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1 Summary

My work during my research stay at the University of Texas at Austin led to the
following two publications at top-level venues in the field of automated reasoning:

Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere:

Short Proofs Without New Variables.

In: Proceedings of the 26th International Conference on Automated Deduction
(CADE-26). LNCS, vol. 10395, pp. 130-147. Springer, Cham (2017).

Benjamin Kiesl, Marijn J.H. Heule, and Martina Seidl:

A Little Blocked Literal Goes a Long Way.

In: Proceedings of the 20th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2017). LNCS, vol. 10491, pp. 281-297. Springer,
Cham (2017).

The first of these two papers won the best paper award of the CADE-26 confer-
ence. The two papers are given below. Here, I want to discuss my contributions.
Since many of the results have been obtained in discussions where several authors
contributed ideas, it is not possible to associate every part of the papers with a
single author. In both papers, the introductions, preliminaries and conclusions
were basically written together by all authors.

In the first paper—Short Proofs Without New Variables—we introduce novel
redundancy notions for SAT solving. We relate these new notions to theoretical
concepts from the literature and illustrate the efficiency of proof systems that
are based on these notions. I wrote most of the Sections 3-5. All authors devel-
oped the ideas for Sections 3 and 4—where we introduce the new redundancy
notions—together, but I came up with the formal proofs for our theoretical re-
sults. The main idea of Section 5, in which we show how proof systems based
on our redundancy notions yield short proofs for the well-known pigeon hole
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formulas, is due to Marijn Heule. The evaluation in Section 6 was done by Mar-
ijn Heule while the rest of Section 6, in which we establish the computational
complexity of our new methods, was written together by Marijn Heule and me.
I wrote most parts of Section 7 (Related Work) although most of the ideas for
this section were developed by all three authors together.

In the second paper—A Little Blocked Literal Goes a Long Way—we clar-
ify the relationship between two proof systems for quantified Boolean formulas
by proving that the QRAT proof system can polynomially simulate the long-
distance-resolution proof system. The relationship between the two proof sys-
tems was not clear before and it was an open question in the research commu-
nity whether or not a polynomial simulation like ours is possible. The idea for
the whole simulation was developed jointly by all three authors. I wrote most
parts of Sections 3-5, in which we introduce our simulation and prove that it
is correct and that it is polynomially bounded. The evaluation in Section 6 was
written together by all three authors although most of the work has been done
by Marijn Heule and me. Martina Seidl contributed the framework—which she
had already implemented in earlier projects—for the implementation of the tool
(1d2grat) that we presented and evaluated in Section 6. I modified Martina
Seidl’s framework accordingly to obtain this tool. Finally, I also performed a re-
gression analysis to show that our empirical evaluation confirms our theoretical
results.



Short Proofs Without New Variables*
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Abstract. Adding and removing redundant clauses is at the core of
state-of-the-art SAT solving. Crucial is the ability to add short clauses
whose redundancy can be determined in polynomial time. We present a
characterization of the strongest notion of clause redundancy (i.e., ad-
dition of the clause preserves satisfiability) in terms of an implication
relationship. By using a polynomial-time decidable implication relation
based on unit propagation, we thus obtain an efficiently checkable redun-
dancy notion. A proof system based on this notion is surprisingly strong,
even without the introduction of new variables—the key component of
short proofs presented in the proof complexity literature. We demon-
strate this strength on the famous pigeon hole formulas by providing
short clausal proofs without new variables.

1 Introduction

Satisfiability (SAT) solvers are used for determining the correctness of hardware
and software systems [1,2]. It is therefore crucial that these solvers justify their
claims by providing proofs that can be independently verified. This holds also
for various other applications that use SAT solvers. Just recently, long-standing
mathematical problems were solved using SAT, including the Erd6s Discrepancy
Problem [3] and the Pythagorean Triples Problem [4]. Especially in such cases,
proofs are at the center of attention, and without them, the result of a solver is
almost worthless. What the mathematical problems and the industrial applica-
tions have in common, is that proofs are often of considerable size—in the case
of the Pythagorean Triples Problem about 200 terabytes. As the size of proofs is
influenced by the strength of the underlying proof system, the search for shorter
proofs goes hand in hand with the search for stronger proof systems.

In this paper, we introduce highly expressive clausal proof systems that are
closely related to state-of-the-art SAT solving. Informally, a clausal proof system
allows the addition of redundant clauses to a formula in conjunctive normal
form (CNF). Here, a clause is considered redundant if its addition preserves
satisfiability. If the repeated addition of clauses allows us finally to add the
empty clause—which is, by definition, unsatisfiable—the unsatisfiability of the
original formula has been established.

* This work has been supported by the National Science Foundation under grant
CCF-1526760 and the Austrian Science Fund (FWF) under project W1255-N23.



Since satisfiability equivalence is not efficiently decidable, practical proof sys-
tems only allow the addition of a clause if it fulfills some efficiently decidable
criterion that ensures redundancy. For instance, the popular DRAT proof sys-
tem [5], which is the de-facto standard in practical SAT solving, only allows the
addition of so-called resolution asymmetric tautologies [6]. Given a formula and
a clause, one can decide in polynomial time whether the clause is a resolution
asymmetric tautology with respect to the formula and therefore the soundness
of DRAT proofs can be efficiently checked.

We present new redundancy criteria by introducing a characterization of
clause redundancy based on a simple implication relationship between formu-
las. By replacing the logical implication relation in this characterization with
stronger notions of implication that are computable in polynomial time, we then
obtain powerful redundancy criteria that are still efficiently decidable. We show
that these redundancy criteria not only generalize earlier ones like the above-
mentioned resolution asymmetric tautologies or set-blocked clauses [7], but that
they are also related to other concepts from the literature, namely autarkies [8],
safe assignments [9], variable instantiation [10], and symmetry breaking [11].

Proof systems based on our new redundancy criteria turn out to be highly
expressive, even without the introduction of new variables. This is in contrast
to resolution, which is considered relatively weak as long as one does not allow
the introduction of new variables via definitions as in the stronger proof system
of extended resolution [12,13]. The introduction of new variables, however, has
a major drawback: the search space of variables and clauses one could possibly
add to a proof is infinite, even when bounding the size of clauses. Finding useful
clauses with new variables is therefore hard in practice, although there have been
a few successes in the past [14,15].

We illustrate the strength of our strongest proof system by providing short
clausal proofs for the famous pigeon hole formulas without introducing new
variables. The size of the proofs is linear in the size of the formulas and the
longest clauses in the proofs have length two. In these proofs, we add redundant
clauses that are similar in nature to symmetry-breaking predicates [11,16]. To
verify the correctness of proofs in our new system, we implemented a proof
checker. The checker is built on top of DRAT-trim [5], the checker used to validate
the unsatisfiability results of the recent SAT competitions [17]. We compare our
proofs with existing proofs of the pigeon hole formulas in other proof systems
and show that our new proofs are much smaller and cheaper to validate.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), which
are defined as follows. A literal is either a variable = (a positive literal) or the
negation Z of a variable x (a negative literal). The complementary literal | of a
literal [ is defined as [ = T if | = 2 and [ = «x if | = Z. Accordingly, for a set L
of literals, we define L = {l |l € L}. A clause is a disjunction of literals. If not
stated otherwise, we assume that clauses do not contain complementary literals.



A formula is a conjunction of clauses. We view clauses as sets of literals and
formulas as sets of clauses. For a set L of literals and a formula F', we define
Fr={C e F|CnNL#0}. We sometimes write F; to denote Fy;.

An assignment is a partial function from a set of variables to the truth values
1 (true) and 0 (false). An assignment is total w.r.t. a formula if it assigns a truth
value to every variable occurring in the formula. A literal [ is satisfied (falsified)
by an assignment « if  is positive and a(var(l)) = 1 (a(var(l)) = 0, respectively)
or if it is negative and a(var(l)) = 0 (a(var(l)) = 1, respectively). We often
denote assignments by the sequences of literals they satisfy. For instance, =%
denotes the assignment that assigns « to 1 and y to 0. A clause is satisfied by
an assignment « if it contains a literal that is satisfied by «. Finally, a formula
is satisfied by an assignment « if all its clauses are satisfied by «. A formula is
satisfiable if there exists an assignment that satisfies it. Two formulas are logically
equivalent if they are satisfied by the same assignments. Two formulas F' and F’
are satisfiability equivalent if F is satisfiable if and only if F’ is satisfiable.

We denote the empty clause by L and the satisfied clause by T. Given an
assignment « and a clause C, we define C'|oq = T if « satisfies C, otherwise C'|
denotes the result of removing from C' all the literals falsified by «. Moreover,
for a formula F', we define F'|oo = {C|a | C € F and Cla # T}. We say that
a clause C blocks an assignment « if C' = {z | a(z) = 0} U{Z | a(z) = 1}. A
unit clause is a clause that contains only one literal. The result of applying the
unit clause rule to a formula F is the formula F'|q with « being the assignment
that satisfies exactly the unit clauses in F'. The iterated application of the unit
clause rule to a formula, until no unit clauses are left, is called unit propagation.
If unit propagation yields the empty clause 1, we say that it derived a conflict.

By F E F’, we denote that F implies F’, i.e., all assignments satisfying F'
also satisfy F’. Furthermore, by F' 1 F’ we denote that for every clause C' € F’,
unit propagation of the negated literals of C' on F derives a conflict (thereby, the
negated literals of C' are viewed as unit clauses). For example, z Ay 1 (xVz) Ay,
since unit propagation of the unit clauses T and Z derives a conflict with x, and
propagation of 7 derives a conflict with y. Similarly, F' Fq F’ denotes that every
clause in F’ is subsumed by (i.e., is a superset of) a clause in F. Observe that
F D F' implies F o F', F ¢ F' implies F 1 F', and F 1 F’ implies F E F”.

3 Clause Redundancy and Clausal Proofs

In this section, we introduce a formal notion of clause redundancy and demon-
strate how it provides the basis for clausal proof systems. We start by introducing
clause redundancy [7]:

Definition 1. A clause C' is redundant w.r.t. a formula F if F and F U {C}
are satisfiability equivalent.

For instance, the clause C' = z V y is redundant w.r.t. F' = {Z V 7} since F' and
FU{C} are satisfiability equivalent (although they are not logically equivalent).
Since this notion of redundancy allows us to add redundant clauses to a formula
without affecting its satisfiability, it gives rise to clausal proof systems.



Definition 2. A proof of a clause Cy, from a formula F is a sequence of pairs
(Cr,w1), ..., (Cywm), where each C; (1 <1i < m) is a clause that is redundant
w.r.t. FU{C; |1 <j <i}, and this redundancy can be efficiently checked using
the (arbitrary) witness w;. If C,,, = L, the proof is a refutation of F.

Clearly, since every clause-addition step preserves satisfiability, and since the
empty clause is unsatisfiable, a refutation certifies the unsatisfiability of F' due
to transitivity. Note that the w; can be arbitrary witnesses (they can be assign-
ments, or even left out if no explicit witness is needed) that certify the redun-
dancy of C; wrt. FU{C; |1 < j < i}, and by requiring that the redundancy
can be efficiently checked, we mean that it can be checked in polynomial time
w.r.t. the size of FU{C; |1 < j <i}.

By specifying in detail what kind of redundant clauses—and corresponding
witnesses—one can add to a proof, we obtain concrete proof systems. This is
usually done by defining an efficiently checkable syntactic criterion that guaran-
tees that clauses fulfilling this criterion are redundant. A popular example for
a clausal proof system is DRAT [5], the de-facto standard for unsatisfiability
proofs in practical SAT solving. DRAT allows the addition of a clause if it is a
so-called resolution asymmetric tautology [6] (RAT, defined in the next section).
As it can be efficiently checked whether a clause is a RAT, and since RATs cover
a large portion of redundant clauses, the DRAT proof system is very powerful.

The strength of a clausal proof system depends on the generality of the
underlying redundancy criterion. We say that a redundancy criterion R, is more
general than a redundancy criterion R if, whenever R identifies a clause C' as
redundant w.r.t. a formula F, then R, also identifies C' as redundant w.r.t. F.
For instance, whenever a clause is subsumed in some formula, it is a RAT w.r.t.
that formula. Therefore, the RAT redundancy criterion is more general than
the subsumption criterion. In the next section, we develop redundancy criteria
that are even more general than RAT. This gives rise to proof systems that are
stronger than DRAT but still closely related to practical SAT solving.

4 Clause Redundancy via Implication

In the following, we introduce a characterization of clause redundancy that re-
duces the question whether a clause is redundant w.r.t. a certain formula to a
simple question of implication. The advantage of this is that we can replace the
logical implication relation by stronger, polynomially decidable implication re-
lations to derive powerful redundancy criteria that are still efficiently checkable.
These redundancy criteria can then be used to obtain highly expressive clausal
proof systems.

Our characterization is based on the observation that a clause in a CNF
formula can be seen as a constraint that blocks those assignments falsifying
the clause. Therefore, a clause can be safely added to a formula if it does not
constrain the formula too much. What we mean by this, is that after adding the
clause, there should still exist other assignments (i.e., assignments not blocked



by the clause) under which the formula is at least as satisfiable as under the
assignments blocked by the clause. Consider the following example:

Ezample 1. Let F = {xVy, xVz, TVyV z} and consider the (unit) clause
C' = z which blocks all assignments that assign x to 0. The addition of C' to F
does not affect satisfiability: Let « = T and w = z. Then, F|q = {y, 2z} while
Fl|w = {y V z}. Clearly, every satisfying assignment of F'|q is also a satisfying
assignment of F'|w (i.e., F|aF F|w). Thus, F is at least as satisfiable under w
as it is under . Moreover, w satisfies C. The addition of C' does therefore not
affect the satisfiability of F. O

This motivates the characterization of clause redundancy we introduce next.
Note that for a given clause C, “the assignment « blocked by C” can be a partial
assignment, meaning that C' actually rules out all assignments that extend «:

Theorem 1. Let F' be a formula, C' a clause, and « the assignment blocked
by C. Then, C is redundant w.r.t. F if and only if there exists an assignment w
such that w satisfies C and F|a E F|w.

Proof. For the “only if” direction, assume that F' and F'U{C} are satisfiability
equivalent. If F'|q is unsatisfiable, then F'|o F F'|w for every w, hence the
statement trivially holds. Assume now that F'|q is satisfiable, implying that F
is satisfiable. Then, since F' and FU{C'} are satisfiability equivalent, there exists
an assignment w that satisfies both F' and C'. Since w satisfies F', it holds that
Flo=0andso FlaE F|w.

For the “if” direction, assume that there exists an assignment w such that
w satisfies C and F'|q F F'|w. Now, let v be a (total) assignment that satisfies
F and assume it falsifies C. As « falsifies C, it coincides with « on var(a).
Therefore, since vy satisfies F', it must satisfy F'|q and since F'|o F F'|w it must
also satisfy F'|w. Now, consider the following assignment +':

o (z) = {w(x) if x € var(w),

" |7(z) otherwise.

Clearly, since w satisfies C, v also satisfies C. Moreover, as + satisfies F'|, and
var(Flw) C var(y) \ var(w), v satisfies F. Hence, + satisfies F'U {C'}. O

This alternative characterization of redundancy allows us to replace the logical
implication relation by stronger polynomially decidable relations. For instance,
we can replace the condition F'|o F F'|w by the stronger condition F'|a 1 F'|w
(likewise, we could also use relations such as “ky” or “2” instead of “I-;”). Now,
if we are given a clause C—which implicitly gives us the blocked assignment a—
and a witnessing assignment w, then we can check in polynomial time whether
Fla b1 Flw, implying that C' is redundant w.r.t. F. We can therefore use this
implication-based redundancy notion to define proof systems. A proof is then a
sequence (C1,w1),. .., (Cp,wn) where the w; are the witnessing assignments.
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Fig. 1. Landscape of Redundancy Notions. SAT-EQ stands for all redundant clauses
and EQ for implied clauses. A path from X to Y indicates that X is more general
than Y. The asterisk (*) denotes that the exact characterization implies the shown one,
e.g., for every set-blocked clause, the property F'|a D F|ay holds, but not vice versa.

In the following, we use the propagation-implication relation “F;” to define
the redundancy criteria of (1) literal-propagation redundancy (LPR), (2) set-
propagation redundancy (SPR), and (3) propagation redundancy (PR). Basically,
the three notions differ in the way we allow the witnessing assignment w to differ
from the assignment « blocked by a clause. The more freedom we give to w, the
more general the redundancy notion we obtain. We show that LPR clauses—the
least general of the three—coincide with RAT. For the more general SPR clauses,
we show that they generalize set-blocked clauses (SET) [7], which is not the case
for LPR clauses. Finally, PR clauses are the most general ones. They give rise to
an extremely powerful proof system that is still closely related to CDCL-based
SAT solving. The new landscape of redundancy notions we thereby obtain is
illustrated in Fig. 1. In the figure, RUP stands for the redundancy notion based
on reverse unit propagation [18,19], S stands for subsumed clauses, RS for clauses
with subsumed resolvents [6], and BC for blocked clauses [20,21].

As we will see, when defining proof systems based on LPR (e.g., the DRAT
system) or SPR clauses, we do not need to add the explicit redundancy witnesses
(i.e., the witnessing assignments w) to a proof. In these two cases, a proof can
thus just be seen as a sequence of clauses. A proof system based on SPR clauses
can therefore have the same syntax as DRAT proofs, which makes it “downwards
compatible”. This is in contrast to a proof system based on PR clauses where, at
least in general, we have to add the witnessing assignments to a proof, otherwise
we cannot check the redundancy of a clause in polynomial time.

We start by introducing LPR clauses. In the following, given a (partial) as-
signment « and a set L of literals, we denote by «j the assignment obtained



from « by flipping the truth values of the literals in L. If L contains only a single
literal [, then we write a; to denote a;.

Definition 3. Let F be a formula, C' a clause, and o the assignment blocked
by C. Then, C is literal-propagation redundant (LPR) w.r.t. F if it contains a
literal | such that Fla b1 Flay.

Ezample 2. Let F ={zVy, VTV z TVz}andlet C be the unit clause x.

Then, « = Z is the assignment blocked by C, and «, = x. Now, consider
Fla ={y, yV 2z} and F|a, = {z}. Clearly, F'|a F1 F|a, and therefore C is
literal-propagation redundant w.r.t. F'. O

The LPR definition is quite restrictive, as it requires the witnessing assignment
o to disagree with o on exactly one variable. Nevertheless, this already suffices
for LPR clauses to coincide with RATs [6]:

Definition 4. Let F be a formula and C a clause. Then, C is a resolution
asymmetric tautology (RAT) w.r.t. F if it contains a literal | such that, for
every clause D € Fj, F k1 CU(D\ {1}).

Theorem 2. A clause C is literal-propagation redundant w.r.t. a formula F if
and only if it is a resolution asymmetric tautology w.r.t. F.

Proof. For the “only if” direction, assume that C'is LPR w.r.t. F', i.e., it contains
a literal [ such that F'|a F1 F|o;. Now, let D € F;. We have to show that
F Iy CU(D\{1}). First, note that F | is exactly the result of propagating the
negated literals of C' on F (i.e., applying the unit clause rule with the negated
literals of C' but not performing further propagations). Moreover, since o falsifies
1, it follows that D|q; C (D \ {l}). But then, since F|q 1 D|qy, it must hold
that F -y CU (D \ {I}), hence C is a RAT w.r.t. F.

For the “ if” direction, assume that C' is a RAT w.r.t. F, i.e., it contains
a literal [ such that, for every clause D € F;, F 1 C U (D \ {l}). Now, let
Dla; € F|o, for D € F. We have to show that F'|q 1 D|qy. Since «; satisfies
[ and « falsifies C';, D does neither contain [ nor any negations of literals in C'
except for possibly I. If D does not contain I, then D|q = D |y is contained in
F|q and hence the claim immediately follows. Assume therefore that [ € D.

As argued in the proof for the other direction, propagating the negated literals
of C' (and no other literals) on F yields F'|q. Therefore, since F -1 CU(D\ {l})
and D\ {l} does not contain any negations of literals in C' (which could otherwise
be the reason for a unit propagation conflict that only happens because of C
containing a literal whose negation is contained in D\ {I}), it must be the case
that F|o F1 D\ {I}. Now, the only literals of D\ {I} that are not contained in
D|q; are the ones falsified by «, but those are anyhow not contained in F'|q. It
follows that F'|o b1 D|qq and thus C is LPR w.r.t. F. O

By allowing the witnessing assignments to disagree with oz on more than only one
literal, we obtain the more general notion of set-propagation-redundant clauses:



Definition 5. Let F' be a formula, C a clause, and a the assignment blocked
by C. Then, C is set-propagation redundant (SPR) w.r.t. F if it contains a
non-empty set L of literals such that Fla b1 Flay,-

Ezample 8. Let F = {zVy, tVyVz, TVz TVu, uwVz} C=xVu, and
L = {x,u}. Then, « = Zu is the assignment blocked by C, and oy, = z u. Now,
consider F'la={y, 7V z} and F|q; = {z}. Clearly, F|la 1 F|a; and so C is
set-propagation redundant w.r.t. F'. Note also that C is not literal-propagation
redundant w.r.t. F. O

Since L is a subset of C, we do not need to add it (or the assignment ar)
explicitly to an SPR proof. By requiring that L must consist of the first literals
of C' when adding C to a proof (viewing a clause as a sequence of literals), we
can ensure that the SPR property is efficiently decidable. For instance, when a
proof contains the clause I V --- V [,,, we first check whether the SPR property
holds under the assumption that L = {l;}. If not, we proceed by assuming
that L = {l1,l2}, and so on until L = {ly,...,1,}. Thereby, only linearly many
candidates for L need to be checked. In contrast to LPR clauses and RATs, the
notion of SPR clauses generalizes set-blocked clauses [7]:

Definition 6. A clause C is set-blocked (SET) by a non-empty set L C C' in a
formula F' if, for every clause D € Fy, the clause (C'\ L) U LU D contains two
complementary literals.

To show that set-propagation-redundant clauses generalize set-blocked clauses,
we first characterize them as follows:

Lemma 3. Let F' be a clause, C a formula, L C C' a non-empty set of literals,
and « the assignment blocked by C'. Then, C is set-blocked by L in F if and only
if, for every D € F, D|o =T implies D|ay = T.

Proof. For the “only if” direction, assume that there exists a clause D € F such
that D|o = T but D|ay # T. Then, since o and o, disagree only on literals
in L, it follows that D contains a literal [ € L and therefore D € Fr. Now, af,
falsifies exactly the literals in (C'\ L) U L and since it does not satisfy any of the
literals in D, it follows that there exists no literal [ € D such that its complement
[ is contained in (C'\ L) U L. Therefore, C' is not set-blocked by L in F.

For the “if” direction, assume that C' is not set-blocked by L in F, i.e., there
exists a clause D € - such that (C'\ L)ULUD does not contain complementary
literals. Clearly, D|q = T since « falsifies L and DNL # ). Now, since D contains
no literal [ such that [ € (C'\ L) U L and since oy, falsifies exactly the literals in
(C\ L) UL, it follows that oy, does not satisfy D, hence D|a; # T. o

Theorem 4. If a clause C is set-blocked by a set L in a formula F, it is set-
propagation redundant w.r.t. F.

Proof. Assume that C' is set-blocked by L in F. We show that F'|o 2 Flay,
which implies that F'|q F1 F'|ag, and therefore that C is set-propagation re-
dundant w.r.t. F. Let D|a; € F|qy. First, note that D cannot be contained



in Fy, for otherwise D|q; = T and thus D|ay ¢ F|ay. Second, observe that
D can also not be contained in Fy, since that would imply that D|o = T and
thus, by Lemma 3, D|qy = T. Therefore, D ¢ F1, U Fr and so D|a = D|ay.
But then, D|q; € Fl|a. It follows that F'|a 2 F|ay. O

We thus know that set-propagation-redundant clauses generalize both resolu-
tion asymmetric tautologies and set-blocked clauses. Since there exist resolution
asymmetric tautologies that are not set-blocked (and vice versa) [7], it follows
that set-propagation-redundant clauses are actually a strict generalization of
these two kinds of clauses.

By giving practically full freedom to the witnessing assignments, i.e., by only
requiring them to satisfy C, we finally arrive at propagation-redundant clauses,
the most general of the three redundancy notions:

Definition 7. Let F be a formula, C' a clause, and « the assignment blocked
by C. Then, C is propagation redundant (PR) w.r.t. F' if there exists an assign-
ment w such that w satisfies C and F|a b1 F|w.

Ezample 4. Let F ={xVy, TVy, TVz}, C =z, and let w = x z be the wit-
nessing assignment. Then, o = T is the assignment blocked by C. Now, consider
Fla ={y} and F|w = {y}. Clearly, unit propagation with the negated literal
7 of the unit clause y € F'|w derives a conflict on F'|q. Therefore, F|a 1 Flw
and so C is propagation redundant w.r.t. F'. Note that C is not set-propagation
redundant because for L = {z}, we have a = z and so F'|q; contains the two
unit clauses y and z, but it does not hold that F'|¢ 1 z. The fact that w satisfies
z is crucial for ensuring propagation redundancy. O

Since the witnessing assignments w are allowed to assign variables that are not
contained in C, we need—at least in general—to add them to a proof to guaran-
tee that redundancy can be efficiently checked. In the next section, we illustrate
the power of a proof system that is based on the addition of PR clauses.

5 Short Proofs of the Pigeon Hole Principle

In a landmark paper, Haken [13] showed that pigeon hole formulas cannot be
refuted by resolution proofs that are of polynomial size w.r.t. the size of the
formulas. In contrast, by using the stronger proof system of extended resolution,
Cook [22] proved that one can actually refute pigeon hole formulas in polynomial
size. What distinguishes extended resolution from general resolution is that it
allows for the introduction of new variables via definitions. Cook showed how
the introduction of such definitions helps to reduce a pigeon hole formula of size
n to a pigeon hole formula of size n — 1 over new variables. The problem with
the introduction of new variables, however, is that the search space of possible
variables—and therefore clauses—that could be added to a proof is infinite.

In this section, we illustrate how a clausal proof system that allows the ad-
dition of PR clauses can yield short proofs of pigeon hole formulas without the



need for introducing new variables. This shows that a proof system based on PR
clauses is strictly stronger than the resolution calculus, even when we forbid the
introduction of new variables. To recap, a pigeon hole formula PHP,, intuitively
encodes that n pigeons have to be assigned to n — 1 holes such that no hole con-
tains more than one pigeon. In the encoding, a variable z; j intuitively denotes
that pigeon i is assigned to hole k:

PHP,, .= /\ ($i71 VeV xi,n—l) A /\ /\ (f@k \/fj7k)

1<i<n 1<i<j<n 1<k<n—1

Clearly, pigeon hole formulas are unsatisfiable. The main idea behind our ap-
proach is similar to that of Cook, namely to reduce a pigeon hole formula PHP,,
to the smaller PHP,, ;. The difference is, that in our case, PHP,,_; is still de-
fined on the same variables as PHP,,. Therefore, reducing PHP, to PHP, 1
boils down to deriving the clauses ;1 V- -V ;o for 1 <i<n-—1.

Following Haken [13], we use array notation for clauses: Every clause is rep-
resented by an array of n columns and n — 1 rows. An array contains a “4”
(“2”) in the i-th column and k-th row if and only if the variable z;j occurs
positively (negatively, respectively) in the corresponding clause. Representing
PHP,, in array notation, we have for every clause z; 1 V-V z; ,,—1, an array in
which the i-th column is filled with “+”. Moreover, for every clause T; ; V Zj i,
we have an array that contains two “~” in row k—one in column ¢ and the other
in column j. For instance, PHP, is given in array notation as follows:

1234 1234 1234 1234
1|+ 1 + 1 + 1 +
2+ 21 + 2 + 2 +
3+ 3 + 3 + 3 +
1234 1234 1234 1234 1234
1|—- 1|— - 1 1 1
2 2 2| —— 2 2
3 3 3 3] - - 3 -

We illustrate the general idea for reducing a pigeon hole formula PHP,, to the
smaller PHP,,_1 on the concrete formula PHP,. It should, however, become clear
from our explanation that the procedure works for every n > 1. If we want to
reduce PHP, to PHP3, we have to obtain the following three clauses:

1234 1234 1234
1|+ 1 + 1 +
2+ 2 + 2 +
3 3 3

We can do so, by removing the “4+” from the last row of every column full of “+”,
except for the last column, which can be ignored as it is not contained in PHPj.
The key observation is, that a “+” in the last row of the i-th column can be
removed with the help of so-called “diagonal clauses” of the form T; ,,—1 V ZTp 1
(1 <k <n-—2). We are allowed to add these diagonal clauses since they are, as
we will show, propagation redundant w.r.t. PHP,,. The arrays below represent
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the diagonal clauses to remove the “4” from the last row of the first (left), second
(middle), and third column (right):

1234 1234 1234 1234 1234 1234

1 1 1 1 1 1
2 2 - 2 2 - 2 2 —
3 3|— 3 3 - 3 3

We next show how exactly these diagonal clauses allow us to remove the bottom
“4” from a column full of “4+”, or, in other words, how they help us to remove
the literal x; ,—1 from a clause ;1 V-V 2; ,—1 (1 <4 < n —1). Consider, for
instance, the clause 221 V 222 V x2 3 in PHP,. Our aim is to remove the literal
22,3 from this clause. Before we explain the procedure, we like to remark that
proof systems based on propagation redundancy can easily simulate resolution:
Since every resolvent of clauses in a formula F' is implied by F', the assignment
a blocked by the resolvent must falsify F' and thus F'|o b1 L. We explain our
procedure textually before we illustrate it in array notation:

First, we add the diagonal clauses D; = T2 3V T4, and Dy = Ta 3V Ty to
PHP,. After this, we can derive the unit clause Tz 3 by resolving the two diagonal
clauses Dy and D, with the original pigeon hole clauses Py = T2 3 V 74,3 and
Py =141VT42Vay3 as follows: We resolve Dy with P, to obtain Zp 3V 4 2VTya 3.
Then, we resolve this clause with Dj to obtain T3 3 V 4,3, which we resolve with
Py to obtain T3 3. Note that our proof system actually allows us to add 733
immediately without carrying out all the resolution steps explicitly. Finally, we
resolve To 3 with x2 1 V 222 V 22,3 to obtain the desired clause z2 1 V 22 2.

We next illustrate this procedure in array notation. We start by visualizing
the clauses D1, Do, P;, and P, that can be resolved to yield the clause T 5. The
clauses are given in array notation as follows:

1234 1234 1234 1234 1234
1 - 1 1 1 + 1
2 2 - 2 2 + 2
3| - 3| - 3 - - 3 + 3| —
D, D, Py P To3

We can then resolve Ty 3 with 21 V 222 V 22 3 to obtain z2 1 V 222!

1234 1234 1234
1 1] + 1| +
2 21 + 21 +
3| - 3| + 3

T2,3 T21V T22V T3 T21V T22

This should illustrate the general idea of how to reduce a clause of the form
i1 V.. Zip—1 (1 <i<mn-—1)toaclause x;1V...2;,—2. By repeating this
procedure for every column ¢ with 1 < i < n — 1, we can thus reduce a pigeon
hole formula PHP,, to a pigeon hole formula PHP,_; without introducing new
variables. Note that the last step, in which we resolve the derived unit clause
To,3 with the clause x21 V 222 V 23 3, is actually not necessary for a valid PR
proof of a pigeon hole formula, but we added it to simplify the presentation.
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It remains to show that the diagonal clauses are indeed propagation redun-
dant w.r.t. the pigeon hole formula. To do so, we show that for every assignment
O = T; p—1 T,k that is blocked by a diagonal clause Z; ,—1 V@, i, it holds that for
the assignment w = T; ,—1 Tk Tik Tn,n-1, PHPp|o = PHP,, |w, implying that
PHP, |a k1 PHP, |w. We also argue why other diagonal and unit clauses can be
ignored when checking whether a new diagonal clause is propagation redundant.

We again illustrate the idea on PHP,. From now on, we use array notation
also for assignments, i.e., a “4” (“=”) in column ¢ and row k denotes that the
assignment assigns 1 (0, respectively) to variable x; ;. Consider, for instance, the
diagonal clause Dy = Tz 3 V Tg o that blocks oo = 23 x4,2. The corresponding
witnessing assignment w = T 3T42 T2,2 T4,3 can be seen as a “rectangle” with

two “~” in the corners of one diagonal and two “+” in the other corners:
1234 1234 1234
1 1 1
2 - 2 + 2 + -
3| - 3R 5y
Do o w

To see that PHP4|q and PHP,|w coincide on clauses ;1 V -+ V & n_1,
consider that whenever v and w assign a variable of such a clause, they both
satisfy the clause (since they both have a “4” in every column in which they
assign a variable) and so they both remove it from PHPy. For instance, in the
following example, both a and w satisfy z2 1 V2 2V 22 3 while both do not assign

a variable of the clause x31 V 232 V 23 3:

1234 1234 1234 1234
1 + 1 +
20+ 2 +
3 + 3 +
T2,1 VX222V X2,3 3,1V T32V X33 e’ w

To see that PHP4|o and PHP,|w coincide on clauses of the form Z;  V T 1,
consider the following: If « falsifies a literal of T; ; V @, then the resulting
clause is a unit clause for which one of the two literals is not assigned by «
(since o does not assign two variables in the same row). Now, one can show that
the same unit clause is also contained in PHP,|w, where it is obtained from
another clause: Consider, for example, again the assignment oo = 293242 and
the corresponding witnessing assignment w = Ty 3 T4,2 2,2 4,3 from above. The
assignment « turns the clause C' = T3 2 V Ty 2 into the unit clause C'|a = T3 2.
The same clause is contained in PHP,|w, as it is obtained from C’ = T35 V T3 2
since C'|w = C'|a = T3 2:

1234 1234 1234 1234

1 1
2 + 2 -—
3R 3

la=C"w c’ w
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CNF Formula DIMACS File PR Proof File Lemmas

P cnf 12 22 -3 -10 -3 -10 1 12 O 5173 \/54’1

T1,1 VZ12V2T1,3 1 2 30 -3 -11 -3 -11 2 12 O T13V Ta2
T21 VT2V T23 4 5 60 -3 0 T1,3

r31VT32VT33 7 8 990 -6 -10 -6 -10 4 12 O To3 V Ta

Ta1V Ta2V Ta3 10 11 12 0 -6 -11 -6 -11 5 12 O T2,3 V Ta2
Z1,1V T2,1 -1 -4 0 -6 0 T23

T1,2V T22 -2 -5 0 -9 -10 -9 -10 7 12 O T33 V Ta

Z1,3V T2,3 -3 =6 0 -9 -11 -9 -11 8 12 O T3,3 V Ta2
Z1,1V T3,1 -1 -7 0 -9 0 73,3
Z1,2V T32 -2 -8 0 -2 0 T1,2
T13V7T33 -3 -9 0 -5 0 T2,
0 1

Fig. 2. Left, ten clauses of PHP, using the notation as elsewhere in this paper and next
to it the equivalent representation of these clauses in the DIMACS format used by SAT
solvers. Right, the full PR refutation consisting of clause-witness pairs. A repetition of
the first literal indicates the start of the optional witness.

Note that diagonal clauses and unit clauses that have been derived earlier
can be ignored when checking whether the current one is propagation redundant.
For instance, assume we are currently reducing PHP, to PHP,_i. Then, the
assignments o and w under consideration only assign variables in PHP,,. In
contrast, the unit and diagonal clauses used for reducing PHP,,+1 to PHP,, (or
earlier ones) are only defined on variables outside of PHP,,. They are therefore
contained in both PHP, | and PHP, |w. We can also ignore earlier unit and
diagonal clauses over variables in PHP,,, i.e., clauses used for reducing an earlier
column or other diagonal clauses for the current column: Whenever « assigns
one of their variables, then w satisfies them and so they are not in PHP,, |w.

Finally, we want to mention that one can also construct short SPR proofs
(without new variables) of the pigeon hole formulas by first adding SPR clauses
of the form T; ,—1 V Ty V T4k V Ty n—1 and then turning them into diagonal
clauses using resolution. We left these proofs out since they are twice as large as
the PR proofs and their explanation is less intuitive. For DRAT, we consider it
unlikely that such proofs exist.

6 Evaluation

We implemented a PR proof checker? on top of DRAT-trim [5]. Fig. 3 shows the
pseudo code of the checking algorithm. The first “if” statement is not necessary
but significantly improves the efficiency of the algorithm. The worst-case com-
plexity of the algorithm is O(m?), where m is the number of clauses in a proof.
The reason for this is that there are m iterations of the outer for-loop and for

4 The checker, benchmark formulas, and proofs are available at
http://www.cs.utexas.edu/~marijn/pr/
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PRcheck (CNF formula F; PR proof (C1,w1),..., (Cm,wm))
foric {i,...,m} do
for D € I do
if D|w; # T and (D|a; =T or D|w,; C D]q;) then
if F'|q; ¥1 D|w; then return failure
F.=FuJ {CZ}
return success

Fig. 3. Pseudo Code of the PR-Proof Checking Algorithm.

each of these iterations, the inner for-loop is performed |F'| times (i.e., once for
every clause in F'). Given that F' contains n clauses at the start of the algorithm,
we know that the size of F' is bounded by m +n (the original n clauses of F plus
the m clauses of the proof that are added to F' by the algorithm). It follows that
the inner for-loop is performed m(m+n) times. Now, there is a unit propagation
test in the inner if-statement: If k is the maximal clause size and m + n is an
upper bound for the size of the formula, then the complexity of unit propagation
is known to be at most k(m + n). Hence, the overall worst-case complexity of
the algorithm is bounded by m(m + n)k(m + n) = O(m3).

This complexity is the same as for RAT-proof checking. In fact, the pseudo-
code for RAT-proof checking and PR-proof checking is the same apart from the
first if-statement, which is always true in the worst case, both for RAT and
PR. Although the theoretical worst-case complexity makes proof checking seem
very expensive, it can be done quite efficiently in practice: For the RAT proofs
produced by solvers in the SAT competitions, we observed that the runtime of
proof checking is close to linear with respect to the sizes of the proofs.

Moreover, we want to highlight that verifying the PR property of a clause
is relatively easy as long as a witnessing assignment is given. For an arbitrary
clause without a witnessing assignment, however, we conjecture that it is an NP-
complete problem to decide whether the clause is PR. We therefore believe that in
general, the verification of PR proofs is simpler than the actual solving/proving.

The format of PR proofs is an extension of DRAT proofs: the first numbers
of line 7 denote the literals in C;. Positive numbers refer to positive literals, and
negative numbers refer to negative literals. In case a witness w; is provided, the
first literal in the clause is repeated to denote the start of the witness. Recall that
the witness always has to satisfy the clause. It is therefore guaranteed that the
witness and the clause have at least one literal in common. Our format requires
that such a literal occurs at the first position of the clause and of the witness.
Finally, 0 marks the end of a line. Fig. 2 shows the formula and the PR proof of
our running example PHP;.

Table 1 compares our PR proofs with existing DRAT proofs of the pigeon
hole formulas and of formulas from another challenging benchmark suite of the
SAT competition that allow two pigeons per hole. For the latter suite, PR proofs
can be constructed in a similar way as those of the classical pigeon hole formulas.
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Table 1. The sizes (in terms of the number of variables and clauses) of pigeon hole
formulas (top) and two-pigeons-per-hole formulas (bottom) as well as the sizes and
validation times (in seconds) for their PR proofs (as described in Section 5) and their
DRAT proofs (based on symmetry breaking [23]).

input PR proofs DRAT proofs
formula | #var  #cls #var F#cls time | #var F£cls time
holel0.cnf 110 561 110 385 0.7 440 3,685 0.22
holell.cnf 132 738 132 506  0.18 572 5,236 0.23
holel12.cnf 156 949 156 650  0.19 728 7,228 0.27
holel3.cnf 182 1,197 182 819 0.21 910 9,737 0.34

hole20.cnf | 420 4,221| 420 2,870 0.0] 3,080 49,420  2.90
hole30.cnf | 930 13,981 930 9455 257 9920 234,205  6l.ss
holed0.cnf | 1,640 32,841| 1,640 22,140 13.54] 22,960 715,040 623.29
hole50.cnf | 2,550 63,801| 2,550 42,925 T7l.72| 44,200 1,708,925 3,158.17

tph8.cnf 136 5,457 136 680 0.32| 3,520 834,963 5.47
tph12.cnf 300 27,625 300 2,300 1l.s1| 11,376 28,183,301 1,396.92
tphl6.cnf 528 87,329 528 5,456 11.16| not available, too large
tph20.cnf 820 213,241 820 10,660 61.69| not available, too large

Notice that the PR proofs do not introduce new variables and that they contain
fewer clauses than their corresponding formulas. The DRAT proof of PHP,
contains a copy of the formula PHPj, for each k < n. Checking PR proofs is also
more efficient, as they are more compact.

7 Related Work

In this section, we shortly discuss how the concepts in this paper are related
to variable instantiation [10], autarkies [8], safe assignments [9], and symmetry
breaking [11]. If, for some literal [, it is possible to show F'|] F F'|{, then variable
instantiation, as described by Andersson et al. [10], allows to assign the literal
in the formula F' to 1. Analogously, we identify the unit clause [ as redundant.

As presented by Kleine Biining and Kullmann [8], an assignment w is an
autarky for a formula F' if it satisfies all clauses of F' that contain a literal to
which w assigns a truth value. If an assignment w is an autarky for a formula F,
then F' is satisfiability equivalent to F'|w. Similarly, propagation redundancy PR
allows us to add all the unit clauses falsified by an autarky, with the autarky
serving as a witness: Let w be an autarky for some formula F, C' = [ for a literal
[ falsified by w, and « the assignment blocked by C. Notice that F'|o 2 F'|w
and thus C is propagation redundant w.r.t. F.

According to Weaver and Franco [9], an assignment w is considered safe if,
for every assignment a with var(a) = var(w), it holds that F|q E F|w. If an
assignment w is safe, then F'|y is satisfiability equivalent to F'. In a similar fash-
ion, our approach allows us to block all the above-mentioned assignments o # w.
Through this, we obtain a formula that is logically equivalent to F'|w. Note that
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safe assignments generalize autarkies and variable instantiation. Moreover, while
safe assignments only allow the application of an assignment w to a formula F
if F'la E F|w holds for all assignments a # w, our approach enables us to block
an assignment « as soon as F'|q F F'|w.

Finally, symmetry breaking [11] can be expressed in the DRAT proof sys-
tem [23] but existing methods introduce many new variables and duplicate the
input formula multiple times. It might be possible to express symmetry breaking
without new variables in the PR proof system. For one important symmetry, row-
interchangeability [16], the symmetry breaking using PR without new variables
appears similar to the method we presented for the pigeon hole formulas.

8 Conclusion

Based on an implication relation between a formula and itself under different
partial assignments, we obtain a clean and simple characterization of the most
general notion of clause redundancy considered in the literature so far. Replac-
ing the implication relation by stronger notions of implication, e.g., the super-
set relation or implication through unit propagation, gives then rise to various
polynomially checkable redundancy criteria. One variant yields a proof system
that turns out to coincide with the well-known DRAT, while we conjecture the
proof systems produced by the other two variants to be much more powerful.
We showed that these more general variants admit short clausal proofs for the
famous pigeon hole formulas, without the need to introduce new variables. Ex-
periments show that our proofs are much more compact than existing clausal
proofs and also much faster to check. Our new proof systems simulate many
other concepts from the literature very concisely, including autarkies, variable
instantiation, safe assignments, and certain kinds of symmetry reasoning.

Interesting future work includes the separation of our new proof systems
from the DRAT proof system on the lower end and from extended resolution
on the upper end, under the additional restriction that our proof systems and
DRAT do not introduce new variables. The relation to extended resolution is a
particularly interesting aspect from the proof complexity point of view. Other
open questions are related to the space and width bounds of the smallest PR
proofs, again without new variables, for well-known other hard problems such as
Tseitin formulas [12,24] or pebbling games [25]. On the practical side, we want
to implement a formally verified proof checker for PR proofs. Moreover, we want
to pursue some preliminary ideas for automatically generating short PR proofs
during actual SAT solving: Our initial plan is to enumerate unit and binary
clauses and to add them to a formula if they are propagation redundant. We
already have a prototype implementation which is able to find short proofs of
pigeon hole formulas, but we are still searching for efficient heuristics that help
solvers with finding short PR clauses in general formulas.
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A Little Blocked Literal Goes a Long Way*

Benjamin Kiesl', Marijn J.H. Heule?, and Martina Seidl3

! Institute of Information Systems, Vienna University of Technology
2 Department of Computer Science, The University of Texas at Austin
3 Institute for Formal Models and Verification, JKU Linz

Abstract. Q-resolution is a generalization of propositional resolution
that provides the theoretical foundation for search-based solvers of quan-
tified Boolean formulas (QBFs). Recently, it has been shown that an
extension of Q-resolution, called long-distance resolution, is remarkably
powerful both in theory and in practice. However, it was unknown how
long-distance resolution is related to QRAT, a proof system introduced
for certifying the correctness of QBF-preprocessing techniques. We show
that QRAT polynomially simulates long-distance resolution. Two simple
rules of QRAT are crucial for our simulation—blocked-literal addition and
blocked-literal elimination. Based on the simulation, we implemented a
tool that transforms long-distance-resolution proofs into QRAT proofs.
In a case study, we compare long-distance-resolution proofs of the well-
known Kleine Biining formulas with corresponding QRAT proofs.

1 Introduction

Quantified Boolean formulas (QBF) [19] extend propositional formulas with ex-
istential and universal quantifiers over the propositional variables. These quanti-
fiers lead to increased expressiveness, which makes QBF attractive for reasoning
problems in areas such as formal verification and artificial intelligence [3].

To obtain a better understanding of the strengths and limitations of dif-
ferent QBF-solving approaches, their underlying proof systems have been ex-
tensively analyzed, providing a comprehensive proof-complexity landscape for
QBF [6,10,9,4,16]. Two kinds of proof systems have received particular atten-
tion: instantiation-based proof systems [5, 6], which provide the foundation for
expansion-based solvers like RAReQS [18], and resolution-based proof systems [16,
20,26, 1,24,2,7,17,23], which provide the foundation for search-based solvers
like DepQBF [22]. Apart from these, also sequent systems have been studied [10,
8]. There is, however, another practically useful proof system—quite different
from the aforementioned ones—whose place in the complexity landscape was
still unclear: the QRAT proof system [15].

The QRAT proof system is a generalization of DRAT [25] (the de-facto stan-
dard for proofs in practical SAT solving) that has its strengths when it comes

* This work has been supported by the Austrian Science Fund (FWF) under projects
W1255-N23 and S11408-N23, and by the National Science Foundation (NSF) under
grant number CCF-1618574.



to preprocessing: Many QBF solvers use preprocessing techniques to simplify
a QBF before they actually evaluate its truth. With the QRAT system, it is
possible to certify the correctness of virtually all preprocessing simplifications
performed by state-of-the-art QBF solvers and preprocessors. Additionally, there
exist efficient tools for checking the correctness of QRAT proofs as well as for
extracting winning strategies (so-called Skolem functions) from QRAT proofs
of satisfiability [15].

It can be easily seen that QRAT simulates the basic Q-resolution calculus [20]
that allows only resolution upon existential variables. Likewise, it simulates the
calculus QU-Res [24], which extends Q-resolution by allowing resolution upon
universal variables. So far, however, it was unclear how QRAT is related to the
long-distance-resolution calculus [26, 1]—a calculus that is particularly popular
because it allows for short proofs both in theory and in practice [11].

In this paper, we prove that QRAT can polynomially simulate the long-
distance-resolution calculus. For our simulation, we need only Q-resolution and
universal reduction together with blocked-literal elimination and blocked-literal
addition using fresh variables [14, 21]. These four rules are allowed in QRAT. To
illustrate the power of blocked literals, we present handcrafted QRAT proofs of
the formulas commonly used to display the strength of long-distance resolution—
the well-known Kleine Biining formulas [20]. Our proofs are slightly smaller than
the long-distance resolution proofs of these formulas described by Egly et al. [11].

To put our simulation into practice, we implemented a tool that transforms
long-distance-resolution proofs into QRAT proofs. With this tool it is now possi-
ble to obtain QRAT proofs that certify the correctness of both the preprocessing
and the actual solving, even when using a QBF solver based on long-distance
resolution. We used our tool to transform long-distance-resolution proofs of the
Kleine Biining formulas into QRAT proofs. We compare the resulting proofs with
the handcrafted QRAT proofs as well as with the original proofs. Rounding off the
picture, we locate QRAT in the proof-complexity landscape of resolution-based
proof systems and discuss open questions.

2 Preliminaries

In the following, we introduce the background required to understand the rest
of the paper. A literal is either a variable x (a positive literal) or the negation Z
of a variable = (a negative literal). The complement [ of a literal [ is defined as 7
ifl=xand as z if | = Z. A clause is a disjunction of literals. A (propositional)
formula in conjunctive normal form (CNF) is a conjunction of clauses. A clause
can be seen as a set of literals and a formula can be seen as a set of clauses.

A quantifier prefiz has the form Q1 X ... Q,X,, where all the X; are mutually
disjoint sets of variables, Q; € {V,3}, and Q; # Qiy1. A quantified Boolean
formula (QBF) ¢ in prenex conjunctive normal form (PCNF) is of the form 7.4
where 1T is a quantifier prefix and 1, called the matriz of ¢, is a propositional
formula in CNF. The quantifier Q(I1,1) of a literal I is Q; if var(l) € X;. Let
QUL ) =Q; and QUULLk) =Qj, then | <p kifi <j,and [ <pg kif i <.



Using the truth constants 1 (true) and 0 (false), a QBF VzIl.9) is false iff at
least one of IT.¢p[x/1] and I1.¢p[x/0] is false where IT.9)[x/t] is obtained from IT.4)
by replacing all occurrences of x in ¥ by ¢t and removing x from II. Respectively,
a QBF 3zIl.4 is false iff both II.¢p[x/1] and II.¢[x/0] are false. If the matrix
1 of ¢ contains the empty clause (denoted by L) after eliminating the truth
constants according to standard rules, then ¢ is false. If ¢ is empty, ¢ is true.

2.1 Resolution-Based Calculi

In resolution-based calculi, a proof P of a QBF II.¢p = II.C1 A--- ANCy, is a
sequence Cy41, - . . , Cy, of clauses with C,, = L and for every C; (m+1 < i < n),
it holds that C; has been derived from clauses in ¢ or from earlier clauses in P
(i.e., from clauses with index strictly smaller than ¢) by applications of either
the V-red rule (also called universal reduction) or instantiations of the resolution
rule which are defined as follows:

CVE (yreay Cvli DvVI

C CcvD

The rule V-red is only applicable if the literal = is universal and if for every
existential literal [ € C, it holds that [ < z. In the resolution rule, the resolvent
C'V D is derived from its two antecedent clauses. We assume that no clause in
1) contains complementary literals, otherwise the V-red rule is unsound.

The most basic resolution-based calculus for QBF is the Q-resolution calcu-
lus (Q-Res) [20]. Tt uses the resolution rule @-res which requires that (1) [ is
existential and (2) C' does not contain a literal = such that Z € D. In contrast,
the long-distance-resolution calculus (LQ-Res) [26, 1] uses a less restrictive vari-
ant of the resolution rule, called LQ-res, which requires that (1) [ is existential
and (2) for every literal x € C such that £ € D, it holds that z is universal
and | <j z. Note that every Q-res step is also an LQ-res step. In the rest of
the paper, we refer to resolution steps as LQ-res steps only if they are not Q-res
steps, otherwise we refer to them as Q-res steps. Note that in the literature a
complementary pair x, T is also represented by a so-called merged literal x*.

Ezample 1. Consider the QBF ¢ = 3aVz3IbIc.(aVzVe)A(ZVbVE)A(aVaVb)A(b).
The following is a long-distance-resolution proof of ¢: aVZ Vb, xVZ Vb, xV I,
x, 1. We explain this proof in more detail later (also see Fig. 1 on page 5).

(resolution)

2.2 The QRAT Proof System Light

In this paper, we do not need the power of the full QRAT proof system [15]. We
therefore introduce only a very restricted version of QRAT that is sufficient for
the simulation of the long-distance-resolution calculus.

One of the main concepts in this variant of QRAT is the concept of a blocked
literal. For the definition of blocked literals, we first have to introduce so-called
outer resolvents. Given two clauses C'Vz, DVZ of a QBF 1.4, the outer resolvent
CVz <y DVz of CVx with DV Z upon z is the clause consisting of all literals in
C together with those literals of D that occur outer to z, i.e., the outer resolvent
is the clause CU{l |l € D and I <p x}. We can now define blocked literals:



Definition 1. A universal literal x is blocked in a clause C' V x w.r.t. a QBF
IT4 if, for every clause DV T € Y\ {C'Va}, the outer resolvent CVx <% DV T
contains a pair of complementary literals.

Ezample 2. Let ¢ = JaVr,yFb.(aVaVy)A(@aVEVb)A(gVZVDb). The literal x
is blocked in aVx Vy w.r.t. ¢: There are two outer resolvents of a V x V y upon
x, namely aV y V a, obtained by resolving with aVvVz Vb, and aVy V ¥y, obtained
by resolving with 4 V Z V b. Both contain a pair of complementary literals. O

If a literal is blocked in a clause, its removal is called blocked-literal elimination
(BLE) [14]. If, after adding a literal to a clause, the literal is blocked in that
clause, then this addition is called blocked-literal addition (BLA). Both BLE
and BLA do not change the truth value of a formula.

In our restricted variant of QRAT, a derivation for a QBF ¢ is a sequence
My, ..., M, of proof steps. Starting with ¢g = ¢, every M; modifies ¢;_; in one
of the following four ways, which results in a new formula ¢;: (1) It adds to ¢;_;
a clause that is derived from two clauses in ¢; 1 via a resolution step. (2) It adds
to ¢;_1 a clause C that is obtained from a clause C'V = € ¢;_1 by a V-red step,
with the additional restriction that C' does not contain Z. (3) It adds a blocked
literal to a clause in ¢;_1. (4) It removes a blocked literal from a clause in ¢;_;.

A QRAT derivation M, ..., M, therefore gradually derives new formulas
d1, ..., ¢, from the starting formula ¢. If the final formula ¢,, contains the empty
clause L, then the derivation is a (refutation) proof of ¢. Note that the V-red
rule in QRAT is more restricted than the V-red rule from the resolution-based
calculi, making it sound also when clauses contain complementary literals.

To simplify the presentation, we do not specify how the modification steps
M; are represented syntactically. We also do not include clause deletion. Note
that certain proof steps can modify the quantifier prefix by introducing new or
removing existing variables. Note also that Q-resolution proofs do not contain
complementary literals, so they can be simply rewritten into QRAT proofs using
only Q-res and V-red steps. Finally, we want to highlight that for our simulation,
we do not need the unrestricted resolution rule; the Q-res rule suffices.

3 Illustration of the Simulation

We start by illustrating on an example how our restricted variant of QRAT
can simulate the long-distance-resolution calculus. As already mentioned, the
V-red rule used in QRAT is more restricted than the one in the long-distance-
resolution calculus because it does not allow us to remove a literal « from a clause
that contains Z. This means that once we derive a clause that contains both a
literal x and its complement Z, we cannot simply get rid of the two literals by
using the V-red rule. We therefore want to avoid the derivation of clauses with
complementary literals entirely. Now, the only way the long-distance-resolution
calculus can derive such clauses is via resolution (LQ-res) steps. So to avoid
the complementary literals, we eliminate them already before performing the
resolution steps. We demonstrate this on an example:



zVbve aVIVe
aVxVb aVvVzTVb
zVZIVb

(Q-res)
(LQ-res) -
b (Qures)

TVE (g red)
LN (V-red)
1

Fig. 1. LQ-res proof of QBF ¢ = JaVzIbIc.(aVZVc)A(ZVDVE) A (aVxVb)A (D).

Ezample 3. Consider the QBF ¢ = JaVzIbIc.(aVIVe)A(ZVOVE)A(aVzVb)A(b)
from Example 1. To increase readability, we illustrate its long-distance-resolution
proof as a proof tree in Fig. 1. To simulate this proof with QRAT, we first add
the resolvent aVZ Vb to ¢ via a Q-res step to obtain the new formula ¢’. Now we
cannot simply perform the next derivation step (the LQ-res step) because the
resulting resolvent x V z V b would contain complementary literals. To deal with
this, we try to eliminate = from the clause a V x V b. This is where the addition
and elimination of blocked literals come into play.

We cannot yet eliminate x from ¢’ because x is not blocked in a V x V b with
respect to ¢’: For x to be blocked, all outer resolvents of a V z V b upon x must
contain complementary literals. The clauses that can be resolved with aVx Vb
areaVZVe, avVzVb, and VbV e While the outer resolvents with the former
two clauses contain the complementary literals a and a, the outer resolvent a Vb,
obtained by resolving with £ V bV ¢, does not contain complementary literals.

Now we use a feature of QRAT to make x blocked in a V z Vb: We add a new
literal 2’ (which goes to the same quantifier block as x) to aVx Vb to turn it into
aV z'Vx Vb. The addition of z’ is clearly a blocked-literal addition as there are
no outer resolvents of a V' V x V b upon z’. Likewise, we add the complement
Z' of ' to ZV bV ¢ to turn it into Z' V Z V bV ¢. Again this is a blocked-literal
addition since a V&’V 2 Vb (which is the only clause containing the complement
a2’ of T') contains = while ' V T V bV € contains Z.

Now the complementary pair z’,Z’ is contained in the outer resolvent of
aVaz'VeVbwithZ VZVbVcupon x. Thus, the literal  becomes blocked in
aVz'VaxVband so we can remove it to obtain a V' vV b. We have thus replaced
z in aV z Vb by 2/ and now we can resolve a V 2’ V b with @V Z V b upon a
to obtain the resolvent ' V Z V b (instead of x V Z V b as in the original proof).
Finally, we resolve o’ V Z V b with b to obtain 2’ V Z from which we derive the
empty clause L via V-red steps. O

To summarize, we start by adding clauses of a given long-distance-resolution
proof to our formula until we bump into an LQ-res step. To avoid complementary
literals in the resolvent of the LQ-res step, we then use blocked-literal addition
and blocked-literal elimination to replace these literals. After this, we can derive
a resolvent without complementary literals and move on until we encounter the
next LQ-res step, which we again eliminate. We repeat this procedure until the
whole long-distance-resolution proof is turned into a QRAT proof.



Note that the modification of existing clauses has an impact on later deriva-
tions. For instance, by replacing a V x V b in the above example with a V ' V b,
we not only affected the immediate resolvent = V & V b, which we turned into
7' VT Vb, but also the later resolvent x V Z, which became z’ V T. We therefore
have to show that these modifications are harmless in the sense that they do
not lead to an invalid proof. We do so in the next section, where we define our
simulation in detail before proving that it indeed produces a valid QRAT proof.

4 Simulation

We first describe our simulation procedure on a high level before we specify
the details and prove its correctness. As we have seen, given a long-distance-
resolution proof, we can use QRAT to derive all clauses up to the first LQ-res
step. The crucial part of the simulation is then the elimination of complementary
literals from this LQ-res step, which might involve the modification of several
clauses via the addition and elimination of blocked literals.

Let ¢ = I.Cy A --- NCyp, be a QBF and P = Cyii1,...,Cry...,Cy be
a long-distance-resolution proof of ¢ where C,. is the first clause derived via an
LQ-res step. If there is no such C., the proof can be directly translated to QRAT.
Otherwise, in a first step, our procedure produces a QRAT derivation that adds
all the clauses C,41,...,Cr—1 to ¢ by using Q-res and V-red steps. It then uses
blocked-literal addition and blocked-literal elimination to avoid complementary
literals in the resolvent C,., which it thereby turns into a different resolvent C..
After this, it adds C/. to ¢ via a Q-res step. The result is a QRAT derivation of
a formula ¢’ from ¢. We explain this first step in Section 4.1.

In a second step, the procedure first removes all the clauses Cy,41,...,C:
from P since they—or their modified variants—are now all contained in ¢'. As
several clauses have been modified via blocked-literal addition and blocked-literal
elimination in the first step, it then propagates these modifications through the
remaining part of P. This turns P into a long-distance resolution proof P’ of ¢'.
We explain this second step in Section 4.2.

By repeating these two steps for every LQ-res step, we finally obtain a QRAT
proof of ¢. Thus, we have to show that after the above two steps (i.e., after one
iteration of our procedure), ¢’ is obtained by a valid QRAT derivation and the
proof P’ is a valid long-distance-resolution proof of ¢’ that is shorter than P.
The correctness of the simulation follows then simply by induction.

To simplify the presentation, we assume that the long-distance resolvent C,.
contains only one pair of complementary literals, i.e., C,.. = C'V DV x V T was
derived from two clauses C' V1V & and D V[V Z where C does not contain a
literal k& such that k is contained in D. Although this assumption leads to a
loss of generality, we show later that our argument can be easily extended to
the more general case where C' and D are allowed to contain multiple pairs of
complementary literals.



4.1 QRAT Derivation of the Formula ¢’
Below we describe the QRAT derivation of ¢’ from ¢. Initially, ¢’ = ¢.

1. Add the clauses Cyy11,...Cr_1 to ¢’ via Q-res and V-red steps.

2. Consider the LQ-res step that derived C,, = C'V DV x V Z from two clauses

CVIiVxand DVIV Z: CVIvVa DVIvVE

CVvDVaVZ

Towards making z blocked in C'V IV z, add a new literal 2’ (that goes to
the same quantifier block as z) to C' VIV x to turn it into C VIV z' V x.

3. Add 7 to each clause C; € ¢’ for which (1) Z € C;, and (2) the outer
resolvent of C' VIV 2’V z and C; upon z is not a tautology.

4. Now z is a blocked literal in C' VIV 2’ V z. Eliminate it to obtain C VIV z'.

5. Add the clause C'V DV 2’V 7 to ¢’ by performing a Q-res step of C'V IV z’
and DV IV Z upon .

(LQ-res)

To see that this results in a valid QRAT derivation, observe the following: In
step 2, the addition of z’ is a blocked-literal addition, since Z’ is not contained
in any of the clauses. In step 3, for every C; with T € C;, the addition of &’ is
a blocked-literal addition as only C'V IV z' V x can be resolved with C; upon
7' and the corresponding outer resolvent contains z and Z. Note that instead of
eliminating « from C V[V z, we could have also eliminated Z from D V[V Z. It
remains to modify the long-distance-resolution proof P of ¢ so that it becomes
a valid proof of ¢'.

4.2 Modification of the Long-Distance-Resolution Proof

We next turn the proof P = Cpyy1,...,Cpr,...,Cy of ¢ into a proof P’ of ¢'.
First, we remove the clauses Cy41, ..., C, from P since ¢’ already contains vari-
ants C},,1,...,C, of these clauses. Second, since we have modified the clauses
in ¢’, we have to propagate these modifications through the remaining proof.

Assume, for instance, that in P the clause C).4; has been obtained by re-
solving a clause C; with a clause C;. Both C; and C; might have been affected
by blocked-literal additions so that they are now different clauses C},C} € ¢'.
To account for these modifications of C; and C}, we replace C,11 in P by the
resolvent of C/ and C;». Moreover, in cases where P removes x from a clause via
a V-red step, we now also remove z’. Analogously for 7’ and z.

To formalize these modifications, we first assign to every clause C; with
1 < ¢ < r its corresponding clause of ¢’ as follows:

C; u{z'} if z € C; and the outer resolvent of C VIV z V 1’
and C; upon z is not a tautology;

CY(CiN{zh)U{a’} ifCi=Cror C;=C VIV
Ci

otherwise.



Note that, by construction, C} € ¢’ for 1 < i < r. For every ¢ such that r < i <n,
we step-by-step, starting with ¢ = r + 1, define C} based on the derivation rule
that was used for deriving C; in P. We distinguish between clauses derived by
resolution steps and clauses derived by V-red steps:

CasE 1: C; has been derived via a resolution step of two clauses C; = C'V [ and
Cr =D Vliuponl, ie., C;=CVD. We define C] = C} \ {I} vV C} \ {l}.

CASE 2: C; has been derived from a clause C; via a V-red step. If the V-red step
removes a literal [ with var(l) # var(z), we define C] = C?\ {l}. If it removes z,
we define C] = C} \ {z, 2}, and if it removes T, we define C] = C \ {z,7'}.

Note that V-red steps of z and Z in P’ might remove two literals at once. Although
such V-red steps do not constitute valid derivation steps in a strict sense, this
is not a serious problem: These steps can be easily rewritten into two distinct
V-red steps since x and 7’ are in the same quantifier block. For instance, the left
step below can be rewritten into the two steps on the right:

CVvazaVa
CVazVa ———————— (V-red)
f (V-red) Cg’/ x (Vored)

Next, we show that the resulting proof P’ is—apart from the minor detail just
mentioned—a valid long-distance-resolution proof of ¢'.

4.3 Correctness of the Simulation

To prove the correctness of our simulation, we first introduce a lemma that
guarantees that the modified long-distance-resolution proof P’ has a similar
structure as the original proof P:

Lemma 1. Let ¢' = II''C] N--- ANC| and P' = C|4,...,C), be obtained from
¢p=ICiN---NCy, and P =Cpy1,...,Cr,...,Cy as defined above. Then, for
every clause C} with 1 <14 < n, the following holds: (1) If ' or x is in C., then
x€C;. (2) If T orZ is in Cl, then & € C;. (3) C] agrees with C; on all literals
whose variables are different from x and @', i.e., CI\ {x,z,2", %'} = C; \ {z,z}.

Proof. By induction on 1.
BASE CASE (i < r): The claim holds by the definition of CY.

INDUCTION STEP (r < i): Consider the clause C; in P that corresponds to C..
We proceed by a case distinction based on how C; was derived in P.

CasE 1: C; is a resolvent C; \ {I} V Ci \ {l} of two clauses Cj, Cy. In this case,
C; = C;\{l} v C; \ {l}. By the induction hypothesis, the statement holds for C}
and C}.. Now, if C} contains 2’ or z, then at least one of C’; and C}, must contain
2’ or « and thus one of C; and Cj must contain z, hence € C;. Analogously,
if Cj contains 7’ or z, then C; contains 7. Now, C’ agrees with C; on all literals



whose variables are different from = and ', and the same holds for C}, and Cj.
Thus, C/ agrees with C; on all literals whose variables are different from z and '

CASE 2: C; has been derived from a clause C; via a V-red step, i.e., C; = C;\{y}
for some universal literal . By the induction hypothesis, the statement holds for
C’. If var(y) # var(z'), then C} = C} \ {y} and thus the claim holds. If y = =,
then Cj = C7 \ {z,2'} and thus the claim holds too. The case where y = 7 is
analogous to the case where y = x. O

We can now show that the proof P’, produced by our simulation procedure, is
a valid long-distance-resolution proof of ¢’:

Theorem 2. Let ¢' = II'.C{A---NC| and P' = C],,...,C} be obtained from
p=I.CiN---NCp, and P =Cy11,...,Cy,...,Cy by our procedure. Then, P’
is a valid long-distance-resolution proof of ¢'.

Proof. We have to show that every clause C/ in P’ has been derived from clauses
in Cf,...,C}_; via a valid application of a derivation rule and that C] = L.
To show that every clause in P’ has been derived via a valid application of a
derivation rule, let C/ be a clause in P’. We proceed by a case distinction based
on the rule via which its counterpart C; has been derived in P:

CAsE 1: C; has been derived from two clauses C},Cy via a Q-res step or an
LQ-res step upon some existential literal I. In this case, Cj = C}\ {I} vV C; \ {I}.
We have to show that I € C7, [ € Cy, and for every literal I € C’ such that I # I
and I’ € Cj, it holds that {’ is universal and | < I. By Lemma 1, C’ agrees
with C; on all literals whose variables are different from the universal literals
and ', Likewise for C} and Cj. Therefore, | € C} and lecC.

Now, assume C} contains a literal I such that I’ # [ and I' € Cy. If the
variable of [’ is different from x and z’, then it must be the case that I’ is
universal and [ <y I, for otherwise the derivation of C; in P were not valid.
Assume thus that the variable of I’ is either x or z’. If I’ is either x or z/, then
Lemma 1 implies that C; contains = and also, since I'e C}., that C, contains Z.
Therefore, it holds that [ <;;»  (since otherwise the derivation of C; in P were
not valid) and since #’ and z are in the same quantifier block, it also holds that
I < ', hence | <y I'. The case where I’ is T or ' is symmetric.

CASE 2: C; has been derived from a clause C; via a V-red step, that is, by
removing a universal literal y such that for every existential literal I’ € Cj, it
holds that I' <;r y. If var(y) # =z, then C; = C; \ {y} and since, by Lemma 1,
C! coincides with C; on all existential variables, it holds for every existential
literal I € C} that I < y. If var(y) = z, then C] is of the form C} \ {z,2'} or
CI\ {z,7'}. Now, z and z’ are in the same quantifier block and thus, with the
same argument as for var(y) = =, it holds for every existential literal I’ € C
that I <p v.

Finally, to see that C/, = L, observe the following: By Lemma 1, since = and T are
not in C,,, it follows that «’ and Z’ are not in C/,. Moreover, again by Lemma 1,
C,, and C), agree on all other literals. Therefore, C) = C,, = L. O



We can also show that our simulation does not introduce new LQ-res steps.
Hence, if a long-distance-resolution proof contains n LQ-res steps, our simulation
terminates after at most n iterations (the proof is omitted due to space reasons):

Theorem 3. Let P’ be obtained from ¢ = I1.4) and P by our procedure. Then,
P’ contains fewer LQ-res steps than P.

4.4 Clashes of Several Universal Literals

Until now, we assumed that LQ-res steps involve only one pair of complementary
universal literals. When multiple such pairs are involved, the procedure changes
only slightly: Instead of eliminating only a single literal from one of the clauses
that are involved in the LQ-res step, we now eliminate several of them. If we
start with the outermost one and gradually move inwards, we ensure that at
most one blocked literal is added per clause. We illustrate this on an example.
Consider the QBF ¢ = Ja3bVz3cVy3d.(bVaVeVyVd)A(aVEVe)AlavbvyVd)
and the following derivations in a long-distance-resolution proof:

aVZVe avbvigvd
bvzVeVyVd bVZVeVyVd
zVIVeVyVyVvd

(Qres)
(LQ-res)

In the LQ-res step, there are two pairs of complementary universal literals,
namely x,Z and y,y. We therefore try to get rid of both x and y in the left
antecedent L = bV zVeVyVdof the LQ-res step. As in the case where only one
literal is removed, we start by deriving in QRAT all clauses that occur before
the LQ-res step. In this case, we add bV Z VeV 5V d to ¢ via a Q-res step and
denote the resulting formula by ¢'.

Now we want to remove = from L via blocked-literal elimination. In order for
z to be blocked in ¢’, all outer resolvents of L upon z have to be tautologies.
The formula ¢’ contains two clauses that can be resolved with L upon x, namely
bVZVeVyVdand aVZVe As the first clause contains b and L contains b,
the corresponding outer resolvent upon z contains b, b. But there are no comple-
mentary literals in the outer resolvent a Vb with the second clause. We therefore
add a fresh literal 2’ to L and add its complement T’ to @V T V ¢ to obtain ¢’ =
Ja3bVrVa'IcVy3d.(bvava' VevyVd)A(aVEVE Ve) AavovgVd)A(bVEVevyVd).

We can now remove the blocked literal z from (bVzVa'VeVyVd) to obtain
L' =bVva'VeVyVd. If we now resolved L' with bV Z VeV gV d, we would get
the following LQ-res step:

bva'VeVyVvd bvzVeVvyVd
2’VIVeVyvVyVvd

(LQ-res)

Since there is still a clash of y and 7, we need to get rid of y in L’. We are
lucky because we do not need to perform any blocked-literal additions: The only
clauses in ¢’ that contain 4 are a VbV 4§V dand bV ZVcV 7y Vd, and the outer
resolvents of L’ with both of them contain complementary literals. We can thus
remove y from L’ and use a Q-res step to add the resulting resolvent to ¢':

10



bvaz'Vevd bVZIVeVyVd
’VIVeVyVvd

(Q-res)

Similarly to the case where we only eliminated one literal, we then propagate
the corresponding changes through the rest of the proof to turn it into a valid
long-distance resolution proof of ¢'.

5 Complexity of the Simulation

After showing how a long-distance-resolution proof can be translated into a
QRAT proof, we still have to prove that the size (the number of derivation steps)
of the resulting QRAT proof is polynomial w.r.t. the size of the original proof and
the formula. We have seen that the long-distance-resolution proof and the QRAT
proof correspond one-to-one on resolution steps and V-red steps. Therefore, we
only need to estimate the number of blocked-literal addition and blocked-literal
elimination steps to obtain an upper bound on the size of the QRAT proof.
Consider a long-distance-resolution proof Cy,y1,...,Cy,...,C, of a QBF
I1.Cy N\ -+ A Cyy, where C. is the first clause that is derived via an LQ-res step:

CVIVZIV--Vay DVIVZL V- VT
C,=CVDVxiVIIV- -V ViIL

(LQ-res)

We can make the following observation: To remove all the literals x1, . .., z) from
CVIVzyV---Vxg via blocked-literal elimination, we have to add at most one
new literal of the form Z} to every clause C1, ..., C,_; if we start by eliminating
the outermost universal literal x; and step-by-step work ourselves towards the
innermost literal x;. The reason this works is as follows:

Assume we have added the literal 2} to C VIV x; V-V x and the cor-
responding literal Z} to another clause C; = C! V Z; to obtain complementary
literals in the outer resolvent of the resulting clauses C' VIV Va)V-- Vg and
C’'V Z1 VT upon x1. Then, the outer resolvent of C' VIV xy V) V- -V with
C'V Z1 V T upon a literal x; that is inner to x; (i.e., 1 <y ;) contains the
complementary pair z}, T}, so we have to add no further literals to C'V Z; V 7.

Hence, the number of blocked-literal additions for literals of the form Z is
bounded by the number of clauses, that is, by n. Moreover, for every addition
of a literal Z} to some clause, there is at most one addition of the corresponding
literal «;. Therefore, there are at most 2n blocked-literal additions per LQ-res
step. Now, for every addition of a literal 2}, there is exactly one elimination of
the corresponding literal x;. Thus, overall there are at most 3n blocked-literal
additions and eliminations for every LQ-res step. Since the number of LQ-res
steps is bounded by the number of clauses in the proof, the size of the QRAT
derivation is at most 3n2. It follows that whenever a QBF has a long-distance-
resolution proof of polynomial size, it also has a polynomial-size QRAT proof:

Theorem 4. The QRAT proof system polynomially simulates the long-distance-
resolution calculus.
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6 Evaluation

We now know that QRAT can polynomially simulate long-distance resolution.
But what does it mean in practice? Can we have short QRAT proofs for formu-
las that have short long-distance-resolution proofs? To answer this question at
least partly, we consider the formulas well-known for having short long-distance-
resolution proofs while only having long Q-resolution proofs—the Kleine Biining
formulas [20]. A Kleine Biining formula of size n, in short KBKF',,, has the prefix

Jdag, a1, b1Vr13das, boVas . .. Jay, b, Ve, deq, co, . . ., ¢, and the following clauses:
I agp _ I aOle\/El _

A, a; VI; VvV Gi+1 V bit1 B;: byVax;Va Vb fori € {1n — 1}
C :a, Vi,V V---Vé, C':b,Vax,VeiV---Ve,

X;: Z; Ve Xz Ve for i € {1..n}

We can reduce a formula KBKF',, to a formula KBKF,_; by using only Q-res,
blocked-literal elimination, and clause-deletion steps* (no V-red steps or resolu-
tion upon universal literals). To do so, we use the clauses A,,, B, C, C’, X, and
X/ of KBKF, to construct the clauses C and C’ of KBKF',,_1. The required 12
steps are shown below. The last two clauses (11 and 12) respectively correspond
to the clauses C and C’ of KBKF,, _1.

1. ap,VZaVEL V- VEp_1 (Q-res of C and X,,)
2. bV, Ve V- --VEép_1 (Q-res of C" and X))
3. (delete C, C', X,,, X))
4. Ay 1V Tp 1 Vb VE,VE V- VEr_1 (Qresof 1and A, 1)
5. bp_1Vap_1Va, Ve, Vel V---Vip_1 (Q-resof2and B,_1)
6. @1V Tp_1 Vb, VE V- -VE_1 (BLE of z,, from 4)

7. bp_1VTp_1Va,VeELV---VeEh_1 (BLE of z,, from 5)

8 an 1 VZpaVITpVErV---Vep_1 (Q-res of 6 and B,,_1)
9. by 1 VZTp 1 VIZ,VEL V- --VECp1 (Q-res of 7 and A,,_1)
10. (delete 4, 5,6, 7, Ap—1, Bn-1)
11. p-1VZTp_1VCELV---VCh_1 (BLE of In from 8)
12. by 1 VTp_1VE V- ---Vei,_1 (BLE of z,, from 9)

Table 1 shows the sizes of the Kleine Bilining formulas as well as of the corre-
sponding long-distance-resolution proofs (in the QRP format) and QRAT proofs.
The latter are obtained by the construction mentioned in this section. The size
of both types of proofs is linear in the size of the formula. Although QRAT proofs
use about twice as many proof steps (including deletion steps), the file size of
QRAT proofs is smaller. The explanation for this is that long-distance-resolution
proofs increase the length of clauses, while QRAT proofs decreases their length.

Short proofs of the KBKF formulas can also be obtained by using resolution
upon universal variables as in the calculus QU-Res [24]. There is, however, a vari-
ant of the KBKF formulas, called KBKF,,—qu [2], which has only exponential
proofs in the QU-Res calculus. A KBKF',,—qu formula is obtained from KBKF,,

4 Clause deletion was not used in the simulation, but is allowed in the QRAT system.
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Table 1. The size of Kleine Biining formulas in the number of variables (#var) and
clauses (#cls). Additionally, the size of their long-distance-resolution proofs (in the
QRP format) in the number of Q-res steps (#Q), LQ-res steps (#L), V-red steps (#V),
and the file size in KB (ignoring the part that represents the formula). On the right,
the number of Q-res (#Q), BLE (#B), and deletion (#D) steps as well as the file size
for the manual QRAT proofs.

input LD proofs (QRP) QRAT proofs
formula | #var #cls| #Q #L #V file size| #Q #B #D file size
KBKFio 41 42 41 18 38 6 57 38 92 6

KBKF 5o 201 202| 201 98 198 138 | 297 198 492 112
KBKFi00| 401 402| 401198 398 5731 597 398 992 421
KBKFo00| 801 802| 801398 798 2321|1197 798 1992 1627
KBKF500 | 2001 2002 | 2001 998 1998 16259 | 2997 1998 4992 11890

by adding a universal literal y; (occurring in the same quantifier block as x;)
to every clause in KBKF,, that contains z;, and a literal g; to every clause in
KBKF,,. For these formulas, blocked-literal elimination can remove all the y;
and g; literals, which reduces a KBKF',,—qu formula to a KBKF',, formula that
can then be efficiently proved using resolution upon universal literals.

In addition to the handcrafted QRAT proofs, we implemented a tool (called
1d2qgrat) that, based on our simulation, transforms long-distance-resolution
proofs into QRAT proofs. We used 1d2qrat to transform the long-distance-
resolution proofs of the KBKF,, formulas (by Egly et al. [11]) into QRAT proofs
and validated the correctness of these proofs with the proof checker QRAT-trim.
In the plain mode, 1d2qrat closely follows our simulation. Additionally, it fea-
tures two optimizations: (1) Given an LQ-res step upon ! with the antecedents
CVIVzand DVIVZ,if one of z or Z is already a blocked literal, it is removed
with blocked-literal elimination. This avoids the introduction of new variables.
(2) Clauses are deleted as soon as they are not needed later in the proof anymore.

Table 2 shows properties of the QRAT proofs produced by 1d2qrat from the
long-distance-resolution proofs of the KBKF formulas. On the left are the sizes
of proofs obtained without the clause-deletion optimization. On the right are
the sizes of proofs with this optimization. A (least squares) regression analysis
confirms that the length (number of steps) of the QRAT proofs without deletion is
quadratically related to the length of the corresponding long-distance-resolution
proofs: The function f(z) = 0.222% — 4.487 + 54.58 (where z is the length of the
long-distance-resolution proof and f(z) is the length of the QRAT proof) fits the
data from the above tables perfectly (the error term R? of the regression is 1).

7 QRAT in the Complexity Landscape

After the analysis of QRAT in theory and practice, we now locate it in the proof-
complexity landscape of resolution-based calculi for QBF, which is shown in
Fig. 2. Besides the long-distance-resolution calculus LQ-Res, another well-known
proof system is the calculus QU-Res [24], which extends the basic Q-resolution
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Table 2. Comparison of the QRAT proofs obtained by applying 1d2qrat to long-
distance-resolution proofs (in the QRP format) of the Kleine Biining formulas. The file
size is given in KB and the time for translating the proof (time) is given in seconds.

QRP to QRAT w/o deletion QRP to QRAT w/ deletion
formula | #var #step file size  time| #var F#step file size  time
KBKF10 59 1690 103 0.07 59 448 26 0.01

KBKF'so 299 52170 18774  0.45] 299 6288 2227 0.12
KBKF100| 599 214270 154299  3.77| 599 22588 16192  0.86
KBKF200 | 1199 868470 1309559 30.70| 1199 85188 126375  7.95
KBKFs500 | 2999 5471070 23622369 497.32| 2999 512988 2229195 124.10

calculus (Q-Res) by allowing resolution upon universals literals if the resulting
resolvent does not contain complementary literals. As QRAT also allows reso-
lution upon universal literals, it simulates QU-Res. Balabanov et al. [2] showed
the incomparability between LQ-Res and QU-Res by exponential separations. It
thus follows that QRAT is strictly stronger than both LQ-Res and QU-Res.

Another system that is stronger than both LQ-Res and QU-Res is the calculus
LQU™-Res [2], which extends LQ-Res by allowing (long-distance) resolution upon
universals literals. We know that either QRAT is strictly stronger than LQU™-Res
or the two systems are incomparable: On purely existentially-quantified formu-
las, LQU"-Res boils down to ordinary propositional resolution (without com-
plementary literals in resolvents) whereas the QRAT system boils down to the
RAT system [25]. As the RAT system is strictly stronger than resolution—there
exist polynomial-size RAT proofs of the well-known pigeon hole formulas [13]
while resolution proofs of these formulas are necessarily exponential in size [12]—
LQUT-Res cannot simulate QRAT.

On the other hand, QRAT might be able to simulate LQU+—Res, but not with
our simulation of the long-distance-resolution calculus, because the simulation
cannot convert all LQUT-Res proofs into QRAT proofs. To see this, consider the
QBF 3avaVy3b.(a Vo Vb) A (@VEVb)A(zVb)A(ZVyVb) with the following
LQUT-Res proof [2]: zVZ Vb, §Vb, 2VZV Y, ©VZ, x, L. The proof can be
illustrated as follows:

- Vb TVYyVbh
aVzrVb _a VzZVb (LQ-res) z - rTvyY (QU-res)
xVITVD yVb
TVIVY (@res)
2 T (Yered)
TVIT (g req)
L (V-red)
1

In our simulation, we first replace the literal z in a V2 Vb by 2’ before resolving
the resulting clause a V' Vb with @V Z Vb. The replacement of z by z' also leads
to the addition of 7' tox VgV b. If we now perform the universal resolution step
of x Vb with ZV T’V § Vb, then we obtain the following partial proof:

aVva' Vb avzVb aVb  EVI'VGVD

(Q-res) =
’VIVb e FAAVETAVA)

(QU-res)
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LQ-Res [26,1] QRAT [15]

Q-Res [20] >< 7

QU R

Fig. 2. Complexity landscape including QRAT. A directed edge from a proof system A
to a proof system B means that A is strictly stronger than B.

The Q-res step upon b is now impossible because z’ is in 2’ VT V b and T’
is in 2’ V 7 V b. We also cannot eliminate 2’ from z’ V Z V b via blocked-literal
elimination: This would require us to add a new literal z” to ' V T V b and to
add z” to Z’ V § V b leading to the new pair 2,z of complementary literals.

Our key result, Lemma 1, does not hold anymore when allowing resolution
over universal literals. Lemma 1 guarantees that whenever a new literal Z’ is
in a proof clause C/ of the modified long-distance-resolution proof, then Z was
contained in the corresponding clause C; in the original proof. The above example
shows that resolution over universal literals destroys this property: Although Z’ is
contained in the clause 'V Vb, the literal x is not contained in the corresponding
clause y V ¢ V b of the original proof because we resolved it away.

8 Conclusion

We showed that the QRAT proof system polynomially simulates long-distance
resolution. In our simulation, we used only a small subset of the QRAT rules:
Q-resolution, universal reduction, blocked-literal addition, and blocked-literal
elimination. Based on our simulation, we implemented a tool that transforms
long-distance-resolution proofs into QRAT proofs. The tool allows to merge a
QRAT derivation produced by a QBF-preprocessor with a long-distance-resolu-
tion proof produced by a search-based solver. The correctness of the resulting
QRAT proof can then be checked with a proof checker such as QRAT-trim [15]. We
evaluated the tool on long-distance-resolution proofs of the well-known Kleine
Biining formulas and manually constructed QRAT proofs of these formulas that
are smaller than their long-distance counterparts.

We further noted that our simulation breaks down if the long-distance-
resolution calculus is extended by resolution upon universal literals, as in the
calculus LQU-Res. Investigating the exact relationship between LQU'-Res and
QRAT therefore remains open for future work. Another open question is whether
blocked-literal elimination can be polynomially simulated in LQU™-Res. We also
do not know whether it is possible to simulate long-distance resolution with only
Q-resolution, universal reduction, clause deletion, and blocked-literal elimination
(but no blocked-literal addition). Finally, what is still unclear is how QRAT re-
lates to instantiation-based proof systems and sequent proof systems. Answers to
these questions will shed more light on the proof-complexity landscape of QBF.
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