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Abstract 

As the globally installed PV capacity is growing rapidly, quantification of PV system operation 

reliability under outdoor conditions merits increased attention. In this regard, the 

understanding of the PV performance dependence on different climatic weather conditions 

is of crucial importance. This research focuses on the evaluation of sub-models, applied by 

the international standard IEC 61853-3 committee draft, for the prediction of PV module 

temperature and power at various weather conditions – binned into ranges of irradiance, 

ambient temperature, wind speed and angle of incidence. The evaluation is based on 

minutely averages of weather parameter measurements that serve as inputs for the IEC 

standard’s sub-models, as well as granular intra-array PV operational parameter 

measurements for the validation of the IEC standard’s predictions. Both, weather and PV 

operational parameters are measured at a ground mounted PV array at NIST in 

Gaithersburg, Maryland (USA). PV operational parameters are monitored via wireless IV-

tracers mounted at one PV module within each of the 96 series strings of the observed PV 

array – measuring operational current and voltage, along with periodically conducting IV-

curve traces. These distributed tracer measurements also permit a granular spatial analysis 

of PV module performance prediction variability across the PV array, providing crucial 

information for performance modeling and rating of entire PV arrays. 

Results show modeling errors between 1 and 9 °C RMSE for the PV module temperature 

prediction, and between 2 and 33 W RMSE for the PV module power prediction. Highest 

prediction errors occur at low irradiances between 100 and 300 W/m² and low ambient and 

PV module temperatures below 10 °C and 15 °C, respectively – represented as strong 

overpredictions in PV module power. These errors appear to be independent of wind speed, 

occur mainly at AOI between 30 and 50° and are most probably caused by magnified errors 

through linear extrapolation of the performance matrix to lower PV module temperature 

ranges, as well as non-linearities of PV module performance at lower irradiances and/or 

module temperatures – not taken into account by the linear inter-/extrapolation. Also, 

neglecting natural convection cooling at high irradiances and low wind speeds, as well as 

radiation cooling at low irradiances leads to visible irregularities of residuals and increased 

errors for the temperature and power prediction.  

The spatial analysis of power prediction error and IV-curve parameter variability across the 

PV array shows a significant pattern of inconsistencies at certain weather conditions, most 

probably related to temperature differences between the affected PV module positions. 

These inconsistencies are strongly pronounced at high irradiances and/or ambient 

temperatures and especially noticeable at high wind speeds. At these weather conditions, 

the difference in median power prediction error across the observed 96 PV modules within 

the PV array reaches values between 2 and 4 W, with evident corresponding differences in 

median measured Voc and Isc between 0.2 and 1 V and up to 0.5 A, respectively.  

Keywords: photovoltaic array, monitoring, modeling, weather conditions, spatial analysis 



 

   5 

 

Acknowledgements 

I want to thank all people who strongly supported me with writing this thesis, especially my 

supervisors from NIST, Brian Dougherty and Matthew Boyd, for their helpful guidance and 

assistance during my time in the USA, as well as my supervisor from the UAS Technikum 

Vienna, Hubert Fechner, for his constant encouragement and valuable support.  

I also want to thank Karl Berger from the AIT, for his critical comments and suggestions 

during initial phases of this work. 

I also acknowledge the University of Applied Sciences Technikum Vienna, the National 

Institute of Standards and Technology, as well as the Austrian Marshall Plan Foundation for 

providing me with the opportunity of this immensely valuable professional experience. 

Finally, I want to express my deepest gratitude to my wife, Aline, for her immeasurable and 

continuous love, support and understanding. I also want thank my closest family and friends 

for their perpetual enthusiasm and pride for me. 

 

 



 

   6 

Table of contents 

1 Introduction ........................................................................................................10 

1.1 Subject of research ............................................................................................12 

1.2 Project Goals .....................................................................................................13 

1.3 Scientific Questions ...........................................................................................15 

1.4 Scope of work and limitations of research ..........................................................15 

1.4.1 Observed PV module characteristics .................................................................15 

1.4.2 Modeling algorithm compromises ......................................................................16 

1.4.3 Measurement position compromises ..................................................................17 

1.4.4 Observed weather conditions and characteristic days .......................................17 

1.4.5 Uncertainty and calibration of equipment ...........................................................18 

2 Definition of terms ..............................................................................................19 

2.1 PV ground array terminology .............................................................................19 

2.2 Data processing terminology .............................................................................20 

2.2.1 Weather data .....................................................................................................20 

2.2.2 Operational data ................................................................................................20 

2.2.3 IV curve sweep ..................................................................................................20 

2.2.4 Minutely averages of weather and operational data ...........................................20 

2.2.5 Time stamp ........................................................................................................20 

2.2.6 Data anomaly ....................................................................................................21 

2.3 Weather data terminology ..................................................................................21 

2.3.1 Ambient temperature (Tamb) ...............................................................................21 

2.3.2 Module temperature (Tmod) .................................................................................21 

2.3.3 Wind speed (ν) ..................................................................................................21 

2.3.4 Sun elevation (θel), zenith (θz), azimuth (θa) .......................................................22 

2.3.5 Sun angle of incidence (AOI) .............................................................................22 

2.3.6 Air mass (AM) ....................................................................................................23 

2.3.7 Air pressure (p) ..................................................................................................24 

2.3.8 Relative humidity (RH) .......................................................................................24 

2.3.9 Precipitable water (Pwat) .....................................................................................24 

2.3.10 Turbidity (β) ...................................................................................................24 

2.3.11 Direct normal irradiance (DNI) .......................................................................24 

2.3.12 Global horizontal irradiance (GHI) ..................................................................25 



 

   7 

2.3.13 Diffuse horizontal irradiance (DHI) .................................................................25 

2.3.14 Direct horizontal and in-plane irradiance ........................................................25 

2.3.15 Global in-plane irradiance (Gpoa) ....................................................................25 

3 Methodology ......................................................................................................27 

3.1 State of the art research ....................................................................................27 

3.2 Organization and processing of monitoring data ................................................27 

3.2.1 Monitoring data and timing .................................................................................27 

3.2.2 Monitoring data anomalies .................................................................................31 

3.3 Evaluation of PV modeling algorithms ................................................................32 

3.3.1 IEC 61853-3 modeling algorithms ......................................................................33 

3.3.2 Weather data inputs ...........................................................................................34 

3.3.3 IEC 61853-1 and IEC 61853-2 ...........................................................................35 

3.3.4 AOI correction – Model of Martin and Ruiz (2000) .............................................37 

3.3.5 Spectral correction – Model of IEC 61853-3 and Lee and Panchula (2016) .......40 

3.3.6 PV module temperature calculation – Model of Faiman (2008) ..........................42 

3.3.7 PV module output power calculation – Interpolation method ..............................43 

3.4 Spatial PV array performance analysis ..............................................................46 

3.4.1 Differences in local irradiance and module temperature.....................................46 

3.4.2 Observed PV module positions ..........................................................................47 

3.5 Days with characteristic weather conditions .......................................................49 

3.6 Data binning to various ranges of weather conditions ........................................51 

3.7 Exploratory data analysis (EDA) ........................................................................53 

3.7.1 Linear regression model approach .....................................................................53 

3.7.2 Statistical diagnostic parameters .......................................................................54 

3.7.3 Graphical analysis of residuals ..........................................................................58 

3.7.4 Graphical analysis of location effects .................................................................61 

3.8 Overview of research steps ...............................................................................62 

4 Effects and influences in outdoor PV arrays .......................................................63 

4.1 DC performance array losses ............................................................................63 

4.1.1 Quantification of mismatch losses ......................................................................63 

4.1.2 PV array system component losses ...................................................................63 

4.1.3 DC wiring losses ................................................................................................64 

4.2 Optical effects ....................................................................................................64 



 

   8 

4.2.1 Soiling and shading ...........................................................................................64 

4.2.2 Reflectivity and AOI ...........................................................................................65 

4.2.3 Spectral responsivity ..........................................................................................65 

4.3 Thermal effects ..................................................................................................66 

4.4 Degradation and failure modes ..........................................................................67 

5 State of the art – PV performance modeling approaches ...................................70 

6 Monitoring of NIST’s ground mounted PV array .................................................72 

6.1 Surroundings and location .................................................................................72 

6.2 Electrical layout and measurement positions .....................................................73 

6.3 IV curve tracers .................................................................................................76 

6.4 Summary of PV ground array characteristics .....................................................77 

7 Evaluation of PV modeling algorithms ................................................................79 

7.1 Angle of incidence correction .............................................................................80 

7.2 Spectral correction .............................................................................................81 

7.3 Module temperature calculation .........................................................................82 

7.3.1 Distribution of residuals and sample size - Temperature ....................................83 

7.4 Module power calculation ..................................................................................84 

7.4.1 Distribution of residuals and sample size - Power ..............................................85 

7.5 Analysis of days with characteristic weather conditions .....................................86 

7.6 Analysis of effects of independent variation of bin ranges ..................................90 

7.7 Analysis of effects of cross-dependent variation of bin ranges ...........................94 

7.8 Summary and discussion of results – Evaluation of modeling algorithms ......... 103 

8 Spatial PV array performance analysis ............................................................ 112 

8.1 Analysis of entire data set population ............................................................... 113 

8.2 Analysis of independent and cross-dependent variation of bin ranges ............. 116 

8.3 Summary and discussion of results – Spatial PV array performance analysis .. 123 

9 Conclusion and outlook.................................................................................... 125 

References...................................................................................................................... 128 

Figures ............................................................................................................................ 132 

Tables ............................................................................................................................. 136 



 

   9 

Equations ........................................................................................................................ 139 

Appendix A – PV array monitoring system components .................................................. 141 

Appendix B – Performance matrix ................................................................................... 145 

Appendix C – Daylight times of observed days ............................................................... 147 

Appendix D – Observed combinations of bin ranges ....................................................... 148 

Appendix E – Temperature prediction results .................................................................. 150 

Appendix F – Distribution of temperature residuals ......................................................... 151 

Appendix G – Power prediction results ............................................................................ 165 

Appendix H – Distribution of power residuals .................................................................. 166 

Appendix I – Bin ranges with minimum sample size and (roughly) normal distribution .... 180 

Appendix J – Position analysis for all combinations of bin ranges ................................... 181 

 

 

  



 

   10 

1 Introduction 

The worldwide installed photovoltaic (PV) capacity has been growing significantly in the last 

several years to a point that it now joins hydro and wind energy as one of the main renewable 

energy sources. (IEA, 2017a) Especially over the last two years, the total installed PV 

capacity worldwide has increased remarkably, showing a market growth rate of 25 % for 

2015 and 50 % for 2016, which account to about 50 and 75 gigawatts peak (GWp) of yearly 

installation in these years. (IEA, 2017a) Given this growth, the total globally installed PV 

capacity at the end of 2016 surpassed 300 GWp, leading to a contribution to the world’s 

electricity generation of about 1.8 %. (IEA, 2017a) In the upcoming years PV is expected to 

exceed an installed capacity of 400 GWp worldwide by 2020 – which will surpass the globally 

installed capacity of nuclear power as of 2015.1 (IEA, 2015) The most commonly used and 

commercially available PV technology is based on monocrystalline (m-Si) and polycrystalline 

(p-Si) silicon (Si) cells, sharing about 90% of the global PV market. The other 10% mainly 

consist of thin film technologies based on materials like cadmium telluride (CdTe), copper 

indium gallium [di-] selenide (CIGS), amorphous silicon (a-Si) and other technologies (CPV, 

multi-junction solar cells, etc.). (IEA, 2016) The significant recent growth of PV worldwide 

can partly be attributed to the rapid cost reduction of PV modules and PV balance-of-system 

(BOS) components. This growth has contributed to PV generated energy now being 

competitive with conventional electricity prices in several countries when comparing 

levelized costs of electricity (LCOE). Also, favorable policies have considerably influenced 

the PV market development over the last few years. (IEA, 2016)  

Even as these market drivers eventually saturate, system operation costs and system 

operation reliability will remain crucial to PV’s continued growth and improvement – as these 

factors strongly influence the confidence of investors in the technology. In this context, 

quantifying the performance of PV systems – especially PV modules – under outdoor 

conditions merits high attention. Whereas installed PV modules operate under a wide range 

of ambient conditions, PV modules usually are rated at Standard Test Conditions (STC) 

following the methods and specifications in the international standards IEC 60904-1 and IEC 

61215. These standard test conditions include an irradiance of 1000 W/m² in plane of the 

PV module, at a specific spectral irradiance distribution (AM 1.5) and a module temperature 

of 25°C. (IEC, 2016b) These test conditions define the so-called rated or nominal power of 

a PV module. However, the output power and finally the energy conversion efficiency of a 

PV module in outdoor operation conditions depends on a range of different external 

influences that cause the module efficiency or output power to deviate from its nominal 

performance at STC. (Huld and Amillo, 2015) Among these influences are: 

 

                                                
1 Nuclear power plants have 6 to 8 times higher capacity factors than solar PV systems - i.e. the 

amount of energy produced per year by PV systems is still less.  
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 The reflectivity of the PV module top outer surface, which depends on the angle of 

the incoming light (angle of incidence). 

 The wavelength and the intensity of the incoming light. 

 The temperature of the PV modules, which depends on the temperature of the 

surrounding ambient air, the light intensity and the local wind speed. 

 

In addition to the above-mentioned effects, the PV module efficiency is influenced by the 

installation conditions (e.g. orientation of the module), the available solar irradiance at the 

installation site as well as the chance of shadows, dust and/or snow covering the module’s 

surface. (Spataru et al., 2015) Next to these effects some PV module technologies show 

variation in module efficiency caused by long-term exposure to light and/or high temperature 

ranges. (Huld and Amillo, 2015) Also, degradation or failures of components of the PV 

module (e.g., encapsulation materials, solar cells, grid fingers) and/or BOS components 

(e.g., connectors, fuses, cables, junction boxes) through moisture ingress, corrosion, 

mechanical or thermal stress can lead to the occurrence of power loss and potential hazards 

in PV modules or systems. (Spataru et al., 2015) 

All of these factors need to be considered when observing the performance of a PV module 

in outdoor operating conditions as they can lead to deviations from its nominal performance 

at STC. Ultimately, considering several PV modules connected to an array, inherent 

performance differences between the modules within the array (e.g. manufacturing 

differences) or one or more of the above mentioned effects can cause non-ideal operation 

of the individual modules mounted within a PV array – which is referred to as mismatch 

behavior. These non-ideal performance behaviors leads to power losses on the one hand, 

but also increases the risk of potential hazards and problems associated with the long-term 

operation and reliability of a PV system. (Spataru et al., 2015) 

 

In this regard, PV array diagnostic methods are necessary to reveal these fault behaviors 

and degradation modes and consequently minimize power losses and hazards by 

preventative or reparative measures. This will in turn reduce the total lifetime costs of the PV 

array. Common existing PV diagnostic methods usually apply certain PV system models that 

allow the estimation of system parameters such as the output power of the PV system or the 

energy yield over a specific time. The model’s estimated parameters are compared to 

measured parameters in order to detect faults or system anomalies. (Spataru et al., 2015) 

Commonly used PV system models can for example be based on analytical, empirical, 

statistical or generic models. Another approach for diagnosing PV systems is the 

measurement and subsequent analysis of current-voltage (IV) characteristic curves of the 

PV generators, i.e. the PV modules, strings or arrays, by IV curve tracers. (Spataru et al., 

2015) As described in the work of Spataru et al. (2015), IV curve tracers – in comparison to 

other PV diagnostic methods – can deliver significant information concerning the condition 

and electrical characteristics of the observed PV generator. These include: short-circuit 
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current (Isc), open-circuit voltage (Voc), maximum power (Pmp), current at maximum power 

(Imp) and voltage at maximum power (Vmp) and fill factor (FF) as well as operational power 

(Pop), current (Iop) and voltage (Vop). (Daliento et al., 2017) These electrical properties of 

PV modules allow the indication and diagnosis of fault behavior as well as degradation 

modes. 

 
1.1 Subject of research 

One focus of the research is to evaluate how well existing PV performance modeling 

algorithms predict installed performance. Installed performance, in this particular case, 

corresponds to measurements made at the PV module level. These particular PV modules 

are distributed throughout a conventional, grid-connected PV array. The PV array is a 

ground-mounted system that is located at the facilities of the National Institute of Standards 

and Technology (NIST)2 in Gaithersburg, Maryland (USA). Novel monitoring units were used 

to measure the DC current and differential voltage of individual modules, along with 

periodically conducting an IV curve trace while the module was briefly bypassed. In addition 

to the module-level measurements, detailed weather-related parameters and module 

backside temperatures are also locally measured. A subset of these measured ambient and 

operating conditions serve as inputs to the modeling algorithms. 

The modeling algorithms currently appearing in the draft version of the international standard 

IEC 61853-3 version 82/1066/CD were selected for evaluation. These algorithms appear in 

the third part of the four-part standard; this part 3 document is at this time (August 2017) 

under development and exists as an online available committee draft (CD) version. (IEC, 

2016b) Parts 1 and 2 of the IEC standard 61853 specify detailed testing requirements, rating 

a PV module over a range of irradiance and temperatures, varying angle of incidence and 

sunlight spectra. These standards also specify the methods for estimating the module 

temperature from the irradiance, ambient temperature and wind speed. (IEC, 2011, IEC, 

2016a) IEC 61853 parts 3 and 4 are based on these first two parts and will specify the 

procedure for using the test results to calculate the energy rating of the particular PV module 

when deployed in specified representative climates. (IEC, 2016b, IEC, 2016c) The 

calculation of the module’s output power within part 3 is based on first principles 

mathematical models and findings from relevant research studies. Climatic data in this 

project that is required as inputs to the mathematical models, is provided by on-site 

instantaneous weather and module temperature measurements. Three modules, one new 

and two that had been aged outdoors for nearly the same interval as the modules mounted 

in the ground array, were tested in accordance with the above described part 1 and 2 of the 

                                                
2 Certain commercial equipment, instruments, or materials are identified in this work to foster 

understanding. Such identification does not imply recommendation or endorsement by the National 

Institute of Standards and Technology, nor does it imply that the materials or equipment identified are 

necessarily the best available for the purpose. 
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IEC 61853 standard. A more detailed description of this standard draft and its calculation 

procedure can be found in section 2 of this work. 

The observed ground mounted PV array was commissioned in August 2012 and consists of 

1152 m-Si modules3, having a total rated DC power of 271 kilowatt peak (kWp). (Boyd, 2015) 

Since May 2016, one module within each of the 96 series strings in the PV ground array has 

been monitored using wireless IV-tracers4. Each tracer monitors the module (and 

subsequently the string) current along with the voltage increase across the particular module 

on a continuous basis, with the measured values being saved every second. In addition, the 

tracers perform an IV curve sweep of each individual module within the array every five 

minutes. An IV curve sweep requires approximately 300 ms to complete. During a sweep, 

the module is bypassed within its series string. The traces are not synced with one another. 

In addition to facilitating the evaluation of the algorithms used in IEC 61853-3, the distributed 

tracer measurements also allow a granular spatial analysis of modules within the array and 

thus a comparison of their existing performance variability within the observed PV ground 

array. Details on the electrical layout of the PV array, deployed IV-tracers, as well as 

measurement locations of measurement equipment can be found in section 7 of this work. 

 

1.2 Project Goals 

The first project goal is to provide a comprehensive overview of the factors that need to be 

considered when analyzing outdoor PV array measurements. In this regard, for example, 

DC array losses, optical and thermal effects, as well as known degradation modes will be 

described in section 4 of this work. Secondly, this work aims to provide an overview of 

essential PV modeling algorithms and standards that are relevant to the scope of this work. 

Therefore, section 5 will point out relevant modeling algorithms and standards for this 

research. 

The experimental, applied part of this work begins in section 6, which provides more detailed 

information about the observed PV array on NIST’s campus. The electrical layout of the PV 

array, as well as information about measurement positions and the functional principles of 

the IV-tracers are described. It is important to note that a quantitative analysis of pertinent 

system and model uncertainties is beyond the scope of this project. However, component 

uncertainties and a qualitative description of the system components is provided in section 

6 as well as in the Appendix A of this work. 

Section 7 of the thesis covers the evaluation of the performance modeling algorithms used 

in the IEC 61853-3 committee draft version 82/1066/CD. The evaluation is carried out by 

assessing the goodness of fit of modelled to measured operational DC output power and 

module temperature for a data set having 24 days with a range of 8 characteristic weather 

                                                
3 Sharp NU-U235F2, monocrystalline-front-contact PV module 

4 Stratasense Wireless PV tracers, (acc. to STRATASENSE, L. 2013. Stratasense Wireless IV Curve 

Tracer - Brochure.) 
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conditions. These characteristic weather conditions are based on irradiance, wind speed and 

ambient temperature ranges. The inputs to the IEC draft algorithm are the measured, 

instantaneous climatic data recorded at or very near the ground array. Measured weather 

data from days covering as wide a range as available were selected. This selection permits 

investigating the sensitivity of the model to irradiance, wind speed, ambient temperature and 

angle of incidence through the binning of the available data set, as well as the model’s 

behavior at specific days with characteristic weather conditions. An understanding of these 

sensitivities is of high interest, as the finalized version of this standard intends to provide a 

set of standard reference climatic profiles for the prediction of the PV module performance 

in these different climates. (IEC, 2016b, IEC, 2016c) 

Comparing the modelled with the measured PV performance data requires a better 

understanding of effects occurring within the observed ground array. Therefore, section 8 

covers the analysis of the individually traced PV modules within the PV array. In order to 

provide a comprehensive overview of differences in performance within the array, the 

modules are grouped and compared according to their position within the array. This way 

inconsistencies and possible performance differences between the modules can be related 

to their position within the array. The array analysis will be performed on the same data set 

of 24 days with characteristic weather conditions, allowing the assessment of the array for 

the chosen ranges of irradiance, ambient temperature, wind speed and angle of incidences. 

Consequently, observed differences between the module positions within the array can be 

analyzed using parameters retrieved from the measured IV characteristic curves, such as 

the open circuit voltage (Voc) and the short circuit current (Isc). 

Ultimately, this work’s goal is to combine the findings of the model evaluation and the spatial 

array analysis in order to evaluate how well the observed modeling algorithms for stand-

alone PV modules can be applied to estimate the performance of the observed PV array at 

certain weather conditions. Thus, the aim is to provide crucial information which can be used 

for the development of modeling algorithms and rating standards dealing with entire PV 

arrays. 

 

To conclude, the project goals of this work are to: 

 Provide a comprehensive overview of factors affecting outdoor PV array 

measurements and performance. 

 Provide an overview of existing PV modeling algorithms and standards that are 

relevant to this work. 

 Describe the electrical layout of the PV array, as well as give information about 

measurement positions and the functional principles of the deployed IV-tracers. 

 Evaluate the goodness of fit of the modeling algorithms of IEC 61853-3 draft version 

82/1066/CD using the on-site, instantaneous measured climatic data at NIST’s 

facilities for different irradiances, wind speeds, ambient temperatures and angles of 

incidence as well as for different days with characteristic weather conditions. 
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 Analyze differences between the array’s modules according to their position at 

various irradiances, ambient temperatures, wind speeds and angles of incidence, as 

well as on specific days with characteristic weather conditions, by using measured 

IV curve parameters, such as Voc and Isc. 

 

1.3 Scientific Questions 

Concluding the above described project goals, the following four main scientific questions 

for this work are: 

 

 How well do the modeling algorithms suggested by the IEC 61853-3 committee draft 

version 82/1066/CD predict the operating power and backside temperature of field-

deployed PV modules?  

 Does the agreement between modelled and measured performance change for 

different types of days having characteristic weather conditions and/or different 

ranges of irradiance, wind speed, ambient temperature and angles of incidence?  

 Do the comparisons have any dependence on where a particular module is located 

within the ground mounted PV array? 

 What are possible reasons for observed inconsistencies between the in-array 

mounted PV modules when comparing them according to their position within the 

array row (top, middle, bottom position) and their position within the whole array itself 

(middle of array, edge of array) and how can these differences be explained by using 

IV curve characteristic parameters (Voc and Isc) measured by IV tracers at the 

granular module level? 

 
1.4 Scope of work and limitations of research 

The following chapters describe the scope and limitations of the above mentioned project 

goals and scientific questions. 

 

1.4.1 Observed PV module characteristics 

This project focuses on individual PV modules within the ground mounted PV array at NIST’s 

campus in Gaithersburg, Maryland (USA). Observations concentrate on direct current (DC) 

measurements taken by IV curve tracers mounted on the rack framing structure of individual 

modules of each of the 96 strings in the PV array. Measured electrical PV module data 

includes the module/string operational current (Iop) and module differential voltage (Vop) at 

every 1-second time interval as well as IV curve sweeps of each individual module every 5-

minutes. This work’s effort does not include any investigation regarding module or system 

component degradation. A more detailed description of electrical measurements taken by IV 

curve tracers can be found in section 3 and section 6 of this work. 
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1.4.2 Modeling algorithm compromises 

Performance modeling of the PV output power and energy yield estimations are calculated 

by the modeling algorithms used in the international standard IEC 61853-3 which currently 

exists as committee draft version 82/1066/CD. The mathematical algorithms of this standard 

take into account (1) angle of incidence (AOI) effects, (2) spectral sensitivity correction, (3) 

the dependence of the module temperature on irradiance, ambient temperature and wind 

speed as well as (4) the dependence of the module efficiency and output power on ranges 

of irradiance and module temperature. (IEC, 2016b) For the scope of this work, the 

evaluation of the algorithms suggested by the IEC 61853-3 draft focus on the (1), (3) and 

(4), while the spectral correction (2) is considered through a different approach in this work, 

namely that developed by Lee and Panchula (2016) and suggested by the Photovoltaic 

Performance Modeling Collaborative (PVPMC). (PVPMC, 2017) This is on the one hand due 

to limited data availability, on the other hand it is because the current draft version of IEC 

61853-3 does not provide a complete definition of the spectral correction calculation 

procedure. Furthermore, the spectral correction is shown to be significantly smaller than the 

AOI correction. Thus, the evaluation of the algorithms suggested by the IEC 61853-3 draft 

focuses on the correction procedure for angle of incidence (1) based on the model presented 

by Martin and Ruiz (2000), the spectral correction (2) based on the model of Lee and 

Panchula (2016), the prediction of the module temperature (3) based on the model from 

Faiman (2008), and the interpolation method (4) using the performance matrix of IEC 61853-

1 that ultimately provides the instantaneous predicted power values. The following table 

gives an overview of modeling algorithms used in IEC 61853-3 and the alternative model 

used in this work for spectral correction. 

 

 
AOI correction 

(1) 

Spectral 

correction  

(2) 

Module 

temperature 

(3) 

DC module 

output power 

(4) 

Model used 

for evaluation 

IEC 61853-3: 

Martin and Ruiz 

(2000) 

Alternative 

model to IEC 

61853-3: 

Lee and 

Panchula 

(2016) 

IEC 61853-3: 

Faiman (2008) 

IEC 61853-3: 

Interpolation 

method, IEC 

(2016b) 

Table 1 Overview of models involved in the evaluation of IEC 61853-3 of this work (own table) 

In addition, it is important to mention that this work focuses on the use of on-site, 

instantaneous measurements taken by the installed equipment at NIST’s ground mounted 

PV array in Gaithersburg, rather than using representative and averaged standard climate 

profiles as suggested by the IEC standard draft. The use of the calculation algorithms 

described in the draft version of IEC 61853-3 requires a relatively small number of tests in 
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order to determine key parameters for the estimation of power, and subsequently energy 

values of individual PV modules. These preliminary required test procedures are described 

in the first two parts of the standard (IEC 61853-1 and IEC 61853-2) and have already been 

performed for NIST’s ground array module types. Three PV modules of the same type as 

those in the observed PV array were tested at an independent test laboratory – CFV solar 

test laboratory in Albuquerque, NM (USA) – in October 2016. (CFV, 2016) For the scope of 

this thesis, it is assumed that these three tested modules can be treated as equivalent to the 

modules within the PV array, as two of them had been aged outside for nearly the same time 

interval as the modules within the ground array (although in open-circuit condition). 

Differences in aging are assumed to be negligible; however, studies of Jordan (2012) show 

that crystalline silicon modules left in open-circuit conditions show slightly lower degradation 

rates than maximum power tracked modules, with a difference of < 1 %/year. Furthermore, 

the modeling algorithms used in this project do not consider any degradation modes. A 

detailed description of the applied modeling algorithms and test procedures performed by 

CFV Solar Test Laboratory in this work can be found in section 3 of this work. 

 

1.4.3 Measurement position compromises 

Measurement data required for the modeling algorithms, such as ambient temperature 

(Tamb), wind speed (ν), global horizontal irradiance (GHI) and the global in-plane irradiance 

(Gpoa), are taken directly at the ground mounted PV array location. Additionally, the PV 

module temperature (Tmod,meas) is measured at the backside of a module in the middle of the 

PV array, located in the middle row of the third shed of the array, column 24 (indicators: row 

13, column 24). This temperature measurement consists of the measurement of 4 RTD 

sensors positioned according to the international standard IEC 60891. (IEC, 2009) For the 

scope of this project it is assumed that the mean of these 4 RTD sensors measured on this 

particular module can be seen as representative for all modules in the array. The direct 

normal irradiance (DNI), required for the calculation of the direct horizontal irradiance (DHI) 

and the direct in-plane irradiance (Bp) is measured at a weather station about 740 m from 

the array at NIST’s campus. For the scope of this project it is assumed that differences in 

sky conditions between instantaneously measured data at the weather station and data 

measured directly at the ground mounted PV array can be neglected. A closer description of 

the deployed measurement equipment and its positions can be found in section 6 of this 

work. 

 

1.4.4 Observed weather conditions and characteristic days 

The data used in this research was measured between August 2016 and April 2017. 

Comparisons in the project focus on a set of 8 characteristic weather conditions, each of 

them represented by 24 days of measurements, with 3 days per characteristic weather 

condition. All observations referred to in this work are therefore limited to these specific 24 

days. This permits the evaluation modeling algorithms for certain ranges of irradiance, wind 
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speed, ambient temperature as well as angle of incidence on actual measured days. A 

detailed description of the selection criteria for the chosen days (data set population) can be 

found in section 3 of this work. The 8 characteristic weather conditions are categorized 

according to their daily average irradiance, wind speed and ambient temperature during 

daylight times (sun zenith angle < 90) and periods without shadowing or deposition of snow 

on the array’s modules. It is assumed that any dust deposition happens uniformly across the 

entire array. To ensure these conditions, weather data, as well as images of the array and 

sky have been assessed. 

 

1.4.5 Uncertainty and calibration of equipment 

The scope of this work does not consider quantitative evaluations of uncertainty introduced 

by the measurement equipment, although it intends to provide a qualitative description of 

the system components. However, all deployed measurement equipment in this project is 

verified to be accurately calibrated according to standard procedures. The last recalibration 

of the pyranometers at the ground array happened in May 2016. The last recalibration of the 

pyrheliometers measuring the direct normal irradiance (DNI) happened in November 2016. 

The last recalibration of the ambient temperature sensor happened in April 2013. The last 

recalibration of the wind speed sensor happened in July 2016. Silicon sensors were 

calibrated at the factory and verified to be within their specifications. Additionally, the 

radiometers are cleaned three times a week in order to avoid deviation of measurements 

from dust deposition.  
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2 Definition of terms 

This chapter deals with the description and definition of terms and expressions used 

throughout the elaboration of this thesis. In the following paragraphs, terminology related to 

the observed PV ground array, data monitoring, data analysis and weather data is explained. 

 

2.1 PV ground array terminology 

The terminology of the PV ground array’s module positions finds use in the comparison of 

differences within the 96 traced PV modules at certain positions of the array within this thesis. 

Figure 1 shows the observed PV ground array at the campus of NIST mounted on coarse 

gray granite stone (#57 stone) and surrounded by grass and bio retention area. It consists 

of five sheds, of which four of them contain five rows of PV modules. The northern-most fifth 

shed consists of only four rows. In total, there are 48 columns and 24 rows of PV modules 

within the array. 

 

Figure 1 Terminology of positions of PV ground array at campus of NIST, Gaithersburg, a) satellite 

picture for the definition of sheds, b) picture of shed 1 for the definition of rows and columns within a 

shed (Fairbrother, 2017) 

This work focuses – next to the evaluation of IEC 61853-3 calculation procedures – on the 

comparison of PV module positions – also explained in section 0 of this work – such as top, 

middle, bottom of each shed of the array. Furthermore, it brings traced modules mounted at 

the middle of the array and traced modules mounted at the edge of the array into comparison 

– see section 0 of this work. 
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2.2 Data processing terminology 

For better understanding of topics related to monitoring data processing, this chapter defines 

the following terms used in this thesis: 

 

2.2.1 Weather data 

Weather data refers to on-site measured weather parameters that are required for the 

evaluation of IEC 61853-3 calculation procedures, such as: ambient temperature (Tamb), wind 

speed (ν), global horizontal irradiance (GHI), direct normal irradiance (DNI) and global in-

plane irradiance (Gpoa). Solar zenith angle (θz) and solar azimuth angle (θA) are calculated. 

Weather data is available as minutely averages. For further explanation see section 0.  

 

2.2.2 Operational data 

Operational data refers to PV module DC parameters measured by deployed IV tracers at 

one module of each string within the observed array (in total 96 tracers/modules). It includes 

operational, instantaneous voltage (Vop) and current (Iop) as well as frequently taken IV 

curve sweeps. Vop and Iop are available in 1-second intervals. IV curve sweeps are 

available in 5-minutes intervals. For further explanation see section 0. 

 

2.2.3 IV curve sweep 

IV curve sweeps or traces are measurements performed by ‘sweeping’, i.e. varying, the load 

on a PV source over a range of voltages (between 0V and Voc) and currents (depending on 

the irradiance). Many performance characteristics of the observed PV module/cell can be 

determined through IV curves – as described in section 0. An IV curve sweep typically takes 

less than a second, in the case of this work about 300ms. For further explanation related to 

IV curve tracers and IV curve parameters see section 0. 

 

2.2.4 Minutely averages of weather and operational data 

This work focuses on the comparison of minutely averages of weather data, used as input 

for the calculation procedure of IEC 61853-3, compared to minutely averages of operational 

voltage (Vop) and current (Iop). Averages contain available data measured in secondly 

intervals, starting with the first second of a minute (e.g. 13:10:01) up to the last second of a 

minute (e.g. 13:11:00). For further explanation related to monitoring data timing see section 

0. 

 

2.2.5 Time stamp 

Time stamp refers to the corresponding time of a monitored data point. The time reference 

in this work is provided by the weather data. Data points of operational data close to this 
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time stamp are used for further data processing and analysis. For further explanation related 

to monitoring data timing see chapter 0. 

 

2.2.6 Data anomaly 

Data anomaly refers to data that is identified as an obvious outlier in, or is missing from an 

observed data set. This data is either filtered and not considered in further data processing 

and analysis or is added through mathematical approaches (e.g. linear interpolation between 

data points of a data set). For further explanation related to data anomaly processing see 

section 0. 

 

 

2.3 Weather data terminology 

The following chapters provide definitions of weather data used for the purposes of this work. 

 

2.3.1 Ambient temperature (Tamb) 

The ambient temperature refers to the outdoor measured ambient air temperature at the 

observed PV ground array at the campus of NIST provided in degrees Celsius (°C). The 

temperature is measured via resistance temperature detector (RTD) probe on-site at the 

array’s location – not shading the modules and not in stagnant air – mounted in radiation 

shield to prevent the probe to be influenced by radiative heat exchange from the sun and 

surroundings, while still allowing ambient air flow around the probe. (Boyd, 2015) For further 

explanation related to measurement position and equipment see section 6 of this work. 

 

2.3.2 Module temperature (Tmod) 

The term ‘module temperature’ refers to the measured PV module back sheet surface 

temperature (Tmod,meas) measured via 4 mounted RTDs at the back of one module deployed 

in the middle of the observed PV array – measured in degrees Celsius (°C). RTDs are 

positioned according to IEC 60891. (IEC, 2009) For further explanation related to 

measurement position and equipment see section 6 of this work. 

The modeled module temperature (Tmod,IEC) through the procedures of IEC 61853-3 refers to 

the estimation formula developed by Faiman (2008). For further explanation related to the 

module temperature calculation see section 0 of this work. 

 

2.3.3 Wind speed (ν) 

Wind speed refers to measurements taken by an ultrasonic wind sensor at the north of the 

entire observed PV ground array, located in horizontal orientation next to the array about 

56 cm above the array and 83 cm to the north of the modules. Measurement data is provided 
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in meters per second (m/s). For further explanation related to measurement position and 

equipment see section 6 of this work. 

 

2.3.4 Sun elevation (θel), zenith (θz), azimuth (θa) 

The sun elevation angle is defined as the angle between the horizon and the sun, i.e. the 

altitude of the sun. The sun zenith angle is defined as the angle complementary to the sun 

elevation angle, i.e. the angle between the zenith and the sun. The sun azimuth angle is the 

horizontal angle of the sun, measured clockwise from north (e.g. north = 0, east = 90, west 

= 270). The figure below shows the above described sun position angles. 

 

Figure 2 Sun position and relevant angles for calculation procedures (PVPMC, 2017) 

The above described angles, used in this work, are provided via calculations through the 

SOLPOS sun position algorithms of NREL (2000). 

 

2.3.5 Sun angle of incidence (AOI) 

The angle of incidence (AOI) is defined as the angle between the sun’s rays and the 

observed surface hit by the sun rays, e.g. the surface of the PV array/module. It can be 

determined as: 

 

𝐴𝑂𝐼 = cos−1[cos(𝜃𝑧) ∗ cos(𝜃𝑇) + sin(𝜃𝑧) ∗ sin(𝜃𝑇) ∗ cos(𝜃𝐴 − 𝜃𝐴,𝑎𝑟𝑟𝑎𝑦)] 

Equation 1 Formula for calculation of angle of incidence (PVPMC, 2017) 

Where θz is the sun zenith angle, θT the tilt angle of the PV array/module, θA the solar azimuth 

angle and θA,array the azimuth angle of the observed array/module. (PVPMC, 2017) 
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2.3.6 Air mass (AM) 

The air mass (AM) describes the path length of solar radiation beams through the 

atmosphere before reaching the earth, relative to its overhead path length (shortest possible 

path length). (Molina, 2016) 

 

 

Figure 3 Air mass definition (pveducation, 2017a) 

Thus, it is an indicator that quantifies the reduction in power of light that passes through the 

atmosphere and is absorbed by air and dust – usually used for spectral corrections – and is 

defined as: 

𝐴𝑀 = 
1

cos(𝜃𝑧)
 

Equation 2 Formula for calculation of GHI (pveducation, 2017a) 

Where θz is the zenith angle. Thus, AM is a function of time and equals 1 when the sun is 

exactly in overhead position. AM furthermore serves the purpose of definition of standard 

spectra that facilitate the accurate comparison between solar cells – as mentioned in section 

0 of this work. The defined standard spectrum is called AM 1.5 (or AM 1.5G, with G indicating 

global radiation including direct and diffuse components). (pveducation, 2017a) In order to 

obtain values of AM related to the corresponding altitude of the observed location, it is 

required to correct the values of AM. This is done via correction through air pressure. 

(PVPMC, 2017) AM used in this work for spectral correction therefore refers to the absolute, 

pressure corrected air mass AMa at the location of interest related to the standard pressure 

at sea level (in the unit of Pascal). 

 

𝐴𝑀𝑎 = 
𝐴𝑀 ∗ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

101325
 

Equation 3 Formula for calculation of pressure corrected AM, AMa (PVPMC, 2017) 

AM in this work is provided via calculations through the SOLPOS sun position algorithms of 

NREL (2000). 
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2.3.7 Air pressure (p) 

Changes in the ambient air pressure can lead to changes in the atmosphere and therefore 

lead to systematic changes in the solar spectrum. Air pressure can be measured with a 

barometer. (PVPMC, 2017) In this work it is measured via capacitive silicone pressure 

sensors and given in the unit of kilopascal (kPa). (Boyd, 2016b) 

 
2.3.8 Relative humidity (RH) 

Changes in relative humidity can also significantly influence changes in the solar spectrum. 

The relative humidity given in percent (%) is a measure of how saturated a gas is with water 

vapor. It can be measured with hygrometers. In this work the relative humidity is measured 

via capacitive thin film polymer humidity sensors in 1-second averages. (Boyd, 2016b) 

 

2.3.9 Precipitable water (Pwat) 

Precipitable water (Pwat) describes the total amount of water in a vertical column of the 

atmosphere and is specified through centimeters of liquid water (atm cm). Pwat is an 

important indicator, as water causes heavy spectral absorption. Typical values for Pwat range 

from 1-3 cm in temperate climates and reach values up to 5 cm in tropical locations. Accurate 

definitions of Pwat usually requires measurements via radiosonde balloon soundings. 

However, it is possible to estimate Pwat with sufficient accuracy by using ground-level relative 

humidity and ambient temperature – as done in this work using the method suggested by 

Keogh and Blakers (2004). Pwat, together with AM, is used for spectral correction in this work. 

 

2.3.10 Turbidity (β) 

Turbidity is not used in further observations of this work, but shall be mentioned for 

completeness – as it is also part of the work done by Keogh and Blakers (2004) and 

considered to be one of the major influences for spectral losses. It describes the scattering 

and absorption of light by small particles in the atmosphere (e.g., dust, water, ice, 

hygroscopic salt particles). High values of turbidity correspond to higher spectral mismatch. 

(Keogh and Blakers, 2004) 

 

2.3.11 Direct normal irradiance (DNI) 

Is defined as the amount of solar radiation per square meters received by a surface that is 

always normal to the sun’s rays. It is given in watts per square meter (W/m2). The direct 

normal irradiance (DNI) typically is measured via small aperture instruments called 

pyrheliometers with thermopile sensors – or other photosensitive sensors. The construction 

of this instruments limits its measurement to the direct beam and circumsolar radiation 

normal to the sun. If not measured, DNI can be calculated via co-planar measurements of 

diffuse and total radiation by devices with a view of 180° and with known incident angle 
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between measurement plane and the sun. (PVPMC, 2017) In this work, DNI is measured via 

thermopile pyrheliometers. (Boyd, 2015) 

 

2.3.12 Global horizontal irradiance (GHI) 

The global horizontal irradiance (GHI) is defined as the amount of terrestrial irradiance on a 

surface horizontal to the surface of the earth in watts per square meter (W/m2). It can be 

measured with a range of measurement instruments. (PVPMC, 2017) In the case of this 

work it is measured by a field deployed pyranometer. (Boyd, 2015) If it is not measured, GHI 

can be calculated using the direct normal irradiance (DNI) and the diffuse horizontal 

irradiance (DHI) as follows: 

 

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ∗ cos(𝜃𝑧) 

Equation 4 Formula for calculation of GHI (PVPMC, 2017) 

2.3.13 Diffuse horizontal irradiance (DHI) 

The diffuse horizontal irradiance (DHI) is defined as the terrestrial irradiance received by a 

horizontal surface and scattered or diffused by the atmosphere – given in watts per square 

meter (W/m2). It is – as explained above – part of the GHI that is not coming from the sun 

beam. Typically, DHI is measured also via pyranometers that block the direct beam 

component of the radiation, in order to measure only the diffuse part of the radiation. If not 

measured, DHI can be calculated in a similar way as GHI – see above. (PVPMC, 2017) 

 

2.3.14 Direct horizontal and in-plane irradiance 

The direct horizontal irradiance is defined as the direct normal irradiance (DNI) on a 

horizontal plane and the direct in-plane irradiance is defined as the DNI on a tilted plane – 

both in watts per square meter (W/m2) – and can be calculated as follows using the angle of 

incidence to horizontal and tilted surfaces: 

𝐷𝑖𝑟𝐻𝐼 = 𝐷𝑁𝐼 ∗ cos(𝐴𝑂𝐼ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) 

Equation 5 Formula for calculation of the direct horizontal irradiance (PVPMC, 2017) 

𝐷𝑖𝑟𝐼𝐼 = 𝐷𝑁𝐼 ∗ cos(𝐴𝑂𝐼𝑡𝑖𝑙𝑡𝑒𝑑) 

Equation 6 Formula for calculation of the direct in-plane irradiance (PVPMC, 2017) 

2.3.15 Global in-plane irradiance (Gpoa) 

The global in-plane irradiance (Gpoa) – or plane of array irradiance – in this work is defined 

according to IEC 61853-3 draft as the sum of the direct in-plane irradiance and the diffuse 

in-plane irradiance. (IEC, 2016b) Gpoa can be measured using reference cells, pyranometers 

or reference modules mounted in the same orientation of the array/module. (Boyd, 2015) In 

this work, Gpoa measured data is available from silicone reference cell measurements, 
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thermopile pyranometer measurements and silicone photodiode pyranometer 

measurements – available in watts per square meter (W/m2). Used measurements for the 

observations of this work refer to measurements taken by a thermopile pyranometer. Gpoa 

can be used to calculate the diffuse in-plane irradiance through the difference of Gpoa and 

direct in-plane irradiance as follows: 

 

𝐷𝑖𝑓𝑓. 𝐼𝐼 = 𝐺𝑝𝑜𝑎 − 𝐷𝑖𝑟𝐼𝐼 

Equation 7 Formula for calculation of the diffuse in-plane irradiance (IEC, 2016b) 
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3 Methodology 

Based on the above described project goals and scientific questions, the methodological 

approach of this work is divided into 4 steps: (1) a comprehensive summary of the state of 

the art of outdoor PV array measurements and performance as well as PV modeling 

methods, (2) the organization and processing of monitoring data, (3) the evaluation of the 

goodness of fit of the modeling algorithms applied by the IEC 61853-3 draft, (4) the analysis 

of inconsistencies of PV modules mounted at different positions within the PV array. 

  

3.1 State of the art research 

Section 4 and 5 of this work cover the overview of factors affecting outdoor PV array 

measurements and performance as well as pertinent existing PV modeling algorithms and 

standards. Section 6 of the thesis describes the electrical layout of the PV array as well as 

measurement positions and function principles of applied equipment. Findings related to 

these topics are based on literature research and work done at NIST, Gaithersburg, and will 

be referred to accordingly in the respective section of this work. 

 

3.2 Organization and processing of monitoring data 

All data analyzed in this work is processed off-line using the commercial software package 

of MATLAB R2015b (The MathWorks, Inc.). For processing, data was first imported into 

MATLAB from the database via SQL database queries and import functions for comma 

separated values files before further including the measured data into the calculation 

procedures. 

 

3.2.1 Monitoring data and timing 

The available monitoring data consists of (1) recorded weather data (ambient temperature, 

wind speed, global horizontal irradiance, direct normal irradiance, global in-plane irradiance) 

at or close to the ground-mounted PV array and of (2) operational data of modules mounted 

within the array (module backside surface temperature, operational current, operational 

voltage, IV curve measurements). Monitored weather data, including measurements of the 

module backside surface temperature, is being recorded in 1-second intervals and available 

as minutely averages as comma separated value (.csv) files accessible via SQL database 

queries. Operational data of PV modules within the array is being recorded in 1-second 

intervals, except for the IV-curve traces which are being recorded every 5 minutes – both 

also available as .csv-files. Each IV curve sweep lasts up to 300 ms, in this time the particular 

PV module is bypassed from its string. This means that during IV-curve sweeps operational 

voltage (Vop) and current (Iop) are not being monitored. Next to the weather data and 

operational PV module data, (3) network cameras are installed around the PV array, taking 

pictures of the array at certain positions within the array in 5-minute intervals. A sky camera 
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equipped with a fisheye lens takes horizon to horizon sky images in 5-10-second intervals. 

An overview of monitored data, parameter abbreviations, measurement intervals and 

equipment locations is shown in Table 1. Closer information to the corresponding 

measurement equipment and equipment models can be found in section 6 of this work as 

well as in Appendix A. 

 

Monitoring 
data set 

Parameter Abbreviation 
Measurement 

interval 
Measurement 

location 

W
e
a
th

e
r 

d
a
ta

 

ambient temperature Tamb 
1 minute averages of 

1 second 
measurements 

ground array 

wind speed ν 
1 minute averages of 

1 second 
measurements 

ground array 

global horizontal 
irradiance 

GHI 
1 minute averages of 

1 second 
measurements 

ground array 

direct normal 
irradiance 

DNI 
1 minute averages of 

1 second 
measurements 

rooftop weather 
station 

global in-plane 
irradiance 

Gpoa 
1 minute averages of 

1 second 
measurements 

ground array 

P
V

 m
o

d
u

le
 o

p
e
ra

ti
o

n
a
l 

d
a
ta

 

module backside 
temperature 

Tmod,meas 
1 minute averages of 

1 second 
measurement 

ground array 

operational current Iop 
1 minute averages of 

1 second 
measurement 

ground array 

operational voltage Vop 
1 minute averages of 

1 second 
measurement 

ground array 

IV curve traces - 5 minutes ground array 

C
a
m

e
ra

 

p
ic

tu
re

s
 

array camera - 5 minutes ground array 

sky camera - 5 - 10 seconds 
rooftop weather 

station 

Table 1 Overview of available monitoring data, data abbreviations, measurement intervals and 

measurement locations (own table) 

All measurements are synced once a day to an internet time server and are accurate to 

within a second. The weather data – including the module backside temperature – is being 

recorded in 1-second intervals and available as minutely integrated values. The operational 

data from the 96 IV tracers – that are mounted at 1 module per string within the array – is 

being recorded in 1-second intervals (operational voltage Vop, operational current Iop) and 

5-minute intervals for IV curve sweeps – both sequentially logged according to the 

corresponding tracer network processing procedure. There are 4 sets of wireless tracer 

networks in use, each of them containing a certain number of tracers adding up to a total of 
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96 tracers for the whole array. Tracing Vop and Iop at each module happens at each tracer 

network separately and unsynchronized, but at similar time steps close to each other. The 

approximate time difference between the tracer networks at each time step for operational 

voltage and current ranges from less than 1 second to maximum about 2 minutes5. IV 

sweeps are taken every 5 minutes also unsynchronized and separately within each tracer 

network. Although not synchronized, the IV sweeps of each tracer network are taken at 

similar times close to each other with an approximate time difference at each time step 

between the tracer networks of about maximum 5 minutes. The approximate sweep time for 

one IV sweep is up to 300 ms. The number of operational 1 second data missing caused 

through bypassing the modules for IV sweeps is 1 to 2 seconds, with an average of 1.5 

seconds. The following figure shows a schematic diagram that visualizes the described 

behavior of traced data at certain time intervals. 

 

Figure 4 Schematic graph for visualization of weather data, operational data and camera picture 

timing (own figure) 

The data resolution applied in this research focuses on instantaneously monitored, minutely 

averages of weather and operational data. The available minutely averages of the weather 

data serve as a time reference. Averages of monitored PV operational data are calculated 

by averaging all existing 1 second measured data within 1 minute of the time reference. This 

way, the issue of non-synchronized data monitoring between the 4 tracer networks and the 

weather data monitoring can be overcome by picking only data that corresponds to the 

observed minutely time point of the weather data time reference. The operational data being 

processed to minutely averages starts with the one at the time point closest to time reference 

time point – i.e. the closest 1 second data point in case of Iop and Vop and the closest 5 

minute data point set in case of the IV curve sweeps. For missing data points or data points 

that are slightly off the corresponding reference minute, a maximum offset to the timing 

                                                
5 Based on a sufficient number of self-conducted random sample tests. 
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reference is implemented. This maximum offset to the minutely timing reference for the 1 

second operational data points is set to up to 1 minute and up to 5 minutes for the every 5 

minutes measured IV curve sweep data point sets. This means that the maximum allowed 

difference between modeled and measured data points for comparison is 1 minute for 

secondly and 5 minutes for 5-minutely monitored data. Thus, data points that do not meet 

this requirement are not considered for further evaluations. The following figure shows a 

schematic draft table to better visualize the timing reference and chosen offsets. 

 

Time Weather data Operational data IV sweeps 

- (every 1 minute) (every 1 second) (every 5 minutes) 

13:09:59  data point 1  

13:10:00 data point 1  data point 1 

13:10:01    

13:10:02  data point 2  

.  .  

.  .  

.  .  

13:12:57   data point 175   

13:12:58   data point 176   

13:12:59   data point 177   

13:13:00 data point 2 data point 178   

13:13:01   data point 179   

13:13:02   data point 180   

13:13:03   data point 181   

.   .   

.   .   

.   .   

13:13:59   data point 237   

13:14:00 data point 3 data point 238   

13:14:01   data point 239   

.   .   

.   .   

.   .   

13:14:59   data point 297   

13:15:00 data point 3   data point 2 

13:15:01       

13:15:02   data point 298   

13:15:03   data point 299   

Table 2 Schematic visualization of weather data as timing reference: crossed out cells represent 

data points that are not available, cause through temporarily bypassing the module for IV curve 

sweeps; grey filled cells represent available data points closest to the timing reference 
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The choice of processing minutely averaged data is related to the availability of the 

monitored weather data, which is available as minutely averages through SQL data base 

queries. This leads to the effect that possible changes of weather within a 1 minute time 

interval are smoothed by the average calculation. It must be considered that especially the 

irradiance – that directly affects the PV modules photocurrent generation – could suffer from 

uncertainties introduced by this smoothing through the average calculation. Ambient 

temperature, as well as wind speed – indirectly influencing the PV modules open circuit 

voltage (Voc) and thus the fill factor and efficiency of the PV module – are expected to be 

less sensitive to this smoothing effect, as it involves also a certain degree of thermal inertia 

of the PV modules. On the other hand, the minutely averaging of the available weather and 

operational data leads to the advantage that data anomalies, such as sudden peaks, 

variation or missing irradiance or wind speed data as well as sudden peaks, variations or 

missing operational data are smoothed, allowing easier comparison of the monitored data – 

given the fact that module traces are not happening at the exact same time. 

 

3.2.2 Monitoring data anomalies 

Before further processing the accessed monitoring data it is important to identify potential 

data anomalies and outliers. Those data can be caused by incorrect measurements or 

measurement noise, which is important to be filtered out or corrected before further analyzing 

the monitored data. To not lose scientifically interesting data points, it is at the same time 

crucial to be careful when dealing with samples containing such data. In the current work 

four types of data anomalies could be identified and corrected or filtered to allow better 

assessment of data, those are: 

 

 Missing, not existing data points:  

These data anomaly relates to data points that do not appear at all in the data sets 

(also not as time steps), meaning that one or more time steps are not monitored and 

therefore can not be considered. This type of data anomaly could be detected for the 

secondly available operational voltage (Vop) and current (Iop), which are not 

monitored for short time intervals when IV curve sweeps are taken (every 5 minutes) 

– as mentioned above. 

 Empty values in data samples:  

Such data points indicate that the measurement at the particular time point was not 

monitored for unknown reasons, but exists as a time point in the sample. Those data 

usually are represented as ‘not-a-number’ (NaN) values or a sequence of zeros ‘0’ 

(for SQL queries), when processing data in MATLAB, and were detected for minutely 

available irradiance and secondly available operational voltage (Vop) and current 

(Iop) measurements. 
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 Negative values in data samples:  

Negative values of data that seems unlikely to reach values below zero were 

identified. This data anomaly could indicate faulty measurement or measurement 

noise. Affected are mainly irradiance and wind speed measurements (available for 

every minute), but to some extent also secondly measurements of operational 

voltage (Vop) and current (Iop). In the case of operational data this could indicate 

local mismatch behavior within the array, caused by partial shading or inherent 

differences between the modules. In the case of irradiance measurements, this can 

be related to the thermopile sensor radiating more outward than receiving – which is 

usual to happen to thermopile pyranometers at night times. The exact source of this 

anomaly was not detected within the scope of this work. 

 Sudden peaks or variation:  

Sudden peaks in data that seem unlikely to reach values above certain limits were 

identified. This data anomalies could be related to faulty measurement or 

measurement noise, it occurs mainly for wind speed measurements. The actual 

source of this anomaly was not detected within the scope of this work. 

 

Missing, not existing secondly available time points of operational data are corrected by 

minutely averaging the available data points, also explained in section 3.2.1. 

In the calculation of minutely averages of the secondly available operational data points 

within one minute time interval ‘NaN’ data points are omitted. In the case of irradiance data 

which is available in minutely time intervals, ‘NaN’ values are corrected by linear interpolation 

between the previous and next existing ‘faultless’ data points. 

Negative, unlikely values and sudden peaks in minutely available irradiance and wind speed 

data sets also are corrected through linear interpolation using the same method. The 

uppermost acceptable limit of wind speed is set to 20 m/s. 

Correction of anomalies of minutely data through linear interpolation is done for anomalies 

occurring for more than 1 minute period by using the following one-dimensional linear 

interpolation formula: 

𝑦 = 𝑦0 + [
(𝑦1 − 𝑦0)

(𝑥1 − 𝑥0)
∗ (𝑥 − 𝑥0)] 

Equation 8 1D linear interpolation correction of data anomalies (own formula) 

 
3.3 Evaluation of PV modeling algorithms 

This chapter describes the methodological approach of this work related to the evaluation of 

the PV module modeling algorithms suggested by the IEC 61853-3 committee draft. The 

algorithms of the evaluated standard draft are based on first principles mathematical models 

and depend on a set of climatic data that serve as input data for its calculation procedure. 

The aim of the evaluation in this work is to find out about how well the modeling algorithms 
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of the IEC 61853-3 estimate the operating power and backside surface temperature of field-

deployed PV modules at various ranges of weather conditions measured at or close to the 

ground mounted PV array at NIST. 

Besides the climatic weather data as input, the modeling algorithms of IEC 61853-3 require 

a relatively small number of test results delivered by part 1 and part 2 of the standard. As 

described in section 0 of this work, the tests of IEC 61853-1 and 2 have been performed at 

an independent test laboratory for three modules of the same type as deployed in the 

observed PV array. As for the climatic data set, instead of using climatic reference profiles – 

as suggested by the IEC 61583-3 – on-site measurements at or close to the observed ground 

array serve as input for the algorithms of IEC 61853-3.  

In total, this work focuses its observations on a set of 24 days of measurement, consisting 

of 8 characteristic weather conditions. This way it is aimed to cover a range of climatic 

conditions as wide as possible to allow comprehensive feedback about the behavior of the 

model’s algorithms at various weather conditions – referred to as days with characteristic 

weather conditions – as well as ranges of irradiance, ambient temperature, wind speed and 

angles of incidence – referred to as binning of weather data (data bins/data samples). This 

is of high interest, as the developed standard aims to provide the ability of module power 

and energy rating at different climatic profiles for different locations. 

The following sections of this chapter cover a detailed description of methods applied by the 

modeling algorithms and calculation procedures of IEC 61853-3, the selection approach of 

days with characteristic weather conditions (data population), the selection approach of bins 

(data samples) of relevant weather data as well as the statistical evaluation approaches 

through exploratory data analysis (EDA). 

 

3.3.1 IEC 61853-3 modeling algorithms 

The aim of the international standard IEC 61853 is to establish a method for determining and 

rating the PV module performance concerning energy and the antecedent power for a set of 

selected reference climatic profiles, also provided by the IEC standard. Part 3 of the standard 

contains – next to necessary calculation of correction factors for angle of incidence and 

spectral response – the procedures for the calculation of the module backside temperature 

as well as the module output power and, integrated over its time steps, ultimately the energy 

output of the modelled PV module. This work focuses on the evaluation of module 

temperature prediction as well as the prediction of the module output power, as these factors 

ultimately influence the energy output of the PV module according to the suggested 

calculation procedure. To predict the module temperature as well as the module output 

power it is required to provide the calculations of IEC 61853-3 with a set of measured input 

data, based on climatic data sets as well as on preliminary tests done by applying the test 

procedures of IEC 61853-1 and 2. Figure 1 shows a summary of steps involved in calculation 

procedure of IEC 61853-3. 
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Figure 5 Flow chart of calculation procedure applied by IEC 61853-3 (IEC, 2016b) 

More precisely, power prediction in the IEC 61853-3 ultimately is defined by the interpolation 

of PV module output power between measured points at ranges of irradiance and module 

temperature. The performance matrix used for interpolation is delivered by the tests of part 

1 of the standard. (IEC, 2011) In the following, each of the steps in Figure 5 – until the module 

output power prediction – is described in detail regarding the approach of this project. 

  

3.3.2 Weather data inputs 

The climatic data that serve as input for the above shown modeling algorithms are based on 

on-site measurements at or close to the PV ground array at NIST – available as minutely 

averages. A data set of 24 days in total is observed, containing a range of weather conditions 

as wide as available – as mentioned in section 1.4. The data set focuses on times at which 

the PV array is not shadowed and/or snow is deposited on top of the deployed PV modules. 
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Required data include ambient temperature (Tamb), wind speed (ν), global horizontal 

irradiance (GHI) and the global in-plane irradiance (Gpoa). Gpoa is measured via calibrated 

thermopile pyranometer6. The measurement of the direct normal irradiance (DNI), which is 

required for the calculation of the direct horizontal irradiance (DHI), the global horizontal 

irradiance (GHI) and the direct in-plane irradiance (Bp), is taken at a different location close 

to the array at the installed weather station on the rooftop of Building 226 at NIST’s campus 

– measured via calibrated thermopile pyrheliometer7. As mentioned in section 1.4 of this 

work, the spectral correction of the measured irradiance is considered through the approach 

of Lee and Panchula (2016) – described in section 3.3.1. Thus, the calculation procedure of 

IEC 61853-3 regarding spectral correction is not evaluated within the scope of this work. The 

measured PV module temperature (Tmod,meas) referred to in this work is the mean of the 

measured module temperature of 4 RTD probes, positioned according to IEC 60891 at the 

backside of the PV module deployed in the middle of the observed array. For further 

information related to measurement position compromises and deployed equipment see 

section 1.4 and section 6 of this work. 

 

3.3.3 IEC 61853-1 and IEC 61853-2 

Part 1 of the standard describes the evaluation procedure of the PV module performance in 

terms of power over a range of irradiances and temperatures. The main result of part 1 is a 

performance matrix, containing measured module power for different irradiance and module 

temperature ranges. (IEC, 2011) This matrix serves as basis for the determination of module 

power at certain measured module temperature and irradiance ranges. Part 2 of the standard 

describes the evaluation procedure of the PV module performance in terms of power over a 

range of angle of incidences and sunlight spectra as well as the estimation of module 

temperature. The result of part 2 are a set of characteristic parameters, required for the 

calculation procedures in IEC 61853-3. (IEC, 2016a) Procedures of part 1 and 2 of the IEC 

standard have been performed by an independent laboratory, CFV Solar Test Laboratory, 

for three PV modules of the same type as deployed in the observed PV array – as described 

in section 1.4 of this work. (CFV, 2016) 

Regarding the performance matrix measurements performed at the test laboratory, test 

points for the multi-irradiance and multi-temperature measurements cover irradiances from 

100 to 1100 W/m2 and module temperatures from 15 to 75°C, measured by using an 

A+A+A+ solar simulator and an integrated thermal chamber for the test module, applying 

laminar air flow and continuously monitoring of the module temperature at 4 points at the 

module’s backside through calibrated RTD sensors. (CFV, 2016) The following table 

                                                
6, 7 Calibrated to the response (µV/(W/m2)) at 45° incident angle with an uncertainty of about 3 % over 

the entire incident angle range (0-90°), BOYD, M. T. 2016a. Broadband Outdoor Radiometer 

Calibration Shortwave. Gaithersburg, MD, USA: NIST. 
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illustrates the available multi-irradiance and multi-temperature measurements of the 

performance matrix, measured at CFV Solar Test Laboratory. 

 

 

Table 3 Available measurement points of performance matrix (CFV, 2016) 

Results of part 2 of the standard deliver coefficients necessary for the modeling of the 

module temperature. Those are ‘u0’, being the constant heat transfer coefficient given in 

[W/m2°C], and ‘u1’, being the convective heat transfer coefficient given in [Ws/m3°Cs]. (IEC, 

2016a) The required angular loss coefficient, ‘ar’, is not delivered by the preliminary tests. 

Therefore the applied coefficient ar in this work refers to research done by Martin and Ruiz 

(2000), relating to typical crystalline silicone modules. A similar approach can be found in 

the work done by Huld and Amillo (2015). 
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3.3.4 AOI correction – Model of Martin and Ruiz (2000) 

The correction for effects related to angle of incidence (AOI) refer to optical losses of PV 

modules working in field conditions. This is, because for most of the existing PV applications 

angles of incidence of the solar radiation vary from the normal incidence at standard test 

conditions (STC). Thus, solar radiation that hits the PV module’s surface at angles that 

deviate from the normal to the surface suffer from increased reflection off the module and 

therefore do not contribute to the photocurrent. (Huld and Amillo, 2015) The figure below 

gives a schematic overview of angular losses of deployed PV modules and measurement 

equipment. 

 

Figure 6 Schematic figure of PV module, pyranometer and reference cell and optical losses through 

reflection (own figure) 

In the present work, angular loss corrections apply to the measurements taken by the 

thermopile pyranometer (Gpoa) as well as the thermopile pyrheliometer (DNI) – as they are 

measuring in-plane irradiance with (almost) no reflective losses and, after AOI and spectral 

correction are ultimately used for further prediction of module temperature and module 

output power through the calculation procedure of IEC 61853-3. The AOI corrected in-plane 

irradiance Gcorr,AOI is calculated according to the procedure suggested by Martin and Ruiz 

(2000), as follows: 

 

𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 = 𝐵𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 + 𝐷𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 

Equation 9 Corrected in-plane global irradiance Gcorr,AOI (IEC, 2016b) 

With Bcorr,AOI being the AOI corrected in-plane direct irradiance and Dcorr,AOI the AOI corrected 

diffuse irradiance, calculated as follows: 
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𝐵𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 = 𝐷𝑁𝐼 ∗ cos(𝐴𝑂𝐼𝑡𝑖𝑙𝑡,𝑚𝑜𝑑𝑢𝑙𝑒) ∗

[
 
 
 1 − exp (− 

cos(𝐴𝑂𝐼𝑡𝑖𝑙𝑡,𝑚𝑜𝑑𝑢𝑙𝑒)
𝑎𝑟

 )

1 − exp (− 
1
𝑎𝑟

 )
]
 
 
 

 

Equation 10 Corrected in-plane direct irradiance Bcorr,AOI (IEC, 2016b) 

 

𝐷𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 = [𝐺𝑝𝑜𝑎 −  𝐷𝑁𝐼 ∗ cos(𝐴𝑂𝐼𝑡𝑖𝑙𝑡,𝑚𝑜𝑑𝑢𝑙𝑒)] ∗ {1 − 𝑒𝑥𝑝 [−
1

𝑎𝑟
∗ (

4

3𝜋
∗ (sin 𝛽 +

𝜋−𝛽−sin 𝛽

1+cos𝛽
) +

(0.5 ∗ 𝑎𝑟 − 0.154) ∗ (sin 𝛽 +
𝜋−𝛽−sin𝛽

1+cos 𝛽
))]}  

Equation 11 Corrected in-plane global irradiance Dcorr,AOI (IEC, 2016b) 

With ar being the above mentioned dimensionless, empirically determined angular loss 

coefficient and β being the PV module surface tilt. The angular loss coefficient ar suggested 

by Martin and Ruiz (2000) is applied, which is typically 0.169 for crystalline silicone 

technologies, with higher values corresponding to higher angular losses. 

 

ar,c-Si [-] 

0.169 

Table 4 Typical value for angular loss coefficient for c-Si PV modules (Martin and Ruiz, 2000) 

This empirical parameter is mainly influenced through the optical transmittance of the PV 

module – being strongly dependent on the degree of dust deposition, but as a second-order 

effect as well influenced by the type of technology in use. (Martin and Ruiz, 2000) According 

to Martin and Ruiz (2000), typical values for m-Si of 0.169 modules become 0.20 or 0.27 if 

a moderate or thick dust layer is deposited on its surface, leading to a minimum possible 

annual performance loss of about 3 % for the investigated ranges of latitudes and tilt angles 

in their study. For this work, a value of 0.169 is chosen, assuming insignificant and uniform 

dust deposition across the observed PV array at the chosen weather data set of 24 days. 

Thus, the time since the last rain fall – i.e. cleaning of dust – is not considered in this data 

set. The dependence of the optical transmittance of the PV module on ar can also be 

illustrated through the following figure, showing the angular factor (relative reflectance) of a 

module as a function of AOI and ar. 
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Figure 7 Relative reflectance of a PV module as a function of AOI and ar (IEA, 2017c) 

Angles of incidence are calculated according to the above described formula using the 

MATLAB function ‘pvl_getaoi’, which is part of the online for free available MATLAB toolbox 

provided by the PVPMC platform and requires as input the following data. (PVPMC, 2017) 

The function ‘pvl_getaoi’ refers to the work done by King et al. (1997). 
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3.3.5 Spectral correction – Model of IEC 61853-3 and Lee and 

Panchula (2016) 

As mentioned in the introduction, the energy conversion efficiency of PV cells depends also 

on the wavelength of the incoming light – which is referred to as spectral response. Spectral 

responsivity depends on the used technology, meaning that depending on the properties of 

the used PV technology, photons with specific energy (wavelength) can excite electrons in 

the PV material or not. (pveducation, 2017c) The spectral response (SR) of a PV module is 

defined as the fraction of available irradiance that is converted into current, given in units of 

A/W. SR is a function of wavelength and related to the quantum efficiency (QE, unitless), as 

follows: 

𝑆𝑅𝜆 = 𝑄𝐸𝜆 ∗ 𝜆 ∗
𝑒

ℎ ∗ 𝑐
 

Equation 12 Spectral response (SR) as a function of the wavelength and the quantum efficiency 

(pveducation, 2017c) 

Where λ is the wavelength of the light, e is the electron charge (1.602176565*10^-19 

Coulomb), h is Plank’s constant (6.62606957*10^-34 J*s), and c is the speed of light 

(2.99792458*10^8 m/s). (PVPMC, 2017) The quantum efficiency (QE) refers to the 

measurement of the ratio of the number of carriers collected by the PV module/cell to the 

number of photons of energy incident onto the PV module/cell. (PVPMC, 2017) The figure 

below shows example of typical spectral response curves from a variety of PV technologies. 

 

Figure 8 Typical spectral responses of different PV technologies (PVPMC, 2017) 

As the spectrum of the light – and thus also the wavelength and energy of photons – reaching 

the PV module varies with time, the PV module output power – next to the total in-plane 

irradiance – also depends on the spectrum of the light at each instantaneous time step. (Huld 

et al., 2015) To consider this effect, spectral correction in the IEC 61853-3 draft’s calculation 
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procedure is considered by using a correction factor Cs to calculate the spectrally corrected 

global in-plane irradiance (Gcorr,AOI,spectral,1) as follows (IEC, 2016b): 

 

𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼,𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙,1 = 𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 ∗ 𝐶𝑠 = 𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 ∗  [
1000 ∗ ∫ (𝑆(𝜆) ∗ 𝑅𝑐𝑜𝑟𝑟,𝐴𝑂𝐼(𝜆) ∗ 𝑑𝜆)

𝜆𝑒

𝜆𝑠

𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 ∗ ∫ (𝑆(𝜆) ∗ 𝑅𝑆𝑇𝐶(𝜆) ∗ 𝑑𝜆)
𝜆𝑒

𝜆𝑠

] 

Equation 13 Corrected in-plane direct irradiance Gcorr,AOI,spectral,1 (IEC, 2016b) 

With S(λ) being the spectral response, Rcorr,AOI (λ) the spectrally resolved in-plane irradiance 

and RSTC (λ) being the corresponding spectral intensity for the standard test condition (STC) 

spectrum AM 1.5 according to IEC 60904-3 – using the integration limits from 300nm to 

4000nm. (IEC, 2016b) 

As mentioned in section 1.4 of this work, the spectral correction according to procedures in 

IEC 61853-3 is not evaluated within the scope of this work due to lack of data availability on 

the one hand, as well as due to an up to this time not fully defined approach of the IEC 

61853-3 calculation procedures regarding spectral correction. To consider the spectral 

correction in this work – and thus make predicted temperature and power values fully 

comparable – the approach of Lee and Panchula (2016) is used to calculate a dimensionless 

spectral mismatch factor to correct the measured global in-plane irradiance. This approach 

– also suggested by PVPMC (2017)– calculates a correction factor for the irradiance from 

atmospheric precipitable water (Pwat) and the absolute air mass (AMa) for certain PV 

technologies with characteristic QE curve profiles. The spectrum considered in this approach 

ranges from 280nm to 2800nm and does not cover the entire required spectral range from 

300nm to 4000nm according to IEC 61853-3 procedure. (IEC, 2016b) The therefore used 

functions are part of the PV library that is online available at the PVPMC platform: 

‘pvl_FSspeccorr’, ‘pvl_calcPwat’, ‘pvl_absoluteairmass’. (PVPMC, 2017) Using the 

calculated relative air mass (AMr) and measured site pressure (ps), the function 

‘pvl_absoluteairmass’ provides the absolute air mass (AMa) for locations not at sea level (i.e. 

not at standard pressure) – as described in section 2. The precipitable water (Pwat) in the 

atmosphere is calculated by using the function ‘pvl_calcPwat’ with the measured ambient 

temperature (Tamb) as well as the measured relative humidity (φr) as input values – as 

described in section 2 through the approach of Keogh and Blakers (2004). The function 

‘pvl_FSspeccorr’ ultimately allows to calculate the spectral mismatch factor using the 

calculated precipitable water (Pwat) and absolute air mass (AMa). (PVPMC, 2017) 

 

𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼,𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙,2 = 𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 ∗ 𝐶𝑠(𝐴𝑀𝑎 , 𝑃𝑤𝑎𝑡)  

Equation 14 Corrected in-plane direct irradiance Gcorr,AOI,spectral,2 (PVPMC, 2017) 
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3.3.6 PV module temperature calculation – Model of Faiman (2008) 

The module temperature measured at instantaneous time steps is mainly influenced by the 

incoming solar irradiance, the module’s optical, electrical and thermal properties as well as 

its (convective) heat exchange with the environment it is mounted in. (Koehl et al., 2011) 

There are several approaches that aim to model the temperature of PV modules. An 

overview of existing proposals for the simulation of the module temperature can be found in 

the survey done by Skoplaki and Palyvos (2009). The model to estimate the PV module 

temperature suggested by the IEC 61853-3 draft is derived from the energy balance of solar 

thermal collectors (Hottel–Whillier–Bliss equations8), developed and validated by Faiman 

(2008). The module temperature in this model, also used in the draft of IEC 61853-3, is 

calculated using the following formula: 

𝑇𝑚𝑜𝑑,𝐼𝐸𝐶 = 𝑇𝑎𝑚𝑏 + 
𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼

𝑢0 + 𝑢1 ∗  𝜈
 

Equation 15 Estimated module temperature according to model of Faiman (2008) 

Where Tamb is the ambient temperature, Gcorr,AOI is the in-plane irradiance, corrected for angle 

of incidence effects (see above) and ν is the wind speed at the height of the module. The 

parameters u0 and u1 are results from the test procedures in IEC 61853-2 and describe the 

effect of constant heat transfer and convection on the module. Those are constants and are 

retrieved through a least-squares linear fit of measured data with u0 being the intercept value 

and u1 being the slope value. According to the test results of the IEC 61853-2 tests performed 

at CFV Solar Test Laboratory, the coefficients for u0 and u1 are: 

 

u0 

[W/m2°C] 

u1 

[W/m3Cs] 

29.9 5.586 

Table 5 Thermal model coefficients from IEC 61853-2 (CFV, 2016) 

The approach of Faiman (2008) is based on the assumption that the thermal mass of 

conventional PV modules – glass front side, polymer encapsulant back side – has a 

negligible effect on the heat exchange with its environment. This way, it is possible to predict 

the temperature of the PV module based on ambient temperature, incident irradiance and 

wind speed by using only two numerical constants that can be derived by relatively simple 

experiments performed with the procedures of IEC 61853-2. (IEC, 2016a) Faiman (2008) 

validated his model for different module types, evaluating temperature data for 5 minute 

averages. Results of the validation showed RMS errors ranging from 1.86 to 2.13 °C – 

meaning the module power to be determinable to a precision of about ±1 %, considering 

                                                
8 Hottel HC, Whillier A. Evaluation of flat plate collector performance. Transactions of the Conference 

on the Use of Solar Energy, Vol. 2, Part 1, University of Arizona Press, 1958; p. 74. 
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typical temperature coefficients of power ratings of conventional PV modules of about 0.5 % 

per K under stable weather conditions. (Faiman, 2008) 

Like in the work done by Faiman (2008) conventional m-Si cell PV modules observed in this 

work are mounted on an open rack, being exposed to convective cooling and radiation 

exchange with its environment. Unlike in the work done by Faiman (2008), the evaluation of 

the calculation procedures of IEC 61853-3 in this work is done for 1 minute averages of 

monitored data instead of 5 minute averages – as mentioned in section 3.2. 

Furthermore, Koehl et al. (2011) investigated the model of Faiman (2008), pointing out that 

the influence of infrared irradiation exchange with the cold sky and the natural convection at 

low wind speeds and low irradiation are neglected in this model. However, the investigations 

of Koehl et al. (2011) showed that the impact of radiation cooling and natural convection can 

be neglected for wind speeds above 2 m/s – showing main effects of radiation cooling during 

night times which are not relevant for the solar energy generation. 

 

3.3.7 PV module output power calculation – Interpolation method 

As mentioned above, the method used to determine the PV module output power is based 

on the interpolation between measured module power at ranges of irradiance and module 

temperature. The procedure of IEC 61853-3 suggests to use calculated parameters for 

irradiance as well as module temperature to be used for the determination of the PV module 

output power by using the performance matrix provided by IEC 61853-1 – shown in section 

3.3.3 of this work. (IEC, 2016b) This approach is referred to as ‘interpolation method’ and 

requires two-dimensional, bilinear interpolation between existing points within the 

performance matrix. The interpolation method already has been analyzed by Whitaker and 

Newmiller (1998), NREL, and lead to the following observation: 

 

“The most notable behavior of the Interpolation model is its error at low irradiance. […] The 

weakness of the interpolation model is that you must actually extrapolate to obtain points 

beyond its measurement range. At the low irradiance end, linear extrapolation is used where 

the performance is becoming non linear. Any error in the four points used for extrapolation 

will be magnified for large extrapolation. Thus, a requirement for use of the Interpolation 

model is the to have measurements covering the entire range of expected weather 

conditions.” (Whitaker and Newmiller, 1998) 

 

This means that the approach through linear interpolation brings about the compromise with 

the known non-linear behavior of PV modules, especially at low irradiances or at ranges that 

are not included in the performance matrix. (Whitaker and Newmiller, 1998)  

Interpolation is done via two dimensional bilinear interpolation of power through the two 

variables irradiance (Gcorr,AOI,spectral,2) and module temperature (Tmod,IEC) – as suggested in the 

IEC 61853-3 standard draft. (IEC, 2016b) Conventional 2D-bilinear interpolation of power 
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values of the performance matrix has been performed using the following formula (own 

formula): 

 

𝑃(𝐺, 𝑇)

=  
(𝑃11 ∗ (𝐺2 − 𝐺) ∗ (𝑇2 − 𝑇) + 𝑃21 ∗ (𝐺 − 𝐺1) ∗ (𝑇2 − 𝑇) + 𝑃12 ∗ (𝐺2 − 𝐺) ∗ (𝑇 − 𝑇1) + 𝑃22 ∗ (𝐺 − 𝐺1) ∗ (𝑇 − 𝑇1)

(𝐺2 − 𝐺1) ∗ (𝑇2 − 𝑇1)
 

Equation 16 2D bilinear interpolation of power through the performance matrix depending on 

irradiance and module temperature (own formula) 

With P, G and T being the interpolated points within the grid square defined by four given 

points P11, P21, P12, P22 at each time step – as also shown in the following figure. 

 

Figure 9 Schematic figure of grid square for the 2D bilinear interpolation method of the performance 

matrix (own figure) 

However, in some cases the module temperature and/or irradiance values might be outside 

the range covered by the performance matrix of IEC 61853-1, as also mentioned in the 

research done by Whitaker and Newmiller (1998). To also consider these values, it is 

necessary to extend the matrix’s points to the desired irradiance and module temperature 

range to also consider these values during the interpolation procedure explained above. This 

is done through one-dimensional linear extrapolation – as suggested by the IEC 61853-3 

draft. Extrapolation of the matrix parameters is done using the following formula: 

𝑦(𝑥) = 𝑦1 + [
(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
∗ (𝑦2 − 𝑦1)] 

Equation 17 1D linear extrapolation of performance matrix (own formula) 
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The figure below schematically illustrates the linear extrapolation of performance matrix 

parameters. 

 

Figure 10 Schematic figure of linear extrapolation of performance matrix parameters (own figure) 

The extrapolated performance matrix can be found in the Appendix B of this work – together 

with the not extrapolated performance matrix. To cover the majority of irradiances and 

module temperatures of the observed data set population, the performance matrix especially 

requires extrapolating to lower ranges of module temperature and irradiance. This also 

increases the chance of magnifying errors in the performance matrix and can lead to 

difficulties for the prediction of module output power, further analyzed in section 7 of this 

work – as also mentioned above and discussed in Whitaker and Newmiller (1998).  

The suggested approach through linear inter-/extrapolation determines the module output 

power through the two dimensional available performance matrix describing the module 

output power as a function of Gcorr,AOI,spectral,2 and Tmod. However, this approach neglects 

possible cross-dependencies to other influences (e.g. temperature dependence of spectral 

response) which would require a multidimensional test matrix – as also discussed in 

Whitaker and Newmiller (1998). Within the scope of this work it is intended to discuss 

possible cross-dependencies regarding irradiance, ambient temperature, wind speed and 

angle of incidence. 
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3.4 Spatial PV array performance analysis 

To find out about whether the above explained comparisons related to the IEC 61853-3 

modeling algorithms have any dependence on where a particular module is located inside 

the PV array, this work also analyzes the 96 measured and traced PV modules according to 

their positions within the array. The aim is to analyze differences between positions of 

individual and groups of modules for specific days with characteristic weather conditions as 

well as ranges (data samples) of weather parameters.  

 

3.4.1 Differences in local irradiance and module temperature 

Differences between the PV module positions are – besides comparing operational power 

(Pop) – also analyzed using IV curve parameters. Specifically, the open circuit voltage (Voc) 

and short circuit current (Isc), as determined from each IV curve, serve as indirect 

measurements of the module’s temperature and its absorbed irradiance, respectively. These 

two parameters can thus be used to help identify and explain performance differences 

among the spatially distributed, 96 monitored modules within the 1152-module array. The 

translation into actual module temperature and irradiance values can for example be 

accomplished by following procedures described in IEC 60891, via using the available 

performance matrix. (IEC, 2009) 

Increased PV module/cell temperatures affect the PV output power negatively. This effect is 

mainly caused by the inability of the PV junction to separate charges – as the increased 

lattice vibration at higher temperatures interferes with the movement the charge carriers. 

This interference leads to a decreased band gap which causes more electrons to jump in 

the conduction band and therefore decreases the open-circuit voltage (Voc) significantly – 

notably this same temperature effect (decreased band gap) causes the short-circuit current 

(Isc) to increase very minimally. (Yahyaoui and Segatto, 2017) The following figure shows 

the effect of temperature on the IV characteristic curve parameters Voc and Isc. 

 

 

Figure 11 Effect of temperature on IV curve characteristic shape (pveducation, 2017b) 
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Furthermore, while Isc depends linearly on light intensity, Voc depends logarithmically on 

changes in the light intensity. This non-linear dependence is pronounced at lower light 

intensities and especially becomes of high importance for example with PV modules/cells 

that have lower shunt resistances. (pveducation, 2017a) However, for the scope of this work 

it is assumed that possible inherent differences and degradation are negligible for the 

observed PV array – as mentioned initially and described in section 4.4. Other possible 

mismatch effects are explained in section 4 of this work. Nevertheless, a first step to identify 

the mentioned effects is through the analysis of IV curve parameters such as Voc and Isc. 

 

3.4.2 Observed PV module positions 

The analysis of the module performance at different positions within the array aids the work 

of Fairbrother (2017), who is investigating differences in PV back sheet degradation and 

gradient exposure effects among modules within an operating array. According to 

Fairbrother (2017) differential exposure conditions caused by the surroundings (e.g. different 

ground covers, buildings, trees, etc.) influence the amount of UV light that strikes the back 

of the modules. The different exposures lead to unique patterns of back sheet degradation 

in which modules at certain positions in the array show more signs of degradation. 

(Fairbrother, 2017) Despite these findings after four years of exposure, no clear relationship 

was identified between the level of back sheet degradation and the PV modules’ electrical 

performance. Regardless of this (current) lack of correlation, the position grouping 

suggested by Fairbrother (2017) should serves as a reference case. 

 
The following positions of traced PV modules within the ground array are grouped together 

and analyzed collectively (numbers between parentheses show amounts of PV modules 

within the group): 

 

 Modules in top rows (12) 

 Modules in middle rows (36) 

 Modules in bottom rows (12) 

 Modules in the middle of the array (28) 

 Modules at the edge of the array (42) 

 All modules including shed 1 and shed 5 (96) 
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The figure below shows the five sheds of the observed ground array. The colored cells inside 

each shed represent the 96 monitored PV modules, one within each array series string. Red 

lines indicate all modules mounted at the edge as well as all modules mounted in the middle 

of the PV array. The labels top, middle and bottom refer to all modules mounted in top, 

middle and bottom rows of all observed sheds. 

 

 

Figure 12 Observed position groups within the PV array 

Modules in top, middle and bottom row positions do not include modules deployed at the 

edge of the PV array. Furthermore, shed 5 contains only 4 rows of PV modules – as 

mentioned in section 2.1. 
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3.5 Days with characteristic weather conditions 

The above described calculation procedures, suggested by the IEC 61853-3, are evaluated 

for a data set of 24 days, containing in total 8 characteristic weather conditions (i.e. 3 days 

per weather condition). This approach permits evaluating the model for as wide a range of 

weather conditions as possible, while keeping the data processing effort reasonable. This 

allows a better understanding of inconsistencies within the ground array at certain weather 

conditions and helps understanding deviations between measurements and modelled data 

using the algorithms of IEC 61853-3. The 8 characteristic weather conditions are 

distinguished by their daily averages for irradiance, ambient temperature and wind speed. 

The data used to calculate these averages are determined from measurements made during 

the daylight period (sun zenith angle < 90) when the array is completely unshaded and clear 

of any snow accumulation. This fully illuminated condition is verified using photos of the 

entire array which are available approximately every 5 minutes for each of the observed days 

– as shown in the following example: 

 

  

Figure 13 Verification of occurrence of no shading on the array, a) no shading: 11/21/2016 at 13:00, 

b) interrow shading: 11/21/2016 at 16:00 

A table with an overview of the examined daytimes for each of the observed days can be 

found in the Appendix C. The mentioned 8 characteristic weather conditions are categorized 

into values of high or low daily averages of irradiance, ambient temperature and wind speed. 

Table 6 gives an overview of this categorization into 8 characteristic weather conditions of 

high/low irradiance, ambient temperature and wind speed ranges. 

 

Category Irradiance 
Ambient 

temperature 

Wind 

speed 

1 High High High 

2 High High Low 

3 High Low High 

4 High Low Low 

a) b) 
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5 Low Low Low 

6 Low Low High 

7 Low High Low 

8 Low High High 

Table 6 Categorization of 8 characteristic weather conditions 

In order to increase the amount of data points for each of the characteristic weather 

conditions, 3 days per category are selected. The following table shows the days observed 

in this work (data population), indicating high and low values by conditional formatting 

through cell colors. 

 

irradiance/tamb/wind day 
Irradiance 

[W/m²] 

Ambient 
temperature 

[°C] 

Wind 
speed 
[m/s] 

H/H/H 9/11/2016 540 26 3 

H/H/H 10/10/2016 606 14 2.5 

H/H/H 10/9/2016 526 16 4.2 

H/H/L 8/28/2016 552 30 1 

H/H/L 9/12/2016 590 25.3 1 

H/H/L 4/10/2017 554 22.36 1.97 

H/L/H 11/21/2016 540 3.9 4.1 

H/L/H 2/13/2017 592 3.8 5 

H/L/H 11/22/2016 525 5.5 2.9 

H/L/L 12/20/2016 500 1 1 

H/L/L 12/25/2016 480 7 1.4 

H/L/L 12/19/2016 438 -0.4 1.6 

L/L/L 1/5/2017 93 -0.5 1.4 

L/L/L 1/9/2017 300 -5 1.7 

L/L/L 12/16/2016 130 -6 1.65 

L/L/H 2/16/2017 366 1.2 4 

L/L/H 2/9/2017 270 -0.1 5 

L/L/H 1/24/2017 240 6 4 

L/H/L 8/9/2016 184 25.5 1.2 

L/H/L 11/25/2016 130 12 1 

L/H/L 8/1/2016 390 28.3 1.2 

L/H/H 12/27/2016 265 16 2.5 

L/H/H 11/11/2016 400 15 3.3 

L/H/H 12/18/2016 44 12 3 

Table 7 Observed days (data population) with characteristic weather conditions (own table, H = 

high, L = low, color code: high = green to low = red)  
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3.6 Data binning to various ranges of weather conditions 

To facilitate the evaluation of the modeling algorithms used by IEC 61853-3, irradiance, 

ambient temperature, wind speed as well as angles of incidence values of the above 

mentioned data set population are separated into bins (data samples). Binning data also 

provides helpful information when analyzing inconsistencies among the PV modules within 

the array field. Selecting bin widths is aided by plotting histograms for each parameter, as 

shown in the following figures. 

 

 

 

Figure 14 Frequency-range histograms for irradiance, ambient temperature, wind speed and angles 

of incidence in the observed data set of 24 days 
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The histograms summarize the distribution of the available data set graphically and thus are 

a useful tool for choosing bin ranges (data samples). Based on the histograms in Figure 14, 

the following upper and lower bin limits are examined in this work: 

 

Parameter Range 1 Range 2 Range 3 

Irradiance 0 – 400 W/m² 400 – 800 W/m² 800 – 1200 W/m² 

Ambient temperature -10 – +13 °C +13 – +36 °C - 

Wind speed 0 – 3 m/s 3 – 6 m/s 6 – 9 m/s 

Angle of incidence 0 – 45° 45 – 60°  60 – 70°  

Table 8 Evaluated binning ranges for irradiance, ambient temperature (tamb), wind speed and 

angles of incidence (AOI) 

The goal with using binned data samples is to evaluate the sensitivity of the IEC 61853-3 

algorithms to irradiance, ambient temperature, wind speed and angles of incidence. 

Identifying if the IEC algorithms predict better or worse for a given set of weather conditions 

is of high interest because the current draft of the standard aims to provide a few sets of 

reference climatic profiles. (IEC, 2016c) Insight into the accuracy of the IEC predicted energy 

yields for each of these reference climates will be gained from documenting how the 

accuracy of the IEC predictions change with the weather conditions. 

The above mentioned 11 ranges of irradiance, ambient temperature, wind speed and angles 

of incidence allow the evaluation of IEC predictions for the independent variation of each bin 

individually, as well as the cross-dependent variation of each bin – allowing in total 54 

combinations of bins (3*2*3*3). A table of all combinations possible can be found in the 

Appendix D. 
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3.7 Exploratory data analysis (EDA) 

The results from exercising the modeling algorithms of the IEC 61853-3 committee draft are 

evaluated using an exploratory data analysis (EDA) approach. EDA covers a variety of 

techniques for the statistical evaluation of data sets. (NIST/SEMATECH, 2012) 

The main focus is on how well the modeled values agree with the measured data. In order 

to correctly evaluate the goodness of fit of the modeling algorithms applied by IEC 61853-3, 

the following table parameters and graphical techniques are applied. Differences between 

traced module positions within the ground array are also investigated. The following chapters 

also describe methods used for comparing modules based on their positions within the PV 

array. 

 

3.7.1 Linear regression model approach 

A common approach for the comparison of a range of monitoring parameters being related 

to each other is to plot and linearly fit measured and modeled parameters. This approach is 

recommended by the IEA (2014a) in a report on good practices for the analysis of PV array 

monitoring data. Using a linear regression is justified if the measured and modeled data 

show a linear relationship, the residuals are independent and normally distributed and show 

constant variance (homoscedasticity). Thus, identifying significant changes in the statistical 

linearity makes it possible to identify anomalies among the monitored versus modeled data. 

(IEA, 2014a) 

The linear regression model in this work is obtained by using the MATLAB function ‘fitlm’, 

which is able to return a linear model fit to the measured data. (MathWorks, 2017b) As 

modelled data in this work is obtained by following the procedures described in IEC 61853-

3, the function is used to provide characteristic parameters retrieved by comparing modelled 

versus measured data – dependent and independent variables. This way it is possible to 

perform graphical analysis of residuals via normal probability plots or other graphical analysis 

tools as well as the calculation of the coefficient of determination (R²) with the help of the 

built-in function of MATLAB. Some of the observed parameters are explained in the following 

chapters.  
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3.7.2 Statistical diagnostic parameters 

Statistical diagnostic parameters used in this work serve as indicators that should describe 

the characteristics of the observed data sets and thus allow a better interpretation of the 

measured versus modeled data. 

 

Coefficient of variation (cv): standard deviation (S) and mean (µ) 

The standard deviation – i.e. the square root of the variance – describes the variance or 

dispersion of a data set relative to its mean, is expressed in the same unit as the observed 

data, and is mathematically defined as follows (NIST/SEMATECH, 2012) 

𝑆 = √
1

𝑁 − 1
∗ ∑|𝐴𝑖 − 𝜇|2

𝑁

𝑖=1

 

Equation 18 Standard deviation (NIST/SEMATECH, 2012) 

With A being a variable vector that contains N scalar observations. µ is the arithmetic mean 

of A and is defined as: 

𝜇 =  
1

𝑁
∗ ∑𝐴𝑖

𝑁

𝑖=1

 

Equation 19 Arithmetic mean (NIST/SEMATECH, 2012) 

The coefficient of variation (cv) is defined as the ratio between the standard deviation and 

the mean of a data set. It indicates how strongly the standard deviation varies from the mean 

and is therefore useful for comparing different data sets. (NIST/SEMATECH, 2012) 

𝑐𝑣 = 
𝑆

µ
 

Equation 20 Coefficient of variance (NIST/SEMATECH, 2012) 

The coefficient of variance is mentioned by means of completeness in this thesis and not 

further used for the analysis of the observed data sets. 

 

Root mean square error (RMSE), mean bias error (MBE) and unbiased root mean 

square error (RMSEno bias) 

 

The root mean square error is a measure for quantifying the difference between predicted 

and observed values and therefore a useful statistical indicator for the purposes of this 

research. It is defined as the square root of the mean square error and calculated as follows 

(NIST/SEMATECH, 2012) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∗ ∑|𝑦𝑖 − 𝑥𝑖|

2

𝑁

𝑖=1

 

Equation 21 Root mean square error (NIST/SEMATECH, 2012) 

Where yi refers to modelled values and xi to measured values.  In order to obtain values for 

RMSE that are not biased it is necessary to calculate the mean of the error between 

predicted and measured values, also referred to as mean bias error. This is done as follows: 

𝑀𝐵𝐸 = [
1

𝑁
∗ ∑(𝑦𝑖 − 𝑥𝑖)

𝑁

𝑖=1

] 

Equation 22 Mean bias error (Boyd, 2013) 

Therefore, the unbiased values for RMSE can be calculated as follows: 

 

𝑅𝑀𝑆𝐸𝑛𝑜 𝑏𝑖𝑎𝑠 = √
1

𝑁
∗ ∑(𝑦𝑖 − 𝑥𝑖 − 𝑀𝐵𝐸)2

𝑁

𝑖=1

 

Equation 23 Unbiased root mean square error (Boyd, 2013) 

In this thesis, RMSE is used in combination with MAD to quantify differences in errors 

between modeled and measured PV module temperature and power. The unbiased RMSE 

is mentioned by means of completeness and not further used in this work. 

 

Median absolute deviation (MAD) 

The median absolute deviation (MAD) is a measure of how spread out an observed data set 

is. In the case of observed residuals (differences between modeled and measured data 

points), it presents a more robust way to extremes in a data set than the RMSE, as it is not 

as sensitive to extremely high or extremely low outliers. (NIST/SEMATECH, 2012) MAD 

therefore presents another useful way to quantify differences between modeled and 

measured values and is defined as follows: 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|(𝑦𝑖 − 𝑥𝑖) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑖 − 𝑥𝑖))|) 

Equation 24 Median absolute deviation (NIST/SEMATECH, 2012) 

Where yi refers to modelled and xi to measured values. ‘Median’ refers to the data points 

separating the ‘higher half’ from the ‘lower half’ of an observed data set. (NIST/SEMATECH, 

2012) In this thesis, MAD and RMSE are used as a measure of quantifying the error between 

modeled and measured PV module temperature and power. 

  



 

   56 

Coefficient of determination (R² or Rsquared) 

The coefficient of determination is a common indicator used for the evaluation of modeling 

algorithms. It measures the fraction of the total variability in the response that is accounted 

for by the model. (MathWorks, 2017a) In other words, it provides information about how well 

a model can describe the variability of observed data and is calculated as follows: 

 

𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇
 

Equation 25 Rsquared (MathWorks, 2017a) 

With SSE being the residual sum of squares defined as the sum of squared errors between 

the observed measured values xi and the modelled or predicted values yi: 

 

𝑆𝑆𝐸 = ∑(𝑥𝑖 − 𝑦𝑖)
2 

Equation 26 Sum of squared errors SSE (MathWorks, 2017a) 

And SST being the total sum of squares, i.e. the sum of measured values xi minus the mean 

of the measured data xi, and is calculated as follows: 

 

𝑆𝑆𝑇 = ∑(𝑥𝑖 − 𝑥𝑖̅)
2 

Equation 27 Sum of squared total SSE (MathWorks, 2017a) 

Values for R² in this work are retrieved from linear fit model results of the built-in MATLAB 

function ‘fitlm’ using the dot notation ‘.Rsquared.Adjusted’. (MathWorks, 2017a) 

 

Pearson correlation coefficient (Rpearson) 

The Pearson correlation coefficient is a measure that aims to indicate how well sets of data 

correlate with each other. The full name of the Pearson correlation coefficient is the Pearson 

Product Moment Correlation or PPMC. The coefficient shows the linear relationship between 

two sets of data with values between -1 and 1. Depending on the type of correlation – either 

positive, negative or no correlation – different coefficient values between these values can 

be achieved. The closer the coefficient value gets to zero, the lower the correlation, i.e. the 

greater the differences in the observed data points. (NIST/SEMATECH, 2012) Rpearson serves 

as an additional statistical indicator for the evaluation of modeled versus measured data in 

this work. 
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Spearman correlation coefficient (Rspearman) 

The Spearman correlation coefficient is a nonparametric version of the Pearson correlation 

coefficient, also returning values between -1 and 1 – values close to zero indicate less 

correlation. It is based on ranked values of variables, which means that while the Pearson 

correlation assesses the linear relationship, Spearman correlation assesses relationships 

whether linear or not. (NIST/SEMATECH, 2012) In this thesis, Rspearman and Rpearson are used 

as additional statistical indicators to R², informing about how well the evaluated modeling 

algorithms fit and correlate to measured PV module temperature and power. 

 

Sample size (n) and confidence level 

Data samples are parts of the total observed data population and can be used to draw 

conclusions about a population as a whole. However, sample parameters – such as the 

above mentioned statistical parameters – may vary significantly between different samples 

as well as between samples and the whole population. (NIST/SEMATECH, 2012) The 

maximum difference between the population’s parameter and the sample’s parameter in 

comparison is defined as the margin of error (MOE) and is defined as: 

 

𝑀𝑂𝐸 = 𝑧𝛼/2 ∗
𝑆

√𝑛
 

Equation 28 Margin of error MOE (NIST/SEMATECH, 2012) 

Where zα/2 is known as the critical z-score value of a normal distribution, S is the standard 

deviation of the population and n is the sample size. The critical value for the z-score 

describes in general the cut-off values of a distribution that defines regions where data points 

are unlikely to lie. It is defined to be the amount of standard deviations below and above the 

mean of a population and usually can be found in tables. For a confidence level of 95%, zα/2 

is defined to be 1.96. For a confidence level of 90%, zα/2 is 1.645. (NIST/SEMATECH, 2012)  

In order to quantify the accuracy and reliability of the investigated results and comparisons 

of data samples in this work, the minimum required sample size to meet the desired 

confidence level needs to be determined. Given a maximum allowed value of MOE, the 

therefore required sample size (n) can be calculated through the following formula: 

𝑛 = (
𝑧𝛼/2 ∗ 𝑆

𝑀𝑂𝐸
)
2

 

Equation 29 Required sample size n (NIST/SEMATECH, 2012) 

This formula can be applied when the population’s standard deviation S is known – which is 

the case in this work. The resulting sample size n determines the minimum required size of 

a data sample for its mean to differ from the data population’s mean by ± the value of MOE 

at a certain defined confidence level. (NIST/SEMATECH, 2012) 
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3.7.3 Graphical analysis of residuals 

It is important to point out that the mentioned indicators alone do not allow a full illustration 

of the observed data set characteristics. To complement the above described indicators, 

graphical analysis of the observed data is necessary. To evaluate the IEC 61853-3 draft’s 

calculation procedures, the difference between the modelled and measured data sets are 

illustrated graphically. This evaluation is done via analysis of the residuals. Residuals are 

differences between the observed measured data and the predicted or modelled data. The 

examination of residuals counts as key method of statistical model evaluations. 

(NIST/SEMATECH, 2012) A clear definition of residuals, provided by NIST/SEMATECH 

(2012) is as follows: 

 

“Residuals can be thought of as elements of variation unexplained by the fitted model. Since 

this is a form of error, the same general assumptions apply to the group of residuals that we 

typically use for errors in general: one expects them to be (roughly) normal and 

(approximately) independently distributed with a mean of 0 and some constant variance.” 

 

This means that the overall pattern of plotted residuals of a data set should be similar to the 

bell-shaped pattern of plotted data that is normally distributed. Departures from this 

distribution pattern lead to structured residuals and indicates parameters not accounted for 

in the model. By identifying such structures, terms can be added to the prediction algorithms 

and thus improve the model. (NIST/SEMATECH, 2012) The following graphical analysis 

methods help identify the behavior of the observed residuals and thus the goodness of fit of 

the calculation procedures suggested in IEC 61853-3 draft to measured data. There are 

three common types of plots that are suitable to graphically illustrate the distribution of a set 

of residuals, which are: 

 

 Frequency (or probability) range histograms of residuals, 

 Normal probability plots of residuals and 

 Plots of residuals over time and over predicted values. 
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Frequency range histogram of residuals 

The histogram graphically summarizes the distribution of a data set by giving information 

about the center of the observed data, the spread of it, skewness and presence of outliers 

and presence of multiple modes within the data. (NIST/SEMATECH, 2012) 

 

Figure 15 Example of frequency range histogram (NIST/SEMATECH, 2012) 

Normal probability plot 

A more sensitive graph to reveal information about the distribution of observed residuals is 

the normal probability plot. These plots show the calculated probability of each residual 

versus the residual value, by using the formula: 

𝑃𝑖−𝑡ℎ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
𝑖

(𝑁 + 1)
 

Equation 30 Cumulative probability of a residual point (NIST/SEMATECH, 2012) 

With i being the residual point (order of value in the observed list of values) and N the number 

of entries in the list. If the residual points come from a normal distribution, the points P in the 

normal probability plot should form a straight line. 

 

Figure 16 Example of normal probability plot of residual values (NIST/SEMATECH, 2012) 

Additionally it is possible to also plot the values of residuals within a normal probability plot 

to indicate the distribution of residuals – as it is done in Figure 16 along the y-axis at the 
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left side of the graph. Usually, small departures of the straight line are common. 

Nevertheless, clear s-shaped curves in this plot suggest a bimodal distribution of the 

residuals. Breaks in the middle of the graph indicate anomalies in the residual distribution. 

(NIST/SEMATECH, 2012) 

 

Residuals plots  

In order to test the time dependence of the observed data set, plotting the residuals over the 

time is a helpful method. The following figure shows an example of plotted residuals over 

time that present a clear time trend. (NIST/SEMATECH, 2012) 

 

Figure 17 Example 1 of plotted residuals over time – Clear time trend (NIST/SEMATECH, 2012) 

While the example shown in Figure 17 shows a clear time trend, the residuals in Figure 18 

do not show a clear tendency. The example in Figure 17 shows residuals that are drifting to 

lower values as the investigation continues. Extreme cases of such drift of residuals will also 

indicate a poor ability to account for the variability in the data, represented by low values of 

R² – see above. In this context, the term of so-called ‘homoscedasticity’ is used, which refers 

to the constant of variance of the observed data (residuals) over time – whereas 

‘heteroscedasticity’ refers to inconstant variance of the observed data (residuals) over time. 

(NIST/SEMATECH, 2012)  

 

Figure 18 Example 2 of plotted residuals over time – No clear time trend (NIST/SEMATECH, 2012) 
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Plotting the residuals versus the predicted, fitted values should show a distribution of points 

scattered randomly around 0. Any tendency of the residuals to deviate with increasing or 

decreasing values of predicted values indicate that the residuals have growing or decreasing 

scatter as the response, i.e. the predicted values, are changing. The following figure shows 

the plot of absolute values of residuals over the predicted values, which cleary shows an 

increasing value of residuals with growing values of response data, also indicating 

heteroscedasticity (no constant variance). (NIST/SEMATECH, 2012) 

 

 Figure 19 Example of plotted residuals over predicted values (NIST/SEMATECH, 2012) 

This work uses residual plots to identify the behavior of residuals (difference between 

modeled and measured PV module parameters) over the observed bin ranges. 

 

 

3.7.4 Graphical analysis of location effects 

A useful tool to get information about the effect of location and variation changes of different 

groups of data is by plotting clustered data as so-called ‘boxplots’, illustrated in the following 

figure. (NIST/SEMATECH, 2012) In this work, boxplots are used to graphically show 

difference between the traced module position groups – mentioned in section 0 - within the 

observed ground array’s data. 

 

Figure 20 Example of boxplot (NIST/SEMATECH, 2012) 
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Boxplots show the response variable plotted on the vertical axis versus the variation of 

interest clustered on the horizontal axis (clustered position groups). Boxes inside the graph 

give information about the variation of the observed response data, showing the median of 

an observed data set, the lower quartile (25th percentile) and the upper quartile (75th 

percentile) of the data. I.e. the box in this plot represents the middle 50% of the observed 

data. Furthermore, boxplots give information about minimum and maximum points of a data 

set and identify outliers of the observed data. Outliers are data points that lie an abnormal 

distance from the minimum and maximum data point. (NIST/SEMATECH, 2012) 

 

3.8 Overview of research steps 

The following flow chart sums up the main research steps of this work: 

 

 

Figure 21 Flow chart overview of research steps (own figure) 
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4 Effects and influences in outdoor PV arrays 

This chapter provides a comprehensive overview of effects that need to be considered when 

dealing with PV modules mounted in outdoor PV arrays and being exposed to environmental 

conditions. The effects discussed are not analyzed individually in this thesis, as they should 

serve the purpose of completeness and understanding and will be referred to if necessary. 

 

4.1 DC performance array losses 

Typically, PV modules mounted in a PV array are connected in series to strings which then 

are connected in parallel to source circuits. Within the same string, all modules in series 

must transport the same current. Within the same source circuit, all parallel strings must 

operate at the same voltage. This means that inherent performance differences between 

individual modules, non-uniform available irradiance, inhomogeneous temperatures across 

the PV array and/or wiring (system component) losses across the array can cause the 

performance of the PV array to operate at non-ideal conditions, which means that operation 

at the maximum power point (MPP) cannot be realized. (PVPMC, 2017) 

  

4.1.1 Quantification of mismatch losses 

The above explained effects causes individual circuits of the PV array to perform outside 

their maximum power point (MPP), forcing them to compromise values of performance. One 

way to quantify the impact of mismatch losses can be calculated as follows: 

 

𝑀𝑀𝑙𝑜𝑠𝑠 = 1 −
𝑃𝐷𝐶,𝑎𝑟𝑟𝑎𝑦,𝑜𝑢𝑡𝑝𝑢𝑡

∑𝑃𝑀𝑃𝑃,𝑚𝑜𝑑𝑢𝑙𝑒 − ∑𝑃𝐷𝐶,𝑤𝑖𝑟𝑖𝑛𝑔 𝑙𝑜𝑠𝑠𝑒𝑠
 

Equation 31 DC Mismatch losses (PVPMC, 2017) 

Mismatch caused by inhomogeneities of irradiance or module temperature across the PV 

array are usually quantified separately as they are co-dependent with each other and 

strongly influence the electrical characteristics of PV modules. (PVPMC, 2017) 

 

4.1.2 PV array system component losses 

System component losses refer to failures and/or degradation of DC components such as 

cells, modules, connectors, fuses, cables, combiner boxes and other system components. 

Such types of losses can lead to declines in performance as well as local heating in the 

module – referred to as localized hot spots. (PVPMC, 2017) Complete damage of one or 

more of these components can result in several ways with different complexity, depending 

on the type and location of the failure. Changes in component health typically also can be 

detected through an increase in the PV module’s series resistance Rs. (Spataru et al., 2015) 
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4.1.3 DC wiring losses 

This type of loss is mainly caused by changes in the ohmic resistance of the cabling that 

connects PV array components. (PVPMC, 2017) Power loss over such components varies 

as a function of the current squared: 

 

𝑃𝐷𝐶,𝑙𝑜𝑠𝑠,𝑤𝑖𝑟𝑖𝑛𝑔 = 𝐼² ∗ 𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

Equation 32 DC wiring power loss (PVPMC, 2017) 

Differences in cable length or size between parallel strings can also lead to voltage drops – 

as also do series protection diodes – and can be considered as follows: 

 

𝑉𝐷𝐶,𝑙𝑜𝑠𝑠,𝑤𝑖𝑟𝑖𝑛𝑔 = 𝐼 ∗ 𝑅𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

Equation 33 DC wiring voltage drop (PVPMC, 2017) 

A closer examination of DC wiring losses of the observed array is outside the scope of this 

work and therefore not part of the array evaluation and analysis. 

 
4.2 Optical effects 

In the following, outdoor effects that optically influence the PV performance are described – 

those listed below refer to the effect of soiling and shading, angle of incidence effects as well 

as the effect of the spectrum of the incoming light on the PV array performance. 

 

4.2.1 Soiling and shading 

PV module front glass soiling describes the effect of the accumulation of dust and pollution 

which causes limited light transmittance, increased relative angular losses or shading to the 

PV solar cells. (Spataru et al., 2015) According to Martin and Ruiz (2000) the annual losses 

caused through soiling or dust deposition is depending on the latitude and the tilt angle of 

the observed PV system. In their study, Martin and Ruiz (2000) found a minimum annual 

loss value of about 3% for all the considered sites in their research, while maxima of between 

5 to 7% of annual losses were shown. This range of soiling losses can be confirmed in the 

work of Laukamp et al. (2002), in which annual energy losses due to soiling up to 6% are 

shown. Thus, soiling can represent a significant performance loss factor for PV systems. As 

mentioned in section 1.4 of this work, for the scope of this work it is assumed that soiling and 

dust deposition occurs uniformly across the observed ground array. Furthermore, the 

observed data set consists of days that are considered to present a rather minimal 

occurrence of dust deposition – involving only one day of a month with known high dust 

deposition caused through pollen dust. 
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Shading, and in particular partial shading, can cause significant performance losses of the 

PV system mostly depending on the position of the shadow and the bypass diode 

configuration of the PV modules within the array. Specifically localized – or partial – shading 

or front glass soiling (as explained above) can lead to irreversible hot-spot damage through 

reverse biasing of the affected solar cells – whereas uniform shading across the whole array 

itself does not present that high of a risk, as it happens equally over the entire array. (Spataru 

et al., 2015) 

 

4.2.2 Reflectivity and AOI 

In case the PV array is not mounted on a two-axis tracker system, the direct component of 

the solar radiation will not be normal to the PV array plane for the entire observation time. 

Thus, angles of incidence greater than zero (normal to the plane of array) lead to optical 

losses due to increased reflections from the module surface – and ultimately from the module 

materials. (PVPMC, 2017) A typical way to define the loss due to angle of incidence effects 

is through the incidence angle modifier (IAM) as follows: 

 

𝐼𝐴𝑀 =
𝜏(𝜃)

𝜏(0)
=  

𝑅(𝜃) − 𝐴(𝜃)

𝑅(0) − 𝐴(0)
 

Equation 34 Incidence angle modifier (IAM) for the beam component of the incident irradiance 

(PVPMC, 2017) 

With τ being the spectrally weighted transmittance, R the spectrally weighted reflectance and 

A the spectrally weighted absorptance of the observed PV modules as a function of the 

incidence angle θ. (PVPMC, 2017) Reflectivity and angular loss effects in this work are 

considered through the approach developed by Martin and Ruiz (2000) as a function 

involving an empirically determined, dimensionless parameter ar (angular loss coefficient) – 

as described in section 0 of this work. 

 

4.2.3 Spectral responsivity 

Furthermore, the conversion efficiency of PV cells/modules depends on the wavelength of 

the incoming light and is referred to as spectral response – which depends on the PV 

technology used, as mentioned in section 0 of this work. Spectral changes of light and thus 

deviation in measured and predicted performance values in this work are considered through 

the approach of Lee and Panchula (2016) – as described in section 0 of this work.  
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4.3 Thermal effects 

The PV module temperature depends on a number of factors, such as the air temperature, 

irradiance, wind speed and PV module materials – as described in section 2.3.2 of this work. 

Thus, the actual operating temperature of a PV module is the equilibrium between generated 

heat and heat losses of the module to its surroundings. The main three mechanisms of heat 

loss are: heat conduction, convection and radiation. (pveducation, 2017a) These 

mechanisms are schematically illustrated in the following figure: 

 

 

Figure 22 Heat loss mechanisms of PV modules (pveducation, 2017a) 

Conductive heat transfer is caused through thermal gradients between the PV module and 

its surroundings in contact to the material and is characterized by the thermal resistance of 

the PV module – in units of W/m°C. Convective heat transfer describes the effect of heat 

transfer caused through thermal gradients between surrounding material (air) moving across 

the surface of the PV module and is characterized by the convection heat transfer coefficient 

– in units of W/m²°C. Radiation is the effect of emitting heat based on the temperature of an 

object and its thermal gradient to its surroundings and is characterized by the object’s degree 

of emissivity ε - unitless. (pveducation, 2017a) 

There exists a number of models that aim to estimate the PV module temperature under 

certain ambient conditions for specific types of PV technologies. The model used in this work 

and applied by the IEC 61853-3 draft is developed by Faiman (2008), while an alternative 

way to estimate the module temperature is suggested by the Sandia Module Temperature 

Model – which will not be further analyzed within the scope of this thesis. (PVPMC, 2017)  

In this regard, also the dependence of the short circuit current (Isc) and the open circuit 

voltage (Voc) on the PV module temperature should be mentioned with reference to section 

3.4.1 of this work. Local temperature (and irradiance) differences within the observed PV 

array of this work will be analyzed according to the position of the modules within the array. 
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4.4 Degradation and failure modes 

The present work does not take into consideration any PV failure or degradation within the 

analysis of the observed PV array data sets and the evaluation of the modeling algorithms 

of IEC 61853-3. This is on the one hand due to the fact that the installed PV array is still 

relatively new, assuming that possible infant failures have not influenced the PV performance 

significantly yet. On the other hand – as mentioned initially – modeling algorithms use a 

performance matrix which is based on the same type of PV modules, aged outside nearly 

for the same time as the modules mounted inside the array. However, it should be mentioned 

that about 3% of the PV modules installed in the observed ground array are affected by hot 

spot back sheet burn marks, which also includes 3 traced PV modules that are part of the 

observed dataset in this work. Exemplary hot spot burn marks of modules within the ground 

array can be seen in Figure 23. Also, the study of Fairbrother (2017) has shown different 

degrees of back sheet yellowing and glazing depending on the position of the PV modules 

in the array – as explained in section 0 of this work. 

 

  

Figure 23 Hot spot burn marks at the back sheet of PV modules within the ground array at NIST 

(own figures) 

While the origin of the observed hot spot burn marks – as a typical midlife failure mode – is 

not completely clear up to this date, it could be shown that at the time of investigation there 

is no significant difference in performance when comparing to PV modules without burn 

marks – which most probably can be related to the relatively young age of the PV array of 

about 4 years since installation. Furthermore, a lack of availability and accessibility of (‘fresh’) 

PV module measurements before their installment at NIST does not allow a reliable 

investigation of performance degradation behavior at this point. Thus, degradation and 

failure modes are not considered within the scope of this work and assumed to be negligible. 

Nevertheless, common degradation and failure modes shall be mentioned in the following 

and serve further discussion and possible conclusions of this research. 
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A typical categorization of failures and degradation modes of wafer based crystalline PV 

modules and system components can be divided into infant failures, midlife failures and 

wear-out failures (IEA, 2014b) – as shown in the following figure: 

 

 

Figure 24 Typical failure scenarios for wafer-based c-Si PV modules and system components (IEA, 

2014b) 

LID refers to light induced power degradation9 and occurs right after the installation of the 

PV modules. It is considered to be an expected and predictable power loss after the installed 

PV modules are installed and exposed to light. While LID is not fully considered to be an 

infant-mortality failure (as it is predictable), failures related to PV system components such 

as contact failures, glass breakages, defective cell interconnects or loose frames and 

delamination are common infant failures. (IEA, 2014b) 

Common midlife failures are considered to be related to interconnection defects, diode 

failures and failures due to glass breakage or potential induced degradation (PID)10 effects, 

but also encapsulant failures or burn marks on the cells are common failures occurring at 

this stage of lifetime of PV modules and system components. (IEA, 2014b) 

                                                
9 LID is related to the quality of the wafer manufacturing and in most literature refers to traces of 

Oxygen defects included in the semiconductor material of the PV module’s cells - according to: NREL 

2012. Understanding Light-Induced Degradation of c-Si Solar Cells. NREL/CP-5200-54200 ed. 2012 

IEEE Photovoltaic Specialists Conference Austin, Texas. 

 

10 PID is mainly influenced by the (in most c-Si) negative voltage of the individual PV module to the 

ground and is enhanced by high system voltages, high temperatures and high humidity and influences 

the active layer of the PV module’s cells, according to: NREL 2011. System Voltage Potential-Induced 

Degradation Mechanisms in PV Modules and Methods for Test. NREL/CP-5200-50716 ed. 37th IEEE 

Photovoltaic Specialists Conference (PVSC 37) Seattle, Washington. 
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Wear out failures are failure modes that occur at the end of the lifetime of PV modules and 

system components and are usually defined as failures that lead to safety problems or to a 

performance drop under a certain level – typically defined as 80 % or 70 % of the initial 

power rating. Main end of life failures are delamination, cell cracks or discoloring of the 

laminate. (IEA, 2014b) 

 

There exists a range of standardized test procedures that aims to provide information about 

the behavior of PV modules and components throughout its lifetime. Most critical tests for 

c-Si PV modules that aim to provide knowledge and indicators about their lifetime and 

degradation behavior of a module and provide a basis for certification of PV modules and 

materials are for example: standardized temperature cycle tests, damp heat tests, initial 

(‘fresh’) performance measurements, humidity freeze tests, hot spot endurance tests and 

mechanical load tests. (IEA, 2014b) 
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5 State of the art – PV performance modeling 

approaches 

This chapter summarizes existing efforts and developments towards PV performance 

modeling algorithms. Alternative modeling algorithms to the ones used in this thesis are 

given in Table 9 and shall only be mentioned for completeness and are not further analyzed 

within the scope of this work. 

 
AOI correction 

(1) 

Spectral 

correction  

(2) 

Module 

temperature 

(3) 

DC module 

output power 

(4) 

Modeling 

algorithms 

used for 

evaluation 

IEC 61853-3: 

Martin and Ruiz 

(2000) 

Alternative 

model to IEC 

61853-3: 

Lee and 

Panchula 

(2016) 

IEC 61853-3: 

Faiman (2008) 

IEC 61853-3: 

Interpolation 

method, IEC 

(2016b) 

Alternative 

modeling 

algorithms 

 

Physical IAM 

Model: 

De Soto et al. 

(2006) 

 

ASHRAE IAM 

Model: 

ASHRAE 

(1977) 

 

Sandia IAM 

Model: 

King et al. 

(2004) 

 

IEC 61853-3 

CD approach, 

discussed in: 

IEC (2016b), 

 

Huld et al. 

(2015), 

 

Alonso-Abella 

et al. (2014), 

 

Dirnberger et 

al. (2015) 

 

AM Model, 

adapted by: 

De Soto et al. 

(2006) 

 

SMARTS2 

Model: 

Gueymard 

(1995) 

 

Sandia Module 

Temperature 

Model: 

King et al. 

(2004) 

 

Overview of 

other PV 

module 

temperature 

models: 

Skoplaki and 

Palyvos (2009) 

Model of Huld 

et al.: 

Huld et al. 

(2011) 

 

Sandia PV 

Array 

Performance 

Model: 

King et al. 

(2004) 

 

De Soto Five 

Parameter 

Module Model: 

De Soto et al. 

(2006) 

 

 

Table 9 Overview of existing PV module and array modeling algorithms (own table) 
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Furthermore, there exists a range of worldwide efforts that aim to improve and develop PV 

performance modeling in a comprehensive and publically available manner. One of these 

efforts happens through the PV Performance and Modeling Collaborative (PVPMC) platform, 

established by the Sandia National Laboratories, US Department of Energy. The aim of this 

platform is to improve the accuracy of PV performance models and analyses. It therefore 

provides a variety of existing studies and tools in the field of PV modeling. (PVPMC, 2017) 

 

As for other international developments and efforts towards the understanding of the 

behavior of PV modules and arrays (including system components) exposed to 

environmental conditions throughout their lifetime, the efforts of the IEA PVPS Task 13 shall 

also be mentioned. This task deals with the performance and reliability analysis of PV 

systems in an international consortium. (IEA, 2017b) A comprehensive overview of PV 

performance modeling methods and practices – some of them included above – was 

developed at the 4th modeling collaborative workshop lead and organized by IEA PVPS Task 

13 members. (IEA, 2017c) 

 

Another project that partly can be related to this thesis’ efforts is the Austrian national project 

Infinity. Infinity is a national Austrian lead project subsided by the Austrian Climate and 

Energy Fund, dealing with climate sensitivity of photovoltaics. It therefore also strongly deals 

with monitoring and modeling of performance behavior of PV systems. (CTR, 2017) 
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6 Monitoring of NIST’s ground mounted PV array 

This chapter contains a description of the observed PV ground array, located at the campus 

of NIST. Furthermore it describes the electrical layout of the array and provides information 

about measurement equipment and positions. It is intended to cover the description of 

relevant ground array and measurement components involved in this work.  

 

A more detailed description of the entire array and monitoring system may be consulted via 

the NIST Technical Note 1896 done by Boyd (2015), publically available from: 

http://dx.doi.org/10.6028/NIST.TN.1896 

 

6.1 Surroundings and location 

The observed ground array is located at the campus of NIST in Gaithersburg, with the 

coordinates 39° 07’ 54.7’’ N; 77° 12’ 50.8’’ W and an altitude of 136 m. Prevailing climate 

conditions at this location can be described as humid continental climate, characterized by 

a hot summer and no dry season. (Fairbrother, 2017) The array is situated on coarse, gray 

granite stone (#57 stone) and surrounded by grass and bio retention zones as can be seen 

in the figure below. 

 

 

Figure 25 Ground array at NIST (Boyd, 2015) 

The array consists of five tilted sheds running east-west. All sheds are tilted at nominally 20° 

due south. As mentioned in section 2, the four southernmost sheds consist of five module 

rows, while the northernmost (fifth) shed consists of 4 rows. Local shading is periodically 

caused by inter-row shading, a research building that is located directly west of the array, 

shading coming from the bio retention area south of the array as well as a 1.2 m high cable 

rail fence surrounding the array. (Boyd, 2015) 

 

http://dx.doi.org/10.6028/NIST.TN.1896
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6.2 Electrical layout and measurement positions 

Each PV module string of the array contains 12 modules and runs from east to west in each 

of the five sheds. The strings combine in parallel at seven combiner boxes and form seven 

output circuits that run to the inverter. Strings combined in parallel are called source circuits 

(SC) and are illustrated in the figure below, combined to seven combiner boxes shown as 

numbered squares. Furthermore, the figure below shows positions of the deployed 

measurement equipment. 

 

Figure 26 Ground array electrical layout and measurement positions (Boyd, 2015) 

‘POA Pyra’ stands for the thermopile pyranometer in the plane of the array, which measures 

the global in-plane irradiance (Gpoa) used for this work. ‘POA Cell’ refers to a silicon reference 

cell that also measures the global in-plane irradiance (Gpoa). ‘GHI’ stands for the thermopile 

pyranometer measuring the global horizontal irradiance (GHI). ‘RTD’ stands for the 

resistance temperature detectors that are mounted according to IEC (2009) on the backsides 

of the respective modules indicated as red dots. ‘Ambient Temp.’ refers to the measurement 

of the ambient temperature via an RTD probe in a passively ventilated radiation shield. ‘Wind’ 

stands for the measurement position of the wind speed via heated ultrasonic wind sensor. 

(Boyd, 2015) Furthermore the integrator of the PV array mounted a Silicone photodiode 

pyranometer and a sensor measuring the ambient temperature. 

 

The following figure shows the irradiance sensors at the ground array, mounted by NIST. 
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Figure 27 Irradiance sensors at the ground array measuring Gpoa and GHI (Boyd, 2015) 

The figure below shows the installed temperature probe and radiation shield used to 
measure the outdoor ambient temperature at the ground array. 
 

 

Figure 28 RTD temperature probe and radiation shield for ambient temperature measurement 

(Boyd, 2015) 

The following figure shows an RTD mounted on the backside of a PV module for the 

measurement of the PV module backside surface temperature, using thermally conductive 

epoxy and adhesive film overlay. 

 

Figure 29 RTD mounted on the backside of a PV module (Boyd, 2015) 
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The following figure shows the deployed ultrasonic wind sensor at the ground array. 

 

Figure 30 Wind sensor at the ground array (Boyd, 2015) 

The direct normal irradiance is measured at a different location, at the rooftop weather station 

of a nearby research building on the NIST campus via a thermopile pyrheliometer. The 

following figure shows the deployed pyranometers at the rooftop weather station at NIST. 

 

 

Figure 31 Pyrheliometers mounted on the side of the solar tracker also showing the diffuse 

measuring pyranometers (left and right) and the IR measuring pyrgeometer (center) (Boyd, 2015) 
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6.3 IV curve tracers 

The deployed IV curve tracers from the company Stratasense (2013) are taking 

measurements at one module of each string of the ground array, i.e. in total 96 IV curve 

tracers. As can be seen in the following figure, the tracers are mounted on the mounting 

structure for the PV modules in order to not influence the thermal behavior of the PV 

modules’ backside. 

 

Figure 32 IV curve tracers on the mounting structure (own picture) 

The tracers perform periodic IV curve sweeps in five minute intervals. Sweeps of different 

tracers happen sequentially according to the tracers’ network addresses, i.e. IV curve 

sweeps are not happening at the exact same times. One sweep takes approximately 300 ms. 

During that time, the PV module is bypassed from its string, i.e. operational data is not 

monitored. The tracers transmit data wirelessly and do not require any additional grid 

connection or wiring as they charge from the PV modules – containing also backup batteries. 

Stratasense wireless PV tracers are verified within 1% accuracy. (Stratasense, 2013) 

 

  



 

   77 

6.4 Summary of PV ground array characteristics 

The table below summarizes characteristic data of the observed PV ground array: 

 

Parameter Value 

Array rated DC power [kW] 271 

Latitude [°N] 39.1319 

Longitude [°E] -77.2141 

Elevation above sea level [m] 138 

Height above ground [m] 0.67 

Tilt [°] 20 

Azimuth from North [°] 180 

Number of modules 1152 

Module manufacturer Sharp 

Module model NU/U235F2 

Module technology Monocrystalline silicon – front contact 

Module rated power 235 

Modules per string 12 

Number of combiner boxes 7 

Inverter manufacturer PV Powered (now Advanced Energy) 

Inverter model PVP260kW 

Inverter rated power [kW] 260 

Table 10 Summary of ground array data (modified according to Boyd, 2015) 
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The following table summarizes the for this work relevant installed measurement equipment 

at the ground array at NIST. 

 

Monitoring 
data set 

Parameter Abbreviation 
Measurement 

equipment 
Model of equipment 

W
e

a
th

e
r 

d
a
ta

 

ambient 
temperature 

Tamb 

RTD probe in a 
multi-plate 
passively 
ventilated 

radiation shield 

R.M. Young 41342LC 
in an R.M. Young 

41003 

wind speed ν 
ultrasonic wind 

sensor 
Vaisala WMT52 

global 
horizontal 
irradiance 

GHI 
thermopile 

pyranometer 
Eppley PSP 

direct normal 
irradiance 

DNI 
thermopile 

pyrheliometer 
Kipp & Zonen CHP 1 

global in-plane 
irradiance 

Gpoa 
thermopile 

pyranometer 
Kipp & Zonen CMP 11 

P
V

 m
o

d
u

le
 o

p
e

ra
ti

o
n

a
l 

d
a
ta

 

module 
backside 

temperature 
Tmod,meas RTD Unknown, Pt1000 

operational 
current 

Iop 
wireless IV 
curve tracer 

Stratasense 

operational 
voltage 

Vop 
wireless IV 
curve tracer 

Stratasense 

IV curve traces - 
wireless IV 
curve tracer 

Stratasense 

C
a

m
e

ra
 p

ic
tu

re
s
 

entire array - network camera Axis Q6032-E PTZ 

middle third - network camera Axis Q6032-E PTZ 

north third - network camera Axis Q6032-E PTZ 

south third - network camera Axis Q6032-E PTZ 

sky camera - 
fisheye lens 

network camera 

Axis M3027-PVE with a 
Fujinon 

FE185C046HA-1 

sky camera - 
fisheye lens 

network camera 

Alcor System OMEA-
2.0M-HCA with a 

Fujinon 
FE185C046HA-1 

Table 11 Measurement equipment deployed at the ground array and used in this work (modified 

according to Boyd, 2015)  
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7 Evaluation of PV modeling algorithms 

In this chapter, results related to the evaluation of the IEC 61853-3 draft’s calculation 

procedures are summarized, described and interpreted. Results related to the correction 

procedures, as well as modeled PV module temperature and power are illustrated as time 

series plots with regard to the entire observed data set population of days with characteristic 

weather conditions – as mentioned in section 3.5. Moreover, effects of each days with 

characteristic weather conditions, each observed bin range individually and the interaction 

between each of the observed bin ranges are evaluated regarding modeled and measured 

PV module temperature and power. 

 

In total, the observed data set contains about 7000 data points (i.e. minutely averages) out 

of in total 21 of the 24 listed days with characteristic weather conditions – mentioned in 

section 3.5 of this work. This reduction is due to irregularities and faults in measurement data 

for 3 of the observed days: 01/09/2017 a day with low daily averages of irradiance, ambient 

temperature and wind speed (L/L/L), 02/09/2017 a day with low daily averages of irradiance 

and ambient temperature and high daily average wind speed (L/L/H), 08/28/2016 a day with 

high daily averages of irradiance and ambient temperature and low daily average wind speed 

(H/H/L). In order to avoid the distortion of results, these days are not considered in the 

following evaluation. 
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7.1 Angle of incidence correction 

The correction for angle of incidence effects through the model of Martin and Ruiz (2000) – 

described in section 0 – is schematically illustrated in the following figure. Figure 33 shows 

the measured global in-plane irradiance (black full line – top graph) compared to the AOI-

corrected global in-plane irradiance (red dashed line – top graph). Residuals between 

measured and corrected irradiance values are plotted in the bottom graph of Figure 33 

(yellow dots). The mean difference between the measured and the corrected values is about 

46 W/m², the median difference is about 54 W/m² for the entire observed data set population 

of 6929 data points. 

 

 

Figure 33 AOI correction of global in-plane irradiance (own figure) 
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7.2 Spectral correction 

The spectral correction through the model of Lee and Panchula (2016) – described in section 

0 – is schematically illustrated in the following figure. Figure 34 shows the measured and 

AOI-corrected global in-plane irradiance (black full line – top graph) compared to the 

spectrally and AOI-corrected global in-plane irradiance (red dashed line – top graph). 

Residuals between AOI-corrected and spectrally (and AOI) corrected irradiance values are 

plotted in the bottom graph of Figure 34 (yellow dots). The mean difference between the 

AOI-corrected and the spectrally and AOI-corrected irradiance is significantly smaller 

compared to the mean difference caused through correction of AOI effects and results to 

about 0.7W/m², the median difference to about -0.1 W/m² for the entire observed data set 

population of 6929 data points. I.e. that spectral correction leads to relatively small changes 

in global in-plane irradiance values. 

 

Figure 34 Spectral correction of AOI corrected global in-plane irradiance (own figure) 
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7.3 Module temperature calculation 

The PV module temperature calculation according to the model of Faiman (2008) – 

described in section 3.3.6 – is schematically illustrated in the following figure. Figure 35 

shows the measured PV module temperature (black full line – top graph) compared to the 

estimated/calculated PV module temperature (red dashed line – top graph). Residuals 

between measured and modeled PV module temperature values are plotted in the bottom 

graph of Figure 34 (yellow dots). The mean difference between the measured and the 

estimated PV module temperature is about 1.54°C and the median difference 1.53°C for the 

entire observed data set population of 6929 data points – with RMSE of about 3.7°C and 

MAD of about 1.4°C. 

 

Temperature Modeling Error – Entire Data Set 

RMSE [°C] MAD [°C] µ [°C] Median diff. [°C] 

3.7 1.4 1.5 1.5 

Table 12 Temperature modeling error indicators for the entire data set population (own table) 

 

Figure 35 PV module temperature calculation (own figure) 
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7.3.1 Distribution of residuals and sample size - Temperature 

Furthermore, the observed residuals of modeled and measured PV module temperature 

show a normal distribution with the population center close to zero and very little positive 

outliers on the right side of the center – representing also a slightly larger skew to the left as 

shown in the figure below. The left skew indicates the tendency of the model to underpredict 

the PV module temperature, leading to more negative residuals for the observed entire data 

set population. As can also be seen in the plot of residuals over time in Figure 35. 

 

Figure 36 Frequency range histogram of PV module temperature residuals of entire data set 

population (own figure) 

The standard deviation S of the temperature residuals of the entire data set population is 

3.3°C. For a desired MOE of 1°C and a confidence level of 95% (i.e. a value of zα/2 of 1.96), 

a minimum sample size n of about 42 data points is required for further comparisons of PV 

module temperature data samples (bin ranges). 
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7.4 Module power calculation 

The PV module power calculation according to the interpolation method suggested by the 

IEC 61853-3 committee draft – described in section 3.3.7 – is schematically illustrated in the 

following figure. In order to allow power modeling over the entire observed data set 

population, the given performance matrix had to be extrapolated to cover also lower 

irradiance and temperature ranges – as explained in section 3.3.7. Figure 37 shows the 

measured PV output power (black full line – top graph) compared to the estimated/calculated 

PV module output power (red dashed line – top graph). Residuals between measured and 

modeled PV module power values are plotted in the bottom graph of Figure 34 (yellow dots). 

The mean difference between the measured and the estimated PV module output power is 

about -4.2 W and the median difference –1 W for the entire observed data set population of 

6929 data points – with RMSE of about 12.7 W and MAD of about 2.6 W. 

 

Power Modeling Error – Entire Data Set 

RMSE [W] MAD [W] µ [W] Median diff. [W] 

 12.7 2.6 -4.2 -1 

Table 13 Power modeling error indicators for the entire data set population (own table) 

 

Figure 37 PV module power calculation (own figure) 
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7.4.1 Distribution of residuals and sample size - Power 

The observed residuals of modeled and measured PV module power show a more narrow 

distribution and the presence of one significant peak close to zero. The distribution of the 

residuals roughly follows a normal distribution with the center being close to zero and a light 

skew to the left (negative residuals). The slightly visible left skew indicates the tendency of 

the model to underpredict the PV module power, leading to more negative residuals for the 

observed entire data set population. As can also be seen in the plot of residuals over time in 

Figure 37Figure 35. 

 

 

Figure 38 Frequency range histogram of PV module power residuals of entire data set population 

(own figure) 

The standard deviation S of the power residuals of the entire data set population is about 

12 W. For a desired MOE of 2 W and a confidence level of 95% (i.e. a value of zα/2 of 1.96), 

a minimum sample size n of about 138 data points is required for further comparisons of PV 

module power data samples (bin ranges). 
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7.5 Analysis of days with characteristic weather 

conditions 

This chapter summarizes statistical indicators for each of the observed days with 

characteristic weather conditions – as mentioned in section 3.5 – such as RMSE, MAD, R², 

Rpearson and Rspearman. The combination of these indicators should provide information about 

how well the IEC 61853-3 draft calculation procedures can estimate PV module temperature 

and power for each of the observed days and serve as a first evaluation of the standard’s 

modeling algorithms.  

The following table shows the statistical indicator values for the comparison of the modeled 

and measured PV module temperature. 

 

Temperature: Modelled versus measured 

irradiance/temperature/wind 
speed 

RMSE [°C] MAD [°C] R² [-] Rpearson [-] Rspearman [-] 

H/H/H 4,34 2,05 0,57 0,75 0,83 

H/H/H 2,61 1,13 0,73 0,86 0,84 

H/H/H 2,89 1,25 0,63 0,80 0,81 

H/H/L 3,74 1,28 0,81 0,90 0,88 

H/H/L 4,24 1,41 0,84 0,92 0,95 

H/L/H 4,30 0,94 0,21 0,46 0,70 

H/L/H 5,62 0,95 0,02 0,15 0,45 

H/L/H 3,78 1,20 0,12 0,35 0,51 

H/L/L 3,77 1,37 0,35 0,59 0,60 

H/L/L 2,43 1,07 0,34 0,58 0,69 

H/L/L 3,85 1,54 0,20 0,45 0,48 

L/L/L 1,58 0,59 0,77 0,88 0,83 

L/L/L 2,24 0,66 0,71 0,84 0,84 

L/L/H 3,70 1,55 0,44 0,66 0,73 

L/L/H 2,79 0,74 0,39 0,63 0,74 

L/H/L 2,14 0,85 0,87 0,93 0,91 

L/H/L 1,05 0,49 0,81 0,90 0,84 

L/H/L 6,50 2,82 0,67 0,82 0,83 

L/H/H 1,82 0,88 0,89 0,94 0,94 

L/H/H 2,25 1,27 0,69 0,83 0,83 

L/H/H 1,42 0,46 0,98 0,99 0,85 

Table 14 Statistical parameters for days with characteristic weather conditions, temperature – low 

values of RMSE and MAD indicate better predictions while high values of R², Rpearson and Rspearman 

indicate better correlation and determination of predictions (own table) 
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Table 14 clearly shows, that for days with lower average irradiance, the PV module 

temperature estimation errors – represented by RMSE and MAD – are significantly lower 

than for days with higher average irradiance. The best model fit – represented by R², Rpearson 

and Rspearman – can be achieved at days with high average ambient temperature, independent 

of daily average irradiance and wind speed.  

The highest prediction error according to values of RMSE and MAD occurs on a day with 

low average irradiance and wind speed values and high average ambient temperature (LHL, 

08/01/2016), showing a clear difference to the other two days of the same type. The affected 

day shows significant fluctuation in measured irradiance – see figure below. 

 

Figure 39 Irradiance differences on LHL days (own figure) 

These strong fluctuations typically indicate measurements taken on a cloudy day. The 

modeling approach of Faiman (2008), used to predict PV module temperatures, directly 

translates these fluctuations into fluctuations in PV module temperature – as can be seen in 

the figure below (red line, 08/01 LHL). The error between measured and modeled PV module 

temperature appears due to neglecting of thermal mass of the PV module in the applied 

modeling approach – using 1-minute averages of measured data. Thus, smaller fluctuation 

in measurements and/or the increase of the averaging interval of measurements possibly 

leads to a more accurate prediction for days with strong fluctuation in irradiance (and wind 

speed). Furthermore, the consideration of thermal mass and/or longer averaging periods of 

data in comparison can also improve the prediction error. 
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Figure 40 Measured versus modeled temperature on LHL days (own figure) 

The following table shows the statistical indicator values for the comparison of the modeled 

and measured PV module temperature. 

 
Power: Modelled versus measured 

irradiance/temperature/wind 
speed 

RMSE [W] MAD [W] R² [-] Rpearson [-] Rspearman [-] 

H/H/H 18,78 5,59 0,89 0,94 0,93 

H/H/H 4,18 1,70 1,00 1,00 0,99 

H/H/H 2,57 1,21 1,00 1,00 0,99 

H/H/L 5,54 1,97 0,97 0,99 0,98 

H/H/L 3,37 1,92 1,00 1,00 0,99 

H/L/H 4,75 1,03 0,95 0,97 0,95 

H/L/H 5,94 1,75 0,95 0,97 0,96 

H/L/H 3,25 0,82 0,96 0,98 0,97 

H/L/L 2,28 1,00 0,98 0,99 0,99 

H/L/L 1,78 0,76 0,97 0,99 0,98 

H/L/L 10,24 2,17 0,89 0,94 0,91 

L/L/L 17,45 1,97 0,98 0,99 0,99 

L/L/L 35,77 6,29 0,98 0,99 1,00 

L/L/H 30,40 17,07 0,93 0,96 0,97 

L/L/H 19,84 5,18 0,93 0,96 0,96 

L/H/L 2,53 0,99 1,00 1,00 1,00 

L/H/L 3,03 0,45 0,96 0,98 0,99 

L/H/L 8,03 2,24 0,98 0,99 0,99 
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L/H/H 6,61 1,59 0,99 0,99 0,99 

L/H/H 7,32 1,55 0,99 0,99 0,99 

L/H/H 1,71 0,62 0,97 0,99 0,99 

Table 15 Statistical parameters for days with characteristic weather conditions, power (own table) – 

low values of RMSE and MAD indicate better predictions while high values of R², Rpearson and 

Rspearman indicate better correlation and determination of predictions (own table) 

The results in Table 15 show the tendency to lower estimation errors for days with higher 

average irradiance. However, tendencies are not as clearly visible as with the temperature 

modeling. 

The highest prediction errors according to values of RMSE and MAD occur on a days with 

low average irradiance, ambient temperature and wind speed (LLL) as well as for days with 

low average irradiance, ambient temperature and high average wind speed (LLH). Modeled 

(dashed lines) and measured (full lines) power for these days is illustrated in the figure below. 

 

Figure 41 Measured versus modeled temperature on LLL and LLH days (own figure) 

The comparison of power estimation error for different days with characteristic weather 

conditions shows no fully conclusive pattern. Thus, for better understanding and in order to 

study and evaluate the IEC modeling algorithms for specific weather conditions at various 

ranges of irradiance, ambient temperature, wind speed and angle of incidence, it is 

necessary to divide the described data set of all days with characteristic weather conditions 

into bins – as explained in section 0. This is done through the analysis of effects of individual 

bin range variation as well as the analysis of the bin ranges interaction with each other.  
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7.6 Analysis of effects of independent variation of bin 

ranges 

Prior to the analysis of interactions and cross-dependencies between the observed bin 

ranges, this analysis focuses on effects caused by the individual variation of each of the 

above mentioned parameters irradiance, ambient temperature, wind speed and angle of 

incidence for the entire data set population. Effects are analyzed via residual analysis. 

Therefore, residuals – differences between modeled and measured values – are plotted over 

the corresponding parameters of interest. Furthermore, plots include information about 

RMSE and R² values related to the corresponding ranges. 

In the following, at first effects on the temperature model of Faiman (2008) and then effects 

on the modeled PV module output power according to IEC 61853-3 calculation procedures 

are analyzed. 

 
Temperature - Modeled versus measured 

The following figure illustrates the variation analysis of PV module temperature residuals, 

depending on the independent variation of irradiance (black, top left), ambient temperature 

(red, top right), wind speed (blue, bottom left) and angle of incidence (green, bottom right). 

It includes information about RMSE variation for each observed range (red axis on the right 

and red dashed line inside the graphs) as well as information about the coefficient of 

determination R² (listed along the x-axis for each range). 

 

Figure 42 Independent parameter variation analysis of residuals for the modeled temperature (own 

figure) 
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Figure 42 shows that for increasing irradiance values, RMSE increases from about 2.5 °C to 

about 4.6°C. It is visible that with increasing irradiance values, also the variance of the 

residuals changes (heteroscedasticity) – more pronounced to positive values, i.e. 

overprediction of the module temperature. This behavior is also reflected in a slight decrease 

of the coefficient of determination R², which indicates difficulties of the model in the 

estimation of PV module temperature for higher irradiance ranges, confirming also the 

findings of the analysis of days with characteristic weather conditions. There seems to be no 

significant effect of the ambient temperature increase on values of RMSE for the temperature 

prediction. Nevertheless, residuals show a slight trend to more negative values with 

increasing ambient temperature. Also, the variance of the residuals with increasing 

temperature values seems to get more constant (homoscedasticity) – also leading to better 

values in R². An increase in wind speed leads to a slight decrease in RMSE ranging from 4 

°C to 3 °C. It can also be seen that an increase in wind speed causes a more narrow 

distribution of the residuals, with no significant changes in values of R². The variation of the 

angle of incidence (AOI) between 0° and 70° leads to more significant changes for angles 

between 0° and 45°. An increase in AOI shows a decrease in RMSE, also reflected in the 

change of distribution of residuals around zero – leading to lower errors. Negative residuals 

reduce further for AOI between 45° and 70°, leading to no significant change in RMSE and/or 

R². 

Lowest errors and best correlation could be achieved at low irradiance values ranging from 

0 to 400 W/m² measured global in-plane irradiance – with RMSE of about 2.5 °C – as well 

as for angles of incidences between 45° and 60° - with RMSE of about 2.7 °C. 

Variations in modeling error and correlation can also be illustrated with the median absolute 

deviation (MAD), the Pearson coefficient of correlation (Rpearson) and the Spearman 

coefficient of correlation (Rspearman). These parameters follow the above described behavior 

and are shown in the following table: 

 

Independent Variation RMSE [°C] MAD [°C] R² [-] Rpearson [-] Rspearman [-] 

Irradiance 1  
(0-400W/m²) 

2.46 0.94 0.97 0.99 0.98 

Irradiance 2  
(400-800W/m²) 

3.74 1.52 0.91 0.96 0.94 

Irradiance 3  
(800-1200W/m²) 

4.61 1.52 0.92 0.96 0.95 

Ambient Temperature 1 
(-10-+13°C) 

3.54 1.13 0.80 0.90 0.90 

Ambient Temperature 2 
(+13-+36°C) 

3.74 1.70 0.93 0.96 0.97 

Wind Speed 1  
(0-3m/s) 

4.19 1.35 0.94 0.97 0.96 

Wind Speed 2  
(3-6m/s) 

3.20 1.57 0.97 0.98 0.98 

Wind Speed 3  
(6-9m/s) 

2.95 1.37 0.96 0.98 0.97 

AOI 1  
(0-45°) 

4.05 1.52 0.95 0.97 0.97 
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AOI 2  
(45-60°) 

2.67 1.04 0.95 0.97 0.96 

AOI 3  
(60-70°) 

3.06 1.25 0.91 0.96 0.95 

Table 16 Independent parameter variation analysis for whole array, temperature: RMSE, MAD, R², 

Rpearson, Rspearman (own table) 

 

Power - Modeled versus measured 

The following figure also illustrates the variation analysis of PV module power residuals, 

depending on the independent variation of irradiance (black, top left), ambient temperature 

(red, top right), wind speed (blue, bottom left) and angle of incidence (green, bottom right). 

It includes information about RMSE variation for each observed range (red axis on the right 

and red dashed line inside the graphs) as well as information about the coefficient of 

determination R² (listed along the x-axis for each range). 

 

 

Figure 43 Independent parameter variation analysis of residuals for the modeled power (own figure) 

Figure 43 clearly shows a tendency to higher values in RMSE and significantly increased 

variance of residuals, shown as a strong overprediction at low irradiance ranges between 0 

and 400 W/m² – with RMSE of about 18 W and R² of about 0.7. An increase of irradiance 

leads to better estimations, with RMSE of about 9 W for irradiances between 400 and 

800 W/m² and 8 W for irradiances between 800 and 1200 W/m², showing also improvement 

in R². An increase of ambient temperature shows positive effect on the modeling error, 

leading to RMSE values of about 17 W for low and 8 W for high ambient temperature ranges. 

High values in RMSE at low ambient temperatures between -10 and +13 °C are represented 
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as strong overprediction of power. Increasing ranges of wind speed show strong effect on 

modeling error for ranges above 6 m/s, leading to values of RMSE of about 18 W. Lower 

wind speeds between 0 and 6 m/s show slightly lower RMSE of about 11 W. Increasing 

ranges of AOI show a significant reduction of the modeling error from about 14 W for low 

values of AOI to about 6 W for high ranges of AOI. However, residuals show a stronger 

visible overprediction of power between AOI of 30 to 50°. 

Lowest errors and best correlation could be achieved for high irradiances ranging from 800 

to 1200 W/m² measured global in-plane irradiance, as well as for AOI between 60° and 70° 

and high ambient temperatures – with RMSE between about 6 and 8 W. 

Variations in modeling error and correlation can again be illustrated with the median absolute 

deviation (MAD), the Pearson coefficient of correlation (Rpearson) and the Spearman 

coefficient of correlation (Rspearman). These parameters follow the above described behavior 

and are shown in the following table: 

 
Independent Variation RMSE [W] MAD [W] R² [-] Rpearson [-] Rspearman [-] 

Irradiance 1  
(0-400W/m²) 

18.09 4.21 0.68 0.83 0.86 

Irradiance 2  
(400-800W/m²) 

9.08 1.99 0.90 0.95 0.97 

Irradiance 3  
(800-1200W/m²) 

7.78 2.37 0.76 0.87 0.92 

Ambient Temperature 1 
(-10-+13°C) 

16.85 3.16 0.96 0.98 0.99 

Ambient Temperature 2 
(+13-+36°C) 

8.01 2.11 0.98 0.99 0.99 

Wind Speed 1  
(0-3m/s) 

11.15 2.46 0.97 0.99 0.98 

Wind Speed 2  
(3-6m/s) 

11.41 2.29 0.97 0.98 0.99 

Wind Speed 3  
(6-9m/s) 

17.52 4.24 0.94 0.97 0.98 

AOI 1  
(0-45°) 

13.54 2.76 0.96 0.98 0.98 

AOI 2  
(45-60°) 

11.59 2.01 0.97 0.98 0.98 

AOI 3  
(60-70°) 

5.57 1.53 0.99 1.00 0.99 

Table 17 Independent parameter variation analysis for whole array, power: RMSE, MAD, R², 

Rpearson, Rspearman (own table) 
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7.7 Analysis of effects of cross-dependent variation of bin 

ranges 

This chapter analyses the interaction (cross-dependence) of the observed bin ranges (data 

samples) and thus effects caused by the (co-)variation of each of the above mentioned 

parameters irradiance, ambient temperature, wind speed and angle of incidence – which 

allows in total 54 combinations. As above, effects are analyzed via residual analysis. 

Therefore, residuals – differences between modeled and measured values – are plotted over 

the corresponding parameters of interest. Furthermore, plots include information about 

RMSE and R² values related to the corresponding ranges. As above, the following analysis 

at first focuses on effects on the temperature model of Faiman (2008) and then on effects 

on the modeled PV module output power according to IEC 61853-3 draft’s calculation 

procedures. 

 

Temperature - Modeled versus measured 

The following figures illustrate the analysis of residuals, depending on the combined variation 

of irradiance, ambient temperature, wind speed and angle of incidence – in total 54 

combinations. They include information about RMSE variation for each observed range (red 

y-axis on the right side and red dashed line inside each graph) as well as information about 

the coefficient of determination R² (written along the x-axis for each bin range). 

Each figure represents one range of angles of incidence (AOI range 1, range 2, range 3). 

Plots inside one figure illustrate changes in ambient temperature (horizontal, from left to 

right) and wind speed (vertical, from top to bottom). Residuals are plotted over increasing 

irradiance values along the x-axis. 

Normally distributed data samples of temperature residuals that have a minimum sample 

size of 42 data points are considered to be within a margin of error MOE of ±1 °C deviation 

of the data sample (bin range) mean to the entire data set population’s mean – with a 

confidence level of 95%. 
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Angle of incidence range 1 – 0° to 45° 

 

Figure 44 Parameter variation analysis of residuals for the modeled temperature, AOI1 (own figure) 

All of the observed data samples at these range of AOI between 0° and 45° (AOI range 1) 

are above the expected minimum sample size of 42 – except samples at low ambient 

temperature ranges between -10 and +13°C, wind speeds ranging from 0 to 6 m/s and 

irradiances from 400 to 800 W/m². 

The figure above shows the tendency of increased RMSE of about 9 °C and increased 

change in variance of residuals for increasing irradiances at low wind speeds between 0 and 

3 m/s and low ambient temperatures between -10 and +13 °C (tamb1) – also reflected in 

significant decrease of R² below 0.1. The influence of the irradiance on the PV module 

temperature prediction changes with increasing wind speeds between 3 and 9 m/s and/or 

increased ambient temperatures between +13 and +35 °C – leading to slightly lower values 

in RMSE ranging from about 2 to 5 °C and better values of R² around 1. 

Best values in RMSE and R² at these ranges of AOI are reached for irradiances between 0 

and 400 W/m² – with values of RMSE of about 2 °C and R² of 0.96. Worst values in RMSE 

and R² can be found for high irradiance values and low wind speeds leading to values in 

RMSE of about 9 °C and values of R² below 0.1. 
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Angle of incidence range 2 – 45° to 60° 

 

Figure 45 Parameter variation analysis of residuals for the modeled temperature, AOI2 (own figure) 

For ranges of AOI between 45° and 60° (AOI range 2) the expected minimum sample size 

of 42 data points can not be achieved for irradiance values above 800 W/m². 

It can be seen that changes of irradiance have their strongest influence at low ambient 

temperatures between -10 and +13 °C and low wind speeds between 0 and 3 m/s. As 

observed above, an increase of wind speed and/or ambient temperature leads to less 

influence of the irradiance on the modeling error. 

Best values in RMSE and R² at this range of AOI are achieved at low wind speeds between 

0 and 3 m/s, low ambient temperatures between -10 and +13 °C and irradiances between 0 

and 400 W/m² – with values of RMSE of 1.4 °C and with R² of 0.97. Worst values in RMS 

and R² can be seen for low wind speeds between 0 and 3 m/s, low ambient temperatures 

between -10 and 13 °C and high irradiances between 400 and 800 W/m² – with values of 

RMSE of about 4 °C and R² below 0.3. 
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Angle of incidence range 3 – 60° to 70° 

 

Figure 46 Parameter variation analysis of residuals for the modeled temperature, AOI3 (own figure) 

The minimum required sample size of 42 data points can only be achieved for low ambient 

temperatures and irradiances between 400 and 800 W/m² as well as for high ambient 

temperatures, irradiances between 0 and 400 W/m² and wind speeds from 0 to 6 m/s. Thus, 

the observed data set does not allow a full comparison of parameter variation at this range 

of angle of incidence between 60 and 70°. 

However, it is visible that residuals differ significantly at lower wind speeds, lower ambient 

temperatures and irradiances between 400 and 800 W/m², showing a slightly bigger 

difference to the zero reference line with more positive values – i.e. overprediction of the 

model. 

 

Tables, including information about RMSE and R² as well as the median absolute deviation 

(MAD), Rpearson and Rspearman confirm the above described findings and can be found in the 

Appendix E of this work. The following table shows the results of the three best and the three 

worst combinations of the above described combinations of bin ranges according to their 

values in RMSE of samples that show a close to normal distribution of their residuals and 

meet the minimum sample size of 42 data points: 
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Range combination RMSE [°C] MAD [°C] R² [-] Rpearson [-] Rspearman [-] 

B
e
s
t 

AOI3/Wind3/Tamb2/Irr.1 0.98 0.37 0.99 1.00 0.79 

AOI3/Wind1/Tamb2/Irr.2 1.04 0.76 0.98 0.99 0.85 

AOI3/Wind2/Tamb2/Irr.2 1.11 0.92 0.90 0.95 0.68 

W
o
rs

t AOI1/Wind1/Tamb2/Irr.2 5.44 2.58 0.69 0.83 0.82 

AOI1/Wind2/Tamb2/Irr.2 4.44 1.90 0.91 0.95 0.95 

AOI1/Wind2/Tamb2/Irr.3 4.04 1.62 0.89 0.94 0.92 

Table 18 Three best and worst cases parameter variation analysis for whole array, temperature: 

RMSE, MAD, R², Rpearson, Rspearman (own table) 

In order to assure that the observed sample means are within the desired MOE to the 

population mean, at a confidence level of 95 %, residuals need to be (roughly) normally 

distributed. Therefore, normal distribution of the temperature residuals of all the of the above 

mentioned and observed 54 data samples (bin ranges) can be verified via normal probability 

plots and/or frequency range histograms of residuals listed in the Appendix F. Data samples 

that do not show a normal distribution indicate behavior that is not accounted for by the 

applied model. 

 

 
Power - Modeled versus measured 

The following figures also illustrate the analysis of residuals, depending on the combined 

variation of irradiance, ambient temperature, wind speed and angle of incidence – in total 54 

combinations. They include information about RMSE variation for each observed range (red 

y-axis on the right side and red dashed line) as well as information about the coefficient of 

determination R² (written along the x-axis for each bin range). 

As above, each figure represents one range of angles of incidence (AOI range 1, range 2, 

range 3). Plots inside one figure illustrate changes in ambient temperature (horizontal, from 

left to right) and wind speed (vertical, from top to bottom). Residuals are plotted over 

increasing irradiance values along the x-axis. 

Normally distributed data samples of temperature residuals that have a minimum sample 

size of 138 data points are considered to be within a margin of error MOE of ±2 W deviation 

of the data sample (bin range) mean to the mean of the entire data set population’s mean – 

with a confidence level of 95%. 
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Angle of incidence range 1 – 0° to 45° 

 

Figure 47 Parameter variation analysis of residuals for the modeled power, AOI1 (own figure) 

The minimum required sample size of 138 data points can be achieved for all ranges – 

except for samples at low ambient temperatures, wind speeds between 3 and 9 m/s and 

irradiances from 400 to 800 W/m². 

Results show that increasing wind speeds and/or ambient temperatures influence the effect 

of the irradiance on the modeling error significantly, as also observed above. Thus, higher 

wind speeds and/or ambient temperatures allow better power estimations at high 

irradiances. Samples at low irradiances between 0 and 400 W/m² and low ambient 

temperatures between -10 and +13°C show significant deviation of residuals from zero at all 

wind speed ranges – represented as significant overpredictions. This can be related to 

magnified errors through linear inter-/extrapolation and non-linearities of the PV performance 

at these ranges of irradiance and temperature – discussed in the following sections. 

Best values in RMSE and R² at these ranges of AOI are achieved for high irradiances 

between 800 and 1200 W/m², high wind speeds between 6 and 9 m/s and low ambient 

temperatures between -10 and +13 °C – with RMSE of about 2.5 W and R² of 0.9. Worst 

values in RMSE and R² can be seen for low irradiances between 0 and 400 W/m², high wind 

speeds between 6 and 9 m/s and low ambient temperatures between -10 and +13 °C, with 

RMSE of about 33 W and R² of about 0.8, as well as for irradiances between 0 and 400 

W/m², low wind speeds between 0 and 3 m/s and low ambient temperatures between -10 

and +13 °C with RMSE of about 23 W and R² of about 0.8. 
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Angle of incidence range 2 – 45° to 60° 

 

Figure 48 Parameter variation analysis of residuals for the modeled power, AOI2 (own figure) 

The minimum required sample size of 138 data points cannot be achieved for samples with 

low ambient temperatures between -10 and +13 °C, wind speeds between 3 and 9 m/s and 

irradiances from 400 to 800 W/m². 

As above, results show that high ranges of wind speeds and/or ambient temperature 

influence the effect of the irradiance on the modeling error significantly – leading to lower 

errors with increased irradiance. Also, increased modeling error at low irradiances between 

0 and 400 W/m² and low ambient temperatures between -10 and +13 °C and all wind speed 

ranges is visible – as above represented as strong overpredictions. This indicates difficulties 

through linear inter-/extrapolation approach and non-linearities of the PV performance at 

these ranges of irradiance and temperature – discussed in the following sections. 

Best values in RMSE and R² at this ranges of AOI are achieved for high wind speeds 

between 6 and 9 m/s and, high irradiances between 800 and 1200 W/m² and low ambient 

temperatures between -10 and +13 °C, with RMSE of about 1.7 W and R² 0.9. Worst values 

in RMSE and R² can be found for low ambient temperatures and irradiances between 0 and 

400 W/m², leading to RMSE ranging between 20 W to 33 W and R² of 0.8.  
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Angle of incidence range 3 – 45° to 75° 

 

Figure 49 Parameter variation analysis of residuals for the modeled power, AOI3 (own figure) 

The minimum sample size of 138 data points cannot be achieved for any of the observed 

data samples at these ranges of AOI between 60° and 75° (AOI range 3). Therefore, a 

conclusive interpretation of power estimation errors for the above shown data sample 

variation at AOI range 3 is not possible. 

 

Tables, including information about RMSE and R² as well as the median absolute deviation 

(MAD), Rpearson and Rspearman confirm the above described findings and can be found in the 

Appendix G of this thesis. To exemplary illustrate the range of the results, the following table 

shows the three best and the three worst combinations of the above described combinations 

of bin ranges according to RMSE that show a normal distribution of their residuals and meet 

the minimum sample size of 138 data points: 
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Ranges RMSE [W] MAD [W] R² [-] Rpearson [-] Rspearman [-] 

B
e
s
t 

AOI2/Wind2/Tamb1/Irr.3 1.656 0.776 0.876 0.939 0.946 

AOI3/Wind2/Tamb2/Irr.1 2.163 0.386 0.995 0.998 0.991 

AOI1/Wind2/Tamb1/Irr.3 2.486 1.929 0.918 0.958 0.920 

W
o
rs

t AOI1/Wind2/Tamb1/Irr.1 33.208 9.512 0.765 0.876 0.904 

AOI1/Wind3/Tamb1/Irr.1 33.134 11.163 0.682 0.827 0.824 

AOI2/Wind2/Tamb1/Irr.1 27.969 10.710 0.838 0.916 0.904 

Table 19 Three best and worst cases parameter variation analysis for whole array, power: RMSE, 

MAD, R², Rpearson, Rspearman (own table) 

In order to assure that the observed sample means are within the desired MOE to the 

population mean, at a confidence level of 95 %, residuals need to be (roughly) normally 

distributed. Therefore, normal distribution of the power residuals of all the of the above 

mentioned and observed 54 data samples (bin ranges) can be verified via normal probability 

plots and/or frequency range histograms of residuals listed in the Appendix H. Data samples 

that do not show a normal distribution indicate behavior that is not accounted for by the 

applied model. 
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7.8 Summary and discussion of results – Evaluation of 

modeling algorithms 

The observed data set population of about 7000 data points of 1-minute averages of weather 

and PV operational measurements taken at NIST – measured over a data set of 21 days 

with characteristic weather conditions – allowed a wide-ranging evaluation of the modeling 

algorithms used by the IEC 61853-3 committee draft. Evaluation results are summarized and 

interpreted in the following sub-sections. 

 

Correction procedures and evaluation of entire data set population 

As for the correction procedures for AOI and spectral effects, the AOI correction of Martin 

and Ruiz (2000) showed the most significant effect on the measured irradiance with a mean 

difference between measured and corrected values of about 50 W/m². The approach for 

spectral correction through the model developed by Lee and Panchula (2016), leads to 

smaller changes in the measured irradiance of about 1 W/m² mean difference to the AOI-

corrected irradiance. 

The analysis of the residuals of the entire data set population of all observed days shows 

normally distributed residuals with relatively small errors in PV module temperature and 

power prediction over the entire data set – represented by RMSE values of about 4 °C for 

the temperature prediction and 13 W for the power prediction as shown in the following table. 

 

Power Prediction Error Temperature Prediction Error 

RMSE [W] µpower, res. [W] RMSE [°C] µtemperature, res. [°C] 

12.7 -4.2 3.7 1.5 

Table 20 RMSE for power and temperature prediction over entire data set population (own 

table) 

 

Evaluation of days with characteristic weather conditions 

The analysis of each day of the data set population individually allowed to conclude general 

tendencies of the model with respect to the particular weather conditions on the specific 

days. Here, RMSE for power prediction ranges from about 2 to 37 W. RMSE for temperature 

prediction ranges from about 1 to 7 °C. Days with lower daily average irradiance tendentially 

showed lower errors expressed by RMSE and MAD than days with higher daily average 

irradiances, especially for temperature estimations. The evaluated model also demonstrated 

difficulties in estimation of temperature for days with significant fluctuation of measured data 

(e.g., caused by cloudy days). This could indicate the need for averaging data over longer 

time periods and/or a better consideration of thermal mass of the PV module in the modeling 

equations. However, as tendencies are not clearly visible in the analysis of individual days 

of measurement – especially for the power prediction –, a more comprehensive 

understanding of the behavior of the model is provided through the analysis of bin ranges 
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(i.e. data samples) of the entire data set population – via examining variation of ranges 

independently and cross-dependently. 

 

Evaluation of independent variation of bin ranges (data set population) 

The independent variation of the observed 11 bin ranges for irradiance, ambient 

temperature, wind speed and angle of incidence shows clear tendencies. Modeling errors 

range from 6 to 18 W RMSE for the power prediction and 3 to 5 °C for the temperature 

prediction. 

It can be seen that for the temperature prediction, modeling errors increase with increasing 

irradiance. Whereas increasing irradiance causes a decrease of modeling error for the power 

prediction. 

Increasing ambient temperature causes a slight increase in modeling error for the 

temperature prediction and a clearly visible decrease in modeling error for the power 

prediction. 

The effect of increasing wind speed leads to an increase in modeling error for the power 

prediction and a decrease in modeling error for the temperature prediction. Whereas these 

changes are mostly visible for wind speeds above 6 m/s for the power prediction. 

Changes in AOI seem to lead to slightly lower modeling errors at higher AOI for the 

temperature and power prediction. The influence of AOI on the temperature prediction is 

rather minimal, whereas the influence of AOI on power prediction leads to significant 

changes. 

The following table sums up values of RMSE of the analysis of the independent variation of 

observed bins for the power and temperature prediction at high/low irradiance, temperature, 

wind speed and AOI ranges. 

 

Ranges of Parameters Power Prediction 

Error 

Temperature 

Prediction Error 

[-] RMSE [W] RMSE [°C] 

High Irradiance 7.8 4.6 

Low Irradiance 18.1 2.5 

High Temperature 8.0 3.7 

Low Temperature 16.9 3.5 

High Wind speed 17.5 3.0 

Low Wind speed 11.2 4.2 

High AOI 5.6 3.1 

Low AOI 13.5 4.1 

Table 21 RMSE for power and temperature prediction for high and low observed bin 

ranges (own table) 
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Evaluation of cross-dependent variation of bin ranges (data set samples) 

The analysis of the interaction (cross-dependence) between all the 11 observed bin ranges 

through data samples – which allows in total the comparison of 54 combinations of bins – 

agrees with the findings above and allows a better understanding of the dependencies of the 

modeling error behavior for certain bin ranges. In the following, cross-dependencies between 

the individual parameter ranges are analyzed and interpreted. 

 

 Cooling mechanisms and overprediction at low irradiances  

The observed data shows significant correlation between irradiance and wind speed 

variation at all ranges of AOI. The figure below illustrates ranges of AOI between 0 

and 45°. It can be seen that at lower wind speeds between 0 and 3 m/s (blue dots), 

an increase in irradiance causes also an increase in modeling error – visible as power 

underprediction (negative residuals) and temperature overprediction (positive 

residuals), especially pronounced at irradiances above approximately 800 W/m². 

With increased wind speeds above 3 m/s (red and yellow dots), the prediction error 

decreases considerably – also represented as a decrease in slope of Tmeas - Tamb as 

a function of irradiance and wind speed. 

This effect might be related to neglecting natural convection at low wind speeds and 

high irradiance ranges in the temperature model – also discussed by Koehl et al. 

(2011). Neglecting natural convective cooling at high irradiances and low wind 

speeds leads to an overprediction of the module temperature (shown as positive 

residuals), causing also visible underprediction of power (shown as negative 

residuals). This effect is illustrated in the figure below. 

 

 

Figure 50 Cooling mechanisms and overprediction at low irradiances – AOI range 1 (own figure) 
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Next to neglecting natural convection at low wind speeds and high irradiances, Koehl 

et al. (2011) also discuss neglecting of radiation cooling for low wind speeds and low 

irradiances – causing negative differences between module and ambient 

temperature. The effect of radiation is minimally visible, leading to slight temperature 

overprediction (positive residuals) causing also minimally visible underprediction 

(negative residuals) of power at all observed ranges of AOI. However, the influences 

of radiation cooling on the prediction error at the observed ranges are small, as 

radiation cooling mostly occurs at very low irradiances and/or during night times. At 

AOI between 45 and 75°, the correlation between wind speed and irradiance is 

similar and shown in the figure below. 

 

 

Figure 51 Cooling mechanisms and overprediction at low irradiances, AOI range 2 and 3 

(own figure) 

 

Next to the observed cooling mechanisms, both figures above also show strong 

deviation of residuals at irradiance values between 100 and 300 W/m² - also seen in 

Figure 47 to 49 at low ambient temperature ranges between -10 and +13 °C. These 

errors – represented as strong overpredictions (positive residuals) in power and 

visible underprediction (negative residuals) in module temperature – are most 

probably related to difficulties of the linear inter-/extrapolation method of the IEC’s 

modeling algorithms to accurately predict power for lower ranges of irradiance and 

lower ranges of module temperature. Also, the visible underprediction of module 

temperature possibly contributes to a stronger overprediction in power – as also 

discussed and pointed out in the following sub-section. 
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 Influence of ambient temperature and angle of incidence 

The figure below shows the residuals of module temperature and power prediction, 

as well as measured PV module temperature plotted over the ambient temperature 

for different ranges of AOI (shown in blue and red). It can be seen that the influence 

of the ambient temperature on the modeling error seems to be most significant at 

high ranges of AOI between 45° and 75° (red dots). At these ranges of AOI, higher 

ambient temperatures lead to lower modeling errors for both, temperature and power 

prediction. At low ranges of AOI between 0° and 45° (blue dots), increased ambient 

temperatures seem to have significant impact on the temperature estimation – 

causing strong underprediction of the module temperature and visible variation of 

residuals for the power prediction. 

 

Figure 52 Influence of ambient temperature and AOI on temperature and power prediction (own 

figure) 

These effects can also be related to the higher influence of the irradiance on the 

module temperature at lower ranges of AOI. The following figure shows temperature 

and power prediction residuals plotted over the ambient temperature for the different 

observed ranges of irradiance (shown in blue, red and yellow). It can be seen that at 

low ambient temperatures below 10 °C and low irradiances between 0 and 400 W/m², 

the prediction of PV module power leads to high estimation errors – as mentioned 

above. Most of the visible data points at these ranges show PV module temperatures 

that are significantly below 15 °C – i.e. outside the range of the available performance 

matrix used for the interpolation method for power prediction. 
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Figure 53 Influence of ambient temperature and irradiance on temperature and power prediction 

(own figure) 

Therefore, in order to predict the PV module power for these lower module 

temperatures, the performance matrix is linearly extrapolated to applicable ranges – 

as suggested by the IEC 61853-3 draft. This possibly leads to irregularities introduced 

through magnifying errors in the performance matrix through linear extrapolation, as 

well as possible non-linearities in PV performance at lower irradiances and/or module 

temperatures – also discussed by Whitaker and Newmiller (1998). Thus, linear 

extrapolation of the available performance matrix to lower PV module temperature 

ranges, especially for lower irradiance ranges, introduces significantly visible 

irregularities in prediction of PV module power. 

Taking a look at the figure below, it can be seen that these errors in power prediction 

mostly occur for AOI between 30° and 50° – also observed in Figure 43. At the same 

time, increasing AOI causes lower errors and less negative residuals in temperature 

prediction – i.e. a tendentially lower influence of the irradiance on the module 

temperature – also visible in a decrease of difference between measured module 

temperature and ambient temperature. 
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Figure 54 Influence of AOI on temperature and power prediction (own figure) 

Summarizing the main findings of this section, the evaluated IEC 61853-3 committee draft 

modeling algorithms present increased modeling errors at low irradiance ranges between 

100 and 300 W/m² and low ambient temperature ranges below 10 °C – leading to PV module 

temperatures below 15 °C that lie outside the ranges of the available performance matrix 

provided by IEC 61853-1.  These prediction errors are shown as strong overpredictions – 

mostly independent of wind speed and occurring mainly at high AOI between 30 and 50° – 

and are possibly caused by errors introduced/magnified through linear extrapolation of the 

performance matrix to lower PV module temperature ranges, as well as non-linearities of PV 

module performance at lower irradiances and module temperatures – not taken into account 

by the linear inter-/extrapolation method. 

Furthermore, errors at these ranges of low irradiance, low ambient temperature and high 

AOI can partly be related to increased angular losses, caused for example through 

soiling/dust deposition not sufficiently considered through the angular loss coefficient ar in 

the model of Martin and Ruiz (2000) – also illustrated in Figure 7. 

Also, not accurately considering the PV module’s thermal mass, natural convection and 

radiation cooling by the temperature model leads to visible deviation of residuals for the 

temperature and power prediction. 

 

The following table gives an overview of the modeling error RMSE for each of the observed 

bin ranges. It is important to mention that not all of the listed bin ranges in the table meet the 

required minimum sample size and/or show normally distributed residuals. A table with bin 

ranges that meet these requirements can be found in the Appendix I.  
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RMSE 
[°C] 

RMSE [W] 
Irradiance 

[W/m²] 
Ambient 

Temp. [°C] 
Wind speed 

[m/s] 
AOI 
[°] 

1,877 23,164 Irr. 1 

tamb 1 

Wind speed 1 

A
O

I 
1

 

4,317 6,963 Irr. 2 

9,030 8,870 Irr. 3 

3,457 4,145 Irr. 1 

Wind speed 2 5,440 6,667 Irr. 2 

5,196 7,077 Irr. 3 

2,754 33,208 Irr. 1 

Wind speed 3 3,123 3,992 Irr. 2 

2,266 2,486 Irr. 3 

2,794 9,525 Irr. 1 

tamb 2 

Wind speed 1 4,437 11,491 Irr. 2 

4,044 7,848 Irr. 3 

2,064 33,134 Irr. 1 

Wind speed 2 3,864 22,248 Irr. 2 

2,746 4,907 Irr. 3 

3,583 16,938 Irr. 1 

Wind speed 3 3,029 12,221 Irr. 2 

3,385 11,897 Irr. 3 

1,415 19,189 Irr. 1 

tamb 1 

Wind speed 1 

A
O

I 
2

 

4,096 6,722 Irr. 2 

7,965 6,519 Irr. 3 

2,180 3,828 Irr. 1 

Wind speed 2 2,096 7,052 Irr. 2 

    Irr. 3 

2,210 27,969 Irr. 1 

Wind speed 3 2,120 7,804 Irr. 2 

2,494 1,656 Irr. 3 

1,951 6,798 Irr. 1 

tamb 2 

Wind speed 1 
1,490 7,012 Irr. 2 

    Irr. 1 

Wind speed 2 2,381 25,484 Irr. 2 

1,668 10,763 Irr. 3 

3,935 3,083 Irr. 1 

Wind speed 3 2,651 14,230 Irr. 2 

2,165 7,513 Irr. 3 

    Irr. 1 

tamb 1 Wind speed 1 

A
O

I 
3

 

    Irr. 2 

5,629 4,503 Irr. 3 
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7,883 6,374 Irr. 1 

Wind speed 2 1,644 8,308 Irr. 2 

1,044 2,776 Irr. 3 

    Irr. 1 

Wind speed 3     Irr. 2 

2,062 4,295 Irr. 3 

    Irr. 1 

tamb 2 

Wind speed 1 1,164 2,163 Irr. 2 

1,107 3,774 Irr. 3 

    Irr. 1 

Wind speed 2     Irr. 2 

2,983 4,812 Irr. 3 

3,040 2,660 Irr. 1 

Wind speed 3 0,977 4,331 Irr. 2 

0,439 3,546 Irr. 3 

Table 22 RMSE for power and temperature prediction for all possible combinations of bin ranges, 

(own table, color code: high = red to low = green, empty cells represent ranges with no data points)  
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8 Spatial PV array performance analysis  

The analysis above compares modeled and measured values of power and temperature via 

the analysis of residuals. Temperature measurements refer to the PV module temperature 

measured at the backside of a PV module located in the middle of the PV ground array – as 

described in section 1.4. Power measurements refer to the mean of all the 96 traced PV 

modules inside the observed PV array – as also described in section 1.4.  

This chapter focuses on the comparison of modeled and measured PV module output power 

pointing out differences between the 96 individually traced PV modules mounted within each 

string of the observed PV ground array at NIST. As module temperature is not monitored for 

each of the observed, traced PV modules, a direct comparison of measured and modeled 

PV module temperature for each PV module is not taken into account within the scope of 

this work. However, tendencies for local irradiance and temperature differences between the 

observed PV modules inside the array are represented through the IV curve parameters Isc 

and Voc – as explained in section 3 of this work. 

The analysis of local position differences between traced modules inside the array is done 

through the graphical illustration of residuals of power (difference between modeled and 

measured values) as well as differences in the measured Voc and Isc for the following data 

sets – as also in the evaluation above: 

 

1. Entire data set population of all observed days 

2. Independent bin range variation 

3. Cross-dependence and interaction of bin ranges 

 

The visualization of results in this part of the analysis is done through boxplots in which the 

traced module parameters are grouped according to their position inside the PV array – 

according to section 3.4. To graphically support the boxplots and to represent a better spatial 

illustration of position effects of traced modules within the PV array, boxplots are shown in 

combination with heat maps of the 96 traced PV modules. Results of independent and cross-

dependent bin range variation are summed up within this chapter and can be found in the 

tables of Appendix J. 
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8.1 Analysis of entire data set population 

In the following, the analysis of position differences between traced PV modules inside the 

observed PV ground array represents the entire observed data set population. 

 

Differences between modeled and measured PV module output power 

The figure below shows differences between IEC 61853-3 CD modeled and on-site 

measured PV module output power for each position group (boxplot) and the median of the 

power difference between modeled and measured values for each individually traced PV 

module (heat map) inside the PV array – for the entire data set population. 

 

 

Figure 55 Boxplot and heat map, power difference, entire data set population (own figure)11 

The boxplot of Figure 55 shows that the median of the differences between modeled and 

measured PV module output power for PV modules in bottom rows of the array is 

significantly higher compared to other position groups. This means that for the observed data 

set population, PV modules located in the bottom rows show a clear tendency of being 

overestimated by the applied modeling algorithms. Furthermore, the heat map in the figure 

above shows a tendency of lower median power differences towards the south/southwest 

side of the PV array (bottom left and left part of heat map) – showing an approximate 

difference in median power difference of about 2 to 4 W to modules on the north/northwest 

side. The observed effects can be related and explained by further analyzing IV curve 

parameters, such as Voc and Isc. 

                                                
11 The observed heat maps show all PV array rows, but do not show all 48 PV array columns, only 

those with tracers. Sheds and locations with no tracers are separated through white spaces (NaN). 
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Measured open circuit voltage (Voc) 

The figure below shows the boxplot of the measured Voc depending on the position of the 

traced PV modules inside the ground array of the entire data set population. The heat map 

illustrates the median of measured Voc values of the entire data set population for each 

traced PV module inside the array. 

 

Figure 45 Boxplot and heat map, measured Voc, entire data set population (own figure) 

The boxplot of the figure above shows clear variation of measured Voc between the positions 

of traced PV modules inside the PV array for the entire data set population. It can be seen 

that the median of the measured Voc values of PV modules in top rows of the array is slightly 

higher compared to PV modules mounted in middle or bottom rows. Also, modules mounted 

at the edge of the array show higher median measured Voc compared to modules located 

in the middle of the array. This can be related to less convective cooling for PV modules in 

bottom rows and for modules located in the middle of the array, as modules in these positions 

might not be as exposed to wind as in modules in top rows and at the edge of the array. The 

decrease of heat loss through convection can cause locally increased temperatures, and 

thus decreased values in Voc. Furthermore, the heat map of the figure above shows slightly 

higher medians in measured Voc for PV modules mounted at the south/southwest side 

(bottom left and left part of heat map) of the PV array, compared to modules mounted at the 

north/northeast side (upper right part of heat map) – showing an approximate difference of 

median measured Voc of about 0.2 to 1 V between these positions. This finding correlates 

with differences in power prediction, shown before. 
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Measured short circuit current (Isc) 

The figure below shows the boxplot of the measured Isc depending on the position of the 

traced PV modules inside the ground array of the entire data set population. The heat map 

illustrates the median of measured Isc values of the entire data set population for each traced 

PV module inside the array. 

  

Figure 46 Boxplot and heat map, measured Isc, entire data set population (own figure) 

The figure above shows clear differences in Isc across the whole PV array for the entire 

observed data set population. Furthermore, it can be seen that the median of measured Isc 

values for PV modules at top rows of the array shows slightly higher values for the entire 

data set population, when compared to middle and bottom positions of the array. The heat 

map of the median of measured Isc values for all the traced PV modules shows a clear 

tendency to lower values in Isc for PV modules mounted at the south/southwest side (bottom 

left and left part of heat map) of the PV array – confirming the tendency related to the median 

of modeled versus measured power difference and median measured Voc, mentioned above 

– showing an approximate difference in median measured Isc of about 0.2 to 0.5 A. The 

affected PV modules seem to show slightly increased Isc possibly due to a positive 

temperature coefficient, correlating to decreased Voc in the same area of the array due to a 

negative temperature coefficient. Another possible reason for this difference in median 

values of Isc across the spatial distribution of PV modules can for example be related to 

stronger dust deposition or soiling and thus increased reflection losses on the south and 

southwest side of the array or higher reflection of surroundings on the north and northeast 

side of the array. Due to the pattern of Isc differences across the array, as well as the 

relatively young age of the PV array, degradation effects are assumed to be unlikely. 
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8.2 Analysis of independent and cross-dependent 

variation of bin ranges 

In the following, the effects of the independent and cross-dependent variation of the 

observed bin ranges are analyzed according to their impact on performance differences 

between the observed positions within the PV array. An overview of the results is provided 

through tables in Appendix J, containing the median power difference between modeled and 

measured power as well as tables showing the median measured Voc and Isc for each 

position group and observed bin range. 

 

Differences between modeled and measured PV module output power 

The spatial PV array analysis of the power prediction error related to the position of the 

traced modules within the array in general confirms the findings above. Results show that 

while PV modules in the top rows of the array show a tendency to be more often 

underpredicted by the IEC modeling algorithms, modules mounted in bottom rows show the 

tendency to be more often overpredicted. The following table shows the counts of ranges 

with the median power prediction error below and above zero for all observed weather 

ranges and positions of the array. 

 

Variation 

type 

Ranges with 

median power 

prediction error 

Top Middle Bottom Edge 
Middle 

o. A. 
All 

Independent 

variation  

(11 ranges) 

<0 

(underprediction) 
4 3 0 4 2 3 

>0 

(overprediction) 
7 8 11 7 9 8 

Cross-

dependent 

variation  

(54 ranges) 

<0 

(underprediction) 
14 12 5 12 11 11 

>0 

(overprediction) 
31 33 40 33 34 34 

Table 23 Counts of median power prediction error for all weather ranges and PV array positions12 

(own table) 

                                                
12 Numbers of underprediction and overprediction add up to 11 for the independent variation and to 

45 for the cross-dependent variation of observed weather ranges. This is, because not all the 

observed 54 ranges show sufficient measurement points for a complete analysis of the entire array. 
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Tables in Appendix J show that overprediction occurs most significantly at low irradiances 

and low ambient temperatures (as observed above), leading to median power prediction 

errors up to about 30 W. While underprediction is most significant at high irradiances, high 

ranges of AOI, low wind speeds and low ambient temperatures, leading to median power 

prediction errors ranging down to about -7 W. This can be confirmed with the following 

observations: 

 

The figure below illustrates power prediction differences for each observed position and 

tracer across the PV array at high wind speeds, low ambient temperatures and high 

irradiances, showing clearly visible differences between east and west side of the PV array 

– with lower prediction errors on the west side. Furthermore, it can be seen that tracers 

mounted in bottom positions of the PV array show a strong tendency of power overprediction. 

 

 

Figure 56 Differences in measured Voc across the array at high wind speeds, low ambient 

temperatures and high irradiances (own figure) 

Inconsistencies in power prediction error across the PV array become slightly more 

pronounced at increased ambient temperatures – as illustrated in the figure below. 
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Figure 57 Differences in measured Voc across the array at high wind speeds, high ambient 

temperatures and high irradiances (own figure) 

These differences across the PV array almost disappear at low wind speeds, low ambient 

temperatures and low irradiances, also showing significant tendency of overprediction for all 

the observed module positions and tracers, as observed above – shown in the figure below. 

 

 

Figure 58 Differences in measured Voc across the array at high wind speeds, high ambient 

temperatures and high irradiances (own figure) 
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Thus, the observed weather conditions show significant variability in power prediction error 

across the PV array for high irradiances and/or ambient temperatures, being also dependent 

on wind speed. Inconsistencies across the PV array are lowest at low ranges of irradiance 

and/or ambient temperature. These findings can be confirmed through the analysis of the 

IV-curve parameters Voc and Isc: 

 

Analysis of measured open circuit voltage (Voc) 

The spatial analysis of measured Voc for all observed bin ranges shows that modules 

mounted in the bottom rows of the array have the tendency to lower measured median Voc, 

compared to the other positions – confirming the findings above. Differences between 

median measured Voc are for example visible at high irradiances, high wind speeds and low 

ambient temperatures – shown in the figure below. 

 

Figure 59 Differences in measured Voc across the array at high wind speeds, low ambient 

temperatures and high irradiances (own figure) 

At these weather conditions, a spatial difference in median measured Voc between east and 

west side of the PV array becomes clearly visible. These inconsistencies across the array 

become more with increasing ambient temperatures at high wind speeds and high 

irradiances, leading to the observed tendency of higher Voc at the south/southwest side of 

the array – shown in the figure below. 
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Figure 60 Differences in measured Voc across the array at high wind speeds, high ambient 

temperatures and high irradiances (own figure) 

The observed differences between measured Voc almost disappear entirely at low wind 

speeds, low ambient temperatures and low irradiances – as shown in the figure below. 

 

Figure 61 Differences in measured Voc across the array at low wind speeds, low ambient 

temperatures and low irradiances (own figure) 
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Thus, the spatial analysis of Voc measurements for the observed PV array shows a strong 

dependence on ambient temperature and/or irradiance and wind speed. Higher ranges of 

ambient temperature and/or irradiance and wind speed cause significantly visible 

inconsistencies in median measured Voc across the array, indicating local temperature 

differences – with the tendency to higher temperatures at the north/northeast part of the 

array and lower temperatures at the south/southeast part. The observed differences also 

seem to be strongly dependent on wind speed (and possibly also wind direction – not 

considered).  

A table showing the median measured Voc for all positions at all observed weather ranges 

can be found in Appendix J. 

 
Analysis of measured short circuit current (Isc) 

The spatial analysis of measured Isc for all observed bin ranges confirms the findings above 

and illustrates that PV modules mounted at the south and southwest side of the array show 

significantly lower median in measured Isc, compared to other positions of the array. As seen 

above, this effect especially is pronounced for higher irradiances and/or temperature ranges 

and wind speeds, leading to slightly higher median measured Isc in the north/northeast part 

of the array. 

 

Figure 62 Differences in measured Isc across the array at high wind speeds, high ambient 

temperatures and high irradiances (own figure) 
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As shown before, these observed inconsistencies disappear almost completely at lower wind 

speeds, lower ambient temperatures and lower irradiances, as can be seen in the figure 

below. 

 

Figure 63 Differences in measured Isc across the array at low wind speeds, low ambient 

temperatures and low irradiances (own figure) 

Thus, the spatial analysis of Isc measurements for the observed PV array confirms the 

findings above, showing a strong dependence on ambient temperature and/or irradiance and 

wind speed. Higher ranges of ambient temperature and/or irradiance and wind speed cause 

significantly visible inconsistencies in median measured Isc across the array, indicating local 

temperature differences across the array – with the tendency to higher temperatures at the 

north/northeast part of the array and lower temperatures at the south/southeast part. The 

observed differences also seem to be strongly dependent on wind speed (and possibly wind 

direction – not considered). 

A table showing the median measured Voc for all positions at all observed weather ranges 

can be found in Appendix J.  
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8.3 Summary and discussion of results – Spatial PV array 

performance analysis 

The analysis of local differences between the modules mounted in the observed PV array 

agrees with findings of the evaluation of modeled and measured power for various ranges 

of weather conditions, and further allowed the illustration of spatial performance differences 

across the array. 

The comparison of power residuals for the observed 6 PV module position groups shows a 

tendentially higher overprediction of PV modules located in bottom rows of the array – which 

corresponds to differences in IV-curve parameters Voc and Isc. Furthermore, a clear 

tendency of lower median power prediction error to the south and southwest of the PV array 

can be seen – differing from the rest of the array with about 2 to 4 W for the entire data set 

population, with the same tendencies also visible in Voc and Isc measurements. 

The comparison of measured Voc for the observed 6 PV module positions groups shows 

lower median measured value in Voc for PV modules located in bottom rows and in the 

middle of the array – which can be related to increased local temperatures at these positions. 

Furthermore, a clear difference between median measured Voc of modules located on the 

south and southwest side of the array can be observed – showing differences of about 0.2 

to 1 V higher median measured Voc compared to PV modules located at the north/northeast 

part of the array – for the entire data set population. 

Differences can also be seen for measured Isc. PV modules located in the bottom rows show 

slightly lower values in Isc, when compared to other positions. Furthermore, a tendency of 

lower median measured Isc towards the south and southwest part of the PV array can be 

observed with differences up to 0.5 A – compared to PV modules located at the 

north/northeast part of the array, for the entire data set population. 

The observed differences in Voc and Isc (and consequently power) might be related to local 

temperature inconsistencies across the array caused through the influence of ambient 

temperature and/or irradiance combined with changes in wind speed. It is assumed that 

modules located at the south/southwest side of the PV array are more exposed to wind, and 

thus convective cooling, than modules located at the north/northeast side. The observations 

correlate with each other, as increased temperature influences Isc positively (positive 

temperature coefficient) and Voc as well as power negatively (negative temperature 

coefficient). However, a verification of these findings would require more granular module 

temperature and the consideration of wind speed and wind direction measurements across 

the array, which is not part of the scope of this research. Furthermore, the effect of exposure 

to different surroundings across the PV array can also contribute to the observed 

inconsistencies, leading for example to different degree of soiling/dust deposition on the 

surface of PV modules.  
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Although the described tendencies of Voc and Isc differences between the observed 

positions of PV modules inside the array are clearly visible, they do not influence the power 

prediction variability as strongly as expected. However, in order to enable a more accurate 

spatial prediction of PV module output power for entire PV arrays through the observed 

modeling algorithms, this research allows to conclude that the following two considerations 

are of high importance: 

 

1- Mounting location of modules within the array: 

For the observed array and data set, especially modules that are mounted in 

bottom rows and in the middle of the array are found to show significant 

differences in power prediction error. These difference might be related to 

temperature and/or irradiance differences across the array. Furthermore, the 

wind speed and possibly the wind direction, as well as the degree of exposition 

of the modules to wind appear to be influential – as described above. Thus, 

mounting location of PV modules within an array plays a crucial role for 

performance predictions. The verification of these assumptions would require a 

more granular monitoring of module temperature and wind speed and/or wind 

direction across the PV array. 

 

2- Surroundings of array and ground conditions: 

It is assumed that the observed inconsistencies across the array are related to 

temperature and/or irradiance differences combined with the influence of wind 

speed and/or wind direction on the module temperature. However, also the 

exposure to different surroundings on each side of the PV array might be 

influential. For example, spatial differences in dust deposition and/or reflection of 

irradiance by surroundings can also lead to differences of the module 

performance across the array and therefore should be considered in potential 

performance predictions of PV arrays. Thus, surroundings of PV modules 

mounted inside PV arrays are also of high importance for performance 

predictions. The effects of the surrounding environment on PV arrays are also 

discussed by Maghami et al. (2016) and Fairbrother (2017). 
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9 Conclusion and outlook 

The quantification of PV system operation reliability under outdoor conditions earns high 

attention, as it is strongly related to the operation costs throughout the life-time of PV 

systems. PV reliability, next to other market drivers, therefore also strongly influences the 

continuing growth of the installed PV capacity worldwide. Quantifying PV system reliability 

requires the understanding of occurring effects at real life outdoor operation conditions. An 

existing method to quantify and predict these effects present the modeling algorithms 

suggested by the international standard IEC 61853-3 – which is currently under development 

and available as committee draft. This standard aims to provide an energy rating method for 

PV modules at different climatic conditions around the world. Thus, it provides an approach 

for the quantification of performance parameters of PV systems mounted outdoors at 

different places over the world – also aiding the understanding of climate sensitivity of PV 

systems. International standardization processes in this context are also seen as key support 

of open markets, free trade and interoperability, and thus further supporting a continuing 

growth of PV globally – as also discussed in ANEC (2010). 

 

The effort of this research is to evaluate sub-models, applied by the IEC 61853-3, via using 

granular intra-array PV module measurements as well as weather parameters measured at 

the campus of NIST in Gaithersburg, Maryland (USA). The research focus lies in the 

comparison of instantaneously measured PV module temperature and power with 

predictions of the IEC algorithms, based on weather data inputs. Measurements and 

predictions are compared for various weather conditions, comparing the (cross-) dependent 

variation of bins of irradiance, ambient temperature, wind speed and angle of incidence. 

Additionally, a spatial analysis of performance variability within the observed PV array aims 

to provide better understanding of inconsistencies occurring at different positions within the 

array. With this, it is aimed to aid potential efforts for the performance modeling of entire PV 

arrays. The observed data set population consists of 21 days of measurements, measured 

at different days with characteristic weather conditions. Monitoring data consists of 1-minute 

averages of weather data parameters, as well as 1-minute averages of traced PV operational 

data measured at 96 field deployed PV modules – each of them mounted within one series 

string of the observed PV array. Additionally, IV curve traces of all of the 96 traced modules 

are taken in 5-minute intervals, allowing also the analysis of IV curve parameters. 

 

Results show that the IEC 61853-3 modeling algorithms allow the prediction of temperature 

in the range between 1 and 9 °C RMSE, and power prediction in the range between 2 and 

33 W RMSE – for the observed data set population. Best results are shown for days with 

little fluctuation in monitoring data, e.g. caused at cloudy days. This could indicate the need 

for longer averaging periods of monitoring data and/or the better consideration of the PV 

module’s thermal mass in the temperature model. Evaluations of the variation of the 

observed bin ranges (data samples) of weather conditions show a strong dependence of the 
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modeling errors on irradiance, wind speed and ambient temperature. For the observed data 

set population, biggest errors up to about 33 W RMSE occur at low irradiances between 100 

and 300 W/m² and low ambient temperatures below 10 °C, mostly independent from wind 

speed and occurring at AOI between 30 and 50°. These prediction errors are shown as 

significant overpredictions, most certainly related to error magnification caused by linear 

extrapolation of the available performance matrix to PV module temperature ranges below 

15 °C, as well as possible non-linearities of PV module performance at lower irradiances and 

module temperatures – not taken into account by the linear inter-/extrapolation method. A 

similar effect is also discussed by Whitaker and Newmiller (1998). Also, as the observed 

increased prediction errors are found at higher ranges of AOI between 30 and 50°, possible 

errors in consideration of reflection losses through increased angular losses (caused for 

example through dust deposition) could add to the observed prediction error. Furthermore, 

neglecting natural convection and radiation cooling effects by the temperature model – also 

discussed by Koehl et al. (2011) – lead to visible deviation of residuals for temperature and 

power prediction, showing errors between 5 and 10 °C RMSE for module temperature 

prediction, and errors between 7 and 10 W RMSE for power prediction. Errors caused by 

natural convection decrease with increasing wind speeds between 3 and 9 m/s to about 2 °C 

RMSE for temperature and 2 to 4 W RMSE for power prediction. Furthermore, prediction 

errors decrease with higher ambient temperatures between 13 and 35 °C and high ranges 

of AOI between 45 and 75° - leading to prediction errors between 0.5 and 3 °C RMSE for 

the module temperature and between 3 and 5 W RMSE for the module power.  

Based on these observations, possible improvements for evaluated IEC 61853-3 CD 

modeling algorithms could be a better consideration of thermal mass and effects such as 

natural convection and radiation in the thermal model, as well as improvements related to 

the linear inter-/extrapolation method in combination with the performance matrix of IEC 

61853-1. One approach for the improvement of the inter-/extrapolation method could be the 

expansion of required measurement points for the performance matrix, enabling to cover all 

ranges of observed irradiances and module temperatures at certain climates – thus, 

decreasing the probability of errors introduced via linear inter-/extrapolation. 

 

The spatial analysis of performance parameters and power prediction errors at different 

locations of the PV array shows a strong dependence of inconsistencies across the array on 

irradiance and/or ambient temperature, as well as changes in wind speed. Especially PV 

modules located in the bottom rows of the array and in the middle of the array show a 

significant tendency of overprediction by the IEC modeling algorithms. Also, the 

south/southwest part of the PV array shows a strong tendency of performance prediction 

differences, compared to other positions of the array – with differences ranging between 2 

and 4 W median error difference for the power prediction. The analysis of the IV curve 

parameters, Voc and Isc, reveals that observed differences are possibly also related to local 

temperature differences across the PV array – reflected by median differences in Voc 
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ranging between 0.2 and 1 V and median differences in Isc ranging up to 0.5 A for the 

affected positions compared to not affected regions of the PV array.  

However, results of the spatial array analysis are seen as first indicators of inconsistencies 

occurring across the PV array. A verification of the assumptions would require the analysis 

of more granular measurement of PV module temperature and wind speed (and possibly 

wind direction) across the array. Also, the effect of different surroundings across the array, 

that could as well influence the PV module performance significantly, needs to be taken into 

consideration, e.g. via more granular irradiance and/or ground reflection measurements and 

a more accurate consideration of soiling and dust deposition for each PV module inside the 

array – also discussed by Maghami et al. (2016) and Fairbrother (2017). 

 
All in all it can be concluded that the IEC 61853-3 committee draft calculation procedures 

allowed remarkable prediction of temperature and power of the observed field deployed PV 

modules mounted inside the ground array at the campus of NIST, by using 1-minute 

averages of instantaneous monitoring weather and PV operational data. Findings related to 

the behavior of the modeling algorithms at various ranges of weather conditions can indicate 

possible strengths and weaknesses of the IEC’s prediction algorithms for different climatic 

conditions. This is of high interest, as the standard ultimately aims to provide an energy 

rating method for different climate zones around the world. However, the findings of this work 

primarily serve as a practical application example of the IEC 61853-3 sub-models and mainly 

refer to and are limited by the observed ranges of measured data at the PV array installation 

location at NIST in Gaithersburg, Maryland (USA).  
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Appendix A – PV array monitoring system components 
 

Monitoring 
data set 

Parameter Abbreviation 
Measurement 

equipment 
Model of equipment 

W
e

a
th

e
r 

d
a
ta

 

ambient 
temperature 

Tamb 

RTD probe in a 
multi-plate 
passively 
ventilated 

radiation shield 

R.M. Young 41342LC 
in an R.M. Young 

41003 

wind speed ν 
ultrasonic wind 

sensor 
Vaisala WMT52 

global 
horizontal 
irradiance 

GHI 
thermopile 

pyranometer 
Eppley PSP 

direct normal 
irradiance 

DNI 
thermopile 

pyrheliometer 
Kipp & Zonen CHP 1 

global in-plane 
irradiance 

Gpoa 
thermopile 

pyranometer 
Kipp & Zonen CMP 

11 

P
V

 m
o

d
u

le
 o

p
e

ra
ti

o
n

a
l 

d
a
ta

 

module 
backside 

temperature 
Tmod,meas RTD Unknown, Pt1000 

operational 
current 

Iop 
wireless IV 
curve tracer 

Stratasense 

operational 
voltage 

Vop 
wireless IV 
curve tracer 

Stratasense 

IV curve traces - 
wireless IV 
curve tracer 

Stratasense 

C
a

m
e

ra
 p

ic
tu

re
s
 

entire array - network camera Axis Q6032-E PTZ 

middle third - network camera Axis Q6032-E PTZ 

north third - network camera Axis Q6032-E PTZ 

south third - network camera Axis Q6032-E PTZ 

sky camera - 
fisheye lens 

network camera 

Axis M3027-PVE with 
a Fujinon 

FE185C046HA-1 

sky camera - 
fisheye lens 

network camera 

Alcor System OMEA-
2.0M-HCA with a 

Fujinon 
FE185C046HA-1 

Table 24 Field deployed PV array monitoring system components (own table) 
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Figure 64 PV ground array strings and array fence dimensions (Boyd, 2015) 
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Figure 65 Manufacturer data sheet for PV module at ground mounted PV array   
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Figure 66 Schematical figure of the communication network for data acquisition  (Boyd, 2015)
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Appendix B – Performance matrix 
 

 

Table 25 Performance matrix, not extrapolated (CFV, 2016) 

Test 

Sequence
Module ID Date Tested Tested By

Reference 

Device

Spectral MM 

Factor

Temperatur

e [°C]

Irradiance 

[W/m2]
Isc [A] Voc [V] Imp [A] Vmp [V] Pmp [W] FF [%] Eff [%] Ix [A] Ixx [A]

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 100 0,85 34,9 0,80 29,7 23,7 80,0 14,5 0,84 0,64

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 200 1,69 36,1 1,60 30,6 48,8 80,0 15,0 1,69 1,26

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 400 3,38 37,2 3,19 31,1 99,3 79,1 15,2 3,36 2,45

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 500 4,22 37,5 3,98 31,2 124,3 78,4 15,2 4,20 3,02

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 600 5,06 37,8 4,77 31,2 148,9 77,7 15,2 5,05 3,57

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 800 6,76 38,3 6,34 31,2 197,7 76,4 15,2 6,73 4,63

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 1000 8,46 38,6 7,91 31,0 245,3 75,1 15,0 8,42 5,64

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 100 0,85 33,6 0,80 28,4 22,7 79,1 13,9 0,85 0,63

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 200 1,70 34,8 1,60 29,2 46,7 78,9 14,3 1,69 1,25

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 400 3,39 36,0 3,18 29,8 94,9 77,8 14,6 3,37 2,43

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 600 5,08 36,6 4,75 29,9 142,2 76,4 14,5 5,06 3,53

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 800 6,78 37,1 6,33 29,9 189,2 75,3 14,5 6,75 4,59

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 1000 8,48 37,4 7,89 29,7 234,5 73,8 14,4 8,44 5,58

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 1100 9,33 37,6 8,67 29,6 256,6 73,2 14,3 9,29 6,06

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 100 0,86 30,3 0,79 24,9 19,8 76,0 12,1 0,85 0,62

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 200 1,71 31,5 1,58 25,8 40,9 75,9 12,5 1,70 1,21

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 400 3,42 32,8 3,16 26,5 83,8 74,6 12,8 3,40 2,36

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 600 5,12 33,5 4,72 26,7 125,9 73,5 12,9 5,09 3,43

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 800 6,82 34,0 6,27 26,6 167,1 72,1 12,8 6,79 4,44

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 1000 8,53 34,4 7,81 26,5 206,9 70,6 12,7 8,48 5,40

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 1100 9,37 34,5 8,57 26,4 226,0 69,8 12,6 9,32 5,87

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 100 0,86 26,8 0,79 21,5 16,9 73,0 10,4 0,86 0,60

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 200 1,72 28,2 1,57 22,5 35,3 72,8 10,8 1,71 1,18

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 400 3,43 29,6 3,12 23,3 72,5 71,5 11,1 3,41 2,27

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 600 5,14 30,3 4,65 23,5 109,1 70,0 11,2 5,10 3,30

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 800 6,85 30,9 6,18 23,5 145,0 68,5 11,1 6,81 4,27

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 1000 8,57 31,3 7,69 23,3 179,2 66,8 11,0 8,49 5,18

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 1100 9,41 31,5 8,44 23,2 196,0 66,2 10,9 9,33 5,63
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Table 26 Extrapolated performance matrix (CFV, 2016)

Test 

Sequence
Module ID Date Tested Tested By

Reference 

Device

Spectral MM 

Factor
Temperature [°C]

Irradiance 

[W/m2]
Isc [A] Voc [V] Imp [A] Vmp [V] Pmp [W] FF [%] Eff [%] Ix [A] Ixx [A]

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 50 0,4 38,4 0,4 33,3 12,5 82,4 16,2 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 100 3,8 43,0 3,6 36,8 113,0 82,3 17,9 3,8 2,8

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 200 7,2 47,5 6,8 40,2 215,7 82,7 19,7 7,2 5,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 400 14,3 47,6 13,5 38,2 434,7 75,9 18,5 14,2 10,2

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 500 8,4 42,5 7,9 35,4 264,0 78,8 17,2 8,4 5,9

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 600 5,0 41,6 4,8 35,2 169,0 81,6 17,3 5,0 3,7

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 800 6,7 41,9 6,4 35,1 223,3 79,9 17,1 6,7 4,8

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 1000 8,4 42,2 8,0 34,9 277,7 78,7 17,0 8,4 5,8

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 50 0,4 37,1 0,4 32,0 12,1 81,6 15,5 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 100 2,1 39,4 2,0 33,7 62,3 81,6 16,4 2,1 1,6

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 200 4,2 42,2 4,0 35,9 126,2 81,7 17,5 4,2 3,1

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 400 8,4 43,1 8,0 35,5 254,8 78,4 17,3 8,4 6,1

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 500 6,7 41,1 6,4 34,2 207,9 79,0 16,6 6,7 4,8

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 600 5,0 40,3 4,8 33,9 162,3 80,3 16,6 5,0 3,7

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 800 6,7 40,7 6,4 33,8 214,7 78,8 16,5 6,7 4,7

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 1000 8,4 41,0 8,0 33,6 266,9 77,5 16,4 8,4 5,8

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 50 0,4 35,7 0,4 30,6 11,6 80,8 14,9 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 100 1,3 36,9 1,2 31,5 36,7 80,8 15,4 1,3 1,0

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 200 2,5 38,6 2,4 32,8 75,0 80,9 16,0 2,5 1,9

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 400 5,1 39,6 4,8 33,0 151,8 79,2 16,1 5,0 3,7

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 500 5,0 39,1 4,8 32,7 153,6 79,0 15,9 5,0 3,6

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 600 5,0 39,1 4,8 32,6 155,6 79,0 15,9 5,0 3,6

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 800 6,7 39,5 6,3 32,5 206,2 77,6 15,8 6,7 4,7

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 1000 8,4 39,8 7,9 32,3 256,1 76,3 15,7 8,4 5,7

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 50 0,4 34,4 0,4 29,3 11,2 80,0 14,3 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 100 0,85 34,9 0,80 29,7 23,7 80,0 14,5 0,84 0,64

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 200 1,69 36,1 1,60 30,6 48,8 80,0 15,0 1,69 1,26

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 400 3,38 37,2 3,19 31,1 99,3 79,1 15,2 3,36 2,45

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 500 4,22 37,5 3,98 31,2 124,3 78,4 15,2 4,20 3,02

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 600 5,06 37,8 4,77 31,2 148,9 77,7 15,2 5,05 3,57

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 800 6,76 38,3 6,34 31,2 197,7 76,4 15,2 6,73 4,63

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 1000 8,46 38,6 7,91 31,0 245,3 75,1 15,0 8,42 5,64

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 50 0,4 33,0 0,4 27,9 10,7 79,2 13,7 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 100 0,85 33,6 0,80 28,4 22,7 79,1 13,9 0,85 0,63

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 200 1,70 34,8 1,60 29,2 46,7 78,9 14,3 1,69 1,25

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 400 3,39 36,0 3,18 29,8 94,9 77,8 14,6 3,37 2,43

Matrix Average 23.09.2016 KL/DCZ CAL271 Out 1,0000 25 500 4,24 36,4 3,97 29,9 118,7 77,0 14,6 4,21 3,01

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 600 5,08 36,6 4,75 29,9 142,2 76,4 14,5 5,06 3,53

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 800 6,78 37,1 6,33 29,9 189,2 75,3 14,5 6,75 4,59

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 1000 8,48 37,4 7,89 29,7 234,5 73,8 14,4 8,44 5,58

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 1100 9,33 37,6 8,67 29,6 256,6 73,2 14,3 9,29 6,06

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 50 0,4 29,6 0,4 24,5 9,2 76,1 11,9 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 100 0,86 30,3 0,79 24,9 19,8 76,0 12,1 0,85 0,62

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 200 1,71 31,5 1,58 25,8 40,9 75,9 12,5 1,70 1,21

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 400 3,42 32,8 3,16 26,5 83,8 74,6 12,8 3,40 2,36

Matrix Average 23.09.2016 KL/DCZ CAL271 Out 1,0000 50 500 4,26 33,3 3,94 26,7 105,3 74,2 12,9 4,25 2,92

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 600 5,12 33,5 4,72 26,7 125,9 73,5 12,9 5,09 3,43

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 800 6,82 34,0 6,27 26,6 167,1 72,1 12,8 6,79 4,44

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 1000 8,53 34,4 7,81 26,5 206,9 70,6 12,7 8,48 5,40

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 1100 9,37 34,5 8,57 26,4 226,0 69,8 12,6 9,32 5,87

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 50 0,4 26,1 0,4 21,0 7,7 73,0 10,1 0,4 0,3

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 100 0,86 26,8 0,79 21,5 16,9 73,0 10,4 0,86 0,60

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 200 1,72 28,2 1,57 22,5 35,3 72,8 10,8 1,71 1,18

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 400 3,43 29,6 3,12 23,3 72,5 71,5 11,1 3,41 2,27

Matrix Average 23.09.2016 KL/DCZ CAL271 Out 1,0000 75 500 4,28 30,0 3,89 23,4 91,1 70,8 11,2 4,25 2,81

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 600 5,14 30,3 4,65 23,5 109,1 70,0 11,2 5,10 3,30

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 800 6,85 30,9 6,18 23,5 145,0 68,5 11,1 6,81 4,27

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 1000 8,57 31,3 7,69 23,3 179,2 66,8 11,0 8,49 5,18

Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 1100 9,41 31,5 8,44 23,2 196,0 66,2 10,9 9,33 5,63
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Appendix C – Daylight times of observed days 
 

Month Zenith angle <= 90° Day of evaluation Chosen daylight times* 

August 05:18 07.08.2016 8:30 - 17:30 

September 05:44 05.09.2016 8:45 - 17:00 

October 06:12 05.10.2016 9:00 - 16:00 

November 06:45 05.11.2016 9:00 - 15:00 

December 07:27 20.12.2016 10:00 - 14:00 

January 07:31 08.01.2017 10:00 - 14:30 

February 07:15 04.02.2017 9:30 - 15:30 

March 06:37 05.03.2017 9:00 - 16:00 

April 05:44 08.04.2017 8:45 - 17:00 

Table 27 Daylight times of observed days (own table) 

*conservatively chosen daylight times at times without shading of the array and no snow 
deposition on top of the field deployed PV modules and measurement equipment; not 
considered: last rainfall (i.e. cleaning of dust deposition)  
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Appendix D – Observed combinations of bin ranges 

AOI range 

Wind 

speed 

ranges 

Ambient 

temperature 

range  

Irradiance 

range 

Number of 

bin range 

Type of 

observation 

- - - 1 1 
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a
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 1
1
 

b
in
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- - - 2 2 

- - - 3 3 

- - 1 - 4 

- - 2 - 5 

- 1 - - 6 

- 2 - - 7 

- 3 - - 8 

1 - - - 9 

2 - - - 10 

3 - - - 11 

1 1 1 1 12 

C
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s
-d
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v
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b
in

 5
4
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in
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 (
d

a
ta
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a
m

p
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s
) 

1 1 1 2 13 

1 1 1 3 14 

1 1 2 1 15 

1 1 2 2 16 

1 1 2 3 17 

1 2 1 1 18 

1 2 1 2 19 

1 2 1 3 20 

1 2 2 1 21 

1 2 2 2 22 

1 2 2 3 23 

1 3 1 1 24 

1 3 1 2 25 

1 3 1 3 26 

1 3 2 1 27 

1 3 2 2 28 

1 3 2 3 29 

2 1 1 1 30 

2 1 1 2 31 

2 1 1 3 32 

2 1 2 1 33 

2 1 2 2 34 

2 1 2 3 35 
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2 2 1 1 36 

2 2 1 2 37 

2 2 1 3 38 

2 2 2 1 39 

2 2 2 2 40 

2 2 2 3 41 

2 3 1 1 42 

2 3 1 2 43 

2 3 1 3 44 

2 3 2 1 45 

2 3 2 2 46 

2 3 2 3 47 

3 1 1 1 48 

3 1 1 2 49 

3 1 1 3 50 

3 1 2 1 51 

3 1 2 2 52 

3 1 2 3 53 

3 2 1 1 54 

3 2 1 2 55 

3 2 1 3 56 

3 2 2 1 57 

3 2 2 2 58 

3 2 2 3 59 

3 3 1 1 60 

3 3 1 2 61 

3 3 1 3 62 

3 3 2 1 63 

3 3 2 2 64 

3 3 2 3 65 

Table 28 Observed combinations of bin ranges (own table) 
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Appendix E – Temperature prediction results 

 

Table 29 Statistical parameters for temperature prediction, ranges 12 to 65 (own table) 

Nr. RMSE [°C] MAD [°C] R² [-] Rpearson [-] Rspearman [-]
Irradiance 

[W/m²]

Ambient Temp. 

[°C]

Wind speed 

[m/s]
AOI [°]

12 1,877 0,601 0,961 0,980 0,957 Irr. 1

13 4,317 1,435 0,242 0,494 0,564 Irr. 2

14 9,030 1,793 0,057 0,255 0,335 Irr. 3

15 3,457 1,389 0,932 0,966 0,938 Irr. 1

16 5,440 2,576 0,693 0,833 0,823 Irr. 2

17 5,196 1,645 0,251 0,502 0,504 Irr. 3

18 2,754 1,149 0,894 0,946 0,932 Irr. 1

19 3,123 0,958 0,705 0,841 0,874 Irr. 2

20 2,266 1,088 0,884 0,941 0,922 Irr. 3

21 2,794 1,130 0,927 0,963 0,924 Irr. 1

22 4,437 1,904 0,907 0,952 0,953 Irr. 2

23 4,044 1,618 0,889 0,943 0,921 Irr. 3

24 2,064 0,609 0,575 0,760 0,774 Irr. 1

25 3,864 1,359 0,614 0,786 0,760 Irr. 2

26 2,746 1,446 0,817 0,905 0,845 Irr. 3

27 3,583 1,073 0,917 0,958 0,956 Irr. 1

28 3,029 1,129 0,785 0,887 0,898 Irr. 2

29 3,385 1,379 0,903 0,950 0,853 Irr. 3

30 1,415 0,635 0,972 0,986 0,980 Irr. 1

31 4,096 1,402 0,300 0,550 0,603 Irr. 2

32 7,965 4,482 -0,039 0,050 0,283 Irr. 3

33 2,180 0,869 0,959 0,980 0,944 Irr. 1

34 2,096 1,364 0,889 0,943 0,874 Irr. 2

35 Irr. 3

36 2,210 0,558 0,939 0,970 0,982 Irr. 1

37 2,120 1,003 0,795 0,892 0,890 Irr. 2

38 2,494 1,001 0,832 0,917 0,835 Irr. 3

39 1,951 1,359 0,973 0,987 0,856 Irr. 1

40 1,490 0,825 0,894 0,946 0,941 Irr. 2

41 Irr. 3

42 2,381 1,506 0,337 0,596 0,303 Irr. 1

43 1,668 0,892 0,816 0,904 0,868 Irr. 2

44 3,935 1,083 0,157 0,421 0,460 Irr. 3

45 2,651 1,533 0,943 0,972 0,684 Irr. 1

46 2,165 1,060 0,762 0,875 0,878 Irr. 2

47 Irr. 3

48 Irr. 1

49 5,629 2,541 0,133 0,398 0,390 Irr. 2

50 7,883 1,229 0,182 -0,534 -0,083 Irr. 3

51 1,644 0,990 0,799 0,895 0,886 Irr. 1

52 1,044 0,760 0,975 0,988 0,847 Irr. 2

53 Irr. 3

54 Irr. 1

55 2,062 0,671 0,826 0,912 0,857 Irr. 2

56 Irr. 3

57 1,164 0,540 0,930 0,966 0,984 Irr. 1

58 1,107 0,917 0,897 0,951 0,675 Irr. 2

59 Irr. 3

60 Irr. 1

61 2,983 0,539 0,790 0,891 0,884 Irr. 2

62 3,040 0,527 0,544 0,753 0,742 Irr. 3

63 0,977 0,369 0,994 0,998 0,786 Irr. 1

64 0,439 0,325 0,082 0,461 0,143 Irr. 2

65 Irr. 3

tamb 1

Wind speed 1

A
O

I 3

Wind speed 2

Wind speed 3

tamb 2

Wind speed 1

Wind speed 2

Wind speed 3

tamb 1

Wind speed 1

A
O

I 2

Wind speed 2

Wind speed 3

tamb 2

Wind speed 1

Wind speed 2

Wind speed 3

tamb 1

Wind speed 1

A
O

I 1

Wind speed 2

Wind speed 3

tamb 2

Wind speed 1

Wind speed 2

Wind speed 3
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Appendix F – Distribution of temperature residuals 
(Samples that reach the minimum required sample size of 42 data points, own figures) 
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Appendix G – Power prediction results 

 

Table 30 Statistical parameters for power prediction, ranges 12 to 65 (own table)   

Nr. RMSE [W] MAD [W] R² [-] Rpearson [-] Rspearman [-]
Irradiance 

[W/m²]

Ambient Temp. 

[°C]

Wind speed 

[m/s]
AOI [°]

12 23,164 15,661 0,828 0,910 0,812 Irr. 1

13 6,963 1,404 0,845 0,920 0,818 Irr. 2

14 8,870 3,275 0,754 0,869 0,840 Irr. 3

15 4,145 1,287 0,958 0,979 0,976 Irr. 1

16 6,667 2,821 0,935 0,967 0,969 Irr. 2

17 7,077 2,645 0,753 0,868 0,908 Irr. 3

18 33,208 9,512 0,765 0,876 0,904 Irr. 1

19 3,992 1,084 0,946 0,973 0,929 Irr. 2

20 2,486 1,929 0,918 0,958 0,920 Irr. 3

21 9,525 1,293 0,831 0,912 0,905 Irr. 1

22 11,491 2,369 0,834 0,914 0,921 Irr. 2

23 7,848 1,913 0,712 0,844 0,903 Irr. 3

24 33,134 11,163 0,682 0,827 0,824 Irr. 1

25 22,248 3,962 0,801 0,896 0,929 Irr. 2

26 4,907 2,420 0,900 0,949 0,956 Irr. 3

27 16,938 1,178 0,323 0,581 0,820 Irr. 1

28 12,221 3,411 0,818 0,906 0,914 Irr. 2

29 11,897 1,995 0,538 0,734 0,895 Irr. 3

30 19,189 8,706 0,794 0,892 0,796 Irr. 1

31 6,722 1,372 0,836 0,915 0,942 Irr. 2

32 6,519 3,697 0,140 0,418 0,616 Irr. 3

33 3,828 1,315 0,954 0,977 0,988 Irr. 1

34 7,052 1,792 0,910 0,954 0,953 Irr. 2

35 Irr. 3

36 27,969 10,710 0,838 0,916 0,904 Irr. 1

37 7,804 0,980 0,821 0,906 0,978 Irr. 2

38 1,656 0,776 0,876 0,939 0,946 Irr. 3

39 6,798 0,614 0,935 0,967 0,983 Irr. 1

40 7,012 1,155 0,924 0,962 0,970 Irr. 2

41 Irr. 3

42 25,484 6,909 0,774 0,883 0,761 Irr. 1

43 10,763 1,719 0,917 0,958 0,980 Irr. 2

44 3,083 0,819 0,381 0,629 0,787 Irr. 3

45 14,230 7,396 0,772 0,884 0,888 Irr. 1

46 7,513 1,214 0,881 0,940 0,934 Irr. 2

47 Irr. 3

48 Irr. 1

49 4,503 2,403 0,929 0,965 0,977 Irr. 2

50 6,374 1,010 -0,127 0,117 0,283 Irr. 3

51 8,308 0,978 0,873 0,935 0,954 Irr. 1

52 2,776 0,499 0,936 0,968 0,973 Irr. 2

53 Irr. 3

54 Irr. 1

55 4,295 0,744 0,940 0,970 0,987 Irr. 2

56 Irr. 3

57 2,163 0,386 0,995 0,998 0,991 Irr. 1

58 3,774 0,470 0,997 0,999 1,000 Irr. 2

59 Irr. 3

60 Irr. 1

61 4,812 0,976 0,972 0,986 0,987 Irr. 2

62 2,660 0,441 0,767 0,882 0,916 Irr. 3

63 4,331 0,172 0,986 0,994 1,000 Irr. 1

64 3,546 0,597 0,999 1,000 1,000 Irr. 2

65 Irr. 3

Wind speed 3

Wind speed 3

Wind speed 2

Wind speed 3

Wind speed 1

Wind speed 2

Wind speed 1

Wind speed 2

Wind speed 3

Wind speed 1

Wind speed 2

A
O

I 1
A

O
I 2

A
O

I 3

tamb 1

tamb 2

tamb 1

tamb 2

tamb 1

tamb 2

Wind speed 1

Wind speed 1

Wind speed 2

Wind speed 3

Wind speed 1

Wind speed 2

Wind speed 3
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Appendix H – Distribution of power residuals 
(Samples that reach the minimum required sample size of 138 data points, own figures) 
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Appendix I – Bin ranges with minimum sample size and 
(roughly) normal distribution 

 

Table 31 Data samples with the achieved minimum sample size (own table)  

Nr. RMSE [°C] RMSE [W]
Irradiance 

[W/m²]

Ambient 

Temp. [°C]

Wind speed 

[m/s]
AOI [°]

12 1,877 23,164 Irr. 1

13 4,317 6,963 Irr. 2

14 Irr. 3

15 3,457 4,145 Irr. 1

16 5,440 6,667 Irr. 2

17 5,196 7,077 Irr. 3

18 Irr. 1

19 3,123 3,992 Irr. 2

20 Irr. 3

21 2,794 9,525 Irr. 1

22 4,437 11,491 Irr. 2

23 4,044 7,848 Irr. 3

24 2,064 33,134 Irr. 1

25 Irr. 2

26 Irr. 3

27 Irr. 1

28 Irr. 2

29 3,385 11,897 Irr. 3

30 1,415 19,189 Irr. 1

31 4,096 6,722 Irr. 2

32 Irr. 3

33 2,180 3,828 Irr. 1

34 Irr. 2

35 Irr. 3

36 Irr. 1

37 2,120 7,804 Irr. 2

38 Irr. 3

39 1,951 6,798 Irr. 1

40 1,490 7,012 Irr. 2

41

42 Irr. 1

43 Irr. 2

44 Irr. 3

45 Irr. 1

46 Irr. 2

47 Irr. 3

48 Irr. 1

49 Irr. 2

50 Irr. 3

51 Irr. 1

52 Irr. 2

53 Irr. 3

54 Irr. 1

55 Irr. 2

56 Irr. 3

57 Irr. 1

58 Irr. 2

59 Irr. 3

60 Irr. 1

61 Irr. 2

62 Irr. 3

63 Irr. 1

64 Irr. 2

65 Irr. 3

tamb 1

Wind speed 1

A
O

I 1

Wind speed 2

Wind speed 3

tamb 2

Wind speed 1

Wind speed 2

Wind speed 3

tamb 1

Wind speed 1

A
O

I 2
Wind speed 2

Wind speed 3

tamb 2 Wind speed 2

Wind speed 3

Wind speed 1

tamb 1

Wind speed 1

A
O

I 3

Wind speed 2

Wind speed 3

tamb 2

Wind speed 1

Wind speed 2

Wind speed 3
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Appendix J – Position analysis for all combinations of bin 
ranges 
 

Bin Nr. Median power difference [W] - Bin ranges 1 to 11 

- Top Middle Bottom Edge Middle o.A. All 

1 2,71 1,91 4,10 2,63 2,52 2,46 

2 0,20 0,59 3,06 0,49 0,98 0,71 

3 -2,33 -1,61 0,46 -2,68 -1,18 -1,84 

4 2,36 2,18 5,12 2,60 2,84 2,65 

5 -0,94 -0,73 0,96 -0,95 -0,31 -0,64 

6 0,04 0,02 1,51 0,00 0,35 0,14 

7 -0,07 0,34 2,40 0,11 0,68 0,39 

8 1,73 2,05 4,86 2,42 2,47 2,34 

9 -0,60 -0,27 1,75 -0,51 0,16 -0,21 

10 1,25 1,22 3,36 1,39 1,61 1,45 

11 1,42 1,55 3,38 1,73 1,85 1,84 

Table 32 Median power prediction error for each array position, bin range 1 to 11 (own table) 

 

Bin Nr. Median measured Voc [Voc] - Bin ranges 1 to 11 

- Top Middle Bottom Edge Middle o.A. All 

1 35,32 35,38 35,30 35,44 35,33 35,37 

2 36,80 36,69 36,48 36,83 36,63 36,72 

3 36,18 35,95 35,81 36,25 35,88 36,01 

4 37,37 37,23 37,09 37,31 37,20 37,24 

5 34,43 34,41 34,41 34,67 34,35 34,47 

6 35,33 35,49 35,42 35,69 35,38 35,52 

7 35,92 35,75 35,59 35,91 35,71 35,78 

8 36,81 36,69 36,56 36,81 36,65 36,72 

9 36,04 35,90 35,78 36,09 35,85 35,95 

10 36,56 36,50 36,34 36,58 36,45 36,51 

11 37,45 37,26 37,09 37,30 37,22 37,26 

Table 33 Median measured Voc for each array position, bin range 1 to 11 (own table) 
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Bin Nr. Median measured Isc [A] - Bin ranges 1 to 11 

- Top Middle Bottom Edge Middle o.A. All 

1 1,55 1,55 1,52 1,53 1,55 1,54 

2 5,71 5,72 5,66 5,71 5,71 5,72 

3 7,56 7,54 7,49 7,49 7,55 7,52 

4 5,54 5,54 5,48 5,54 5,53 5,54 

5 5,12 4,89 4,69 4,58 4,97 4,81 

6 3,82 3,66 3,48 3,43 3,73 3,60 

7 5,80 5,79 5,72 5,75 5,79 5,77 

8 6,03 6,02 5,97 6,00 6,02 6,02 

9 6,18 6,15 6,08 6,11 6,15 6,14 

10 4,29 4,29 4,22 4,25 4,28 4,29 

11 5,13 5,28 5,27 5,39 5,20 5,31 

Table 34 Median measured Isc for each array position, bin range 1 to 11 (own table) 
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Bin Nr. Median power difference [W] - Bin ranges 12 to 65 

- Top Middle Bottom Edge Middle o.A. All 

12 17,37 16,59 17,75 16,94 16,92 16,80 

13 0,05 0,61 3,33 0,09 1,05 0,62 

14 -3,33 -2,72 -0,23 -3,33 -2,41 -2,96 

15 -1,16 -1,38 -0,37 -1,05 -1,03 -1,11 

16 -2,10 -2,24 0,19 -2,24 -1,71 -2,08 

17 -3,06 -2,81 -1,48 -3,89 -2,33 -3,00 

18 32,93 31,87 33,60 32,57 32,35 32,18 

19 0,41 1,38 4,75 1,09 1,78 1,45 

20 -1,73 -0,80 1,80 -1,32 -0,49 -0,85 

21 1,50 1,53 4,29 2,04 1,81 1,74 

22 -1,13 -0,98 1,86 -1,37 -0,45 -0,91 

23 -2,82 -1,87 0,12 -3,64 -1,33 -2,28 

24 30,21 28,94 30,73 29,37 29,56 29,16 

25 5,17 4,20 8,13 5,32 5,12 4,95 

26 -0,45 0,15 2,44 0,14 0,47 0,13 

27 2,65 1,96 5,24 2,98 2,42 2,43 

28 0,93 0,98 4,83 1,57 1,46 1,28 

29 -2,40 -1,31 0,90 -2,01 -0,93 -1,43 

30 16,13 15,58 16,45 15,84 15,83 15,74 

31 0,39 0,70 3,23 0,43 1,09 0,74 

32 -4,04 -6,86 -4,13 -5,95 -5,55 -5,88 

33 0,69 0,54 1,68 0,77 0,82 0,71 

34 -1,36 -1,26 0,74 -1,04 -0,86 -0,83 

35 NaN NaN NaN NaN NaN NaN 

36 21,80 21,36 22,68 20,87 21,88 21,55 

37 1,16 1,66 4,64 1,77 2,04 1,85 

38 0,08 0,34 2,79 0,52 0,59 0,49 

39 1,10 0,82 1,76 1,00 1,02 0,93 

40 -0,52 -0,09 2,02 -0,18 0,22 0,01 

41 NaN NaN NaN NaN NaN NaN 

42 19,99 19,30 21,02 18,87 19,86 19,42 

43 2,13 2,29 5,02 2,82 2,68 2,63 

44 1,33 1,85 4,15 1,55 2,11 1,94 

45 11,44 8,30 10,09 10,33 9,21 8,56 

46 0,69 0,85 2,63 0,98 1,17 0,99 

47 NaN NaN NaN NaN NaN NaN 

48 NaN NaN NaN NaN NaN NaN 

49 0,61 0,99 2,14 0,39 1,33 0,67 

50 -3,87 -7,01 -4,34 -6,13 -5,88 -6,09 

51 0,73 0,49 1,50 1,04 0,73 0,84 

52 1,54 2,09 3,43 2,24 2,28 2,40 
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53 NaN NaN NaN NaN NaN NaN 

54 NaN NaN NaN NaN NaN NaN 

55 0,81 1,02 3,07 1,04 1,28 1,17 

56 -0,44 0,26 2,37 0,11 0,36 0,28 

57 0,81 0,76 1,73 0,97 0,86 0,84 

58 3,60 3,59 4,87 3,60 3,84 3,72 

59 NaN NaN NaN NaN NaN NaN 

60 NaN NaN NaN NaN NaN NaN 

61 1,98 1,99 4,21 2,24 2,26 2,24 

62 1,13 1,54 3,72 1,49 1,76 1,73 

63 4,28 4,71 5,65 4,54 4,77 4,62 

64 3,53 3,46 4,79 3,47 3,76 3,59 

65 NaN NaN NaN NaN NaN NaN 

 

Table 35 Median power prediction error for each array position, bin ranges 12 to 65 (own table) 
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Bin Nr. Median measured Voc [V] - Bin ranges 12 to 65 

- Top Middle Bottom Edge Middle o.A. All 

12 37,45 37,26 37,09 37,30 37,22 37,26 

13 36,72 36,74 36,63 36,71 36,71 36,71 

14 37,08 36,93 36,80 37,10 36,88 36,95 

15 38,13 37,92 37,73 37,99 37,90 37,94 

16 33,93 33,98 33,94 34,08 33,91 33,99 

17 33,76 33,73 33,69 33,95 33,66 33,75 

18 33,64 33,56 33,49 33,77 33,51 33,59 

19 37,50 37,52 37,38 37,50 37,50 37,49 

20 37,18 36,93 36,73 37,10 36,92 36,98 

21 37,12 36,93 36,74 37,01 36,92 36,94 

22 35,29 35,30 35,20 35,36 35,26 35,28 

23 34,74 34,75 34,89 35,04 34,63 34,86 

24 34,86 34,80 35,16 35,40 34,68 35,00 

25 37,13 37,05 36,91 37,06 37,04 37,04 

26 37,61 37,44 37,25 37,54 37,44 37,48 

27 37,85 37,61 37,50 37,71 37,61 37,65 

28 35,95 35,90 35,72 35,92 35,88 35,89 

29 36,23 36,08 35,90 36,17 36,05 36,09 

30 36,32 36,08 35,91 36,31 36,05 36,12 

31 36,72 36,77 36,62 36,73 36,73 36,73 

32 37,29 37,19 37,14 37,35 37,14 37,22 

33 37,83 37,61 37,42 37,76 37,59 37,63 

34 34,03 34,10 33,99 34,19 34,04 34,11 

35 34,27 34,32 34,34 34,57 34,22 34,37 

36 NaN NaN NaN NaN NaN NaN 

37 36,96 36,90 36,81 36,93 36,90 36,91 

38 37,55 37,36 37,24 37,43 37,34 37,38 

39 37,68 37,46 37,29 37,64 37,45 37,48 

40 34,04 34,05 33,92 34,04 34,02 34,03 

41 NaN NaN NaN NaN NaN NaN 

42 35,26 35,35 34,53 35,15 34,80 34,52 

43 36,81 36,83 36,67 36,81 36,80 36,81 

44 37,87 37,69 37,49 37,72 37,68 37,69 

45 37,78 37,55 37,34 37,72 37,53 37,57 

46 34,66 34,63 34,45 34,68 34,61 34,63 

47 36,15 35,99 35,85 36,09 35,97 36,01 

48 NaN NaN NaN NaN NaN NaN 

49 NaN NaN NaN NaN NaN NaN 

50 37,64 37,48 37,25 37,60 37,46 37,48 

51 37,77 37,62 37,44 37,76 37,62 37,63 

52 33,16 33,12 32,94 33,08 33,11 33,09 
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53 35,62 35,54 35,33 35,62 35,47 35,54 

54 NaN NaN NaN NaN NaN NaN 

55 NaN NaN NaN NaN NaN NaN 

56 37,64 37,45 37,22 37,56 37,43 37,47 

57 37,70 37,54 37,32 37,68 37,51 37,52 

58 33,99 33,90 33,87 33,94 33,88 33,87 

59 35,87 35,73 35,61 35,79 35,73 35,74 

60 NaN NaN NaN NaN NaN NaN 

61 NaN NaN NaN NaN NaN NaN 

62 37,88 37,69 37,53 37,74 37,67 37,71 

63 37,86 37,66 37,46 37,78 37,65 37,68 

64 35,87 35,84 35,62 35,80 35,75 35,80 

65 36,06 36,01 35,80 36,03 35,97 36,00 

 

Table 36 Median measured Voc for each array position, bin ranges 12 to 65 (own table) 
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Bin Nr. Median measured Isc [A] - Bin ranges 12 to 65 

- Top Middle Bottom Edge Middle o.A. All 

12 1,47 1,47 1,44 1,46 1,47 1,47 

13 6,20 6,20 6,15 6,19 6,20 6,20 

14 7,23 7,21 7,15 7,23 7,20 7,22 

15 1,62 1,62 1,59 1,61 1,62 1,61 

16 5,21 5,09 4,81 4,83 5,16 5,04 

17 7,76 7,72 7,64 7,64 7,73 7,69 

18 1,79 1,80 1,76 1,78 1,80 1,81 

19 6,19 6,18 6,13 6,18 6,18 6,18 

20 6,77 6,77 6,71 6,76 6,77 6,77 

21 2,14 2,12 2,03 2,10 2,12 2,11 

22 5,54 5,45 5,30 5,41 5,48 5,49 

23 7,88 7,87 7,84 7,84 7,88 7,86 

24 2,03 2,00 1,94 1,99 1,98 1,99 

25 6,12 6,13 6,07 6,10 6,12 6,12 

26 6,92 6,92 6,87 6,91 6,91 6,92 

27 2,53 2,55 2,47 2,49 2,55 2,50 

28 5,55 5,55 5,39 5,59 5,53 5,58 

29 7,71 7,71 7,68 7,68 7,72 7,71 

30 1,10 1,10 1,08 1,08 1,10 1,09 

31 5,53 5,52 5,47 5,51 5,51 5,52 

32 6,74 6,76 6,74 6,75 6,75 6,75 

33 1,73 1,73 1,68 1,71 1,72 1,72 

34 5,03 4,91 4,90 4,90 4,92 4,92 

35 NaN NaN NaN NaN NaN NaN 

36 1,31 1,30 1,27 1,29 1,30 1,29 

37 5,48 5,46 5,41 5,45 5,45 5,46 

38 6,74 6,76 6,74 6,75 6,76 6,76 

39 1,12 1,11 1,09 1,10 1,12 1,11 

40 5,21 5,28 5,25 5,29 5,22 5,29 

41 NaN NaN NaN NaN NaN NaN 

42 2,15 2,14 2,12 2,13 2,14 2,14 

43 5,64 5,65 5,58 5,63 5,63 5,63 

44 6,71 6,73 6,70 6,72 6,72 6,72 

45 1,21 1,21 1,15 1,19 1,21 1,20 

46 5,20 5,16 5,17 5,19 5,16 5,17 

47 NaN NaN NaN NaN NaN NaN 

48 NaN NaN NaN NaN NaN NaN 

49 5,31 5,32 5,30 5,31 5,31 5,32 

50 6,57 6,59 6,56 6,58 6,59 6,59 

51 1,44 1,39 1,35 1,33 1,43 1,38 

52 3,50 3,49 3,46 3,53 3,48 3,50 
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53 NaN NaN NaN NaN NaN NaN 

54 NaN NaN NaN NaN NaN NaN 

55 5,99 6,03 6,00 6,01 6,02 6,02 

56 6,46 6,48 6,46 6,48 6,47 6,47 

57 2,29 2,30 2,26 2,27 2,27 2,24 

58 3,34 3,35 3,33 3,34 3,35 3,34 

59 NaN NaN NaN NaN NaN NaN 

60 NaN NaN NaN NaN NaN NaN 

61 5,96 5,98 5,93 5,96 5,97 5,97 

62 6,55 6,56 6,53 6,55 6,56 6,56 

63 2,99 3,00 2,98 2,98 3,00 3,00 

64 3,52 3,54 3,52 3,52 3,54 3,54 

65             

Table 37 Median measured Isc for each array position, bin ranges 12 to 65 (own table) 


