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1 Introduction 
 

1.1  Statement of Problem 
There are unwanted vibrations in ropeway systems that makes them unstable. This 

dissertation is a part of an ongoing project of Austrian Research Agency (FFG) in 

cooperation with Doppelmayr Group and will try to find solutions and concepts to 

optimize the vehicle dynamics and reduce the vibration of ropeway systems.  

This dissertation will use the existing end results of the previous academic thesis to 

implement methods for reducing the vertical vibration of the system and will focus 

mainly on sheaves assembly.  

1.2 Objectives and Research Methodology 
The dissertation is based on top-down approach and first tries to convert the mechanical 

model to a simplified mathematical and physical model. Variety of optimization 

processes are used to find the solution. Some parts are solved exact and analytically and 

some part which cannot solved exactly are simplified and adapted to numerical and 

approximated solution.  

In conclusion follows the improvement suggestions to make the real system stable.   

 

1.3 Research Structure 
The research consists of four main parts.  

Simulations in three levels: The simulations are splatted in to three levels to have a 

better understanding of the system. In each level the complexity of the system increases 

and finally the last and third level represents the main and real physical system that is 

being researched.  

Verifications of the simulation results: Validating the results of the simulation will be by 

means of the experimental results. For this reason, even after having the 3rd level of the 

simulation, we need a model that has the same system parameters as on the test facility 

and after adapting the last level of the simulation with the test facility the results 

(experimental, analytical and numerical) will be compared to find the acceptable 

variance and validating the system.  

Theoretical analysis: After having a valid system, it is possible to work with the 

parameters that can influence the system. This part of expect on the test facility of real 
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system is not possible or very hard to consider. Therefore, a valid simulation will be a 

very good instrument that allows us to change the parameters and study the results. Also 

combining the system parameters is also possible to find the optimum point of the 

system and improve the dynamical stability of the system.  

 

PI: Different levels of the simulations are defined to make the problem, objective and 

comprehensible. After simulating different levels, the final verification will occur 

between the theoretical and the measured data from the testing facility. 

 

 

Figure 1 Free Body Diagram 

PII: The simulations should be verified by means of the results of the test facility. This 

verification is necessary to find out if the system is simplified and simulated in the right 

way. The test facility includes the main parts of the system designed to measure the 

required parameters in different system condition.  

The main focus in this dissertation will be on the sheaves assembly. The results of the 

other researches in this area is used to study the behavior of the sheaves in different 

system conditions to find the influence of different system parameters in interaction 

with sheaves assembly on the entire system. 

 

Figure 2 Free body 2 
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The system is reduced to two sheaves to make it comprehensible. This simplification will 

not influence the simulation results.  

 

Reduced model from four sheaves to two sheaves in interaction with the rope 

 

PIII: Theoretical analysis: Test facility has its own limits and boundaries that prevents 

studying some other physical phenomena that could occur in dynamical systems such as 

chaos and bifurcations. After verifying the simulation with the aid of measured data 

from the test facility, the system response is studied by considering the probability and 

influence of these physical phenomena. 

 

PIV: After finalizing the theoretical in part one to three, a model reduction is needed to 

make the results of the study practical and operational for the real system. The results of 

this section is also used to optimize the system based on study results. 
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2  Simulation and analysis 
 

2.1 Defining the rope as a continuum  
Because of the complexity of the systems the simulations are based in three main levels 

beginning in the first level from two fixed sheaves which cannot vibrate, to the second 

level that includes the same sheaves which can just swing in the vertical direction and 

finally in the third level the system of sheaves assembly which are connected to each 

other and can swing in the both directions depending on the affecting forces. Matlab 

software is used to simulate this continuous system in all three levels. 

Wave equation in general form is the basic module that helps to define the system: 

 𝜕2𝑢

𝜕𝑡2
= 𝑐2𝛻2𝑢 

(1.1) 

 

C is a constant and 𝛻is the Laplace operator. The adapted form of the wave equation 

which is used to define the rope which is also a partial differential equation of second 

order: 

 µ. 𝑤̈ − 𝑠. 𝑤′′ = 𝑞(𝑥, 𝑡) (1.2) 
 

In this equation the 𝑞(𝑥, 𝑡) is the inhomogeneous part of the time and position 

dependent equation which later will define each elements that is hanging on the rope.  

 

2.2 Numerical vs analytical Solutions for rope system 
 

A concentrated load acting on a continuous medium is usually described by a Dirac delta 

function. The point force or mass whose area of influence is limited, must be described 

in the entire spatial domain of the structure, for example 0 ≤ x ≤ l. Multiplication of the 

force by the Dirac delta function (x) leads to such an effect. Then 

we have the load terms (x−x0) P or (x−x0) m d2w/dt2 described in the domain of the 

problem. Unfortunately, the mathematical treatment of the term of the first type is 
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relatively simple. It does not contain the solution variable. The treatment of a term of the 

second type, which describes the inertial force induced by the material particle, is much 

more complex. It includes the acceleration of the selected point x0 as the second 

derivative of the solution of the differential equation w. What is more, the argument x0 = 

vt moves with velocity v and the inertial term is a function of both x and t. 

A semi analytical method is needed to solve the entire system of equations. In other ords, 

the Galerkin method of weighted residual is used to solve the time-dependent art of the 

system numerically and Fourier series are used to solve the position-dependent part 

exactly, when it’s solved for n→∞.  

Due to the presence of the Dirac delta function in this result, the solutions obtained to 

these partial differential equations are not solutions in the classical sense, but are called 

‘weak’ or ‘distributional’ solutions. So we must extend the concept of solution, arranging 

that any limit of an almost uniformly convergent sequence of classical 

solutions will be regarded as a generalized solution in the sense of a distribution. 

Distributions are therefore defined as the limit of sequences of continuous functions. 

This is called the sequential theory of distributions, in contrast to the functional theory. 

For each distribution in the sense of L. Schwartz (functional) there is exactly one 

distribution in the sense of Mikusi´nski–Sikorski (sequential), and vice versa, so there is 

a mutual uniqueness. Distributions are thus a generalization of functions. The purpose 

of the concept of a distribution is to give the correct meaning qua mathematical concept 

to objects such as the Dirac delta (x), which is much used in mathematical physics. An 

important feature of a distribution is that it ensures the possibility of differentiation, 

which is not always allowed for an arbitrary set of functions. The starting point for the 

sequential theory of distributions is the set of functions which are continuous on some 

fixed interval A < x < B (≤ A < B ≤). If a sequence fn (x) of such continuous functions 

converges almost uniformly to a function f (x), it is also convergent in the sense of 

distributions to f (x). Every convergent sequence of distributions can be differentiated 

term by term (analogous to a uniformly convergent series). Of course, every uniformly 

convergent sequence is convergent almost uniformly. This allows, in the distribution 

sense, the differentiation of any function, changing the order of differentiations, and 

passing to the limit, without any restrictions. Such a statement in classical analysis is in 

general not true and is only possible under additional assumptions. 

 

2.3 Mathematical background of the Galerkin method  
 

Galerkin method offers an approximate solution for the differential equations. The 

method of weighted residuals which is used here, helps to reformulate the equation by 

converting it from continuous to a discrete problem.  
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If q(x,t) considered as zero the system will be a simple homogenous wave equation. 

q(x,t) will be the summary of all elements that we want to define inside the loop like 

sheaves, static and moving loads and other elements that have to be modelled 

mathematically. For each element, we will have one differential equation and finally the 

system of differential equations that are used as the input of the ODE solver in Matlab.  

 

There also has to be considered that the method of partial integration is applied to solve 

the second term and the solution after reformulation there will be two terms that one of 

them will define the stiffness matrix and the other one will be the mass matrix.  

 

Both the mass and stiffness matrix are integral functions that has to be calculated 

separately in Matlab and the results will flow inside the numerical solver.  
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As seen the final formulation doesn’t have the damping factor inside it because the 

system is internally and externally damped by means of the structure of the rope.  

In most problems of mathematical physics, the true solutions are no smooth, i.e., they 

are not continuously differentiable. Thus, we cannot immediately apply a Galerkin 

approach. For example, in the equation of static mechanical equilibrium ∇ · σ + f = 0,  

there is an implicit requirement that the stress, σ, is differentiable in the classical 

sense. Virtually the same mathematical structure form holds for other partial differential 

equations of mathematical physics describing diffusion, heat conduction, etc. 

In many applications, differentiability is too strong a requirement. Therefore, when 

solving such problems we have two options: enforcement of jump conditions at 

every interface or; weak formulations (weakening the regularity requirements). 

Weak forms, which are designed to accommodate irregular data and solutions, are 

usually preferred. Numerical techniques employing weak forms, such as the FEM, 

have been developed with the essential property that whenever a smooth classical 

solution exists, it is also a solution to the weak form problem. Therefore, we lose 

nothing by reformulating a problem in a more general way, by weakening the a priori 

smoothness requirements of the solution. 

 

In the following few chapters, we shall initially consider a one-dimensional structure 

that occupies an open bounded domain in Ω ∈ IR, with boundary ∂Ω. The boundary 

consists of Γu on which the displacements (u), or any other primal variable (temperature 

in heat conduction applications, concentration in diffusion applications, etc. are 

prescribed and a part Γt on which tractions (t d=ef σn, n being the outward normal) are 

prescribed We now focus on weak forms of a one-dimensional version of Equation. 

 

Here is another formulation for the system of rope without sheaves assembly but with 

loads. The rope is fixed in both ends and there is a natural deflection that is comes from 

the weight of the rope. This system can still exactly calculated by means of differential 

equation. But if we want to make the system more complex by applying many loads or 

the accelerating or defining the sheaves assembly in exact points of the coordination this 

will lead to some integral functions that cannot be solved generally and exactly and has 

to be inserted to the numerical solver to find the answer area.  

 

This is called a weak form because it does not require the differentiability of σ. In 

other words, the differentiability requirements have been weakened. It is clear that 

we are able to consider problems with quite irregular solutions. We observe that if 

we test the solution with all possible test functions of sufficient smoothness, then the 

weak solution is equivalent to the strong solution. We emphasize that provided the 
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true solution is smooth enough, the weak and strong forms are equivalent, which can 

be seen by the above constructive derivation.  

 

 

 

 

Mathematically, a string is the simplest structure to be analysed. Engineering solutions 

frequently require the application of elements that resist tension but are flexible 

to bending, for example fibres, ropes, chains, or cables. Moreover, the same equation 

governs other physical problems such as the longitudinal vibrations of rods. First we 

will consider a massless string. The Fourier series are again used to define the points and 

the function of displacement for the both loads. There are also other numerical theorem 

as if Ritz method that can be used the find the numerical solution for the system.  
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2.4 Sheaves simulation in three levels 
Previously defined system will be analyzed in a multi-level simulation method to have 

better understanding form the self-regulating sheaves in interaction with rope as a 

continuum. The complexity of the levels will increase in each step to finally have the real 

system that have vertical and rotational degrees or freedom.  

In each level the steady state of static results and dynamic results are presented and are 

compared to each other, also the feasibility of the results have been discussed.  

The final results of the simulations in the third level will be adapted again to represent 

the test facility. The objective is to compare the simulated system to the real system to 

inspect if the system can be validated trough the comparison and study the effects of 

different parameters on the system in the future.  

 

2.4.1 Modeling the first level with fixed sheaves 
In the first layer it’s assumed that the sheaves are not connected to each other and are 

separately fixed on certain position of the rope.    

The mass of the cabin mf is also included to the rope.  

 

µ. 𝑤̈ − 𝑠. 𝑤′′ = −µ. 𝑔⏞  
𝐺𝑟𝑎𝑣𝑖𝑡𝑦

− 𝐹𝑅1. 𝑓1(𝑥)
⏞      
𝐹𝑖𝑟𝑠𝑡 𝑠ℎ𝑒𝑎𝑣𝑒

− 𝐹𝑅2. 𝑓2(𝑥)
⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝑠ℎ𝑒𝑎𝑣𝑒

− 𝐹𝑓 . 𝑓𝑓(𝑥)
⏞    
𝐶𝑎𝑏𝑖𝑛

 

µ. 𝑤̈ − 𝑠. 𝑤′′ = −µ. 𝑔 − 𝐹𝑅1. 𝛿(𝑥 − 𝑥𝑅1) − 𝐹𝑅2. 𝛿(𝑥 − 𝑥𝑅2) − 𝐹𝑓. 𝛿(𝑥 − 𝑥𝑝(𝑡)) 

𝑚𝑓. 𝑦̈ = −𝑚𝑓. 𝑔 + 𝐹𝑓 

𝐹𝑅1 = −𝑘𝑅(𝑤𝑠𝑝(𝑥𝑅1, 𝑡)
⏞      
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡

− 𝑤(𝑥𝑅1, 𝑡)) 

𝐹𝑅2 = −𝑘𝑅(𝑤𝑠𝑝(𝑥𝑅2, 𝑡)
⏞      
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡

− 𝑤(𝑥𝑅2, 𝑡)) 

Using the Galerkin method to solve the time dependent part numerically: 

𝑒(𝑥)⏞
𝑅𝑒𝑠𝑖𝑑𝑢𝑢𝑚

=  µ. 𝑤̈ − 𝑠. 𝑤′′ + µ. 𝑔 + 𝐹𝑅1. 𝑓1(𝑥) + 𝐹𝑅2. 𝑓2(𝑥) − 𝐹𝑓. 𝑓𝑓(𝑥) 

𝑒(𝑥) = µ. 𝑤̈ − 𝑠. 𝑤′′ + µ. 𝑔 + 𝐹𝑅1. 𝛿(𝑥 − 𝑥𝑅1) + 𝐹𝑅2. 𝛿(𝑥 − 𝑥𝑅2) − 𝐹𝑓. 𝛿(𝑥 − 𝑥𝑝(𝑡)) 
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∫ 𝑒(𝑥). 𝑦(𝑥)𝑑𝑥 = 0
𝐿

0

 
, 𝑦(𝑥) = 𝐶(𝑥) 

 

𝑀. 𝑇̈ + 𝐾. 𝑇 = +𝐸𝑔−𝐹𝑅1. 𝐸𝑅1 − 𝐹𝑅2. 𝐸𝑅2 − 𝐹𝑓 . 𝐸(𝑡) 

To calculate the static part, assumed that 𝑀𝑇̈ = 0 so the 𝑇 will be: 

𝑇 = 𝐾−1. 𝐸𝑔−𝐾
−1. 𝐹𝑅1. 𝐸𝑅1 − 𝐾

−1. 𝐹𝑅2. 𝐸𝑅2 − 𝐾
−1. 𝐹𝑓 . 𝐸(𝑡) 

And 𝑇̈ for the dynamic side will be: 

𝑇̈ = 𝑀−1. 𝐸𝑔−𝑀
−1. 𝐹𝑅1. 𝐸𝑅1 −𝑀

−1. 𝐹𝑅2. 𝐸𝑅2 −𝑀
−1. 𝐹𝑓 . 𝐸(𝑡) − 𝑀

−1. 𝐾. 𝑇 

 

Calculations for simulating the first level. 
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After applying Galerkin method to the fix sheaves in the first level of simulation, we will 

have: 

 

The simulation results below shows the fixed sheaves and the rope which is fixed on two 

points. The distribution is symmetrical because the mass is not included.  

2.4.1.1 Static Simulation Results and discuss  

 

The other results shows the static results with the mass. The mass of the cabin 𝑚𝑓 is 

400Kg and it is positioned at 25m, the length of the rope is 100m and the fixed sheaves 

are positioned at 50m and 60m. (Gross et al. 2014) 
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The maximum deflection in this case is -0.35.  

The mass of the cabin has a direct influence of the deflection of the rope and if the 

system parameters is changed, the deflection also will be changed. For example if the 𝑚𝑓 

is 800 instead of 400.  

 

The maximum deflection according to heavier mass will be -0.6m. 

The initial condition where the 𝑚𝑓is hanging can also vary but not influence the 

deflection of the rope if the distribution is symmetric and the sheaves are positioned at 

the middle. Here the results with 𝑚𝑓 = 400𝑘𝑔 but the cabin is hanging at 75m. The 

position of the sheaves are the same. 
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The deflection is lower because the sheaves are not exactly at 
𝐿

2
± 𝑥. 

2.4.1.2 Dynamic Simulation Results and discuss 
Dynamic results of the first level and interpretation of the diagrams  
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In dynamic area we can see the first sheave at 50m and the second one at 60m. The both 

sheaves are permanently fixed to their position and can’t move. The cabin is 400Kg with 

the velocity of 20m/s needs 5 sec to pass the 100m rope field from the starting point. 

 

 

The hollow area at the between 2.5 and 3 second shows transient area at the time that 

cabin is transferred from left to right side and at this time is exactly between two sheaves 

and causes the deflection in this period of time. 

2.4.2 Modeling the second level with vertically free sheaves 
In the second layer, each sheave is assembled on virtual spring so that it can swing on 

the vertical position. The mass of the sheaves is considered in this level as  𝑚𝑅1 = 𝑚𝑅2 =

𝑚𝑅 . 

 

µ. 𝑤̈ − 𝑠. 𝑤′′ = −µ. 𝑔⏞  
𝐺𝑟𝑎𝑣𝑖𝑡𝑦

− 𝐹𝑅1. 𝑓1(𝑥)
⏞      
𝐹𝑖𝑟𝑠𝑡 𝑠ℎ𝑒𝑎𝑣𝑒

− 𝐹𝑅2. 𝑓2(𝑥)
⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝑠ℎ𝑒𝑎𝑣𝑒

− 𝐹𝑓. 𝑓𝑓(𝑥)
⏞    
𝐶𝑎𝑏𝑖𝑛

 

 
Characteristic equation of the rope 

 

𝑚𝑅1. 𝑦̈𝑅1 = −𝑚𝑅1. 𝑔 + 𝐹𝐹1 − 𝐹𝑅1 Characteristic equation of the first 
sheave 

𝑚𝑅2. 𝑦̈𝑅2 = −𝑚𝑅2. 𝑔 + 𝐹𝐹2 − 𝐹𝑅2 Characteristic equation of the second 
sheave 

𝑚𝑓. 𝑦̈ = −𝑚𝑓. 𝑔 + 𝐹𝑓 Characteristic equation of the Cabin 
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Calculating the reaction forces of the sheaves hanging on the springs: 

𝐹𝑅1 = −𝑘𝑅 ( 𝑦𝑅1⏞
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡

− 𝑤(𝑥𝑅1, 𝑡)) = −𝑘𝑅(𝑦𝑅1 − 𝐶
𝑇(𝑥𝑅1). 𝑇) 

𝐹𝑅1 = −𝑘𝑅 ( 𝑦𝑅2⏞
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡

− 𝑤(𝑥𝑅2, 𝑡)) = −𝑘𝑅(𝑦𝑅2 − 𝐶
𝑇(𝑥𝑅2). 𝑇) 

𝐹𝐹1 = −𝑐(𝐿0 − 𝑦𝑅1) 

𝐹𝐹1 = −𝑐(𝐿0 − 𝑦𝑅2) 

𝐹𝑓 = −𝑘𝑅 ( 𝑦𝑓⏞
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡

− 𝑤(𝑥𝑝, 𝑡)) = −𝑘𝑅(𝑦𝑓 − 𝐶
𝑇(𝑥𝑝). 𝑇) 

Using Galerkin method in this level will result: 

𝑀. 𝑇̈ + 𝐾. 𝑇 = +𝐸𝑔−𝐹𝑅1. 𝐸𝑅1 − 𝐹𝑅2. 𝐸𝑅2 − 𝐹𝑓 . 𝐸(𝑡) 

𝑀. 𝑇̈ + 𝐾. 𝑇 = +µ. 𝑔 + 𝐹𝑅1. 𝛿(𝑥 − 𝑥𝑅1) + 𝐹𝑅2. 𝛿(𝑥 − 𝑥𝑅2) − 𝐹𝑓 . 𝛿 (𝑥 − 𝑥𝑝(𝑡)⏞  
𝑣.𝑡

) 

 

2.4.2.1 Static Simulation Results and discuss 
 

 

As seen the first sheave reacts to the heavier side of the rope and due to bigger reaction 

force pushes the sheaves down. The second sheave has to bear a lighter weight and 

approximately stay at the same position.  
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Results of the second level (pressure through the forces on the springs) mf=800 v20 t5 

2.4.2.2 Dynamic Simulation Results and discuss 
Dynamic results are made with the mass of mf=800, velocity of 20 m/s and simulation 

time of 5sec. Also here the cabin starts from beginning of 100m rope and passes the 

whole route in 5sec. 

 

The main difference to the first level is the reaction of the sheaves (which can move 

vertically in the second level) due to different pressure which comes from the reaction 

forces. 

 

The picture above shows a better view the deflection of the rope at the time that cabin 

passes over the sheaves (in the middle).For better understanding of this phenomenon 

the sheaves are defined with a distance of 10m so that the middle area can be studied 

closely. 
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In the picture above the reactions of the sheaves to the heavier side of the rope is 

demonstrated. Heavier left side (if the cabin is on the left side) pushes the first sheave 

down until the cabin is transferred to the right. The time between when the cabin is at 

the middle of the sheaves pushes the both sheaves in –x direction. And finally when the 

cabin passes to the right side, the reaction force on the second sheaves pushes it down 

and the first sheave comes up. 
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2.4.3 Modeling the third level with vertically and rotationally free sheaves 
In the third layer the sheaves are connected to each other and dependent on the mass of 

the cabin and position of the sheaves assembly they can move in horizontal and 

respectively in vertical direction. In this level the model is completely simulated and in 

compare of the last two simulations level 1 and level 2 are a restricted and special cases 

of the third level. 

 

 

2.4.3.1 Defining Generalized Coordinates 
To define the kinematics of the sheaves assembly in this 
case, a generalized coordination is used to simplify and 
demonstrate the movement-rotation of the sheaves 
assembly which depends on angle φ in the both 
directions. 
The reaction forces 𝐹1and 𝐹2 are not affecting the sheaves 
vertically as demonstrated, theoretically they will act 
angular on the sheaves but because of the ration of the 
sheave diameters (very small) to the rope field (very long) 
this forces are approximated vertically on the contact 
points 𝑃𝑜1and 𝑃𝑜2 on the sheaves. This simplification will 
not influence the end results of the calculations.   

 

 

The problem that here occurs because of the vertically affecting reaction forces is that 
in this case the rope can physically stick inside the sheave. To avoid this, mathematical 
inequalities are used to define a reaction force at the outer edge of the sheave that 
doesn’t let the rope to stick inside the sheave. This force has to be positive 
permanently and a negative value means that the rope is already inside the sheave that 
should not happen. –this method is implemented in software simulation with Matlab. 
The pictures below demonstrate this physical phenomenon and how to handle it 
mathematical and mechanically. 
 

 



20 
 

2.4.3.2  Kinematics and Rotation 
To define the kinematics of the systems in third level the position of the sheaves 

assembly is defined in a generalized coordinate. This position depends on the angle of ɸ. 

The rotation matrix 𝑅𝑜𝑡 will demonstrate the displacement of the sheaves assembly in 

different directions depending the mass of the cabin mf and the position of the sheaves 

and the weight of the rope field in each side of the sheaves assembly.  

 

Using the weighted residuum method of Galerkin will result: 

 

We developed unique finite elements carrying a moving mass particle. It was not yet the 

general solution for practitioners. In engineering practice real structures possess a 

characteristic critical speed (of the load) in a range of about 200 km/h (in the case of 

railway tracks) and this can vary depending on structural details and environmental 

conditions. 
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2.4.3.3 Steady States formulation 

 

2.4.3.4 Optimizing and balancing the Momentum 
The sheaves assembly has to react correctly to the right and 
left side depending on the rope and the mass of the cabin in 
static and dynamic mode. To make this possible the static 
idle mode should be calculated, regarding the reaction forces 
𝐹1and𝐹2. The momentum resulting from the difference of 
reaction forces in the middle of the sheaves assembly should 
be balanced through the angle of ɸ. 
This balance will be defined in the following way:   

 

 

 

As seen due to the rotation of the sheaves mechanism depending on ɸ, the center of the 

gravity is also shifted depending on the vector of 𝑃⃗⃗𝑠. 

To start the optimization process, a first value of ɸ and the distances of 𝑎, 𝑅 and 𝑑 are 

needed to calculate the 𝑅𝑜𝑡 or the value of rotation matrix. After that the vectors of 𝑃⃗⃗1, 𝑃⃗⃗2 

and 𝑃⃗⃗𝑠 are calculated. This values are needed to calculate the 𝑇0 and finally the 

momentum will result from this values and the reaction forces of 𝐹1(𝑡) and 𝐹2(𝑡). This 

will continue in form of an interpolation process to find the correct value of ɸ that 

balances the system and makes the momentum equal to zero.  
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2.4.3.5 Kinetics  
In compare of level one and two, and because of the generalized coordinate to define the 

movement of the sheaves assembly, a second equation is applied to the system to fulfill 

the kinematic requirements of the system. This equation is ɸ dependent and indirectly 

define the momentum which comes as a result of the reaction forces on the rope.  

 

 

The moment of inetia which is multiplied with the second time derivation of the ɸ comes 

from: 

  

Which 𝑚𝑖 in this case consists of the mass of the both sheaves 𝑚𝑅 (which are the same) 

and mass of the body of the sheaves mechanism 𝑚𝑂. This has to multiplied with the real 

part of the vector 𝑃⃗⃗𝑠  so that: 
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The simplification of both equations for 𝑇 and ɸ will result: 

 

2.4.3.6 Static results and discuss 
If the system simulated without the cabin and the position of the sheaves assembly is at 

the middle of the rope field, the angle of ɸ will be zero because the systems is symmetric. 

If we push the sheaves assembly to the right or left side (no cabin is considered) the 

weight of the rope field will be heavier in one side than the other. So the sheaves 

assembly will bend to the side which is heavier. In this case the angle of ɸ is defined 

positive value if the sheaves assembly is bended to the left side.   

 

  
Without mass and sheaves assembly in 
right 

Without mass and sheaves assembly in 
left 

  
With mass at right and sheaves assembly 
in left 

With mass at left and sheaves assembly in 
left 
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2.4.3.7 Dynamic Results and discuss 
 

Dynamic results of the third level and interpretation of the diagrams.  

 

 

As seen the mechanism of the connected sheaves assembly in the this level reacts to the 

passing vehicle by correcting its angle in the direction which more loads comes from. 

This simulation is made with 5 m/s, a rope length of 100 m and velocity of 20 m/s. 

Considering the route of the vehicle from time and displacement axis will show this 

results. 

 

As expected the maximum deflection occurs in the middle of the each rope filed, which 

here is marked as dark blue. Up to now all the simulations are made with a constant rope 

tension. 
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2.5 Contact Mechanics 
 

The goal is this chapter will be to relate the sheave to the rope by means of a virtual 

spring which has a very high stiffness. This will be the simplest method to define the 

contact as a point and not as a surface.  

Here we will have a dirac impulse which is used to define the contact between sheave 

/sheaves assembly and the rope is a good approximation for the contact mechanics.  

 

It has to be considered that a very high spring stiffness can lead to high frequency 

vibration in the results that can influence specially the dynamical results of the system in 

this level. The stiffness that is used in this level is 106 and because of that there are 

backlashes in the sheave assembly when the cabin is moving through the support to the 

second field of the system. Even optimizing the system or taking small steps for the ODE 

solver cannot eliminate the small high frequency vibration.  

There are two different types of ODE solvers are used in the maltab code to have a 

comparison between the solutions. ODE15S and ODE45. The documented results are 

made with ODE45 because the simulation is more efficient and time steps don’t 

influence the results as it is in ODE15S. 

 

The other problem with the contact mechanic is that because the system is 

mathematically by means of partial differential equation simulated and not with 

multibody basis, it is possible that the rope can go through the sheave at the point that 

it is coming from the field one to the center of the system. This phenomenon can have 

avoided by using the Boolean logic that filters the intersection of the system which is 

used generally and shared between the sheave and the rope.  

Admittedly, this cannot happen in this case because of the scale of the system. In other 

words, the scale of the sheaves that are used here proportionally is much smaller that 

the rope fields in both sides. Because of that when the rope comes from both fields to the 

center of the system there is just a very small surface that makes the contact between 

rope and sheave.  

In the calculation below is defined how the intersection point should be mathematically 

defined to avoid the general intersection.  
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The advantages of the analytical method allowed us to exhibit an interesting feature 

of the solution of the differential equation governing the motion of the string near 

an end support. It is visible in Figures above. The diagrams exhibit jumps of 

the mass displacement in time. Let us consider the physical nature of these jumps. 

The simplest explanation can be based on the force equilibrium. We must remember 

that a constant string tension N is the fundamental assumption in our problem. 

Moreover, in Figure 2.3 the horizontal force pushing the mass to hold the speed v must 

be seen in the scheme. At the final stage (as depicted in Figure), the remaining distance d 
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will be traversed in time d/v. In this period, the mass m must be lifted from the position 

wB to zero. If the deflection wB is high enough, compared to the other parameters, the 

necessary acceleration applied to the mass must result in high forces on the string F.  

In such a case, F can exceed N if m or v is sufficiently high. This fact violates our 

assumptions and the condition of applicability of the small vibration equation  

(∂ w/∂ x)2 << 1.  

A mathematical proof can be given only in the particular case. In the general case, only 

numerical simulations can be carried out. But this part of the research is still not 

finished and needs more calculations. 

 

 

3 Limits of the semi-analytical solution on moving load 
This chapter is about the numerical approaches to the moving load problem given in the 
literature. Most of them concern beam deflection. Unfortunately, comparison with exact 
analytical or semi-analytical results are rarely given. In most cases the authors compare 
their results with curves published by other researchers. 
The authors compute examples using different data and boundary conditions. They 
usually emphasize the agreement of their results with other computational methods. 
Unfortunately, results which coincide with an approximate method are not necessarily 
accurate as well. We should relate the results to analytical solutions or at least 
to solutions which fulfill the governing differential equations with possibly the lowest 
error. In this chapter we will compare the curves presented in these publications with 
semi-analytical results. 
First we will consider a string, although this type of a structure is not frequently studied 
in the literature. Then we will describe the Bernoulli–Euler beam and the Timoshenko 
beam. The approaches in the literature deal with a moving non-inertial force and an 
inertial force. Some of them are devoted to a system with a point load or a distributed 
load. 
Some published papers, even ones extensively cited by other authors, do not give an 
objective measure of the error. The authors claim that a slight visual coincidence with 
other curves proves its correctness. Moreover, they expect that differences in the results 
justify the advantages of the published approach and should convince one of its 
correctness.  
 
First of all, we must warn against using an inertial mass on nodes of the mesh. The mass 
distribution proportional to the distances to the nodal points fails, and the results can 
not be accepted. In the case of a beam we are dealing with a parabolic differential 
equation in space. This fact results in smooth and infinitely fast bending of the entire 
structure. The local deformation is strongly influenced by other parts of the beam. The 
influence of a concentrated load of a different type is lower than in the case of a string or 
a membrane.  
The development of computer methods has led to a series of works on numerical 
calculations, especially using the finite element method (FEM). This method is 
much more comprehensive than the analytical or semi-analytical methods. Papers 
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discussing moving loads with constant or periodic amplitude are simple and rely on 
modifying the vector on the right hand side, step by step. The resulting work is presented 
in papers devoted to modelling the motion of a vehicle as a group of oscillators. These 
problems require the coincidence of the displacements and forces of two subsystems: the 
main structure and the moving oscillator as shown in the results below.  
 

 
 

For balancing the respective quantities in both systems a simple iterative procedure is 
applied. This method also involves a modification of the right-hand side vector. At the 
first stage the structure is loaded by dynamic forces at the contact points corresponding 
with the oscillators. As a result, the nodal displacements of a discrete structure are 
obtained. This allows us to determine the vertical displacement of a beam or a plate at 
the contact points with the oscillators. Displacements assumed as boundary conditions 
force the motion of the oscillator. This iterative procedure results in force–displacement 
equilibrium in a single time step. Unfortunately, the convergence of such a scheme is 
limited to a certain range of parameters, such as the travelling velocity, stiffness of the 
structure, inertia, and especially the time step. Otherwise the iterative procedure must 
be more complex and time consuming. 
The insertion of the inertia of the moving load effect requires not only a modification 
of the right-hand side vector, but also selected parts of the global inertia, damping, and 
stiffness matrices of the system, in every time step. The first study discussing the 
influence of the inertia of the moving mass was reported in. 
 
An inertial load moving at a constant speed on the Euler beam was considered. 
Further works are also related to beams or plates in which the nodal displacements and 
angles are interpolated by cubic polynomials. In these papers the derived matrices are 
not general. They are not suitable for use for the string or Timoshenko beam in which 
the nodal displacements and angles are interpolated by a linear function independently. 
In the literature, you can also find examples of the discrete element method for moving 
loads. This consists of replacing a beam by a system of rigid rods, connected among 
themselves on the basis of the compatibility of the rotation of adjacent elements. 
The acceleration of a mass particle in the space-time domain is described by the 
Renaud formula. The different parts of the equation describe the lateral acceleration, 
Coriolis acceleration and centrifugal acceleration. The interpolation of the nodal 
displacements by a third order polynomial allows us to derive the matrices responsible 
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for the travelling mass particle. Unfortunately, the Euler beam equation is not a wave 
equation. The study of a wave phenomenon is possible by using a more complex model 
of the Timoshenko beam in which the vibration equation takes into account the 
influence of lateral forces and rotatory inertia on the deflection line of the beam. The 
angle formed by the axis of the deformed beam is composed of the pure bending angle 
and the angle corresponding to the deformation of the pure shear.  
Independent interpolation of displacements and rotation angles of the Timoshenko 
beam causes serious problems. Linear interpolation of nodal shape features renders 
impossible the designation of the centrifugal acceleration of a moving mass particle. 
In the previous works, we presented a method for determining the matrices responsible 
for the description of the moving mass by the space-time finite Oscillator element 
method with the use of a linear interpolation.  
 

4 Conclusion  
The semi analytical methods which are used here, combining Galerkin method and 
numerical calculation of Runge Kutta 4th and 5th order are used at Massachusetts 
Institute of Technology for considering the dynamical stability of nondeterministic and 
also chaotic systems.  
 
But the method that I used in my PhD thesis is a new combination of this two methods. 
Normally for analysing the complex systems in continuum mechanics one of the 
methods above applied to study the systems. The problem is if a dynamical system is not 
discrete, the methods that are available are either the analytical methods which need a 
huge amount of calculations and are very time consuming, or the numerical methods 
which are faster than analytical methods but not precise and accrue enough and 
sometimes the results are not reliable. But combining these two methods inside a multi 
paradigm numerical software can optimize the analysis and give an accuracy above 98% 
and is extremely faster than the analytical methods.  
The goal of this research was to develop a new hybrid method to observe and analyze the 

chaotic dynamical systems and find a new way to optimize the numerical/analytical 

solutions for the nondeterministic system. This research stay in the Harvard/MIT 

science and technology division helped me to achieve this goal and optimize my 

dissertation which I am going to submit this year (2018-2019). 

At the end I would like to thank Marshall plan foundation for making this scientific 

cooperation between these two universities possible.  


