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Abstract

As the globally installed PV capacity is growing rapidly, quantification of PV system operation
reliability under outdoor conditions merits increased attention. In this regard, the
understanding of the PV performance dependence on different climatic weather conditions
is of crucial importance. This research focuses on the evaluation of sub-models, applied by
the international standard IEC 61853-3 committee draft, for the prediction of PV module
temperature and power at various weather conditions — binned into ranges of irradiance,
ambient temperature, wind speed and angle of incidence. The evaluation is based on
minutely averages of weather parameter measurements that serve as inputs for the IEC
standard’s sub-models, as well as granular intra-array PV operational parameter
measurements for the validation of the IEC standard’s predictions. Both, weather and PV
operational parameters are measured at a ground mounted PV array at NIST in
Gaithersburg, Maryland (USA). PV operational parameters are monitored via wireless V-
tracers mounted at one PV module within each of the 96 series strings of the observed PV
array — measuring operational current and voltage, along with periodically conducting V-
curve traces. These distributed tracer measurements also permit a granular spatial analysis
of PV module performance prediction variability across the PV array, providing crucial
information for performance modeling and rating of entire PV arrays.

Results show modeling errors between 1 and 9 °C RMSE for the PV module temperature
prediction, and between 2 and 33 W RMSE for the PV module power prediction. Highest
prediction errors occur at low irradiances between 100 and 300 W/mz2 and low ambient and
PV module temperatures below 10 °C and 15 °C, respectively — represented as strong
overpredictions in PV module power. These errors appear to be independent of wind speed,
occur mainly at AOI between 30 and 50° and are most probably caused by magnified errors
through linear extrapolation of the performance matrix to lower PV module temperature
ranges, as well as non-linearities of PV module performance at lower irradiances and/or
module temperatures — not taken into account by the linear inter-/extrapolation. Also,
neglecting natural convection cooling at high irradiances and low wind speeds, as well as
radiation cooling at low irradiances leads to visible irregularities of residuals and increased
errors for the temperature and power prediction.

The spatial analysis of power prediction error and IV-curve parameter variability across the
PV array shows a significant pattern of inconsistencies at certain weather conditions, most
probably related to temperature differences between the affected PV module positions.
These inconsistencies are strongly pronounced at high irradiances and/or ambient
temperatures and especially noticeable at high wind speeds. At these weather conditions,
the difference in median power prediction error across the observed 96 PV modules within
the PV array reaches values between 2 and 4 W, with evident corresponding differences in
median measured Voc and Isc between 0.2 and 1 V and up to 0.5 A, respectively.

Keywords: photovoltaic array, monitoring, modeling, weather conditions, spatial analysis

4



Acknowledgements

| want to thank all people who strongly supported me with writing this thesis, especially my
supervisors from NIST, Brian Dougherty and Matthew Boyd, for their helpful guidance and
assistance during my time in the USA, as well as my supervisor from the UAS Technikum
Vienna, Hubert Fechner, for his constant encouragement and valuable support.

| also want to thank Karl Berger from the AIT, for his critical comments and suggestions
during initial phases of this work.

| also acknowledge the University of Applied Sciences Technikum Vienna, the National
Institute of Standards and Technology, as well as the Austrian Marshall Plan Foundation for
providing me with the opportunity of this immensely valuable professional experience.
Finally, | want to express my deepest gratitude to my wife, Aline, for her immeasurable and
continuous love, support and understanding. | also want thank my closest family and friends
for their perpetual enthusiasm and pride for me.



Table of contents

11
1.2
1.3
14
14.1
1.4.2
1.4.3
1.4.4
1.4.5

2

2.1

2.2
221
222
2.2.3
224
2.2.5
2.2.6

2.3
23.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
23.11
2.3.12

INEFOTUCTION ...t 10
SUDJECE Of FESEAICN ... 12
PrOJECT GOAUS ... 13
SCIENtIfic QUESTIONS ... e e e e e e eane e e eeees 15
Scope of work and limitations of research.............cccooeee 15
Observed PV module characteristiCs ..........coooeviiieiieeee e 15
Modeling algorithm COMPIrOMISES .........uuuuuuiiiiiiiiiiiiiiiiiiiiieiib e 16
Measurement POSItiON COMPIOMISES........uuuuuuuuuruuuiuniiiiniieiieneaaeeeeeeaeneeeeeneeeeeanenee 17
Observed weather conditions and characteristic days .............ccccooeeiieiiiieeeeeeeen, 17
Uncertainty and calibration of equipment ...............iiiieii i, 18
DEfiNItION OF TEIMIS .....uiiiiiiiei bbb neenees 19
PV ground array terminolOgY ..............uuuuuummmmmmmiiiiiiiiiiiiiiiiiiieinieeeeee e 19
Data processing termMiNOIOQY ............uuuuuuuuuuumiiiiiiiiiiiiiiiieiieeeeeeee e 20
WEALNET TALA ... eeiiiiiiiiiiiiiiiii ettt e e e eeeees 20
OPeratioNal ALA ........ccee oo 20
[V CUIVE SWEEP ....eeeii ettt ettt e e et e e e nr e e e ane s 20
Minutely averages of weather and operational data................cccceuvemiiiiiiiiiiinnnn. 20
TIME STAMP . 20
DAta ANOMAIY ...ttt 21
Weather data terminolOgy ........ccuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee et 21
AMDIENt tEMPETALUIE (Tamb) «eeeeeeereerermreiiiiieieiiiieeei ettt e e e e eeeeeees 21
MOAUIE tEMPETALUIE (Tmod) -+« «vxvsrnrnnnnsnnnnnnnnnnntnneaaaaeaseeebbeeebbbeebeeebebeeeeeebeeeeeneenees 21
AT ST oT=T=To [ Y PP PP PPPPPPPPPPPI 21
Sun elevation (Ber), zenith (8;), azimuth (8a) .....ccoovveeeeeee, 22
Sun angle of INCIAENCE (AOI) ..o 22
AT NASS (AM) ettt et aaaes 23
AT PIESSUIE (D) +teeteeeeteeeeteteeeeteeeeee ittt ettt ettt et ettt ettt ettt et ettt ettt e et e e e et eeeeeeeeeeeeeeeeeeeeeeeees 24
Relative humidity (RH) .........uuuuuiiiiiiiiiiiiiiiiii e 24
Precipitable WatEr (Pwat) ««««««««.xeuuuumuemuniiiiiiiiiiiiiiiiiiiiiiiiib e eeeeeebeneeeenee 24

TUIDIAILY ([B) +oeeveeeeeeeeiteee ettt ettt e et e e e et e e e et e e e e nnraeeeeennes 24

Direct normal irradiance (DNI) ... 24

Global horizontal irradiance (GHI).......oovvvvviiiiiiiiiiiiiiiiiiiiiieeeee 25



2.3.13
2.3.14
2.3.15

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.4
3.4.1
3.4.2
3.5
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.8

4.1
41.1
4.1.2
4.1.3

4.2

Diffuse horizontal irradiance (DHI) ..........oooviiiiiiiiii 25

Direct horizontal and in-plane irradianCe .............cccccovviiiiiiiiieee 25

Global in-plane irradianCe (Gpoa) ««««« eeeeaaurrrrrereeeeeaiaiiiiieree e e e e e s eeeae e e 25
111 g oo [o] (oo V2RSS 27
State of the art reSEAICH ..........coiiiiiii e 27
Organization and processing of monitoring data.............cccccceceiiiieeeiicviiieee e, 27
Monitoring data and tiMiNG.........ccoooeeeiiiiiii e 27
Monitoring data anOMalIES.........ccoieieiiiiiiice e 31
Evaluation of PV modeling algorithms. ..., 32
IEC 61853-3 modeling algorithms............oouiiiiiiii e 33
Weather data INPULS........cii i e e e e e et e e e e e e eeannes 34
[EC 61853-1 aNnd IEC B1853-2.......uuuuuuuuuuerurnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnmnnmnnn 35
AOI correction — Model of Martin and Ruiz (2000) .........ccccceeiieeiiiiiiiiiiee e, 37
Spectral correction — Model of IEC 61853-3 and Lee and Panchula (2016)....... 40
PV module temperature calculation — Model of Faiman (2008)...............ccccvveen.. 42
PV module output power calculation — Interpolation method..................ccovvvennn. 43
Spatial PV array performance analysiS ............cuiiiiiiiiiiiiieiiiein e 46
Differences in local irradiance and module temperature..............cccccvvvviiieinnnnnnns 46
Observed PV module POSITIONS........coooiieeeeeeeeee e 47
Days with characteristic weather conditions.............ccccovviieiiiiiiiii e, 49
Data binning to various ranges of weather conditions...............ccccoevv i, 51
Exploratory data analySis (EDA) .........uuuuiuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 53
Linear regression model approach.................uueuuuueuiimiiiiiiiiiiiiiiiiiiieeeeeeeeees 53
Statistical diagnOoStiC PAraAMELEIS ......ccooiiieeee e 54
Graphical analysis of residuals ...........cooooieiiiieeie 58
Graphical analysis of location effectS...........cooooeeiiiiien 61
Overview Of reSEarCh StEPS .....ccooeeeeeeeeeee e 62
Effects and influences in outdoor PV arrays.......ccoccvuuiiieiiiiiin e eee e e e 63
DC performance array l0SSES ......coceeeiiiiiiiiiae e e e e 63
Quantification of MISMALCH [0SSES......cciuuuiiiiiiiir e 63
PV array system COmMPONENt I0SSES .......uuuuiiiii e 63
DT @Y 1T o T [0 T Y= 64
L@ o To= 1] =T ot 64



4.2.1 SOIlING AN SNAAING ....evviiiiiiiiiieiiie bbb 64

4.2.2 RefIECtiVItY aN0 AOI ......oeeieiiiiiieiiie e 65
4.2.3  SPECIIAl FESPONSIVILY .....eeeieieeeiieiiiieeeeeeeeeeeeeeeeeebbeeeesee e see bbb s sesseeeeeeeeenennesnennennes 65
4.3 Thermal €ffECES......ccoi et 66
4.4 Degradation and failure MOUES ............uuuuuiiiiiiiiiiiiiii e 67
5 State of the art — PV performance modeling approaches.............ccccoevvvvieeeneenn.. 70
6 Monitoring of NIST’s ground mounted PV array............ccccccevmiiimmiiiiiiiiiiiiiiininnnns 72
6.1 Surroundings and lOCALION ........cooeeeeeeeeee e 72
6.2 Electrical layout and measurement POSItIONS ..............uuuuurimimmmiiiiiiiiiiiiiiiieiiianeeens 73
6.3 IV CUIVE TFACEIS ...ttt e e e et e e et e e e ab e e e et 76
6.4 Summary of PV ground array characteristiCS ...........oooevveeeiiiiiiieeeeeeeeeeeeeen 77
7 Evaluation of PV modeling algorithms. ..., 79
7.1 Angle of INCIAENCE COIMMECTION .......uvuii i e e e eanees 80
7.2 SPECIIAl COMTECHION ... ..cciiiiiiiiee e e e e e e e e e 81
7.3 Module temperature calCulation ..............iiiiii i e e 82
7.3.1 Distribution of residuals and sample size - Temperature..............ccoeevvvvveeeeeennn. 83
7.4 Module power CalCUlAtioN ..........cccooeeiiiiiiiice e 84
7.4.1 Distribution of residuals and sample Size - POWEr .............cccvvviiiiiiiiiiiiiiiiiiiiee 85
7.5 Analysis of days with characteristic weather conditions .............ccccccceevvi i, 86
7.6 Analysis of effects of independent variation of bin ranges...........cccccceevvieevviiennns 90
7.7 Analysis of effects of cross-dependent variation of bin ranges............cccccccvveee. 94
7.8 Summary and discussion of results — Evaluation of modeling algorithms......... 103
8 Spatial PV array performance analySis ...........c.oouuiiiiiiiieeiieeicee e, 112
8.1 Analysis of entire data set population............ccccoooeeiiiiiiiie e 113
8.2 Analysis of independent and cross-dependent variation of bin ranges............. 116
8.3 Summary and discussion of results — Spatial PV array performance analysis..123
9 Conclusion and OULIOOK...........uiiiiiies e e et e e e e e 125
] (=] €= o = PP 128
I UE S - 132
1= o 1= 136



B QUATIONS .. 139

Appendix A — PV array monitoring System COMPONENLS ..........ccuvviiiiieeeeeieiiiiiieeeeeeeeeaannns 141
Appendix B — PerformanCe MELIIX ...........uuuueuureeueeeiieiiiiieiieeieenensennsssnsesssesnnnenennenneenenneneeees 145
Appendix C — Daylight times of observed days ..........ccccooiiiiiiiiiiii e, 147
Appendix D — Observed combinations of bDin ranges ... 148
Appendix E — Temperature prediction reSUItS...........ouiiiiii i 150
Appendix F — Distribution of temperature reSiduals ..................ueeviiiiiiiiiiiiieii. 151
Appendix G — Power prediCtion reSUIS.........ciii e e e eaaees 165
Appendix H — Distribution of power reSidUalS ..............uuuuuuiiiiiiiiiiiiiiiiiiiiii. 166

Appendix | — Bin ranges with minimum sample size and (roughly) normal distribution ....180

Appendix J — Position analysis for all combinations of bin ranges .............ccccccviiiiiininnnes 181



1 Introduction

The worldwide installed photovoltaic (PV) capacity has been growing significantly in the last
several years to a point that it now joins hydro and wind energy as one of the main renewable
energy sources. (IEA, 2017a) Especially over the last two years, the total installed PV
capacity worldwide has increased remarkably, showing a market growth rate of 25 % for
2015 and 50 % for 2016, which account to about 50 and 75 gigawatts peak (GWp) of yearly
installation in these years. (IEA, 2017a) Given this growth, the total globally installed PV
capacity at the end of 2016 surpassed 300 GWp, leading to a contribution to the world’s
electricity generation of about 1.8 %. (IEA, 2017a) In the upcoming years PV is expected to
exceed an installed capacity of 400 GWp worldwide by 2020 — which will surpass the globally
installed capacity of nuclear power as of 2015.1 (IEA, 2015) The most commonly used and
commercially available PV technology is based on monocrystalline (m-Si) and polycrystalline
(p-Si) silicon (Si) cells, sharing about 90% of the global PV market. The other 10% mainly
consist of thin film technologies based on materials like cadmium telluride (CdTe), copper
indium gallium [di-] selenide (CIGS), amorphous silicon (a-Si) and other technologies (CPV,
multi-junction solar cells, etc.). (IEA, 2016) The significant recent growth of PV worldwide
can partly be attributed to the rapid cost reduction of PV modules and PV balance-of-system
(BOS) components. This growth has contributed to PV generated energy now being
competitive with conventional electricity prices in several countries when comparing
levelized costs of electricity (LCOE). Also, favorable policies have considerably influenced
the PV market development over the last few years. (IEA, 2016)

Even as these market drivers eventually saturate, system operation costs and system
operation reliability will remain crucial to PV’s continued growth and improvement — as these
factors strongly influence the confidence of investors in the technology. In this context,
quantifying the performance of PV systems — especially PV modules — under outdoor
conditions merits high attention. Whereas installed PV modules operate under a wide range
of ambient conditions, PV modules usually are rated at Standard Test Conditions (STC)
following the methods and specifications in the international standards IEC 60904-1 and IEC
61215. These standard test conditions include an irradiance of 1000 W/mz2 in plane of the
PV module, at a specific spectral irradiance distribution (AM 1.5) and a module temperature
of 25°C. (IEC, 2016b) These test conditions define the so-called rated or nominal power of
a PV module. However, the output power and finally the energy conversion efficiency of a
PV module in outdoor operation conditions depends on a range of different external
influences that cause the module efficiency or output power to deviate from its nominal
performance at STC. (Huld and Amillo, 2015) Among these influences are:

! Nuclear power plants have 6 to 8 times higher capacity factors than solar PV systems - i.e. the
amount of energy produced per year by PV systems is still less.
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e The reflectivity of the PV module top outer surface, which depends on the angle of
the incoming light (angle of incidence).

e The wavelength and the intensity of the incoming light.

e The temperature of the PV modules, which depends on the temperature of the
surrounding ambient air, the light intensity and the local wind speed.

In addition to the above-mentioned effects, the PV module efficiency is influenced by the
installation conditions (e.g. orientation of the module), the available solar irradiance at the
installation site as well as the chance of shadows, dust and/or snow covering the module’s
surface. (Spataru et al., 2015) Next to these effects some PV module technologies show
variation in module efficiency caused by long-term exposure to light and/or high temperature
ranges. (Huld and Amillo, 2015) Also, degradation or failures of components of the PV
module (e.g., encapsulation materials, solar cells, grid fingers) and/or BOS components
(e.g., connectors, fuses, cables, junction boxes) through moisture ingress, corrosion,
mechanical or thermal stress can lead to the occurrence of power loss and potential hazards
in PV modules or systems. (Spataru et al., 2015)

All of these factors need to be considered when observing the performance of a PV module
in outdoor operating conditions as they can lead to deviations from its nominal performance
at STC. Ultimately, considering several PV modules connected to an array, inherent
performance differences between the modules within the array (e.g. manufacturing
differences) or one or more of the above mentioned effects can cause non-ideal operation
of the individual modules mounted within a PV array — which is referred to as mismatch
behavior. These non-ideal performance behaviors leads to power losses on the one hand,
but also increases the risk of potential hazards and problems associated with the long-term
operation and reliability of a PV system. (Spataru et al., 2015)

In this regard, PV array diagnostic methods are necessary to reveal these fault behaviors
and degradation modes and consequently minimize power losses and hazards by
preventative or reparative measures. This will in turn reduce the total lifetime costs of the PV
array. Common existing PV diagnostic methods usually apply certain PV system models that
allow the estimation of system parameters such as the output power of the PV system or the
energy yield over a specific time. The model's estimated parameters are compared to
measured parameters in order to detect faults or system anomalies. (Spataru et al., 2015)
Commonly used PV system models can for example be based on analytical, empirical,
statistical or generic models. Another approach for diagnosing PV systems is the
measurement and subsequent analysis of current-voltage (V) characteristic curves of the
PV generators, i.e. the PV modules, strings or arrays, by IV curve tracers. (Spataru et al.,
2015) As described in the work of Spataru et al. (2015), IV curve tracers — in comparison to
other PV diagnostic methods — can deliver significant information concerning the condition
and electrical characteristics of the observed PV generator. These include: short-circuit
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current (Isc), open-circuit voltage (Voc), maximum power (Pmp), current at maximum power
(Imp) and voltage at maximum power (Vmp) and fill factor (FF) as well as operational power
(Pop), current (lop) and voltage (Vop). (Daliento et al., 2017) These electrical properties of
PV modules allow the indication and diagnosis of fault behavior as well as degradation
modes.

1.1 Subject of research

One focus of the research is to evaluate how well existing PV performance modeling
algorithms predict installed performance. Installed performance, in this particular case,
corresponds to measurements made at the PV module level. These particular PV modules
are distributed throughout a conventional, grid-connected PV array. The PV array is a
ground-mounted system that is located at the facilities of the National Institute of Standards
and Technology (NIST)? in Gaithersburg, Maryland (USA). Novel monitoring units were used
to measure the DC current and differential voltage of individual modules, along with
periodically conducting an 1V curve trace while the module was briefly bypassed. In addition
to the module-level measurements, detailed weather-related parameters and module
backside temperatures are also locally measured. A subset of these measured ambient and
operating conditions serve as inputs to the modeling algorithms.

The modeling algorithms currently appearing in the draft version of the international standard
IEC 61853-3 version 82/1066/CD were selected for evaluation. These algorithms appear in
the third part of the four-part standard; this part 3 document is at this time (August 2017)
under development and exists as an online available committee draft (CD) version. (IEC,
2016b) Parts 1 and 2 of the IEC standard 61853 specify detailed testing requirements, rating
a PV module over a range of irradiance and temperatures, varying angle of incidence and
sunlight spectra. These standards also specify the methods for estimating the module
temperature from the irradiance, ambient temperature and wind speed. (IEC, 2011, IEC,
2016a) IEC 61853 parts 3 and 4 are based on these first two parts and will specify the
procedure for using the test results to calculate the energy rating of the particular PV module
when deployed in specified representative climates. (IEC, 2016b, IEC, 2016c) The
calculation of the module’s output power within part 3 is based on first principles
mathematical models and findings from relevant research studies. Climatic data in this
project that is required as inputs to the mathematical models, is provided by on-site
instantaneous weather and module temperature measurements. Three modules, one new
and two that had been aged outdoors for nearly the same interval as the modules mounted
in the ground array, were tested in accordance with the above described part 1 and 2 of the

2 Certain commercial equipment, instruments, or materials are identified in this work to foster
understanding. Such identification does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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IEC 61853 standard. A more detailed description of this standard draft and its calculation
procedure can be found in section 2 of this work.

The observed ground mounted PV array was commissioned in August 2012 and consists of
1152 m-Si modules?, having a total rated DC power of 271 kilowatt peak (KWp). (Boyd, 2015)
Since May 2016, one module within each of the 96 series strings in the PV ground array has
been monitored using wireless IV-tracers*. Each tracer monitors the module (and
subsequently the string) current along with the voltage increase across the particular module
on a continuous basis, with the measured values being saved every second. In addition, the
tracers perform an IV curve sweep of each individual module within the array every five
minutes. An IV curve sweep requires approximately 300 ms to complete. During a sweep,
the module is bypassed within its series string. The traces are not synced with one another.
In addition to facilitating the evaluation of the algorithms used in IEC 61853-3, the distributed
tracer measurements also allow a granular spatial analysis of modules within the array and
thus a comparison of their existing performance variability within the observed PV ground
array. Details on the electrical layout of the PV array, deployed IV-tracers, as well as
measurement locations of measurement equipment can be found in section 7 of this work.

1.2 Project Goals

The first project goal is to provide a comprehensive overview of the factors that need to be
considered when analyzing outdoor PV array measurements. In this regard, for example,
DC array losses, optical and thermal effects, as well as known degradation modes will be
described in section 4 of this work. Secondly, this work aims to provide an overview of
essential PV modeling algorithms and standards that are relevant to the scope of this work.
Therefore, section 5 will point out relevant modeling algorithms and standards for this
research.

The experimental, applied part of this work begins in section 6, which provides more detailed
information about the observed PV array on NIST’s campus. The electrical layout of the PV
array, as well as information about measurement positions and the functional principles of
the IV-tracers are described. It is important to note that a quantitative analysis of pertinent
system and model uncertainties is beyond the scope of this project. However, component
uncertainties and a qualitative description of the system components is provided in section
6 as well as in the Appendix A of this work.

Section 7 of the thesis covers the evaluation of the performance modeling algorithms used
in the IEC 61853-3 committee draft version 82/1066/CD. The evaluation is carried out by
assessing the goodness of fit of modelled to measured operational DC output power and
module temperature for a data set having 24 days with a range of 8 characteristic weather

8 Sharp NU-U235F2, monocrystalline-front-contact PV module
4 Stratasense Wireless PV tracers, (acc. to STRATASENSE, L. 2013. Stratasense Wireless IV Curve
Tracer - Brochure.)
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conditions. These characteristic weather conditions are based on irradiance, wind speed and
ambient temperature ranges. The inputs to the IEC draft algorithm are the measured,
instantaneous climatic data recorded at or very near the ground array. Measured weather
data from days covering as wide a range as available were selected. This selection permits
investigating the sensitivity of the model to irradiance, wind speed, ambient temperature and
angle of incidence through the binning of the available data set, as well as the model’s
behavior at specific days with characteristic weather conditions. An understanding of these
sensitivities is of high interest, as the finalized version of this standard intends to provide a
set of standard reference climatic profiles for the prediction of the PV module performance
in these different climates. (IEC, 2016b, IEC, 2016c)

Comparing the modelled with the measured PV performance data requires a better
understanding of effects occurring within the observed ground array. Therefore, section 8
covers the analysis of the individually traced PV modules within the PV array. In order to
provide a comprehensive overview of differences in performance within the array, the
modules are grouped and compared according to their position within the array. This way
inconsistencies and possible performance differences between the modules can be related
to their position within the array. The array analysis will be performed on the same data set
of 24 days with characteristic weather conditions, allowing the assessment of the array for
the chosen ranges of irradiance, ambient temperature, wind speed and angle of incidences.
Consequently, observed differences between the module positions within the array can be
analyzed using parameters retrieved from the measured IV characteristic curves, such as
the open circuit voltage (Voc) and the short circuit current (Isc).

Ultimately, this work’s goal is to combine the findings of the model evaluation and the spatial
array analysis in order to evaluate how well the observed modeling algorithms for stand-
alone PV modules can be applied to estimate the performance of the observed PV array at
certain weather conditions. Thus, the aim is to provide crucial information which can be used
for the development of modeling algorithms and rating standards dealing with entire PV
arrays.

To conclude, the project goals of this work are to:

e Provide a comprehensive overview of factors affecting outdoor PV array
measurements and performance.

e Provide an overview of existing PV modeling algorithms and standards that are
relevant to this work.

e Describe the electrical layout of the PV array, as well as give information about
measurement positions and the functional principles of the deployed IV-tracers.

¢ Evaluate the goodness of fit of the modeling algorithms of IEC 61853-3 draft version
82/1066/CD using the on-site, instantaneous measured climatic data at NIST’s
facilities for different irradiances, wind speeds, ambient temperatures and angles of
incidence as well as for different days with characteristic weather conditions.
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e Analyze differences between the array’s modules according to their position at
various irradiances, ambient temperatures, wind speeds and angles of incidence, as
well as on specific days with characteristic weather conditions, by using measured
IV curve parameters, such as Voc and Isc.

1.3 Scientific Questions

Concluding the above described project goals, the following four main scientific questions
for this work are:

¢ How well do the modeling algorithms suggested by the IEC 61853-3 committee draft
version 82/1066/CD predict the operating power and backside temperature of field-
deployed PV modules?

e Does the agreement between modelled and measured performance change for
different types of days having characteristic weather conditions and/or different
ranges of irradiance, wind speed, ambient temperature and angles of incidence?

¢ Do the comparisons have any dependence on where a particular module is located
within the ground mounted PV array?

e What are possible reasons for observed inconsistencies between the in-array
mounted PV modules when comparing them according to their position within the
array row (top, middle, bottom position) and their position within the whole array itself
(middle of array, edge of array) and how can these differences be explained by using
IV curve characteristic parameters (Voc and Isc) measured by IV tracers at the
granular module level?

1.4 Scope of work and limitations of research

The following chapters describe the scope and limitations of the above mentioned project
goals and scientific questions.

1.4.1 Observed PV module characteristics

This project focuses on individual PV modules within the ground mounted PV array at NIST’s
campus in Gaithersburg, Maryland (USA). Observations concentrate on direct current (DC)
measurements taken by IV curve tracers mounted on the rack framing structure of individual
modules of each of the 96 strings in the PV array. Measured electrical PV module data
includes the module/string operational current (lop) and module differential voltage (Vop) at
every 1-second time interval as well as IV curve sweeps of each individual module every 5-
minutes. This work’s effort does not include any investigation regarding module or system
component degradation. A more detailed description of electrical measurements taken by IV
curve tracers can be found in section 3 and section 6 of this work.
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1.4.2 Modeling algorithm compromises

Performance modeling of the PV output power and energy yield estimations are calculated
by the modeling algorithms used in the international standard IEC 61853-3 which currently
exists as committee draft version 82/1066/CD. The mathematical algorithms of this standard
take into account (1) angle of incidence (AQI) effects, (2) spectral sensitivity correction, (3)
the dependence of the module temperature on irradiance, ambient temperature and wind
speed as well as (4) the dependence of the module efficiency and output power on ranges
of irradiance and module temperature. (IEC, 2016b) For the scope of this work, the
evaluation of the algorithms suggested by the IEC 61853-3 draft focus on the (1), (3) and
(4), while the spectral correction (2) is considered through a different approach in this work,
namely that developed by Lee and Panchula (2016) and suggested by the Photovoltaic
Performance Modeling Collaborative (PVPMC). (PVPMC, 2017) This is on the one hand due
to limited data availability, on the other hand it is because the current draft version of IEC
61853-3 does not provide a complete definition of the spectral correction calculation
procedure. Furthermore, the spectral correction is shown to be significantly smaller than the
AOI correction. Thus, the evaluation of the algorithms suggested by the IEC 61853-3 draft
focuses on the correction procedure for angle of incidence (1) based on the model presented
by Martin and Ruiz (2000), the spectral correction (2) based on the model of Lee and
Panchula (2016), the prediction of the module temperature (3) based on the model from
Faiman (2008), and the interpolation method (4) using the performance matrix of IEC 61853-
1 that ultimately provides the instantaneous predicted power values. The following table
gives an overview of modeling algorithms used in IEC 61853-3 and the alternative model
used in this work for spectral correction.

_ Spectral Module DC module
AOI correction i
) correction temperature output power
(2) 3) 4)
Alternative
model to IEC IEC 61853-3:
IEC 61853-3: _
Model used , _ 61853-3: IEC 61853-3: Interpolation
_ Martin and Ruiz _
for evaluation (2000) Lee and Faiman (2008) method, IEC
Panchula (2016b)
(2016)

Table 1 Overview of models involved in the evaluation of IEC 61853-3 of this work (own table)

In addition, it is important to mention that this work focuses on the use of on-site,
instantaneous measurements taken by the installed equipment at NIST’s ground mounted
PV array in Gaithersburg, rather than using representative and averaged standard climate
profiles as suggested by the IEC standard draft. The use of the calculation algorithms
described in the draft version of IEC 61853-3 requires a relatively small number of tests in
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order to determine key parameters for the estimation of power, and subsequently energy
values of individual PV modules. These preliminary required test procedures are described
in the first two parts of the standard (IEC 61853-1 and IEC 61853-2) and have already been
performed for NIST’s ground array module types. Three PV modules of the same type as
those in the observed PV array were tested at an independent test laboratory — CFV solar
test laboratory in Albuguerque, NM (USA) — in October 2016. (CFV, 2016) For the scope of
this thesis, it is assumed that these three tested modules can be treated as equivalent to the
modules within the PV array, as two of them had been aged outside for nearly the same time
interval as the modules within the ground array (although in open-circuit condition).
Differences in aging are assumed to be negligible; however, studies of Jordan (2012) show
that crystalline silicon modules left in open-circuit conditions show slightly lower degradation
rates than maximum power tracked modules, with a difference of < 1 %/year. Furthermore,
the modeling algorithms used in this project do not consider any degradation modes. A
detailed description of the applied modeling algorithms and test procedures performed by
CFV Solar Test Laboratory in this work can be found in section 3 of this work.

1.4.3 Measurement position compromises

Measurement data required for the modeling algorithms, such as ambient temperature
(Tamb), wind speed (v), global horizontal irradiance (GHI) and the global in-plane irradiance
(Gpoa), are taken directly at the ground mounted PV array location. Additionally, the PV
module temperature (Tmod,meas) iS measured at the backside of a module in the middle of the
PV array, located in the middle row of the third shed of the array, column 24 (indicators: row
13, column 24). This temperature measurement consists of the measurement of 4 RTD
sensors positioned according to the international standard IEC 60891. (IEC, 2009) For the
scope of this project it is assumed that the mean of these 4 RTD sensors measured on this
particular module can be seen as representative for all modules in the array. The direct
normal irradiance (DNI), required for the calculation of the direct horizontal irradiance (DHI)
and the direct in-plane irradiance (Bp) is measured at a weather station about 740 m from
the array at NIST’s campus. For the scope of this project it is assumed that differences in
sky conditions between instantaneously measured data at the weather station and data
measured directly at the ground mounted PV array can be neglected. A closer description of
the deployed measurement equipment and its positions can be found in section 6 of this
work.

1.4.4 Observed weather conditions and characteristic days

The data used in this research was measured between August 2016 and April 2017.
Comparisons in the project focus on a set of 8 characteristic weather conditions, each of
them represented by 24 days of measurements, with 3 days per characteristic weather
condition. All observations referred to in this work are therefore limited to these specific 24
days. This permits the evaluation modeling algorithms for certain ranges of irradiance, wind
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speed, ambient temperature as well as angle of incidence on actual measured days. A
detailed description of the selection criteria for the chosen days (data set population) can be
found in section 3 of this work. The 8 characteristic weather conditions are categorized
according to their daily average irradiance, wind speed and ambient temperature during
daylight times (sun zenith angle < 90) and periods without shadowing or deposition of snow
on the array’s modules. It is assumed that any dust deposition happens uniformly across the
entire array. To ensure these conditions, weather data, as well as images of the array and
sky have been assessed.

1.4.5 Uncertainty and calibration of equipment

The scope of this work does not consider quantitative evaluations of uncertainty introduced
by the measurement equipment, although it intends to provide a qualitative description of
the system components. However, all deployed measurement equipment in this project is
verified to be accurately calibrated according to standard procedures. The last recalibration
of the pyranometers at the ground array happened in May 2016. The last recalibration of the
pyrheliometers measuring the direct normal irradiance (DNI) happened in November 2016.
The last recalibration of the ambient temperature sensor happened in April 2013. The last
recalibration of the wind speed sensor happened in July 2016. Silicon sensors were
calibrated at the factory and verified to be within their specifications. Additionally, the
radiometers are cleaned three times a week in order to avoid deviation of measurements
from dust deposition.
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2 Definition of terms

This chapter deals with the description and definition of terms and expressions used
throughout the elaboration of this thesis. In the following paragraphs, terminology related to
the observed PV ground array, data monitoring, data analysis and weather data is explained.

2.1 PV ground array terminology

The terminology of the PV ground array’s module positions finds use in the comparison of
differences within the 96 traced PV modules at certain positions of the array within this thesis.
Figure 1 shows the observed PV ground array at the campus of NIST mounted on coarse
gray granite stone (#57 stone) and surrounded by grass and bio retention area. It consists
of five sheds, of which four of them contain five rows of PV modules. The northern-most fifth
shed consists of only four rows. In total, there are 48 columns and 24 rows of PV modules
within the array.

Figure 1 Terminology of positions of PV ground array at campus of NIST, Gaithersburg, a) satellite
picture for the definition of sheds, b) picture of shed 1 for the definition of rows and columns within a
shed (Fairbrother, 2017)

This work focuses — next to the evaluation of IEC 61853-3 calculation procedures — on the
comparison of PV module positions — also explained in section 0 of this work — such as top,
middle, bottom of each shed of the array. Furthermore, it brings traced modules mounted at
the middle of the array and traced modules mounted at the edge of the array into comparison
— see section 0 of this work.
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2.2 Data processing terminology

For better understanding of topics related to monitoring data processing, this chapter defines
the following terms used in this thesis:

2.2.1 Weather data

Weather data refers to on-site measured weather parameters that are required for the
evaluation of IEC 61853-3 calculation procedures, such as: ambient temperature (Tamb), wind
speed (v), global horizontal irradiance (GHI), direct normal irradiance (DNI) and global in-
plane irradiance (Gpoa). Solar zenith angle (6;) and solar azimuth angle (64) are calculated.
Weather data is available as minutely averages. For further explanation see section 0.

2.2.2 Operational data

Operational data refers to PV module DC parameters measured by deployed IV tracers at
one module of each string within the observed array (in total 96 tracers/modules). It includes
operational, instantaneous voltage (Vop) and current (lop) as well as frequently taken IV
curve sweeps. Vop and lop are available in 1-second intervals. IV curve sweeps are
available in 5-minutes intervals. For further explanation see section 0.

2.2.3 IV curve sweep

IV curve sweeps or traces are measurements performed by ‘sweeping’, i.e. varying, the load
on a PV source over a range of voltages (between OV and Voc) and currents (depending on
the irradiance). Many performance characteristics of the observed PV module/cell can be
determined through IV curves — as described in section 0. An IV curve sweep typically takes
less than a second, in the case of this work about 300ms. For further explanation related to
IV curve tracers and IV curve parameters see section 0.

2.2.4 Minutely averages of weather and operational data

This work focuses on the comparison of minutely averages of weather data, used as input
for the calculation procedure of IEC 61853-3, compared to minutely averages of operational
voltage (Vop) and current (lop). Averages contain available data measured in secondly
intervals, starting with the first second of a minute (e.g. 13:10:01) up to the last second of a
minute (e.g. 13:11:00). For further explanation related to monitoring data timing see section
0.

2.2.5 Time stamp

Time stamp refers to the corresponding time of a monitored data point. The time reference
in this work is provided by the weather data. Data points of operational data close to this
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time stamp are used for further data processing and analysis. For further explanation related
to monitoring data timing see chapter 0.

2.2.6 Data anomaly

Data anomaly refers to data that is identified as an obvious outlier in, or is missing from an
observed data set. This data is either filtered and not considered in further data processing
and analysis or is added through mathematical approaches (e.g. linear interpolation between
data points of a data set). For further explanation related to data anomaly processing see
section 0.

2.3 Weather data terminology

The following chapters provide definitions of weather data used for the purposes of this work.

2.3.1 Ambient temperature (Tamb)

The ambient temperature refers to the outdoor measured ambient air temperature at the
observed PV ground array at the campus of NIST provided in degrees Celsius (°C). The
temperature is measured via resistance temperature detector (RTD) probe on-site at the
array’s location — not shading the modules and not in stagnant air — mounted in radiation
shield to prevent the probe to be influenced by radiative heat exchange from the sun and
surroundings, while still allowing ambient air flow around the probe. (Boyd, 2015) For further
explanation related to measurement position and equipment see section 6 of this work.

2.3.2 Module temperature (Tmod)

The term ‘module temperature’ refers to the measured PV module back sheet surface
temperature (Tmodmeas) Measured via 4 mounted RTDs at the back of one module deployed
in the middle of the observed PV array — measured in degrees Celsius (°C). RTDs are
positioned according to IEC 60891. (IEC, 2009) For further explanation related to
measurement position and equipment see section 6 of this work.

The modeled module temperature (Tmod,iec) through the procedures of IEC 61853-3 refers to
the estimation formula developed by Faiman (2008). For further explanation related to the
module temperature calculation see section 0 of this work.

2.3.3 Wind speed (v)

Wind speed refers to measurements taken by an ultrasonic wind sensor at the north of the
entire observed PV ground array, located in horizontal orientation next to the array about
56 cm above the array and 83 cm to the north of the modules. Measurement data is provided
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in meters per second (m/s). For further explanation related to measurement position and
equipment see section 6 of this work.

2.3.4 Sun elevation (0e), zenith (0;), azimuth (0a)

The sun elevation angle is defined as the angle between the horizon and the sun, i.e. the
altitude of the sun. The sun zenith angle is defined as the angle complementary to the sun
elevation angle, i.e. the angle between the zenith and the sun. The sun azimuth angle is the
horizontal angle of the sun, measured clockwise from north (e.g. north = 0, east = 90, west
= 270). The figure below shows the above described sun position angles.

< - =» North
G -

B = elevation angle, 8 = zenith angle, s = azimuth angle,
measured up from measured from measured from
horizon vertical North

Figure 2 Sun position and relevant angles for calculation procedures (PVPMC, 2017)

The above described angles, used in this work, are provided via calculations through the
SOLPOS sun position algorithms of NREL (2000).

2.3.5 Sun angle of incidence (AQI)

The angle of incidence (AOI) is defined as the angle between the sun’s rays and the
observed surface hit by the sun rays, e.g. the surface of the PV array/module. It can be
determined as:

A0l = cos‘l[cos(ﬂz) * cos(By) + sin(6,) * sin(Or) * cos(HA - HA_army)]

Equation 1 Formula for calculation of angle of incidence (PVPMC, 2017)

Where 6, is the sun zenith angle, B the tilt angle of the PV array/module, 64 the solar azimuth
angle and 0a aray the azimuth angle of the observed array/module. (PVPMC, 2017)
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2.3.6 Air mass (AM)

The air mass (AM) describes the path length of solar radiation beams through the
atmosphere before reaching the earth, relative to its overhead path length (shortest possible

path length). (Molina, 2016)
V

Figure 3 Air mass definition (pveducation, 2017a)

Thus, it is an indicator that quantifies the reduction in power of light that passes through the
atmosphere and is absorbed by air and dust — usually used for spectral corrections — and is
defined as:
1
- cos(6,)

Equation 2 Formula for calculation of GHI (pveducation, 2017a)

Where 6, is the zenith angle. Thus, AM is a function of time and equals 1 when the sun is
exactly in overhead position. AM furthermore serves the purpose of definition of standard
spectra that facilitate the accurate comparison between solar cells — as mentioned in section
0 of this work. The defined standard spectrum is called AM 1.5 (or AM 1.5G, with G indicating
global radiation including direct and diffuse components). (pveducation, 2017a) In order to
obtain values of AM related to the corresponding altitude of the observed location, it is
required to correct the values of AM. This is done via correction through air pressure.
(PVPMC, 2017) AM used in this work for spectral correction therefore refers to the absolute,
pressure corrected air mass AM, at the location of interest related to the standard pressure
at sea level (in the unit of Pascal).

AM. = AM * pressure
¢ 101325

Equation 3 Formula for calculation of pressure corrected AM, AMa (PVPMC, 2017)

AM in this work is provided via calculations through the SOLPOS sun position algorithms of
NREL (2000).
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2.3.7 Air pressure (p)

Changes in the ambient air pressure can lead to changes in the atmosphere and therefore
lead to systematic changes in the solar spectrum. Air pressure can be measured with a
barometer. (PVPMC, 2017) In this work it is measured via capacitive silicone pressure
sensors and given in the unit of kilopascal (kPa). (Boyd, 2016b)

2.3.8 Relative humidity (RH)

Changes in relative humidity can also significantly influence changes in the solar spectrum.
The relative humidity given in percent (%) is a measure of how saturated a gas is with water
vapor. It can be measured with hygrometers. In this work the relative humidity is measured
via capacitive thin film polymer humidity sensors in 1-second averages. (Boyd, 2016b)

2.3.9 Precipitable water (Pwat)

Precipitable water (Pwa) describes the total amount of water in a vertical column of the
atmosphere and is specified through centimeters of liquid water (atm cm). Pua iS an
important indicator, as water causes heavy spectral absorption. Typical values for Py range
from 1-3 cm in temperate climates and reach values up to 5 cm in tropical locations. Accurate
definitions of Puwa usually requires measurements via radiosonde balloon soundings.
However, it is possible to estimate Pya With sufficient accuracy by using ground-level relative
humidity and ambient temperature — as done in this work using the method suggested by
Keogh and Blakers (2004). Pwai, together with AM, is used for spectral correction in this work.

2.3.10 Turbidity (B)

Turbidity is not used in further observations of this work, but shall be mentioned for
completeness — as it is also part of the work done by Keogh and Blakers (2004) and
considered to be one of the major influences for spectral losses. It describes the scattering
and absorption of light by small particles in the atmosphere (e.g., dust, water, ice,
hygroscopic salt particles). High values of turbidity correspond to higher spectral mismatch.
(Keogh and Blakers, 2004)

2.3.11 Direct normal irradiance (DNI)

Is defined as the amount of solar radiation per square meters received by a surface that is
always normal to the sun’s rays. It is given in watts per square meter (W/m?). The direct
normal irradiance (DNI) typically is measured via small aperture instruments called
pyrheliometers with thermopile sensors — or other photosensitive sensors. The construction
of this instruments limits its measurement to the direct beam and circumsolar radiation
normal to the sun. If not measured, DNI can be calculated via co-planar measurements of
diffuse and total radiation by devices with a view of 180° and with known incident angle
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between measurement plane and the sun. (PVPMC, 2017) In this work, DNI is measured via
thermopile pyrheliometers. (Boyd, 2015)

2.3.12 Global horizontal irradiance (GHI)

The global horizontal irradiance (GHI) is defined as the amount of terrestrial irradiance on a
surface horizontal to the surface of the earth in watts per square meter (W/m?). It can be
measured with a range of measurement instruments. (PVPMC, 2017) In the case of this
work it is measured by a field deployed pyranometer. (Boyd, 2015) If it is not measured, GHI
can be calculated using the direct normal irradiance (DNI) and the diffuse horizontal
irradiance (DHI) as follows:

GHI = DHI + DNI * cos(6,)

Equation 4 Formula for calculation of GHI (PVPMC, 2017)

2.3.13 Diffuse horizontal irradiance (DHI)

The diffuse horizontal irradiance (DHI) is defined as the terrestrial irradiance received by a
horizontal surface and scattered or diffused by the atmosphere — given in watts per square
meter (W/m?). It is — as explained above — part of the GHI that is not coming from the sun
beam. Typically, DHI is measured also via pyranometers that block the direct beam
component of the radiation, in order to measure only the diffuse part of the radiation. If not
measured, DHI can be calculated in a similar way as GHI — see above. (PVPMC, 2017)

2.3.14 Direct horizontal and in-plane irradiance

The direct horizontal irradiance is defined as the direct normal irradiance (DNI) on a
horizontal plane and the direct in-plane irradiance is defined as the DNI on a tilted plane —
both in watts per square meter (W/m?) — and can be calculated as follows using the angle of
incidence to horizontal and tilted surfaces:

DirHI = DNI * cos(AOIyorizontal)

Equation 5 Formula for calculation of the direct horizontal irradiance (PVPMC, 2017)

Dirll = DNI * cos(AOIjjteq)

Equation 6 Formula for calculation of the direct in-plane irradiance (PVPMC, 2017)

2.3.15 Global in-plane irradiance (Gpoa)

The global in-plane irradiance (Gpoa) — Or plane of array irradiance — in this work is defined
according to IEC 61853-3 draft as the sum of the direct in-plane irradiance and the diffuse
in-plane irradiance. (IEC, 2016b) G2 can be measured using reference cells, pyranometers
or reference modules mounted in the same orientation of the array/module. (Boyd, 2015) In
this work, Gpoa measured data is available from silicone reference cell measurements,
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thermopile pyranometer measurements and silicone photodiode pyranometer
measurements — available in watts per square meter (W/m?). Used measurements for the
observations of this work refer to measurements taken by a thermopile pyranometer. Gpoa
can be used to calculate the diffuse in-plane irradiance through the difference of Gpoa and
direct in-plane irradiance as follows:

Diff.11 = Gpoq — Dirll

Equation 7 Formula for calculation of the diffuse in-plane irradiance (IEC, 2016b)
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3 Methodology

Based on the above described project goals and scientific questions, the methodological
approach of this work is divided into 4 steps: (1) a comprehensive summary of the state of
the art of outdoor PV array measurements and performance as well as PV modeling
methods, (2) the organization and processing of monitoring data, (3) the evaluation of the
goodness of fit of the modeling algorithms applied by the IEC 61853-3 draft, (4) the analysis
of inconsistencies of PV modules mounted at different positions within the PV array.

3.1 State of the art research

Section 4 and 5 of this work cover the overview of factors affecting outdoor PV array
measurements and performance as well as pertinent existing PV modeling algorithms and
standards. Section 6 of the thesis describes the electrical layout of the PV array as well as
measurement positions and function principles of applied equipment. Findings related to
these topics are based on literature research and work done at NIST, Gaithersburg, and will
be referred to accordingly in the respective section of this work.

3.2 Organization and processing of monitoring data

All data analyzed in this work is processed off-line using the commercial software package
of MATLAB R2015b (The MathWorks, Inc.). For processing, data was first imported into
MATLAB from the database via SQL database queries and import functions for comma
separated values files before further including the measured data into the calculation
procedures.

3.2.1 Monitoring data and timing

The available monitoring data consists of (1) recorded weather data (ambient temperature,
wind speed, global horizontal irradiance, direct normal irradiance, global in-plane irradiance)
at or close to the ground-mounted PV array and of (2) operational data of modules mounted
within the array (module backside surface temperature, operational current, operational
voltage, IV curve measurements). Monitored weather data, including measurements of the
module backside surface temperature, is being recorded in 1-second intervals and available
as minutely averages as comma separated value (.csv) files accessible via SQL database
gueries. Operational data of PV modules within the array is being recorded in 1-second
intervals, except for the IV-curve traces which are being recorded every 5 minutes — both
also available as .csv-files. Each IV curve sweep lasts up to 300 ms, in this time the particular
PV module is bypassed from its string. This means that during IV-curve sweeps operational
voltage (Vop) and current (lop) are not being monitored. Next to the weather data and
operational PV module data, (3) network cameras are installed around the PV array, taking
pictures of the array at certain positions within the array in 5-minute intervals. A sky camera
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equipped with a fisheye lens takes horizon to horizon sky images in 5-10-second intervals.
An overview of monitored data, parameter abbreviations, measurement intervals and
equipment locations is shown in Table 1. Closer information to the corresponding
measurement equipment and equipment models can be found in section 6 of this work as
well as in Appendix A.

Monitoring I Measurement Measurement
Parameter Abbreviation ) .
data set interval location
1 minute averages of
ambient temperature Tamb 1 second ground array
measurements
1 minute averages of
wind speed v 1 second ground array
o measurements
s . 1 minute averages of
o global horizontal
5 . . GHI 1 second ground array
P irradiance
= measurements
() .
= . 1 minute averages of
direct normal rooftop weather
. . DNI 1 second .
irradiance station
measurements
. 1 minute averages of
global in-plane
. . Gpoa 1 second ground array
irradiance
measurements
- . 1 minute averages of
g module backside Tmod 1 secondg round arra
o temperature mod,meas 9 y
= measurement
5 1 minute averages of
2 operational current lop 1 second ground array
I
o3 measurement
= 1 minute averages of
g operational voltage Vop 1 second ground array
S measurement
o IV curve traces - 5 minutes ground array
g § array camera - 5 minutes ground array
% ‘g rooftop weather
05 sky camera - 5-10 seconds :
= station

Table 1 Overview of available monitoring data, data abbreviations, measurement intervals and
measurement locations (own table)

All measurements are synced once a day to an internet time server and are accurate to
within a second. The weather data — including the module backside temperature — is being
recorded in 1-second intervals and available as minutely integrated values. The operational
data from the 96 IV tracers — that are mounted at 1 module per string within the array — is
being recorded in 1-second intervals (operational voltage Vop, operational current lop) and
5-minute intervals for IV curve sweeps — both sequentially logged according to the
corresponding tracer network processing procedure. There are 4 sets of wireless tracer
networks in use, each of them containing a certain number of tracers adding up to a total of
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96 tracers for the whole array. Tracing Vop and lop at each module happens at each tracer
network separately and unsynchronized, but at similar time steps close to each other. The
approximate time difference between the tracer networks at each time step for operational
voltage and current ranges from less than 1 second to maximum about 2 minutes®. IV
sweeps are taken every 5 minutes also unsynchronized and separately within each tracer
network. Although not synchronized, the IV sweeps of each tracer network are taken at
similar times close to each other with an approximate time difference at each time step
between the tracer networks of about maximum 5 minutes. The approximate sweep time for
one |V sweep is up to 300 ms. The number of operational 1 second data missing caused
through bypassing the modules for IV sweeps is 1 to 2 seconds, with an average of 1.5
seconds. The following figure shows a schematic diagram that visualizes the described
behavior of traced data at certain time intervals.

\ |
1
Weather data 0 ﬂ H ﬂ ﬂ ‘H H ﬂ ﬂ H !_I;
\ \ —
1 2 3 4 5 6 7 8 Monitoring Time [min
\
1
Operational Data
Vop, lop ‘ |
I
1 2 3 4 5! 6 7 8 Monitoring Time [min]>
. \
Operational Data H
IV-Curve Sweeps ‘ |
\
1 2 3 4 5‘ 6 7 8 Monitoring Time [min]>
1
Camera Photos 0 h m
of PV Array ! |
\ \
1 2 3 4 5| 6 7 5 Monitoring Time [min]

Figure 4 Schematic graph for visualization of weather data, operational data and camera picture
timing (own figure)

The data resolution applied in this research focuses on instantaneously monitored, minutely
averages of weather and operational data. The available minutely averages of the weather
data serve as a time reference. Averages of monitored PV operational data are calculated
by averaging all existing 1 second measured data within 1 minute of the time reference. This
way, the issue of non-synchronized data monitoring between the 4 tracer networks and the
weather data monitoring can be overcome by picking only data that corresponds to the
observed minutely time point of the weather data time reference. The operational data being
processed to minutely averages starts with the one at the time point closest to time reference
time point — i.e. the closest 1 second data point in case of lop and Vop and the closest 5
minute data point set in case of the IV curve sweeps. For missing data points or data points
that are slightly off the corresponding reference minute, a maximum offset to the timing

5 Based on a sufficient number of self-conducted random sample tests.
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reference is implemented. This maximum offset to the minutely timing reference for the 1
second operational data points is set to up to 1 minute and up to 5 minutes for the every 5
minutes measured IV curve sweep data point sets. This means that the maximum allowed
difference between modeled and measured data points for comparison is 1 minute for
secondly and 5 minutes for 5-minutely monitored data. Thus, data points that do not meet
this requirement are not considered for further evaluations. The following figure shows a
schematic draft table to better visualize the timing reference and chosen offsets.

Time Weather data Operational data IV sweeps
- (every 1 minute) | (every 1second) | (every 5 minutes)
13:09:59 data point 1
13:10:00 data point 1 data point 1
13:10:01
13:10:02 data point 2
13:12:57 data point 175
13:12:58 data point 176
13:12:59 data point 177
13:13:00 data point 2 data point 178
13:13:01 data point 179
13:13:02 data point 180
13:13:03 data point 181
13:13:59 data point 237
13:14:00 data point 3 data point 238
13:14:01 data point 239
13:14:59 data point 297
13:15:00 data point 3 data point 2
13:15:01
13:15:02 data point 298
13:15:03 data point 299

Table 2 Schematic visualization of weather data as timing reference: crossed out cells represent
data points that are not available, cause through temporarily bypassing the module for IV curve
sweeps; grey filled cells represent available data points closest to the timing reference
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The choice of processing minutely averaged data is related to the availability of the
monitored weather data, which is available as minutely averages through SQL data base
queries. This leads to the effect that possible changes of weather within a 1 minute time
interval are smoothed by the average calculation. It must be considered that especially the
irradiance — that directly affects the PV modules photocurrent generation — could suffer from
uncertainties introduced by this smoothing through the average calculation. Ambient
temperature, as well as wind speed — indirectly influencing the PV modules open circuit
voltage (Voc) and thus the fill factor and efficiency of the PV module — are expected to be
less sensitive to this smoothing effect, as it involves also a certain degree of thermal inertia
of the PV modules. On the other hand, the minutely averaging of the available weather and
operational data leads to the advantage that data anomalies, such as sudden peaks,
variation or missing irradiance or wind speed data as well as sudden peaks, variations or
missing operational data are smoothed, allowing easier comparison of the monitored data —
given the fact that module traces are not happening at the exact same time.

3.2.2 Monitoring data anomalies

Before further processing the accessed monitoring data it is important to identify potential
data anomalies and outliers. Those data can be caused by incorrect measurements or
measurement noise, which is important to be filtered out or corrected before further analyzing
the monitored data. To not lose scientifically interesting data points, it is at the same time
crucial to be careful when dealing with samples containing such data. In the current work
four types of data anomalies could be identified and corrected or filtered to allow better
assessment of data, those are:

e Missing, not existing data points:
These data anomaly relates to data points that do not appear at all in the data sets
(also not as time steps), meaning that one or more time steps are not monitored and
therefore can not be considered. This type of data anomaly could be detected for the
secondly available operational voltage (Vop) and current (lop), which are not
monitored for short time intervals when IV curve sweeps are taken (every 5 minutes)
— as mentioned above.

e Empty values in data samples:
Such data points indicate that the measurement at the particular time point was not
monitored for unknown reasons, but exists as a time point in the sample. Those data
usually are represented as ‘not-a-number’ (NaN) values or a sequence of zeros ‘0’
(for SQL queries), when processing data in MATLAB, and were detected for minutely
available irradiance and secondly available operational voltage (Vop) and current
(lop) measurements.
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o Negative values in data samples:
Negative values of data that seems unlikely to reach values below zero were
identified. This data anomaly could indicate faulty measurement or measurement
noise. Affected are mainly irradiance and wind speed measurements (available for
every minute), but to some extent also secondly measurements of operational
voltage (Vop) and current (lop). In the case of operational data this could indicate
local mismatch behavior within the array, caused by partial shading or inherent
differences between the modules. In the case of irradiance measurements, this can
be related to the thermopile sensor radiating more outward than receiving — which is
usual to happen to thermopile pyranometers at night times. The exact source of this
anomaly was not detected within the scope of this work.

e Sudden peaks or variation:
Sudden peaks in data that seem unlikely to reach values above certain limits were
identified. This data anomalies could be related to faulty measurement or
measurement noise, it occurs mainly for wind speed measurements. The actual
source of this anomaly was not detected within the scope of this work.

Missing, not existing secondly available time points of operational data are corrected by
minutely averaging the available data points, also explained in section 3.2.1.
In the calculation of minutely averages of the secondly available operational data points
within one minute time interval ‘NaN’ data points are omitted. In the case of irradiance data
which is available in minutely time intervals, ‘NaN’ values are corrected by linear interpolation
between the previous and next existing ‘faultless’ data points.
Negative, unlikely values and sudden peaks in minutely available irradiance and wind speed
data sets also are corrected through linear interpolation using the same method. The
uppermost acceptable limit of wind speed is set to 20 m/s.
Correction of anomalies of minutely data through linear interpolation is done for anomalies
occurring for more than 1 minute period by using the following one-dimensional linear
interpolation formula:

Y=Yt —(yl_y())*(x_xo)

(1 — x0)

Equation 8 1D linear interpolation correction of data anomalies (own formula)

3.3 Evaluation of PV modeling algorithms

This chapter describes the methodological approach of this work related to the evaluation of
the PV module modeling algorithms suggested by the IEC 61853-3 committee draft. The
algorithms of the evaluated standard draft are based on first principles mathematical models
and depend on a set of climatic data that serve as input data for its calculation procedure.
The aim of the evaluation in this work is to find out about how well the modeling algorithms
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of the IEC 61853-3 estimate the operating power and backside surface temperature of field-
deployed PV modules at various ranges of weather conditions measured at or close to the
ground mounted PV array at NIST.

Besides the climatic weather data as input, the modeling algorithms of IEC 61853-3 require
a relatively small number of test results delivered by part 1 and part 2 of the standard. As
described in section 0 of this work, the tests of IEC 61853-1 and 2 have been performed at
an independent test laboratory for three modules of the same type as deployed in the
observed PV array. As for the climatic data set, instead of using climatic reference profiles —
as suggested by the IEC 61583-3 — on-site measurements at or close to the observed ground
array serve as input for the algorithms of IEC 61853-3.

In total, this work focuses its observations on a set of 24 days of measurement, consisting
of 8 characteristic weather conditions. This way it is aimed to cover a range of climatic
conditions as wide as possible to allow comprehensive feedback about the behavior of the
model’'s algorithms at various weather conditions — referred to as days with characteristic
weather conditions — as well as ranges of irradiance, ambient temperature, wind speed and
angles of incidence — referred to as binning of weather data (data bins/data samples). This
is of high interest, as the developed standard aims to provide the ability of module power
and energy rating at different climatic profiles for different locations.

The following sections of this chapter cover a detailed description of methods applied by the
modeling algorithms and calculation procedures of IEC 61853-3, the selection approach of
days with characteristic weather conditions (data population), the selection approach of bins
(data samples) of relevant weather data as well as the statistical evaluation approaches
through exploratory data analysis (EDA).

3.3.1 IEC 61853-3 modeling algorithms

The aim of the international standard IEC 61853 is to establish a method for determining and
rating the PV module performance concerning energy and the antecedent power for a set of
selected reference climatic profiles, also provided by the IEC standard. Part 3 of the standard
contains — next to necessary calculation of correction factors for angle of incidence and
spectral response — the procedures for the calculation of the module backside temperature
as well as the module output power and, integrated over its time steps, ultimately the energy
output of the modelled PV module. This work focuses on the evaluation of module
temperature prediction as well as the prediction of the module output power, as these factors
ultimately influence the energy output of the PV module according to the suggested
calculation procedure. To predict the module temperature as well as the module output
power it is required to provide the calculations of IEC 61853-3 with a set of measured input
data, based on climatic data sets as well as on preliminary tests done by applying the test
procedures of IEC 61853-1 and 2. Figure 1 shows a summary of steps involved in calculation
procedure of IEC 61853-3.
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Figure 5 Flow chart of calculation procedure applied by IEC 61853-3 (IEC, 2016b)

More precisely, power prediction in the IEC 61853-3 ultimately is defined by the interpolation
of PV module output power between measured points at ranges of irradiance and module
temperature. The performance matrix used for interpolation is delivered by the tests of part
1 of the standard. (IEC, 2011) In the following, each of the steps in Figure 5 — until the module
output power prediction — is described in detail regarding the approach of this project.

3.3.2 Weather data inputs

The climatic data that serve as input for the above shown modeling algorithms are based on
on-site measurements at or close to the PV ground array at NIST — available as minutely
averages. A data set of 24 days in total is observed, containing a range of weather conditions
as wide as available — as mentioned in section 1.4. The data set focuses on times at which
the PV array is not shadowed and/or snow is deposited on top of the deployed PV modules.
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Required data include ambient temperature (Tamp), wind speed (v), global horizontal
irradiance (GHI) and the global in-plane irradiance (Gpoa). Gpoa iS measured via calibrated
thermopile pyranometer®. The measurement of the direct normal irradiance (DNI), which is
required for the calculation of the direct horizontal irradiance (DHI), the global horizontal
irradiance (GHI) and the direct in-plane irradiance (By), is taken at a different location close
to the array at the installed weather station on the rooftop of Building 226 at NIST’s campus
— measured via calibrated thermopile pyrheliometer’. As mentioned in section 1.4 of this
work, the spectral correction of the measured irradiance is considered through the approach
of Lee and Panchula (2016) — described in section 3.3.1. Thus, the calculation procedure of
IEC 61853-3 regarding spectral correction is not evaluated within the scope of this work. The
measured PV module temperature (Tmodmeas) referred to in this work is the mean of the
measured module temperature of 4 RTD probes, positioned according to IEC 60891 at the
backside of the PV module deployed in the middle of the observed array. For further
information related to measurement position compromises and deployed equipment see
section 1.4 and section 6 of this work.

3.3.3 IEC 61853-1 and IEC 61853-2

Part 1 of the standard describes the evaluation procedure of the PV module performance in
terms of power over a range of irradiances and temperatures. The main result of part 1 is a
performance matrix, containing measured module power for different irradiance and module
temperature ranges. (IEC, 2011) This matrix serves as basis for the determination of module
power at certain measured module temperature and irradiance ranges. Part 2 of the standard
describes the evaluation procedure of the PV module performance in terms of power over a
range of angle of incidences and sunlight spectra as well as the estimation of module
temperature. The result of part 2 are a set of characteristic parameters, required for the
calculation procedures in IEC 61853-3. (IEC, 2016a) Procedures of part 1 and 2 of the IEC
standard have been performed by an independent laboratory, CFV Solar Test Laboratory,
for three PV modules of the same type as deployed in the observed PV array — as described
in section 1.4 of this work. (CFV, 2016)

Regarding the performance matrix measurements performed at the test laboratory, test
points for the multi-irradiance and multi-temperature measurements cover irradiances from
100 to 1100 W/m? and module temperatures from 15 to 75°C, measured by using an
A+A+A+ solar simulator and an integrated thermal chamber for the test module, applying
laminar air flow and continuously monitoring of the module temperature at 4 points at the
module’s backside through calibrated RTD sensors. (CFV, 2016) The following table

6.7 Calibrated to the response (uV/(W/m?2)) at 45° incident angle with an uncertainty of about 3 % over
the entire incident angle range (0-90°), BOYD, M. T. 2016a. Broadband Outdoor Radiometer
Calibration Shortwave. Gaithersburg, MD, USA: NIST.
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illustrates the available multi-irradiance and multi-temperature measurements of the
performance matrix, measured at CFV Solar Test Laboratory.

Irradiance Temperature
(W/m2) 15°C 25°C 50°C 75°C
1100 © 0] ©
1000 © @ © ©
800 © ® © ©
600 O] @ © ©
400 © © © @
200 O] @ ) @
100 © O} @ @

(2 Measured and required by the IEC 61853-1 standard
& Additional test points; Measured but not required by the IEC 61853-1 standard

Table 3 Available measurement points of performance matrix (CFV, 2016)

Results of part 2 of the standard deliver coefficients necessary for the modeling of the
module temperature. Those are ‘uy’, being the constant heat transfer coefficient given in
[W/m?2°C], and ‘us’, being the convective heat transfer coefficient given in [Ws/m3*°Cs]. (IEC,
2016a) The required angular loss coefficient, ‘a/, is not delivered by the preliminary tests.
Therefore the applied coefficient a, in this work refers to research done by Martin and Ruiz
(2000), relating to typical crystalline silicone modules. A similar approach can be found in
the work done by Huld and Amillo (2015).

36



3.3.4 AOI correction — Model of Martin and Ruiz (2000)

The correction for effects related to angle of incidence (AOI) refer to optical losses of PV
modules working in field conditions. This is, because for most of the existing PV applications
angles of incidence of the solar radiation vary from the normal incidence at standard test
conditions (STC). Thus, solar radiation that hits the PV module’s surface at angles that
deviate from the normal to the surface suffer from increased reflection off the module and
therefore do not contribute to the photocurrent. (Huld and Amillo, 2015) The figure below
gives a schematic overview of angular losses of deployed PV modules and measurement
equipment.

Pyranometer:
G %

Ref. Cell:
G-R

PV-Module:
G-R

Figure 6 Schematic figure of PV module, pyranometer and reference cell and optical losses through
reflection (own figure)

In the present work, angular loss corrections apply to the measurements taken by the
thermopile pyranometer (Gpoa) as well as the thermopile pyrheliometer (DNI) — as they are
measuring in-plane irradiance with (almost) no reflective losses and, after AOI and spectral
correction are ultimately used for further prediction of module temperature and module
output power through the calculation procedure of IEC 61853-3. The AOI corrected in-plane
irradiance Georraol is calculated according to the procedure suggested by Martin and Ruiz
(2000), as follows:

Gcorr,AOl = Bcorr,AOI + Dcorr,AOI

Equation 9 Corrected in-plane global irradiance Georr,a01 (IEC, 2016b)

With Bcor,a01 being the AOI corrected in-plane direct irradiance and Dcorr.a0ithe AOI corrected
diffuse irradiance, calculated as follows:
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1— exp(— COS(AOI;it_moduIE) )]
Bcorr,Aol = DNT = COS(AOItilt,module) * | 1 |
l 1 —exp(— a_r) J

Equation 10 Corrected in-plane direct irradiance Bcorr,a01 (IEC, 2016b)

Dcorr,AOI = [Gpoa — DNI COS(AOItilt,module)] * {1 — exp [_air * (i (Sinﬁ + w) +

*
3 1+cosf

(0.5 % a, — 0.154) * (sinﬁ + M))]}

1+cosf

Equation 11 Corrected in-plane global irradiance Dcor,a01 (IEC, 2016b)

With a; being the above mentioned dimensionless, empirically determined angular loss
coefficient and B being the PV module surface tilt. The angular loss coefficient a; suggested
by Martin and Ruiz (2000) is applied, which is typically 0.169 for crystalline silicone
technologies, with higher values corresponding to higher angular losses.

ar c-Si [']
0.169

Table 4 Typical value for angular loss coefficient for c-Si PV modules (Martin and Ruiz, 2000)

This empirical parameter is mainly influenced through the optical transmittance of the PV
module — being strongly dependent on the degree of dust deposition, but as a second-order
effect as well influenced by the type of technology in use. (Martin and Ruiz, 2000) According
to Martin and Ruiz (2000), typical values for m-Si of 0.169 modules become 0.20 or 0.27 if
a moderate or thick dust layer is deposited on its surface, leading to a minimum possible
annual performance loss of about 3 % for the investigated ranges of latitudes and tilt angles
in their study. For this work, a value of 0.169 is chosen, assuming insignificant and uniform
dust deposition across the observed PV array at the chosen weather data set of 24 days.
Thus, the time since the last rain fall — i.e. cleaning of dust — is not considered in this data
set. The dependence of the optical transmittance of the PV module on a; can also be
illustrated through the following figure, showing the angular factor (relative reflectance) of a
module as a function of AOI and a.
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Figure 7 Relative reflectance of a PV module as a function of AOI and ar (IEA, 2017¢)

Angles of incidence are calculated according to the above described formula using the
MATLAB function ‘pvl_getaoi’, which is part of the online for free available MATLAB toolbox
provided by the PVPMC platform and requires as input the following data. (PVPMC, 2017)
The function ‘pvl_getaoi’ refers to the work done by King et al. (1997).
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3.3.5 Spectral correction — Model of IEC 61853-3 and Lee and
Panchula (2016)

As mentioned in the introduction, the energy conversion efficiency of PV cells depends also
on the wavelength of the incoming light — which is referred to as spectral response. Spectral
responsivity depends on the used technology, meaning that depending on the properties of
the used PV technology, photons with specific energy (wavelength) can excite electrons in
the PV material or not. (pveducation, 2017c) The spectral response (SR) of a PV module is
defined as the fraction of available irradiance that is converted into current, given in units of
A/W. SR is a function of wavelength and related to the quantum efficiency (QE, unitless), as
follows:

e
SRy =QE; A
2 = QF) * M

Equation 12 Spectral response (SR) as a function of the wavelength and the quantum efficiency
(pveducation, 2017c)

Where A is the wavelength of the light, e is the electron charge (1.602176565*10"-19
Coulomb), h is Plank’s constant (6.62606957*10"-34 J*s), and c is the speed of light
(2.99792458*10"8 m/s). (PVPMC, 2017) The quantum efficiency (QE) refers to the
measurement of the ratio of the number of carriers collected by the PV module/cell to the
number of photons of energy incident onto the PV module/cell. (PVPMC, 2017) The figure
below shows example of typical spectral response curves from a variety of PV technologies.
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Figure 8 Typical spectral responses of different PV technologies (PVPMC, 2017)
As the spectrum of the light — and thus also the wavelength and energy of photons — reaching
the PV module varies with time, the PV module output power — next to the total in-plane

irradiance — also depends on the spectrum of the light at each instantaneous time step. (Huld
et al., 2015) To consider this effect, spectral correction in the IEC 61853-3 draft’s calculation
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procedure is considered by using a correction factor Cs to calculate the spectrally corrected
global in-plane irradiance (Gcor,aolspectrai,1) @s follows (IEC, 2016b):

Ae
1000 = s (S * Reorra01(A) * dA)

e
Georr.a01 * J. A (S(A) * Rsrc(A) * dA)

Gcorr,AOI,spectral,l = Gcorr,AOI * (g = Gcorr,AOl *

Equation 13 Corrected in-plane direct irradiance Gceorr,AOl,spectral,1 (IEC, 2016b)

With S(A) being the spectral response, Rcora01 (A) the spectrally resolved in-plane irradiance
and Rstc (N) being the corresponding spectral intensity for the standard test condition (STC)
spectrum AM 1.5 according to IEC 60904-3 — using the integration limits from 300nm to
4000nm. (IEC, 2016b)

As mentioned in section 1.4 of this work, the spectral correction according to procedures in
IEC 61853-3 is not evaluated within the scope of this work due to lack of data availability on
the one hand, as well as due to an up to this time not fully defined approach of the IEC
61853-3 calculation procedures regarding spectral correction. To consider the spectral
correction in this work — and thus make predicted temperature and power values fully
comparable — the approach of Lee and Panchula (2016) is used to calculate a dimensionless
spectral mismatch factor to correct the measured global in-plane irradiance. This approach
— also suggested by PVPMC (2017)- calculates a correction factor for the irradiance from
atmospheric precipitable water (Pwa) and the absolute air mass (AM.) for certain PV
technologies with characteristic QE curve profiles. The spectrum considered in this approach
ranges from 280nm to 2800nm and does not cover the entire required spectral range from
300nm to 4000nm according to IEC 61853-3 procedure. (IEC, 2016b) The therefore used
functions are part of the PV library that is online available at the PVPMC platform:
‘pvl_FSspeccorr’, ‘pvl_calcPwat’, ‘pvl_absoluteairmass’. (PVPMC, 2017) Using the
calculated relative air mass (AM,) and measured site pressure (ps), the function
‘pvl_absoluteairmass’ provides the absolute air mass (AM,) for locations not at sea level (i.e.
not at standard pressure) — as described in section 2. The precipitable water (Pwai) in the
atmosphere is calculated by using the function ‘pvl_calcPwat’ with the measured ambient
temperature (Tamn) as well as the measured relative humidity (¢;) as input values — as
described in section 2 through the approach of Keogh and Blakers (2004). The function
‘pvl_FSspeccorr’ ultimately allows to calculate the spectral mismatch factor using the
calculated precipitable water (Pwa) and absolute air mass (AMa). (PVPMC, 2017)

Gcorr,AOl,spectral,Z = Gcorr,AOI * CS(AMa' Pwat)

Equation 14 Corrected in-plane direct irradiance Gcorr,AOl,spectral,2 (PVPMC, 2017)
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3.3.6 PV module temperature calculation — Model of Faiman (2008)

The module temperature measured at instantaneous time steps is mainly influenced by the
incoming solar irradiance, the module’s optical, electrical and thermal properties as well as
its (convective) heat exchange with the environment it is mounted in. (Koehl et al., 2011)
There are several approaches that aim to model the temperature of PV modules. An
overview of existing proposals for the simulation of the module temperature can be found in
the survey done by Skoplaki and Palyvos (2009). The model to estimate the PV module
temperature suggested by the IEC 61853-3 draft is derived from the energy balance of solar
thermal collectors (Hottel-Whillier-Bliss equations®), developed and validated by Faiman
(2008). The module temperature in this model, also used in the draft of IEC 61853-3, is
calculated using the following formula:

Gcorr,AOl

T = Tymp + —————
mod,IEC amb up + Uy * vV

Equation 15 Estimated module temperature according to model of Faiman (2008)

Where Tamb is the ambient temperature, Geor,a01iS the in-plane irradiance, corrected for angle
of incidence effects (see above) and v is the wind speed at the height of the module. The
parameters up and u are results from the test procedures in IEC 61853-2 and describe the
effect of constant heat transfer and convection on the module. Those are constants and are
retrieved through a least-squares linear fit of measured data with ug being the intercept value
and u; being the slope value. According to the test results of the IEC 61853-2 tests performed
at CFV Solar Test Laboratory, the coefficients for up and u; are:

Uo uz
[W/m2°C] | [W/m3Cs]
29.9 5.586

Table 5 Thermal model coefficients from IEC 61853-2 (CFV, 2016)

The approach of Faiman (2008) is based on the assumption that the thermal mass of
conventional PV modules — glass front side, polymer encapsulant back side — has a
negligible effect on the heat exchange with its environment. This way, it is possible to predict
the temperature of the PV module based on ambient temperature, incident irradiance and
wind speed by using only two numerical constants that can be derived by relatively simple
experiments performed with the procedures of IEC 61853-2. (IEC, 2016a) Faiman (2008)
validated his model for different module types, evaluating temperature data for 5 minute
averages. Results of the validation showed RMS errors ranging from 1.86 to 2.13 °C —
meaning the module power to be determinable to a precision of about £1 %, considering

8 Hottel HC, Whillier A. Evaluation of flat plate collector performance. Transactions of the Conference
on the Use of Solar Energy, Vol. 2, Part 1, University of Arizona Press, 1958; p. 74.
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typical temperature coefficients of power ratings of conventional PV modules of about 0.5 %
per K under stable weather conditions. (Faiman, 2008)

Like in the work done by Faiman (2008) conventional m-Si cell PV modules observed in this
work are mounted on an open rack, being exposed to convective cooling and radiation
exchange with its environment. Unlike in the work done by Faiman (2008), the evaluation of
the calculation procedures of IEC 61853-3 in this work is done for 1 minute averages of
monitored data instead of 5 minute averages — as mentioned in section 3.2.

Furthermore, Koehl et al. (2011) investigated the model of Faiman (2008), pointing out that
the influence of infrared irradiation exchange with the cold sky and the natural convection at
low wind speeds and low irradiation are neglected in this model. However, the investigations
of Koehl et al. (2011) showed that the impact of radiation cooling and natural convection can
be neglected for wind speeds above 2 m/s — showing main effects of radiation cooling during
night times which are not relevant for the solar energy generation.

3.3.7 PV module output power calculation — Interpolation method

As mentioned above, the method used to determine the PV module output power is based
on the interpolation between measured module power at ranges of irradiance and module
temperature. The procedure of IEC 61853-3 suggests to use calculated parameters for
irradiance as well as module temperature to be used for the determination of the PV module
output power by using the performance matrix provided by IEC 61853-1 — shown in section
3.3.3 of this work. (IEC, 2016b) This approach is referred to as ‘interpolation method’ and
requires two-dimensional, bilinear interpolation between existing points within the
performance matrix. The interpolation method already has been analyzed by Whitaker and
Newmiller (1998), NREL, and lead to the following observation:

“The most notable behavior of the Interpolation model is its error at low irradiance. [...] The
weakness of the interpolation model is that you must actually extrapolate to obtain points
beyond its measurement range. At the low irradiance end, linear extrapolation is used where
the performance is becoming non linear. Any error in the four points used for extrapolation
will be magnified for large extrapolation. Thus, a requirement for use of the Interpolation
model is the to have measurements covering the entire range of expected weather
conditions.” (Whitaker and Newmiller, 1998)

This means that the approach through linear interpolation brings about the compromise with
the known non-linear behavior of PV modules, especially at low irradiances or at ranges that
are not included in the performance matrix. (Whitaker and Newmiller, 1998)

Interpolation is done via two dimensional bilinear interpolation of power through the two
variables irradiance (Gcoraolspectral,2) @nd module temperature (Tmod,ec) — @s suggested in the
IEC 61853-3 standard draft. (IEC, 2016b) Conventional 2D-bilinear interpolation of power

43



values of the performance matrix has been performed using the following formula (own
formula):

P(G,T)
_ (Pr1*(Ga=G)* (T, =T)+ Py (G —G) * (T, = T) + P x (G, = G) * (T = Ty) + Py * (G — Gy) * (T —Ty)
(G, — G * (T, —Ty)

Equation 16 2D bilinear interpolation of power through the performance matrix depending on
irradiance and module temperature (own formula)

With P, G and T being the interpolated points within the grid square defined by four given
points P11, P21, P12, P22 at each time step — as also shown in the following figure.

P P
G, 12 22
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G an
P P
G, 11 2
T, T T,

Figure 9 Schematic figure of grid square for the 2D bilinear interpolation method of the performance
matrix (own figure)

However, in some cases the module temperature and/or irradiance values might be outside
the range covered by the performance matrix of IEC 61853-1, as also mentioned in the
research done by Whitaker and Newmiller (1998). To also consider these values, it is
necessary to extend the matrix’s points to the desired irradiance and module temperature
range to also consider these values during the interpolation procedure explained above. This
is done through one-dimensional linear extrapolation — as suggested by the IEC 61853-3
draft. Extrapolation of the matrix parameters is done using the following formula:
(x —x1)

yx) =y + [m* 2 —y1)

Equation 17 1D linear extrapolation of performance matrix (own formula)
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The figure below schematically illustrates the linear extrapolation of performance matrix
parameters.

y f(x,y)
v, f(X2,¥2)
v, f(X1.y4)

X4 X2 X

Figure 10 Schematic figure of linear extrapolation of performance matrix parameters (own figure)

The extrapolated performance matrix can be found in the Appendix B of this work — together
with the not extrapolated performance matrix. To cover the majority of irradiances and
module temperatures of the observed data set population, the performance matrix especially
requires extrapolating to lower ranges of module temperature and irradiance. This also
increases the chance of magnifying errors in the performance matrix and can lead to
difficulties for the prediction of module output power, further analyzed in section 7 of this
work — as also mentioned above and discussed in Whitaker and Newmiller (1998).

The suggested approach through linear inter-/extrapolation determines the module output
power through the two dimensional available performance matrix describing the module
output power as a function of Georaolspectraz @nd Tmod. HOwever, this approach neglects
possible cross-dependencies to other influences (e.g. temperature dependence of spectral
response) which would require a multidimensional test matrix — as also discussed in
Whitaker and Newmiller (1998). Within the scope of this work it is intended to discuss
possible cross-dependencies regarding irradiance, ambient temperature, wind speed and
angle of incidence.
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3.4 Spatial PV array performance analysis

To find out about whether the above explained comparisons related to the IEC 61853-3
modeling algorithms have any dependence on where a particular module is located inside
the PV array, this work also analyzes the 96 measured and traced PV modules according to
their positions within the array. The aim is to analyze differences between positions of
individual and groups of modules for specific days with characteristic weather conditions as
well as ranges (data samples) of weather parameters.

3.4.1 Differences in local irradiance and module temperature

Differences between the PV module positions are — besides comparing operational power
(Pop) — also analyzed using IV curve parameters. Specifically, the open circuit voltage (Voc)
and short circuit current (Isc), as determined from each IV curve, serve as indirect
measurements of the module’s temperature and its absorbed irradiance, respectively. These
two parameters can thus be used to help identify and explain performance differences
among the spatially distributed, 96 monitored modules within the 1152-module array. The
translation into actual module temperature and irradiance values can for example be
accomplished by following procedures described in IEC 60891, via using the available
performance matrix. (IEC, 2009)

Increased PV module/cell temperatures affect the PV output power negatively. This effect is
mainly caused by the inability of the PV junction to separate charges — as the increased
lattice vibration at higher temperatures interferes with the movement the charge carriers.
This interference leads to a decreased band gap which causes more electrons to jump in
the conduction band and therefore decreases the open-circuit voltage (Voc) significantly —
notably this same temperature effect (decreased band gap) causes the short-circuit current
(Isc) to increase very minimally. (Yahyaoui and Segatto, 2017) The following figure shows
the effect of temperature on the IV characteristic curve parameters Voc and Isc.

4
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Figure 11 Effect of temperature on IV curve characteristic shape (pveducation, 2017b)
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Furthermore, while Isc depends linearly on light intensity, Voc depends logarithmically on
changes in the light intensity. This non-linear dependence is pronounced at lower light
intensities and especially becomes of high importance for example with PV modules/cells
that have lower shunt resistances. (pveducation, 2017a) However, for the scope of this work
it is assumed that possible inherent differences and degradation are negligible for the
observed PV array — as mentioned initially and described in section 4.4. Other possible
mismatch effects are explained in section 4 of this work. Nevertheless, a first step to identify
the mentioned effects is through the analysis of IV curve parameters such as Voc and Isc.

3.4.2 Observed PV module positions

The analysis of the module performance at different positions within the array aids the work
of Fairbrother (2017), who is investigating differences in PV back sheet degradation and
gradient exposure effects among modules within an operating array. According to
Fairbrother (2017) differential exposure conditions caused by the surroundings (e.g. different
ground covers, buildings, trees, etc.) influence the amount of UV light that strikes the back
of the modules. The different exposures lead to unique patterns of back sheet degradation
in which modules at certain positions in the array show more signs of degradation.
(Fairbrother, 2017) Despite these findings after four years of exposure, no clear relationship
was identified between the level of back sheet degradation and the PV modules’ electrical
performance. Regardless of this (current) lack of correlation, the position grouping
suggested by Fairbrother (2017) should serves as a reference case.

The following positions of traced PV modules within the ground array are grouped together
and analyzed collectively (numbers between parentheses show amounts of PV modules
within the group):

e Modules in top rows (12)

¢ Modules in middle rows (36)

e Modules in bottom rows (12)

¢ Modules in the middle of the array (28)

e Modules at the edge of the array (42)

e All modules including shed 1 and shed 5 (96)
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The figure below shows the five sheds of the observed ground array. The colored cells inside
each shed represent the 96 monitored PV modules, one within each array series string. Red
lines indicate all modules mounted at the edge as well as all modules mounted in the middle
of the PV array. The labels top, middle and bottom refer to all modules mounted in top,
middle and bottom rows of all observed sheds.
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Figure 12 Observed position groups within the PV array

Modules in top, middle and bottom row positions do not include modules deployed at the
edge of the PV array. Furthermore, shed 5 contains only 4 rows of PV modules — as
mentioned in section 2.1.
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3.5 Days with characteristic weather conditions

The above described calculation procedures, suggested by the IEC 61853-3, are evaluated
for a data set of 24 days, containing in total 8 characteristic weather conditions (i.e. 3 days
per weather condition). This approach permits evaluating the model for as wide a range of
weather conditions as possible, while keeping the data processing effort reasonable. This
allows a better understanding of inconsistencies within the ground array at certain weather
conditions and helps understanding deviations between measurements and modelled data
using the algorithms of IEC 61853-3. The 8 characteristic weather conditions are
distinguished by their daily averages for irradiance, ambient temperature and wind speed.
The data used to calculate these averages are determined from measurements made during
the daylight period (sun zenith angle < 90) when the array is completely unshaded and clear
of any snow accumulation. This fully illuminated condition is verified using photos of the
entire array which are available approximately every 5 minutes for each of the observed days
— as shown in the following example:

Figure 13 Verification of occurrence of no shading on the array, a) no shading: 11/21/2016 at 13:00,
b) interrow shading: 11/21/2016 at 16:00

A table with an overview of the examined daytimes for each of the observed days can be
found in the Appendix C. The mentioned 8 characteristic weather conditions are categorized
into values of high or low daily averages of irradiance, ambient temperature and wind speed.
Table 6 gives an overview of this categorization into 8 characteristic weather conditions of
high/low irradiance, ambient temperature and wind speed ranges.

_ Ambient Wind
Category | Irradiance
temperature speed
1 High High High
2 High High Low
3 High Low High
4 High Low Low

49



5 Low Low Low
6 Low Low High
7 Low High Low
8 Low High High

Table 6 Categorization of 8 characteristic weather conditions

In order to increase the amount of data points for each of the characteristic weather
conditions, 3 days per category are selected. The following table shows the days observed
in this work (data population), indicating high and low values by conditional formatting

through cell colors.

Irradiance Ambient Wind

irradiance/tamb/wind day [W/m?] temperature speed

[°c] [m/s]
H/H/H 9/11/2016 540 26 3
H/H/H 10/10/2016 606 14 2.5
H/H/H 10/9/2016 526 16 4.2
H/H/L 8/28/2016 552 30 1
H/H/L 9/12/2016 590 25.3 1

H/H/L 4/10/2017 554 22.36 1.97
H/L/H 11/21/2016 540 3.9 4.1
H/L/H 2/13/2017 592 3.8 5
H/L/H 11/22/2016 525 5.5 2.9
H/L/L 12/20/2016 500 1 1
H/L/L 12/25/2016 480 7 1.4
H/L/L 12/19/2016 438 -04 1.6
L/L/L 1/5/2017 93 -0.5 1.4
L/L/L 1/9/2017 300 -5 1.7

L/L/L 12/16/2016 130 -6 1.65
L/L/H 2/16/2017 366 1.2 4
L/L/H 2/9/2017 270 -0.1 5
L/L/H 1/24/2017 240 6 4
L/H/L 8/9/2016 184 25.5 1.2
L/H/L 11/25/2016 130 12 1
L/H/L 8/1/2016 390 28.3 1.2
L/H/H 12/27/2016 265 16 2.5
L/H/H 11/11/2016 400 15 3.3
L/H/H 12/18/2016 44 12 3

Table 7 Observed days (data population) with characteristic weather conditions (own table, H =

high, L = low, color code: high = green to low = red)
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3.6 Data binning to various ranges of weather conditions

To facilitate the evaluation of the modeling algorithms used by IEC 61853-3, irradiance,
ambient temperature, wind speed as well as angles of incidence values of the above
mentioned data set population are separated into bins (data samples). Binning data also
provides helpful information when analyzing inconsistencies among the PV modules within

the array field. Selecting bin widths is aided by plotting histograms for each parameter, as
shown in the following figures.
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Figure 14 Frequency-range histograms for irradiance, ambient temperature, wind speed and angles
of incidence in the observed data set of 24 days
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The histograms summarize the distribution of the available data set graphically and thus are
a useful tool for choosing bin ranges (data samples). Based on the histograms in Figure 14,
the following upper and lower bin limits are examined in this work:

Parameter Range 1 Range 2 Range 3
Irradiance 0 — 400 W/m? 400 — 800 W/m2 | 800 — 1200 W/m?
Ambient temperature -10-+13°C +13 - +36 °C -
Wind speed 0-3m/s 3-6m/s 6—-9m/s
Angle of incidence 0-—45° 45 — 60° 60 — 70°

Table 8 Evaluated binning ranges for irradiance, ambient temperature (tamb), wind speed and
angles of incidence (AQI)

The goal with using binned data samples is to evaluate the sensitivity of the IEC 61853-3
algorithms to irradiance, ambient temperature, wind speed and angles of incidence.
Identifying if the IEC algorithms predict better or worse for a given set of weather conditions
is of high interest because the current draft of the standard aims to provide a few sets of
reference climatic profiles. (IEC, 2016c) Insight into the accuracy of the IEC predicted energy
yields for each of these reference climates will be gained from documenting how the
accuracy of the IEC predictions change with the weather conditions.

The above mentioned 11 ranges of irradiance, ambient temperature, wind speed and angles
of incidence allow the evaluation of IEC predictions for the independent variation of each bin
individually, as well as the cross-dependent variation of each bin — allowing in total 54
combinations of bins (3*2*3*3). A table of all combinations possible can be found in the
Appendix D.
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3.7 Exploratory data analysis (EDA)

The results from exercising the modeling algorithms of the IEC 61853-3 committee draft are
evaluated using an exploratory data analysis (EDA) approach. EDA covers a variety of
techniques for the statistical evaluation of data sets. (NIST/SEMATECH, 2012)

The main focus is on how well the modeled values agree with the measured data. In order
to correctly evaluate the goodness of fit of the modeling algorithms applied by IEC 61853-3,
the following table parameters and graphical techniques are applied. Differences between
traced module positions within the ground array are also investigated. The following chapters
also describe methods used for comparing modules based on their positions within the PV
array.

3.7.1 Linear regression model approach

A common approach for the comparison of a range of monitoring parameters being related
to each other is to plot and linearly fit measured and modeled parameters. This approach is
recommended by the IEA (2014a) in a report on good practices for the analysis of PV array
monitoring data. Using a linear regression is justified if the measured and modeled data
show a linear relationship, the residuals are independent and normally distributed and show
constant variance (homoscedasticity). Thus, identifying significant changes in the statistical
linearity makes it possible to identify anomalies among the monitored versus modeled data.
(IEA, 2014a)

The linear regression model in this work is obtained by using the MATLAB function ‘fitlm’,
which is able to return a linear model fit to the measured data. (MathWorks, 2017b) As
modelled data in this work is obtained by following the procedures described in IEC 61853-
3, the function is used to provide characteristic parameters retrieved by comparing modelled
versus measured data — dependent and independent variables. This way it is possible to
perform graphical analysis of residuals via normal probability plots or other graphical analysis
tools as well as the calculation of the coefficient of determination (R?) with the help of the
built-in function of MATLAB. Some of the observed parameters are explained in the following
chapters.
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3.7.2 Statistical diagnostic parameters

Statistical diagnostic parameters used in this work serve as indicators that should describe
the characteristics of the observed data sets and thus allow a better interpretation of the
measured versus modeled data.

Coefficient of variation (c,): standard deviation (S) and mean (u)

The standard deviation — i.e. the square root of the variance — describes the variance or
dispersion of a data set relative to its mean, is expressed in the same unit as the observed
data, and is mathematically defined as follows (NIST/SEMATECH, 2012)

N
.
= * . —
N_1 l#
=1

Equation 18 Standard deviation (NIST/SEMATECH, 2012)

With A being a variable vector that contains N scalar observations. p is the arithmetic mean
of A and is defined as:
N
* Z A;
i=1

Equation 19 Arithmetic mean (NIST/SEMATECH, 2012)

2|~

M:

The coefficient of variation (cy) is defined as the ratio between the standard deviation and
the mean of a data set. Itindicates how strongly the standard deviation varies from the mean
and is therefore useful for comparing different data sets. (NIST/SEMATECH, 2012)

Cp = —

1l
Equation 20 Coefficient of variance (NIST/SEMATECH, 2012)

The coefficient of variance is mentioned by means of completeness in this thesis and not
further used for the analysis of the observed data sets.

Root mean square error (RMSE), mean bias error (MBE) and unbiased root mean
square error (RMSEno bias)

The root mean square error is a measure for quantifying the difference between predicted
and observed values and therefore a useful statistical indicator for the purposes of this
research. It is defined as the square root of the mean square error and calculated as follows
(NIST/SEMATECH, 2012)
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N
1 2
RMSE = N*Zm — x|
1=

Equation 21 Root mean square error (NIST/SEMATECH, 2012)

Where vy refers to modelled values and x; to measured values. In order to obtain values for
RMSE that are not biased it is necessary to calculate the mean of the error between
predicted and measured values, also referred to as mean bias error. This is done as follows:

1 N
N * Z()’i - xi)‘
i=1

Equation 22 Mean bias error (Boyd, 2013)

MBE =

Therefore, the unbiased values for RMSE can be calculated as follows:

N
1
RMSEy, pias = N * Z(Yi — x; — MBE)?
i=1

Equation 23 Unbiased root mean square error (Boyd, 2013)

In this thesis, RMSE is used in combination with MAD to quantify differences in errors
between modeled and measured PV module temperature and power. The unbiased RMSE
is mentioned by means of completeness and not further used in this work.

Median absolute deviation (MAD)

The median absolute deviation (MAD) is a measure of how spread out an observed data set
is. In the case of observed residuals (differences between modeled and measured data
points), it presents a more robust way to extremes in a data set than the RMSE, as it is not
as sensitive to extremely high or extremely low outliers. (NIST/SEMATECH, 2012) MAD
therefore presents another useful way to quantify differences between modeled and
measured values and is defined as follows:

MAD = median(|(y; — x;) — median(y; — x;))|)
Equation 24 Median absolute deviation (NIST/SEMATECH, 2012)
Where y; refers to modelled and x; to measured values. ‘Median’ refers to the data points
separating the ‘higher half’ from the ‘lower half’ of an observed data set. (NIST/SEMATECH,

2012) In this thesis, MAD and RMSE are used as a measure of quantifying the error between
modeled and measured PV module temperature and power.
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Coefficient of determination (R? or Rsquared)

The coefficient of determination is a common indicator used for the evaluation of modeling
algorithms. It measures the fraction of the total variability in the response that is accounted
for by the model. (MathWorks, 2017a) In other words, it provides information about how well
a model can describe the variability of observed data and is calculated as follows:

SSE
SST

Equation 25 Rsquared (MathWorks, 2017a)

R?=1

With SSE being the residual sum of squares defined as the sum of squared errors between
the observed measured values x; and the modelled or predicted values yi:

SSE = ) G = o)

Equation 26 Sum of squared errors SSE (MathWorks, 2017a)

And SST being the total sum of squares, i.e. the sum of measured values xi minus the mean
of the measured data x;, and is calculated as follows:

SST = ) (= %)’
Equation 27 Sum of squared total SSE (MathWorks, 2017a)

Values for Rz in this work are retrieved from linear fit model results of the built-in MATLAB
function ffitim’ using the dot notation ‘. Rsquared.Adjusted’. (MathWorks, 2017a)

Pearson correlation coefficient (Rpearson)

The Pearson correlation coefficient is a measure that aims to indicate how well sets of data
correlate with each other. The full name of the Pearson correlation coefficient is the Pearson
Product Moment Correlation or PPMC. The coefficient shows the linear relationship between
two sets of data with values between -1 and 1. Depending on the type of correlation — either
positive, negative or no correlation — different coefficient values between these values can

be achieved. The closer the coefficient value gets to zero, the lower the correlation, i.e. the
greater the differences in the observed data points. (NIST/SEMATECH, 2012) Rpearson SEIVES
as an additional statistical indicator for the evaluation of modeled versus measured data in
this work.

56



Spearman correlation coefficient (Rspearman)

The Spearman correlation coefficient is a nonparametric version of the Pearson correlation
coefficient, also returning values between -1 and 1 — values close to zero indicate less
correlation. It is based on ranked values of variables, which means that while the Pearson
correlation assesses the linear relationship, Spearman correlation assesses relationships
whether linear or not. (NIST/SEMATECH, 2012) In this thesis, Rspearman @nd Rpearson are used
as additional statistical indicators to R?, informing about how well the evaluated modeling
algorithms fit and correlate to measured PV module temperature and power.

Sample size (n) and confidence level

Data samples are parts of the total observed data population and can be used to draw
conclusions about a population as a whole. However, sample parameters — such as the
above mentioned statistical parameters — may vary significantly between different samples
as well as between samples and the whole population. (NIST/SEMATECH, 2012) The
maximum difference between the population’s parameter and the sample’s parameter in
comparison is defined as the margin of error (MOE) and is defined as:

S
MOE = z * —
a/2 \/E

Equation 28 Margin of error MOE (NIST/SEMATECH, 2012)

Where zq2 is known as the critical z-score value of a normal distribution, S is the standard
deviation of the population and n is the sample size. The critical value for the z-score
describes in general the cut-off values of a distribution that defines regions where data points
are unlikely to lie. It is defined to be the amount of standard deviations below and above the
mean of a population and usually can be found in tables. For a confidence level of 95%, zq-
is defined to be 1.96. For a confidence level of 90%, zqis 1.645. (NIST/SEMATECH, 2012)
In order to quantify the accuracy and reliability of the investigated results and comparisons
of data samples in this work, the minimum required sample size to meet the desired
confidence level needs to be determined. Given a maximum allowed value of MOE, the
therefore required sample size (n) can be calculated through the following formula:

()

n=\(—m-—

MOE

Equation 29 Required sample size n (NIST/SEMATECH, 2012)

This formula can be applied when the population’s standard deviation S is known — which is
the case in this work. The resulting sample size n determines the minimum required size of
a data sample for its mean to differ from the data population’s mean by * the value of MOE
at a certain defined confidence level. (NIST/SEMATECH, 2012)
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3.7.3 Graphical analysis of residuals

It is important to point out that the mentioned indicators alone do not allow a full illustration
of the observed data set characteristics. To complement the above described indicators,
graphical analysis of the observed data is necessary. To evaluate the IEC 61853-3 draft's
calculation procedures, the difference between the modelled and measured data sets are
illustrated graphically. This evaluation is done via analysis of the residuals. Residuals are
differences between the observed measured data and the predicted or modelled data. The
examination of residuals counts as key method of statistical model evaluations.
(NIST/SEMATECH, 2012) A clear definition of residuals, provided by NIST/SEMATECH
(2012) is as follows:

“Residuals can be thought of as elements of variation unexplained by the fitted model. Since
this is a form of error, the same general assumptions apply to the group of residuals that we
typically use for errors in general: one expects them to be (roughly) normal and
(approximately) independently distributed with a mean of 0 and some constant variance.”

This means that the overall pattern of plotted residuals of a data set should be similar to the
bell-shaped pattern of plotted data that is normally distributed. Departures from this
distribution pattern lead to structured residuals and indicates parameters not accounted for
in the model. By identifying such structures, terms can be added to the prediction algorithms
and thus improve the model. (NIST/SEMATECH, 2012) The following graphical analysis
methods help identify the behavior of the observed residuals and thus the goodness of fit of
the calculation procedures suggested in IEC 61853-3 draft to measured data. There are
three common types of plots that are suitable to graphically illustrate the distribution of a set
of residuals, which are:

e Frequency (or probability) range histograms of residuals,

¢ Normal probability plots of residuals and
¢ Plots of residuals over time and over predicted values.
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Freguency range histogram of residuals

The histogram graphically summarizes the distribution of a data set by giving information
about the center of the observed data, the spread of it, skewness and presence of outliers
and presence of multiple modes within the data. (NIST/SEMATECH, 2012)
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Figure 15 Example of frequency range histogram (NIST/SEMATECH, 2012)

Normal probability plot

A more sensitive graph to reveal information about the distribution of observed residuals is
the normal probability plot. These plots show the calculated probability of each residual
versus the residual value, by using the formula:

i
Pi_th residual = m

Equation 30 Cumulative probability of a residual point (NIST/SEMATECH, 2012)

With i being the residual point (order of value in the observed list of values) and N the number
of entries in the list. If the residual points come from a normal distribution, the points P in the
normal probability plot should form a straight line.
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Figure 16 Example of normal probability plot of residual values (NIST/SEMATECH, 2012)

Additionally it is possible to also plot the values of residuals within a normal probability plot
to indicate the distribution of residuals — as it is done in Figure 16 along the y-axis at the
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left side of the graph. Usually, small departures of the straight line are common.
Nevertheless, clear s-shaped curves in this plot suggest a bimodal distribution of the
residuals. Breaks in the middle of the graph indicate anomalies in the residual distribution.
(NIST/SEMATECH, 2012)

Residuals plots

In order to test the time dependence of the observed data set, plotting the residuals over the
time is a helpful method. The following figure shows an example of plotted residuals over
time that present a clear time trend. (NIST/SEMATECH, 2012)
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Figure 17 Example 1 of plotted residuals over time — Clear time trend (NIST/SEMATECH, 2012)

While the example shown in Figure 17 shows a clear time trend, the residuals in Figure 18
do not show a clear tendency. The example in Figure 17 shows residuals that are drifting to
lower values as the investigation continues. Extreme cases of such drift of residuals will also
indicate a poor ability to account for the variability in the data, represented by low values of
R2 — see above. In this context, the term of so-called ‘homoscedasticity’ is used, which refers
to the constant of variance of the observed data (residuals) over time — whereas
‘heteroscedasticity’ refers to inconstant variance of the observed data (residuals) over time.
(NIST/SEMATECH, 2012)

Residuals
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Figure 18 Example 2 of plotted residuals over time — No clear time trend (NIST/SEMATECH, 2012)
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Plotting the residuals versus the predicted, fitted values should show a distribution of points
scattered randomly around 0. Any tendency of the residuals to deviate with increasing or
decreasing values of predicted values indicate that the residuals have growing or decreasing
scatter as the response, i.e. the predicted values, are changing. The following figure shows
the plot of absolute values of residuals over the predicted values, which cleary shows an
increasing value of residuals with growing values of response data, also indicating
heteroscedasticity (no constant variance). (NIST/SEMATECH, 2012)
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Figure 19 Example of plotted residuals over predicted values (NIST/SEMATECH, 2012)

This work uses residual plots to identify the behavior of residuals (difference between
modeled and measured PV module parameters) over the observed bin ranges.

3.7.4 Graphical analysis of location effects

A useful tool to get information about the effect of location and variation changes of different
groups of data is by plotting clustered data as so-called ‘boxplots’, illustrated in the following
figure. (NIST/SEMATECH, 2012) In this work, boxplots are used to graphically show
difference between the traced module position groups — mentioned in section 0 - within the
observed ground array’s data.

BOX PLOT
80

65

60 ; ; . .
1 2 3 4
Machine

SPLETT2 DAT

Figure 20 Example of boxplot (NIST/SEMATECH, 2012)
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Boxplots show the response variable plotted on the vertical axis versus the variation of
interest clustered on the horizontal axis (clustered position groups). Boxes inside the graph
give information about the variation of the observed response data, showing the median of
an observed data set, the lower quartile (25" percentile) and the upper quartile (75"
percentile) of the data. I.e. the box in this plot represents the middle 50% of the observed
data. Furthermore, boxplots give information about minimum and maximum points of a data
set and identify outliers of the observed data. Outliers are data points that lie an abnormal
distance from the minimum and maximum data point. (NIST/SEMATECH, 2012)

3.8 Overview of research steps

The following flow chart sums up the main research steps of this work:
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Figure 21 Flow chart overview of research steps (own figure)
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4 Effects and influences in outdoor PV arrays

This chapter provides a comprehensive overview of effects that need to be considered when
dealing with PV modules mounted in outdoor PV arrays and being exposed to environmental
conditions. The effects discussed are not analyzed individually in this thesis, as they should
serve the purpose of completeness and understanding and will be referred to if necessary.

4.1 DC performance array losses

Typically, PV modules mounted in a PV array are connected in series to strings which then
are connected in parallel to source circuits. Within the same string, all modules in series
must transport the same current. Within the same source circuit, all parallel strings must
operate at the same voltage. This means that inherent performance differences between
individual modules, non-uniform available irradiance, inhomogeneous temperatures across
the PV array and/or wiring (system component) losses across the array can cause the
performance of the PV array to operate at non-ideal conditions, which means that operation
at the maximum power point (MPP) cannot be realized. (PVPMC, 2017)

4.1.1 Quantification of mismatch losses

The above explained effects causes individual circuits of the PV array to perform outside
their maximum power point (MPP), forcing them to compromise values of performance. One
way to quantify the impact of mismatch losses can be calculated as follows:

PDC,array,output

MMp5s =1 — P P
Z MPP,module — Z DC,wiring losses

Equation 31 DC Mismatch losses (PVPMC, 2017)

Mismatch caused by inhomogeneities of irradiance or module temperature across the PV
array are usually quantified separately as they are co-dependent with each other and
strongly influence the electrical characteristics of PV modules. (PVPMC, 2017)

4.1.2 PV array system component losses

System component losses refer to failures and/or degradation of DC components such as
cells, modules, connectors, fuses, cables, combiner boxes and other system components.
Such types of losses can lead to declines in performance as well as local heating in the
module — referred to as localized hot spots. (PVPMC, 2017) Complete damage of one or
more of these components can result in several ways with different complexity, depending
on the type and location of the failure. Changes in component health typically also can be
detected through an increase in the PV module’s series resistance Rs. (Spataru et al., 2015)
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4.1.3 DC wiring losses

This type of loss is mainly caused by changes in the ohmic resistance of the cabling that
connects PV array components. (PVPMC, 2017) Power loss over such components varies
as a function of the current squared:

_ 72
PDC,loss,wiring =1 x Rcomponent

Equation 32 DC wiring power loss (PVPMC, 2017)

Differences in cable length or size between parallel strings can also lead to voltage drops —
as also do series protection diodes — and can be considered as follows:

VDC,loss,wiring =1Ix Rcomponent

Equation 33 DC wiring voltage drop (PVPMC, 2017)

A closer examination of DC wiring losses of the observed array is outside the scope of this
work and therefore not part of the array evaluation and analysis.

4.2 Optical effects

In the following, outdoor effects that optically influence the PV performance are described —
those listed below refer to the effect of soiling and shading, angle of incidence effects as well
as the effect of the spectrum of the incoming light on the PV array performance.

4.2.1 Soiling and shading

PV module front glass soiling describes the effect of the accumulation of dust and pollution
which causes limited light transmittance, increased relative angular losses or shading to the
PV solar cells. (Spataru et al., 2015) According to Martin and Ruiz (2000) the annual losses
caused through soiling or dust deposition is depending on the latitude and the tilt angle of
the observed PV system. In their study, Martin and Ruiz (2000) found a minimum annual
loss value of about 3% for all the considered sites in their research, while maxima of between
5 to 7% of annual losses were shown. This range of soiling losses can be confirmed in the
work of Laukamp et al. (2002), in which annual energy losses due to soiling up to 6% are
shown. Thus, soiling can represent a significant performance loss factor for PV systems. As
mentioned in section 1.4 of this work, for the scope of this work it is assumed that soiling and
dust deposition occurs uniformly across the observed ground array. Furthermore, the
observed data set consists of days that are considered to present a rather minimal
occurrence of dust deposition — involving only one day of a month with known high dust
deposition caused through pollen dust.
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Shading, and in particular partial shading, can cause significant performance losses of the
PV system mostly depending on the position of the shadow and the bypass diode
configuration of the PV modules within the array. Specifically localized — or partial — shading
or front glass soiling (as explained above) can lead to irreversible hot-spot damage through
reverse biasing of the affected solar cells — whereas uniform shading across the whole array
itself does not present that high of arisk, as it happens equally over the entire array. (Spataru
et al., 2015)

4.2.2 Reflectivity and AOI

In case the PV array is not mounted on a two-axis tracker system, the direct component of
the solar radiation will not be normal to the PV array plane for the entire observation time.
Thus, angles of incidence greater than zero (normal to the plane of array) lead to optical
losses due to increased reflections from the module surface — and ultimately from the module
materials. (PVPMC, 2017) A typical way to define the loss due to angle of incidence effects
is through the incidence angle modifier (IAM) as follows:

_1(6) _ R() —A®6)
“7(0)  R(0) — A(0)

IAM

Equation 34 Incidence angle modifier (IAM) for the beam component of the incident irradiance
(PVPMC, 2017)

With 1 being the spectrally weighted transmittance, R the spectrally weighted reflectance and
A the spectrally weighted absorptance of the observed PV modules as a function of the
incidence angle 8. (PVPMC, 2017) Reflectivity and angular loss effects in this work are
considered through the approach developed by Martin and Ruiz (2000) as a function
involving an empirically determined, dimensionless parameter a, (angular loss coefficient) —
as described in section 0 of this work.

4.2.3 Spectral responsivity

Furthermore, the conversion efficiency of PV cells/modules depends on the wavelength of
the incoming light and is referred to as spectral response — which depends on the PV
technology used, as mentioned in section 0 of this work. Spectral changes of light and thus
deviation in measured and predicted performance values in this work are considered through
the approach of Lee and Panchula (2016) — as described in section 0 of this work.
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4.3 Thermal effects

The PV module temperature depends on a number of factors, such as the air temperature,
irradiance, wind speed and PV module materials — as described in section 2.3.2 of this work.
Thus, the actual operating temperature of a PV module is the equilibrium between generated
heat and heat losses of the module to its surroundings. The main three mechanisms of heat
loss are: heat conduction, convection and radiation. (pveducation, 2017a) These
mechanisms are schematically illustrated in the following figure:

L Conductive heat loss
occurs by heat flow
from one material to

another

Figure 22 Heat loss mechanisms of PV modules (pveducation, 2017a)

Conductive heat transfer is caused through thermal gradients between the PV module and
its surroundings in contact to the material and is characterized by the thermal resistance of
the PV module — in units of W/m°C. Convective heat transfer describes the effect of heat
transfer caused through thermal gradients between surrounding material (air) moving across
the surface of the PV module and is characterized by the convection heat transfer coefficient
—in units of W/m2°C. Radiation is the effect of emitting heat based on the temperature of an
object and its thermal gradient to its surroundings and is characterized by the object’s degree
of emissivity € - unitless. (pveducation, 2017a)

There exists a number of models that aim to estimate the PV module temperature under
certain ambient conditions for specific types of PV technologies. The model used in this work
and applied by the IEC 61853-3 draft is developed by Faiman (2008), while an alternative
way to estimate the module temperature is suggested by the Sandia Module Temperature
Model — which will not be further analyzed within the scope of this thesis. (PVPMC, 2017)
In this regard, also the dependence of the short circuit current (Isc) and the open circuit
voltage (Voc) on the PV module temperature should be mentioned with reference to section
3.4.1 of this work. Local temperature (and irradiance) differences within the observed PV
array of this work will be analyzed according to the position of the modules within the array.
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4.4 Degradation and failure modes

The present work does not take into consideration any PV failure or degradation within the
analysis of the observed PV array data sets and the evaluation of the modeling algorithms
of IEC 61853-3. This is on the one hand due to the fact that the installed PV array is still
relatively new, assuming that possible infant failures have not influenced the PV performance
significantly yet. On the other hand — as mentioned initially — modeling algorithms use a
performance matrix which is based on the same type of PV modules, aged outside nearly
for the same time as the modules mounted inside the array. However, it should be mentioned
that about 3% of the PV modules installed in the observed ground array are affected by hot
spot back sheet burn marks, which also includes 3 traced PV modules that are part of the
observed dataset in this work. Exemplary hot spot burn marks of modules within the ground
array can be seen in Figure 23. Also, the study of Fairbrother (2017) has shown different
degrees of back sheet yellowing and glazing depending on the position of the PV modules
in the array — as explained in section 0 of this work.

Figure 23 Hot spot burn marks at the back sheet of PV modules within the ground array at NIST
(own figures)

While the origin of the observed hot spot burn marks — as a typical midlife failure mode — is
not completely clear up to this date, it could be shown that at the time of investigation there
is no significant difference in performance when comparing to PV modules without burn
marks — which most probably can be related to the relatively young age of the PV array of
about 4 years since installation. Furthermore, a lack of availability and accessibility of (‘fresh’)
PV module measurements before their installment at NIST does not allow a reliable
investigation of performance degradation behavior at this point. Thus, degradation and
failure modes are not considered within the scope of this work and assumed to be negligible.
Nevertheless, common degradation and failure modes shall be mentioned in the following
and serve further discussion and possible conclusions of this research.
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A typical categorization of failures and degradation modes of wafer based crystalline PV
modules and system components can be divided into infant failures, midlife failures and
wear-out failures (IEA, 2014b) — as shown in the following figure:
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Figure 24 Typical failure scenarios for wafer-based c-Si PV modules and system components (IEA,
2014b)

LID refers to light induced power degradation® and occurs right after the installation of the
PV modules. Itis considered to be an expected and predictable power loss after the installed
PV modules are installed and exposed to light. While LID is not fully considered to be an
infant-mortality failure (as it is predictable), failures related to PV system components such
as contact failures, glass breakages, defective cell interconnects or loose frames and
delamination are common infant failures. (IEA, 2014b)

Common midlife failures are considered to be related to interconnection defects, diode
failures and failures due to glass breakage or potential induced degradation (PID)*° effects,
but also encapsulant failures or burn marks on the cells are common failures occurring at
this stage of lifetime of PV modules and system components. (IEA, 2014b)

9 LID is related to the quality of the wafer manufacturing and in most literature refers to traces of
Oxygen defects included in the semiconductor material of the PV module’s cells - according to: NREL
2012. Understanding Light-Induced Degradation of c-Si Solar Cells. NREL/CP-5200-54200 ed. 2012
IEEE Photovoltaic Specialists Conference Austin, Texas.

10 PID is mainly influenced by the (in most c-Si) negative voltage of the individual PV module to the
ground and is enhanced by high system voltages, high temperatures and high humidity and influences
the active layer of the PV module’s cells, according to: NREL 2011. System Voltage Potential-Induced
Degradation Mechanisms in PV Modules and Methods for Test. NREL/CP-5200-50716 ed. 37th IEEE
Photovoltaic Specialists Conference (PVSC 37) Seattle, Washington.
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Wear out failures are failure modes that occur at the end of the lifetime of PV modules and
system components and are usually defined as failures that lead to safety problems or to a
performance drop under a certain level — typically defined as 80 % or 70 % of the initial
power rating. Main end of life failures are delamination, cell cracks or discoloring of the
laminate. (IEA, 2014b)

There exists a range of standardized test procedures that aims to provide information about
the behavior of PV modules and components throughout its lifetime. Most critical tests for
c-Si PV modules that aim to provide knowledge and indicators about their lifetime and
degradation behavior of a module and provide a basis for certification of PV modules and
materials are for example: standardized temperature cycle tests, damp heat tests, initial
(‘fresh’) performance measurements, humidity freeze tests, hot spot endurance tests and
mechanical load tests. (IEA, 2014b)
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5 State of the art — PV performance modeling
approaches

This chapter summarizes existing efforts and developments towards PV performance
modeling algorithms. Alternative modeling algorithms to the ones used in this thesis are
given in Table 9 and shall only be mentioned for completeness and are not further analyzed
within the scope of this work.

_ Spectral Module DC module
AOI correction _
) correction temperature output power
(2) 3) 4)
Alternative
Modeling model to IEC IEC 61853-3:
_ IEC 61853-3: .
algorithms _ _ 61853-3: IEC 61853-3: Interpolation
Martin and Ruiz )
used for (2000) Lee and Faiman (2008) method, IEC
evaluation Panchula (2016b)
(2016)
IEC 61853-3
CD approach,
discussed in: Model of Huld
IEC (2016b), et al.:
_ Huld et al.
Physical IAM 1 d et al (2011)
Model: ' Sandia Module
(2015),
De Soto et al. Temperature _
Sandia PV
(2006) Model:
Alonso-Abella _ Array
King et al.
et al. (2014), Performance
_ ASHRAE IAM (2004)
Alternative Model:
) Model: . .
modeling Dirnberger et _ King et al.
) ASHRAE Overview of
algorithms al. (2015) (2004)
(2977) other PV
module .
i AM Model, De Soto Five
Sandia IAM temperature
adapted by: Parameter
Model: models:
_ De Soto et al. _ Module Model:
King et al. Skoplaki and
(2006) De Soto et al.
(2004) Palyvos (2009)
(2006)
SMARTS2
Model:
Gueymard
(1995)

Table 9 Overview of existing PV module and array modeling algorithms (own table)
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Furthermore, there exists a range of worldwide efforts that aim to improve and develop PV
performance modeling in a comprehensive and publically available manner. One of these
efforts happens through the PV Performance and Modeling Collaborative (PVPMC) platform,
established by the Sandia National Laboratories, US Department of Energy. The aim of this
platform is to improve the accuracy of PV performance models and analyses. It therefore
provides a variety of existing studies and tools in the field of PV modeling. (PVPMC, 2017)

As for other international developments and efforts towards the understanding of the
behavior of PV modules and arrays (including system components) exposed to
environmental conditions throughout their lifetime, the efforts of the IEA PVPS Task 13 shall
also be mentioned. This task deals with the performance and reliability analysis of PV
systems in an international consortium. (IEA, 2017b) A comprehensive overview of PV
performance modeling methods and practices — some of them included above — was
developed at the 4™ modeling collaborative workshop lead and organized by IEA PVPS Task
13 members. (IEA, 2017c)

Another project that partly can be related to this thesis’ efforts is the Austrian national project
Infinity. Infinity is a national Austrian lead project subsided by the Austrian Climate and
Energy Fund, dealing with climate sensitivity of photovoltaics. It therefore also strongly deals
with monitoring and modeling of performance behavior of PV systems. (CTR, 2017)
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6 Monitoring of NIST’s ground mounted PV array

This chapter contains a description of the observed PV ground array, located at the campus
of NIST. Furthermore it describes the electrical layout of the array and provides information
about measurement equipment and positions. It is intended to cover the description of
relevant ground array and measurement components involved in this work.

A more detailed description of the entire array and monitoring system may be consulted via
the NIST Technical Note 1896 done by Boyd (2015), publically available from:
http://dx.doi.org/10.6028/NIST.TN.1896

6.1 Surroundings and location

The observed ground array is located at the campus of NIST in Gaithersburg, with the
coordinates 39° 07’ 54.7” N; 77° 12’ 50.8” W and an altitude of 136 m. Prevailing climate
conditions at this location can be described as humid continental climate, characterized by
a hot summer and no dry season. (Fairbrother, 2017) The array is situated on coarse, gray
granite stone (#57 stone) and surrounded by grass and bio retention zones as can be seen
in the figure below.

Figure 25 Ground array at NIST (Boyd, 2015)

The array consists of five tilted sheds running east-west. All sheds are tilted at nominally 20°
due south. As mentioned in section 2, the four southernmost sheds consist of five module
rows, while the northernmost (fifth) shed consists of 4 rows. Local shading is periodically
caused by inter-row shading, a research building that is located directly west of the array,
shading coming from the bio retention area south of the array as well as a 1.2 m high cable
rail fence surrounding the array. (Boyd, 2015)
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6.2 Electrical layout and measurement positions

Each PV module string of the array contains 12 modules and runs from east to west in each
of the five sheds. The strings combine in parallel at seven combiner boxes and form seven
output circuits that run to the inverter. Strings combined in parallel are called source circuits
(SC) and are illustrated in the figure below, combined to seven combiner boxes shown as
numbered squares. Furthermore, the figure below shows positions of the deployed
measurement equipment.
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Figure 26 Ground array electrical layout and measurement positions (Boyd, 2015)

‘POA Pyra’ stands for the thermopile pyranometer in the plane of the array, which measures
the global in-plane irradiance (Gpoa) used for this work. ‘POA Cell’ refers to a silicon reference
cell that also measures the global in-plane irradiance (Gpoa). ‘GHI’ stands for the thermopile
pyranometer measuring the global horizontal irradiance (GHI). ‘RTD’ stands for the
resistance temperature detectors that are mounted according to IEC (2009) on the backsides
of the respective modules indicated as red dots. ‘Ambient Temp.’ refers to the measurement
of the ambient temperature via an RTD probe in a passively ventilated radiation shield. ‘Wind’
stands for the measurement position of the wind speed via heated ultrasonic wind sensor.
(Boyd, 2015) Furthermore the integrator of the PV array mounted a Silicone photodiode
pyranometer and a sensor measuring the ambient temperature.

The following figure shows the irradiance sensors at the ground array, mounted by NIST.
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Figure 27 Irradiance sensors at the ground array measuring Gpoa and GHI (Boyd, 2015)

The figure below shows the installed temperature probe and radiation shield used to
measure the outdoor ambient temperature at the ground array.

Figure 28 RTD temperature probe and radiation shield for ambient temperature measurement
(Boyd, 2015)

The following figure shows an RTD mounted on the backside of a PV module for the
measurement of the PV module backside surface temperature, using thermally conductive
epoxy and adhesive film overlay.

Figure 29 RTD mounted on the backside of a PV module (Boyd, 2015)

74



The following figure shows the deployed ultrasonic wind sensor at the ground array.

Figure 30 Wind sensor at the ground array (Boyd, 2015)

The direct normal irradiance is measured at a different location, at the rooftop weather station
of a nearby research building on the NIST campus via a thermopile pyrheliometer. The
following figure shows the deployed pyranometers at the rooftop weather station at NIST.

Figure 31 Pyrheliometers mounted on the side of the solar tracker also showing the diffuse
measuring pyranometers (left and right) and the IR measuring pyrgeometer (center) (Boyd, 2015)
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6.3 IV curve tracers

The deployed IV curve tracers from the company Stratasense (2013) are taking
measurements at one module of each string of the ground array, i.e. in total 96 IV curve
tracers. As can be seen in the following figure, the tracers are mounted on the mounting
structure for the PV modules in order to not influence the thermal behavior of the PV
modules’ backside.

Figure 32 IV curve tracers on the mounting structure (own picture)

The tracers perform periodic IV curve sweeps in five minute intervals. Sweeps of different
tracers happen sequentially according to the tracers’ network addresses, i.e. IV curve
sweeps are not happening at the exact same times. One sweep takes approximately 300 ms.
During that time, the PV module is bypassed from its string, i.e. operational data is not
monitored. The tracers transmit data wirelessly and do not require any additional grid
connection or wiring as they charge from the PV modules — containing also backup batteries.
Stratasense wireless PV tracers are verified within 1% accuracy. (Stratasense, 2013)
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6.4 Summary of PV ground array characteristics

The table below summarizes characteristic data of the observed PV ground array:

Parameter Value
Array rated DC power [KW] 271
Latitude [°N] 39.1319
Longitude [°E] -77.2141
Elevation above sea level [m] 138
Height above ground [m] 0.67

Tilt [°] 20
Azimuth from North [°] 180
Number of modules 1152
Module manufacturer Sharp
Module model NU/U235F2

Module technology

Monocrystalline silicon — front contact

Module rated power

235

Modules per string

12

Number of combiner boxes

7

Inverter manufacturer

PV Powered (now Advanced Energy)

Inverter model

PVP260kW

Inverter rated power [kW]

260

Table 10 Summary of ground array data (modified according to Boyd, 2015)

7




The following table summarizes the for this work relevant installed measurement equipment
at the ground array at NIST.

Monitoring Parameter Abbreviation Measprement Model of equipment
data set equipment
RTD probe in a
ambient multl-_plate R._M. Young 41342LC
temperature Tamb passively in an R.M. Young
P ventilated 41003
radiation shield
© wind speed v ultrasonic wind Vaisala WMT52
© sensor
©
@
2 global :
© horizontal GHI thermopile Eppley PSP
o LT pyranometer
= irradiance
dl_rect _normal DNI thermoplle Kipp & Zonen CHP 1
irradiance pyrheliometer
glqbal |_n—plane Gros thermopile Kipp & Zonen CMP 11
irradiance pyranometer
[ module
.g backside Tmod,meas RTD Unknown, Pt1000
© temperature
S operational wireless IV
o g P lop Stratasense
08 current curve tracer
E operational wireless IV
° Vop Stratasense
o voltage curve tracer
£ wireless IV
> IV curve traces - Stratasense
o curve tracer
entire array - network camera Axis Q6032-E PTZ
middle third - network camera Axis Q6032-E PTZ
0 north third - network camera Axis Q6032-E PTZ
2 south third - network camera Axis Q6032-E PTZ
2 . Axis M3027-PVE with a
o fisheye lens ..
© sky camera - network camera Fujinon
E FE185C046HA-1
S Alcor System OMEA-
fisheye lens 2.0M-HCA with a
sky camera - -
network camera Fujinon
FE185C046HA-1

Table 11 Measurement equipment deployed at the ground array and used in this work (modified
according to Boyd, 2015)
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7 Evaluation of PV modeling algorithms

In this chapter, results related to the evaluation of the IEC 61853-3 draft’'s calculation
procedures are summarized, described and interpreted. Results related to the correction
procedures, as well as modeled PV module temperature and power are illustrated as time
series plots with regard to the entire observed data set population of days with characteristic
weather conditions — as mentioned in section 3.5. Moreover, effects of each days with
characteristic weather conditions, each observed bin range individually and the interaction
between each of the observed bin ranges are evaluated regarding modeled and measured
PV module temperature and power.

In total, the observed data set contains about 7000 data points (i.e. minutely averages) out
of in total 21 of the 24 listed days with characteristic weather conditions — mentioned in
section 3.5 of this work. This reduction is due to irregularities and faults in measurement data
for 3 of the observed days: 01/09/2017 a day with low daily averages of irradiance, ambient
temperature and wind speed (L/L/L), 02/09/2017 a day with low daily averages of irradiance
and ambient temperature and high daily average wind speed (L/L/H), 08/28/2016 a day with
high daily averages of irradiance and ambient temperature and low daily average wind speed
(H/H/L). In order to avoid the distortion of results, these days are not considered in the
following evaluation.
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7.1 Angle of incidence correction

The correction for angle of incidence effects through the model of Martin and Ruiz (2000) —

described in section 0 — is schematically illustrated in the following figure. Figure 33 shows
the measured global in-plane irradiance (black full line — top graph) compared to the AOI-
corrected global in-plane irradiance (red dashed line — top graph). Residuals between
measured and corrected irradiance values are plotted in the bottom graph of Figure 33

(yellow dots). The mean difference between the measured and the corrected values is about

46 W/mz2, the median difference is about 54 W/mz for the entire observed data set population
of 6929 data points.
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Figure 33 AOI correction of global in-plane irradiance (own figure)

80



7.2 Spectral correction

The spectral correction through the model of Lee and Panchula (2016) — described in section
0 — is schematically illustrated in the following figure. Figure 34 shows the measured and
AOI-corrected global in-plane irradiance (black full line — top graph) compared to the
spectrally and AOI-corrected global in-plane irradiance (red dashed line — top graph).
Residuals between AOI-corrected and spectrally (and AOI) corrected irradiance values are
plotted in the bottom graph of Figure 34 (yellow dots). The mean difference between the
AOl-corrected and the spectrally and AOI-corrected irradiance is significantly smaller
compared to the mean difference caused through correction of AOI effects and results to
about 0.7W/m?2, the median difference to about -0.1 W/m2 for the entire observed data set
population of 6929 data points. I.e. that spectral correction leads to relatively small changes
in global in-plane irradiance values.
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Figure 34 Spectral correction of AOI corrected global in-plane irradiance (own figure)
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7.3 Module temperature calculation

The PV module temperature calculation according to the model of Faiman (2008) —
described in section 3.3.6 — is schematically illustrated in the following figure. Figure 35
shows the measured PV module temperature (black full line — top graph) compared to the
estimated/calculated PV module temperature (red dashed line — top graph). Residuals
between measured and modeled PV module temperature values are plotted in the bottom
graph of Figure 34 (yellow dots). The mean difference between the measured and the
estimated PV module temperature is about 1.54°C and the median difference 1.53°C for the
entire observed data set population of 6929 data points — with RMSE of about 3.7°C and
MAD of about 1.4°C.

Residuals [Wim?

Temperature Modeling Error — Entire Data Set

RMSE [°C]

MAD [°C]

u[°C]

Median diff. [°C]

3.7

1.4

15

15

Table 12 Temperature modeling error indicators for the entire data set population (own table)
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7.3.1 Distribution of residuals and sample size - Temperature

Furthermore, the observed residuals of modeled and measured PV module temperature
show a normal distribution with the population center close to zero and very little positive
outliers on the right side of the center — representing also a slightly larger skew to the left as
shown in the figure below. The left skew indicates the tendency of the model to underpredict
the PV module temperature, leading to more negative residuals for the observed entire data
set population. As can also be seen in the plot of residuals over time in Figure 35.
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Figure 36 Frequency range histogram of PV module temperature residuals of entire data set
population (own figure)

The standard deviation S of the temperature residuals of the entire data set population is
3.3°C. For a desired MOE of 1°C and a confidence level of 95% (i.e. a value of zq, of 1.96),
a minimum sample size n of about 42 data points is required for further comparisons of PV
module temperature data samples (bin ranges).
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7.4 Module power calculation

The PV module power calculation according to the interpolation method suggested by the
IEC 61853-3 committee draft — described in section 3.3.7 — is schematically illustrated in the
following figure. In order to allow power modeling over the entire observed data set
population, the given performance matrix had to be extrapolated to cover also lower
irradiance and temperature ranges — as explained in section 3.3.7. Figure 37 shows the
measured PV output power (black full line — top graph) compared to the estimated/calculated
PV module output power (red dashed line — top graph). Residuals between measured and
modeled PV module power values are plotted in the bottom graph of Figure 34 (yellow dots).
The mean difference between the measured and the estimated PV module output power is
about -4.2 W and the median difference —1 W for the entire observed data set population of
6929 data points — with RMSE of about 12.7 W and MAD of about 2.6 W.

Power Modeling Error — Entire Data Set

RMSE [W]

MAD [W]

H W] Median diff. [W]

12.7

2.6

-4.2 -1

Table 13 Power modeling error indicators for the entire data set population (own table)
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Figure 37 PV module power calculation (own figure)
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7.4.1 Distribution of residuals and sample size - Power

The observed residuals of modeled and measured PV module power show a more narrow
distribution and the presence of one significant peak close to zero. The distribution of the
residuals roughly follows a normal distribution with the center being close to zero and a light
skew to the left (negative residuals). The slightly visible left skew indicates the tendency of
the model to underpredict the PV module power, leading to more negative residuals for the
observed entire data set population. As can also be seen in the plot of residuals over time in
Figure 37Figure 35.

Residuals Histogram, Power, Entire Data Set
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Figure 38 Frequency range histogram of PV module power residuals of entire data set population
(own figure)

The standard deviation S of the power residuals of the entire data set population is about
12 W. For a desired MOE of 2 W and a confidence level of 95% (i.e. a value of zq;; of 1.96),
a minimum sample size n of about 138 data points is required for further comparisons of PV
module power data samples (bin ranges).

85

150



7.5 Analysis of days

conditions

with

characteristic

weather

This chapter summarizes statistical indicators for each of the observed days with
characteristic weather conditions — as mentioned in section 3.5 — such as RMSE, MAD, Rz,
Rpearson @nd Rspearman. The combination of these indicators should provide information about
how well the IEC 61853-3 draft calculation procedures can estimate PV module temperature
and power for each of the observed days and serve as a first evaluation of the standard’s

modeling algorithms.

The following table shows the statistical indicator values for the comparison of the modeled
and measured PV module temperature.

Temperature: Modelled versus measured

irradiance/temperature/wind RMSE [°C] | MAD [°C] R? [-] Rpearson [-] | Repearman [-]
speed
H/H/H 4,34 2,05 0,57 0,75 0,83
H/H/H 2,61 1,13 0,73 0,86 0,84
H/H/H 2,89 1,25 0,63 0,80 0,81
H/H/L 3,74 1,28 0,81 0,90 0,88
H/H/L 4,24 1,41 0,84 0,92 0,95
H/L/H 4,30 0,94 0,21 0,46 0,70
H/L/H 5,62 0,95 0,02 0,15 0,45
H/L/H 3,78 1,20 0,12 0,35 0,51
H/L/L 3,77 1,37 0,35 0,59 0,60
H/L/L 2,43 1,07 0,34 0,58 0,69
H/L/L 3,85 1,54 0,20 0,45 0,48
L/L/L 1,58 0,59 0,77 0,88 0,83
L/L/L 2,24 0,66 0,71 0,84 0,84
L/L/H 3,70 1,55 0,44 0,66 0,73
L/L/H 2,79 0,74 0,39 0,63 0,74
L/H/L 2,14 0,85 0,87 0,93 0,91
L/H/L 1,05 0,49 0,81 0,90 0,84
L/H/L 6,50 2,82 0,67 0,82 0,83
L/H/H 1,82 0,88 0,89 0,94 0,94
L/H/H 2,25 1,27 0,69 0,83 0,83
L/H/H 1,42 0,46 0,98 0,99 0,85

Table 14 Statistical parameters for days with characteristic weather conditions, temperature — low
values of RMSE and MAD indicate better predictions while high values of R2, Rpearson and Rspearman
indicate better correlation and determination of predictions (own table)

86




Table 14 clearly shows, that for days with lower average irradiance, the PV module
temperature estimation errors — represented by RMSE and MAD — are significantly lower
than for days with higher average irradiance. The best model fit — represented by R?, Rpearson
and Rspearman — €an be achieved at days with high average ambient temperature, independent
of daily average irradiance and wind speed.

The highest prediction error according to values of RMSE and MAD occurs on a day with
low average irradiance and wind speed values and high average ambient temperature (LHL,
08/01/2016), showing a clear difference to the other two days of the same type. The affected
day shows significant fluctuation in measured irradiance — see figure below.

Measured Irradiance - LHL
12007 T T T T T T T -
Gpoa,measured - 08/09 - LHL
Gpoa,measured - 08/01 - LHL
Gpoa,measured - 11/25 - LHL

f
1000 [~ a (W I —

Irradiance [W/m?]

0 50 100 150 200 250 300 350 400 450 500
Timepoints [min]

Figure 39 Irradiance differences on LHL days (own figure)

These strong fluctuations typically indicate measurements taken on a cloudy day. The
modeling approach of Faiman (2008), used to predict PV module temperatures, directly
translates these fluctuations into fluctuations in PV module temperature — as can be seen in
the figure below (red line, 08/01 LHL). The error between measured and modeled PV module
temperature appears due to neglecting of thermal mass of the PV module in the applied
modeling approach — using 1-minute averages of measured data. Thus, smaller fluctuation
in measurements and/or the increase of the averaging interval of measurements possibly
leads to a more accurate prediction for days with strong fluctuation in irradiance (and wind
speed). Furthermore, the consideration of thermal mass and/or longer averaging periods of
data in comparison can also improve the prediction error.
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Measured and Modeled Temperature - LHL
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Figure 40 Measured versus modeled temperature on LHL days (own figure)

The following table shows the statistical indicator values for the comparison of the modeled

and measured PV module temperature.

Power: Modelled versus measured

irradiance/temperature/wind RMSE (W] | MAD [W] Rpearson [-] | Rspearman [-]

speed
H/H/H 18,78 5,59
H/H/H 4,18
H/H/H

H/H/L

H/H/L

H/L/H 4,75 1,03 0,95 0,97 0,95
H/L/H 5,94 1,75 0,95 0,97 0,96
H/L/H 3,25 0,82 0,96 0,98 0,97
H/L/L 1,00 0,98 0,99 0,99
H/L/L 0,97 0,99 0,98
H/L/L 10,24 2,17

L/L/L 17,45 1,97 0,98 0,99 0,99
L/L/L 6,29 0,98 0,99

L/L/H 0,93 0,96 0,97
L/L/H 19,84 5,18 0,93 0,96 0,96
L/H/L 0,99

L/H/L 3,03 0,96 0,98 0,99
L/H/L 8,03 2,24 0,98 0,99 0,99
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L/H/H 6,61 1,59 0,99 0,99 0,99
L/H/H 7,32 1,55 0,99 0,99 0,99
L/H/H 1,71 0,62 0,97 0,99 0,99

Table 15 Statistical parameters for days with characteristic weather conditions, power (own table) —
low values of RMSE and MAD indicate better predictions while high values of R?, Rpearson and
Rspearman indicate better correlation and determination of predictions (own table)

The results in Table 15 show the tendency to lower estimation errors for days with higher
average irradiance. However, tendencies are not as clearly visible as with the temperature
modeling.

The highest prediction errors according to values of RMSE and MAD occur on a days with
low average irradiance, ambient temperature and wind speed (LLL) as well as for days with
low average irradiance, ambient temperature and high average wind speed (LLH). Modeled
(dashed lines) and measured (full lines) power for these days is illustrated in the figure below.

Measured and Modeled Power - LLL and LLH
250 T T T T T T

200 [~ v |

Pmeasured - 01/05 - LLL
Pmodeled - 12/16 - LLL
Pmeasured - 1216 - LLL
— — — Pmodeled - 02/16 - LLH
Pmeasured - 0216 - LLH
Pmodeled - 01/24 - LLH

1 | | | . 1
0 50 100 150 200 250 300
Timepoints [min]

Figure 41 Measured versus modeled temperature on LLL and LLH days (own figure)

The comparison of power estimation error for different days with characteristic weather
conditions shows no fully conclusive pattern. Thus, for better understanding and in order to
study and evaluate the IEC modeling algorithms for specific weather conditions at various
ranges of irradiance, ambient temperature, wind speed and angle of incidence, it is
necessary to divide the described data set of all days with characteristic weather conditions
into bins — as explained in section 0. This is done through the analysis of effects of individual
bin range variation as well as the analysis of the bin ranges interaction with each other.
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7.6 Analysis of effects of independent variation of bin
ranges

Prior to the analysis of interactions and cross-dependencies between the observed bin
ranges, this analysis focuses on effects caused by the individual variation of each of the
above mentioned parameters irradiance, ambient temperature, wind speed and angle of
incidence for the entire data set population. Effects are analyzed via residual analysis.
Therefore, residuals — differences between modeled and measured values — are plotted over
the corresponding parameters of interest. Furthermore, plots include information about
RMSE and R2 values related to the corresponding ranges.

In the following, at first effects on the temperature model of Faiman (2008) and then effects
on the modeled PV module output power according to IEC 61853-3 calculation procedures
are analyzed.

Temperature - Modeled versus measured

The following figure illustrates the variation analysis of PV module temperature residuals,
depending on the independent variation of irradiance (black, top left), ambient temperature
(red, top right), wind speed (blue, bottom left) and angle of incidence (green, bottom right).
It includes information about RMSE variation for each observed range (red axis on the right
and red dashed line inside the graphs) as well as information about the coefficient of
determination R? (listed along the x-axis for each range).
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Figure 42 Independent parameter variation analysis of residuals for the modeled temperature (own
figure)
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Figure 42 shows that for increasing irradiance values, RMSE increases from about 2.5 °C to
about 4.6°C. It is visible that with increasing irradiance values, also the variance of the
residuals changes (heteroscedasticity) — more pronounced to positive values, i.e.
overprediction of the module temperature. This behavior is also reflected in a slight decrease
of the coefficient of determination R2, which indicates difficulties of the model in the
estimation of PV module temperature for higher irradiance ranges, confirming also the
findings of the analysis of days with characteristic weather conditions. There seems to be no
significant effect of the ambient temperature increase on values of RMSE for the temperature
prediction. Nevertheless, residuals show a slight trend to more negative values with
increasing ambient temperature. Also, the variance of the residuals with increasing
temperature values seems to get more constant (homoscedasticity) — also leading to better
values in R2, An increase in wind speed leads to a slight decrease in RMSE ranging from 4
°C to 3 °C. It can also be seen that an increase in wind speed causes a more narrow
distribution of the residuals, with no significant changes in values of R2. The variation of the
angle of incidence (AOI) between 0° and 70° leads to more significant changes for angles
between 0° and 45°. An increase in AOIl shows a decrease in RMSE, also reflected in the
change of distribution of residuals around zero — leading to lower errors. Negative residuals
reduce further for AOI between 45° and 70°, leading to no significant change in RMSE and/or
R2,

Lowest errors and best correlation could be achieved at low irradiance values ranging from
0 to 400 W/m2 measured global in-plane irradiance — with RMSE of about 2.5 °C — as well
as for angles of incidences between 45° and 60° - with RMSE of about 2.7 °C.

Variations in modeling error and correlation can also be illustrated with the median absolute
deviation (MAD), the Pearson coefficient of correlation (Rpeason) and the Spearman
coefficient of correlation (Rspearman). These parameters follow the above described behavior
and are shown in the following table:

Independent Variation RMSE [°C] | MAD [°C] R2 [-] Rpearson [-] | Rspearman [-]
Irradiance 1 2.46 0.94 0.97 0.99 0.98
(0-400W/m2)
Irradiance 2 3.74 1.52 0.91 0.96 0.94
(400-800W/m?)
Irradiance 3 4.61 1.52 0.92 0.96 0.95
(800-1200W/m?2)
Ambient Temperature 1 3.54 1.13 0.80 0.90 0.90
(-10-+13°C)
Ambient Temperature 2 3.74 1.70 0.93 0.96 0.97
(+13-+36°C)
Wind Speed 1 4.19 1.35 0.94 0.97 0.96
(0-3m/s)
Wind Speed 2 3.20 1.57 0.97 0.98 0.98
(3-6m/s)
Wind Speed 3 2.95 1.37 0.96 0.98 0.97
(6-9m/s)
AOI'1 4.05 1.52 0.95 0.97 0.97
(0-45°)
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AOI 2

2.67 1.04 0.95 0.97 0.96
(45-60°)
AOI 3 3.06 1.25 0.91 0.96 0.95
(60-70°)

Table 16 Independent parameter variation analysis for whole array, temperature: RMSE, MAD, R?,
Rpearson, Rspearman (OWﬂ table)

Power - Modeled versus measured

The following figure also illustrates the variation analysis of PV module power residuals,
depending on the independent variation of irradiance (black, top left), ambient temperature
(red, top right), wind speed (blue, bottom left) and angle of incidence (green, bottom right).
It includes information about RMSE variation for each observed range (red axis on the right
and red dashed line inside the graphs) as well as information about the coefficient of
determination R2 (listed along the x-axis for each range).
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Figure 43 Independent parameter variation analysis of residuals for the modeled power (own figure)

Figure 43 clearly shows a tendency to higher values in RMSE and significantly increased
variance of residuals, shown as a strong overprediction at low irradiance ranges between 0
and 400 W/m? — with RMSE of about 18 W and R? of about 0.7. An increase of irradiance
leads to better estimations, with RMSE of about 9 W for irradiances between 400 and
800 W/m2 and 8 W for irradiances between 800 and 1200 W/m?2, showing also improvement
in R2. An increase of ambient temperature shows positive effect on the modeling error,
leading to RMSE values of about 17 W for low and 8 W for high ambient temperature ranges.
High values in RMSE at low ambient temperatures between -10 and +13 °C are represented
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as strong overprediction of power. Increasing ranges of wind speed show strong effect on
modeling error for ranges above 6 m/s, leading to values of RMSE of about 18 W. Lower
wind speeds between 0 and 6 m/s show slightly lower RMSE of about 11 W. Increasing
ranges of AOI show a significant reduction of the modeling error from about 14 W for low
values of AOI to about 6 W for high ranges of AOI. However, residuals show a stronger
visible overprediction of power between AOI of 30 to 50°.

Lowest errors and best correlation could be achieved for high irradiances ranging from 800
to 1200 W/m2 measured global in-plane irradiance, as well as for AOI between 60° and 70°
and high ambient temperatures — with RMSE between about 6 and 8 W.

Variations in modeling error and correlation can again be illustrated with the median absolute
deviation (MAD), the Pearson coefficient of correlation (Rpeason) and the Spearman
coefficient of correlation (Rspearman). These parameters follow the above described behavior

and are shown in the following table:

Independent Variation RMSE [W] | MAD [W] R2 [-] Rpearson [-] | Rspearman [-]
Irradiance 1
e, 18.09 4.21 0.68 0.83 0.86
Irradiance 2 9.08 1.99 0.90 0.95 0.97
(400-800W/m?)
Irradiance 3 7.78 2.37 0.76 0.87 0.92
(800-1200W/m?2)
Ambient Temperature 1 16.85 3.16 0.96 0.98 0.99
(-10-+13°C)
Ambient Temperature 2 8.01 211 0.98 0.99 0.99
(+13-+36°C)
Wind Speed 1 11.15 2.46 0.97 0.99 0.98
(0-3m/s)
Wind Speed 2 11.41 2.29 0.97 0.98 0.99
(3-6m/s)
Wind Speed 3 17.52 4.24 0.94 0.97 0.98
(6-9m/s)
AOI'1 13.54 2.76 0.96 0.98 0.98
(0-45°)
AOI 2 11.59 2.01 0.97 0.98 0.98
(45-60°)
AOI 3 5.57 1.53 0.99 1.00 0.99
(60-70°)

Table 17 Independent parameter variation analysis for whole array, power: RMSE, MAD, R2,
Rpearson, Rspearman (OWN table)
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7.7 Analysis of effects of cross-dependent variation of bin
ranges

This chapter analyses the interaction (cross-dependence) of the observed bin ranges (data
samples) and thus effects caused by the (co-)variation of each of the above mentioned
parameters irradiance, ambient temperature, wind speed and angle of incidence — which
allows in total 54 combinations. As above, effects are analyzed via residual analysis.
Therefore, residuals — differences between modeled and measured values — are plotted over
the corresponding parameters of interest. Furthermore, plots include information about
RMSE and R2 values related to the corresponding ranges. As above, the following analysis
at first focuses on effects on the temperature model of Faiman (2008) and then on effects
on the modeled PV module output power according to IEC 61853-3 draft’s calculation
procedures.

Temperature - Modeled versus measured

The following figures illustrate the analysis of residuals, depending on the combined variation
of irradiance, ambient temperature, wind speed and angle of incidence — in total 54
combinations. They include information about RMSE variation for each observed range (red
y-axis on the right side and red dashed line inside each graph) as well as information about
the coefficient of determination R? (written along the x-axis for each bin range).

Each figure represents one range of angles of incidence (AOI range 1, range 2, range 3).
Plots inside one figure illustrate changes in ambient temperature (horizontal, from left to
right) and wind speed (vertical, from top to bottom). Residuals are plotted over increasing
irradiance values along the x-axis.

Normally distributed data samples of temperature residuals that have a minimum sample
size of 42 data points are considered to be within a margin of error MOE of +1 °C deviation
of the data sample (bin range) mean to the entire data set population’s mean — with a
confidence level of 95%.
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Angle of incidence range 1 — 0° to 45°
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Figure 44 Parameter variation analysis of residuals for the modeled temperature, AOI1 (own figure)

All of the observed data samples at these range of AOI between 0° and 45° (AOI range 1)
are above the expected minimum sample size of 42 — except samples at low ambient
temperature ranges between -10 and +13°C, wind speeds ranging from 0 to 6 m/s and
irradiances from 400 to 800 W/m2.

The figure above shows the tendency of increased RMSE of about 9 °C and increased
change in variance of residuals for increasing irradiances at low wind speeds between 0 and
3 m/s and low ambient temperatures between -10 and +13 °C (tambl) — also reflected in
significant decrease of R2 below 0.1. The influence of the irradiance on the PV module
temperature prediction changes with increasing wind speeds between 3 and 9 m/s and/or
increased ambient temperatures between +13 and +35 °C — leading to slightly lower values
in RMSE ranging from about 2 to 5 °C and better values of R? around 1.

Best values in RMSE and R2 at these ranges of AOI are reached for irradiances between 0
and 400 W/mz2 — with values of RMSE of about 2 °C and R2 of 0.96. Worst values in RMSE
and R2 can be found for high irradiance values and low wind speeds leading to values in
RMSE of about 9 °C and values of R2 below 0.1.
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Angle of incidence range 2 — 45° to 60°
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Figure 45 Parameter variation analysis of residuals for the modeled temperature, AOI2 (own figure)

For ranges of AOI between 45° and 60° (AOI range 2) the expected minimum sample size
of 42 data points can not be achieved for irradiance values above 800 W/mz2,

It can be seen that changes of irradiance have their strongest influence at low ambient
temperatures between -10 and +13 °C and low wind speeds between 0 and 3 m/s. As
observed above, an increase of wind speed and/or ambient temperature leads to less
influence of the irradiance on the modeling error.

Best values in RMSE and Rz at this range of AOI are achieved at low wind speeds between
0 and 3 m/s, low ambient temperatures between -10 and +13 °C and irradiances between 0
and 400 W/mz2 — with values of RMSE of 1.4 °C and with R2 of 0.97. Worst values in RMS
and R2 can be seen for low wind speeds between 0 and 3 m/s, low ambient temperatures
between -10 and 13 °C and high irradiances between 400 and 800 W/mz2 — with values of
RMSE of about 4 °C and R2 below 0.3.
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Angle of incidence range 3 — 60° to 70°
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Figure 46 Parameter variation analysis of residuals for the modeled temperature, AOI3 (own figure)

The minimum required sample size of 42 data points can only be achieved for low ambient
temperatures and irradiances between 400 and 800 W/m2 as well as for high ambient
temperatures, irradiances between 0 and 400 W/m2 and wind speeds from 0 to 6 m/s. Thus,
the observed data set does not allow a full comparison of parameter variation at this range
of angle of incidence between 60 and 70°.

However, it is visible that residuals differ significantly at lower wind speeds, lower ambient
temperatures and irradiances between 400 and 800 W/m?, showing a slightly bigger
difference to the zero reference line with more positive values — i.e. overprediction of the
model.

Tables, including information about RMSE and R2 as well as the median absolute deviation
(MAD), Rpearson and Rspearman CONfirm the above described findings and can be found in the
Appendix E of this work. The following table shows the results of the three best and the three
worst combinations of the above described combinations of bin ranges according to their
values in RMSE of samples that show a close to normal distribution of their residuals and
meet the minimum sample size of 42 data points:
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Range combination RMSE [°C] [ MAD [°C] R2[] Rpearson [-] Rspearman [-]
AOI3/Wind3/Tamb2/Irr.1 0.98 0.37 0.99 1.00 0.79

g AOI3/Wind1/Tamb2/Irr.2 1.04 0.76 0.98 0.99 0.85
AOI3/Wind2/Tamb2/Irr.2 111 0.92 0.90 0.95 0.68

- AOI1/Wind1/Tamb2/Irr.2 5.44 2.58 0.69 0.83 0.82

g AOI1/Wind2/Tamb2/Irr.2 4.44 1.90 0.91 0.95 0.95

= AOI1/Wind2/Tamb2/Irr.3 4.04 1.62 0.89 0.94 0.92

Table 18 Three best and worst cases parameter variation analysis for whole array, temperature:
RMSE, MAD, R2, Rpearson, Rspearman (OWn table)

In order to assure that the observed sample means are within the desired MOE to the
population mean, at a confidence level of 95 %, residuals need to be (roughly) normally
distributed. Therefore, normal distribution of the temperature residuals of all the of the above
mentioned and observed 54 data samples (bin ranges) can be verified via hormal probability
plots and/or frequency range histograms of residuals listed in the Appendix F. Data samples
that do not show a normal distribution indicate behavior that is not accounted for by the
applied model.

Power - Modeled versus measured

The following figures also illustrate the analysis of residuals, depending on the combined
variation of irradiance, ambient temperature, wind speed and angle of incidence — in total 54
combinations. They include information about RMSE variation for each observed range (red
y-axis on the right side and red dashed line) as well as information about the coefficient of
determination R? (written along the x-axis for each bin range).

As above, each figure represents one range of angles of incidence (AOI range 1, range 2,
range 3). Plots inside one figure illustrate changes in ambient temperature (horizontal, from
left to right) and wind speed (vertical, from top to bottom). Residuals are plotted over
increasing irradiance values along the x-axis.

Normally distributed data samples of temperature residuals that have a minimum sample
size of 138 data points are considered to be within a margin of error MOE of £2 W deviation
of the data sample (bin range) mean to the mean of the entire data set population’s mean —
with a confidence level of 95%.
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Angle of incidence range 1 — 0° to 45°
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Figure 47 Parameter variation analysis of residuals for the modeled power, AOI1 (own figure)

The minimum required sample size of 138 data points can be achieved for all ranges —
except for samples at low ambient temperatures, wind speeds between 3 and 9 m/s and
irradiances from 400 to 800 W/m2.

Results show that increasing wind speeds and/or ambient temperatures influence the effect
of the irradiance on the modeling error significantly, as also observed above. Thus, higher
wind speeds and/or ambient temperatures allow better power estimations at high
irradiances. Samples at low irradiances between 0 and 400 W/m? and low ambient
temperatures between -10 and +13°C show significant deviation of residuals from zero at all
wind speed ranges — represented as significant overpredictions. This can be related to
magnified errors through linear inter-/extrapolation and non-linearities of the PV performance
at these ranges of irradiance and temperature — discussed in the following sections.

Best values in RMSE and R2 at these ranges of AOI are achieved for high irradiances
between 800 and 1200 W/m?, high wind speeds between 6 and 9 m/s and low ambient
temperatures between -10 and +13 °C — with RMSE of about 2.5 W and R2 of 0.9. Worst
values in RMSE and R? can be seen for low irradiances between 0 and 400 W/m2, high wind
speeds between 6 and 9 m/s and low ambient temperatures between -10 and +13 °C, with
RMSE of about 33 W and R2 of about 0.8, as well as for irradiances between 0 and 400
W/mz2, low wind speeds between 0 and 3 m/s and low ambient temperatures between -10
and +13 °C with RMSE of about 23 W and R? of about 0.8.
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Angle of incidence range 2 — 45° to 60°
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Figure 48 Parameter variation analysis of residuals for the modeled power, AOI2 (own figure)

The minimum required sample size of 138 data points cannot be achieved for samples with
low ambient temperatures between -10 and +13 °C, wind speeds between 3 and 9 m/s and
irradiances from 400 to 800 W/m2.

As above, results show that high ranges of wind speeds and/or ambient temperature
influence the effect of the irradiance on the modeling error significantly — leading to lower
errors with increased irradiance. Also, increased modeling error at low irradiances between
0 and 400 W/m2 and low ambient temperatures between -10 and +13 °C and all wind speed
ranges is visible — as above represented as strong overpredictions. This indicates difficulties
through linear inter-/extrapolation approach and non-linearities of the PV performance at
these ranges of irradiance and temperature — discussed in the following sections.

Best values in RMSE and R2 at this ranges of AOI are achieved for high wind speeds
between 6 and 9 m/s and, high irradiances between 800 and 1200 W/mz2 and low ambient
temperatures between -10 and +13 °C, with RMSE of about 1.7 W and R2 0.9. Worst values
in RMSE and R? can be found for low ambient temperatures and irradiances between 0 and
400 W/mz2, leading to RMSE ranging between 20 W to 33 W and R2 of 0.8.
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Angle of incidence range 3 — 45° to 75°
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Figure 49 Parameter variation analysis of residuals for the modeled power, AOI3 (own figure)

The minimum sample size of 138 data points cannot be achieved for any of the observed
data samples at these ranges of AOI between 60° and 75° (AOI range 3). Therefore, a
conclusive interpretation of power estimation errors for the above shown data sample
variation at AOI range 3 is not possible.

Tables, including information about RMSE and R2 as well as the median absolute deviation
(MAD), Rpearson and Rspearman cONfirm the above described findings and can be found in the
Appendix G of this thesis. To exemplary illustrate the range of the results, the following table
shows the three best and the three worst combinations of the above described combinations
of bin ranges according to RMSE that show a normal distribution of their residuals and meet
the minimum sample size of 138 data points:
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Ranges RMSE [W] MAD [W] R2[-] Rpearson [-] Rspearman [-]
AOI2/Wind2/Tamb1/Irr.3 1.656 0.776 0.876 0.939 0.946
g AOI3/Wind2/Tamb2/Irr.1 2.163 0.386 0.995 0.998 0.991
- AOI1/Wind2/Tamb1/Irr.3 2.486 1.929 0.918 0.958 0.920
- AOI1/Wind2/Tamb1/lrr.1 33.208 9.512 0.765 0.876 0.904
g AOI1/Wind3/Tamb1/lrr.1 33.134 11.163 0.682 0.827 0.824
= AOI2/Wind2/Tamb1/lrr.1 27.969 10.710 0.838 0.916 0.904

Table 19 Three best and worst cases parameter variation analysis for whole array, power: RMSE,

MAD, R2, Rpearson, Rspearman (Own table)

In order to assure that the observed sample means are within the desired MOE to the
population mean, at a confidence level of 95 %, residuals need to be (roughly) normally
distributed. Therefore, normal distribution of the power residuals of all the of the above
mentioned and observed 54 data samples (bin ranges) can be verified via normal probability
plots and/or frequency range histograms of residuals listed in the Appendix H. Data samples
that do not show a normal distribution indicate behavior that is not accounted for by the

applied model.
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7.8 Summary and discussion of results — Evaluation of
modeling algorithms

The observed data set population of about 7000 data points of 1-minute averages of weather
and PV operational measurements taken at NIST — measured over a data set of 21 days
with characteristic weather conditions — allowed a wide-ranging evaluation of the modeling
algorithms used by the IEC 61853-3 committee draft. Evaluation results are summarized and
interpreted in the following sub-sections.

Correction procedures and evaluation of entire data set population

As for the correction procedures for AOI and spectral effects, the AOI correction of Martin
and Ruiz (2000) showed the most significant effect on the measured irradiance with a mean
difference between measured and corrected values of about 50 W/m2. The approach for
spectral correction through the model developed by Lee and Panchula (2016), leads to
smaller changes in the measured irradiance of about 1 W/m2 mean difference to the AOI-
corrected irradiance.

The analysis of the residuals of the entire data set population of all observed days shows
normally distributed residuals with relatively small errors in PV module temperature and
power prediction over the entire data set — represented by RMSE values of about 4 °C for
the temperature prediction and 13 W for the power prediction as shown in the following table.

Power Prediction Error Temperature Prediction Error
RMSE [W] Mpower, res. [W] RMSE [°C] Htemperature, res. [*C]
12.7 -4.2 3.7 15
Table 20 RMSE for power and temperature prediction over entire data set population (own
table)

Evaluation of days with characteristic weather conditions

The analysis of each day of the data set population individually allowed to conclude general
tendencies of the model with respect to the particular weather conditions on the specific
days. Here, RMSE for power prediction ranges from about 2 to 37 W. RMSE for temperature
prediction ranges from about 1 to 7 °C. Days with lower daily average irradiance tendentially
showed lower errors expressed by RMSE and MAD than days with higher daily average
irradiances, especially for temperature estimations. The evaluated model also demonstrated

difficulties in estimation of temperature for days with significant fluctuation of measured data
(e.g., caused by cloudy days). This could indicate the need for averaging data over longer
time periods and/or a better consideration of thermal mass of the PV module in the modeling
equations. However, as tendencies are not clearly visible in the analysis of individual days
of measurement — especially for the power prediction —, a more comprehensive
understanding of the behavior of the model is provided through the analysis of bin ranges
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(i.e. data samples) of the entire data set population — via examining variation of ranges
independently and cross-dependently.

Evaluation of independent variation of bin ranges (data set population)

The independent variation of the observed 11 bin ranges for irradiance, ambient
temperature, wind speed and angle of incidence shows clear tendencies. Modeling errors
range from 6 to 18 W RMSE for the power prediction and 3 to 5 °C for the temperature
prediction.

It can be seen that for the temperature prediction, modeling errors increase with increasing
irradiance. Whereas increasing irradiance causes a decrease of modeling error for the power
prediction.

Increasing ambient temperature causes a slight increase in modeling error for the
temperature prediction and a clearly visible decrease in modeling error for the power
prediction.

The effect of increasing wind speed leads to an increase in modeling error for the power
prediction and a decrease in modeling error for the temperature prediction. Whereas these
changes are mostly visible for wind speeds above 6 m/s for the power prediction.

Changes in AOI seem to lead to slightly lower modeling errors at higher AOI for the
temperature and power prediction. The influence of AOI on the temperature prediction is
rather minimal, whereas the influence of AOI on power prediction leads to significant
changes.

The following table sums up values of RMSE of the analysis of the independent variation of
observed bins for the power and temperature prediction at high/low irradiance, temperature,
wind speed and AOI ranges.

Ranges of Parameters | Power Prediction Temperature
Error Prediction Error
[] RMSE [W] RMSE [°C]

High Irradiance 7.8 4.6
Low Irradiance 18.1 2.5
High Temperature 8.0 3.7
Low Temperature 16.9 3.5
High Wind speed 17.5 3.0
Low Wind speed 11.2 4.2
High AOI 5.6 3.1
Low AOI 135 4.1

Table 21 RMSE for power and temperature prediction for high and low observed bin
ranges (own table)
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Evaluation of cross-dependent variation of bin ranges (data set samples)

The analysis of the interaction (cross-dependence) between all the 11 observed bin ranges
through data samples — which allows in total the comparison of 54 combinations of bins —
agrees with the findings above and allows a better understanding of the dependencies of the
modeling error behavior for certain bin ranges. In the following, cross-dependencies between
the individual parameter ranges are analyzed and interpreted.

Cooling mechanisms and overprediction at low irradiances

The observed data shows significant correlation between irradiance and wind speed
variation at all ranges of AOI. The figure below illustrates ranges of AOI between 0
and 45°. It can be seen that at lower wind speeds between 0 and 3 m/s (blue dots),
anincrease in irradiance causes also an increase in modeling error — visible as power
underprediction (negative residuals) and temperature overprediction (positive
residuals), especially pronounced at irradiances above approximately 800 W/mz,
With increased wind speeds above 3 m/s (red and yellow dots), the prediction error
decreases considerably — also represented as a decrease in slope of Tmeas - Tamb @S
a function of irradiance and wind speed.

This effect might be related to neglecting natural convection at low wind speeds and
high irradiance ranges in the temperature model — also discussed by Koehl et al.
(2011). Neglecting natural convective cooling at high irradiances and low wind
speeds leads to an overprediction of the module temperature (shown as positive
residuals), causing also visible underprediction of power (shown as negative
residuals). This effect is illustrated in the figure below.
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Figure 50 Cooling mechanisms and overprediction at low irradiances — AOI range 1 (own figure)
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Next to neglecting natural convection at low wind speeds and high irradiances, Koehl
et al. (2011) also discuss neglecting of radiation cooling for low wind speeds and low
irradiances — causing negative differences between module and ambient
temperature. The effect of radiation is minimally visible, leading to slight temperature
overprediction (positive residuals) causing also minimally visible underprediction
(negative residuals) of power at all observed ranges of AOI. However, the influences
of radiation cooling on the prediction error at the observed ranges are small, as
radiation cooling mostly occurs at very low irradiances and/or during night times. At
AOI between 45 and 75°, the correlation between wind speed and irradiance is
similar and shown in the figure below.
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Figure 51 Cooling mechanisms and overprediction at low irradiances, AOI range 2 and 3
(own figure)

Next to the observed cooling mechanisms, both figures above also show strong
deviation of residuals at irradiance values between 100 and 300 W/m?2 - also seen in
Figure 47 to 49 at low ambient temperature ranges between -10 and +13 °C. These
errors — represented as strong overpredictions (positive residuals) in power and
visible underprediction (negative residuals) in module temperature — are most
probably related to difficulties of the linear inter-/extrapolation method of the IEC’s
modeling algorithms to accurately predict power for lower ranges of irradiance and
lower ranges of module temperature. Also, the visible underprediction of module
temperature possibly contributes to a stronger overprediction in power — as also
discussed and pointed out in the following sub-section.
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¢ Influence of ambient temperature and angle of incidence

The figure below shows the residuals of module temperature and power prediction,
as well as measured PV module temperature plotted over the ambient temperature
for different ranges of AOI (shown in blue and red). It can be seen that the influence
of the ambient temperature on the modeling error seems to be most significant at
high ranges of AOI between 45° and 75° (red dots). At these ranges of AOI, higher
ambient temperatures lead to lower modeling errors for both, temperature and power
prediction. At low ranges of AOI between 0° and 45° (blue dots), increased ambient
temperatures seem to have significant impact on the temperature estimation —
causing strong underprediction of the module temperature and visible variation of
residuals for the power prediction.
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Figure 52 Influence of ambient temperature and AOI on temperature and power prediction (own
figure)

These effects can also be related to the higher influence of the irradiance on the
module temperature at lower ranges of AOI. The following figure shows temperature
and power prediction residuals plotted over the ambient temperature for the different
observed ranges of irradiance (shown in blue, red and yellow). It can be seen that at
low ambient temperatures below 10 °C and low irradiances between 0 and 400 W/m?,
the prediction of PV module power leads to high estimation errors — as mentioned
above. Most of the visible data points at these ranges show PV module temperatures
that are significantly below 15 °C —i.e. outside the range of the available performance
matrix used for the interpolation method for power prediction.
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Figure 53 Influence of ambient temperature and irradiance on temperature and power prediction

(own figure)

Therefore, in order to predict the PV module power for these lower module
temperatures, the performance matrix is linearly extrapolated to applicable ranges —
as suggested by the IEC 61853-3 draft. This possibly leads to irregularities introduced
through magnifying errors in the performance matrix through linear extrapolation, as
well as possible non-linearities in PV performance at lower irradiances and/or module
temperatures — also discussed by Whitaker and Newmiller (1998). Thus, linear
extrapolation of the available performance matrix to lower PV module temperature
ranges, especially for lower irradiance ranges, introduces significantly visible
irregularities in prediction of PV module power.

Taking a look at the figure below, it can be seen that these errors in power prediction
mostly occur for AOI between 30° and 50° — also observed in Figure 43. At the same
time, increasing AOI causes lower errors and less negative residuals in temperature
prediction — i.e. a tendentially lower influence of the irradiance on the module
temperature — also visible in a decrease of difference between measured module
temperature and ambient temperature.
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Figure 54 Influence of AOI on temperature and power prediction (own figure)

Summarizing the main findings of this section, the evaluated IEC 61853-3 committee draft
modeling algorithms present increased modeling errors at low irradiance ranges between
100 and 300 W/m2 and low ambient temperature ranges below 10 °C — leading to PV module
temperatures below 15 °C that lie outside the ranges of the available performance matrix
provided by IEC 61853-1. These prediction errors are shown as strong overpredictions —
mostly independent of wind speed and occurring mainly at high AOI between 30 and 50° —
and are possibly caused by errors introduced/magnified through linear extrapolation of the
performance matrix to lower PV module temperature ranges, as well as non-linearities of PV
module performance at lower irradiances and module temperatures — not taken into account
by the linear inter-/extrapolation method.

Furthermore, errors at these ranges of low irradiance, low ambient temperature and high
AOI can partly be related to increased angular losses, caused for example through
soiling/dust deposition not sufficiently considered through the angular loss coefficient a; in
the model of Martin and Ruiz (2000) — also illustrated in Figure 7.

Also, not accurately considering the PV module’s thermal mass, natural convection and
radiation cooling by the temperature model leads to visible deviation of residuals for the
temperature and power prediction.

The following table gives an overview of the modeling error RMSE for each of the observed
bin ranges. It is important to mention that not all of the listed bin ranges in the table meet the
required minimum sample size and/or show normally distributed residuals. A table with bin
ranges that meet these requirements can be found in the Appendix I.
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R[IZ/ICS]E RMSE [W] Irr[%s/lr?]r;]ce T'gnnw]gﬁ?(t:] W|n[<rjn?s;‘)]eed A{?I
1,877 23,164 Irr. 1
4,317 6,963 Irr. 2 Wind speed 1
9,030 8,870 Irr. 3
3,457 4,145 Irr. 1
5,440 6,667 Irr. 2 tamb 1 Wind speed 2
5,196 7,077 Irr. 3
2,754 33,208 Irr. 1
3,123 3,992 Irr. 2 Wind speed 3
2,266 2,486 Irr. 3 -
2,794 9,525 Irr. 1 >,
4,437 11,491 Irr. 2 Wind speed 1
4,044 7,848 Irr. 3
2,064 33,134 Irr. 1
3,864 22,248 Irr. 2 tamb 2 Wind speed 2
2,746 4,907 Irr. 3
3,583 16,938 Irr. 1
3,029 12,221 Irr. 2 Wind speed 3
3,385 11,897 Irr. 3
1,415 19,189 Irr. 1
4,096 6,722 Irr. 2 Wind speed 1
7,965 6,519 Irr. 3
2,180 3,828 Irr. 1
2,096 7,052 Irr. 2 tamb 1 Wind speed 2
Irr. 3
2,210 27,969 Irr. 1
2,120 7,804 Irr. 2 Wind speed 3 ~
2,494 1,656 Irr. 3 O
1,951 6,798 Irr. 1 ) <
1,490 7,012 Irr. 2 Wind speed 1
Irr. 1
2,381 25,484 Irr. 2 Wind speed 2
1,668 | 10,763 Irr. 3 tamb 2
3,935 3,083 Irr. 1
2,651 14,230 Irr. 2 Wind speed 3
2,165 7,513 Irr. 3
Irr. 1 o
Irr. 2 tamb 1 Wind speed 1 o)
5,629 4,503 Irr. 3 <
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7,883 6,374 Irr. 1
1,644 8,308 Irr. 2 Wind speed 2
1,044 2,776 Irr. 3

Irr. 1

Irr. 2 Wind speed 3
2,062 4,295 Irr. 3

Irr. 1
1,164 2,163 Irr. 2 Wind speed 1
1,107 3,774 Irr. 3

Irr. 1

Irr. 2 tamb 2 Wind speed 2
2,983 4,812 Irr. 3
3,040 2,660 Irr. 1
0,977 4,331 Irr. 2 Wind speed 3
0,439 3,546 Irr. 3

Table 22 RMSE for power and temperature prediction for all possible combinations of bin ranges,
(own table, color code: high = red to low = green, empty cells represent ranges with no data points)
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8 Spatial PV array performance analysis

The analysis above compares modeled and measured values of power and temperature via
the analysis of residuals. Temperature measurements refer to the PV module temperature
measured at the backside of a PV module located in the middle of the PV ground array — as
described in section 1.4. Power measurements refer to the mean of all the 96 traced PV
modules inside the observed PV array — as also described in section 1.4.

This chapter focuses on the comparison of modeled and measured PV module output power
pointing out differences between the 96 individually traced PV modules mounted within each
string of the observed PV ground array at NIST. As module temperature is not monitored for
each of the observed, traced PV modules, a direct comparison of measured and modeled
PV module temperature for each PV module is not taken into account within the scope of
this work. However, tendencies for local irradiance and temperature differences between the
observed PV modules inside the array are represented through the IV curve parameters Isc
and Voc — as explained in section 3 of this work.

The analysis of local position differences between traced modules inside the array is done
through the graphical illustration of residuals of power (difference between modeled and
measured values) as well as differences in the measured Voc and Isc for the following data
sets — as also in the evaluation above:

1. Entire data set population of all observed days
2. Independent bin range variation
3. Cross-dependence and interaction of bin ranges

The visualization of results in this part of the analysis is done through boxplots in which the
traced module parameters are grouped according to their position inside the PV array —
according to section 3.4. To graphically support the boxplots and to represent a better spatial
illustration of position effects of traced modules within the PV array, boxplots are shown in
combination with heat maps of the 96 traced PV modules. Results of independent and cross-
dependent bin range variation are summed up within this chapter and can be found in the
tables of Appendix J.
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8.1 Analysis of entire data set population

In the following, the analysis of position differences between traced PV modules inside the
observed PV ground array represents the entire observed data set population.

Differences between modeled and measured PV module output power
The figure below shows differences between IEC 61853-3 CD modeled and on-site
measured PV module output power for each position group (boxplot) and the median of the
power difference between modeled and measured values for each individually traced PV
module (heat map) inside the PV array — for the entire data set population.

Boxplot, Power Difference [W] - Entire Data Set Heat Map, Median Power Difference [W] - Entire Data Set
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Figure 55 Boxplot and heat map, power difference, entire data set population (own figure)1?

The boxplot of Figure 55 shows that the median of the differences between modeled and
measured PV module output power for PV modules in bottom rows of the array is
significantly higher compared to other position groups. This means that for the observed data
set population, PV modules located in the bottom rows show a clear tendency of being
overestimated by the applied modeling algorithms. Furthermore, the heat map in the figure
above shows a tendency of lower median power differences towards the south/southwest
side of the PV array (bottom left and left part of heat map) — showing an approximate
difference in median power difference of about 2 to 4 W to modules on the north/northwest
side. The observed effects can be related and explained by further analyzing IV curve
parameters, such as Voc and Isc.

11 The observed heat maps show all PV array rows, but do not show all 48 PV array columns, only
those with tracers. Sheds and locations with no tracers are separated through white spaces (NaN).
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Measured open circuit voltage (Voc)

The figure below shows the boxplot of the measured Voc depending on the position of the
traced PV modules inside the ground array of the entire data set population. The heat map
illustrates the median of measured Voc values of the entire data set population for each
traced PV module inside the array.

Boxplot, Measured Voc [V] - Entire Data Set Heat Map, Median Measured Voc [V] - Entire Data Set

41

39r

15
=]
T

Voc,measured [V]
|3 w
@ ~
T T

PV Array Tracer Row

wede: 12 racd: 3 eacds: 12 eade: 28 ke @2 o 98
| tata parles: 83148 cbvta pampe: 260844 s PR B3040 Adala o 194012 sa painks: 291018 #data pape: 65515¢)
31 RS 35 91 RS- 35 85 RS 35 75 RS 36 02 535 RS 35 85
wo‘ms waol 35 sanl1za mAs) 1 25 wul-ua wank1 x2
€L €L -
e . : € & l=_
29 L L | L '
TOP MIDDLE ~ BOTTOM EDGE  MIDDLE o.A ALL PV Array Tracer Column

PV Array Tracer Position

Figure 45 Boxplot and heat map, measured Voc, entire data set population (own figure)

The boxplot of the figure above shows clear variation of measured Voc between the positions
of traced PV modules inside the PV array for the entire data set population. It can be seen
that the median of the measured Voc values of PV modules in top rows of the array is slightly
higher compared to PV modules mounted in middle or bottom rows. Also, modules mounted
at the edge of the array show higher median measured Voc compared to modules located
in the middle of the array. This can be related to less convective cooling for PV modules in
bottom rows and for modules located in the middle of the array, as modules in these positions
might not be as exposed to wind as in modules in top rows and at the edge of the array. The
decrease of heat loss through convection can cause locally increased temperatures, and
thus decreased values in Voc. Furthermore, the heat map of the figure above shows slightly
higher medians in measured Voc for PV modules mounted at the south/southwest side
(bottom left and left part of heat map) of the PV array, compared to modules mounted at the
north/northeast side (upper right part of heat map) — showing an approximate difference of
median measured Voc of about 0.2 to 1 V between these positions. This finding correlates
with differences in power prediction, shown before.
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Measured short circuit current (Isc)

The figure below shows the boxplot of the measured Isc depending on the position of the
traced PV modules inside the ground array of the entire data set population. The heat map
illustrates the median of measured Isc values of the entire data set population for each traced
PV module inside the array.

Boxplot, Measured Isc [A] - Entire Data Set Heat Map, Median Measured Isc [A] - Entire Data Set
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Figure 46 Boxplot and heat map, measured Isc, entire data set population (own figure)

The figure above shows clear differences in Isc across the whole PV array for the entire
observed data set population. Furthermore, it can be seen that the median of measured Isc
values for PV modules at top rows of the array shows slightly higher values for the entire
data set population, when compared to middle and bottom positions of the array. The heat
map of the median of measured Isc values for all the traced PV modules shows a clear
tendency to lower values in Isc for PV modules mounted at the south/southwest side (bottom
left and left part of heat map) of the PV array — confirming the tendency related to the median
of modeled versus measured power difference and median measured Voc, mentioned above
— showing an approximate difference in median measured Isc of about 0.2 to 0.5 A. The
affected PV modules seem to show slightly increased Isc possibly due to a positive
temperature coefficient, correlating to decreased Voc in the same area of the array due to a
negative temperature coefficient. Another possible reason for this difference in median
values of Isc across the spatial distribution of PV modules can for example be related to
stronger dust deposition or soiling and thus increased reflection losses on the south and
southwest side of the array or higher reflection of surroundings on the north and northeast
side of the array. Due to the pattern of Isc differences across the array, as well as the
relatively young age of the PV array, degradation effects are assumed to be unlikely.
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8.2 Analysis of independent and cross-dependent
variation of bin ranges

In the following, the effects of the independent and cross-dependent variation of the
observed bin ranges are analyzed according to their impact on performance differences
between the observed positions within the PV array. An overview of the results is provided
through tables in Appendix J, containing the median power difference between modeled and
measured power as well as tables showing the median measured Voc and Isc for each
position group and observed bin range.

Differences between modeled and measured PV module output power

The spatial PV array analysis of the power prediction error related to the position of the
traced modules within the array in general confirms the findings above. Results show that
while PV modules in the top rows of the array show a tendency to be more often
underpredicted by the IEC modeling algorithms, modules mounted in bottom rows show the
tendency to be more often overpredicted. The following table shows the counts of ranges
with the median power prediction error below and above zero for all observed weather
ranges and positions of the array.

o Ranges with .
Variation _ _ Middle
median power Top | Middle | Bottom | Edge All
type L 0. A.
prediction error
<0 4 3 0 4 2 3
Indep.eerent (underprediction)
variation
(11 ranges) >0, , 7 8 11 7 9 8
(overprediction)
- <0
Cross . 14 12 5 12 11 | 1
dependent | (underprediction)
variation >0
- 31 33 40 33 34 34
(54 ranges) | (overprediction)

Table 23 Counts of median power prediction error for all weather ranges and PV array positions??
(own table)

12 Numbers of underprediction and overprediction add up to 11 for the independent variation and to
45 for the cross-dependent variation of observed weather ranges. This is, because not all the
observed 54 ranges show sufficient measurement points for a complete analysis of the entire array.
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Tables in Appendix J show that overprediction occurs most significantly at low irradiances
and low ambient temperatures (as observed above), leading to median power prediction
errors up to about 30 W. While underprediction is most significant at high irradiances, high
ranges of AOI, low wind speeds and low ambient temperatures, leading to median power
prediction errors ranging down to about -7 W. This can be confirmed with the following
observations:

The figure below illustrates power prediction differences for each observed position and
tracer across the PV array at high wind speeds, low ambient temperatures and high
irradiances, showing clearly visible differences between east and west side of the PV array
— with lower prediction errors on the west side. Furthermore, it can be seen that tracers
mounted in bottom positions of the PV array show a strong tendency of power overprediction.
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Figure 56 Differences in measured Voc across the array at high wind speeds, low ambient
temperatures and high irradiances (own figure)

Inconsistencies in power prediction error across the PV array become slightly more
pronounced at increased ambient temperatures — as illustrated in the figure below.
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Figure 57 Differences in measured Voc across the array at high wind speeds, high ambient
temperatures and high irradiances (own figure)

These differences across the PV array almost disappear at low wind speeds, low ambient
temperatures and low irradiances, also showing significant tendency of overprediction for all
the observed module positions and tracers, as observed above — shown in the figure below.
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Figure 58 Differences in measured Voc across the array at high wind speeds, high ambient
temperatures and high irradiances (own figure)
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Thus, the observed weather conditions show significant variability in power prediction error
across the PV array for high irradiances and/or ambient temperatures, being also dependent
on wind speed. Inconsistencies across the PV array are lowest at low ranges of irradiance
and/or ambient temperature. These findings can be confirmed through the analysis of the
IV-curve parameters Voc and Isc:

Analysis of measured open circuit voltage (Voc)

The spatial analysis of measured Voc for all observed bin ranges shows that modules
mounted in the bottom rows of the array have the tendency to lower measured median Voc,
compared to the other positions — confirming the findings above. Differences between
median measured Voc are for example visible at high irradiances, high wind speeds and low
ambient temperatures — shown in the figure below.
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Figure 59 Differences in measured Voc across the array at high wind speeds, low ambient
temperatures and high irradiances (own figure)

At these weather conditions, a spatial difference in median measured Voc between east and
west side of the PV array becomes clearly visible. These inconsistencies across the array
become more with increasing ambient temperatures at high wind speeds and high
irradiances, leading to the observed tendency of higher Voc at the south/southwest side of
the array — shown in the figure below.
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Figure 60 Differences in measured Voc across the array at high wind speeds, high ambient
temperatures and high irradiances (own figure)

The observed differences between measured Voc almost disappear entirely at low wind
speeds, low ambient temperatures and low irradiances — as shown in the figure below.
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Figure 61 Differences in measured Voc across the array at low wind speeds, low ambient
temperatures and low irradiances (own figure)
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Thus, the spatial analysis of Voc measurements for the observed PV array shows a strong
dependence on ambient temperature and/or irradiance and wind speed. Higher ranges of
ambient temperature and/or irradiance and wind speed cause significantly visible
inconsistencies in median measured Voc across the array, indicating local temperature
differences — with the tendency to higher temperatures at the north/northeast part of the
array and lower temperatures at the south/southeast part. The observed differences also
seem to be strongly dependent on wind speed (and possibly also wind direction — not
considered).

A table showing the median measured Voc for all positions at all observed weather ranges
can be found in Appendix J.

Analysis of measured short circuit current (Isc)

The spatial analysis of measured Isc for all observed bin ranges confirms the findings above
and illustrates that PV modules mounted at the south and southwest side of the array show
significantly lower median in measured Isc, compared to other positions of the array. As seen
above, this effect especially is pronounced for higher irradiances and/or temperature ranges
and wind speeds, leading to slightly higher median measured Isc in the north/northeast part
of the array.
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As shown before, these observed inconsistencies disappear almost completely at lower wind
speeds, lower ambient temperatures and lower irradiances, as can be seen in the figure
below.
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Figure 63 Differences in measured Isc across the array at low wind speeds, low ambient
temperatures and low irradiances (own figure)

Thus, the spatial analysis of Isc measurements for the observed PV array confirms the
findings above, showing a strong dependence on ambient temperature and/or irradiance and
wind speed. Higher ranges of ambient temperature and/or irradiance and wind speed cause
significantly visible inconsistencies in median measured Isc across the array, indicating local
temperature differences across the array — with the tendency to higher temperatures at the
north/northeast part of the array and lower temperatures at the south/southeast part. The
observed differences also seem to be strongly dependent on wind speed (and possibly wind
direction — not considered).

A table showing the median measured Voc for all positions at all observed weather ranges
can be found in Appendix J.

122




8.3 Summary and discussion of results — Spatial PV array
performance analysis

The analysis of local differences between the modules mounted in the observed PV array
agrees with findings of the evaluation of modeled and measured power for various ranges
of weather conditions, and further allowed the illustration of spatial performance differences
across the array.

The comparison of power residuals for the observed 6 PV module position groups shows a
tendentially higher overprediction of PV modules located in bottom rows of the array — which
corresponds to differences in IV-curve parameters Voc and Isc. Furthermore, a clear
tendency of lower median power prediction error to the south and southwest of the PV array
can be seen — differing from the rest of the array with about 2 to 4 W for the entire data set
population, with the same tendencies also visible in Voc and Isc measurements.

The comparison of measured Voc for the observed 6 PV module positions groups shows
lower median measured value in Voc for PV modules located in bottom rows and in the
middle of the array —which can be related to increased local temperatures at these positions.
Furthermore, a clear difference between median measured Voc of modules located on the
south and southwest side of the array can be observed — showing differences of about 0.2
to 1 V higher median measured Voc compared to PV modules located at the north/northeast
part of the array — for the entire data set population.

Differences can also be seen for measured Isc. PV modules located in the bottom rows show
slightly lower values in Isc, when compared to other positions. Furthermore, a tendency of
lower median measured Isc towards the south and southwest part of the PV array can be
observed with differences up to 0.5 A — compared to PV modules located at the
north/northeast part of the array, for the entire data set population.

The observed differences in Voc and Isc (and consequently power) might be related to local
temperature inconsistencies across the array caused through the influence of ambient
temperature and/or irradiance combined with changes in wind speed. It is assumed that
modules located at the south/southwest side of the PV array are more exposed to wind, and
thus convective cooling, than modules located at the north/northeast side. The observations
correlate with each other, as increased temperature influences Isc positively (positive
temperature coefficient) and Voc as well as power negatively (negative temperature
coefficient). However, a verification of these findings would require more granular module
temperature and the consideration of wind speed and wind direction measurements across
the array, which is not part of the scope of this research. Furthermore, the effect of exposure
to different surroundings across the PV array can also contribute to the observed
inconsistencies, leading for example to different degree of soiling/dust deposition on the
surface of PV modules.

123



Although the described tendencies of Voc and Isc differences between the observed
positions of PV modules inside the array are clearly visible, they do not influence the power
prediction variability as strongly as expected. However, in order to enable a more accurate
spatial prediction of PV module output power for entire PV arrays through the observed
modeling algorithms, this research allows to conclude that the following two considerations
are of high importance:

1-

Mounting location of modules within the array:

For the observed array and data set, especially modules that are mounted in
bottom rows and in the middle of the array are found to show significant
differences in power prediction error. These difference might be related to
temperature and/or irradiance differences across the array. Furthermore, the
wind speed and possibly the wind direction, as well as the degree of exposition
of the modules to wind appear to be influential — as described above. Thus,
mounting location of PV modules within an array plays a crucial role for
performance predictions. The verification of these assumptions would require a
more granular monitoring of module temperature and wind speed and/or wind
direction across the PV array.

Surroundings of array and ground conditions:

It is assumed that the observed inconsistencies across the array are related to
temperature and/or irradiance differences combined with the influence of wind
speed and/or wind direction on the module temperature. However, also the
exposure to different surroundings on each side of the PV array might be
influential. For example, spatial differences in dust deposition and/or reflection of
irradiance by surroundings can also lead to differences of the module
performance across the array and therefore should be considered in potential
performance predictions of PV arrays. Thus, surroundings of PV modules
mounted inside PV arrays are also of high importance for performance
predictions. The effects of the surrounding environment on PV arrays are also
discussed by Maghami et al. (2016) and Fairbrother (2017).
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9 Conclusion and outlook

The quantification of PV system operation reliability under outdoor conditions earns high
attention, as it is strongly related to the operation costs throughout the life-time of PV
systems. PV reliability, next to other market drivers, therefore also strongly influences the
continuing growth of the installed PV capacity worldwide. Quantifying PV system reliability
requires the understanding of occurring effects at real life outdoor operation conditions. An
existing method to quantify and predict these effects present the modeling algorithms
suggested by the international standard IEC 61853-3 — which is currently under development
and available as committee draft. This standard aims to provide an energy rating method for
PV modules at different climatic conditions around the world. Thus, it provides an approach
for the quantification of performance parameters of PV systems mounted outdoors at
different places over the world — also aiding the understanding of climate sensitivity of PV
systems. International standardization processes in this context are also seen as key support
of open markets, free trade and interoperability, and thus further supporting a continuing
growth of PV globally — as also discussed in ANEC (2010).

The effort of this research is to evaluate sub-models, applied by the IEC 61853-3, via using
granular intra-array PV module measurements as well as weather parameters measured at
the campus of NIST in Gaithersburg, Maryland (USA). The research focus lies in the
comparison of instantaneously measured PV module temperature and power with
predictions of the IEC algorithms, based on weather data inputs. Measurements and
predictions are compared for various weather conditions, comparing the (cross-) dependent
variation of bins of irradiance, ambient temperature, wind speed and angle of incidence.
Additionally, a spatial analysis of performance variability within the observed PV array aims
to provide better understanding of inconsistencies occurring at different positions within the
array. With this, it is aimed to aid potential efforts for the performance modeling of entire PV
arrays. The observed data set population consists of 21 days of measurements, measured
at different days with characteristic weather conditions. Monitoring data consists of 1-minute
averages of weather data parameters, as well as 1-minute averages of traced PV operational
data measured at 96 field deployed PV modules — each of them mounted within one series
string of the observed PV array. Additionally, IV curve traces of all of the 96 traced modules
are taken in 5-minute intervals, allowing also the analysis of IV curve parameters.

Results show that the IEC 61853-3 modeling algorithms allow the prediction of temperature
in the range between 1 and 9 °C RMSE, and power prediction in the range between 2 and
33 W RMSE - for the observed data set population. Best results are shown for days with
little fluctuation in monitoring data, e.g. caused at cloudy days. This could indicate the need
for longer averaging periods of monitoring data and/or the better consideration of the PV
module’s thermal mass in the temperature model. Evaluations of the variation of the
observed bin ranges (data samples) of weather conditions show a strong dependence of the
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modeling errors on irradiance, wind speed and ambient temperature. For the observed data
set population, biggest errors up to about 33 W RMSE occur at low irradiances between 100
and 300 W/m? and low ambient temperatures below 10 °C, mostly independent from wind
speed and occurring at AOI between 30 and 50°. These prediction errors are shown as
significant overpredictions, most certainly related to error magnification caused by linear
extrapolation of the available performance matrix to PV module temperature ranges below
15 °C, as well as possible non-linearities of PV module performance at lower irradiances and
module temperatures — not taken into account by the linear inter-/extrapolation method. A
similar effect is also discussed by Whitaker and Newmiller (1998). Also, as the observed
increased prediction errors are found at higher ranges of AOI between 30 and 50°, possible
errors in consideration of reflection losses through increased angular losses (caused for
example through dust deposition) could add to the observed prediction error. Furthermore,
neglecting natural convection and radiation cooling effects by the temperature model — also
discussed by Koehl et al. (2011) — lead to visible deviation of residuals for temperature and
power prediction, showing errors between 5 and 10 °C RMSE for module temperature
prediction, and errors between 7 and 10 W RMSE for power prediction. Errors caused by
natural convection decrease with increasing wind speeds between 3 and 9 m/s to about 2 °C
RMSE for temperature and 2 to 4 W RMSE for power prediction. Furthermore, prediction
errors decrease with higher ambient temperatures between 13 and 35 °C and high ranges
of AOI between 45 and 75° - leading to prediction errors between 0.5 and 3 °C RMSE for
the module temperature and between 3 and 5 W RMSE for the module power.

Based on these observations, possible improvements for evaluated IEC 61853-3 CD
modeling algorithms could be a better consideration of thermal mass and effects such as
natural convection and radiation in the thermal model, as well as improvements related to
the linear inter-/extrapolation method in combination with the performance matrix of IEC
61853-1. One approach for the improvement of the inter-/extrapolation method could be the
expansion of required measurement points for the performance matrix, enabling to cover all
ranges of observed irradiances and module temperatures at certain climates — thus,
decreasing the probability of errors introduced via linear inter-/extrapolation.

The spatial analysis of performance parameters and power prediction errors at different
locations of the PV array shows a strong dependence of inconsistencies across the array on
irradiance and/or ambient temperature, as well as changes in wind speed. Especially PV
modules located in the bottom rows of the array and in the middle of the array show a
significant tendency of overprediction by the IEC modeling algorithms. Also, the
south/southwest part of the PV array shows a strong tendency of performance prediction
differences, compared to other positions of the array — with differences ranging between 2
and 4 W median error difference for the power prediction. The analysis of the IV curve
parameters, Voc and Isc, reveals that observed differences are possibly also related to local
temperature differences across the PV array — reflected by median differences in Voc
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ranging between 0.2 and 1 V and median differences in Isc ranging up to 0.5 A for the
affected positions compared to not affected regions of the PV array.

However, results of the spatial array analysis are seen as first indicators of inconsistencies
occurring across the PV array. A verification of the assumptions would require the analysis
of more granular measurement of PV module temperature and wind speed (and possibly
wind direction) across the array. Also, the effect of different surroundings across the array,
that could as well influence the PV module performance significantly, needs to be taken into
consideration, e.g. via more granular irradiance and/or ground reflection measurements and
a more accurate consideration of soiling and dust deposition for each PV module inside the
array — also discussed by Maghami et al. (2016) and Fairbrother (2017).

All in all it can be concluded that the IEC 61853-3 committee draft calculation procedures
allowed remarkable prediction of temperature and power of the observed field deployed PV
modules mounted inside the ground array at the campus of NIST, by using 1l-minute
averages of instantaneous monitoring weather and PV operational data. Findings related to
the behavior of the modeling algorithms at various ranges of weather conditions can indicate
possible strengths and weaknesses of the IEC’s prediction algorithms for different climatic
conditions. This is of high interest, as the standard ultimately aims to provide an energy
rating method for different climate zones around the world. However, the findings of this work
primarily serve as a practical application example of the IEC 61853-3 sub-models and mainly
refer to and are limited by the observed ranges of measured data at the PV array installation
location at NIST in Gaithersburg, Maryland (USA).
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Appendix A — PV array monitoring system components

Monitoring Parameter Abbreviation Measgrement Model of equipment
data set equipment
RTD probe in a
. multi-plate R.M. Young 41342LC
ambient . .
temperature Tamb pasglvely in an R.M. Young
ventilated 41003
radiation shield
< wind speed v ultrasonic wind Vaisala WMT52
& sensor
©
)
global :
<
© horizontal GHI tt}zgn;%pe”tir Eppley PSP
g irradiance Py
direct normal thermopile .
irradiance DNI pyrheliometer Kipp & Zonen CHP 1
global in-plane thermopile Kipp & Zonen CMP
. . Gpoa
irradiance pyranometer 11
[ module
.g backside Tmod,meas RTD Unknown, Pt1000
© temperature
S operational wireless IV
o g P lop Stratasense
03 current curve tracer
E operational wireless IV
° Vop Stratasense
o voltage curve tracer
£ wireless IV
> IV curve traces - Stratasense
o curve tracer
entire array - network camera Axis Q6032-E PTZ
middle third - network camera | Axis Q6032-E PTZ
" north third - network camera Axis Q6032-E PTZ
2 south third - network camera | Axis Q6032-E PTZ
L , Axis M3027-PVE with
o fisheye lens .
- sky camera - network camera a Fujinon
g FE185C046HA-1
S Alcor System OMEA-
fisheye lens 2.0M-HCA with a
sky camera - -
network camera Fujinon
FE185C046HA-1

Table 24 Field deployed PV array monitoring system components (own table)
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235 WATT

NU-U235F2
NEC 2008 Compliant
Maodule output cables: 12 AWGE PV Wire
ELECTRICAL CHARACTERISTICS DIMENSIONS
Maximum Power {Pmax]" 235 W BACK VIEW
Tolerance of Prnax +10%,/-5% A i  CRRaI
Type af Cell Menocrystalline silicon 1 & | B ¥
Cell Configuration &0 in serias 0 T
Open Circuit Violtage (Voc) 370V L Tﬁ
Maximum Pawer Voltage (Vom} 300V N I
Shert Circuit Current (ke BE0 A
Maxirmurm Pawer Current {pm) TEA A
Module Efficiency (%) 14.4% =F
Maximum Systam (00 Violtage SO0 Y .
Series. Fuse Rating 15 A
WOCT 4T 5N
Temperature Coefficient (Pmax) -0u4B5%,/°C | T I
Temparatura Cosfficient (Yoo L 35ESC _1-
Temparatura Coefficient (Isc) QOEEH T _L BT, | o
“Mumination of 1 KW 1 sun at spectral distribution of A% L5 (ASTM EBS2 E @ @ | _l_
glatal spactral irrackance} at & cell temparsturs of 25°C T - Jio ¢
# B [ ] E
MECHAMICAL CHARACTERISTICS WIS MM GAEAB40 MM LELEEmm  WAYIESmm 35700 mm
Dimensicns (4 « B C balow} 300" % 64.6% % LB/204 % 1640 % 46 mm e P
Cahle Length {G) A7 31RO i IFTASEmm 43300 mm
Dutput Interconnect Cable™ 12 AWE with MC4 Locking Connactor R
Waight 418 Ibs /19,0 kg
Max Load 50 psf (2400 Pascals)

Oparating Temperatune (zall} -40 ta 1947°F / -40 to DO°C

i mafety ook cip (Muiti Contack part rambsr PY-55H43 may be requinsd o
per HEC 2008 §30.33 (T3

© per UL Subject 4703

sk e

LIL Listed UL 1702

Fire Rating Class ¢ ‘@“‘ Sharp solar modules are manufactured in the United
States and Japan, and qualify as “American” goods

WARRANTY under the "Buy American” clause of tha American

Reacovery and Reinvestrment Act (ARRAL

25-waar limitad warranty on power output
Contact Sharp for complate warranty information

SHARP ELECTRONICS CORPORATION
SHARP 5801 Bolsa Avenue, Huntington Beach, GA B2E47
" 1-800-S0LAR-06 « Email: sharpsolar@sharpusa com
www.sharpusa.com/solar

2010 Bhaep Elcirones Corpoabon, S0 nights resansed 10L-080 - PC-17-10

Figure 65 Manufacturer data sheet for PV module at ground mounted PV array
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Figure 66 Schematical figure of the communication network for data acquisition (Boyd, 2015)
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Appendix B — Performance matrix

Se(;rjs:]ce Module ID |Date Tested | Tested By R‘Efz\r/iecnece Spe;;;i')r""’v' Te”;'ifé‘i’““r '”[‘;"A‘Ij/'ri”z?e Isc [A] voc [V] imp [A] vmp [Vl | Pmp W] FF [%] Eff [9 Ix [A] Ixx [A]
Matrix Average | 22.00.2016 | KLDCZ |CAL2720ut| 1,0000 15 100 0,85 34,9 0,80 20,7 23,7 80,0 145 0,84 0,64
Matrix Awerage | 22.09.2016 | KLDCZ | CAL2710ut| 1,0000 15 200 1,69 36,1 1,60 30,6 48,8 80,0 15,0 1,69 1,26
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 15 400 3,38 37,2 3,19 31,1 99,3 79,1 15,2 3,36 2,45
Matrix Average | 22.00.2016 | KUDCZ |CAL2710ut| 1,0000 15 500 4,22 37,5 3,98 31,2 124,3 78,4 15,2 4,20 3,02
Matrix Awrage | 22.09.2016 | KLDCZ | CAL2710ut| 1,0000 15 600 5,06 37,8 477 31,2 148,9 777 15,2 5,05 3,57
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 15 800 6,76 383 6,34 31,2 197,7 76,4 15,2 6,73 4,63
Matrix Awerage | 22.00.2016 | KUDCZ |CAL2710ut| 1,0000 15 1000 8,46 38,6 7,01 31,0 245,3 75,1 15,0 8,42 5,64
Matrix Awrage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 25 100 0,85 33,6 0,80 28,4 22,7 79,1 13,9 0,85 0,63
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 25 200 1,70 34,8 1,60 20,2 46,7 78,9 14,3 1,69 1,25
Matrix Awerage | 22.00.2016 | KLUDCZ | CAL2710ut| 1,0000 25 400 3,39 36,0 318 20,8 94,9 77,8 146 3,37 2,43
Matrix Awrage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 25 600 5,08 36,6 475 20,9 142,2 76,4 14,5 5,06 3,53
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 25 800 6,78 37,1 6,33 20,9 189,2 75,3 14,5 6,75 4,59
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 25 1000 8,48 374 7,89 20,7 234,5 738 144 8,44 5,58
Matrix Awrage | 22.09.2016 | KLDCZ | CAL2710ut| 1,0000 25 1100 9,33 37,6 8,67 20,6 256,6 73,2 14,3 9,29 6,06
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 50 100 0,86 30,3 0,79 24,9 198 76,0 12.1 0,85 0,62
Matrix Awerage | 22.09.2016 | KLDCZ | CAL2710ut| 1,0000 50 200 1,71 315 1,58 25,8 40,9 75,9 12,5 1,70 1,21
Matrix Awrage | 22.09.2016 | KLDCZ | CAL2710ut| 1,0000 50 400 3,42 32,8 3,16 26,5 83,8 74,6 12,8 3,40 2,36
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 50 600 512 335 472 26,7 125,9 735 12,9 5,0 3,43
Matrix Awrage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 50 800 6,82 34,0 6,27 26,6 167,1 72,1 12,8 6,79 4,44
Matrix Awrage | 22.09.2016 | KLDCZ | CAL2710ut| 1,0000 50 1000 8,53 34,4 7,81 26,5 206,9 70,6 12,7 8,48 5,40
Matrix Awerage | 22.09.2016 | KLDCZ | CAL2710ut | 1,0000 50 1100 9,37 34,5 8,57 26,4 226,0 69,8 12,6 9,32 5,87
Matrix Awerage | 22.00.2016 | KUDCZ |CAL2710ut| 1,0000 75 100 0,86 26,8 0,79 21,5 16,9 73,0 10,4 0,86 0,60
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 75 200 1,72 28,2 1,57 22,5 35,3 72,8 10,8 1,71 1,18
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 75 400 3,43 20,6 3,12 233 72,5 71,5 111 3,41 2,27
Matrix Awrage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 75 600 5,14 30,3 4,65 235 10,1 70,0 7 5,10 3,30
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut| 1,0000 75 800 6,85 30,9 6,18 235 145,0 68,5 11,1 6,81 427
Matrix Awerage | 22.00.2016 | KLDCZ | CAL2710ut | 1,0000 75 1000 8,57 31,3 7,69 233 179,2 66,8 11,0 8,49 5,18
Matrix Awerage | 22.00.2016 | KUDCZ |CAL2710ut| 1,0000 75 1100 9,41 315 8,44 23,2 196,0 66,2 10,9 9,33 5,63

Table 25 Performance matrix, not extrapolated (CFV, 2016)
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Test

Reference

Spectral MM

Irradiance

Sequence | Module ID | Date Tested | Tested By evics ctor Temperature [°C] wimg | ' [Al | voc[V] | imp[A] | vmp V] | Pmp (W] | FF[%] | Eff[%] | Ix [A] | Ixx [A]
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 50 0,4 38,4 0,4 33,3 12,5 82,4 16,2 0,4 0,3
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 100 3,8 43,0 3,6 36,8 113,0 82,3 e 3,8 2,8
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 200 (2 47,5 6,8 40,2 215,7 82,7 19,7 7,2 5,3
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 400 14,3 47,6 13,5 38,2 434,7 75,9 18,5 14,2 10,2
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 500 8,4 42,5 7,9 35,4 264,0 78,8 {72 8,4 59
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 600 5,0 41,6 4,8 35;2) 169,0 81,6 17,3 5,0 3.7
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 45 800 6,7 41,9 6,4 35,1 2233 79,9 L7 6,7 4,8
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 -5 1000 8,4 42,2 8,0 34,9 271,7 78,7 17,0 8,4 5,8
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 50 0,4 37,1 0,4 32,0 12,1 81,6 15,5 0,4 0,3
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 100 2,1 39,4 2,0 337/ 62,3 81,6 16,4 Zil 16
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 200 4,2 42,2 4,0 35;9] 126,2 81,7 1773 4,2 31
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 400 8,4 43,1 8,0 35,5 254,8 78,4 17,3 8,4 6,1
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 500 6,7 41,1 6,4 34,2 207,9 79,0 16,6 6,7 4,8
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 600 50 40,3 4,8 33,9 162,3 80,3 16,6 5,0 3,7
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 800 6,7 40,7 6,4 33,8 214,7 78,8 16,5 6,7 4,7
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 0 1000 8,4 41,0 8,0 33,6 266,9 775 16,4 8,4 58
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 50 0,4 35,7 0,4 30,6 11,6 80,8 14,9 0,4 0,3
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 100 13 36,9 1,2 31,5 36,7 80,8 15,4 1,3 1,0
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 200 2,5 38,6 2,4 32,8 75,0 80,9 16,0 2,5 1,9
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 400 51 39,6 4,8 33,0 151,8 79,2 16,1 5,0 3,7
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 500 5,0 39,1 4,8 32,7 153,6 79,0 15,9 5,0 3,6
Matrix Avwerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 600 50 39,1 4,8 32,6 155,6 79,0 15,9 5,0 3,6
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 800 6,7 39,5 6,3 32,5 206,2 77,6 15,8 6,7 4,7
Matrix Avwerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 5 1000 8,4 39,8 7.9 32,3 256,1 76,3 15,7 8,4 57
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 50 0,4 34,4 0,4 29,3 11,2 80,0 14,3 0,4 0,3
Matrix Avwerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 100 0,85 34,9 0,80 29,7 23,7 80,0 14,5 0,84 0,64
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 200 1,69 36,1 1,60 30,6 48,8 80,0 15,0 1,69 1,26
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 400 3,38 37,2 3,19 31,1 99,3 79,1 15,2 3,36 2,45
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 500 4,22 37,5 3,98 31,2 124,3 78,4 15,2 4,20 3,02
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 600 5,06 37,8 4,77 31,2 148,9 7,7 15,2 5,05 3,57
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 800 6,76 38,3 6,34 31,2 197,7 76,4 15,2 6,73 4,63
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 15 1000 8,46 38,6 7,91 31,0 245,3 751 15,0 8,42 5,64
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 50 0,4 33,0 0,4 27,9 10,7 79,2 13,7 0,4 0,3
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 100 0,85 33,6 0,80 28,4 22,7 79,1 13,9 0,85 0,63
Matrix Awverage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 200 1,70 34,8 1,60 29,2 46,7 78,9 14,3 1,69 1,25
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 400 3,39 36,0 3,18 29,8 94,9 77,8 14,6 3,37 2,43
Matrix Awerage 23.09.2016 KL/DCZ CAL271 Out 1,0000 25 500 4,24 36,4 3,97 299] 118,7 77,0 14,6 4,21 3,01
Matrix Awverage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 600 5,08 36,6 4,75 29;9] 142,2 76,4 14,5 5,06 3,53
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 800 6,78 37,1 6,33 2919] 189,2 75,3 14,5 6,75 4,59
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 1000 8,48 37,4 7,89 29,7 234,5 73,8 14,4 8,44 5,58
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 25 1100 9,33 37,6 8,67 29,6 256,6 732 14,3 Srag] 6,06
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 50 0,4 29,6 0,4 24,5 92 76,1 e 0,4 0,3
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 100 0,86 30,3 0,79 24,9 19,8 76,0 12,1 0,85 0,62
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 200 1,71 31,5 1,58 25,8 40,9 75,9 12,5 1,70 1,21
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 400 3,42 32,8 3,16 26,5 83,8 74,6 12,8 3,40 2,36
Matrix Awerage 23.09.2016 KL/DCZ CAL271 Out 1,0000 50 500 4,26 33,3 3,94 26,7 105,3 74,2 12,9 4,25 2,92
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 600 5,12 33,5 4,72 26,7 125,9 735 12,9 5,09 3,43
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 800 6,82 34,0 6,27 26,6 167,1 72,1 12,8 6,79 4,44
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 1000 8,53 34,4 7,81 26,5 206,9 70,6 12,7 8,48 5,40
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 50 1100 9,37 34,5 8,57 26,4 226,0 69,8 12,6 9,32 5,87
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 50 0,4 26,1 0,4 21,0 7.7 73,0 10,1 0,4 0,3
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 100 0,86 26,8 0,79 21,5 16,9 73,0 10,4 0,86 0,60
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 200 1,72 28,2 1,57 22,5 35,3 72,8 10,8 1,71 1,18
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 400 3,43 29,6 3,12 23,3 72,5 715 11,1 3,41 2,27
Matrix Average 23.09.2016 KL/DCZ CAL271 Out 1,0000 75 500 4,28 30,0 3,89 23,4 91,1 70,8 11,2 4,25 2,81
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 600 5,14 30,3 4,65 23,5 109,1 70,0 11,2 5,10 3,30
Matrix Awerage 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 800 6,85 30,9 6,18 23,5 145,0 68,5 11,1 6,81 4,27
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 1000 8,57 31,3 7,69 23,3 179,2 66,8 11,0 8,49 5,18
Matrix Average 22.09.2016 KL/DCZ CAL271 Out 1,0000 75 1100 9,41 31,5 8,44 23,2 196,0 66,2 10,9 9,33 5,63

Table 26 Extrapolated performance matrix (CFV, 2016)
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Appendix C — Daylight times of observed days

Month Zenith angle <= 90° Day of evaluation Chosen daylight times*
August 05:18 07.08.2016 8:30-17:30
September 05:44 05.09.2016 8:45 -17:00
October 06:12 05.10.2016 9:00 - 16:00
November 06:45 05.11.2016 9:00 - 15:00
December 07:27 20.12.2016 10:00 - 14:00
January 07:31 08.01.2017 10:00 - 14:30
February 07:15 04.02.2017 9:30 - 15:30
March 06:37 05.03.2017 9:00 - 16:00
April 05:44 08.04.2017 8:45-17:00

*conservatively chosen daylight times at times without shading of the array and no snow
deposition on top of the field deployed PV modules and measurement equipment; not
considered: last rainfall (i.e. cleaning of dust deposition)

Table 27 Daylight times of observed days (own table)
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Appendix D — Observed combinations of bin ranges
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36

37

38
39

40

41

42

43

44
45

46

47

48

49

50
51

52

53
54
55
56

57

58
59

60
61

62

63
64

65

Table 28 Observed combinations of bin ranges (own table)
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Appendix E — Temperature prediction results

Nr. RMSE [°C] |MAD [°c]| Rz[1 |Rpearson []|Rspearman [ '”[33/';2]” Amb'e[?é]T emp. W'”[‘:njg]ee" AOI [7]
12 1,877 0,601 0,961 0,980 0,957 Irr. 1

13 4,317 1,435 0,242 0,494 0,564 Irr. 2 Wind speed 1

14 9,030 1,793 0,057 0,255 0,335 Irr. 3

15 3,457 1,389 0,932 0,966 0,938 Irr. 1

16 5,440 2,576 0,693 0,833 0,823 Irr. 2 tamb 1 Wind speed 2

17 5,196 1,645 0,251 0,502 0,504 Irr. 3

18 2,754 1,149 0,894 0,946 0,932 Irr. 1

19 3,123 0,958 0,705 0,841 0,874 Irr. 2 Wind speed 3

20 2,266 1,088 0,884 0,941 0,922 Irr. 3 -
21 2,794 1,130 = 0,927 0,963 0,924 Irr. 1 2
22 4,437 1,904 0,907 0,952 0,953 Irr. 2 Wind speed 1

23 4,044 1,618 0,889 0,943 0,921 Irr. 3

24 2,064 0,609 0,575 0,760 0,774 Irr. 1

25 3,864 1,359 0,614 0,786 0,760 Irr. 2 tamb 2 Wind speed 2

26 2,746 1,446 0,817 0,905 0,845 Irr. 3

27 3,583 1,073 0,917 0,958 0,956 Irr. 1

28 3,029 1,129 0,785 0,887 0,898 Irr. 2 Wind speed 3

29 3,385 1,379 0,903 0,950 0,853 Irr. 3

30 1,415 0,635 0,972 0,986 0,980 Irr. 1

31 4,096 1,402 0,300 0,550 0,603 Irr. 2 Wind speed 1

32 7,965 4,482 -0,039 0,050 0,283 Irr. 3

33 2,180 0,869 0,959 0,980 0,944 Irr. 1

34 2,096 1,364 0,889 0,943 0,874 Irr. 2 tamb 1 Wind speed 2

35 Irr. 3

36 2,210 0,558 0,939 0,970 0,982 Irr. 1

37 2,120 1,003 0,795 0,892 0,890 Irr. 2 Wind speed 3

38 2,494 1,001 0,832 0,917 0,835 Irr. 3 i
39 1,951 1,359 0,973 0,987 0,856 Irr. 1 <ot
40 1,490 0,825 0,894 0,946 0,941 Irr. 2 Wind speed 1

41 Irr. 3

42 2,381 1,506 0,337 0,596 0,303 Irr. 1

43 1,668 0,892 0,816 0,904 0,868 Irr. 2 tamb 2 Wind speed 2

a4 3,935 1,083 | 0,157 0,421 0,460 Irr. 3

45 2,651 1,533 0,943 0,972 0,684 Irr. 1

46 2,165 1,060 0,762 0,875 0,878 Irr. 2 Wind speed 3

47 Irr. 3

48 Irr. 1

49 5,629 2,541 0,133 0,398 0,390 Irr. 2 Wind speed 1

50 7,883 1,229 0,182 -0,534 -0,083 Irr. 3

51 1,644 0,990 0,799 0,895 0,886 Irr. 1

52 1,044 0,760 0,975 0,988 0,847 Irr. 2 tamb 1 Wind speed 2

53 Irr. 3

54 Irr. 1

55 2,062 0,671 0,826 0,912 0,857 Irr. 2 Wind speed 3

56 Irr. 3 °
57 1,164 0,540 0,930 0,966 0,984 Irr. 1 2
58 1,107 0,917 0,897 0,951 0,675 Irr. 2 Wind speed 1

59 Irr. 3

60 Irr. 1

61 2,983 0,539 0,790 0,891 0,834 Irr. 2 tamb 2 Wind speed 2

62 3,040 0,527 0,544 0,753 0,742 Irr. 3

63 0,977 0,369 0,994 0,998 0,786 Irr. 1

64 0,439 0,325 0,082 0,461 0,143 Irr. 2 Wind speed 3

65 Irr. 3

Table 29 Statistical parameters for temperature prediction, ranges 12 to 65 (own table)
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Appendix F — Distribution of temperature residuals

(Samples that reach the minimum required sample size of 42 data points, own figures)
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Residuals Histogram, Temperature, Bin 3
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Residuals Histogram, Temperature, Bin 5
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Residuals Histogram, Temperature, Bin 7
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Residuals Histogram, Temperature, Bin 13
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Residuals Histogram, Temperature, Bin 16
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Residuals Histogram, Temperature, Bin 19
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Residuals Histogram, Temperature, Bin 22

=
L5

Probability
[’

=
[

—r— | [ 1]

% 5 <4 43 2 1 0 1 2 3 4 5 & 7

Probabil ity

Probability
=

Probability

Residuals [°C]
Normal Probability, Temperature, Bin 22

.-4"_]__"r + |
AT
|f ..""- i i i i i 'l i
-3 -2 -1 0 1 2 3 4
Residuals [°C]
Residuals Histogram, Temperature, Bin 23
— [ ™
5 4 3 2 41 0 1 2 3 4 5 6 7
Residuals [°C]
Mormal Probability, Temperature, Bin 23
e 4 ¥
—|—-#_ | |

Residuals [°C]

160



Residuals Histogram, Temperature, Bin 24
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Residuals Histogram, Temperature, Bin 30
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Residuals Histogram, Temperature, Bin 33
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Residuals Histogram, Temperature, Bin 39
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Appendix G — Power prediction results

Nr. RMSE [W]| MAD [W] R2 [-] Rpearson [-] Rspearman [-] Irr[?/\c/i/lre:]r;]ce Amble[Té]Temp. Wm[(;ins/‘.z]eed AOI []
12 23,164 15,661 0,828 0,910 0,812 Irr. 1

13 6,963 1,404 0,845 0,920 0,818 Irr. 2 Wind speed 1

14 8,870 3,275 0,754 0,869 0,840 Irr. 3

15 4,145 1,287 0,958 0,979 0,976 Irr. 1

16 6,667 2,821 0,935 0,967 0,969 Irr. 2 tamb 1 Wind speed 2

17 7,077 2,645 0,753 0,868 0,908 Irr. 3

18 33,208 9,512 0,765 0,876 0,904 Irr. 1

19 3,992 1,084 0,946 0,973 0,929 Irr. 2 Wind speed 3

20 2,486 1,929 0,918 0,958 0,920 Irr. 3 -
21 9,525 1,293 0,831 0,912 0,905 Irr. 1 <on:
22 11,491 2,369 0,834 0,914 0,921 Irr. 2 Wind speed 1

23 7,848 1,913 0,712 0,844 0,903 Irr. 3

24 33,134 11,163 0,682 0,827 0,824 Irr. 1

25 22,243 3,962 0,801 0,896 0,929 Irr. 2 tamb 2 Wind speed 2

26 4,907 2,420 0,900 0,949 0,956 Irr. 3

27 16,938 1,178 0,323 0,581 0,820 Irr. 1

28 12,221 3,411 0,818 0,906 0,914 Irr. 2 Wind speed 3

29 11,897 1,995 0,538 0,734 0,895 Irr. 3

30 19,189 8,706 0,794 0,892 0,796 Irr. 1

31 6,722 1,372 0,836 0,915 0,942 Irr. 2 Wind speed 1

32 6,519 3,697 0,140 0,418 0,616 Irr. 3

33 3,828 1,315 0,954 0,977 0,988 Irr. 1

34 7,052 1,792 0,910 0,954 0,953 Irr. 2 tamb 1 Wind speed 2

35 Irr. 3

36 27,969 10,710 0,838 0,916 0,904 Irr. 1

37 7,804 0,980 0,821 0,906 0,978 Irr. 2 Wind speed 3

38 1,656 0,776 0,876 0,939 0,946 Irr. 3 o
39 6,798 0,614 0,935 0,967 0,983 Irr. 1 2
40 7,012 1,155 0,924 0,962 0,970 Irr. 2 Wind speed 1

a1 Irr. 3

42 25,484 6,909 0,774 0,883 0,761 Irr. 1

43 10,763 1,719 0,917 0,958 0,980 Irr. 2 tamb 2 Wind speed 2

44 3,083 0,819 0,381 0,629 0,787 Irr. 3

45 14,230 7,396 0,772 0,884 0,888 Irr. 1

46 7,513 1,214 0,881 0,940 0,934 Irr. 2 Wind speed 3

47 Irr. 3

48 Irr. 1

49 4,503 2,403 0,929 0,965 0,977 Irr. 2 Wind speed 1

50 6,374 1,010 -0,127 0,117 0,283 Irr. 3

51 8,308 0,978 0,873 0,935 0,954 Irr. 1

52 2,776 0,499 0,936 0,968 0,973 Irr. 2 tamb 1 Wind speed 2

53 Irr. 3

54 Irr. 1

55 4,295 0,744 0,940 0,970 0,987 Irr. 2 Wind speed 3

56 Irr. 3 ”
57 2,163 0,386 0,995 0,998 0,991 Irr. 1 2
58 3,774 0,470 0,997 0,999 1,000 Irr. 2 Wind speed 1

59 Irr. 3

60 Irr. 1

61 4,812 0,976 0,972 0,986 0,987 Irr. 2 tamb 2 Wind speed 2

62 2,660 0,441 0,767 0,882 0,916 Irr. 3

63 4,331 0,172 0,986 0,994 1,000 Irr. 1

64 3,546 0,597 0,999 1,000 1,000 Irr. 2 Wind speed 3

65 Irr. 3

Table 30 Statistical parameters for power prediction, ranges 12 to 65 (own table)
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Appendix H — Distribution of power residuals

(Samples that reach the minimum required sample size of 138 data points, own figures)
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Residuals Histogram, Power, Bin 5
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Probability
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Residuals Histogram, Power, Bin 11
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Residuals Histogram, Power, Bin 13
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Residuals Histogram, Power, Bin 16
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Residuals Histogram, Power, Bin 19

0.2
=015
E
g 01
=
L posf
ole J O e
-15 -10 -5 1] 5 10 15 20 25 30
Residuals [W]
Normal Probability, Power, Bin 19
A + +
./+++ + +
=
E
m
]
=)
o
+F
f
+ :‘: i r' i i i
-4 -2 1] 2 4 [
Residuals [W]
Residuals Histogram, Power, Bin 21
0.06 - - - y - - -
;‘E 0.04
]
]
2
g 002
0 . . . . —
700 60 50 40 -30 -20 -10 O 10 20 30
Residuals [W]
Normal Probability, Power, Bin 21
-~
i
= ##"
E
m
]
£
A
+ F >
+ 1 1 i |d"’ 1 1
-5 -4 -3 -2 -1 1] 1 2

Residuals [W]

174



Residuals Histogram, Power, Bin 22
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Probability
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Residuals Histogram, Power, Bin 30
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Residuals Histogram, Power, Bin 33
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Residuals Histogram, Power, Bin 39
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Appendix | — Bin ranges with minimum sample size and
(roughly) normal distribution

Nr.

RMSE [°C]

RMSE [W]

Irradiance
[Wim?

Ambient
Temp. [°C]

Wind speed

/e AOI [

12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1,877

23,164

Irr.

4,317

6,963

Irr.

Irr.

3,457

4,145

Irr.

5,440

6,667

Irr.

5,196

7,077

Irr.

Irr.

3,123

3,992

Irr.

Irr.

tamb 1

Wind speed 1

Wind speed 2

Wind speed 3

2,794

9,525

Irr.

4,437

11,491

Irr.

4,044

7,848

Irr.

2,064

33,134

Irr.

Irr.

Irr.

Irr.

3,385

11,897

Irr.

tamb 2

AOI'1

Wind speed 1

Wind speed 2

Wind speed 3

1,415

19,189

Irr.

4,096

6,722

Irr.

Irr.

2,180

3,828

Irr.

Irr.

Irr.

Irr.

2,120

7,804

Irr.

Irr.

tamb 1

Wind speed 1

Wind speed 2

Wind speed 3

1,951

6,798

Irr.

1,490

7,012

1
2
3
1
2
3
1
2
3
1
2
3
1
2
Irr. 3
1
2
3
1
2
3
1
2
3
1
2
3
1
2

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

tamb 2

AOI 2

Wind speed 1

Wind speed 2

Wind speed 3

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

tamb 1

Wind speed 1

Wind speed 2

Wind speed 3

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

Irr.

WINIPIWINIPWINIPIWIN|IPIWINIRPIWIN|IPIWINIPR|W|N |-

Irr.

tamb 2

AOI 3

Wind speed 1

Wind speed 2

Wind speed 3

Table 31 Data samples with the achieved minimum sample size (own table)
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Appendix J — Position analysis for all combinations of bin

ranges
Bin Nr. Median power difference [W] - Bin ranges 1 to 11

- Top Middle Bottom Edge Middle o.A. All

1 2,71 1,91 4,10 2,63 2,52 2,46
2 0,20 0,59 3,06 0,49 0,98 0,71
3 -2,33 -1,61 0,46 -2,68 -1,18 -1,84
4 2,36 2,18 5,12 2,60 2,84 2,65
5 -0,94 -0,73 0,96 -0,95 -0,31 -0,64
6 0,04 0,02 1,51 0,00 0,35 0,14
7 -0,07 0,34 2,40 0,11 0,68 0,39
8 1,73 2,05 4,86 2,42 2,47 2,34
9 -0,60 -0,27 1,75 -0,51 0,16 -0,21
10 1,25 1,22 3,36 1,39 1,61 1,45
11 1,42 1,55 3,38 1,73 1,85 1,84

Table 32 Median power prediction error for each array position, bin range 1 to 11 (own table)

Bin Nr. Median measured Voc [Voc] - Bin ranges 1 to 11

- Top Middle Bottom Edge Middle o.A. All

1 35,32 35,38 35,30 35,44 35,33 35,37
2 36,80 36,69 36,48 36,83 36,63 36,72
3 36,18 35,95 35,81 36,25 35,88 36,01
4 37,37 37,23 37,09 37,31 37,20 37,24
5 34,43 34,41 34,41 34,67 34,35 34,47
6 35,33 35,49 35,42 35,69 35,38 35,52
7 35,92 35,75 35,59 35,91 35,71 35,78
8 36,81 36,69 36,56 36,81 36,65 36,72
9 36,04 35,90 35,78 36,09 35,85 35,95
10 36,56 36,50 36,34 36,58 36,45 36,51
11 37,45 37,26 37,09 37,30 37,22 37,26

Table 33 Median measured Voc for each array position, bin range 1 to 11 (own table)
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Bin Nr. Median measured Isc [A] - Bin ranges 1 to 11

- Top Middle Bottom Edge Middle o.A. All
1

2 571 5,72 5,66 5,71 5,71 5,72
3

4 5,54 5,54 5,48 5,54 5,53 5,54
5 5,12 4,89 4,69 4,58 4,97 4,81
6 3,82 3,66 3,48 3,43 3,73 3,60
7 5,80 5,79 5,72 5,75 5,79 5,77
8 6,03 6,02 5,97 6,00 6,02 6,02
9 6,18 6,15 6,08 6,11 6,15 6,14
10 4,29 4,29 4,22 4,25 4,28 4,29
11 5,13 5,28 5,27 5,39 5,20 5,31

Table 34 Median measured Isc for each array position, bin range 1 to 11 (own table)
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Bin Nr. Median power difference [W] - Bin ranges 12 to 65

- Top Middle Bottom Edge Middle o.A. All
12 17,37 16,59 17,75 16,94 16,92 16,80
13 0,05 0,61 3,33 0,09 1,05 0,62
14 -3,33 -2,72 -0,23 -3,33 -2,41 -2,96
15 -1,16 -1,38 -0,37 -1,05 -1,03 -1,11
16 -2,10 -2,24 0,19 -2,24 -1,71 -2,08
17 -3,06 -2,81 -1,48 -3,89 -2,33 -3,00
18 32,93 31,87 33,60 32,57 32,35 32,18
19 0,41 1,38 4,75 1,09 1,78 1,45
20 -1,73 -0,80 1,80 -1,32 -0,49 -0,85
21 1,50 1,53 4,29 2,04 1,81 1,74
22 -1,13 -0,98 1,86 -1,37 -0,45 -0,91
23 -2,82 -1,87 0,12 -3,64 -1,33 -2,28
24 30,21 28,94 30,73 29,37 29,56 29,16
25 5,17 4,20 8,13 5,32 5,12 4,95
26 -0,45 0,15 2,44 0,14 0,47 0,13
27 2,65 1,96 5,24 2,98 2,42 2,43
28 0,93 0,98 4,83 1,57 1,46 1,28
29 -2,40 -1,31 0,90 -2,01 -0,93 -1,43
30 16,13 15,58 16,45 15,84 15,83 15,74
31 0,39 0,70 3,23 0,43 1,09 0,74
32 -4,04 -6,86 -4,13 -5,95 -5,55 -5,88
33 0,69 0,54 1,68 0,77 0,82 0,71
34 -1,36 -1,26 0,74 -1,04 -0,86 -0,83
35 NaN NaN NaN NaN NaN NaN
36 21,80 21,36 22,68 20,87 21,88 21,55
37 1,16 1,66 4,64 1,77 2,04 1,85
38 0,08 0,34 2,79 0,52 0,59 0,49
39 1,10 0,82 1,76 1,00 1,02 0,93
40 -0,52 -0,09 2,02 -0,18 0,22 0,01
41 NaN NaN NaN NaN NaN NaN
42 19,99 19,30 21,02 18,87 19,86 19,42
43 2,13 2,29 5,02 2,82 2,68 2,63
44 1,33 1,85 4,15 1,55 2,11 1,94
45 11,44 8,30 10,09 10,33 9,21 8,56
46 0,69 0,85 2,63 0,98 1,17 0,99
47 NaN NaN NaN NaN NaN NaN
48 NaN NaN NaN NaN NaN NaN
49 0,61 0,99 2,14 0,39 1,33 0,67
50 -3,87 -7,01 -4,34 -6,13 -5,88 -6,09
51 0,73 0,49 1,50 1,04 0,73 0,84
52 1,54 2,09 3,43 2,24 2,28 2,40
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53 NaN NaN NaN NaN NaN NaN
54 NaN NaN NaN NaN NaN NaN
55 0,81 1,02 3,07 1,04 1,28 1,17
56 -0,44 0,26 2,37 0,11 0,36 0,28
57 0,81 0,76 1,73 0,97 0,86 0,84
58 3,60 3,59 4,87 3,60 3,84 3,72
59 NaN NaN NaN NaN NaN NaN
60 NaN NaN NaN NaN NaN NaN
61 1,98 1,99 4,21 2,24 2,26 2,24
62 1,13 1,54 3,72 1,49 1,76 1,73
63 4,28 4,71 5,65 4,54 4,77 4,62
64 3,53 3,46 4,79 3,47 3,76 3,59
65 NaN NaN NaN NaN NaN NaN

Table 35 Median power prediction error for each array position, bin ranges 12 to 65 (own table)
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Bin Nr. Median measured Voc [V] - Bin ranges 12 to 65
- Top Middle Bottom Edge Middle o.A. All
12 37,45 37,26 37,09 37,30 37,22 37,26
13 36,72 36,74 36,63 36,71 36,71 36,71
14 37,08 36,93 36,80 37,10 36,88 36,95
15 38,13 37,92 37,73 37,99 37,90 37,94
16 33,93 33,98 33,94 34,08 33,91 33,99
17 33,76 33,73 33,69 33,95 33,66 33,75
18 33,64 33,56 33,49 33,77 33,51 33,59
19 37,50 37,52 37,38 37,50 37,50 37,49
20 37,18 36,93 36,73 37,10 36,92 36,98
21 37,12 36,93 36,74 37,01 36,92 36,94
22 35,29 35,30 35,20 35,36 35,26 35,28
23 34,74 34,75 34,89 35,04 34,63 34,86
24 34,86 34,80 35,16 35,40 34,68 35,00
25 37,13 37,05 36,91 37,06 37,04 37,04
26 37,61 37,44 37,25 37,54 37,44 37,48
27 37,85 37,61 37,50 37,71 37,61 37,65
28 35,95 35,90 35,72 35,92 35,88 35,89
29 36,23 36,08 35,90 36,17 36,05 36,09
30 36,32 36,08 35,91 36,31 36,05 36,12
31 36,72 36,77 36,62 36,73 36,73 36,73
32 37,29 37,19 37,14 37,35 37,14 37,22
33 37,83 37,61 37,42 37,76 37,59 37,63
34 34,03 34,10 33,99 34,19 34,04 34,11
35 34,27 34,32 34,34 34,57 34,22 34,37
36 NaN NaN NaN NaN NaN NaN
37 36,96 36,90 36,81 36,93 36,90 36,91
38 37,55 37,36 37,24 37,43 37,34 37,38
39 37,68 37,46 37,29 37,64 37,45 37,48
40 34,04 34,05 33,92 34,04 34,02 34,03
41 NaN NaN NaN NaN NaN NaN
42 35,26 35,35 34,53 35,15 34,80 34,52
43 36,81 36,83 36,67 36,81 36,80 36,81
44 37,87 37,69 37,49 37,72 37,68 37,69
45 37,78 37,55 37,34 37,72 37,53 37,57
46 34,66 34,63 34,45 34,68 34,61 34,63
47 36,15 35,99 35,85 36,09 35,97 36,01
48 NaN NaN NaN NaN NaN NaN
49 NaN NaN NaN NaN NaN NaN
50 37,64 37,48 37,25 37,60 37,46 37,48
51 37,77 37,62 37,44 37,76 37,62 37,63
52 33,16 33,12 32,94 33,08 33,11 33,09
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53 35,62 35,54 35,33 35,62 35,47 35,54
54 NaN NaN NaN NaN NaN NaN
55 NaN NaN NaN NaN NaN NaN
56 37,64 37,45 37,22 37,56 37,43 37,47
57 37,70 37,54 37,32 37,68 37,51 37,52
58 33,99 33,90 33,87 33,94 33,88 33,87
59 35,87 35,73 35,61 35,79 35,73 35,74
60 NaN NaN NaN NaN NaN NaN
61 NaN NaN NaN NaN NaN NaN
62 37,88 37,69 37,53 37,74 37,67 37,71
63 37,86 37,66 37,46 37,78 37,65 37,68
64 35,87 35,84 35,62 35,80 35,75 35,80
65 36,06 36,01 35,80 36,03 35,97 36,00

Table 36 Median measured Voc for each array position, bin ranges 12 to 65 (own table)
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Bin Nr. Median measured Isc [A] - Bin ranges 12 to 65
- Top Middle Bottom Edge Middle o.A. All
12
13 6,20 6,20 6,15 6,19 6,20 6,20
14
15
16 5,21 5,09 4,81 4,83 5,16 5,04
17
18
19 6,19 6,18 6,13 6,18 6,18 6,18
20
21
22 5,54 5,45 5,30 5,41 5,48 5,49
23
24
25 6,12 6,13 6,07 6,10 6,12 6,12
26
27
28 5,55 5,55 5,39 5,59 5,53 5,58
29
30
31 5,53 5,52 5,47 5,51 5,51 5,52
32
33
34 5,03 4,91 4,90 4,90 4,92 4,92
35 NaN NaN NaN NaN NaN NaN
36
37
38
39
40 5,21 5,28 5,25 5,29 5,22 5,29
41 NaN NaN NaN NaN NaN NaN
42
43 5,64 5,65 5,58 5,63 5,63 5,63
44
45
46 5,20 5,16 5,17 5,19 5,16 5,17
47 NaN NaN NaN NaN NaN NaN
48 NaN NaN NaN NaN NaN NaN
49 5,31 5,32 5,30 5,31 5,31 5,32
50
51
52 3,50 3,49 3,46 3,53 3,48 3,50
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53 NaN NaN NaN NaN NaN NaN
54 NaN NaN NaN NaN NaN NaN
55 5,99 6,03 6,00 6,01 6,02 6,02
56 6,46 6,48 6,46 6,48 6,47 6,47
57 2,29 2,30 2,26 2,27 2,27 2,24
58 3,34 3,35 3,33 3,34 3,35 3,34
59 NaN NaN NaN NaN NaN NaN
60 NaN NaN NaN NaN NaN NaN
61 5,96 5,98 5,93 5,96 5,97 5,97
62 6,55 6,56 6,53 6,55 6,56 6,56
63 2,99 3,00 2,98 2,98 3,00 3,00
64 3,52 3,54 3,52 3,52 3,54 3,54
65

Table 37 Median measured Isc for each array position, bin ranges 12 to 65 (own table)
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