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Maximizers in Lipschitz spacetimes are either timelike or null

Melanie Graf∗,
Eric Ling†

March 6, 2018

Abstract

We prove that causal maximizers in C0,1 spacetimes are either timelike or null. This
question was posed in [17] since bubbling regions in C0,α spacetimes (α < 1) can produce
causal maximizers that contain a segment which is timelike and a segment which is null,
cf. [3]. While C0,1 spacetimes do not produce bubbling regions, the causal character of
maximizers for spacetimes with regularity at least C0,1 but less than C1,1 was unknown
until now. As an application we show that timelike geodesically complete spacetimes are
C0,1-inextendible.

1 Introduction

Recently, there has been an interest in low regularity aspects of general relativity motivated
in part by the strong cosmic censorship conjecture. Roughly, the conjecture states that the
maximal globally hyperbolic development of generic initial data for the Einstein equations is
inextendible as a suitably regular Lorentzian manifold. Formulating a precise statement of the
strong cosmic censorship conjecture is itself a challenge because one needs to make precise the
phrases ‘generic initial data’ and ‘suitably regular Lorentzian manifold’. Understanding the
latter is where general relativity in low regularity and in particular (in-)extendibility results
become significant.

Christodoulou [1] established a C0-inextendibility result for spacetimes satisfying the
Einstein-scalar field equations within the class of spherically symmetric spacetimes. Like-
wise, the authors in [7] demonstrated the C0-inextendibility of open FLRW spacetimes which
are not Milne-like also within the class of spherically symmetric spacetimes. Moreover, they
demonstrate, to the contrary, that Milne-like spacetimes are always C0-extendible (but might
be C2-inextendible). Dafermos [4, 5] demonstrated the C0-extendibility of the maximal glob-
ally hyperbolic development of solutions to the spherically symmetric Einstein-Maxwell-scalar
field system arising from small perturbations of Reissner-Nordström initial data. In fact, more
recently, Dafermos and Luk [6] have given a proof, without symmetry assumptions, of the
C0 stability of the Kerr-Cauchy horizon. This gives firm evidence that the strong cosmic
censorship censorship is false in the C0 setting. The current suggestion for the statement of
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the strong cosmic censorship conjecture is to require inextendibility as a Lorentzian manifold
with a continuous metric and Christoffel symbols locally in L2 [2, 6].

Still, there are some interesting new results establishing the C0-inextendibility of space-
times without any symmetry assumptions of the extension. The first such example was given
by Sbierski [18] with his proof of the C0-inextendibility of the Schwarzschild spacetime. Fur-
ther advancements have been made in this direction [8], and our second application adds to
the list of these inextendibility results.

A systematic study of general relativity in low regularity began with the influential paper
[3] where the authors studied causal theory in spacetimes where the regularity of the metric
was less than C2. Since then further advancements have established that most of classical
causal theory remains valid for C1,1 spacetimes [11, 12, 16] and even the singularity theorems
hold in this regularity class [13, 14, 9]. Therefore spacetimes with C1,1 metrics can be seen
as the threshold to where classical causality theory applies.

Once the regularity drops below C1,1, causality theory departs significantly from classical
theory. Example 1.11 in [3] shows that the push-up Lemma (i.e. I+(J+(Ω)) = I+(Ω)) does
not necessarily hold in C0,α spacetimes, α ∈ (0, 1). This led the authors to define the so-called
bubbling regions for these spacetimes. From Example 1.11 it is readily seen that any causal
curve from the origin to a point p in the bubbling region must begin null on some interval.
Thus any causal curve which maximizes the Lorentzian length between the origin and p is
null on an interval, hence not timelike. However, since these points have positive Lorentzian
distance, it must be timelike on a set of non-zero measure, so it cannot be null. This deviates
drastically from classical (at least C1,1) theory where maximizers must be geodesics and hence
either timelike or null.

On the other hand [3, Corollary 1.17] shows that C0,1 spacetimes (i.e. spacetimes with a
Lipschitz continuous metric) do not admit bubbling regions. This leaves open the question of
whether maximizers in C0,1 spacetimes must be either timelike or null. In fact this question
was posed in [17]. In this paper we prove the following theorem which answers the question
affirmatively.

Theorem 1.1. Let (M, g) be a Lipschitz spacetime. If p, q ∈ M with q ∈ J+(p), then any
maximizing causal curve from p to q is either timelike or null.

As an application we show

Theorem 1.2. Let (M, g) be a smooth timelike geodesically complete spacetime. Then (M, g)
is C0,1-inextendible.

This provides a partial answer to a question raised in [18] which asks whether timelike
geodesically complete spacetimes are C0-inextendible. Together with the corresponding re-
sult from [8], which states that smooth timelike geodesically complete globally hyperbolic
spacetimes are C0-inextendible, this shows that if (Mext, gext) is a C0 extension of a timelike
geodesically complete spacetime (M, g), then (M, g) is not globally hyperbolic and gext is not
Lipschitz.

We also note that this establishes that strongly causal Lipschitz spacetimes are examples
of regular Lorentzian length spaces as introduced in [10].
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2 Proofs of Theorems 1.1 and 1.2

Our definitions for a Ck,α spacetime and future causal curves γ : I → M follow that of [3].
In particular we use Lipschitz causal curves which implies that the derivative γ̇ of γ exists
almost everywhere and γ̇ is locally in L∞. We say a Lipschitz curve is future causal if γ̇
is future causal almost everywhere. A future causal curve is timelike if γ̇ is timelike almost
everywhere and it is null if γ̇ is null almost everywhere. The Lorentzian length of a future
causal curve γ : I →M is the integral L(γ) =

∫
I

√
−g(γ̇, γ̇) and γ is said to be maximizing or

a maximizer if L(γ) ≥ L(λ) for any future causal curve λ whose endpoints agree with those
of γ.

Proof of Theorem 1.1. Suppose γ : I →M is a maximizing future directed causal curve from
p to q which is not null. We will prove that γ is timelike. Seeking a contradiction, suppose the
set NI := {s ∈ I : γ̇(s) exists and is null} ⊆ I has positive measure. Below we will construct
another causal curve from p to q which is longer than γ, and hence contradicting the fact that
γ is a maximizer.

To do this, we first want to localize the situation. By compactness we may cover I by
finitely many open intervals Ik (half open intervals on the endpoints of I) such that each γ|Ik
is contained in a relatively compact chart domain (Uk, ϕk) on which g(∂ϕk0 , ∂ϕk0 ) < ck < 0. We
are now going to show that for at least one of these Ik, we have 0 < µ(NIk) < µ(Ik) where µ
is the usual Lebesgue measure on R. That is we will show there is a k such that γ|Ik is causal
but neither timelike nor null. Assume for the moment that µ(NIj ) = 0 for some j. Then,
since the intersection of the neighbouring intervals Ij−1 and Ij+1 with Ij must be non-empty
and open, either one of those has the desired property or µ(NIj−1) = µ(NIj−1) = 0. The
existence of a suitable Ik now follows by induction and noting that µ(NI) 6= 0. If instead
µ(NIj ) = µ(Ij), one proceeds the same way, using µ(NI) 6= µ(I) in the end.

This shows that we may assume w.l.o.g. that γ(I) is contained in such a chart domain
(U,ϕ). By reparametrizing γ we may further assume that γ̇(0) exists and is timelike. Using
a linear change of coordinates corresponding to a Gram-Schmidt orthogonalization process of
{∂ϕ0 , . . . , ∂ϕn−1}|γ(0) and a translation we get new coordinates ψ on U for which ∂ψ0 ∝ ∂ϕ0 (and

hence g(∂ψ0 , ∂
ψ
0 ) < c < 0) on U , γψ(0) = 0 and gψ(0) = η where η is the Minkowski metric.

To sum up, we need only consider the case M = Rn, γ : [a, b] → U ⊆ Rn, γ(0) = 0, γ is
differentiable at 0 and γ̇(0) is timelike, µ(N[a,0]) > 0 (if instead µ(N[0,b]) > 0 one just needs
to reverse the time orientation), g(0) = η and ∂0 (uniformly) timelike on U .

We first look at γ1 := γ|[a,0]. As in [3, Lem. 1.15], given a Lipschitz function f : [a, 0] →
[0,∞), we define a new Lipschitz curve Γ1 : [a, 0]→ Rn by Γµ1 (s) := γµ1 (s)+εf(s)Tµ where Tµ

is defined via ∂0 = Tµ∂µ (i.e. T 0 = 1 and Tµ = 0 for µ 6= 0). Then the proof of [3, Lem. 1.15]
shows that for a Lipschitz metric one can find a specific f ∈ C0,1([a, 0]) such that Γ1 ⊆ U ,
Γ1(a) = γ1(a), Γ1(0) =

(
εf(0), 0, . . . , 0

)
and

gΓ1(Γ̇1, Γ̇1) ≤ gγ1(γ̇1, γ̇1)− ε

2
(2.1)

a.e. on [a, 0] for all ε less than some ε0. This gives the following estimate for the lengths of
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γ1 and Γ1:

L(Γ1) =

∫ 0

a

√
−gΓ1(Γ̇1, Γ̇1) =

∫

N[a,0]

√
−gΓ1(Γ̇1, Γ̇1) +

∫

[a,0]\N[a,0]

√
−gΓ1(Γ̇1, Γ̇1) (2.2)

≥
µ(N[a,0])√

2

√
ε+

∫

[a,0]\N[a,0]

√
−gΓ1(Γ̇1, Γ̇1) (2.3)

≥
µ(N[a,0])√

2

√
ε+ L(γ1). (2.4)

Note that this not only shows that L(Γ1) ≥ L(γ1) but more importantly that the length
difference is bounded from below by an expression that scales like

√
ε as ε→ 0.

We now turn to γ|[0,b] and assume that γ|[0,b] is parametrized by the x0-coordinate. The
chain rule ensures that γ̇(0) exists under this reparameterization and hence remains timelike.
Since Γ1(0) 6= γ(0) we have to find τε > 0 and a future directed causal curve Γ2 from
Γ1(0) = (εf(0), 0) to γ(τε) =

(
τε, γ̄(τε)

)
∈ R × Rn−1 (see figure 1) and such that for ε small

enough L(Γ1)+L(Γ2) > L(γ1)+L(γ2) where γ2 := γ|[0,τε]. It should be noted that the segment
γ2 of γ depends on τε and hence depends on ε itself. It suffices to show L(Γ1) > L(γ1)+L(γ2).
And using (2.2) we see that this holds if L(γ2) has an upper bound that scales like εk for
some k > 1

2 as ε→ 0. Below we will show this is true for k = 1.
Since γ is differentiable at s = 0, Taylor’s theorem gives

γ(s) = γ(0) + γ̇(0)s+ h(s)s = (γ̇(0) + h(s))s, (2.5)

where h(s) → 0 as s → 0. Since we further assumed γ̇(0) =: (v0, v̄) to be timelike and

g(0) = η, we can choose α > 1 such that v0

|v̄|e > α where | · |e is the usual Euclidean norm.

Together with (2.5) this shows that there exists s0 > 0 such that s = γ0(s) > α|γ̄(s)|e for all
s < s0. Choose 1 < β < α and let Cβ,d denote the future cone with slope β that has its tip
in (d, 0), i.e., Cβ,d = {(β|x̄|e + d, x̄) : x̄ ∈ Rn−1}. Since β > 1 and g(0) = η the continuity of g
allows us to find a small neighbourhood V of 0 such that Cβ,d ∩ V \ {(d, 0)} ⊆ I+((d, 0)) for
all small d > 0. We have (s, γ̄(s)) ∈ Cβ,s−β|γ̄(s)|e ∩V ⊆ I+((s−β|γ̄(s)|e, 0)) for small s. Since

s > α|γ̄(s)|e we have s − β|γ̄(s)|e > s(1 − β
α) which shows that (s, γ̄(s)) ∈ I+((s(1 − β

α), 0))

for small s. Thus γ(τε) = (τε, γ̄(τε)) ∈ I+((εf(0), 0)) for τε = f(0)

1− β
α

ε if ε is small enough.

Therefore we have demonstrated that we can construct Γ2 from Γ1(0) to γ(τε) for small ε.
Finally, for L(γ2) an estimate from the proof of Thm. 3.3 in [8] shows that, if γ2 ⊆ V , where
V is a neighborhood of 0 on which |gµν − ηµν | < δ, then

L(γ2) ≤ τε
√

1 + δ + 4(n− 1)2δ = ε
f(0)

1− β
α

√
1 + δ + 4(n− 1)2δ. (2.6)

So L(γ2) is indeed bounded from above by a term of order ε. Now choose ε small enough so
that

µ(N[a,0])√
2

√
ε ≥ ε f(0)

1− β
α

√
1 + δ + 4(n− 1)2δ,
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then we have

L(Γ1) + L(Γ2) ≥ L(Γ1) ≥ L(γ1) +
µ(N[a,0])√

2

√
ε

≥ L(γ1) + ε
f(0)

1− β
α

√
1 + δ + 4(n− 1)2δ

≥ L(γ1) + L(γ2),

and so we are done.

x0

xn−1Γ1

Γ2

Γ1(a) = γ1(a)

Γ2(τε) = γ2(τε)

γ1

γ2

Figure 1: The causal curve formed by concatenating Γ1 and Γ2 has Lorentzian length greater than
that of γ|[a,τε]. Hence γ cannot be maximizing.

Remark. Our proof also shows if γ is a maximizing null curve between two points, then γ
does not contain a single timelike tangent. This result is also obtained in [15, Theorem 18]
under much weaker differentiability assumptions.

Proof of Theorem 1.2. Seeking a contradiction, suppose such a Lipschitz extension (Mext, gext)
exists. Following the proof of [8, Theorem 3.3], the future causal curve α is a maximizer from
q ∈ M to p ∈ ∂+M within a small globally hyperbolic set V containing q and p. Since q
and p are timelike separated within V , the curve α is timelike by Theorem 1.1. Since α is a
timelike maximizer and leaves M , the portion of α that lies in M is an inextendible (within
M) timelike geodesic. Then timelike geodesic completeness of (M, g) implies L(α) = ∞,
contradicting L(α) = dV (q, p) <∞.

Lastly we remark that in [17], it was suggested that if maximizers in C1 spacetimes
are timelike, then it may be possible to apply the du Bois-Reymond-trick to show that the
maximizers must be C2 timelike geodesics. However it seems like the du Bois-Reymond-trick
does not apply for timelike maximizers in the Lorentzian setting. This is because one can not
ensure that the variation of the maximizer is timelike, since the tangent of a Lipschitz timelike
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curve may still come arbitrarily close to being null. This is not an issue in the Riemannian
setting since there is no causal distinction between the curves.
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Abstract

The spacetime AdS2 × S2 is well known to arise as the ‘near horizon’ ge-
ometry of the extremal Reissner-Nordstrom solution, and for that reason it has
been studied in connection with the AdS/CFT correspondence. Here we con-
sider asymptotically AdS2×S2 spacetimes that obey the null energy condition
(or a certain averaged version thereof). In support of a conjecture of Juan Mal-
dacena, we show that any such spacetime must have a geometry very similar to
AdS2× S2 (and under certain circumstances must be isometric to AdS2× S2).

1 Introduction

An interesting feature of the spacetime AdS2×S2 is that it arises as the ‘near horizon’
geometry of the extremal Reissner-Nordstrom solution; see e.g. [6]. For this reason,
this spacetime (sometimes referred to as the Robinson-Bertotti solution) has been
studied in various works in connection with the AdS/CFT correspondence [8]; see
e.g. [10] and references therein. More recently a class of horizon free supersymmetric
solutions to Einstein-Maxwell theory having AdS2 × S2 asymptotics has been con-
structed by Lunin [7]. However, on the basis of an example considered in [10, Section
2.2], and also a result in [5] (Theorem 2.1), Maldacena has suggested that any asymp-
totically AdS2 × S2 spacetime that obeys the null energy condition (NEC), or more
generally the average null energy condition (ANEC), should be quite special. In fact
he has conjectured that the only such spacetime is AdS2×S2 itself [9]. In particular,
consistent with the example in [10] mentioned above, 4-dimensional spacetimes that
satisfy the ANEC strictly could not have AdS2×S2 asymptotics. All of this suggests
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that the examples constructed in [7] cannot be globally regular, which, in fact, has
since been confirmed by Lunin [9].

In this paper we obtain some results on the rigidity of asymptotically AdS2 × S2

spacetimes satisfying the NEC, which support the conjectural picture put forth by
Maldacena. While precise statements are postponed to Section 3, our main result
may be paraphrased as follows.

Theorem 1.1. Let (M, g) be an asymptotically AdS2 × S2 spacetime (see Definition
2.4) that satisfies the null energy condition (NEC), Ric(X,X) ≥ 0 for all null vectors
X. Then the following holds.

(i) (M, g) is foliated by smooth totally geodesic null hypersurfaces Nu ≈ R × S2,
u ∈ R.

(ii) By time-dualizing, one obtains a second foliation by smooth totally geodesic null
hypersurfaces N̂v ≈ R × S2, v ∈ R, transverse to the foliation {Nu}u∈R. By
considering the intersections of the Nu’s and N̂v’s, this double null foliation gives
rise to a foliation of (M, g) by totally geodesic isometric round (i.e. constant
curvature) 2-spheres S(u,v).

The properties (i) and (ii) are, of course, basic features of AdS2 × S2. One of the
main results leading to the proof of Theorem 1.1, Proposition 3.3, together with a
known result concerning the existence of null conjugate points [14, 2] confirms that
there do not exist any asymptotically AdS2×S2 spacetimes obeying the strict ANEC.

While we have stated Theorem 1.1 and Theorem 1.2 below with respect to the
NEC, in fact both results remain valid under a weaker curvature condition (which,
however, is stronger than the ANEC): It is sufficient to assume that along all future
or past complete null rays η : [0,∞)→M , one has,

∫ ∞

0

Ric(η′(s), η′(s))ds ≥ 0 . (1.1)

In order to simplify a bit the presentation of the proofs of Theorems 1.1 and 1.2, we
postpone to an appendix a discussion of the changes needed to prove these theorems
under the curvature condition (1.1).

Theorem 1.1 falls short of showing that (M, g) splits as a metric product along
the totally geodesic 2-spheres. A necessary condition for this is that the distribution
of timelike 2-planes orthogonal to the 2-spheres be integrable. This is what occurs
in the next result. Although not itself an Einstein manifold, AdS2 × S2 is a product
of Einstein manifolds, and as such its Ricci tensor is covariant constant, ∇Ric = 0.
Under this added assumption we obtain the following.

Theorem 1.2. Let (M, g) be an asymptotically AdS2 × S2 spacetime that satisfies
the NEC. If the Ricci tensor is covariant constant then (M, g) is globally isometric to
AdS2 × S2.
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We would like to say a word about the approach to the asymptotics taken here.
One possible approach to the asymptotics, which will be considered in a subsequent
paper, is to introduce a notion of a ‘singular’ timelike conformal boundary. In fact,
AdS2 × S2 admits, in a fairly natural way, such a boundary. The more customary
analytic approach taken in the present paper, is to require that the spacetime metric
g asymptote at a suitable rate, with respect to a natural coordinate system, to the
AdS2 × S2 metric g̊ on approach to infinity. This approach to the asymptotics gives
strong control over the causal structure and allows one to obtain rather fine geometric
properties needed to establish Theorem 1.1.

In Section 2 we give the formal definition of an asymptoticallyAdS2×S2 spacetime,
and derive some consequences of the assumed asymptotics. In Section 3 we establish
the existence of a foliation by totally geodesic null hypersurfaces, and a foliation
by totally geodesic isometric round 2-spheres, thereby establishing Theorem 1.1. In
Section 4 we present a proof of Theorem 1.2.

Acknowledgements. The authors are very grateful to Juan Maldacena for bring-
ing this problem to their attention and for many valuable comments. The authors
would also like to thank Eric Ling for his interest in this work and for helpful com-
ments. GJG’s research was partially supported by the NSF under the grant DMS-
171080. MG’s research was supported by project P28770 of the Austrian Science
Fund FWF and a scholarship from the Austrian Marshall Plan Foundation to visit
the University of Miami.

2 Asymptotically AdS2 × S2 spacetimes

In this section we describe in a precise manner what it means for a spacetime (M, g)
to be asymptotically AdS2 × S2, and we obtain some consequences of these assumed
asymptotics.

2.1 Exact AdS2 × S2 space

Let M̊ = R× R× S2. We set

g̊ = − cosh2(x)dt2 + dx2 + dΩ2.

For future reference, the non-zero Christoffels for this metric are

Γ̊ttx = tanh(x), Γ̊xtt = cosh(x) sinh(x), Γ̊φφθ = cot(θ), Γ̊θφφ = sin(θ) cos(θ),

the Riemann tensor can be expressed as

R̊ = R̊AdS2 + R̊S2

and the same holds for R̊ic. Explicitly one has

R̊ictt = cosh(x)2, R̊icxx = −1, R̊icθθ = 1, R̊icφφ = sin2(θ).
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The scalar curvature vanishes. Note that while AdS2×S2 is not an Einstein manifold,
one can still nicely express R̊ic in terms of the metric: R̊ic = −g̊ + 2dΩ2.

2.2 The metrics g̊α

To get a better handle on the asymptotics of g we will further define a family of
metrics g̊α (α ∈ R+) on M̊ via

g̊α = −α cosh2(x)dt2 + dx2 + dΩ2.

The importance of these metrics for the asymptotics lies in Lemma 2.6, stating that,
in essence, there exist β > 1 and α < 1 such that far out g̊α ≺ g ≺ g̊β and β, α → 1
as one approaches infinity. (Recall, for Lorentzian metrics g1 and g2, g1 ≺ g2 means
that the null cones of g2 are wider than those of g1 in the sense that for any vector
X 6= 0, if g1(X,X) ≤ 0 then g2(X,X) < 0).

Along the null curves of g̊α with θ = θ0, φ = φ0, one has

dt = ± 1√
α coshx

dx .

Integrating gives the following.

Lemma 2.1 (Null curves for g̊α). The curves s 7→ (fα(s, t0, x0), s + x0, φ0, θ0) and
s 7→ (−fα(s,−t0, x0), s+ x0, φ0, θ0), where

fα(s, t0, x0) :=
2√
α

(
tan−1(es+x0)− tan−1(ex0)

)
+ t0 ,

are future, resp. past, directed achronal null curves in (M̊, g̊α) passing through the
point (t0, x0, φ0, θ0).

Remark 2.2. For future reference we note the following.

lim
s→−∞

fα(s, t0, x0) = t0 −
2 tan−1(ex0)√

α

and

lim
s→∞

fα(s, t0, x0) = t0 −
2 tan−1(ex0)√

α
+

π√
α
≤ t0 +

π√
α
.

Since fα is increasing this means that fα(s, t0, x0) ≤ t0 − 2 tan−1(ex0 )√
α

+ π√
α

for all s.

The timelike futures I̊+
α (p) are easily seen to satisfy the following.

Lemma 2.3. Let p = (t0, x0, ω0) ∈ (M̊, g̊α). Then {t > t0 + π√
α
}×R×{ω0} ⊆ I̊+

α (p).
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2.3 Definition of asymptotically AdS2 × S2 spacetimes

Throughout we shall assume that spacetime is causally simple. Following [11, Sec. 3.10],
we say that a spacetime is causally simple provided J±(p) is closed for all p ∈M and
(M, g) is causal (i.e. contains no closed causal curves). As a consequence, the sets
J±(K) are closed for all compact sets K in M , and (M, g) is strongly causal.

In order to prove our main results, a careful treatment of the asymptotics, as layed
out in the following definition, is required.

Definition 2.4. Lat (M, g) be a 4-dimensional causally simple spacetime. We say
that (M, g) is asymptotically AdS2 × S2 provided the following conditions hold.

(a1) There exists a closed subset A ⊆ M such that M \ A◦ is the disjoint union of
two manifolds with boundary M1 and M2 such that

M1
∼= R× (−∞,−a]× S2 and M2

∼= R× [a,∞)× S2,

p ∈M1 ∪M2 7→ (t(p), x(p), ω(p)) ,

a ≥ 1, and the boundary ∂A is mapped to (R× {−a} × S2) ∪ (R× {a} × S2).

(a2) For all p ∈ A and k = 1, 2:

I+(p) ∩Mk 6= ∅ and I−(p) ∩Mk 6= ∅

and
A \ (I+(p) ∪ I−(p)) is compact.

(b1) We require that there exist constants cij > 0 and with c00 < a, such that for any
p ∈M1 ∪M2 and any g̊-othonormal basis {ei(p)}3

i=0 ⊆ TpM , with e0 = 1
coshx

∂
∂t

,

|h(ei(p), ej(p))| ≤
cij
|x(p)| , (2.1)

where h = g|M1∪M2 − g̊|M1∪M2 .

(b2) We further require the following decay on first derivatives of h, i.e., we assume
there exists C1 > 0 such that

|ek(h(ei, ej))(p)| ≤
C1

|x(p)| , |e0(h(ei, ej))(p)| ≤
C1

|x(p)|2 (2.2)

for k = 1, 2, 3 (note the faster decay on the time derivative). Additionally, we
require the following decay on second derivatives,

|el(em(h(ei, ej)))(p)| ≤
C1

|x(p)| (2.3)

for l,m = 0, . . . , 3.

5
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It will be convenient to require,

16 max{cij}
a

< 1 . (2.4)

Remark 2.5. In many of the arguments involving the asymptotics (2.1)-(2.3) we will
not use g̊-othonormal frames but rather work in specific charts which we will now
introduce. Let (U, ψ) denote either of two charts covering S2, with ψ(U) = {(θ, φ) :
π
6
< θ < 5π

6
, 0 < φ < 2π}, and let ψ : p → (t(p), x(p), ψ(p)) be the corresponding

chart on M1 ∪M2. From (2.1) we see that there exists a constant C > 0 such that in
these charts

|hij| ≤
C

|x| , |hti| ≤
C cosh(x)

|x| , |htt| ≤
C cosh2(x)

|x| (2.5)

for i, j 6= t. And for l,m, i, j arbitrary and k 6= t

|∂khij| ≤
C cosh#t(x)

|x| , |∂thij| ≤
C cosh#t(x)

|x|2 , |∂l∂mhij| ≤
C cosh#t(x)

|x| (2.6)

where #t denotes the number of t’s appearing as lower indices.
We are also going to need some estimates for the Christoffel symbols and the

curvature of g. Let now #t denote the number of t’s appearing as lower indices minus
the number of t’s appearing as upper indices. Using (2.5) and (2.6) one can show
that there exists a constant C such that

|̊gij − gij| ≤ C cosh#t(x)

|x| , |̊Γkij − Γkij| ≤
C cosh#t(x)

|x| (2.7)

and

|R̊iklm −Riklm| ≤
C cosh#t(x)

|x| , |R̊icij − Ricij| ≤
C cosh#t(x)

|x| , |R̊−R| ≤ C

|x| . (2.8)

These estimates follow in a straightforward way from (2.5) and (2.6), nevertheless
their derivation is carried out in some detail in the appendix.

To simplify the constants appearing in later arguments we will always choose C
such that additionally

C ≥ max{cij, C1} . (2.9)

2.4 Consequences of the asymptotics

We will start by introducing some notations: First, for any x0 ∈ R with |x0| ≥ a we
will use the shorthand {x = x0} for the submanifold R × {x0} × S2 of Mk (where
k = 1 for x0 < 0 and k = 2 for x0 > 0). Further, for r ∈ R+ and k = 1, 2 we use
Mk(r) := Mk ∩ (R × {x : |x| ≥ r} × S2) to denote the part of Mk that lies between
{|x| = r} and infinity. We also set M(r) := M1(r) ∪M2(r).

6
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Lemma 2.6. For any r ∈ [a,∞) there exists βr > 1 and αr < 1 such that on M(r)

g̊αr ≺ g ≺ g̊βr

and one can choose βr and αr such that βr is decreasing in r and αr is increasing in
r and βr, αr → 1 as r →∞.

Proof. We first show the existence of a suitable αr. Let {ei}3
i=0 be a g̊-orthonormal

basis for TpM(r) and let v = viei be such that g̊α(v, v) ≤ 0. We may w.l.o.g. assume∑3
i=0 |vi|2 = 1. Now, g̊α(v, v) ≤ 0 gives

α|v0|2 ≥
3∑

i=1

|vi|2 = 1− |v0|2. (2.10)

Then

g(v, v) = g̊(v, v) + h(v, v) = −|v0|2 +
3∑

i=1

|vi|2 + h(v, v) ≤

≤ (α− 1)|v0|2 + h(v, v) ≤ (α− 1)|v0|2 +
16C

|x(p)| ≤ (α− 1)|v0|2 +
16C

r
. (2.11)

Now if α < 1 we can use |v0|2 ≥ 1
α+1

to further estimate

g(v, v) ≤ α− 1

1 + α
+

16C

r
.

Thus, setting αr <
1− 16C

r

1+ 16C
r

< 1 guarantees g(v, v) < 0 and since
1− 16C

r

1+ 16C
r

→ 0 as r →∞
and is strictly decreasing we can choose αr to be increasing and αr → 1.

For βr we note that it suffices to show that g̊βr(v, v) ≥ 0 implies g(v, v) > 0. Now
g̊β(v, v) ≤ 0 gives 1−∑3

i=1 |vi|2 = |v0|2 ≤ 1
β

∑3
i=1 |vi|2. So we have

g(v, v) = g̊(v, v) + h(v, v) ≥ −|v0|2 +
3∑

i=1

|vi|2 − |h(v, v)| ≥

≥ (1− 1

β
)

3∑

i=1

|vi|2 − 16C

r
≥

1− 1
β

1 + 1
β

− 16C

r
. (2.12)

This implies the existence of a suitable βr. �

This allows us to bound the time it takes for the entire S2-factor to be contained
in the future of a point depending on how far out (in the x-direction) this point lies.

Lemma 2.7. For any r ∈ [a,∞) there exists a time τr such that for any p ∈Mk(r)

{t ≥ t(p) + τr} × {x(p)} × S2 ⊆ I+(p),

τr is decreasing in r and τr → 0 as r →∞.
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Proof. Let γ̄ : I → S2 be a unit speed geodesic (in S2) starting at πS2(p) and let
αr be the constant from the previous lemma. Since |x(p)| ≥ r the curve γ(s) :=
(t(p) + 1√

αr cosh(r)
s, x(p), γ̄(s)) is causal for g̊αr , hence timelike for g by Lemma 2.6.

Noting that S2 has a finite diameter of π proves the claim for τr := π√
αr cosh(r)

. This

is decreasing and goes to zero as r → 0 because αr is increasing and αr → 1. �

We also note the following consequence for null vectors.

Lemma 2.8. Let qij, i, j = 0, . . . , 3, be smooth functions on U ⊆M1 ∪M2 satisfying

the asymptotics |qij| ≤ C cosh#t(x)
|x| (e.g., qij = hij, Γ̊

x
ij − Γxij, R̊icij − Ricij, . . . ). Then

there exists a constant c > 0 such that for any null vector v ∈ TU we have

|qijvivj| ≤
c

|x|(|v
x|2 + |v̄|2S2), (2.13)

where vi denotes the components of v in one of the charts ψ specified in Remark 2.5.

Proof. Let βa be as in Lemma 2.6. Then v being null implies g̊αa(v, v) > 0, which
gives the estimate |vt|2 < 1

αa cosh2(x)
(|vx|2 + |v̄|2S2). Further, note that in either chart

ψ on S2 one always has |vθ| ≤ |v̄|S2 and |vφ| < 2|v̄|S2 , which gives the estimates,

|vi||vj| ≤ 1

2
(|vi|2 + |vj|2) ≤ 4(|vx|2 + |v̄|2S2) , (2.14)

|vt||vj| ≤ 1√
αa cosh(x)

√
|vx|2 + |v̄|2S2|vj| ≤

5

2

1√
αa cosh(x)

(|vx|2 + |v̄|2S2) (2.15)

for i, j 6= t. Hence

|qijvivj| ≤
∑

i,j 6=t

C

|x| |v
i||vj|+2

∑

j 6=t

C cosh(x)

|x| |vt||vj|+C cosh2(x)

|x| |vt|2 ≤ c

|x|(|v
x|2+|v̄|2S2)

(2.16)
for c = (36 + 15√

αa
+ 1

αa
)C. �

Finally we want to study maximizing null curves. Generally we say that a null
curve γ : I → M is a future (or past) null ray if I = [a, b) and γ is maximizing
(i.e., its image is achronal) and future (resp. past) directed and future (resp. past)
inextendible. We say that a null curve γ : I → M is a null line if I = (a, b) and γ is
maximizing and inextendible in both directions.

Lemma 2.9 (Null rays must run to infinity). Let γ : I → M be a future null ray.
Then γ is eventually contained in one of the Mk’s and |x(γ(s))| → ∞ as s→ b.

Proof. If q ∈ γ ∩A, then γ must eventually leave the compact set A \ (I+(q)∪ I−(q))
and never return to it, but since γ is achronal, that means that γ cannot return to A
at all, i.e., it is contained in Mk, say M2. So we may assume γ(0) = (t0, x0, ω0) ∈M2

and x0 = a. For any r > 0 the set [t0, t0 + π√
αa

+ τa] × [a, r] × S2 is compact, so γ
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must leave it. Since γ is future directed, we must have t > t0 along γ. Moreover,
by applying, first, Lemma 2.3, then, Lemma 2.7, together with Lemma 2.6, we see
that we must have t < t0 + π√

αa
+ τa along γ, otherwise the achronality of γ would be

violated. It follows that γ must cross x = r. �

Lemma 2.10. There exists r > 0 such that for any null geodesic γ ⊆M1(r) one has
γ̈x > 0, i.e., γ̇x can change sign at most once.

Proof. By the geodesic equation and the estimate (2.13) we have

γ̈x = −Γxij γ̇
iγ̇j ≥ −Γ̊xij γ̇

iγ̇j − |(̊Γxij − Γxij)γ̇
iγ̇j| ≥ (2.17)

≥ cosh(|x|) sinh(|x|)|vt|2 − c

|x|(|γ̇x|
2 + | ˙̄γ|2S2) (2.18)

Finally, γ being null implies g̊βr(γ̇, γ̇) < 0, which gives |γ̇t|2 > 1
βr cosh2(x(γ))

(|γ̇x|2+| ˙̄γ|2S2),
so

γ̈x >
( 1

βr
tanh(|x|)− c

|x|
)
(|γ̇x|2 + | ˙̄γ|2S2) >

( 1

βr
tanh(r)− c

r

)
(|γ̇x|2 + | ˙̄γ|2S2) > 0 (2.19)

for r large. �

Corollary 2.11. Let r > 0 be such that the previous Lemma holds. Then any null
geodesic γ : [a, b) → M1(r) with lims→b x(γ(s)) = −∞ may be parametrized with
respect to the x-coordinate.

Proof. Let γ : [a, b)→M be a null geodesic with image in M1(r). Lemma 2.10 shows
that γ̇x is strictly increasing, so if γ̇x(s0) ≥ 0 for any s0 ∈ [a, b) then γ̇x|[s0,b) ≥ 0
and hence x(γ|[s0,b)) ≥ x(γ(s0)). This contradicts lims→b x(γ(s)) = −∞. Thus s 7→
x(γ(s)) is strictly monotonically decreasing and so there exists a reparametrization
γ̃ : (−∞, x(γ(a))]→M1(r) of γ with x(γ̃(s)) = s. �

Lemma 2.12. Any future (or past) null ray γ : [0, a) → M is future (or past)
complete.

Proof. By the proof of Lemma 2.9 for any r > 0 γ is eventually contained in either
M1(r) or M2(r) and |x(γ(s))| → ∞ as s → a. For now, look at the case where γ is
eventually contained in M1(r) (for some large r, at least r ≥ r(1) from the previous
Lemma). We may assume γ : [0, a) → M1(r) and |γ̇x(0)| = 1 and we have to show
that a =∞. By the arguments in Corollary 2.11 we have γ̇x(0) < 0 and s 7→ γ̇x(s) is
strictly increasing, so |γ̇x(s)|2 ≤ 1 for all s. But this gives |x(γ(s)) − x(γ(0))| ≤ |s|,
contradicting x(γ(s)) → −∞ as s → a if a < ∞. The case of the end contained in
M2(r) is analogous (note that the analogues to Lemma 2.10 and Corollary 2.11 show
γ̈x < 0 and γ̇x > 0 on M2(r)). �
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Lemma 2.13 (Angular velocities go to zero for null lines). Assume the null energy
condition holds, i.e., Ric(X,X) ≥ 0 for all null vectors X. For any ε > 0 there exists
r(ε) such that | ˙̄γ|S2 < ε on M1(r(ε)) for any null line γ : I → M with |γ̇x| ≤ 1 on
M1(r(ε)).

Proof. Since γ is complete by Lemma 2.12 the Raychaudhuri equation applied to γ
(affinely parametrized) implies that Ric(γ̇, γ̇) = 0 along γ (else γ would contain a
pair of conjugate points). This condition does not change under reparametrization of
γ. We now use R̊ic(γ̇, γ̇) = −g̊(γ̇, γ̇) + 2| ˙̄γ|2S2 and (2.13) to estimate

0 = Ric(γ̇, γ̇) ≥ R̊ic(γ̇, γ̇)− c

|x(γ(s))|(|γ̇
x|2 + | ˙̄γ|2S2) ≥

≥ −g̊(γ̇, γ̇)+2| ˙̄γ|2S2− c

|x(γ(s))|(1+ | ˙̄γ|2S2) ≥ −g(γ̇, γ̇)+2| ˙̄γ|2S2− 2c

|x(γ(s))|(1+ | ˙̄γ|2S2) =

= 2| ˙̄γ|2S2 − 2c

|x(γ(s))|(1 + | ˙̄γ|2S2). (2.20)

So (
2− c

|x(γ(s))|
)
| ˙̄γ|2S2 ≤ c

|x(γ(s))| (2.21)

from which the claim follows. �

3 Proof of the main results

Throughout this section we will frequently make use of the null energy condition,
Ric(X,X) ≥ 0 for all null vectors X. This assumption enters in Proposition 3.5 (and
thus Remark 3.6) via Lemma 2.13 and in Theorem 3.9 via both Remark 3.6 and [4,
Theorem IV.1]. All further results, in particular all of subsection 3.2, build upon
Theorem 3.9.

3.1 Constructing a foliation by totally geodesic null hyper-
surfaces

Lemma 3.1. Let p ∈Mk and x0 ∈ (−∞,−a] ∪ [a,∞). Then I±(p) ∩ {x = x0} 6= ∅.

Proof. Let w.l.o.g. p ∈M1 and first consider x0 ∈ (−∞,−a]. Then this is clearly true
for any g̊α, hence by Lemma 2.6 also for g. Since {x = −a} ⊆ ∂A ⊆ A, condition (a2)
from Def. 2.4 then shows that I±(p) ∩M2 6= ∅. Note that this also must even imply
I±(p) ∩ {x = a} 6= ∅ from which the claim follows for x0 ∈ [a,∞) by the same
argument as above. �

Lemma 3.2. For any p ∈M1 there exists a future null ray γp : [0, b)→M such that
γp is eventually contained in M2.
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Proof. By Lemma 3.1 and causality, for each positive integer n ∈ [a,∞), {x = n} 6=
I+(p) ∩ {x = n} 6= ∅, so there exist qn ∈ ∂J+(p) ∩ {x = n}. Every qn is the future
endpoint of a maximizing null geodesic γn ⊆ ∂J+(p) which must end in p because
J+(p) is closed. Hence, there exists a limit curve γ starting at p that is maximizing
and inextendible (because the qn run off to infinity). It is eventually contained in M2

because by the ‘no turning back’ lemma (Lemma 2.10) γn∩{x = −r} = ∅ for r large,
so |x(γ(s))| → ∞ as s→∞ (see Lemma 2.9) implies x(γ(s))→∞. �

This allows us to construct null lines:

Proposition 3.3. For any u ∈ R there exists a complete null line ηu : (−∞,∞)→M
with past end eventually contained in M1 and future end eventually contained in M2

and t(ηu(s))→ u as s→ −∞.

Proof. Let u ∈ R, fix any ω0 ∈ S2 and set pn := (u,−n, ω0) ∈ M1. Then by
Lemma 3.2 there exist maximizing future inextendible null curves γn : [0,∞) → M
starting at pn that are eventually contained in M2. We now show that the sequence
γn contains an accumulation point. Let tn,m be the maximal t-coordinate of the set
γn∩{x = −m} 6= ∅ for n ≥ m. Clearly tn,m ≥ u for n ≥ m. By Lemmas 2.6, 2.1 (and

remark 2.2) and 2.7 we see that tn,m ≤ u+ τm+ π√
αm
− 2 tan−1(e−n)√

αm
< u+ τm+ π√

αm
< c

(because all points p in {x = −m} with larger t-coordinate belong to I+(pn)). Thus
the sequence {tn,m}n≥m has an accumulation point for m large.

By the no turning back lemma, for large enough m each γn meets {x = −m} in a
unique point. We reparametrize such that this point is always γn(0).

Thus there exists a limit curve ηu which is maximizing and both past and future
inextendible, hence complete by Lemma 2.12. Since γn|[0,∞) ⊆ {x ≥ −m} ∪ A ∪M2

the same holds for γ|[0,∞), so the future end of γ is eventually contained in M2 (by a
similar argument to Lemma 3.2). And since γn|[an,0] ⊆ {x ≤ −m} ⊆M1 the past end
of γ must lie in M1.

Finally, we need to argue that t(ηu(s))→ u as s→ −∞. Since t(γn) ≥ u (as long
as γn remains in M1) the same holds for t(ηu). Assume now that t(ηu(s))→ u1 with
u1 > u. This implies that t(ηu(s)) > u1 > u + ε for all s. But this is a contradiction
to tn,m ≤ fαm(n−m,u,−n) + τm = τm + π√

αm
(tan−1(e−m)− tan−1(e−n)) + u < u+ ε

for m large and n ≥ m. �

While the construction above depends on the choice of ω0 ∈ S2 and hence is not
unique, we are now going to argue that any null line η with t(η(s))→ u is contained
in a totally geodesic null hypersurface Nu that only depends on u. We first note the
following:

Proposition 3.4. Given two past inextendible causal curves η1, η2 : (−∞, 0] → M
with past end contained in M1, lims→−∞ x(ηi(s)) = −∞ and lims→−∞ t(η1(s)) >
lims→−∞ t(η2(s)) one has η1 ⊆ I+(η2).
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Proof. Use Lemma 2.7, note that τr → 0 as r → ∞ and that by assumption
|x(ηi(s))| → ∞ as s→ −∞. �

Proposition 3.5. Let η1 : (−∞,∞) → M be a null line and η2 : (−∞, b] → M be
a past null ray, both with past end contained in M1, such that lims→−∞ t(η1(s)) =
lims→−∞ t(η2(s)). Then η1 ⊆ I+(η2). If η2 extends to a null line this further implies
η1 ⊆ ∂J+(η2) and vice versa.

Proof. We may assume that, far enough out, both curves are parametrized with
respect to the x-coordinate, so |η̇x1,2| = 1. We also note that by Lemma 2.13 since
η1 is assumed to be maximizing and both future and past inextendibile we have that
| ˙̄η1(s)|2S2 ≤ 1.

We will first show that η1 ⊆ I+(η2). This follows immediately if we can find r > 0
such that η1|(−∞,−r] can be approximated by curves δη1 ⊆ I+(η2). We are now going
to construct such approximating curves.

To do this we estimate |g(t1,x,θ,φ) − g(t2,x,θ,φ)| in terms of |t1 − t2|. Since g̊ is
independent of t this is just the difference of the corresponding h-terms and and

1
cosh(x)

|∂thij| ≤ C cosh#t(i,j)

|x|2 , (2.13) gives (assuming v is null and satisfies the same

estimates as η̇1)

|h(t1,x,θ,φ)(v, v)− h(t2,x,θ,φ)(v, v)| ≤ |∂thij||vi||vj||t1 − t2| ≤
2c cosh(x)

x2
|t1 − t2| . (3.1)

For a function f > 0, ḟ > 0 (which will be determined later), we define the curve
δη1 := (ηt1(s) + δ + δf(s), s, η̄1(s)). Clearly these curves approximate η1. And by the

above and η1 being null we may estimate gδη1(s)(η̇1(s), η̇1(s)) ≤ 2c cosh(s)
s2

(δ + δf(s)).
This, together with 1

βs cosh2(s)
≤ |η̇t1(s)|2 ≤ 2

αs cosh2(s)
, leads to

gδη1(
δη̇1,

δ η̇1) ≤ 2c cosh(s)

s2
(δ + δf(s)) + 2δgδη1(η̇1, (ḟ , 0, 0̄)) + δ2ḟ 2gtt ≤

≤ 2c cosh(s)

s2
(δ + δf(s)) + 2δg̊(η̇1, (ḟ , 0, 0̄)) + |2δḟhitη̇i1| ≤

≤ 2c cosh(s)

s2
(δ + δf(s))− 2δ cosh2(s)√

βs cosh(s)
ḟ(s) + |2δḟhitη̇i1| . (3.2)

Finally, |hitη̇i1| ≤ |htt||η̇t1|+
∑

i 6=t |hit| ≤ (
√

2√
αs

+3)C cosh(s)
|s| ≤ 5C cosh(s)

|s| for s large enough

to ensure αs >
1
2
. So

gδη1(
δη̇1,

δ η̇1) ≤ δ cosh(s)
(2c

s2
(1 + f(s))− 2√

βs
ḟ(s) +

5C

|s| ḟ(s)
)

(3.3)

Now if f(s) = |s|−κ with 0 < κ < 1 we have that f is bounded by one and ḟ(s)→ 0
slower than 1

s2
as s→ −∞. So there exists r (independent of δ) such that δη1|(−∞,−r]
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is timelike. Since by construction lim t(δη1(s)) = lim t(η1(s)) + δ = lim t(η2(s)) + δ
Proposition 3.4 implies δη1 ⊆ I+(η2).

If both curves are null lines, we may apply the same argument to η2 to get get
η1 ⊆ I+(η2) and η2 ⊆ I+(η1). From this we see that I+(η2) ⊆ I+(I+(η1)) = I+(η1),
hence η1 ∩ I+(η2) = ∅ by achronality of η1, proving the claim. �

Remark 3.6. Note that this implies that for any future directed null line η with past
end contained in M1 the set ∂J+(η) depends only on lims→−∞ t(η(s)). In particular
for two lines ηu,ω1 and ηu,ω2 constructed as in Proposition 3.3 one has ∂J+(ηu,ω1) =
∂J+(ηu,ω1) =: ∂J+(ηu).

Proposition 3.7. For any u ∈ R and any x0 ∈ (−∞,−a]∪ [a,∞) the set ∂J+(ηu)∩
{x = x0} ⊆ R × {x0} × S2 is a graph over S2 with continuous graphing function
Tu,x0 : S2 → R. In particular, it is connected.

Proof. Let π : {x = x0} ≡ R× {x0} × S2 → S2 be the projection onto S2 and define
S := ∂J+(ηu) ∩ {x = x0}. Being the intersection of an achronal locally Lipschitz
hypersurface with a timelike hypersurface, S is itself an achronal locally Lipschitz
hypersurface in {x = x0}. Clearly, π|S is injective since S is achronal and ∂t is timelike.
Hence we may define Fu,x0 := (π|S)−1 : π(S) ⊆ S2 → S. Next we will argue that S is
actually compact: Let (t0, x0, ω0) ∈ S. Then by Lemma 2.7, any p ∈ {x = x0} with
t(p) < t0− τ|x0| lies in I−(S) and any p ∈ {x = x0} with t(p) > t0 + τ|x0| lies in I+(S).
So by achronality S ⊆ [t0−τ|x0|, t0 +τ|x0|]×{x0}×S2, hence it must be compact. This
implies that πS : S → π(S) ⊆ S2 is actually a homeomorphism onto its image. In
particular π(S) is compact and Fu,x0 is continuous. Since S is itself a two dimensional
(topological) manifold, invariance of domain implies that π|S : S → S2 is an open
map. Hence π(S) = S2.

Thus, Fu,x0 is a homeomorphism, and hence S is homeomorphic to S2, in particular
connected. The graphing function Tu,x0 : S2 → R, defined via: Tu,x0(ω) = t(Fu,x0(ω))
is clearly continuous. �

Corollary 3.8. For any u ∈ R the set ∂J+(ηu) has only one connected component.

Proof. Any point in ∂J+(ηu) lies on a past inextendible achronal null geodesic γp
contained in ∂J+(ηu). By the time dual of Lemma 2.9 we know that γp eventually
enters M1 or M2 and hence meets {x = x0} for some x0 ∈ (−∞,−a] ∪ [a,∞). Now
since ηu meets every {x = const.} slice and {x = x0} ∩ ∂J+(ηu) is connected, p lies
in the same connected component as ηu. Since this is true for every p, connectedness
follows. �

Theorem 3.9. For any u ∈ R there exists a smooth closed achronal totally geodesic
null hypersurface Nu such that there exists a null geodesic generator η with u =
lims→−∞ t(η(s)). Further lims→−∞ t(η(s)) is independent of the choice of the null
generator η and determines Nu uniquely. We have Nu = ∂J+(η) = ∂J−(η).
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Proof. Let ηu be any of the null lines from Prop. 3.3. Note that by Lemma 2.12 the
null geodesic generators of ∂J+(ηu) and ∂J−(ηu) are complete, so we may apply the
null splitting theorem [4, Theorem IV.1] to ηu by [4, Remark IV.2]. This gives that
the connected component of ∂J+(ηu) containing ηu is a smooth closed achronal totally
geodesic null hypersurface which by construction contains a null geodesic generator η
with u = lims→−∞ t(η(s)). Now since ∂J+(ηu) and ∂J−(ηu) are connected (the same
arguments as in Prop. 3.7 and Cor. 3.8 also give connectedness of ∂J−(ηu)) the null
splitting theorem further shows ∂J+(ηu) = ∂J−(ηu). The remaining claims follow
from Prop. 3.4 and Remark 3.6. Hence, Nu := ∂J+(ηu) is the null hypersurface we
were looking for. �

Theorem 3.10. For any p ∈M there exists a unique up ∈ R such that p ∈ Nup.

Proof. That Nu1 ∩Nu2 = ∅ for u1 6= u2 is clear from Theorem 3.9. We need to show
that for any p ∈M there exists up such that p ∈ Nup . We start by showing that there
exists r > 0 such that M(r) is covered by the union

⋃
u∈RNu.

Let σ = R × {x0} × {ω0} ⊆ M(r) be any t-line in M(r). We define a function
f : R → R as follows: For each u ∈ R there is an associated totally geodesic null
hypersurface Nu. By Proposition 3.7, Nu meets σ in a unique point; let f(u) be
the t-coordinate of that point. Using Proposition 3.4, one sees (in order to avoid an
achronality violation) that f is strictly increasing.

We will now argue that f is continuous and onto. Fix an interval [a, b], and let
u0 ∈ (a, b). We have f(a) < f(u0) < f(b). We first show that f is continuous from
the left, i.e., limu→u−0 f(u) = f(u0).

To each u < u0 we have an associated null hypersurface Nu, and hence an as-
sociated null geodesic generator ηu determined by where Nu meets σ. Note, for
u1 < u2, we have ηu2 ⊂ I+(ηu1). By considering their intersection with σ and
noting that f(a) < f(u) = t(ηu ∩ σ) < f(b), we see that as u ↗ u0 the null
lines ηu accumulate to a unique null line η passing through σ at a t-coordinate
t = sup{f(u) : u < u0} = limu→u−0 f(u). By the null splitting thorem, η deter-
mines a totally geodesic null hypersurface Nv for some v. Then η = ηv is the null
geodesic generator of Nv determined by where Nv meets σ. Clearly we must have
v ≥ u0, otherwise, by Proposition 3.4, ηu would lie to the future of ηv for u sufficiently
close to u0, which would contradict f(u) < f(v). If it were the case that v > u0 then
ηv would be in the timelike future of ηu0 . But then, f(v) > f(u0), so by the conver-
gence, f(u) > f(u0) for u sufficiently close to u0, contradicting monotonicity of f .
Hence, v = u0, and we conclude that limu→u−0 f(u) = f(u0).

A similar argument shows limu→u+0 f(u) = f(u0). Thus for any a < c < d < b, f

is continuous on [c, d], and, since increasing, onto [f(c), f(d)]. Since [a, b] is arbitrary,
this is enough to imply the claim.

Thus, we have shown that every t-line in M(r) is covered by ∪u∈RNu, so M(r) ⊆
∪u∈RNu. Let now p ∈ M be arbitrary. By a dual argument to Lemma 3.2 there
exists a past inextendible maximizing ray γp that is eventually contained in M1(r) ⊆
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∪u∈RNu. Now for any s0 with γp|(−∞,s0] ⊆ M1(r) either γp|(−∞,s0] ⊆ Nup for up :=
lims→−∞ t(γp(s)), then p ∈ Nup since Nu is totally geodesic and we are done. Or
there exists u 6= up with γp|(−∞,s0] ∩ Nu 6= ∅. If u > up this contradicts achronality
of γp because by Prop. 3.4 Nu ⊆ I+(γp). If u < up this contradicts achronality of Nu

because γp ⊆ I+(Nu). �

Remark 3.11. From this we get the following structure: For any u ∈ R the spacetime
M is the disjoint union of I+(Nu), Nu and I−(Nu). Let p ∈ M , then p ∈ Nup for
some up. If up = u, then p ∈ Nu. If up > u, then p ∈ I+(Nu) by Prop. 3.4. Finally,
if up < u, then I−(Nu) ∩Nup 6= ∅ (by the argument in the proof of Prop. 3.4). Thus
Nup ⊆ I−(Nup) since Nup ∩ ∂I−(Nu) = ∅ (because ∂I−(Nu) = Nu by Theorem 3.9
and Nu ∩Nup = ∅).

Theorem 3.12. The null hypersurfaces {Nu : u ∈ R} form a continuous codimension
one foliation of M .

Proof. Let (t, x1, x2, x3) be coordinates on some open set U with ∂t timelike. We will
show that ψ : U → R4 defined by ψ(p) := (up, x1(p), x2(p), x3(p)) is a continuous chart
on U , for which clearly {p ∈ U : up = c} = Nc ∩ U . Further, p 7→ up is continuous
on M : Let pn → p0, then the null lines ηn ⊆ Nupn corresponding to pn accumulate
to a null line η ⊆ Nup0

at p0. From this continuity follows as in the previous proof.
Finally, ψ is injective. Assume ψ(p1) = ψ(p2), then xi(p1) = xi(p2) for i = 1, 2, 3 and
it remains to show that t(p1) = t(p2). If not, w.l.o.g. t(p1) > t(p2) so, by t being the
time coordinate, p1 ∈ I+(p2) which contradicts up1 = up2 by achronality of the Nu’s.
From this invariance of domain implies that ψ is a homeomorphism, i.e., a continuous
chart. �

3.2 Obtaining a foliation by totally geodesic round 2-spheres

The same way one constructed the foliation {Nu}u∈R one may obtain a second, trans-
verse foliation with the same properties except that its null geodesic generators will be
past instead of future directed. We denote this transverse foliation by {N̂v}v∈R. The
idea is now to show that Su,v := Nu ∩ N̂v (if non-empty) are isometric 2-spheres and
to use the asymptotics to argue that they must even be isometric to round 2-spheres.

We will first aim to characterize the pairs (u, v) for which Su,v 6= ∅. To do so,
let ηu be a future directed null geodesic generator of Nu and η̂v be a past directed
null geodesic generator for N̂v. Then we define u∞ := lims→∞ t(ηu(s)) and v∞ :=
lims→∞ t(η̂v). These do not depend on the choice of ηu, η̂v by an analogue of Prop.
3.5.

Lemma 3.13. Let (u, v) ∈ R2. Then the following are equivalent:

(i) Su,v 6= ∅,

(ii) u < v and u∞ > v∞,
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(iii) any (future directed) null geodesic generator of Nu starts in I−(N̂v) and ends
in I+(N̂v),

(iv) any null geodesic generator of Nu meets Su,v exactly once.

Proof. We begin by showing that (i) implies (ii). If Su,v 6= ∅ then there exists

a (future directed) null geodesic generator ηu of Nu with ηu ∩ N̂v 6= ∅. Since ηu
intersects N̂v transversally and M = I+(N̂v) ∪ N̂v ∪ I−(N̂v) (by the analogue of
Remark 3.11) it intersects N̂v only once, say in ηu(s0). Because it is future directed
we have ηu|(−∞,s0) ⊆ I−(N̂v) and ηu|(s0,∞) ⊆ I+(N̂v). So there exists r large such that

ηu∩M1(r) ⊆ I−(N̂v). Then t(ηu∩{x = −r}) < t(η̂v∩{x = −r}) for an appropriately
chosen (past directed) generator of N̂v. This gives u < v because t is decreasing along
ηu and increasing along η̂v as s → −∞. An analogous argument in M2(r) shows
u∞ > v∞.

Now, if u < v and u∞ > v∞ it immediately follows from (a slight variation of)
Prop. 3.4 that any null geodesic generator of Nu starts in I−(N̂v) and ends in I+(N̂v).
This shows (iii).

If any null geodesic generator of Nu starts in I−(N̂v) and ends in I+(N̂v) then it
must intersect N̂v = ∂I+(N̂v) and hence Su,v at least once. Further, it can intersect
Su,v at most once by the same argument as in the first paragraph. This shows (iv).

Finally, that (iv) implies (i) is obvious. �

Proposition 3.14. For any (u, v) ∈ R2 with u < v and u∞ > v∞ the set Su,v is a
totally geodesic, spacelike codimension 2 submanifold homeomorphic to S2. Further
for any two such pairs u1, v1 and u2, v2 the spheres Su1,v1 and Su2,v2 are isometric.

Proof. That the intersection is a totally geodesic, (smooth) spacelike codimension 2
submanifold follwos immediately from Nu and N̂v intersecting transversally and being
totally geodesic.

Let nu be a null vectorfield defining Nu with ∇nunu = 0. Then its flow Φnu :
R× (Nu ∩ {x = −r})→ Nu is a diffeomorphism (for r sufficiently large): By Lemma
2.9 and Corollary 2.11 every integral curve of nu intersects Nu ∩ {x = −r} exactly
once and clearly every point of Nu lies on an integral curve. Since by Lemma 3.13 any
integral curve also intesects Su,v exactly once we may rescale nu such that Φnu(1, .) :
{x = −r} ∩ Nu → Su,v is a diffeomorphism. Thus Su,v is homeomorphic to S2 by
Prop. 3.7.

Next we show that Su,v1 is isometric to Su,v2 if both are non-empty. This fol-
lows by a fairly standard argument from the fact that Nu is totally geodesic (see
e.g [1, Appendix A]): We rescale nu such that Φnu

1 ≡ Φnu(1, .) : Su,v1 → Su,v2
is a diffeomorphism. Let X1, X2 be a basis for TpSu,v1 . We need to show that
g(Xi, Xj) = g((Φnu

1 )∗(Xi), (Φ
nu
1 )∗(Xj)). For s ∈ (0, 1] we set Xi(s) := (Φnu

s )∗Xi. Then
a straightforward computation shows LnuXi = 0. Setting gij(s) = g(Xi(s), Xj(s)) we
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have

d

ds
gij = nu(g(Xi, Xj)) = g(∇nuXi, Xj) + g(Xi,∇nuXj) =

= g(∇Xinu, Xj) + g(Xi,∇Xjnu) = 0, (3.4)

because the null second fundamental form of Nu vanishes since Nu is totally geodesic.
The same argument (only using N̂v instead of Nu) applies to show that Su1,v and
Su2,v are also isometric. Since one can see that any two (non-empty) spheres Su1,v1
and Su2,v2 can be connected via finitely many steps of this form. �

Now we will estimate the curvature of such spheres Su,v ⊆M(r) for r large.

Proposition 3.15. For any ε > 0 there exists r (depending only on ε) such that any
(non-empty) Su,v ⊆M(r) has Gauss curvature 1− ε ≤ Ku,v ≤ 1 + ε.

Proof. Let nu and n̂v be null vector fields defining Nu and N̂v, respectively. We
assume that they are normalized to nxu = n̂xv = 1. To simplify notation, we will drop
the indices u, v. Let X ∈ TS be any vector tangent to S with |Xx|2 + |X̄|2S2 ≤ 1
and hence in our charts |Xθ| ≤ 1, |Xφ| ≤ 2. We will first estimate |X t|: Since
X ∈ TS we have g(X,n − n̂) = 0 and X is g-spacelike, so g̊αr(X,X) > 0, i.e.,
|X t| ≤ 1√

αr cosh(x)
≤ 2

cosh(x)
for r large. Thus, we estimate

|̊g(X,n− n̂)− gS2(X̄, n̄− ¯̂n)| ≤ |h(X,n− n̂)|+ gS2(X̄, n̄− ¯̂n) ≤
≤ |hij||X i||nj − n̂j|+ 2 sin2(θ)|n̄φ − ¯̂nφ|+ 2|n̄θ − ¯̂nθ| ≤

≤ 6C cosh(x)

r
|nt − n̂t|+ 6C

r

3∑

j=1

|nj − n̂j|+ 2 sin2(θ)|n̄φ − ¯̂nφ|+ 2|n̄θ − ¯̂nθ| =

=
6C cosh(x)

r
|nt − n̂t|+ 6C

r

∑

j 6=θ,φ
|nj − n̂j|+ 2 sin2(θ)|n̄φ − ¯̂nφ|+ 2|n̄θ − ¯̂nθ|. (3.5)

Using Lemma 2.13 we see that for any ε there exists r such that |n̄|2S2 , |¯̂n|2S2 < ε2,
i.e., in our charts |nφ| < 2ε, |n̂φ| < 2ε and |nθ| < ε, |n̂θ| < ε. By Lemma 2.6 we
estimate |nt|2, |n̂t|2 < 1+ε2

αr cosh2(x)
. Thus

| − cosh2(x)X t(nt − n̂t)| ≤ 6C

r

(
6ε+ 2

√
1 + ε2

αr

)
+ 12ε.

Because n is future pointing and n̂ is past pointing we see that |nt−n̂t| = nt+|n̂t| ≥
2√

βr cosh(x)
, so |X t| ≤ 1

cosh(x)

(
c
r

+ c′ε
)

for some c, c′. Thus for any ε > 0 there exists r

such that

|X t| ≤ 1

cosh(x)
ε. (3.6)
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Next we derive a similar estimate for |Xx|: Proceeding as before but looking at
g̊(X,n+ n̂) yields

| − cosh2(x)X t(nt + n̂t) + 2Xx| ≤
(c
r

+ c′ε
)

(3.7)

for some c, c′. We now need to estimate |nt + n̂t|. Since 1√
βr cosh(x)

≤ |nt|, |n̂t| ≤
1+ε√

αr cosh(x)
we have |nt + n̂t| = |nt − |n̂t|| ≤ 1

cosh(x)
( 1+ε√

αr
− 1√

βr
) ≤ 1

cosh(x)
ε for r large.

Combining this with (3.6) we see | cosh2(x)X t(nt + n̂t)| < ε2 and hence for any ε > 0
we can find r such that also

|Xx| ≤ ε. (3.8)

Note that these estimates also ensure that S is g̊-spacelike.
We now use this to estimate K: Let p ∈ S, let X, Y be a g̊-orthogonal basis for

TpS with |Xx|2 + |X̄|2S2 = 1 and denote the Riemann tensor for (S, g|S) by RS. Then

K(X, Y ) =
g(RS(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
=

g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
(3.9)

because S is totally geodesic in M .
We start by estimating K(X, Y )− K̊(X, Y ) (where

K̊(X, Y ) = g̊(R̊(X,Y )Y,X)
g̊(X,X )̊g(Y,Y )

). First note that by (3.6)

|̊g(X,X)− 1| = |̊g(X,X)− |Xx| − |X̄|2S2| = cosh2(x)|X t|2 < ε (3.10)

and the same for |̊g(Y, Y ) − 1|, i.e., X and Y are close to being g̊-othonormal.

From |R̊ijkl − Rijkl| ≤ C cosh#t(x)
r

(see Remark 2.5) and using (3.6),(3.8) for X, Y
and |X i|, |Y i| ≤ 2 for i = θ, φ (which follows from our choice of charts and X̄, Ȳ
having unit gS2-norm) we see that

|̊g(R̊(X, Y )Y,X)− g(R(X, Y )Y,X)| ≤ c

r
(3.11)

for some c > 0. Similarly, using |hij| ≤ C cosh#t(x)
r

, we get |g(X, Y )| = |g(X, Y ) −
g̊(X, Y )| < c

r
and

1 +
c

r
+ ε ≤ |g(X,X)|, |g(Y, Y )| ≤ 1− c

r
− ε (3.12)

(note that g̊(X,X), g̊(Y, Y ) ∈ (1− ε, 1 + ε)). Putting these estimates together shows
that indeed for any ε there exists r such that

|K(X, Y )− K̊(X, Y )| ≤ ε

as long as S ⊆M1(r) ∪M2(r).

18

Rigidity of asymptotically AdS2 × S2 spacetimes 26



To estimate K̊(X, Y ) note that because g̊ = gAdS2 + gS2 , KS2 = 1 and (3.6),(3.8)
we have

|̊g(R̊(X̄, Ȳ )Ȳ , X̄)− 1| = |̊g(X̄, X̄ )̊g(Ȳ , Ȳ )− g̊(X̄, Ȳ )2 − 1| ≤
≤ |̊g(X,X )̊g(Y, Y )− g̊(X, Y )2 − 1|+ cε. (3.13)

So for any ε > 0 we can find r such that

|̊g(R̊(X̄, Ȳ )Ȳ , X̄)− 1| < ε. (3.14)

Finally,

|K̊(X, Y )−1| =
∣∣̊g(R̊(X, Y )Y,X)−1

∣∣ ≤
∣∣̊g(R̊(X̄, Ȳ )Ȳ , X̄)−1

∣∣+cε < (c+1)ε (3.15)

and we are done. �

Theorem 3.16. The family {Su,v}(u,v)∈Q, where Q = {(u, v) ∈ R2 : u < v and u∞ >
v∞}, gives a continuous foliation of M by totally geodesic round 2-spheres.

Proof. We start by showing that Su,v is isometric to S2. Let r0 be large enough for
Lemma 2.10 to apply. We will show that for any (u, v) ∈ Q and r > a there exists
u0 ≡ u0(v, r) such that [u, u0] × {v} ⊆ Q and Su0,v ∩M1(r0) ⊆ M1(r). For any past
null generator ηu : (−∞, xp]→ M of Nu starting in a point p = (tp, xp, ωp) ∈ M1(r0)
with |xp| = r we have ηu(s) ∈ J−((tp + τr, xp, ω(ηu(s))) by Lemma 2.7. So, since such
a generator must be contained in M1(r), we get ηu(s) ∈ I−g̊βr ((tp + τr, xp, ω(ηu(s))) by
Lemma 2.6, and hence by Lemma 2.1

t(ηu(s)) <
2√
βr

(tan−1(es)− tan−1(e−r)) + tp + τr (3.16)

if ηu is parametrized with respect to the x-coordinate. Letting s→ −∞ we get

tp ≥ u+
2√
βr

tan−1(e−r) + τr. (3.17)

A similar argument applied to η̂v : (−∞, xp] → M , using that η̂v(s) ∈ J+((tp −
τr, xp, ω(η̂v(s))), shows

tp ≤ v − 2√
βr

tan−1(e−r)− τr. (3.18)

So if p ∈ Su,v, then
4√
βr

tan−1(e−r) + 2τr ≤ v − u. (3.19)

Hence by choosing u0(v, r) < v as close to v as necessary it follows that Su0,v ∩
M1(r0) ⊆ M1(r). That [u, u0] × {v} ⊆ Q is clear from u 7→ u∞ being increasing, so
ū∞ > u∞ > v∞ for all ū > u.
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Now connectedness of Su0(r),v implies that even Su0(r),v ⊆ M1(r) for any r >
r0. Then by Prop. 3.15 the Gauss curvature Ku0(r),v → 1 uniformly on Su0(r),v as
r → ∞. But because all the Su0(r),v are isometric to Su,v, their Gauss curvatures
(in corresponding points) have to be equal, so Ku,v = 1. Together with Su,v being
homeomorphic to S2 this shows that Su,v is isometric to the round 2-sphere.

It remains to show that {Su,v}(u,v)∈Q is a continuous foliation. This follows from
the Frobenius theorem if we can show that p 7→ TpSup,vp is a continuous distribution (it
clearly is integrable, because it consists of tangent spaces to (smooth) submanifolds).
Since TpSup,vp = span{np, n̂p}⊥, where np and n̂p denote the future pointing null

tangents (normed w.r.t. some Riemannian background metric) to Nup and N̂vp in p,
it is sufficient to show continuity of p 7→ np and p 7→ n̂p. Let pk → p0 and let ηn be the
unique null geodesic generators of Nupk

with η̇k(0) = npk . Then the ηk accumulate to a
null line η0 passing through p0 with η ⊆ Nup0

. Hence npk = η̇k(0)→ η̇0(0) = np0 . �

4 Asymptotically AdS2×S2 spacetimes with paral-

lel Ricci tensor

In this section we will use the assumption of ∇Ric = 0 to first obtain a general
local splitting result, see Thm. 4.1, and finally a full rigidity result, see Thm. 4.4.
For k > 0 we denote by AdS2(k) and dS2(k) two dimensional anti-de Sitter space
with scalar curvature −2k and two dimensional de Sitter space with scalar curvature
2k, respectively. Similarly S2(k) and H2(k) denote the two dimensional sphere with
scalar curvature 2k and two dimensional hyperbolic space with scalar curvature −2k.

Theorem 4.1. Let (M, g) be a (four dimensional, connected) spacetime with ∇Ric =
0. If R = 0 and Ric is non-degenerate, then there exists k > 0 such that any p ∈ M
has a neighbourhood U that is isometric to an open subset V of AdS2(k) × S2(k) or
dS2(k)×H2(k).

Proof. First note that Ric cannot be proportional to the metric because R = 0 but
Ric 6= 0 because it is non-degenerate. So [13, Lemma 3.1] applies showing that for
any open simply connected domain (D, g) ⊆ (M, g) either the holonomy group is non-
degenerately reducible or there exists a covariantly constant null vector field X. But
by the definition of Ric one clearly has Ric(X, Y ) = 0 for any vector field Y if∇X = 0.
So the existence of a covariantly constant vector field contradicts the non-degeneracy
of Ric. Hence the holonomy group of (D, g) is non-degenerately reducible.

Now [15, Prop. 3] gives that any point p in M has a neighbourhood U that is
isometric to a direct product, say U = L × P , where L is Lorentzian and P is
Riemannian. First note that RicL and RicP are non-degenerate (as bilinear forms on
TL × TL, respectively TP × TP ): By the direct product structure Ric(X, Y ) = 0
for X ∈ TL and Y ∈ TP so if RicL or RicP were degenerate, then so would be Ric.
Thus, dim(L) > 1 and dim(P ) > 1, so the only possibility is dim(L) = 2 = dim(P ).
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Neither L nor P splits, since any further splitting would give a one-dimensional factor
contradicting non-degeneracy of Ric. So both RicL and RicP have to be proportional
to the respective metrics on L and P , i.e., RicL = λLgL and RicP = λPgP with
λL + λP = 0. Setting k := |λP | = |λL|, non-degeneracy of Ric implies k > 0. So
we have shown that for any p ∈ M there exists a k and a neighbourhood U that is
isometric to an open subset V of AdS2(k)× S2(k) (if λP > 0) or dS2(k)×H2(k) (if
λP < 0). Clearly λP , and thus k, is unique and locally constant, hence constant. �

Remark 4.2. It is actually sufficient to assume that there exists a point p0 such that
Ricp0 is non-degenerate and a sequence pn such that Rpn → 0. This is obvious from
the fact that ∇Ric = 0 implies ∇R = 0, so R = const., and that if Ricp0(Xp0 , .) = 0
then Ric(X, .) = 0 for any X that is the parallel transport of Xp0 along any curve.

If (M, g) is asymptotically AdS2 × S2, then λP = 1 and the structure obtained in
the previous section is consistent with this local product structure.

Corollary 4.3. Let (M, g) be asymptotically AdS2 × S2 (in the sense of Def. 2.4)
and assume that the null energy condition holds and that ∇Ric = 0. Then any p ∈M
has a neighbourhood U that is isometric to an open subset V ≡ L× P of AdS2 × S2

(with metric g̊). Further, the tangent space TqL is spanned by the vectors nq, n̂q and
TqP = TqSuq ,vq for all q ∈ V .

Proof. Clearly Rpn → 0 as x(pn) → ∞ by the asymptotics (2.8). Also, there must
exist a point p where Ricp is non-degenerate: Else we can find a sequence pn ∈ M2

with x(pn) → ∞ and vectors Xn ∈ TpnM with Ric(Xn, .) = 0. We may assume that
these Xn are normed to cosh2(x(pn))|X t

n|2 + |Xx
n |2 + |X̄n|2S2 = 1, so setting Yn :=

X t
n∂t−Xx

n∂x + X̄n we have R̊ic(Xn, Yn) = 1 and |Ric(Xn, Yn)− R̊ic(Xn, Yn)| ≤ C
|x(pn)| .

This contradicts Ric(Xn, .) = 0 for large enough x(pn).
Thus, by Remark 4.2, we can apply Theorem 4.1, to get U ∼= L × P . We have

that n, n̂ ⊆ TL: If not, then 0 = gL(n, n) + gP (n, n) and gP (n, n) 6= 0, so −gL(n, n) =
gP (n, n) > 0 because gP is Riemannian. So Ric(n, n) = −kgL(n, n) + kgP (n, n) 6= 0,
contradicting Ric(n, n) = 0 (which follows from the NEC and n, n̂ being tangent to
null lines). Thus TqL is spanned by nq, n̂q and TqSuq ,vq = span{nq, n̂q}⊥ = TqP .
Finally, because Su,v is isometric to the round 2-sphere by Theorem 3.16, we must
have λP = 1, so L× P ⊆ AdS2 × S2. �

Finally, the fact that the spheres Su,v are isometric to S2 and hence geodesically
complete allows us to globalize this splitting:

Theorem 4.4. Let (M, g) be asymptotically AdS2×S2 (in the sense of Def. 2.4) and
assume that the null energy condition holds and that ∇Ric = 0.Then M is isometric
to AdS2 × S2.

Proof. From the local splitting in Cor. 4.3 we see that the foliation F := {Su,v}(u,v)∈Q
from Theorem 3.16 must be smooth. Further, the distribution q 7→ span{nq, n̂q} =
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TqS
⊥
uq ,vq ⊆ TqM must be smooth as well and hence by the Frobenius theorem give rise

to a smooth foliation K with leaves perpendicular to the leaves of F . Also, from the
local product structure we immediately see that both of these foliations are totally
geodesic (i.e., their leaves are totally geodesic).

For F we know even more: Note that the leaves are exactly the spheres Su,v which
are totally geodesic submanifolds isometric to (S2, dΩ2) by Theorem 3.16 and hence
even geodesically complete. Finally, note the M is simply connected because it is
homeomorphic to R2×S2 (for any x0 < −a the flow Φn : R×(R×{x = x0}×S2)→M
of n is a homeomorphism).

So we may apply [12, Cor. 2] to obtain that M is globally isometric to a product
L×P such that K and F correspond to the canonical foliations of the product L×P .
Since P is a leaf of F , we see that P = (S2, dΩ2). And since L is a leaf of K it
must be isometric to a non-empty open subset U of (AdS2, gAdS2). Further L is null
geodesically complete because the only null geodesics in Q are null geodesic generators
of the achronal null hypersurfaces Nu and N̂v, hence complete by Lemma 2.12. So all
that remains is to show that any null geodesically complete non-empty open subset
U of AdS2 must already be all of AdS2: For any p ∈ AdS2 \ U all null geodesics
emanating from p must also lie in AdS2 \ U . So if U 6= AdS2 then AdS2 \ U = AdS2

because any two points in AdS2 can be connected by a curve consisting solely of null
geodesic segments. �

A Asymptotics for the curvature

In this appendix we give some details on the derivation of (2.7), (2.8) from (2.5),
(2.6). Throughout this appendix we use C to denote a running constant.

In general, if two pairs of functions f̊1, f1 and f̊2, f2 satisfy |f1 − f̊1| ≤ C
|x| |f̊1(x)|

and |f2 − f̊2| ≤ C
|x| |f̊2(x)| on R \ [−a, a] then |f1| ≤ C|f̊1|, |f2| ≤ C|f̊2| and

|f̊1f̊2 − f1f2| ≤
C

|x| |f̊1(x)f̊2(x)| on R \ [−a, a]. (A.1)

Using this, (2.5) and the form of g̊ (note that sin(θ) is bounded away from zero in
the charts we use) allows us to estimate

| det(̊g)− det(g)| ≤ | det(̊g)−
4∏

i=1

gii|+
∑

σ 6=id

4∏

i=1

|giσ(i)| ≤

≤ C

|x| cosh2(x) +
C cosh2(x)

|x|2 (1 +
1

|x| +
1

|x|2 ) ≤ C

|x| cosh2(x). (A.2)

From this we get
∣∣ 1

det(̊g)
− 1

det(g)

∣∣ ≤ C

|x|
1

cosh2(x)
(A.3)
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and using A−1 = 1
det(A)

adj(A) this gives

|̊gtt − gtt| ≤ C

|x|
1

cosh2(x)
, |̊gti − gti| ≤ C

|x|
1

cosh(x)
and |̊gij − gij| ≤ C

|x| (A.4)

for i, j 6= t. Note that these imply

|gtt| ≤ C

cosh2(x)
, |gti| ≤ C

|x|
1

cosh(x)
, |gii| ≤ C and |gij| ≤ C

|x| for i 6= j. (A.5)

Regarding the Christoffel symbols we note that

Γlij =
1

2
glk (∂jgki + ∂igkj − ∂kgij) .

Since only ∂xg̊tt, ∂θg̊φφ are non-zero, the estimates of all Christoffels not containing

either of those derivatives follow from (A.5) and |∂kgij| ≤ C cosh#t(x)
|x| for (k, i, j) 6=

(t, x, x), (θ, φ, φ). So we have

|Γkij| ≤
C

|x| cosh#t(x) (A.6)

if (k, i, j) 6= (t, t, x), (x, t, t), (φ, φ, θ), (θ, φ, φ). The remaining Christoffels are Γttx, Γxtt,
Γφφθ and Γθφφ. For these, the summands appearing in |̊Γ−Γ| for which the g̊-part does

not vanish can be estimated using |∂xg̊tt−∂xgtt| ≤ C
|x| |∂xg̊tt| ≤ C

|x| cosh2(x) (since cosh

and sinh have the same behaviour at infinity) and |∂θg̊φφ − ∂θgφφ| ≤ C
|x| |∂θg̊φφ| ≤ C

|x|
by (2.6), (A.4) and (A.1). This gives

|̊Γkij − Γkij| ≤
C

|x| cosh#t(x) and |Γkij| ≤ C cosh#t(x). (A.7)

for these four Christoffels.
For the components Riklm of the Riemann tensor we use

Riklm =
1

2
(∂k∂lgim + ∂i∂mgkl − ∂k∂mgil − ∂i∂lgkm) + gnp (ΓnklΓ

p
im − ΓnkmΓpil) .

(A.8)
Again, if those products always contain at least one factor that is zero for g̊, the
desired estimates follows easily from the assumption on ∂2h, h and (A.6),(A.7). The

remaining two cases are Rxtxt and Rθφθφ where g̊tt

(
Γ̊ttxΓ̊

t
xt − Γ̊tttΓ̊

t
xx

)
= g̊tt(̊Γ

t
tx)

2 =

sinh2(x) and g̊φφ

(
Γ̊φφθΓ̊

φ
θφ − Γ̊φφφΓ̊φθθ

)
= g̊φφ(̊Γφφθ)

2 = cos2(θ), respectively. For these

cases we again use A.1 (and that sinh and cosh behave the same at infinity and that
in our charts sin(θ) is bounded away from zero).

Finally, the asymptotics for Ric and R follow from (A.4),(A.5) and the asymptotics
of Riklm using the same arguments.
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B Weakening of the null energy condition

In this appendix we wish to indicate how the results of this paper as summarized
in Theorems 1.1 and 1.2 continue to hold under the weaker integrated curvature
condition (1.1).

The NEC enters into the proof of Theorem 1.1 in two ways:

(i) It is used in the proof of Lemma 2.13.

(ii) It is used in results such as Theorem 3.9 which rely on the ‘null splitting theo-
rem’, Theorem IV.1 in [4].

The following is sufficient to ensure that Lemma 2.13 holds under the curvature
condition (1.1).

Proposition B.1. Assume (M, g) satisfies the curvature condition (1.1). If η :
(−∞,∞)→M is a complete null line then Ric(η′(s), η′(s)) = 0 for all s ∈ R.

Proof. This follows almost immedetiately from Corollary 3.3 in [2]. Since η is a
complete null line, it is free of conjugate points. Then, by [2, Corollary 3.3],

∫ ∞

−∞
Ric(η′(s), η′(s))ds ≤ 0 .

But then the curvature condtion (1.1) implies that we have equality in the above. In
this case, [2, Corollary 3.3] further implies that Ric(η′(s), η′(s)) = 0 for all s ∈ R. �

The NEC enters into the proof of [4, Theorem IV.1] in only one place, namely
through Lemma IV.2. The following proposition shows that this lemma remains valid
under the curvature condition (1.1).

Proposition B.2. Suppose S is an achronal C0 future null hypersurface in (M, g)
whose null generators are future geodesically complete. If along each null generator
η : [0,∞) → R the Ricci curvature satisfies (1.1) then S has null mean curvature
θ ≥ 0 in the sense of support hypersurfaces.

We refer the interested reader to [4] for the definitions of terms being used in the
statement of this proposition. The proof makes use of the following lemma which is
proved in [3, Section 3].

Lemma B.3. Consider the intial value problem

x′′ + p(s)x = 0

x(0) = 1 (B.1)

x′(0) = a

If p ∈ C∞([0,∞)) satisfies ∫ ∞

0

p(s)ds > a (B.2)

then the unique solution to (B.1) has a zero on [0,∞).
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Proof of Proposition B.2. Given p ∈ S, let η : [0,∞) → R be a null generator of S
starting at η(0) = p. For any ε > 0, we have,

∫ ∞

0

Ric(η′(s), η′(s))ds > −(n− 2)ε . (B.3)

By the lemma, the unique solution x = x(s) to the initial value problem (B.1), with

p(s) =
1

n− 2
Ric(η′(s), η′(s)) and a = −ε (B.4)

satisfies x(r∗) = 0 for some r∗ ∈ (0,∞). We may assume r∗ is the first zero of x(s).
Fix r > r∗. As in the proof of [4, Lemma IV.2], by considering ∂J−(η(r)) we

obtain a smooth null hypersurface Sr defined in a neighborhood of η|[0,r) such that
Sr is a past support hypersurface for S at p.

Let θ = θ(s) be the null expansion of Sr along η|[0,r); θ satisfies the Raychaudhuri
equation [4, (II.4)]. Let y = y(s) be defined by the substitution,

y′

y
=

1

n− 2
θ(s)

with y(0) = 1. A standard computation shows that y satisfies the IVP (B.1) with

p(s) =
1

n− 2

(
Ric(η′, η′) + σ2

)
and a =

1

n− 2
θ(p) . (B.5)

Suppose θ(0) < −(n−2)ε. By a basic ODE comparison result we have y(s) ≤ x(s)
(up to the first zero of y), where x(s) is the solution to (B.1)+(B.4). In particular y(s)
must go to zero somewhere on [0, r∗]. This implies that θ is not defined everywhere
on this interval, which is a contradiction since θ = θ(s) is smooth on [0, r). Thus we
must have θ(0) ≥ −(n− 2)ε. Since ε is arbitrary, this proves the proposition. �

With regard to Theorem 1.2, the additional arguments of Section 4, beyond those
of Section 3, show that it is sufficient for the NEC, Ric(X,X) ≥ 0, to hold for
vectors X tangent to null rays. But this follows trivially from (1.1), since, under the
assumption that Ric is covariant constant, the integrand is constant.
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