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1 Introduction

I think computer viruses should count as life. I think it says something about
human nature that the only form of life we have created so far is purely destructive.

We’ve created life in our own image.

Stephen Hawking, Macworld Expo, Boston 1994

In 2016, security researchers discovered approximately 357 million new unique malware vari-
ants, which posed a significant risk to governments, corporations, and private persons [Cor16].
Accordingly, governments and companies alike require reliable models that can be used to an-
alyze and forecast the spreading dynamics of malware in order to develop adequate prevention,
detection and immunization strategies. Therefore, a thorough understanding of the different
spreading dynamics of malware is required. The findings from research on epidemic spreading
of infectious diseases have thereby built the basis for research on the spreading dynamics of
computer malware (see, e.g. [KCW93]).

In the context of epidemic spreading of infectious diseases especially the spreading dynamics
of the most dangerous, i.e. lethal, infectious diseases such as the Human Immunodeficiency
Virus (HIV), tuberculosis and malaria [Org15], have been extensively studied and respective
models have been introduced. With the emergence of the internet and the World Wide Web
(WWW) and the rising number of malware spreading across computer networks, researchers
increasingly transferred these epidemiological models of infectious diseases to the context of
computer malware.

Research on infectious diseases, however, has shown that there are often interactions between
two or more pathogens that spread across the same network and compete for the same hosts.
Interacting behavior can be repeatedly also observed between two different malicious software
programs. For example, once a computer is infected with the so-called Shifu banking Trojan
(first detected in October 2015), the malware monitors all subsequent downloads and deletes
other malicious programs [Cor15]. In this way, Shifu can ensure to exploit the target exclusively.
At the same time, this means that the victim imparts in a way cross-immunity against other
malware. On the other hand, Shifu can be also used to download more malware from the
internet thereby acting as an amplifier of the victim’s contagiousness [Cor15]. In the context
of computer malware, however, there exist also special types of interactions that are not known
from infectious diseases (or only in similar forms) like for example so-called turf wars. In
this case, a malicious software program is intentionally designed to exploit or destroy another
specific malware (see, e.g., [Her07]). For example, until December 2009, Zeus was the most
established toolkit for setting-up botnets in order to steal online banking credentials [McM10].
At the beginning of 2010, however, researchers detected a feature called Kill Zeus in the Spy
Eye toolkit, which was a much smaller rival of Zeus [Coo10]. The Kill Zeus feature sought
for computers already infected with a Zeus Trojan, then stole the data and removed the rivaling
malicious software program from the infected computer [McM10].
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1.1 Objective
As described above there are various ways in which two pathogens spreading across the same
network and competing for the same hosts can interact with each other. Therefore, one aim of
this thesis is to give an overview of these different types of interactions. The main goal, however,
is to apply an existing model of interacting epidemics from the biological field to the context
of computer malware. In particular, this thesis focuses on the case of increased contagious-
ness towards a specific disease (or malware, respectively) due to prior infection with a different
disease or malware, respectively. Using computer simulations, outbreaks of two different mali-
cious software programs, which exhibit interacting behavior, are reproduced. Thereby, different
graph topologies are taken into account in order to examine the influence of the graph structure
on the spreading dynamics. In particular, the simulations are run on eight different graphs, from
which two are real-life graphs (a smaller one with 1,133 vertices and 5,451 edges and a larger
one with 6,474 vertices and 12,572 edges) and six are generated graphs (two G(n, p) random
graphs, two scale-free graphs, and two small-world graphs each of the sizes of the real-life
graphs). Furthermore, the influence of the starting point of the epidemic outbreak is considered.
Therefore, the number of initially infected vertices as well as the selection criteria of the initially
infected vertex/vertices are modified. In particular, the number of initially infected vertices is
varied between one infected vertex and one percent of infected vertices. This/these initially
infected vertex/vertices is/are selected either randomly, based on the Betweenness centrality or
based on the Eigenvector centrality.

1.2 Structure
The remainder of this thesis is structured as follows. Chapter 2 introduces relevant terminology
and concepts of networks and graph theory. Chapter 3 gives an overview of the history of
epidemics as well as important definitions and distinctions and relevant models. A classification
of malware is given in Chapter 4. Interacting epidemics are introduced in Chapter 5. Then,
Chapter 6 presents the design and implementation of the simulations as well as the results and
the respective discussion. Finally, Chapter 7 concludes the thesis.
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2 Networks and Graphs
Although the terms networks and graphs are mostly used synonymously in the scientific lit-
erature, there is a subtle difference between these two terminologies. Whereas the term net-
work mostly refers to some real-world system such as the WWW, protein networks or social
networks, the term graph is used when the mathematical representation of these networks is
discussed. Throughout this thesis, the terms will be used according to this differentiation.

Note that, if not stated otherwise, the following explanations are all based on [vS10], [New12],
and [Bar14].

2.1 Basic terminology
A graph consists of vertices and edges. The order of a graph, denoted by |V (G)|, |V | or via the
variable n, is the number of all vertices and the size of a graph, denoted by |E(G)|, |E| or via
the variable m, the number of all edges. In general, each edge connects (or joins) exactly two
vertices, which are then said to be adjacent or neighbors. The connecting edge, on the other
hand, is said to be incident with the two vertices.

Definition 1: Graphs

A graph G, denoted by G = (V,E), consists of a set of vertices V and a set of edges
Ea. Each edge e ∈ E joins one or two vertices, which are then said to be the edge’s end
points. An edge e ∈ E that joins u, v ∈ V , is denoted by e = 〈u, v〉.
aA graph consisting solely of vertices without any edges is called an edgeless graph. Besides this rather
rare instance, however, all other types of graphs consist of both vertices and edges.

2.1.1 Undirected Graphs
In case of undirected graphs the edges are represented as unordered pairs of vertices. Conse-
quently, there is no difference between the edges 〈u, v〉 and 〈v, u〉. Note that throughout this
thesis only undirected graphs are considered.

2.1.2 Subgraphs
Subgraphs are used to focus on those subsets of vertices and edges, which are relevant for
solving a certain problem. Therefore, all irrelevant vertices together with the associated edges
are temporarily ignored in order to obtain a certain subgraph.
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Definition 2: Subgraphs

A graph H, denoted by H = (V,E), is a subgraph of graph G, if V(H) ⊆ V(G) and E(H)
⊆ E(G). The relationship between graph G and its associated subgraph H is denoted by
H ⊆ G.

2.1.3 Degree
The number of all edges incident to a vertex is called the degree of the vertex.

Definition 3: Degree

In an undirected graph, the degree of a vertex v ∈ V(G), denoted by δ(v), is the number
of edges incident with v.

2.2 Graph representations
Although there are multiple possible graph representations, only the adjacency matrix and the
edge list representation are used throughout this thesis and are hence presented in more detail
in the following sections.

2.2.1 Adjacency matrix
The adjacency matrix of a graph G, denoted by AG, is an n × n matrix with each entry aij
indicating the number of edges between two vertices vi and vj . If there is no edge between the
two vertices, the entry takes the value 0. Figure 1 shows an example for an undirected graph G.

v1

v3

v4
v6

AG =



v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 3
v2 1 2 1 1 0 0
v3 0 1 0 1 1 0
v4 0 1 1 0 0 0
v5 0 0 1 0 2 1
v6 3 0 0 0 1 0


Figure 1: A graph G with its associated adjacency matrixAG

Most graphs that represent a real-world network are sparse. This means that they have a signif-
icantly smaller number of edges than a complete graph with the respective number of vertices.
A complete graph is a graph, in which every vertex is connected to every other vertex in the
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graph. Accordingly, the associated adjacency matrices of graphs representing real-world net-
works are also sparse. As a consequence, especially in the case of large graphs, it proves to be
more efficient to store only the list of actually existing edges instead of the whole adjacency
matrix containing all the entries equal to zero.

2.2.2 Edge list
Due to the more efficient way of storage, edge lists may be the preferred choice of representation
when dealing with large sparse graphs. The edge list for the graph presented in Figure 1 is as
follows:

(〈v1, v2〉, 〈v2, v2〉, 〈v2, v3〉, 〈v2, v4〉, 〈v3, v4〉, 〈v3, v5〉, 〈v5, v5〉, 〈v5, v6〉, 〈v6, v1〉, 〈v6, v1〉,
〈v6, v1〉)

Whereas n × n elements need to be stored for any adjacency matrix, the edge list grows only
linearly with the number of edges.

2.3 Degree distribution
Recall that in an undirected graph G, the degree δ of a vertex v is the number of edges attached
to v (see Section 2.1.3). Hence, the degree distribution of a graph G is defined as follows.

Definition 4: Degree Distribution

The fraction of vertices having degree δ is computed as follows:

fracδ =
h(δ)

n
(2.1)

where h(δ) is defined as the number of vertices having degree δ. The quantities of fracδ
represent the degree distribution of a graph G.

2.4 Distances
A central problem in connected graphs is finding the shortest path between two randomly chosen
distinct vertices u and v. The length of the shortest path Pshort (also called geodesic) between
two vertices u and v is the (geodesic) distance d(u, v). In case of an undirected unweighted
graph G, the shortest path is the path with the smallest edge count. There can exist none, one or
several shortest paths between two distinct vertices.
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Definition 5: Distance metrics

The eccentricity of a vertex v in a connected graphG is defined as the maximum distance
between v and any other vertex u ∈ V (G), i.e. ecc(v) = max{d(v, u)|u ∈ V (G)}. The
minimum over all eccentricity values of a connected graph is called radius, i.e. rad(G) =
min{ecc(v)|v ∈ V (G)}. In contrast, the diameter of a connected graph G is defined as
the maximum over all eccentricity values ofG, i.e. diam(G) = max{ecc(v)|v ∈ V (G)}.

Moreover, several metrics for analyzing the distribution of path lengths exist.

Definition 6: Path lengths

In a connected graph G the average length of the shortest paths from a vertex v to any
other vertex u is computed as follows:

d̄(v) =
1

n− 1

∑
v∈V,u 6=v

d(v, u) (2.2)

Accordingly, the average path length ofG is defined as

d̄(G) =
1

n

∑
v∈V

d̄(v) =
1

n2 − n
∑

u,v∈V,u6=v

d(v, u) (2.3)

2.5 Clustering coefficient
The clustering coefficient (also referred to as graph transitivity τ(G)) reveals to what extent the
neighbors of a vertex v are neighbors themselves.

Definition 7: Graph transitivity (Global clustering coefficient)

The graph transitivity τ (G) is defined as the ratio between the number of triangles
and the number of triples in a graph G. A triangle at a vertex v is a complete subgraph
H ⊆ G with exactly three vertices, including v. A triple at a vertex v is a subgraph
H ⊆ G with exactly three vertices and two edges, where v is incident with both edges.
The graph transitivity is hence defined as

τ(G) =
n∆ × 3

nΛ

(2.4)

where n∆ is the number of triangles and nΛ the number of triples in a graph G.
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2.6 Centrality
Centrality deals with the question whether there are vertices in a graph that are “more impor-
tant” than other ones. Within this thesis only the Eigenvector centrality and the Betweenness
centrality are considered in more detail.

2.6.1 Eigenvector centrality
The Eigenvector centrality is based on the knowledge that a person (i.e. a vertex) may not only
be important if he or she knows a lot of other people (i.e. has a high degree) but also if the person
knows only a few yet very important individuals. In order to consider this relative importance
of a vertex with respect to its neighbors, Phillip Bonacich introduced the Eigenvector centrality
[Bon72]. In particular, the Eigenvector centrality of a vertex v is proportional to the sum of the
Eigenvector centralities of its neighbors, i.e.

CEig(v) =
1

λdom

∑
u

avuCEig(u) (2.5)

where λdom is the dominant (largest) eigenvalue of the adjacency matrix of a graph G.

2.6.2 Betweenness centrality
Another concept of centrality is called Betweenness centrality. In this case the importance of
a vertex v is dependent on the number of shortest paths between two vertices that go through
v. This centrality measure considers such a vertex v important, because the removal of v might
directly influence the connectivity between two other vertices in a graph. This means that
another vertex might not be reachable anymore after the removal of the vertex v.

For a connected graph G, S(u,w) is the set of shortest paths between two vertices u,w ∈ V (G)
and S(u, v, w) ⊆ S(u,w) the set of shortest paths between u and w that go through v ∈ V (G).
The Betweenness centrality is then defined as

CBet(v) =
∑

u6=v 6=w∈V (G)

|S(u, v, w)|
|S(u,w)|

(2.6)

2.7 Random graphs
In general, a random graph is an undirected, simple and connected graph G in which certain
parameters take fixed values while the other properties of the graph are random.

Definition 8: The G(n,p) Model

In case of the G(n, p) Model, the number of vertices n and the probability p that two
vertices are connected by an edge take fixed values. Accordingly, two G(n, p) random
graphs with the same fixed values for n and p might vary widely.
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2.8 Small worlds
The small world phenomenon was first studied by Stanley Milgram in 1967 [Mil67]. In partic-
ular, Milgram’s research focused on social networks and the question of how far (i.e. by how
many acquaintances) any two individuals in Kansas, Nebraska and Massachusetts are separated
from each other. Therefore, Milgram conducted an experiment in which he sent hundreds of
letters to people in the Mid-West of the U.S. including further instructions. If the recipient of
the letter knew the target in person, he/she should directly forward the letter to the target living
in Massachusetts. If the recipient, however, did not know the target in person, he/she should
forward the letter to another person of whom he/she thought could know the target. On average,
it took only 5,5 hops until a letter reached the target.

In general, the outcome of this and numerous subsequent experiments was that the average path
length in small worlds is relatively small. In this aspect, small worlds conform with G(n, p)
random graphs (see Section 2.7). They differ, however, with respect to the clustering coefficient.
Whereas G(n, p) random graphs have a clustering coefficient equal to p, small worlds appear to
have a very high clustering coefficient. This is, because in social networks the acquaintances of
one person tend to be acquaintances themselves.

2.9 Scale-free graphs
When analyzing numerous real-world networks, researchers figured out that the degree distri-
bution often does not follow a Poisson distribution as it is the case for G(n, p) random graphs,
but rather a power-law.

In random graphs all vertices have approximately the same degree and hence the average degree
µδ acts as the scale of a graph. In contrast, the degree of a randomly chosen vertex cannot be
approximated beforehand if the degree distribution follows a power law. Accordingly, these
graphs lack a scale and are thus called scale-free graphs. Scale-free graphs are characterized by
a few vertices with a very high degree (called hubs) and a large number of vertices with a very
low one.
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3 Epidemics
The term epidemic originates from the Greek preposition epi (ἐπί) meaning upon and the noun
demos (δῆμος) meaning both people and homeland [Gem97]. The original meaning of epi-
demos (ἐπί-δήμος) was hence in the community or indigenous [Gem97] and was not used in a
medical sense. This changed in the 5th century BC, when the famous ancient doctor Hippocrates
used this term in his works Of the Epidemics. In particular, he was probably the first to use this
expression in order to describe diseases that circulate or propagate in a country [MMG06].
Although his works focused more on the relationships between diseases and environmental
factors, such as the habitat of the patients or the seasons in which the diseases occurred, than
on the spreading behavior, he nonetheless significantly coined the term epidemics in its now
known medical sense [MMG06].

Throughout the following centuries, countless authors documented various epidemic outbreaks.
However, they almost exclusively focused rather on the symptoms of the disease than on the
spreading dynamics or the source of the disease, with Daniel Bernoulli’s epidemiological paper
(published in 1766) being a rare exception (see, e.g. [Bai75]). In particular, Bernoulli presented
a mathematical model in order to calculate the gain in life expectancy at birth if smallpox
were eradicated. Hence, this paper is often assumed to be the first one to deal with population
dynamics of infectious diseases (see, e.g. [Bai75]). It was, however, not until the 19th century
that major progress was made in this field [Bai75].

A story very often referred to as the origin of modern epidemiology is the story of Dr. John
Snow, who allegedly stopped a severe cholera epidemic in London in 1854 after identifying
the Broad Street water pump as the source of this cholera outbreak. It is told that he found the
correlation between the contaminated water pump and the spreading of the cholera disease by
plotting the cholera deaths on a street map. Although there is hardly any preserved evidence for
Snow’s actual contribution to the end of the outbreak, his notes can still be seen as one of the
first documents of modern epidemiology [McL00].

Twenty-two years later, the scientific field of epidemiology received broad public attention after
Robert Koch’s discovery of the bacteria Bacillus Anthracis as the vector of anthrax. During
this time, the Russian physician Pyotr Dimitrievich En’ko published a probabilistic model and
thorough data analysis of measles epidemics in the late 1880s (see, e.g., [CFG+01]). Several
authors refer to this paper as the first contribution to modern mathematical epidemiology (see,
e.g., [CFG+01]).

At the beginning of the 20th century more sophisticated epidemiological models were intro-
duced and since the middle of the 20th century the scientific field of mathematical epidemiol-
ogy has grown rapidly resulting in the introduction of a great variety of generic and specialized
deterministic and stochastic models (for an overview see, e.g., [Bai75]).
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3.1 Epidemiological Models

3.1.1 Basic Assumptions
The model discussed in this thesis is a so-called compartmental model. This means that the
population under consideration is divided into several disjoint classes1 that change with time t
[Het89]. For the compartmental epidemiological model presented in Section 3.1.2, the follow-
ing assumptions hold true (see, e.g., [Het89]):

• The population size n is constant.

• The population is homogeneously mixing. This means that each individual in the popula-
tion has the same chance of contacting every other individual in the population.

• The latent period is zero. This means that a person who is exposed to the disease is
immediately infected.

3.1.2 The epidemic SIR-Model
The SIR-Model (Susceptible-Infected-Recovered Model) is used to model infections from which
infected individuals recover with immunity. It consists of the three classes susceptible, infected
and recovered (see, e.g., [New12]). The respective flow chart of the SIR-Model is depicted in
Figure 2.

Figure 2: Epidemic SIR-Model

Individuals in the susceptible class are not yet infected, but might be infected when getting into
contact with an individual from the infected class. Individuals in the infected class are infected
with the disease and can eventually recover from the disease. Individuals in the recovered class
have recovered from the disease with immunity and cannot transmit the disease to any other
individual. Infected individuals are assumed to recover (or die) from the disease at a constant
average recovery rate γ. Hence, the average duration of infection is equal to 1/γ.

Considering the fractions of the classes (with s+ i+ r = 1), the ordinary differential equations
for the rates of change of the three classes, can be formulated as follows (see, e.g., [New12]):

1In the case of the basic epidemiological models the population under consideration is divided into three disjoint
classes.

10



ds(t)

dt
= −βs(t)i(t) (3.1)

di(t)

dt
= βs(t)i(t)− γi(t) (3.2)

dr(t)

dt
= γi(t) (3.3)

Eliminating i(t) between Equations 3.1 and 3.3 results in [New12]

1

s(t)

ds(t)

dt
= −β

γ

dr(t)

dt
(3.4)

which can be integrated on both sides with respect to t:

s(t) = s0e
−βr(t)/γ (3.5)

where s0 is the value of s at time t = 0 and where the number of recovered individuals at time
t = 0 equals zero. Using i(t) = 1−s(t)− r(t) and feeding Equation 3.5 in Equation 3.3 results
in:

dr(t)

dt
= γ(1− r(t)− s0e

−βr(t)/γ) (3.6)

Based on Equation 3.6, the total size of the epidemic, i.e. the total number of all individuals, who
get infected with the disease during the entire time of the epidemic outbreak, can be calculated
as the value at which dr(t)/dt = 0 (for more details see, e.g., [New12]). Assuming that in
the limit of a large population size n → ∞ the initial value s0 ≈ 1, the final value of r(t) is
determined by [New12]

r(t) = 1− e−βr(t)/γ (3.7)

3.1.3 Degree Block Approximation
As described above, a basic assumption of the deterministic epidemic models presented above
is that the population under consideration is homogeneously mixing, i.e. that each individual in
the population has the same chance of contacting every other individual in the population. This
assumption is dropped in case of degree block approximation, in which case the probability of
infection of a vertex is dependent on its degree (see, e.g., [Bar14]). This means that a vertex
with a higher degree is more likely to be in contact with an infected vertex than a vertex with a
smaller degree2.

Similar to the compartments described above (i.e. susceptible, infected, and recovered), an ad-
ditional set of compartments is introduced in case of degree block approximation. In particular,
2Note that there are also several other mathematical models for epidemic spreading in contact networks (e.g.
pairwise models or effective degree models). However, since degree block approximation was implemented for
the simulations in this thesis (i.e. vertices with the same degree are treated similarly) only this model is described
in more detail. For a comprehensive overview of existing models see, e.g., [MK14].
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all vertices with the same degree are placed into the same compartment (i.e. block) assuming
hence that all vertices with the same degree behave equivalently (see, e.g., [Bar14]). Note that
the blocks for each degree are additionally added to the existing compartments of the epidemic
model. This means that each vertex can be in a susceptible, infected, or recovered (in case of
the SIR model) state independent of its degree. A visualization of degree block approximation
for an example graph G and the SIR epidemic model is given in Figure 3.

δ=1 δ=2

δ=3δ=4

Figure 3: Degree Block Approximation for an example graph G with degrees δ = 1, δ = 2, δ = 3, and δ = 4.
The vertices are either in the susceptible (white), infected (black), or recovered (wave pattern) state.

Figure based on [Bar14]

The fraction of infected vertices with degree δk among all vertices with degree δk is denoted by

i(t)δ =
Iδ
nδ

(3.8)

Hence, the differential equation of the SI-model can be separately written for each degree
[Bar14]:

di(t)δ
dt

= β(1− i(t)δ)δθδ (3.9)

with the density function θδ representing the fraction of infected neighbors of a susceptible
vertex with degree δ.

Similarly, the differential equation for the SIR-model (see Equation 3.2) can be separately
rewritten for each degree as [Bar14]

di(t)δ
dt

= βsδθδ − γi(t)δ (3.10)

with sδ = 1− iδ − rδ.
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4 Malware
The term malware (a composition of the two terms malicious software) is an umbrella term for
all programs that pose a significant security risk to a user’s system or (personal) information by
performing unauthorized and/or harmful actions (see, e.g., [OEC09]). Attackers use malware to
steal personal or program data, to secretly manipulate the computer or the installed programs,
to completely block the user from using the device or otherwise affect the data and system
integrity (see, e.g., [OEC09]). For the purposes of this thesis, different types of malware are
categorized depending on the type of transmission. Table 1 gives an overview of the different
types of malware as defined for the purpose of this thesis.

Malware Type Definition

Computer Virus A computer virus is defined as “a program that recursively and explicitly copies a
possibly evolved version of itself” [Szo05] when executed. All viruses can only infect
other programs on the same computer, but are not able to spread autonomously over
a network. Therefore, they are mostly transmitted via downloads from the internet,
removable physical devices, and phishing e-mail attachments. A phishing e-mail is an
e-mail, with a malicious attachment or link that is sent to a victim with the intent of
tricking the recipient to open the attachment or click on the link.

Computer Worm A computer worm is defined as a self-contained, self-propagating and self-replicating
computer program. A computer worm spreads (to a large extend) autonomously
through a network thereby infecting computers with an autonomous copy of itself.
Therefore, computer worms use known vulnerabilities in operating systems or soft-
ware in order to infect a computer (see, e.g, [OEC09]).

Trojan Horse A Trojan horse (or Trojan) is a malicious software program that tries to appeal to and
interest the user by providing seemingly useful functionalities (or by actually offering
a “trojanized” version of an existing useful program) (see, e.g., [OEC09]).

Exploit Kit An Exploit Kit is a server application that is used to manage so-called drive-by-
download attacks. A drive-by-download uses vulnerabilities in browsers and/or
browser add-ons in order to automatically download malicious payload to a victim’s
computer as soon as the victim visits a compromised website. Thereby, no user inter-
action, such as clicking on buttons, is required (see, e.g, [KM13]).

Downloader A Downloader is a type of malware that is typically very small and that per se does
not perform any malicious actions. It is, however, used to download, extract and in-
stall malicious payload to the victim’s computer when executed. Downloaders spread
mostly through malicious attachments in phishing e-mails (see, e.g, [Szo05]).

Table 1: Malware Types
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5 Interacting epidemics
In real life there is mostly not only one pathogen but rather a great number of pathogens spread-
ing across a population at the same time (see, e.g., [AM91]). These pathogens might either
co-exist without any point of contact or might interact in several possible ways (e.g. enhancing
or weakening each other). These interactions are presented in further detail in the following
sections.

5.1 Types of infections
In the scientific literature, a wide variety of terms is used to describe similar or equivalent
cases of infections with two or more pathogens. Therefore, it is important to clearly define the
different cases. Depending on the time of infection with the first and the second pathogen, one
differentiates between a subsequent infection, co-infection and superinfection.3

time

Figure 4: Subsequent Infection

In the case of subsequent infections, there are two possibilities, which are visualized in Figure
4 and Figure 5, respectively. In the first case (Figure 4), a host is primarily only infected with
the first pathogen (blue). He then recovers completely from this infection and is subsequently
infected with the second pathogen (orange) (see, e.g., [BS07]).

time

Figure 5: Hostile takeover

A special case of subsequent infections is visualized in Figure 5. In this case, a host is primarily
only infected with the first pathogen (blue). Without recovering, however, a second pathogen
(orange) “takes over” the host and suppresses the first pathogen. Due to the special behavior of
the pathogens, throughout this thesis, this special case will be referred to as hostile takeover.

time

Figure 6: Co-Infection

3Note that these terms were primarily defined for HIV cases only, but were later also adapted to various other
cases of infectious diseases (see, e.g., [SRL05]). Since they allow the most unambiguous distinction between the
different cases they are also used within this thesis.
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Possible cases of subsequent infections include Cross-Immunity, Cross-Enhancement, and Hos-
tile Takeover. In the case of cross-immunity, a host primarily infected with one disease acquires
short- or long-term immunity not only to this disease but also to a second one. This second
disease might be either a different one or a competing strain of the same disease (see, e.g.,
[BvdDW08]). Cross-Enhancement (also known as Antibody-Dependent Enhancement (ADE))
is an effect that occurs in the case of multi-strain diseases. In particular, an individual recovered
from an infection with one strain (serotype) acquires temporal cross-immunity against the other
serotype(s). If, however, the level of protection decreases, subsequent infections with different
serotypes are possible and the pre-existing antibodies actually increase the infectiousness of
the individual (see, e.g., [WA14]). A hostile takeover can be observed between two competing
(strains of) infectious diseases / malicious software programs. In this case, one infectious dis-
ease / malicious software program can take over a host that is already infected with a different
disease / malware, i.e. the first disease / malware in the host is eliminated.

If a host simultaneously suffers from more than one disease, it is called a dual infection. Dual
infections are subdivided into co-infections and superinfections (see, e.g., [SRL05], [BS07]).
The term co-infection refers to cases in which the host is concurrently infected with two dif-
ferent (strains of) pathogens (see Figure 6). Thereby, it is required that the infection with both
pathogens happens simultaneously or within a very short period of time (i.e. before an im-
mune response to the first infection has developed). Co-infection might occur, for example, due
to blood donations with two or more differently infected blood products (see, e.g., [SRL05],
[BS07]).

time

Figure 7: Superinfection

In the case of a superinfection (see Figure 7), a host is primarily only infected with the first
pathogen (blue). During the course of the disease and with a substantial time lag (i.e. after an
immune response to the first infection has developed), the host is then also infected with the
second pathogen (orange).

Note that in the scientific literature the term co-infection is often used as an umbrella term for
all cases of dual infections independent from the time of infection with the second pathogen.
This might be justified by the fact that for certain cases it is not verifiable when the second
infection occurred. In order to avoid confusion, however, in this thesis the terms co-infection
and superinfection will be used according to the definitions given above and the term dual
infection in order to refer to both.

Possible cases of dual infections include Opportunistic infections, Hyperparasitic infections,
Increased susceptibility & Increased Virulence, and Interference competition. An opportunistic
infection is an infection with a pathogen / malicious software program that has limited or no
pathogenic effect (or cannot occur at all) in an otherwise healthy host, but can cause a serious
and mostly progressing disease / malware infection in a host previously infected with a different
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primary disease / malicious software program (see, e.g., [Sym65]). Hyperparasitism describes
an interaction between two parasites / malicious software programs and one host. In this case
one parasite / malware parasitizes a second parasite / malware that in turn parasitizes a specific
host type. This interaction is called obligate hyperparasitism if the first parasite / malware is
not able to parasitize the host directly but only by parasitizing a second parasite / malware (see,
e.g., [HH98]). In the case of increased susceptibility, an individual / a computer already infected
with one disease / malware has an increased chance of getting infected with another disease /
malware. The same effect, i.e. a higher chance of infection, can be also observed if the virulence
of the pathogen is increased. This might be either caused by synergetic effects or by with-in
host competition. In the case of with-in host competition two equally strong pathogens compete
for the same hosts. This competition, however, triggers mutations, which increase the virulence
of one of the two pathogens thereby allowing this pathogen to eventually obtain superiority
over the other one (see, e.g., [GCLS+07]). In case of interference competition, pathogens /
malware programs adopt specific strategies “for directly inhibiting the growth, reproduction
or transmission of competitors” [Mid09]. Interference competition can be observed for two
different cases: In the first case, the host is only infected with the primary disease / malware,
which prevents the host from dual infection with another disease / malware. In this sense,
interference competition is comparable to cross-immunity, however, with the restriction that the
immunity (or protection) lasts only as long as the infection with the primary disease / malware
lasts. In the second case (also known as counter-syndemics), the host is first infected with
the primary disease / malware and is then superinfected with a secondary disease / malware.
This secondary disease / malware then suppresses the primary disease / malware as long as the
secondary disease / malware lasts. After the host has recovered from the secondary disease /
malware, the primary disease / malware will reactivate (see, e.g., [BdRSR06]).
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6 Experiment
Increased susceptibility is very common in both the biological as well as the malware context
and is responsible for the increased prevalence and spreading dynamics of certain infectious
diseases and malicious software programs. Therefore, this interaction type is considered in
more detail within this chapter. In particular, an existing model for increased susceptibility
of infectious diseases is adjusted in order to meet the requirements to model two malicious
software programs spreading across the same network.

The SIR× SIR Model was implemented in R using RStudio. Thereby, the R implementation of
the simple epidemic model provided by the Institute of Integrative Biology of the ETH Zurich
was used as the basic model [M1̈6]. Building upon this implementation, the SIR × SIR model
was implemented in R using RStudio (for implementation details see Appendix A).

6.1 The SIR × SIR Model
Chen et al. proposed a simple SIR model (see Section 3.1.2) of fixed population size with the
two diseases A and B [CGCG13]. They proposed that “the infection rate for disease A is
increased, if the individual has or had disease B and vice versa” [CGCG13]. Hence, for each
individual, there are nine possible states and two different infection rates. This is depicted as a
flow chart with the nine states S, A, B, AB, a, b, aB, Ab, ab in Figure 8.

S

A B

AB

AbaB

ab

a b

Figure 8: Flow Chart according to [CGCG13]

In order to fit this SIR × SIR model to the context of malware, several modifications were
performed, which are visualized in Figure 9. First, a direct transition from the susceptible
state S to the dually infected state AB was added in order to integrate co-infections into the
model. This transition occurs with the normal infection rate α and is hence visualized as red
arrow. Accordingly, also a direct recovery from the infected state AB to the recovered state
ab was added. Second, the infection rate is only increased if the computer has malware A.
This restriction was made for two reasons. First, if a computer system has recovered from an
infection with immunity, e.g. by deleting the malware and protecting the system from future
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infections through an anti-malware software, this past infection does not have any influence on
future infections. Hence, the transitions from states a and b to the states aB and Ab occur with
the normal instead of the increased transmission rate (visualized by red arrows).

S

A B

AB

AbaB

ab

a b

Figure 9: Modified Flow Chart based on [CGCG13]

Second, in most cases the interactions between two diseases or malicious software programs
are not mutual, but rather unilateral. Accordingly, only the transition from state A to state AB
occurs with the increased transition rate β (visualized by the purple arrow). The actual infection
and recovery rates, which were used for the simulations, are depicted in Figure 10. The normal
infection probability αwas set to 0.13 (i.e. 13%) based on the average percentage of people who
click on malicious links or open malicious attachments in phishing e-mails (see, e.g., [Ver16]).
The increased infection probability β was set to 0.40 (i.e. 40%) based on the attack success rate
of wide-spread exploit kits such as Angler (see, e.g. [Cis15]). The simulations were conducted
with two different recovery rates, i.e. 0.04 and 0.14 in order to simulate infections that last for
one week (1/7) as well as infections that last for four weeks (1/28).
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A B

AB

AbaB

ab

a b

0.130.13

0.130.13

0.13

0.40 0.13
0.04/0.140.04/0.14

0.04/0.14 0.04/0.14

0.04/0.140.04/0.14

0.04  0.14

Figure 10: Flow Chart with Proposed Rates based on [CGCG13]
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6.2 The example networks
For the simulations, eight different graphs were used, two of which represent real-life networks
and six are generated graphs. In the following, the two real-life networks are presented in more
detail and an overview of all graphs is given in Table 2 at the end of this section.

E-Mail Network

This graph represents the E-Mail communication network at the University Rovira i Virgili
in Tarragona in the south of Catalonia in Spain. The data for this graph was collected from
January to March 2002. The 1,133 vertices represent users, i.e. university faculty, researchers,
technicians, managers, administrators, and graduate students. Two vertices are connected by an
edge if there is an E-Mail communication between them. This dataset was originally collected
in order to investigate informal networks within organizations [KON16b]. The graph is an
undirected, connected graph with 1,133 vertices and 5,451 edges.

Autonomous System

This graph represents a network of Autonomous Systems, which was constructed according to
Border Gateway Protocol logs. The data was collected from the University of Oregon for the
Route Views Project. The original dataset contains 733 daily instances which span an interval
of 785 days from November 8 1997 to January 2 2000. For this thesis, only the graph with the
largest number of vertices and edges (i.e. the dataset from January 02 2000) is used [KON16a].

Note that this graph originally comprised 13,895 edges including loops. Since loops, however,
are irrelevant for the transmission of malware, they were eliminated from the graph using the R
simplify function. The resulting graph consists of 6,474 vertices and 12,572 edges.
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# Name Vertices Edges Min
Degree

Max
Degree Diameter Avg Path

Length Transitivity

1 E-Mails 1,133 5,451 1 71 8 3.61 0.166

2 G(n, p) - 1 1,133 5,456 2 20 6 3.36 0.008

3 Scale-free - 1 1,133 5,650 5 110 5 3.06 0.028

4 Small-world - 1 1,133 5,665 7 12 10 5.39 0.570

5 Autonomous Systems 6,474 12,572 1 1460 9 3.71 0.010

6 G(n, p) - 2 6,474 20,748 1 21 10 4.94 0.001

7 Scale-free - 2 6,474 12,945 2 118 9 5.23 0.002

8 Small-world - 2 6,474 12,948 1 7 33 16.74 0.425

Table 2: Example Graphs
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6.3 The simulation parameters
While the infection probabilities were kept constant, the selection of the start vertices as well
as the number of initially infected vertices and the recovery rate were modified for different
simulation runs. In particular, the starting vertices were either selected randomly, or according
to their eigenvector centrality, or according to their betweenness centrality (see Section 2.6).

# Selection of Start
Vertices

Number of Initially
Infected Vertices Recovery Rate

1 Random 1 0.04

2 Random 1% 0.04

3 Random 1 0.14

4 Random 1% 0.14

5 Eigenvector Centrality 1 0.04

6 Eigenvector Centrality 1% 0.04

7 Eigenvector Centrality 1 0.14

8 Eigenvector Centrality 1% 0.14

9 Betweenness Centrality 1 0.04

10 Betweenness Centrality 1% 0.04

11 Betweenness Centrality 1 0.14

12 Betweenness Centrality 1% 0.14

Table 3: Simulation constellations

The number of initially infected vertices was either one or one percent of the vertices in the
respective graph. As mentioned in Section 6.1, the recovery rate varied between 0.04 and 0.14.
These variations resulted in 12 distinct configurations, which are summarized in Table 3. Each
of the 12 simulation configurations was run on each of the eight graphs resulting in 96 cases
and 96 × 500 = 48,000 simulations.
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6.4 Results
The results of the simulations are categorized into the prevalence, the incidence and the per-
centage of infected vertices. A detailed discussion and interpretation of the results is presented
in section 6.5. All detailed results are summarized in Appendix B - G.

Prevalence
The prevalence describes the number of vertices in each compartment (Susceptible, Infected,
Recovered) at each time step. Exemplarily, the prevalence of Simulation 1 of the E-Mail Graph
(Graph 1) is depicted in Figure 11.
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Figure 11: Prevalence: E-Mail Graph (Graph 1), Simulation 1

The prevalence is a good measure for getting an overview of the course and the duration of an
epidemic outbreak. The prevalence is used to determine the duration of the epidemic outbreak,
the number of simultaneously infected vertices, and the time steps until the maximum number of
simultaneously infected vertices is reached.

Duration of the epidemic outbreak:

• For Graphs 1-7, the duration of the epidemic outbreak was solely determined by the
recovery rate.

• For Graphs 1-7, the duration of the epidemic outbreak differed only marginally between
Malware A and B, with Malware B lasting, in most cases, only between 0-5 time steps
shorter than Malware A.

• For Graphs 1-3, the duration of the epidemic outbreak lasted between 175-182 time steps
if the recovery rate was equal to 0.04 and between 51-60 time steps if the recovery rate
was equal to 0.14. The difference between Malware A and B ranged between 0-3 time
steps.
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• For Graph 4, the duration of the epidemic outbreak lasted between 181-192 time steps (re-
covery rate 0.04) and 59-78 time steps (recovery rate 0.14), respectively. The difference
between Malware A and B ranged between 1-7 time steps.

• For Graphs 5-7, the duration of the epidemic outbreak lasted between 209-250 time steps
(recovery rate 0.04) and between 62-92 time steps (recovery rate 0.14).

• For Graph 8, the duration of the epidemic outbreak lasted between 263-385 time steps
(recovery rate 0.04). The difference between Malware A and B was significantly larger
than for Graphs 5-7.

• For Graph 8, the epidemic would not take off (i.e. it would reach only a very small per-
centage of vertices before dying out) if the recovery rate was set to 0.14.

Number of simultaneously infected vertices:

• Overall, the G(n, p) random graphs (Graphs 2 & 6) and the scale-free graphs (Graphs 3
& 7) showed the highest peak numbers of simultaneously infected vertices. Moreover,
they also proved to have the highest differences between Malware A and B.

• For Graphs 1,2,3 and 6 the outcome was largely determined by the recovery rate if the
initially infected vertex/vertices was/were selected based on either the Eigenvector cen-
trality or the Betweenness centrality. In contrast, if the initially infected vertex/vertices
was/were selected randomly the outcome was higher if the number of initially infected
vertices was equal to 1% as compared to those cases, in which the number of initially
infected vertices was equal to 1.

• Graphs 5 and 7 showed very similar results, with the distinction, however, that the peak
number of simultaneously infected vertices was considerably smaller for Simulation 3
than for all other cases. Moreover, the difference between Malware A and B was signifi-
cantly smaller for Simulation 3 than for all other simulations.

• Graphs 4 and 8 (the small-world graphs), however, showed an overall lower maximum
number of simultaneously infected vertices.

Time steps until maximum number of simultaneously infected vertices is reached:

• Graphs 1-3 and Graphs 6 & 7, respectively showed very similar results. In comparison,
it took significantly longer on the two small-world graphs (Graphs 4 & 8) to reach the
maximum number of simultaneously infected vertices.

• For epidemics spreading across the Autonomous Systems graph (Graph 5) the maximum
number of simultaneously infected vertices was reached extremely fast and showed re-
sults comparable to the small scale-free graph (Graph 3).

• For all graphs except of the small-world graphs (Graphs 4 & 8) it took considerably longer
to reach the maximum number of simultaneously infected vertices for Simulations 1 and
3 (i.e. if the initially infected vertex is chosen randomly).
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• Whereas the difference between Malware A and Malware B was consistently between
0-3 time steps for Graphs 1-3 and Graphs 5-7, the difference was between -2 and 16
time steps for the small-world graphs (Graphs 4&8). The negative differences for the
epidemics spreading across Graph 8 were all associated with a recovery rate of 0.14.

Incidence
The incidence describes the number of newly infected vertices per time step. Exemplarily, the
incidence of Simulation 1 of the E-Mail Graph (Graph 1) is depicted in Figure 12.
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Figure 12: Incidence: E-Mail Graph (Graph 1), Simulation 1

For the analysis of the results, the maximum incidence as well as the number of time time steps
until no new infections occur (i.e. the duration of the spreading) were considered:

Maximum Incidence:

• All four smaller graphs (Graphs 1-4) showed significantly higher percentages of maxi-
mum incidences than the larger graphs (Graphs 5-8).

• For all eight graphs, the difference between Malware A and Malware B reached a sig-
nificant low point for Simulation 3 (i.e. one starting vertex is randomly selected and the
recovery rate is equal to 0.14). Moreover, the difference between Malware A and B
proved to be consistently smaller for the two small-world graphs (Graphs 4& 8) than for
all the other graphs.

• For epidemics spreading across all graphs except of the small-world graphs the follow-
ing pattern applied: If the initially infected vertex/vertices is/are selected based on either
the Eigenvector centrality or the Betweenness centrality, then the number of initially in-
fected vertices has only minor influence on the outcome and the recovery rate has major
influence on the outcome. If, however, the initially infected vertex/vertices are selected
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randomly, then the number of initially infected vertices as well as the recovery rate have
major influence on the outcome.

Time steps until maximum incidence is reached:

• The epidemics spreading across the generated graphs (Graphs 2-4 and Graphs 6-8) showed
a consistent pattern, i.e. the maximum incidence was reached fastest for the scale-free
graphs (Graphs 3 & 7) followed by the G(n, p) random graphs (Graphs 2 & 6) and slow-
est for the small-world graphs (Graphs 4 & 8)4. Thereby, it took significantly more time
steps to reach the maximum incidence on the small-world graphs than on the scale-free
graphs (i.e. up to ten times as long).

• In case of the E-Mail Graph (Graph 1), the number of required time steps was almost
equal to the one of the small scale-free graph (Graph 3). In case of the Autonomous
Systems Graph (Graph 5), however, the maximum incidence was reached much faster
than in any other case.

• Regarding the difference between Malware A and Malware B, we found that for the epi-
demics spreading across the Graphs 1 - 4, 6, and 7 the difference remained very small
ranging only between 0 and 2 time steps. Differing behavior was only observed for the
Graphs 5 & 8. In case of Simulations 6,8,10, and 12 the difference between Malware
A and Malware B was always equal to -1 (meaning that the maximum incidence was
reached slower for Malware B) for epidemic spreading across the Autonomous Systems
Graph (Graph 5). For epidemics spreading across the small-world Graph (Graph 8), the
difference between Malware A and B was significantly larger than for all the other graphs
ranging between 3 and 17 time steps5.

Percentage of Infected Vertices
The overall percentage of infected vertices during the epidemic outbreak was calculated as the
average percentage of vertices in the population that has been infected with Malware A (or B,
respectively) within the time frame from time step t0 until no new infections occurred. When
analyzing these results, we found that:

• Overall, the percentages of infected vertices was significantly higher for the smaller
graphs (Graphs 1 - 4) than for the larger graphs (Graphs 5 - 8).

• The significantly highest percentage of infected vertices for all larger graphs was observed
for the G(n, p) Random Graph (Graph 6).

• Overall, the generated gaphs (Graphs 2 - 4 and Graphs 6 - 8) showed significantly higher
percentages of infected vertices than the real-world graphs (Graphs 1 & 5).

4With the exception of those cases for the small-world Graph 8, in which the epidemic did not spread (Simulations
3,4,7,8,11,12).

5Excluding those cases in which the epidemic did not spread (Simulations 3,4,7,8,11,12).
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• For all eight graphs, there was no significant difference in the outcome between those sim-
ulations, in which the starting vertex/vertices was/were selected based on the Eigenvector
centrality (Simulations 5 - 8) and those, in which the starting vertex/vertices was/were
selected based on the Betweenness centrality (Simulations 9 - 12).

• Overall, the number of initially infected vertices did not have a significant influence on
the outcome when the selection criterion for the starting vertex/vertices was either the
Eigenvector centrality (Simulations 5 - 8) or the Betweenness centrality (Simulations 9 -
12).

• In all cases except of the small-word graphs (Graphs 4 and 8) there was a significant
difference in the outcome between those simulations, in which the starting vertex/ver-
tices was/were selected randomly (Simulations 1 - 4) and those simulations, in which the
starting vertex/vertices was/were selected based on either of the two centrality measures
(Simulations 5 - 12).

• All eight graphs showed a significant difference in the outcome between those simula-
tions, in which the recovery rate was set to 0.04 and those, in which the recovery rate was
set to 0.14. This difference was significantly higher for most larger graphs (Graphs 5 -
8) than for the smaller graphs (Graphs 1 - 4), with the G(n, p) Random Graph (Graph 6)
being the exception.

6.5 Discussion
The difference in the duration of the epidemic outbreak between the synthetic small-world
graphs (Graphs 4 & 8) and the other graphs (Graphs 1-3 & 5-7) can be best explained by their
unique combination of transitivity, the average path length, and the diameter of the respective
graphs. Although the long-range connections in small-world graphs facilitate and accelerate the
spreading dynamics of epidemics in comparison to regular graphs (see, e.g., [WS98], [KE05]),
the high clustering and the relatively low number of long-range connections lead to a distinc-
tively slower spreading behavior in comparison to the other graphs. Hence, both Malware A and
Malware B need a considerably longer time to spread through the small-world graphs (Graphs
4 & 8) than through the other graphs (Graphs 1-3 & 5-7). A higher recovery rate additionally
impedes the spreading dynamics of the epidemics, which results, hence, in even lower numbers
of simultaneously infected vertices for the small-world graphs (Graphs 4 & 8) (see, e.g, [KE05],
[Lew09]). Also, the larger difference between Malware A and Malware B in comparison to the
other graphs might be explained by this specific spreading behavior. In particular, the increased
transmission probability β allows Malware B to spread faster via the long-range connections
once the connected vertex is infected with Malware A (in comparison, Malware A does not
have an increased transmission probability).

Due to this high clustering and the sparse long-range connections, epidemics are also more
likely to die out quickly (i.e. to not spread through the graph) in a small-world graph than in
the other observed graph topologies. Especially in the case of a higher recovery probability,
the chance that the epidemics spread only within the cluster(s) in which the initially infected
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vertices are positioned in, is significantly increased, because the vertices, which might infect
another vertex via a long-range connection are more likely to recover before they can transmit
the malware to another cluster.

Furthermore, Lewis showed that due to these distinct graph properties, small-world graphs ex-
hibit a distinctively smaller spectral radius6 than other graph topologies [Lew09]. This is insofar
relevant as Wang et al. proved that the epidemic threshold is equal to

τ =
1

λdom
(6.1)

where λdom is the dominant Eigenvalue of the adjacency matrix (for further details and the full
mathematical proof see, e.g., [WCWF03], [VMOJK09]). Based on these findings, it follows
that the smaller the spectral radius of a graph, the lower the probability of an epidemic to spread
through this graph (see, e.g., [WCWF03], [JKVMVD06], [Lew09], [CWW+08]). As can be
seen in Table 4, the spectral radius of Graph 8 is significantly smaller than the spectral radii
of Graphs 1-7, which helps to explain why the epidemics do not spread across Graph 8 for a
recovery probability of 0.14.

Graph #1 #2 #3 #4 #5 #6 #7 #8

Spectral Radius 20.747 10.688 20.376 10.088 46.318 7.579 12.434 4.149

Table 4: Spectral radii

Furthermore, Table 4 reveals that the Autonomous Systems graph (Graph 5) has a considerably
larger spectral radius than the other graphs. Since a lower spectral radius lowers the spreading
probability of an epidemic, a larger spectral radius increases the spreading probability. This
might explain why the maximum number of simultaneously infected vertices and the maximum
incidence was reached significantly faster on Graph 5 than on the other larger graphs.

The larger difference between Malware A and Malware B can be also interpreted as a result of
this accelerated spreading behavior, because a larger number of vertices infected with Malware
A offers more possibilities (with increased transmission probability β) for Malware B to spread
through the graph. This means that in the case of G(n, p) random graphs and scale-free graphs
the increased infection probability due to previous infection with Malware A acts as an amplifier
for the spreading of Malware B.

Furthermore, the results showed that the vertex with the highest centrality measure (equally true
for the Betweenness centrality and the Eigenvector centrality) has the highest influence on the
outcome and that adding more vertices based on any of the selected centrality measures has
only relatively small effects on the peak number of simultaneously infected vertices and the

6The spectral radius of a graph G is defined as the dominant Eigenvalue of the graph’s adjacency matrix [Lew09].
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maximum incidence. Consequently, the higher number of initially infected vertices has also
only minor effects on the percentage of overall infected vertices.

In contrast, the results for Simulations 1 & 3 (i.e. those simulations, for which only one initially
infected vertex was selected randomly) showed significantly lower results for the peak number
of simultaneously infected vertices, the maximum incidence, and the percentage of overall in-
fected vertices, and higher results for the required number of time steps until the peak number
of simultaneously infected vertices is reached. This might be, because in the case of 1% of
initially infected vertices the chances are much higher that a vertex with a high centrality score
is among the initially infected ones than if only a single vertex is randomly selected as the ini-
tially infected one. As described in Section 6.4, however, Simulations 1 & 3 result mostly in
a higher difference between Malware A and Malware B with respect to the peak number of si-
multaneously infected vertices than the other simulations. This can be explained by the random
selection criteria of the initially infected vertex, which mostly results in two different initially
infected vertices (i.e. one vertex infected with Malware A and a different vertex infected with
Malware B). This means that the two epidemics start to spread independently and result in
super-infections (see Section 5.1) once one of the epidemics is transmitted to a vertex that is al-
ready infected with the other epidemic. Once Malware B reaches the cluster of vertices already
infected with Malware A, the increased transmission probability β significantly accelerates the
spreading of Malware B among those vertices that are currently infected with Malware A. In
comparison, Malware A needs considerably longer to super-infect those vertices, which are cur-
rently infected with Malware B, which means that more vertices also recover from Malware A
during this time. Hence, this results in a comparatively high difference between Malware A and
Malware B. At the same time, this means that both Malware A and Malware B show a relatively
similar maximum incidence, which results hence in a very small difference between Malware
A and Malware B. In case of Simulations 5, 7, 9, and 11, on the other hand, both epidemics
always start from a single co-infected vertex (see Section 5.1). This means that both Malware
A and Malware B start to spread similarly from the initially co-infected vertex and that there
is a smaller number of vertices only infected with Malware A that can act as accelerator for
Malware B.

In case of a recovery rate of 0.14, however, the number of initially infected vertices had a sig-
nificantly higher influence on the number of simultaneously infected vertices than in the case
of a recovery rate of 0.04. This was equally true for all simulations independent of the se-
lection criteria for the initially infected vertex/vertices. This is, because a small recovery rate
such as 0.04 allows an epidemic to spread almost unimpeded through a graph. The very high
percentages (i.e. up to 100%) of overall infected vertices for all graphs in the simulations with
a recovery rate of 0.04 (Simulations 1, 2, 5, 6, 9, 10) demonstrate this unimpaired spreading
behavior. Hence, the larger number of initially infected vertices has only a small accelerating
effect on an epidemic. In case of a significantly higher recovery rate such as 0.14, however, an
epidemic is considerably slowed down in its spreading dynamic and results hence in a much
shorter duration of the epidemic outbreak and a smaller percentage of overall infected vertices.
Accordingly, an epidemic that starts from only one initially infected vertex reaches a consider-
ably smaller percentage of vertices and results in a smaller number of simultaneously infected

28



vertices. Starting, however, with 1% of initially infected vertices (in comparison to only one
initially infected vertex) counteracts this decelerated spreading behavior and results hence in a
higher number of simultaneously infected vertices after fewer time steps and a higher percent-
age of overall infected vertices7.

Graph #1 #2 #3 #4 #5 #6 #7 #8

Edge Density 0.0085 0.0085 0.0088 0.0088 0.0006 0.0009 0.0006 0.0006

Table 5: Edge Density

As described in Section 6.4 the epidemics reached higher percentages of infected vertices in
the smaller graphs (Graphs 1-4) then in the larger graphs (Graphs 5-8). This is, because given
the same transmission and recovery probability, an epidemic will reach a higher percentage of
vertices in a smaller and better connected graph (i.e. a graph with a higher edge density8) than in
a larger and sparser connected one. Since Graphs 1-4 are about six times smaller (considering
the number of vertices) than Graphs 5-8 and have a much higher edge density (see Table 5),
both Malware A and Malware B reached a considerably higher percentage of the vertices in the
smaller graphs (Graphs 1-4) than in the larger graphs (Graphs 5-8). The higher edge density
(see Table 5) of the smaller graphs (Graphs 1-4) also led to a higher maximum incidence than
for the larger graphs (Graphs 5-8).

Moreover, the larger G(n, p) random graph (Graph 6) has a notably higher edge density than
the other larger graphs (Graph 5,7,8, see Table 5). This property in connection with the fact
that epidemics, in general, spread very fast through G(n, p) random graphs (see, e.g., [WS98],
[KE05]) can be seen as the reason why both Malware A and Malware B reached a considerably
higher percentage of the vertices in Graph 6 compared to the other larger graphs (Graphs 5,7,8)
and also explains why the higher recovery rate of 0.14 had a smaller influence on Graph 6 than
on the other larger graphs (Graphs 5,7,8). This is also in line with the result that the Graphs 5
and 7 showed a significantly smaller peak number for Simulation 3 than Graph 6 (see Section
6.4)9.

7This is true for all graphs except of the larger small-world graph (Graph 8), because, as described above, the
epidemics would not take off for those simulations, where the recovery rate is equal to 0.14. For Malware B to
have a spreading advantage due to an increased transmission probability, however, a substantial number of vertices
must be infected with Malware A. Since this requirement is not fulfilled for these simulations, the difference
between Malware A and Malware B (in terms of required time steps to reach the peak number of simultaneously
infected vertices) is close to zero or even negative, which means that Malware A reached the peak number faster
than Malware B. Similarly, the peak numbers of simultaneously infected vertices are almost equal as is also the
duration of the epidemic outbreak.

8The edge density is defined as the ratio of the number of edges and the number of possible edges excluding loops
and was calculated using igraph’s edge_density function.

9Since both Malware A and Malware B did not take off in Simulation 3 on the small-world graph (Graph 8), the
results are not comparable to the Graphs 5, 6, and 7.
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7 Conclusion
The literature research has shown that in the case of interacting epidemics one can differentiate
between subsequent infections and dual infections. Whereas subsequent infections are very
common in the biological context and lead, among others, to either cross-immunity or cross-
enhancement, these cases are (at least currently still) irrelevant for the context of computer
malware. In contrast, hostile takeovers can be repeatedly observed in the context of computer
malware and are rather rare in the biological context. In case of dual infections, all interaction
types can be observed in both the biological as well as the malware context. Thereby, especially
increased susceptibility (and increased virulence) is a very common case in both fields.

Based on these observations, an existing model for increased susceptibility of infectious dis-
eases was selected and modifications were applied in order to fit this model to the context of
computer malware. The selected model was an SIR× SIR compartmental model, which means
that each vertex in the network can be in one of nine stages. The major modifications included
the addition of a direct infection with both malicious software programs (enabling hence co-
infections) and the restriction to a unilateral increase in the infection rate.

The adapted model was implemented in R using RStudio. Two real-life networks (a smaller
and a larger one) were selected for the purposes of the experiment and six graphs synthetically
generated on the basis of the two selected ones. Then, simulations were conducted using differ-
ent parameter settings. In particular, the selection of the start vertices, the number of initially
infected vertices, as well as the recovery rate were modified. These variations resulted in twelve
distinct configurations, which were run on each of the eight graphs resulting hence in 96 cases
and 96 × 500 = 48,000 simulations.

The results showed that whereas epidemics spreading across the real-life networks as well as
the synthetically generated G(n, p) random graphs and scale-free graphs showed surprisingly
similar behavior, the epidemic spreading differed greatly when the epidemics spread through
a synthetically generated small-world graph. These differences could be best explained by the
unique combination of transitivity, average path length, and diameter of the respective graphs.
Furthermore, the spectral radii of the graphs proved to be a valid measure for the spreading
dynamics of the interacting epidemics, i.e. the smaller the spectral radius of a graph, the lower
the probability of an epidemic to spread through this graph. In addition, it was confirmed
that the final outcome, i.e. the final number of infected vertices, was dependent on the edge
density of the graph. Finally, the results showed that the selection criterion of the initially
infected vertex/vertices, has significant influence on the spreading behavior of the epidemics. In
particular, the epidemics are more severe (i.e. they reach more vertices in the network) when the
initially infected vertex/vertices is/are selected based on centrality measures than when it/they
is/are selected randomly.

This thesis focused solely on the case of increased susceptibility, but did not apply existing
models of other cases to the context of computer malware. Hence, future research could fill this
research gap and run similar simulations using, however, other models.
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Appendix A
Initialization

1 # Set the number of initially infected individuals
2 init_inf_A = 1
3 init_inf_B = 1
4

5 # Set the normal infection rates
6 alpha_A = 0.13
7 alpha_B = 0.13
8

9 # Set the increase of the infection rate for disease A and B
10 beta_A = 0
11 beta_B = 0.27
12

13 # Set the recovery rates
14 gamma_A = 0.14
15 gamma_B = 0.14
16

17 # Set the length of the simulation
18 simlength = 70
19 # Set how often the simulation is repeated
20 simnumber = 500
21

22 # Set TRUE for plotting the graph
23 plot.spread = FALSE
24

25 # Set whether the infected individuals can recover
26 # from timestep 0 to timestep 1
27 recovery.wait_A = TRUE
28 recovery.wait_B = TRUE

Listing 1: Initialization
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Selection of Edges

1 for (k in 1:simlength) {
2

3 # 4 lists in order to sort the edges according
4 # to their transmission risk
5 highrisk.edges_A = list()
6 highrisk.edges_B = list()
7 normal.edges_A = list()
8 normal.edges_B = list()
9

10 [...]
11

12 for(i in 1:nrow(edgelist)){
13

14 # Find those vertices, which are
15 # ONLY INFECTED WITH DISEASE A
16 if(infected_A[edgelist[i,1]] %in% TRUE && infected_B[

edgelist[i,1]] %in% FALSE){
17

18 # Find those vertices, which are
19 # ONLY INFECTED WITH DISEASE B
20 if(infected_A[edgelist[i,2]] %in% FALSE && infected_B[

edgelist[i,2]] %in% TRUE){
21

22 # The variable n and o are "counters"
23 # and are used to append the value to the lists
24 highrisk.edges_A[[n]] = i
25 highrisk.edges_B[[o]] = i
26 n = n + 1
27 o = o + 1
28 next
29 }
30

31 [...]

Listing 2: Edge sorting
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Transmission and Recovery

1 # The rbinom function is used to determine those edges along which
the disease is transmitted

2 # Differentiation between the normal transmission probability and
the increased transmission probability

3 transmit_normal_A = rbinom(length(normal.edges_A),1,alpha_A)
4 transmit_high_A = rbinom(length(highrisk.edges_A),1, (

alpha_A+beta_A))
5

6 # The edges along which the diseases are transmitted are selected
7 transmitter.edges_normal_A =
8 normal.edges_A[transmit_normal_A == 1]
9 transmitter.edges_high_A =

10 highrisk.edges_A[transmit_high_A == 1]
11

12 # Based on the selected edges the corresponding vertices are
selected

13 vertices.transmitter.edges_normal_A = unique(as.vector(edgelist[
transmitter.edges_normal_A,1:2]))

14 vertices.transmitter.edges_high_A = unique(as.vector(edgelist[
transmitter.edges_high_A,1:2]))

15

16 # All vertices, which are now newly infected are set to TRUE in the
corresponding logical vector

17 infected_A[vertices.transmitter.edges_normal_A] = TRUE
18 infected_A[vertices.transmitter.edges_high_A] = TRUE

Listing 3: Transmission

1 # Depending on recovery.wait
2 # First, those vertices which are infected with disease A are

selected
3 # Then, those vertices, which recover during this time step are

selected with probability gamma
4 # Finally, the recovered vertices are set to NA
5 if (recovery.wait_A == FALSE || k > 1){
6 infected.vertices_A = which(infected_A %in% TRUE)
7 recover_A =
8 rbinom(sum(infected_A %in% TRUE, na.rm = TRUE),1,gamma_A)
9 recover.vertices_A = infected.vertices_A[recover_A == 1]

10 infected_A[recover.vertices_A] = NA
11 }

Listing 4: Recovery
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APPENDIX B 

Prevalence – Maximum Number of Infected Vertices 



APPENDIX C 

Prevalence – Time until Maximum Number of Infected Vertices is reached 



APPENDIX D 

Prevalence – Duration of the Epidemic 



APPENDIX E 

Incidence – Maximum Incidence (in percent) 

 

 

 

 

 

 

 



APPENDIX F 

Incidence – Time until Maximum Incidence is reached 

 

 

 

 

 

 

 



APPENDIX G 

Percentage of Infected Vertices 


