  
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In the second approach, the master distributes the initial SOM as well as equal-
sized parts of the input vectors to each slave. The slaves send the master 
intermediate results, which are aggregated and redistributed to the slaves to 
ensure a higher quality. The end results will again be put together by the master. 

5. validate the effects of parallelization on the speed and quality and apply 
SOMatic on data 

 
It is important to identify the level of parallelization for a certain input data size. 
The quality of the results will also be evaluated via quality metrics like the average 
quantization error (AQE). The SOM algorithm will be used to apply a dimensionality 
reduction on data like census data and multispectral data. 

 

1.5 Expected Results 
 

The main result of this project will be an upgraded and extended SOMatic Java 
library. It will use the latest version of Java and run with the latest version of 
Processing. The new SOMatic output will also be available as a GeoJSON file. 
GeoJSON is a wide spread geographic file format, which can easily be integrated 
into web applications. This will assure that the benefits of using SOMatic over other 
SOM implementations will yield increased functionality by a significant amount. 
Through extending the parallelization on a local and distributed basis, the 
computation time for SOMs is further decreasing. The search of the BMU after 
training will be parallelized locally.  

The search of the BMU can be described as the second primary process in the SOM 
algorithm besides the training. Its computation on multiple cores will decrease the 
overall computation time greatly. Within a distributed systems framework like 
JPPF, a new Java library will be created where SOMatic will be used to apply a 
cluster computation on different machines connected within a network. It will use 
a master-slave architecture to control and distribute the computation tasks. This 
newly created library should also be portable to any other network cluster and 
should easily be adaptable to other parallelizable software processes. It should be 
platform independent as well. Its only requirements will be Java, JPPF and a 
connected network cluster. The achieved speedups, as well as quality decreases, 
will be visualized in diagrams and evaluated with quality metrics.  

It is of high importance, that the time and quality decrease are balanced. The user 
will also be able to directly tackle this topic as it should be possible for her or him 
to choose the level of parallelization and with this way control the speed increase 
versus quality decrease. 
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1.6 Thesis Structure 
 

This thesis gives in the first chapter an introduction to the topic and research field 
of the project. Following on that are the relevant literature and best practice 
examples in the chapters two and three, a workflow in chapter four, the 
explanation of the implementation processes in chapter five and results of the 
extended software in chapter six. This report is rounded up with a discussion and 
conclusion of the methods and results in chapter seven as well as possible 
expansions of the software for the future in the chapter eight. 
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2. Theoretical Background 
 

This chapter describes the topics, which were tackled in a theoretical approach to 
deepen the knowledge in them. It starts with the SOM and the SOM algorithm, 
where the main computation steps, as well as the possibility for parallelization, are 
explained. After that, the important languages are explained, before getting to the 
end of this section, where different distributed system libraries and methods are 
explained. 

 

2.1 Self-Organizing Map 
 

The SOM was developed by Professor Toivo Kohonen in 1981 and is a useful tool 
to visualize high-dimensional data (Kohonen, 1998). It is an Artificial Neural 
Network (ANN), which is based on unsupervised machine learning.  

The difference to supervised learning lies in the unknown information about the 
output. The input data is described via neurons usually displayed in a two-
dimensional grid that can also be seen as a map. This feature map can be helpful 
to analyze and detect features within the input space (Lawrence, et al., 1999). 
Therefore, the SOM can be used to identify clusters of the input data as it provides 
a visual representation of similar data instances (Wittek, et al., 2016).  

The most common neuron structures of a SOM are either rectangular or hexagonal, 
where the second one provides a higher quality (isotropy) in visualization 
(Kohonen, 1998). The following figure gives an example of the application 
possibility of the SOM. It shows a part of the SOM that was trained with data 
contained in over two million medical publications (Skupin, et al., 2013). The whole 
SOM consists out of 75,000 neurons and has 2300 dimensions, which represent 
the top ten percent of the most frequent terms used in the medical publications.  
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Figure 2 SOM created out of words in medical publications (Skupin, et al., 2013) 

 

2.2 SOM Algorithm 
 

Kohonen, the inventor of the SOM, describes the central idea of the SOM algorithm 
is that every input data item selects the best matching neuron to itself. This 
neuron, as well as a part of its spatial neighbors, will then be modified for a better 
matching (Kohonen, 2013). Figure 3 shows the sequence of the SOM algorithm for 
one training epoch. The following sections describe two different types of the SOM 
algorithm using formulas derived from Lawrence, et al (1999).  

To explain the steps mathematically, we assume a set of input vectors x and assign 
a weight vector wk, k = 1,...,K to each of the K nodes randomly within the 
initialized SOM. A time index t is introduced, which also stands for the training run. 
This means x(t) is an input vector used in the algorithm at time t and wk(t) is the 
associated neuron weight vector at time t. The initial values for the neuron weights 
are assigned randomly.  

2.2.1 Conventional SOM Algorithm 
 

In this version of the SOM algorithm, the weights of the neurons are updated 
recursively after the use of one input vector (Lawrence, et al., 1999). After the 
selection of one input vector the distance from this vector, to all neurons in the 
SOM is computed. The neuron with the smallest distance to the input vector is 
chosen as the BMU. Its weights, as well as those of the neighboring neurons, are 
updated so that they become more similar to the input vector. Figure 3 shows this 
linear procedure, which represents one training iteration of the SOM algorithm. 
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Figure 3 Explanation of one training iteration of the SOM algorithm 

 

To compute the distance from the input vector to the neurons the Euclidian, Cosine 
or Manhattan distance functions are commonly used and also available within the 
SOMatic trainer (Spöcklberger, 2013). The following formula is using the Euclidian 
distance.  

(1) 

 

Subsequently, the minimum out of these distances is selected. The neuron that is 
associated with this distance is called the BMU of this input vector at this training 
iteration. Together with the distance computations, these two steps make up the 
BMU search. The distance to the BMU is here denoted with the subscript c.  

(2) 

 

The weights of this neuron, as well as those of its neighbors, are updated with the 
formula 

(3) 

 

where α(t) is referred to the learning-rate factor and hck(t) is the neighborhood 
function. The learning-rate factor is regulating the amount of changes in the 
weight vectors and is reduced in a monotone way as the training progresses. The 
neighborhood function defines the magnitude of change of wk(t) to an input 
vector, which is most closely similar to wc(t). It is usually a decreasing function 
with respect to the increase in distance from node c to k. The standard Gaussian 
neighborhood function is 
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(4) 

 

where rk and rc are referred to the coordinates of the node k and the current BMU 
c. The width of the neighborhood function is described by σ(t) and also decreases 
as the training process goes on, usually from a distance of one dimension of the 
2D plane down to the size of a neuron.The explained formulas are used in Figure 
4 and explain the conventional SOM algorithm with a pseudo-code. 

 

Figure 4 Pseudo-code representing the conventional SOM algorithm (Lawrence, et al., 1999) 

 

2.2.2 Batch SOM Algorithm 
 

The difference to the conventional SOM algorithm lies in the updating of the 
weights, which are updated after one epoch, also called one batch. One epoch is 
reached after the whole input data, respectively the input vectors were used one 
time. This means that here, the BMUs for all input vectors are searched and 
afterward its weights and those of its respective neighbors are updated. The BMU 
search is an embarrassingly parallel process, meaning that each search is 
completely independent of the others and no communication has to take place 
between the processors working on this task. The information, to which input 
vector one neuron is the BMU has to be stored in a list, but this operation does not 
involve any computation. Hence, the batch is faster than the conventional version 
as it has less computational effort by only making an update of the weights once 
per epoch compared to once per BMU search. Furthermore, the batch version does 
not require any specifications of the learning rate factor (Kohonen, 1998).  
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The following formulas are obtained from the same source as those in the prior 
section (Lawrence, et al., 1999). The weights are updated with the formula 

(5) 

 

The result wk(tf) are the mentioned weights, t0 and tf mark the start and finish of 
the current epoch. To compute the winning node the formulas  

(6) 

 

(7) 

 

are used. wk(t0) refers to the weight vectors that were computed in the final step 
of the previous epoch. The in (4) described neighborhood functions are using the 
winning nodes from (7). The width of the neighborhood function is also decreasing 
monotonically throughout the training phase as it is in the conventional algorithm. 
The following Figure 5 represents these formulas in a pseudo-code example. 

 

Figure 5 Pseudo-code representation of the batch SOM algorithm (Lawrence, et al., 1999) 
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One drawback of the batch computation is the failure of the good organization of 
code-vectors, which are distributed in a special shape like the one of a “W” (Fort, 
et al., 2002). Figure 6 and Figure 7 show this behavior in comparison to the result 
of the conventional on-line SOM algorithm. Both computations were using the 
same initial state of the neurons. 

 

Figure 6 Starting state (left) and 2D comparison of the results of the on-line (middle) and the batch 
computation (right) (Fort, et al., 2002) 

 

Figure 7 Starting state (left) and 3D comparison of the results of the on-line (middle) and the batch 
computation (right) (Fort, et al., 2002) 

 
2.2.3 Parallelizing the SOM Algorithm 
 

In general, there are two different approaches to apply a parallelization: data or 
network partitioning (Lawrence, et al., 1999). As the name tells it already the input 
data is split up in the data partition method onto different threads or machines. It 
is of high importance to make the partitions of an equal size to prevent latency. 
So each processor should work with the same amount of data. The network, in this 
case, the neurons, needs to be available to all threads either as a copy or through 
accumulators that are pending updates to the map (Skupin, et al., 2013). After 
the individual weight updates of the neurons of each processor, the outputs have 
to be merged together and redistributed in order to maintain an up-to-date SOM 
and be able to continue with the training. Therefore, the batch version of the SOM 
algorithm is more suitable for the data partition approach as the updates are only 
computed after one epoch. This reduces the overall computation time as the merge 
and redistribution of the updated neurons cost communication time.  
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Depending on the frequency of the merge (if not using the batch-version), the 
result of this method can be different compared to a linear implementation. The 
advantage of the data partitioning is its effectiveness on a large amount of input 
data like in Skupin et. al (2013). Some other examples of this method are also 
described in these two theses (Silva & Marques, 2007) (Yang & Ahuja, 1999).  

In the network partitioning method, the neurons are split up. So each processor is 
just using and applying computations on a defined part of the SOM. Therefore, the 
input data has to be accessible by or copied to all processors. In one version of 
this method (Lawrence, et al., 1999), each processor makes the BMU search for 
the same input vector for its set of neurons. The overall BMU is then found by 
comparing the BMUs of each processor and picking the neuron with the minimum 
distance to the input vector out of them. After that, each processor is then 
updating its affected neurons. An advantage of this method is that it produces an 
exact agreement (within a round-off error) with the conventional algorithm 
(Lawrence, et al., 1999). The downside, however, is that the processing of each 
input vector produces a latency through communication and also updating of the 
weight vectors. This results usually in a longer computation time compared to the 
data partitioning method. The third form of parallelization, dividing the training 
runs onto different processors, is applied in SOMatic (Spöcklberger, 2013) and 
explained in section 3.3.1 in this thesis.  

 

2.4 Important Languages 
 

2.4.1 Java 
 

Java is an object oriented, concurrent and class-based programming language, 
which is one of the most used programming languages worldwide. It was originally 
developed by the Sun Microsystems, which has been acquired by Oracle 
(Wikimedia Foundation Inc., 2017). The syntax of this programming language has 
its origin mostly in the languages C and C++. The latest version of Java is Java 8. 
The following Figure 8 shows a basic “Hello World” example written in Java. 

 

Figure 8 Java "Hello World" example code 
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The filename in Java must be equal to the public class name it contains. So 
“HelloWorldExample.java” has to be the name of the file that contains this code. 
Before the code can be run it has to be compiled. Compiling is the transitioning of 
the code from a human-readable language to a machine-readable language. After 
this step, a new file appears, which has the ending “.class” and contains the 
information of the “.java” file in a machine-understandable language. As shown in 
the example, the main method is used in Java to obtain a result of the code and 
display it for example on the console. The comments can be written after two 
forward slashes as shown in the example, or also between a forward slash plus an 
asterisk. 

There exist several keywords in Java and some of them are shown in the code 
snippet above written in a wine-red color: public, class, static and void. The 
keyword public means, that the following method or class or variable can be 
accessed from outside of the method or class where it is located. The term for this 
keyword is access level modifier. There are also other access level modifiers: 
protected and private. These two limit the access to inherited classes (protected) 
or only the class or method where the variable or method is located (private). The 
next keyword “class” refers to the first level in the Java code. One .java file can 
contain several classes, but only one public class, which must have the same name 
as the file. 

A method that is called “static” cannot access other class members, which are not 
static. Furthermore, it is not possible to create instances from this method. This 
means, that there can only exist one version, which is associated with the class it 
is located in. The last keyword “void” is referred to the return value of a method. 
When a method is written as “void”, it means that it does not return any value. 
The main method, for example, has to be a void method. As the library of SOMatic 
(Spöcklberger, 2013) is written in Java, there was no other language choice 
possible to choose in this project. This programming language is the main language 
besides python that is taught at CUAS in Villach and also used a lot in San Diego, 
which is one important reason why it is used. 
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2.4.2 GeoJSON 
 

GeoJSON is a data format used for the encoding of different geographic data 
structures using JavaScript Object Notation (JSON) (Butler, et al., 2016). It was 
first introduced in 2008 and differs from other GIS standards in a way that it was 
written and maintained by a working group of developers and not by a formal 
standards organization (Wikimedia Foundation Inc., 2017). GeoJSON supports 
seven different geometry types: Point, LineString, Polygon, MultiPoint, 
MultiLineString, MultiPolygon and GeometryCollection, which refer to the 
definitions of the Open Geospatial Consortium (OGC) (1999). Within Figure 9 one 
can see an example of how GeoJSON looks like. It shows a “FeatureCollection” 
that contains three features having different geometries.  

 

 

Figure 9 GeoJSON example 

 

Within the literature research for this project, no SOM implementation could be 
found that exports the output in the GeoJSON format. A total of two GeoJSON files 
will be created as an extension to SOMatic. The first one holding the finalized 
neurons of the SOM after the training and the second one holding the BMUs also 
after the final training. The neurons will be stored as features of the type polygon 
and having their attribute values in the “properties” of the corresponding GeoJSON 
object.  
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2.5 Distributed Systems 
 

2.5.1 OpenMPI 
 

The Open Message Passing Interface (MPI) project is developed and maintained 
as an open source project by a consortium of academic, research and industry 
partners (Open MPI Project Team, 2017). It combines the technologies from four 
other MPI projects and aims to use them to create a world class open-source MPI 
implementation (Wikimedia Foundation Inc., 2017). An MPI can be used to setup 
a communication between different parallel computing sources. Although it was 
used in one best-practice example (Wittek & Darányi, 2012) that is also explained 
in section 3.2.2, this technology is seen as not applicable for this project and time 
scope as it only has libraries written in C, C++, or Fortran and would, therefore, 
require more time than available. 

 

2.5.2 Apache Hadoop 
 

The Apache Hadoop project software is used within distributed computing to 
process large data sets across computers in a cluster using simple programming 
models (Apache Foundation, 2017). It is designed to detect and handle failures of 
nodes in the cluster and has, therefore, a high availability. Hadoop uses the 
MapReduce programming model, which is an associated implementation to handle 
big data sets with a parallel, distributed algorithm within a cluster (Dean & 
Ghemawat, 2004). The “map” is a function specified by the user that generates 
out of one key/value pair a set of key/value pairs and the “reduce” function merges 
all intermediate values, which are associated with the same intermediate key 
(Dean & Ghemawat, 2004).  

Figure 10 shows an implementation of the MapReduce programming model that 
was used by Google. The first step is to split (also called fork) the input data into 
M pieces. One of the two main components (called copies in MapReduce), the 
master, is assigning M map tasks and R reduce tasks to the second main 
component called workers. These workers need to be idle to get a task assigned 
to them. Those workers who got a map task assigned to them read the content of 
the corresponding input split and parses key/value pairs to the user-defined map 
function. The map function produces also intermediate key/value pairs, which are 
buffered in memory. These buffered pairs are periodically forked into R regions 
and written to the disk by the partitioning function. The master gets the location 
of these pairs and forwards them to the reduce workers. The reduce workers read 
the data and sort it depending on the keys as data with the same key will be 
grouped together.  
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For each unique key, the reduce worker passes the key as well as the 
corresponding set of intermediate values to the reduce function that has been 
defined by the user. The output of this reduction is then written to an output file. 
After all the map and reduce tasks have been completed, the MapReduce call in 
the program of the user returns back to the user code (Dean & Ghemawat, 2004).  

 

 

Figure 10 Example of the flow of a MapReduce operation (Dean & Ghemawat, 2004) 

 

Apache Hadoop is also written in Java and would, therefore, fit this project looking 
at it from this perspective. However, it has been noted that the MapReduce queries 
usually take several minutes or more and are best used in offline-modus without 
a human sitting in front of the PC (White, 2015).  
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2.5.3 Java Parallel Processing Framework 
 

JPPF is a Java library that is used to run applications on any number of computers. 
It splits the task into smaller parts, which can be executed in parallel. It works on 
any operation system (OS) that supports Java (JPPF.org, 2016). The network 
topology consists of three different components: client(s), server(s) and nodes. 
The following Figure 11 gives a possible setup of this topology.  

 

 

Figure 11 Overview of a JPPF network topology (JPPF.org, 2016) 

 

One network can consist of several servers, clients and nodes. The clients submit 
the work to a server. There, it enters a job queue and the server filters on the 
available nodes. Via a load balancing mechanism, the tasks are distributed to the 
nodes, which perform the task and send the result back to the server. The last 
step is the sending of the result from the server back to each client. Figure 12 
shows this stepwise workflow within the JPPF topology. 
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Figure 12 Job-Workflow in the JPPF topology (JPPF.org, 2016) 

 

Parallelism occurs within the JPPF network topology at all three components. On 
the client-side, a configured pool of connections allows the sending of multiple 
concurrent jobs to one server at the same time. The size of this pool determines 
the number of jobs that can be sent. Through multiple clients, another form of 
parallelism is given as they can also send their workload to a server at the same 
time. The third appearance of parallelism on the client-side takes place if a mixed 
local and remote computation are enabled. JPPF offers the possibility to execute a 
job on a node and on the client at the same time to increase the computing power. 
On the server-side, parallelism can be achieved through a connection to more than 
one client and/or more than one node. The server has an important role in the 
network as it regulates the workload to each node with a load balancing 
mechanism. This assures, that the amount of the work to compute is distributed 
equally to all nodes in the cluster. Another mechanism called Service Level 
Agreement (SLA) can be defined by the user and tells the server to which node a 
particular job should not be distributed.  
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This can be useful if the cluster is heterogeneous considering the nodes and the 
user has concerns about performing particular jobs on some nodes. The user can 
also define the size of the network thread pool, which defines with how many nodes 
one server can communicate in parallel. If a system consists of more than one 
server, then one of them sees the other one as a client if the connection is one-
directional. If it is bidirectional, then both servers can act as server and client 
depending on who sends a job to whom (JPPF.org, 2016). The node-side exploits 
parallel processing via using a thread pool to compute the received tasks. The size 
of this pool accounts the actual number of available processors on a specific node. 

As JPPF is written in Java and seems to be an easy to understand and use tool to 
setup and run distributed computations in a cluster it is seen as most suitable for 
a usage within this project. One does also not have to think about the details 
considering message passing and load balancing. This is implemented and applied 
automatically in JPPF. Furthermore, it looks applicable to integrate SOMatic into a 
JPPF library to be able to use this SOM implementation within a network cluster. 

3. Practical Background 
 

This chapter is divided into three sections explaining different best-practice 
examples: parallel SOM implementations on a local machine in 3.1, distributed 
SOM implementations onto different machines within a network cluster in 3.2 and 
the SOMatic software in 3.3. 

 

3.1 Parallel SOM Implementations 
 

Six different parallel implementations of the SOM algorithm were chosen as an 
important literature basis of this thesis and are described within the following 
pages. 

 

3.1.1 Hybrid Parallel SOM Algorithm 
 

The method to apply the SOM algorithm explained here focuses on a mixture of 
the two common approaches to gain a speedup in computation time of a SOM: 
data-partitioning and network-partitioning (Silva & Marques, 2007). The batch 
data-partitioning algorithm is used at the beginning to obtain a first ordering of 
the topology of the map. After this initial global ordering, the BMUs are distributed 
in an adequate way globally over the map.  
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Via calculating an input data histogram, the map is segmented into different parts, 
which is referred to the network-partitioning method. The histogram is needed to 
be sure that the partitioning is executed in a balanced way. The number of 
segmentations is equal to the number of the available processing nodes. Each node 
is then focusing only on its part of the partition until a new segmentation is applied.  

The reason behind this method is the fact, that the position of the BMU for each 
input pattern is generally situated in a small area of the map and therefore situated 
in the region allocated to one of the nodes. If the winning neuron for an input 
pattern is located in a contiguous region, it can lead to some errors. These errors 
are therefore weakened due to the following segmentation stage that repeats the 
process again. As the size of the number of neighbors which are considered is 
decreasing by time, the frequency of updates in these bordering regions is going 
down as well. It was tested with a pre-processed dataset, which resulted in 106 
attributes for 6054 randomly chosen input vectors. Figure 13 shows the execution 
times of this method for different neuron sizes compared with the times of the 
classical Batch data-partition method (Kohonen, 1993). 

 

Figure 13 Execution times of data-partition vs. hybrid method (Silva & Marques, 2007) 

The results of this method cannot be equal to the results of a normal data-partition 
approach, but the similarity level is very high. Additionally, the obtained 
information out of these outcomes is preserved as well. In view of the fact that 
the average speed-up of this method compared to the batch data-partition method 
is 1.27, its usage for large maps whilst accepting some small discrepancy in the 
results can be confirmed. 
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3.1.2 Speculative Parallel SOM Algorithm 
 

In this paper, the members propose a new method of a parallel approach of the 
SOM algorithm, which outperforms classic map-partitioning implementations 
(Garcia, et al., 2006). They used simultaneous multithreading (SMT) processors, 
which opens the possibility to work on several instructions at the same time. This 
increases the efficiency of the processors computing powers because the 
operational latencies are hidden. These processors can be described as a set of 
logical processors, which split some resources among them. The code used in this 
project comes from the SOM-PAK (Kohonen, et al., 1996) implementation 
originally coded at the Helsinki University of Technology. This alternative 
implementation (Garcia, et al., 2006) uses the assumption, that it is possible to 
train two consecutive winning nodes in parallel if their neighborhoods are not 
overlapping. The finding of the BMU is always performed in parallel and the training 
of their respective neighborhoods is dependent on a possible sharing of the same 
nodes. If they do not overlap, the master, as well as the slave of the architecture, 
can compute the training process, but if they do overlap, the slave has to wait until 
the master has finished its updating. An overlap also means that the speculation 
has been wrong. After the update, the master and the slave switch their roles. This 
master-slave architecture can be seen in Figure 14. 

 

 

Figure 14 Master-slave architecture in a speculative parallel SOM algorithm (Garcia, et al., 2006) 
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As the chances of overlapping are decreasing during training due to the decrease 
of the size of the radius, which determines how many nodes are updated around 
the BMU, the speculation starts after ten percent of the iterations have been 
finished. In the initial warm-up phase, a map-partitioning approach is applied on 
the threads in parallel. The disadvantage here is that with a wrong speculation 
some resources were used to useless computations, which have to be re-executed. 
The advantage is an average increase in the speedup of 5 compared to the original 
SOM-PAK code.  

 

3.1.3 Data Partition Method for Parallel SOMs 
 

To apply a data partition approach is another possibility to achieve a parallelizable 
structure (Yang & Ahuja, 1999). This implementation achieves an average speed 
up of 3.15 by partitioning the training vectors into clusters, which are then 
assigned to processors for computing. It is based on the observation of the 
dynamic behavior and the characteristics of the neighborhood function in the SOM 
algorithm by Kohonen (Kohonen, et al., 1996).  

The algorithm is described as follows (Yang & Ahuja, 1999): N is the number of 
processors, I the number of input vectors and M2 the number of nodes in the map. 
The input vectors should be clustered into N clusters so that each processor can 
use one of these clusters as input data and the maps can be formed concurrently. 
Each processor should have about 1/N input vectors. This approach can be 
considered as a divide-and-conquer method as it decomposes the original problem 
into a set of subproblems which can be solved at the same time. The aim of this 
method can be described as dividing the original problem into N sub-problems 
such that they can be processed in parallel. A disturbance of this parallelization 
only arises if the neighboring nodes of one winning node are not within the same 
sub-map. The downside here is that the processors need to communicate with 
each other because of this possibility. This process makes sure that the overall 
consistency is still given. One processor informs in such a case the others to update 
the weights of their nodes as the neighboring function of the winning node overlaps 
with the nodes, which are in one or more other processors. This project tries to 
divide the problem in such a way that the occurrences of these overlapping cases 
are rare. 

This data partition algorithm tries to make a good usage of the two training phases 
of the SOM. In the first phase, a coarse training takes place where the reference 
vectors are roughly ordered. The second phase is then the fine tuning of the values 
of the reference vectors. Furthermore, the neighborhood radius decreases from 
the first to the second phase but the computation time increases a lot. It is more 
than ten times longer than the first phase. The data is partitioned after the first 
phase as the mapping of the input vectors to the nodes is rather stabilized at that 
point and the neighborhood function (the radius) is smaller in the second phase.  
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In the testing of this implementation, the task was to solve an image coding 
problem via mapping 2048 training vectors into an 8x8 SOM using four processors. 
Their results show that the probability of the need to synchronize the different 
weight matrices in the sub-maps lies at roughly five percent. The achieved speedup 
can be numbered at 3.15 compared to running the algorithm on a single processor.   

Figure 15 a comparison between the original image, the result of applying the 
conventional SOM and the result with the parallel SOM algorithm. This proves that 
the increase in speedup does not trade with a decrease in quality.  

 

Figure 15 Comparison of raw image, conventional SOM and parallel SOM (Yang & Ahuja, 1999) 

 
3.2 Network-Distributed SOM Implementations 
 

This chapter gives two examples of a cluster computation of the SOM algorithms, 
where connected machines within a network were used. The second example also 
explains how SOMs can also be computed with the help of graphic processing units 
(GPUs). 

 
3.2.1 Training a SOM distributed on a PVM network 
 

A distribution of the computations within a SOM to several PCs using a Parallel 
Virtual Machine (PVM) network is described by Bandeira, et al. (1998).  PVM 
enables to use connected computers that can have different operation systems like 
UNIX or Windows as a single UNIX machine via using the programming language 
C for instance. In this project they used PCs of the computer laboratories in their 
University to train the SOM networks. Given a number of processors Np, a 
coordinator process within Np called C, the number Nt of each training pattern xi 
and neurons that form a SOM Nn, the approach of this implementation is described 
in five steps (Bandeira, et al., 1998): 
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1) Assigning of the neurons: The Nn neurons are assigned to the processors in a 
way that each one of them gets approximately the same number of neurons (Np / 
Nn). Furthermore, they should be evenly distributed over the processors for any 
given area of the SOM.  
2) Setup of the training set: All of the Nt patterns are send together with the initial 
training parameters to each processor. 
3) Training of the neurons: For each xi in the training set, 3 phases are computed. 
The first one is called calculation phase. Here, the local winner neurons are 
calculated. This phase runs in parallel as each processor calculates that for its 
neurons. The second phase is the voting phase, where the processors send the 
coordinates their winner neuron to the coordinator process C. This coordinator 
selects the global winner and distributes its location back to the processors. In the 
third phase each processor updates the neurons according to the update function 
(update phase). Additionally, the training parameters are also updated. 
4) Repetition of step 3 until a stopping criteria is met. 
5) Sending of all neurons back to the coordinator. 

Within this experiment a network with up to 12 PCs was used. The possible 
speedup was highly depending on the processing load that was required before 
each synchronization in the update phase. Therefore, very large pattern vectors 
with 1024 features were used and the number of neurons on the map was varied. 
The size of the maps varied from 5x5, 10x10, 20x20 and 40x40 squares, where 
the numbers refer to the neurons meaning a 5x5 square consists of 25 neurons. 
The decrease of the radius per training run was set at one unit, which means that 
a map with 5x5 neurons would have 5xNt iterations on the patterns and the biggest 
one would have 40xNt runs. Therefore, the number of training patterns was 
decreased with an increase in map size in order to counter the rise of computation 
time that would occur within that radius decrease. The numbers of training 
patterns were chosen in a way that each map would require four times more 
calculations than the previous one had. 

Figure 16 shows the curves computation time. The horizontal axis refers to the 
number of machines and the vertical axis to the computation time given in 
seconds. What can be observed here is the fact that there is not a speedup in each 
SOM size. In fact, the computation time of the smaller two (5x5 and 10x10) is 
increasing with an increase in the number of machines used for computation. This 
is mainly caused by the amount of communication, which increases with the 
number of machines. These two map sizes are simply too small to get a decrease 
in computing time via distributing its workload on several machines. The decrease 
in time of the 20x20 and especially the 40x40 map are on the other hand 
remarkable. This result confirms the claim, that the SOM algorithm can be 
distributed onto different machines in a network cluster in an efficient way.  
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Figure 16 Curves of computation time (Bandeira, et al., 1998) 

 

Table 1 also shows the execution times for each map size and each number of PCs 
used for computing as precise numbers. This can basically be seen as a numerical 
representation of Figure 16. The values within the table are again seconds. The 
fact, that the computation time can only be decreased down to a certain threshold 
through a rise of the amount of nodes within a cluster is shown here in more detail 
with the exact numbers. Through comparing the computation times with ten and 
twelve PCs one can see that this increase only lead in the biggest SOM to a further 
decrease in computation time. It will also be of importance to find the optimal 
number of cluster nodes for specific SOM and input data sizes for SOMatic. 

 

 

Table 1 Execution times for different map sizes and numbers of PCs (Bandeira, et al., 1998) 

 



    

29 

  

3.2.2 A GPU accelerated distributed SOM implementation 
 

Another approach to achieve a speedup is to run the computations on GPUs and 
distribute them (Wittek & Darányi, 2012). Within this research project a 
MapReduce-based (Dean & Ghemawat, 2004) implementation of SOMs is 
distributed on GPUs within a network size of eight nodes. These SOMs build on 
another project’s (Sul & Tovchigrechko, 2011) batch formula of updating the 
weights. These weight updates are performed for each node and moved to the 
GPU with a matrix-based Euclidian distance matrix, which is faster than just 
computing this distance for each node. An algorithm (Li, et al., 2010) (van de 
Sande, et al., 2011) is used to decompose the steps into operations on the matrix 
level. Usually the computation of the Euclidian distance includes the square root. 
This operation is omitted here as it is time expensive to compute it on the GPU. As 
network cluster eight nodes from the Amazon Web Services (AWS) were used. 
AWS provides nodes, which are close in physical space and connected with a high-
speed connection. The hardware of one node consists amongst others of two Intel 
Xeon X5570 quad-core central processing units (CPUs) with 23 gigabyte (GB) of 
memory and NVidia Tesla M2050, where one graphic card has 448 CUDA cores 
and 3 GB of device memory. 

As software to distribute the algorithm on the nodes in the cluster the MPI (Snir, 
et al., 1996) and map-reduced message passing interface (MR-MPI) are used. To 
run the computations on the GPUs the NVidia CUDA (NVidia Corporation, 2014) 
framework was used. As input data about 35 million terms of a collection of about 
84,000 PhD theses were analyzed. The number of dimensions was reduced to 200 
via applying a random projection. As a result of the huge data size, it was only 
possible to run this implementation on all eight nodes, because the memory of the 
GPUs would otherwise not be sufficient enough. The size of the SOM had also been 
limited to 100 neurons. The execution time results and speedup factors are showed 
in Figure 17. 

 

Figure 17 Execution time comparison between GPU and CPU (Wittek & Darányi, 2012) 
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The GPU approach of distributing the SOM algorithm shows, that a remarkable 
speedup can be achieved when moving from CPU to GPU. However, it has a tighter 
limitation considering data sizes and it is easier to find and setup a network that 
uses CPUs for computation than GPUs. 

 

3.2.3 Somoclu: A parallel library for SOMs 
 

The name Somoclu is derived from “SOM on cluster” and is a parallel 
implementation of the SOM algorithm (Wittek, et al., 2016). It is written in C++ 
and can be used via a command-line interface or wrappers written in the 
programming languages R, Python and Matlab. With the command-line interface 
it is also possible to distribute the computations within a network cluster onto 
different machines. Somoclu builds up on two former implementations using 
MapReduce (Sul & Tovchigrechko, 2011) and distributed GPU computations 
(Wittek & Darányi, 2012). The MapReduce calls were replaced by MPI but within 
the multi-core process, MPI was replaced by OpenMP (Dagum & Menon, 1998), 
which increases its speed. Via OpenMP, each thread can work on the same SOM in 
contrary to MPI, where each thread holds a copy of the whole SOM. To implement 
the GPU kernel a library named Thrust (Bell & Hoberock, 2011) was used. The GPU 
implementation is not only using GPUs. The weight updates can be done in a faster 
way with CPUs because they can run an MPI process on each core whereas one 
GPU can only run one MPI process. The difference is that two GPUs have four times 
more data to process than eight CPU cores within the MPI processes. For that 
reason, the kernel is hybridized meaning the CPU cores are also used for the weight 
updates in the GPU implementation.  

The distribution of the computations onto different machines within a cluster 
follows the master-slave architecture. A simple setup of this topology is displayed 
in Figure 18. The data is distributed to all nodes in an equal size. The finding of 
the BMU takes place without intermediate network communication at all as each 
search of the minimum distance is an independent process. The updates of the 
weights within the training stage require a two-way communication between the 
master and the slaves. Once the slaves are finished with their updates, they send 
their local changes to the master node, which accumulates them to the SOM. This 
new SOM is then distributed to each slave to compute the next training epoch. The 
change to a former distributed GPU computation (Wittek & Darányi, 2012) lies 
here in the use of ordinary MPI without the help of the MapReduce library.  
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Figure 18 Overview of a master-slave architecture 

To test the implementation a SOM with a size of 50x50 and 200x200 neurons was 
created. The number of the input vectors ranged from 12,500 to 100,000 and the 
dimensionality was set on 1,000. The random data instances consist of five percent 
non-zero values. Each machine in the network cluster had 22GB of memory, two 
Intel Xeon X5570 quad-core CPUs and two NVIDIA Tesla M2050 GPUs. The 
operation system was Ubuntu 12.04. The GPU implementation was about two 
times faster than the CPU version. This difference is not as high as only one GPU 
could be used as the Thrust template library is not efficient for two-dimensional 
data structures (Wittek, et al., 2016). The following Figure 19 shows the 
comparison between the CPU, the GPU and the single-core R package created by 
Kohonen (Wehrens & Buydens, 2007) on the SOM with 2500 neurons. Figure 20 
shows the CPU and GPU time for the SOM with 40000 neurons.  

 

 

Figure 19 Runtime comparison on a 50x50 sized SOM (Wittek, et al., 2016) 
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Figure 20 Runtime comparison on a 200x200 sized SOM (Wittek, et al., 2016) 

 

The problem with updating the same neuron by different threads is said to be 
countered via a threshold presumably meaning that they cannot overlap each 
other. This should lead to a performance increase without a quality decrease 
(Wittek, et al., 2016). It is not mentioned how a possible update of the same 
neuron is handled, which can be solved for example with a lock of this neuron like 
implemented in the SOMatic trainer (Spöcklberger, 2013) 

 

3.3 SOMatic 
 

SOMatic can be divided into two parts: the trainer and the viewer. The trainer is a 
Java library that implements a SOM algorithm and applies a parallelized training 
phase (Spöcklberger, 2013). The viewer is used to visualize the created SOMs of 
the trainer with Processing (Rainer, 2013). Both were developed together in 2013 
by a joint research project between SDSU in San Diego and CUAS in Villach by two 
students from Carinthia. The SOMatic trainer has a parallel training 
implementation but it is listed here in its own section together with the SOMatic 
viewer as SOMatic can be seen as the basis of this research project. 

 

 

 

 



    

33 

  

3.3.1 SOMatic Trainer 
 

An important purpose of the development of the SOMatic trainer was to fit between 
self-contained SOM software and generic or outdated libraries (Spöcklberger, 
2013). Therefore, it is implemented as a Java library and includes parallelized 
computations to be able to deal with bigger input data in a faster way. The training 
within this SOM application can be run on multiple cores on one machine to speed 
up the computation.  

True parallelization of the computations can be achieved within a CPU containing 
two or more processing cores. The user can choose how many cores he wants to 
use when running the SOMatic trainer. Figure 21 shows the parameters, which 
need to be set to run the trainer (applied in the IDE Eclipse). The first two are 
strings and include the path to the input and output file. Parameters three and four 
define the size of the SOM, so for example if both of these values are 20, the SOM 
has a size of 400 neurons. The next parameter is the alpha value or also called 
learning rate factor. It controls the magnitude of the correction of the weights of 
the neighboring neurons (Lawrence, et al., 1999) and has to be between zero and 
one. The radius defines the influence size of the changes that are applied after 
finding a BMU. It usually decreases after each training epoch. The “iterations” 
value stands for the number of training runs and is in contrary to the radius usually 
increasing after an epoch. The user can also choose between the Euclidian, 
Manhattan, or Cosine distance, which is set with the integer “simMeasure”. A one 
means Euclidian, a two Cosine and a three Manhattan. The last parameter defines 
the number of threads, which are used to do the training of the SOM.  

 

 

Figure 21 Parameters needed to run the SOMatic trainer 

 

As one goal is to generate an additional output of SOMatic trainer in the form of a 
GeoJSON file, it is important to take a closer look at the in- and output data that 
the current implementation requires and produces. To be able to run this software, 
the input data has to adhere to a particular format. The file formats can either be 
comma separated value (CSV) or a SOM_PAK (Kohonen, et al., 1996) data file. In 
csv files, each line has to represent one input data item. Only the first row is not 
interpreted that way as it should contain the attribute names. The columns can be 
characters or numbers and include the attributes of each item. SOMatic can only 
deal with numerical numbers in the computation though but characters would not 
through an error.  
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The difference to the SOM_PAK data file is that the first line includes just one 
number, which represents the number of attributes. The attributes themselves are 
listed in the second line with “#atts” starting this line. The attribute names cannot 
be divided with spaces, so one needs to use underscores or a hyphen instead. As 
output, the SOMatic trainer produces two files: a codebook (.cod) and a .sprj file. 
The first one holds the information about the final SOM, which is similar to the 
data file and is also derived from SOM_PAK. The second one serves as information 
about the applied settings and parameters, which were used in this run. The 
following Figure 22 shows an example of the .sprj file.  

 

 

Figure 22 Example of a .sprj output file 

 

The parallelization is a major interest of this research project and that is why it 
was also deeply analyzed in the SOMatic trainer (Spöcklberger, 2013) 
implementation. In general, it has two purposes: to speed up the training through 
the integration of more threads and to monitor its progress. An additional training 
surveillance thread (TST) is created and used to follow the advance of the training 
process within a progress bar object. Its main usage is to give the time progress 
as feedback to the user who can then better estimate when SOMatic will be 
finished. The following Figure 23 visualizes the sequence and purposes of the 
threads used within the training of the SOM. 
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Figure 23 Sequence of the training threads within the SOMatic trainer (Spöcklberger, 2013) 

 

Depending on the initial settings given by the user, a certain number of threads is 
created from a thread pool. The number of training iterations is then divided by 
the number of threads so that each thread has the same amount of work to do. 
Figure 24 displays the overview of how the parallelization is implemented in 
SOMatic. It shows how the computation within one step of the training process 
running 20,000 iterations is divided onto two threads. How one iteration looks like 
has been explained in Figure 3.  

 

 

Figure 24 One training step parallelized onto two threads in SOMatic 
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The process of updating a neuron when two or more threads also seek to update 
the same neuron is still executed sequentially. This produces latency as the other 
thread(s) are forced to wait until the first thread finished the updating. Reading 
works in parallel, but the updating is a process of writing and therefore cannot be 
performed in parallel as this would lead to inconsistencies. Figure 25 gives a visual 
expression of the overlapping of the neighborhoods, where the latency issue could 
occur. The light-red and light-blue neurons represent the neighborhoods around 
two neurons (red and blue), which were found as BMUs by two processors. 
Neurons, which are situated in the shared neighborhood colored in purple can 
cause a delay of the weight-updating if both threads want to update the same 
neuron at the same time. This issue is more likely to happen in the early stages of 
the training when the neighborhood radius is still relatively high and/or when the 
number of threads that work in parallel on the SOM is higher.  

 

 

Figure 25 Neighborhood overlapping (purple neurons) of two BMUs (red and dark blue) in parallel 
training 

 

The achieved speedup through using this architecture is almost proportional to the 
number of training threads. What delays the computation are the initialization and 
start of the threads from the thread pool, other processes running on that machine 
at that moment and the previously described issue with the simultaneous neuron 
update. The testing showed that through the parallelization it can be up to 9.14 
times faster compared to a sequential training with only one thread. 
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To measure the quality of the output SOMs, a function computing the AQE is 
included within the SOMatic Trainer. It computes the difference in attribute space 
between each input vector and its corresponding BMU and averages the results. It 
was used by Spöcklberger (2013) and will be used in this project as well to be able 
to validate the quality of the resulting SOMs. Spöcklberger also created a graphical 
user interface (GUI) in Java, which is also usable in Processing so the user can run 
the trainer easier as a Java application, but also to show the compatibility of the 
library with other IDEs.  

 

3.3.2 SOMatic Viewer 
 

The SOMatic Viewer (Rainer, 2013) is an interactive SOM visualization tool which 
is implemented for Processing and also as standalone Java application. The user 
can choose between seven SOM visualization techniques like k-means clustering 
or component planes. To compute the SOMs, the viewer uses the SOMatic trainer 
(Spöcklberger, 2013). Before this project, there was no other SOM visualization 
software using Processing. The SOMatic viewer was developed along with the 
trainer and has therefore to be mentioned additionally when one is talking about 
SOMatic. This research is not concerned with the viewer because the focus lies 
solely in the computational aspects of the SOMs, which is implemented within the 
trainer. 
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4. Method of Solution 
 

This chapter explains the overall project workflow in detail with charts to get a 
graphical view of the processes that will be implemented and how they interact 
with each other. It also shows the approach on how to solve the core problems 
and gives explanations on how it is planned to answer the research questions. 

 

4.1 Procedural Workflow 
 

The following Figure 26 gives an overview of the procedural workflow, which serves 
as the guideline how this project is organized.  

 

Figure 26 Project workflow overview 

 

4.1.1 Background 
 

The first step is to analyze previous case studies. This includes analyzing best-
practice examples as well as taking a deeper look into the theoretical background, 
which is needed to conduct this research project. This step is required in order to 
answer the following questions: What implementations exist that use similar 
concepts and techniques? What approaches to solve the problems in this project 
could be found in these best-practice examples? What are the important 
technologies and techniques needed to conduct a research project in this field? 
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4.1.2 Method of Solution 
 

This phase gives answers to the “how” questions in this project: How does the 
workflow of this project look? How will the code be updated and migrated to newer 
software versions? How can the original SOMatic output be exported in the 
GeoJSON format? How can one implement the parallelization of the BMU search? 
How will the integration of SOMatic into a cluster computing system look? 

 

4.1.3 Implementation 
 

This section is focused on implementing the planned steps in the method of 
solution. It explains the applied programming models and code, mostly in the Java 
language. To get a better understanding of the connections and preconditions 
within the software, flowcharts are utilized. The newly added methods are 
repeatedly tested with samples of data to ensure the persistence of its 
functionality. This answers the question: What are the programmed methods that 
are required to achieve the expected functionalities? 

 

4.1.4 Results 
 

The last step is to validate the programmed software and explain its functionalities 
via using data and visualizing it. This will be achieved with running the SOMatic 
Trainer 2.0 using multispectral image data and census data and looking at the time 
and error measurements. Therefore, it should answer following questions: To what 
extent did the usage and performance of SOMatic increase? What is the quality of 
the output? 

 

4.2 Software Upgrade 
 

4.2.1 From Java 6 to Java 8 
 

The original SOMatic Trainer (Spöcklberger, 2013) was developed with Java 6. It 
used the system libraries as well as the Java runtime environment (JRE) of version 
six. The upgrading process is consisting of a change of all the system libraries as 
well as the used JRE to version eight. This can be done within the Eclipse IDE, 
where the library settings of the SOMatic Trainer Project can be modified.  
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After rebuilding the project, the IDE would highlight code that might have to be 
changed in order to be executable with the JRE eight. It is not planned to work 
through the whole code in detail and replace elderly (also called deprecated) code 
with newer classes or methods. The purpose of this migration is to assure that the 
code still runs using the latest libraries and runtime environment. 

 

4.2.2 From Processing 2 to Processing 3 
 

As the SOMatic Trainer library (Spöcklberger, 2013) is also used with Processing, 
it is critical to guarantee its compatibility with the latest Processing version as well. 
The upgraded Java library should still be executable within the Processing 3 IDE 
and code, which represent the latest version at this point in time. After applying 
the Java migration, the Processing migration will be carried out and tested as well. 

 

4.2.3 Code Versioning and Cleanup 
 

The starting point for coding within this project won’t be the latest code version of 
SOMatic but the last one with the needed functionalities. Therefore, it will be 
necessary to walk through earlier versions of the code via the versioning tool 
Apache Subversion (SVN), which was used in the last implementation and will also 
be used in this one. Furthermore, each line of the code will be reviewed and those 
not needed or any unnecessary fragments will be deleted to reduce the size of it. 
Some comments may also be added to make it easier to understand for this 
implementation and possible future projects as well. 

 

4.3 GeoJSON 
 

One key aspect of the software enhancements of SOMatic is to include GeoJSON 
as a secondary output format apart from codebook files. It will be possible to 
visualize the trained SOM as well as the BMUs of this computation without any 
further processing in a browser or Geoinformation program like Quantum GIS 
(QGIS). Additionally, the trained SOM will be reusable as the GeoJSON output will 
be able to serve as input for another SOMatic computation. The reusability of the 
SOMatic output was thus far a bottleneck and will be improved through including 
a functionality to read-in the output in the GeoJSON format, additionally to the 
already existing function to read-in a codebook file. These functions will be 
programmed in additional methods in the Java code within the Eclipse IDE. 
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4.4 Parallelization 
 

4.4.1 Local Parallelization: The BMU Search 
 

The BMU search is a process in the SOM algorithm that is embarrassingly parallel 
as already described in section 2.2 in this thesis. This means, that all available 
computing resources can be used for computation and no communication has to 
take place between them during the process of computing the distance. As the 
SOMatic Trainer (Spöcklberger, 2013) uses a parallelization of the training steps 
and no batch computation, the parallel implementation described by Lawrence et 
al (1999) cannot be applied here.  

A more effective way of searching the BMU can be achieved with a data-partition 
approach, like it is used in the batch computation of the SOM algorithm described 
in section 2.2.3. It is not applicable during training because of the different 
parallelization technique in the SOMatic trainer, but it can be used after the whole 
training process is finished. As input serve the final SOM which gets copied, and 
the input data vectors which get split up equally (or +/- some vectors depending 
on remainder) among the available, or by the user predefined, number of threads 
as shown in Figure 27 for the computation with two threads. The SOM gets copied 
onto both threads into their respective memory. The BMUs are then stored in a 
GeoJSON file, which holds only the BMUs, additionally to the second GeoJSON file 
containing all neurons of the final SOM. So the output of this BMU projection of 
new input vectors on a trained SOM will only consist of one new GeoJSON file 
holding the BMUs for the newly projected data. 

 

 

Figure 27 Example for Data parallelization approach in the BMU search 
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4.4.2 Distributed Parallelization: Cluster Computation in a Network 
 

The following diagrams were created to be able to understand the principle 
components and steps that are behind the distributed computations using SOMatic 
on several machines in a network cluster. The system consists of two main 
components: the master machine, which controls and distributes the whole work 
and the computation nodes, also called “slave machines”. The responsibility of 
each slave is to execute the job, which gets assigned to it. To be able to use this 
cluster, there are several prerequisites considering the software of the machines: 
To run the latest version of JPPF (5.2) it is required to have at least Java 7 as well 
as Apache Ant 1.7 installed and the environment variables in the settings set to 
the root folders of the respective installations. The “JAVA_HOME” variable has to 
point to the java development kit (JDK) installation folder (not to the JRE folder, 
otherwise it will not work) and the “ANT_HOME” variable has to point to the Ant 
installation folder. A copy of the SOMatic library is also needed at each machine. 
Furthermore, the network nodes should all have access to a shared file system to 
eliminate the time and amount that would be needed to transfer the data to and 
from each machine otherwise.  

There are two different scenarios that will be implemented here: In the first one, 
all slaves run SOMatic on the same input data and SOM once and its resulting 
SOMs will then be combined after the computations are finished by the master 
machine. This will be used as an introducing step to JPPF. It is necessary to 
understand the basics behind using such a software to be able to continue with 
further developments. As shown in Figure 28, the steps of the first scenario are 
the following: The first one is to initialize a random SOM based on the input data. 
After that the slave nodes get that SOM as well as the input data and then each of 
them running the algorithm on copies of them, so all of them can do it at the same 
time. The last step is to combine the results. 

 

 

Figure 28 Scenario one of the distributed computation of SOMatic 
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The second scenario involves a random partition of the input data onto each slave 
and a repeated using of the SOMatic algorithm in a certain number of iterations. 
The combined SOM after one iteration serves as input for the next iteration. The 
following Figure 29 describes the second scenario in detail.  

 

Figure 29 Scenario two of the distributed computation of SOMatic 

 

The following workflow displayed in Figure 30 shows how the SOMatic Trainer could 
be integrated into JPPF. It has the same principles as the workflows shown in 
Figure 28 and Figure 29 but is more detailed by including the JPPF architecture 
with jobs and tasks. After executing the first four steps of the Trainer, namely 
reading in the input data, creating the training vectors, normalizing them and 
initializing of the random SOM, the next step is to create tasks and add them to a 
newly created job. The number of tasks should be the same as the number of 
nodes that are usable within the cluster. Until here, everything should be 
performed on the server.  

When the job is executed via typing the command “ant” in the console at the 
location of the application, the tasks are sent to the nodes, which should then 
perform the training of the SOM. In the first scenario, they should only train it 
once by using the whole input data. After the tasks are finished, the SOMs are 
merged to one SOM, which is the final result here. In the second scenario, each 
task gets a different part of the input data assigned for the training. After the job 
is finished, the SOMs get merged and another job as well as new tasks are created, 
which have this time the merged SOM and a different distribution of the training 
data as input. The amount of iterations this process will take can be predefined by 
the user. 
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Figure 30 Workflow of the JPPF Implementation of the SOMatic Trainer 

 

4.5 Software, Tools and Libraries 
 

The main software that will be used within this project is the IDE Eclipse. It is an 
open source software that is widely used for programming, especially within the 
Java development world. Two versions of that software will be used in this project: 
Eclipse Neon in San Diego and Eclipse Oxygen in Villach. To keep a version tracking 
of the programming progress the open source software Apache Subversion (SVN) 
will be used. This is inevitable as the former implementation of the SOMatic Trainer 
(Spöcklberger, 2013) was also using this version tracking tool and therefore this 
project will continue with its usage. Another program that is also open source and 
is going to create the visualizations of the GeoJSON output is a known GIS called 
QGIS. The exact version of that software is 2.12 Lyon. 

In the IDE Eclipse, there is one main tool that helps to control the dependencies 
from the Java code to different libraries. This tool is called Apache Maven and is 
directly implemented within Eclipse. Instead of a Java Project, the code will be 
written in a Maven Project. The dependencies have to be written in an extensible 
markup language (XML) file called project object model (POM).  

It dynamically adds the libraries to the project without having the need to 
download and define the exact path to them in the build-path setting in the Project. 
Figure 31 shows the integration of the Processing library in the POM.xml file. The 
core library with the version 3.2.3 is referenced, as one prerequisite of the upgrade 
of the SOMatic Trainer is to be able to be compatible with Processing 3. 
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As a cluster computation framework JPPF will be used. The version 5.2 will be 
setup locally and on a machine cluster in San Diego, where the implementation 
will be tested on. To be able to execute a JPPF task, Apache Ant is needed as well, 
to be precise at least in the version 1.8 (which was used here). 

 

 

Figure 31 Example of a library dependency in a Maven POM.xml file 

 

Apart from the Processing core library, there are only two other libraries (besides 
the Java system libraries), which are used for this Eclipse project: junit 3.8.1 and 
json-simple 1.1.1. The first one is automatically created in the POM.xml file and 
referenced by Maven. The second one will be needed to create the GeoJSON 
output. 

When it comes to measuring the output SOMs of the SOMatic Trainer, the main 
tool to evaluate its accuracy is the AQE. It computes the difference between the 
attribute values from the input vectors to all their respective BMUs, adds them up 
and divides them by the number of input vectors to get the average. This gives 
also a good indication about how good a SOM describes the input dataset. The 
functionality of computing the AQE is already implemented within the SOMatic 
Trainer.  
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5. Implementation 
 

This chapter describes the performed programming and how the methods are 
applied within this project.  

 

5.1 Working Java Code 
 

Before being able to start with programming the extensions one needs a working 
programming code. A version tracking tool called SVN was used when 
implementing the software and will also continually be in use. Via the command 
“checkout” different revisions where obtained and tested on their functionality in 
Eclipse. These revisions refer to different stages of the code.  

The needed revision should have the same functionality as the jar file that was 
used so far to compute SOMs. To reach that goal, the newest version of the 
SOMatic trainer (where the Java classes were available) was compared with older 
versions. Through investigating the comments, which were written when a new 
revision was uploaded to SVN, it turned out that the needed revision should be 
around 70. After checking several versions, the code that matches the jar file was 
obtained at revision 74. This code served as the basis of this project. 

To be able to handle the libraries in an efficient way, a Maven project was created 
where all the Java classes were imported. Furthermore, the folder structure of the 
classes, also called packages in Eclipse has been adapted so that it is more clear 
which classes are responsible for what part within the Maven project. The needed 
dependencies were added in the pom.xml file, namely the processing core v3.2.3 
and later also the json-simple 1.1.1 libraries. 

 

5.2 GeoJSON Output 
 

As an addition to the codebook file created by the SOMatic trainer, the output is 
also stored in two GeoJSON files. To achieve that, the class  
FileWriter.java was extended with two methods: “writeSomToGeoJson()” and 
“writeBMUstoGeoJson()”. The first one writes the whole SOM, so the neurons with 
their geometry plus the attributes after training into a newly created GeoJSON file. 
It creates the needed JSON objects and arrays and fills them with data retrieved 
from the geometry computation (details see section 5.3) and from the neurons, 
which hold the attribute values.  
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The second method is using the same geometry of the whole SOM but is only 
showing which neuron is the BMU for which input vector. This is done by indicating 
the corresponding input vector(s) in the BMU neurons. Each one of them gets a 
random point within the polygon assigned to it. This is needed in case two or more 
input vectors share the same BMU, so they would not be displayed one above the 
other, but get distinct coordinates assigned to them. Figure 32 shows how the 
polygon coordinates are extracted and written into JSON arrays. This piece of code 
is used in both GeoJSON writing methods. After getting filled with coordinates, the 
double array “cords” is walked over in a for loop, which starts at 0 and increments 
each step by 2 as two following values in that array refer to one coordinate pair of 
one hexagonal corner point. Each coordinate pair is stored in an own JSON array. 
These arrays are then stored in a JSON array called “innerCoords”, which is then 
added to another array called “outerCoords” in the last line in the here represented 
figure. This structure is needed to be able to add for example the points of a hole 
within the polygon, which is defined within the GeoJSON compliances and therefore 
has to be compliant with them. 

 

 

Figure 32 Java code example showing the writing of the polygon coordinates into JSON Arrays 

 

It is also possible to use a codebook file as an input and create a GeoJSON file 
from it. This is implemented in the method “fromCodToGeoJson()”. It reads the 
parameters from the first, the attribute names from the second and the attribute 
values from the following lines in and creates a new SOM out of this data. Then 
this SOM is written to a GeoJSON file using the method “writeSomToGeoJson()”. 
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5.3 Geometry of the Neurons 
 

To compute an exact geometry for the neurons in a 2D coordinate system two 
functions had to be implemented. One function is to place each neuron at an x/y 
position in a coordinate system starting at bottom left and one to create hexagonal 
polygons around these coordinates. This is needed as it should be possible to 
visualize the content of the GeoJSON file immediately without any further 
processing. Basically each neuron is represented as a polygon with a hexagonal 
shape that has a midpoint and six corner points. The distance between two mid 
points of two neighboring neurons is one times the scaling factor, which can be 
defined by the user to enlarge or minimize the size of the visualized SOM.  

The Cartesian point coordinates representing their centroids are computed via 
using the ID of the respective neuron and the size of the SOM on the x-axis. The 
x values are whole numbers starting at zero and going till the number of neurons 
on the x-axis. The y values are harder to compute as they need to be multiplied 
with a factor to fit in between the space of the two neurons below in every second 
row as it can be observed in Figure 33. This factor is one divided by the sinus of 
60. In reference to the following figure, the centroid of the neuron with ID 0 has 
the coordinates (0/0), neuron 1 has (1/0) and neuron 2 (2/0). The neuron with 
the ID 3 in the second row from the bottom has the coordinates (0.5/1*1/sin(60)) 
and neuron 4 is at (1.5/1*1/sin(60)). These exact coordinates are needed in order 
to clearly define the location of the corner points to be able to compute the 
polygonal representation of the SOM correctly. 

 

Figure 33 Hexagonal neuron alignment example with applied numeration 

 

The polygon coordinates, respectively the corner points are basically created based 
on the centroid coordinates via using the rules of 30-60-90 triangles as illustrated 
in Figure 34. The angle of 𝛼 is always 30 and the angle of β always 60 degrees. 
The first edge between 𝛼 and β is always two times the second edge between the 
right angle and β (called x). The third edge between the right angle and 𝛼 is always 
the second edge times the square root of three.  
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These characteristics of this triangle allow it to compute all edges by only knowing 
the length of one of the three without the need of using a sine, cosine or tangent 
function. That makes it easier to implement and helps to reduce the computation 
time. The connection is made via using the third edge, which is half the distance 
between two neighboring neurons, or 0.5 times the scaling factor. 

 

 

Figure 34 Characteristics of a 30-60-90 degree triangle 

 

Figure 35 shows the 30-60-90 degree triangle used in a hexagon. The coordinates 
are computed using mainly two values: the distance from the centroid to an edge, 
which is 0.5 times the scaling factor (s), or x*√3 because the length between the 
centroids of two directly neighboring neurons is always 1*s. This distance is then 
divided by the square root of three to get the distance from a corner point to the 
middle of an edge (x). Then it is just an adding or subtracting of these values from 
the coordinates of the centroid to compute the coordinates of the hexagon starting 
at the top and moving counter-clockwise around. The first point has to be added 
again and the points have to be counter-clockwise in the array to match the 
specifications of the GeoJSON standard format. If the in Figure 35 shown neuron 
has the ID 0, the coordinates with a scaling factor of 2 for point A are (0/1.15), 
for B (-1/0.58), C (-1/-0.58), D (0/-1.15), E (1/-0.58) and F (1/0.58).  
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Figure 35 Usage of the 30-60-90 degree triangle characteristics within a hexagon 

 

5.4 Integration of a parallelized BMU Search after Training 
 

The functionality to apply a BMU search after training was not existent thus far. 
The here mentioned BMU search is not applied during training, but afterwards 
when other data, which was not part of the training data, needs to be projected 
onto a particular SOM. It can exploit the full parallel computation possibilities of 
the machine that is used in this scenario.  

The user can define via a variable how many processors he or she would like to 
use to make a BMU search with the defined dataset onto the trained SOM. This 
option is still available as the setup and initializing of the different processes 
consume some time as well. If the dataset is not that big, it is not necessary to 
initialize many processors.  

This parallelization follows the common data-partition method. The input data is 
read in, normalized and then split up onto a defined number of parts, which 
represents the amount of processors that will be used here. This is easy when 
there is a certain number of input vectors that can be divided by a certain number 
of threads without a remainder, for example having 20,000 input vectors and four 
threads.  



    

51 

  

When there are some remaining input vectors, the code gets a bit more 
complicated. Figure 36 shows the part of the code that handles the division of the 
input data and the issue with a possible remainder. “nTVs” is the number of input 
vectors, which gets divided by the number of threads “nThreads”. That quotient 
gets then saved in the variable “sParts” in line 206. As the data type of “sParts” is 
an integer, it is always a whole number without a remainder. The size of the 
remainder is computed via subtracting the number of input vectors with the 
product of the number of divisions times the number of threads in line 208. The 
parts of the input data get than copied into an array of training vectors in line 212 
stepwise for each thread with the precomputed size and copied into an arraylist 
called “tvParts”, which stores all the parts of the input vectors. The second half of 
the code example is only used when there is a remainder, which is checked in line 
217. In the lines 221 and 222 the last two arrays are removed as there was an 
additional one created in the for-loop with the size of the remainder and the second 
last one will be changed. This array will get the last full share plus the remaining 
training vectors and be added again to the arraylist. This can be observed in the 
lines 224 and 226. 

 

 

Figure 36 Code-excerpt of the parallelized BMU search after training 

 

Every processor walks through its respective part and searches the BMU for each 
input vector. The code for this computation is the same as for the BMU search in 
the training process. The information which neuron is a BMU for which input vector 
is stored in the Neuron Java object and then readout when exported into the BMU 
GeoJSON file. The output of this computation can only be stored in the 
“bmus.geojson” file as it does not change any attributes but shows the BMUs for 
a given set of input vectors on an already trained SOM.  
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5.5 Cluster computing of SOMatic 
 

Before being able to start programming, some prerequisites had to be fulfilled. The 
first step was to get a get a local setup of the needed software, namely JPPF and 
Apache Ant. The build paths for Java and Ant had to be set to the bin folders of 
the named software to be able to run JPPF via the command shell. Once everything 
was setup, the next step was to get the tutorial from JPPF (JPPF.org, 2017) up and 
running locally. This was relatively easy with the help of using the online 
documentation. The code of the tutorial can also serve as a starting point for 
individual development, which was the case here. The tutorial was copied into a 
newly created folder called somatic. 

There were three libraries, which were needed here: processing-core.jar and json-
simple.jar to be able to use the SOMatic Trainer and of course the Trainer itself, 
so somatic_2.0.jar. These three were copied into the lib folder of the JPPF somatic 
project folder. It also contains a source folder with two classes: Task.java and 
Runner.java. The task is created within the runner and sent to the nodes when a 
job is executed. The runner is running on the server and serves as the main control 
class that creates a job and task objects, executes them and processes the 
execution results, which get sent back by the nodes.  

The code itself was setup as explained in Figure 30 in section 4.4.2. It could not 
be tested because the execution did not work at all in the first runs. After several 
error solving, it ran through but did not produce any output. The problems are 
documented and explained at the end of the next section 5.6. 

 
5.6 Challenges/Problems 
 

The first challenge in the implementation phase was to find out which revision from 
SVN was the wanted one to get a starting point for the programming. The most 
recent version was not suitable as it was not rounded up but had unfinished 
functions, which caused the SOMatic trainer to not run through properly. 
Therefore, the decision was made to use that revision as a starting point, which is 
reflected by the jar file used by Dr. Skupin in recent years.  

The first step was to work through the notes provided at each revision to get an 
overview of the implemented functions. As an additional support, the available 
classes in the jar file were compared to those in prior SVN revisions. It turned out 
that the needed classes were available after revision 70. So this one was retrieved 
and tested in Eclipse. The output in the console was compared to the output of 
using the jar file.  
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They were not the same and so the next step was to compare the code itself from 
revision 70 to the newest revision via Tortoise Merge, a tool from SVN to be able 
to make such comparisons. Through a stepwise copying of newer code parts and 
testing them in Eclipse, the wanted functionality should be achievable. This method 
was not working though and therefore, it was thrown over again.  

The next approach to get a working Java code was checking out different revisions 
and running them in Eclipse. Starting at revision 71 and going upwards, each one 
was checked out and tested in Eclipse. Revision 74 turned out to be the one that 
matches exactly the functionality and output of the working jar file. This was 
checked with comparing the processing outputs in the console in Eclipse, as well 
as the resulting codebook files. 

The second bigger challenge was to get the SOMatic trainer output in a GeoJSON 
standardized format like it is explained by Butler (2016). The JSON has to be 
written and organized in a certain way to be able to be GeoJSON compliant. Apart 
from having the needed JSON objects included like “type” or “features”, it also 
matters what is stored in a JSON object and what in a JSON array. The “features” 
contain one JSON array, but the “properties” of the objects within that array are 
only written in one JSON object and cannot be written in an Array. The following 
Figure 37 shows this specification with an example from the spec sheet (Butler, et 
al., 2016). One has to look at the “[” bracket after “features”, which indicates the 
start of a JSON array, whereas the “{” bracket indicates a JSON object.   

 

 

Figure 37 GeoJSON example (Butler, et al., 2016) 

 

 

 

 

 



    

54 

  

 

Another criteria was to write the coordinates of the corner-points of a polygon 
counter-clockwise into the object. This was met with initial issues, but was later 
resolved with some changes in the sequence of the corner-points computation 
within the Java code. Additionally, the first point has to be the same as the last 
point, so the polygon is closed again. This point has to be twice in the array and it 
has to have the same coordinates. 

The work with a cluster computation, where the goal is to achieve a distributed 
computation using different machines turned out to be a bigger challenge than 
expected. What did not come out through the literature research and 
methodological considerations in earlier stages of the project was the need for 
having serializable objects in a distributed environment. Only then it is possible to 
pass Java objects, like a SOM object for example, between the server and the 
nodes. An attempt to fix that was made through adding the “implements 
serializable” at the header of each class but that alone was not enough. After 
writing that piece of code to each class it ran through without an error but the 
training did not work as there were no time differences when changing the 
parameters and the resulting SOMs from the nodes where empty as well. The 
method to control the parameters with using a singleton design pattern in the class 
“Global.java” is not applicable within a distributed environment, where more 
instances would be necessary. 

Due to the prolongation of the implementation of the GeoJSON functionality, there 
was not much time left at the end for solving the issues that came up in the 
programming and testing of the cluster computing functionality. This does not 
mean that the problems were unsolvable but due to a lack of time and the need 
to round the project up and continuing with the thesis itself, it was not possible to 
finish this implementation step. 
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6. Results 
 

Here, the outputs of the project as well as the applying of the SOMatic Trainer 2.0 
onto two test datasets with the creation of a time and quality evaluation are shown 
and explained. 

 

6.1 SOMatic Trainer 2.0 
 

The following Figure 38 displays a class diagram showing the classes that are now 
included in the newly SOMatic Trainer 2.0 as well as their corresponding packages. 
Some classes were renamed and moved into other or newly created packages to 
better fit the overall structure of the Maven project in Eclipse. There are six 
packages containing a total of 16 classes. Newly added were only the two main 
classes “Main” and “TestMain”. The other 14 were already existent in the original 
SOMatic Trainer. Furthermore, not all of the attributes and functions of the 
different classes are included here, only the most important ones. The following 
classes were modified or extended within this project: all classes in the packages 
“org.somatic.entities” and “org.somatic.main” and the classes “SOMatic”, “Global”, 
“FileReader” and “FileWriter”. The other classes were not changed and therefore 
are the same as in version 1.0.  

 

Figure 38 Class diagram of the SOMatic Trainer 2.0 
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The whole project is using the Java runtime engine (JRE) eight and its system 
libraries, meaning it is compatible with the latest Java version, as well as with the 
latest Processing version, which was also tested within the IDE having the same 
name. The class “FileWriter” is now able to export two GeoJSON files. The first 
GeoJSON file contains the neurons after the training is finished. Each neuron is 
represented by one GeoJSON object holding the attribute values as well as the 
geometry of the neuron as a polygon. How the geometry is computed is explained 
in the chapter 5.3. The attribute values are extracted from the trained SOM and 
written alongside its respective attribute name into a GeoJSON object. The second 
GeoJSON output file contains those neurons of the SOM that are the BMU for one 
or more of the input vectors. These neurons are of special interest as they show 
where the input data is located in the trained SOM. This GeoJSON file contains as 
many neuron objects as there are input vectors. The information which neuron is 
the BMU for what input vector is stored in the Neuron object in the code and 
extracted from there. Visualizations of using these GeoJSON output files are shown 
and explained in the following chapters 6.2.1 and 6.2.2. 

The SOMatic Trainer 2.0 allows a projection of data onto an already existing SOM 
via a parallelized BMU search after training. This function is opening the door to 
visualize data that was not part of the training without redoing the whole training 
process. At the end of the chapter 6.2.3 the results of using this functionality on 
test data are shown and explained in detail. The distribution of the computation 
processes onto different machines within a network cluster could not be finished 
within the scope of this project. The progress of the implementation of that part 
and the faced challenges are explained at the end of chapter five and also 
discussed in chapter 7. 
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6.2 Applying SOMatic on Test Data 
 

6.2.1 Carinthian Census Data 
 

The first dataset that is used for visualizing the GeoJSON output is census data 
from the Austrian federal state Carinthia. It has 43 attributes representing various 
categories like size, or number of people in different age and sex categories. There 
are 132 input vectors representing all municipalities inside this dataset. It was also 
used to present the result of the first implementation of the SOMatic Trainer by 
Spöcklberger (2013). The following Figure 39 illustrates the BMU GeoJSON file, 
visualized in QGIS and showing the names of the municipalities. It was trained 
with the following training parameters: neurons on x = 30, neurons on y = 30, 
alpha value = 0.04, radius = 30, iterations in first run = 100000, similarity 
measure = 2, number of threads = 4, rounding = true, scaling factor = 2, training 
runs = 3, iterations in second run = 200000 and iterations in third run = 500000. 
The value 2 at the similarity measure means that the Cosine similarity was 
computed. The radius was decreased in the second run by 50% and in the third 
run by 80%. The machine on which these parameters were applied and that 
created the visualizations has 16 gigabyte of RAM and an Intel Xeon E5-1603 
processor with four cores and threads and 2.8 GHz.  

The in Figure 39 shown SOM represents a part of the content of the 
“bmus.geojson” output file, which is created by the SOMatic Trainer. What it is not 
showing is the ID and the vector count of each neuron. Every neuron knows for 
which and how many input vectors it is the BMU. Apart from adapting the colors 
and displaying the input vector names, nothing else was changed after the 
GeoJSON file was loaded into QGIS. There are two things that can be mentioned 
here from just looking at the result. The first one is the fact that cities like 
Klagenfurt, Villach and Wolfsberg are in the top-right region of the SOM. Therefore, 
they are different from the other municipalities, which can easily be explained by 
their bigger size in population. The second thing that can be pointed out here is 
the closeness of the municipalities Trebesing and Kleblach-Lind on the left outline 
of the displayed SOM. They are both smaller municipalities in two different valleys 
but have apparently a lot in common. 
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Figure 39 Carinthian census data: BMU GeoJSON visualization from QGIS 

 

 

The next two figures will show visualizations from the distribution of two attribute 
values over the SOM. Figure 40 visualizes the distribution of an attribute giving 
the ratio of the Austrian citizens within each municipality. The classification method 
is natural breaks and it uses eight classes. One can identify a general decrease in 
the ratio of Austrian citizens when moving from bottom-left and left to top-right. 
This can be explained by the fact that cities, located in the top-right of the SOM, 
are usually more international than rural areas. Almost a complete inversion of the 
colors of the neurons can be observed when looking at the attribute that describes 
the ratio of non-EU citizens displayed in Figure 41. Again eight classes and the 
natural breaks classification method were used to create this visualization.  
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Figure 40 Carinthian census data: Distribution of ratio of Austrian citizens 

 

Figure 41 Carinthian census data: Distribution of ratio of non-EU citizens 
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6.2.2 Multispectral Image Data 

 
The second dataset, which was used here in order to run the SOMatic Trainer and 
test its capabilities is multispectral image data. It is derived from the Landsat 
Thematic Mapper and consists of six color bands for three different years (1993, 
2003 and 2013) always taken in April. The region, where the images were taken, 
is situated in the north of San Diego and called Batiquitos Lagoon. The following 
figure shows the three images in their true colors. Multispectral data can be used 
to detect and visualize changes in a better way. One can see on these three images 
going from left to right that the man-made objects like houses are increasing, 
especially in the top-right region of the images. 

 

 

Figure 42 True color images from the Batiquitos Lagoon in the North of SD showing this region in 
April 1993 (left), 2003 (middle) and 2013 (right) 

 

Looking at the multispectral data, the first band represents the blue spectral 
channel with a wavelength of 0.45 to 0.52 micrometers, the second one the green 
channel with a wavelength of 0.52 to 0.6 and the third one the red channel with a 
wavelength of 0.63 to 0.69, the fourth one the near infrared going from 0.76 to 
0.9, the fifth one the shortwave infrared one from 1.55 to 1.75 and the sixth band 
containing the shortwave infrared two with a wavelength from 2.08 to 2.35. This 
makes 18 attributes for each of the 90955 pixels of which these images consist. 
Each band was normalized to a scale from zero to one, where the lowest value 
becomes a zero and the highest one a one.  
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This dataset was only used for testing the computation times and quality 
measurements of the SOMatic Trainer, which is described in the following chapter 
6.2.3. It would be possible for example to create GeoJSON visualizations from it 
and use them together with the input pixels to make the changes within the 
different time slices visible, but this analyzation was out of the scope of this 
project. 

 

6.2.3 Quality and Performance Evaluation 
 

When it comes to the quality and correctness of a SOM, there are several methods 
that one could use to measure them. If some characteristics of the input data are 
already known in advance, then they can be used as a rough measure, as also 
Spöcklberger (2013) was mentioning in his thesis when he was using the same 
data source. Looking at the Carinthia census data again, the two biggest cities 
Klagenfurt and Villach are quite different from the other municipalities because 
they have about 60.000 and 100.000 inhabitants, which is more than six times of 
the mean of the other ones. So these two cities have to be somehow close to each 
other in the resulting SOM, which is the case in the given visualizations shown in 
6.2.1. Another measure for the quality of a SOM is the AQE. The following  

Table 2 shows the number of the run, the needed computation time in milliseconds 
and the AQE value for ten runs using the same parameters as described at the 
begin of chapter 6.2.1. The time includes the training of the SOM, the computation 
time for the AQE and the time it needs to write the three output files, so the two 
GeoJSON and the codebook file. The mean values show an average runtime of 
almost 54 seconds with an average AQE of 0.00137. The table and also the 
diagrams following later on have commas instead of points because of the German 
Microsoft Office software. The differences in the time and AQE values between the 
different test runs are quite low because the machine to run SOMatic was not 
running any other program than Eclipse. 
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nRun	 Time	 AQE	
1	 54973	 0,001270532	
2	 53576	 0,001464563	
3	 53596	 0,001306308	
4	 53651	 0,001645782	
5	 54148	 0,001288336	
6	 53638	 0,001289085	
7	 53591	 0,001678092	
8	 53425	 0,001388482	
9	 53984	 0,001338515	
10	 53928	 0,001060707	

Mean	 53851	 0,00137304	
 

Table 2 Mean of the computation time (in ms) and AQE for ten computation runs using the 
Carinthia census data 

 

When the AQE values are compared to the results of Spöcklberger (2013) using 
the same data, there is a significant decrease form the former computation to the 
one presented here. It is not known which parameters he was using, so this might 
be the reason why they are different. Spöcklberger was also comparing the AQE 
values he got with SOMatic to the ones from SOM_PAK. The lowest value is at 0.11 
when using SOMatic with four threads using 10 million training runs. The here 
shown values were computed by using 800,000 training runs in three training 
steps. This shows that the AQE is quite low meaning the quality of the output SOM 
is relatively high.  

The next tests with the Carinthian census data were done with the same 
parameters, except for the number of threads, which was changed to one, two, 
four, six, eight and sixteen. The computation time and AQE was measured again. 
For using six and more threads, the machine had to be changed in order to be able 
to test it properly. A server in CUAS was used, which has two Intel Xeon E5-2620 
v4 CPUs with 2.10 GHz and eight cores each allowing to run 32 threads in parallel. 
In theory, it should be possible to run 32 threads with this hardware but only up 
to 16 threads could be used in Eclipse. Each thread number was run ten times. 
The mean values out of these computations were used to create most diagrams in 
this section. For some visualizations, the median had to be used as the mean would 
have been influenced by some outliers, which were most likely caused by some 
background computations on the server.  
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Figure 43 visualizes the computation time in milliseconds with the corresponding 
speedup for six different numbers of threads. When looking at the blue line, one 
can see a clear decrease in the computation time with an increase in the number 
of threads. This decrease is higher at the beginning but slowing down with 
increasing numbers of threads. When using one thread the training took 280558 
milliseconds, which is about four minutes and 41 seconds but with sixteen threads, 
the time was reduced to 26 seconds. The grey line is showing the time speedup in 
percent in reference to the usage of one thread. The biggest step is from one to 
two threads with almost 60 percent speedup. The highest speedup in the test runs 
could be achieved with sixteen threads, where it is at 91 percent. The curve is 
getting smoother with a higher number of threads and will presumably go down 
again as the time of setting up the threads and creating the partitions is also 
increasing. The drop in the speedup, respectively the increase in the computation 
time from four to six threads lies behind the change of the machine. This could by 
caused by a slower processor in the server compared to the local machine when 
using a lower number of threads. The connection to the server was established via 
a local machine but this should not have a negative effect on the computation time 
as this was measured in Eclipse running at the server.  

 

 

Figure 43 Computation time and speedup for Carinthian census data 
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The following Figure 44 shows the computation times as well as the relative 
changes in the AQE for a different number of threads. The blue line shows again 
the computation times. The orange line shows the AQE. In general, it is increasing 
apart from an outlier at four threads. When the AQE for one thread is used as a 
reference value, the AQE increases about ten percent at eight threads and about 
21 percent at 16 threads. In absolute values, all AQEs are three digits behind the 
comma but nevertheless this shows that the AQE is increasing with a rise of the 
number of threads using the same parameters and input data.  

 

 

Figure 44 Computation time and AQE difference for Carinthian census data 
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All computations with the second dataset, the multispectral data, were run using 
the server at CUAS. The applied parameters are listed at the end of the prior 
chapter 6.2.2. To get a more detailed result considering the computation time, this 
value was split up into two values for the training: the training time itself and the 
total time, which contains also the computation of the AQE and the writing to the 
three output files. The time for the BMU search after training was split up into 
three values: the BMU search time, the AQE search time and the time for the 
writing of the “bmus.geojson” file.  

When testing the time and error for the multispectral data, one, four, eight and 
sixteen threads were used ten times each. To use the BMU projection after training 
and compare the results, the same multispectral input data was split up into two 
parts: one part containing one fifth (18191 vectors) and the other part the 
remaining four fifth (72764 vectors) of the original dataset.  

These two datasets where created programmatically via Java and have an evenly 
distributed content. The bigger dataset was trained using SOMatic with the 
following parameters: neurons on x = 270, neurons on y = 270, alpha value = 
0.04, radius = 270, iterations in first run = 10000, similarity measure = 2, number 
of threads = 4, rounding = true, scaling factor = 2, training runs = 3, iterations in 
second run = 20000 and iterations in third run = 50000. After the training, the 
smaller dataset was projected onto the output SOM of the training using the 
parallelized BMU search. All computations were run on the server.  
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The following diagram shows the computation time split up into the training plus 
the computation of the AQE and the writing as well as the speedup for the bigger 
part of the multispectral data. The training time is significantly decreasing with a 
higher number of threads, which corresponds to an increase in the speedup. 
Compared to one thread, which represents a serial computation, the speedup 
increases almost 66 when using four, 79 when using eight and 87 percent when 
using sixteen threads. There is almost no change in the AQE plus writing time due 
to the fact that these values are mostly reliable on the size of the input data. The 
total time that the SOMatic Trainer took to create the output files and compute the 
AQE are then the blue and green values combined for each thread. This means for 
one thread, the mean runtime was 1069851 milliseconds, or almost 18 minutes. 

 

 

Figure 45 Computation times and speedup for bigger part of the multispectral data 
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The second value that differs with the thread number is the AQE. Figure 46 
visualizes the relative AQE difference compared to the usage of one thread as well 
as the training time again as a reference. In relative values, the rise of the AQE is 
quite significant with an increase of 166.58 percent when using four and up to 
242.46 percent when using sixteen threads. This means that the output SOM when 
using 16 threads is almost two and a half times worse than the output when using 
a serial computation according to the AQE. In absolute values, the differences are 
three or two digits behind the comma. Compared to the results for the Carinthia 
census data, this is a much higher decrease in quality, which can partially be 
explained by using the factor of ten less training steps for each of the three training 
runs. Nevertheless, it is showing that the quality of the SOM is decreasing when 
the number of threads is increasing. 

 

 

Figure 46 Training time and AQE difference for bigger part of multispectral data 
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The next figures look at the time and quality values for the projection of the smaller 
part of the multispectral data onto the SOM created by the bigger part. The first 
one shows the median values for the four different thread numbers for the BMU 
search time and the speedup of this computation step. As a reminder, this is only 
the time for the BMU search, so the computation time for the AQE and the writing 
of the output file is not included in this value. This diagram is using median values 
because the mean would get distorted by some values, which were way different 
from most of the others. This could be due to some activity on the server at the 
background. The BMU computation time can be significantly decreased via 
increasing the number of threads. Via applying a parallelization on 16 threads, the 
search time could be reduced by about 86 percent. The difference between eight 
and 16 threads is quite small because of the already low times of around ten and 
a bit under nine seconds. As already mentioned it also takes time to setup a thread 
pool and start the threads from there, meaning that the time differences decrease 
if the ratio between data size (18191 vectors in this case) and number of threads 
decreases as well. This implies that the grey curve will presumably go down and 
the blue curve go up again if the level of parallelization would be further increased 
here. 

 

 

Figure 47 Median BMU search time and speedup for smaller part of multispectral data 
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When looking at the orange line showing the AQE change in the BMU computations 
displayed in Figure 48, one can see that it grows with a higher number of threads. 
When compared to the changes in Figure 46 though, an increase in parallelization 
here does not harm the quality of the result of the projection too much. In fact, 
the quality shrinks between a serial computation and using four threads by about 
one fourth, but does not decrease much more when increasing the thread number 
to eight or sixteen.  

 

Figure 48 Median BMU search time and AQE difference for smaller part of multispectral data 

The computation times for the AQE as well as the writing of the output files are 
not visualized specifically because they did not have a big fluctuation range within 
the test runs, apart from one outlier, which has as already mentioned presumably 
something to do with background computations on the server.  

 

6.3 Cluster Computation 
 

It was planned to have a cluster computation project that could run the SOMatic 
Trainer on a simple basis on different network clusters having the prerequisites 
setup and running. Actually, there is no implemented result in the cluster 
computation as it could not be finished as explained in 5.5 and 5.6. The output 
here are the architecture and workflows described in 4.4.2 and through continuing 
with the explained implementation steps, it should be achievable to get the 
SOMatic Trainer up and running in a JPPF cluster computing environment. 
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7. Discussion and Conclusion 
 

The first research question how the output of SOMatic can be more useful for 
further usage (in the GIS world) can be answered with the integration of the 
GeoJSON component. The SOMatic trainer is in respect to the literature review for 
this project the first SOM implementation, which is able to import and export 
GeoJSON. There exists another one that can use JSON as input and output (Zasso, 
2016) but not the geographic version of it. To integrate that functionality was of 
high importance within this implementation as GeoJSON is a standardized format 
by the Internet Engineering Task Force (IETF) and easy to integrate in GI-
applications as well as web applications and other software. The XML format could 
have served as another solution but it lacks the geographic part. With GeoJSON it 
is easy to store and extract geographic features like points, lines, or polygons. The 
objects can be visualized in a GIS or web interface together with their respective 
attributes quite easily. As the background of the project member and the advisors 
lies in the GIS world, the decision to use GeoJSON instead of any other data store 
format was made with ease. The visualizations of the census data show that this 
data format is suited as an additional output format for the SOMatic Trainer.  

To be able to apply the integration of the GeoJSON output directly into a GIS or 
web interface the geometry is stored as polygons. This increases the size of the 
GeoJSON by a significant amount, as for each neuron not only one coordinate pair 
has to be stored (the mid-point) but seven (six corner points plus the first one 
again so the polygon is closed). The geometry for the “bmus.geojson” file is even 
bigger because it stores not only the whole output SOM as polygons, but also the 
point coordinates for each input vector in its respective BMU. The purpose of this 
implemented structure is for the output to be usable immediately without further 
processing or computations. This is the reason why the neurons of the SOM are 
stored as polygons and not as points or why the input vectors also have 
coordinates assigned to them and not just the ID of the corresponding BMU.  

The second and third research questions refer to how SOMatic could be integrated 
into a cluster computing network and what the threshold is beyond which it is 
better to train SOMs with SOMatic within a cluster network than on one machine 
These two cannot be answered to full satisfaction, or not at all. The cluster 
computation functionality is worked out in theory and described via diagrams and 
two scenarios. The first scenario is rather for testing purposes and does not 
necessarily lead to an increase in the quality of the SOM as without a data 
partitioning, the slaves can eventually find different BMUs for the same data 
vector. This could lead to a total different evolution of the attribute vectors of the 
neurons and therefore, the output SOM itself can also look differently. 
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Via the usage of a data partition method, the second scenario is certainly applicable 
since it has already been described in several best practice examples (Skupin, et 
al., 2013) (Yang & Ahuja, 1999). Unexpected events and a prolonged 
implementation of the prior programming steps lead to the fact that the cluster 
computation could not be finished within this project. The JPPF framework turned 
out to be more complex and the main issue is centered about the way the SOMatic 
trainer is implemented with using a global class to have access to and control all 
parameters throughout the whole training process. To be able to function in a 
cluster environment, the objects need to be serializable on the one hand, and not 
dependent onto one class on the other hand. In the first version it was not intended 
to use the SOMatic Trainer in a distributed environment. JPPF can only handle 
serializable traffic within its architecture. Sending objects like a SOM in Java was 
thus not possible. More robust software and compatibility testing in earlier stages 
of the project or more time at the end would have been possible solutions to be 
able to develop a strategy to work around the problems that came up considering 
the SOMatic Trainer and JPPF. 

The fourth research question about the right balance factor between computation 
time and quality of the output SOM is answered with the diagrams in the section 
6.2.3. Depending on the data size and available time, one can argue about a higher 
or lower level of parallelization during the training of the SOM. What comes out 
undoubtedly is the clear time decrease when applying parallelization. The speedup 
for all three test scenarios were about 90 percent when using 16 threads compared 
to a serial computation, which is a significant decrease in computation time. When 
looking at the quality, the AQE can serve as a good indicator for the correctness 
of the output SOM. The results show that its value is in a direct proportion to the 
number of threads. When looking at the census data, the increase was far lower 
than compared to the test runs of the multispectral data (20 compared to 242 
percent). This would imply that a higher amount of training runs has a diminishing 
effect on the increase of the AQE over a higher number of threads.  

As more training runs cause a more similar output SOM compared to the input 
data and the AQE computes the average difference between them, this diminishing 
effect should definitely be considered when opting for a good balance factor 
between quality and time. The quality should therefore be able to uphold when 
increasing the number of training runs with the number of threads at the same 
time. More quality measuring tools though would be helpful for further analyzation 
of the correctness of a SOM. Furthermore, not all possible thread numbers were 
tested. The intermediate values for the non-visualized thread numbers are 
therefore unknown, but would presumably lie in between the computed values. 
When it comes to projecting new data onto an existing SOM via the BMU search 
after training, the results show that the quality, visualized through the AQE, suffers 
less from an increase in parallelization.  
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The integration of the BMU search after training into SOMatic 2.0 is helpful as it 
allows to visualize data that was not part of the training. It can be very useful in a 
working deployment that consists of large SOMs to be able to track and monitor 
movement (changes) in a hyperspectral space. The projection of 25 percent of the 
original data size used to train the SOM as shown in Figure 48 produces a relative 
increase of the AQE of 31.31 percent when a serial computation is compared to a 
parallel one with using sixteen threads. This increase is way lower than the rise of 
the error in training, which lies at 242.46 percent for sixteen threads. It shows 
that applying this technique does not cause a big loss in quality when compared 
to the quality decrease if the thread numbers are increased in the training. This of 
course can only be stated as true for the applied size of the test data. If the ratio 
between the data to project and the trained data is too high, or the vectors are 
too different, the quality would supposedly suffer more. 

The SOMatic Trainer 2.0 is exploiting the parallelization functionality using the 
conventional SOM training on one machine to its maximum, as also the BMU 
projection is integrated and parallelized. The batch training on the other hand, 
described in section 2.2.2, is not used in the 2.0 version as it was not part of the 
goals in this project. The advantages of this SOM training computation though, 
especially when looking at the simpler parallelization of the batch processes are 
definitely not to underestimate. An integration of this computation form would not 
have been possible within the scope of this project but should definitely be 
considered in the implementation of a SOMatic Trainer 2.1 or 3.0. It is not sure, if 
a parallelized batch training is faster than the parallelization as it is implemented 
in 2.0 but what can definitely not occur in a batch training is the issue with two or 
more threads trying to update the same neuron at the same time if the updates 
are then performed sequentially. If they should also be performed in parallel, this 
possible latency could occur as well but as this weight update is only performed 
once per batch, it might not be needed to parallelize the update. 

Within this project, the programming language number one was Java as the 
SOMatic Trainer, as well as JPPF are written in this language. This is rather different 
to other SOM implementations, where hardware-closer programming languages 
like C++ (Wittek, et al., 2016) are used. The main reason why this one is written 
in Java is the fact, that the knowledge of the people who use it and the people who 
wrote and extended it is highest in the Java world. The argument, that hardware-
closer programming languages might be faster performance wise can be countered 
by the exploited speed-ups, which can be achieved by using different 
parallelization techniques.  
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The starting point was not to create diagrams for a new application to program but 
an already existing piece of software that meant to be updated and extended. That 
is quite different to a task where you have to start from scratch and has some 
advantages but also disadvantages. One could say that it is easier, because you 
have already a working program but that also comes with a limitation on the 
technologies that you would like to apply and integrate in your project. 

8. Future Work 
 

In a possible SOMatic 3.0 implementation, it would be very convenient to add to 
the conventional algorithm the batch version (described in section 2.2.2) because 
of two main reasons: it is faster and also easier to parallelize. The user of the 
library could then choose which computation method she or he wants to use and 
could maybe also compare the results of them. Another part of a future extension 
would be to restructure the class structure and parameter usage within the 
SOMatic Trainer as with the current usage of the class Global.java, it is not possible 
to integrate it directly into a cluster computation system. The parallelization on 
one machine is with an integration of the batch computation already heavily 
exploited. Therefore, to achieve a further speed up and be able to process more 
data, the structure has to be rethought and changed. This could be achieved for 
example with a more object oriented approach, which would allow to have several 
SOM objects and therefore computations within the same Java code. 

The split up of the computation times in the results show that the computation of 
the AQE is directly proportional to the data size. The AQE could easily be 
parallelized as well through applying a data partition approach in its 
implementation. Each thread could compute the sum of the differences between 
the input vectors and their corresponding BMUs in attribute space for its part of 
the data and these values would then be summed up and averaged at the end 
giving the final AQE for the whole SOM. As it only computes the difference in 
attribute space, this computation is also embarrassingly parallel. That means in 
this case the full parallelization of a local machine could be used and the output 
will not suffer any quality loss through an increased parallelization. Alongside with 
the AQE, a second or third technique to rate the quality of an output SOM like the 
topographic product or the topographic error (Pölzlbauer, 2004) would be of 
interest as well. What was not tested in the evaluation of this project were the 
effects of different parameters onto the quality using two or more data sets of the 
same type. With the integration of more quality measurements, the results when 
testing different parameters would probably lead to a better understanding of 
which parameter setting fits which data size the most. 
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Another parallelization technique for the BMU search, which came up through the 
literature search and was thought through in the conceptual phase but not 
implemented afterwards is described in Figure 49. The neurons of the SOM can be 
split up evenly on the threads that will be used in the BMU search. Each thread 
can then compute the BMU for its set of neurons and the winner neuron is found 
by computing the minimum of these local BMUs. It was not implemented because 
as of the current way parallelization works in the SOMatic Trainer (through dividing 
the training steps as described in section 3.3.1) each thread would then need to 
create at least one other thread to be able to distribute the neurons among these 
two or more threads. It would be of interest to implement that parallelization 
technique in a batch version of the SOM algorithm and compare it with a data 
partitioning approach in respect to which of the two methods is faster or slower 
and more or less accurate. The following figure shows the workflow to implement 
a parallel BMU search in the training process of the SOMatic trainer for one input 
vector using a SOM with 150 neurons. 

 

 

Figure 49 Workflow of parallel BMU search in the training process of SOMatic 

 

The current GeoJSON SOM output of the SOMatic Trainer is always stored as 
polygons. If the user of that software does not need polygons but still wants to 
make use of the GeoJSON output, it would be nice to store the neurons only as 
points to minimize the data size. One step further would be to provide three 
options: a GeoJSON output with polygons, a GeoJSON output with points and a 
pure JSON output without any geometry. This would help to enlarge the possible 
fields of application for the SOMatic JSON output.  
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