
Marshall Plan Scholarship: Final Report

Research Exchange with DePaul University, Chicago, USA

March 20, 2017 - June 30, 2017

Eduard Eiben
(eiben@ac.tuwien.ac.at)

Home Institution
Technische Universität Wien
Algorithms and Complexity Group
Favoritenstrae 9-11
A-1040 Wien
Thesis Advisor: Stefan Szeider

Host Institution
DePaul University
College of Computing and Digital Media
243 South Wabash Avenue
Chicago, IL 60604
Host Advisor: Iyad Kanj

November 8, 2017

How to navigate a robot through obstacles?

Eduard Eiben∗ Iyad Kanj†

Abstract

We consider the following motion-planning problem: Given a set of obstacles in the plane,
can we navigate a robot between two designated points without crossing more than k different
obstacles? Equivalently, can we remove k obstacles so that there is an obstacle-free path between
the two designated points? This problem is known to be NP-hard, even when each obstacle is
either a square or a straight-line segment. It can be formulated and generalized into the following
graph problem: Given a planar graph G whose vertices are colored by color sets, two designated
vertices s, t ∈ V (G), and k ∈ N, is there an s-t path in G that uses at most k colors? If each
obstacle is connected, the resulting graph from this formulation satisfies the property that each
color induces a connected subgraph.

In this work, we study the complexity and design algorithms for this motion-planning prob-
lem. We first show that the problem is W[SAT]-hard parameterized by k, and is W[1]-complete
on graphs of pathwidth 4 parameterized by both k and the length of the path. We then focus
on the case where each color is connected. We first show that this problem is NP-hard, even
when restricted to 2-outerplanar graphs of pathwidth 3. We then exploit the planarity of the
graph and the connectivity of the colors to prove the following graph-theoretic structural result.
For any vertex v in the graph, there exists a set of paths whose cardinality is upper bounded by
some function of k, that “represents” the valid s-t paths containing subsets of colors from v. We
then employ this structural result to design an FPT algorithm for the problem parameterized
by both k and the treewidth of the graph.

Keywords. parameterized complexity and algorithms; planar graphs; treewidth;
motion planning.

1 Introduction

1.1 Problem Definition and Motivation

Motion planning is an important subject with applications in Robotics, Computational Geometry,
Graphics, and Gaming, among others [20]. The goal in motion planning problems is generally to
move a robot from a starting position to a final position, while avoiding collision with a set of
obstacles. This is usually referred to as the piano-mover’s problem. This work is concerned with
a variant of the piano-mover’s problem, where the obstacles are in the Euclidean plane and the
robot is represented as a point in the plane. Since determining if there is an obstacle-free path for
the robot in this case is solvable in polynomial time, if no such path exists, it is natural to seek a
path that intersects as few obstacles as possible. More formally, in the setting under consideration,
we are given a set of obstacles in the plane, and k ∈ N, and we need to determine if there is a
path for the robot from the starting position to the final position that crosses at most k different
∗Algorithms and Complexity Group, TU Wien, Austria. Email: eiben@ac.tuwien.ac.at
†School of Computing, DePaul University, Chicago, USA. Email: ikanj@cs.depaul.edu

1

1.1 Problem Definition and Motivation 1 INTRODUCTION

obstacles; equivalently, we need to determine if we can remove at most k obstacles so that there
is an obstacle-free path for the robot. By considering the auxiliary plane graph that is the dual
of the plane subdivision determined by (the regions formed by) the obstacles, the problem can be
formulated and generalized into the following graph problem. We are given a planar graph G, each
of whose vertices is colored by a (possibly empty) color set, two designated vertices s, t ∈ V (G), and
k ∈ N, and we need to decide if there is an s-t path in G that uses at most k colors. See Figure 1 for
illustrations. We assume that the regions formed by the obstacles can be computed in polynomial
time. The obstacles may or may not contain their interiors. If the intersection of two obstacles is
not a 2-D region, we can thicken the borders of the obstacles without changing the sets of obstacles
they intersect, so that their intersection becomes a 2-D region.

s

t

s

t

Figure 1: Illustration of instances of the problem under consideration drawn within a bounding
box. The figure on the left shows an instance in which the optimal path crosses two obstacles,
zigzagging between the other obstacles. The figure on the right shows an instance and its auxiliary
plane graph.

Both the geometric and combinatorial problems were studied under the name Minimum Con-
straint Removal [7, 8, 11, 13]. Hauser [13] refers to the geometric problem as the Continuous
Minimum Constraint Removal problem, and to the more general combinatorial one as the Pla-
nar Discrete Minimum Constraint Removal problem. Hauser [13] considered the Discrete
Minimum Constraint Removal problem on general graphs, and showed it to be NP-hard via a
reduction from the Set Cover problem. He also showed how this reduction from Set Cover can
be slightly modified to yield instances of Planar Discrete Minimum Constraint Removal
problem, thus showing its NP-hardness [13]. Although it was not mentioned in [13], the reduction
from Set Cover to Planar Discrete Minimum Constraint Removal is an FPT-reduction,
implying the W[2]-hardness of this problem as well. Hauser [13] also implemented and tested several
algorithms for both the Continuous Minimum Constraint Removal and the Discrete Min-

2

1.2 Our Contributions 1 INTRODUCTION

imum Constraint Removal problems. Gorbenko and Popov [11] proposed a heuristic algorithm
that is based on reducing the Discrete Minimum Constraint Removal problem to Sat, and
then using SAT-solvers. Erickson and LaValle [8] showed that the Continuous Minimum Con-
straint Removal problem is NP-hard, even when each obstacle is either a square or a straight-line
segment. A recent work of the authors of this paper, among others, refines the result of Erickson
and LaValle [8] to show that the problem remains NP-hard even if all the obstacles are axes-parallel
rectangles, and even if all the obstacles are line segments such that no three intersect at the same
point [7]. In the same recent work, exact and heuristic algorithms for the problem have also been
developed [7]. There is also a related problem that is solvable in polynomial time, which has received
considerable attention [2, 14, 15], where the goal is to find a shortest path w.r.t. the Euclidean length
between two given points in the plane that intersects at most k obstacles. We mention that both
the Continuous Minimum Constraint Removal and the Discrete Minimum Constraint
Removal problems generalize a set of problems, in which the objective is to determine a minimal
set of reasons to why a task cannot be performed (e.g., see [1, 21]). They also fall into the category
of many computationally-hard problems on colored graphs, where the objective is to compute a
graph structure satisfying certain (desired) properties that uses the minimum number of colors.

1.2 Our Contributions

We consider the Planar Discrete Minimum Constraint Removal problem, that we refer to
in this paper as Obstacle Removal, and a restriction of it that we refer to as Connected Ob-
stacle Removal. The Connected Obstacle Removal problem is the restriction of Obstacle
Removal to instances satisfying that, for every color in the graph, the set of vertices on which this
color appears induces a connected subgraph. Clearly, these problems model and generalize the two
variants of the Continuous Minimum Constraint Removal problem, distinguished based on
whether or not the obstacles are connected regions of the plane; we refer to these two geometric
counterpart problems as Geomertic Obstacle Removal and Geomertic Connected Obsta-
cle Removal. We note that we do not treat the more general Discrete Minimum Constraint
Removal problem (i.e., on general graphs), because, as we point out in Remark 3.11, this problem
is computationally very hard, even when restricted to instances in which each color is connected.

We start in Section 3 by studying the complexity and the parameterized complexity of Obsta-
cle Removal and Connected Obstacle Removal. Our first hardness result shows that both
problems are NP-hard, even when restricted to graphs of small outerplanarity and pathwidth, and
that it is unlikely that they can be solved in subexponential time:

• Obstacle Removal is NP-complete, even for outerplanar graphs of pathwidth at most 2
and in which every vertex contains at most one color (Theorem 3.1).

• Connected Obstacle Removal is NP-complete even for 2-outerplanar graphs of pathwidth
at most 3 (Corollary 3.2).

• Unless ETH fails, Connected Obstacle Removal (and hence Obstacle Removal) is
not solvable in subexponential time, even for 2-outerplanar graphs of pathwidth at most 3
and in which each color appears at most 4 times (Corollary 3.3).

The reduction used to prove the first result above produces combinatorial instances of Obstacle
Removal that can be realized as geometric instances of Geomertic Obstacle Removal, in
which the number of obstacles that overlap at any region is at most 2, and the auxiliary graph of
the instance satisfies the properties in the statement of the result. Thus, this hardness result extends

3

1.2 Our Contributions 1 INTRODUCTION

to the aforementioned restriction of Geomertic Obstacle Removal. This reduction, which is
modified to yield the other two results above for Connected Obstacle Removal, produces
combinatorial instances that can be realized as geometric instances of Geomertic Connected
Obstacle Removal whose auxiliary graph satisfies the statements in the result, and in which no
more than four obstacles overlap at any region, again showing that the hardness results extend to
these restrictions of Geomertic Connected Obstacle Removal.

We then study the parameterized complexity of Obstacle Removal and Connected Ob-
stacle Removal. It is easy to see that all these problems, including Discrete Minimum Con-
straint Removal, are in the parameterized class XP. Our first set of results shows that the
color-connectivity property is crucial for any hope for an FPT-algorithm, as we show that even very
restricted instances and combined parameterizations of Obstacle Removal are W[1]-complete:

• Obstacle Removal, restricted to instances of pathwidth at most 4, and in which each vertex
contains at most one color and each color appears on at most 2 vertices, is W[1]-complete
parameterized by k (Theorem 3.8).

• Obstacle Removal, parameterized by both k and the length of the sought path `, is W[1]-
complete (Theorem 3.7).

Without any restrictions, the Obstacle Removal problem sits high in the parameterized
complexity hierarchy:

• Obstacle Removal, parameterized by k, is W[SAT]-hard (Theorem 3.10) and is in W[P]
(Theorem 3.9).

By producing a generic construction that can be used to realize any combinatorial instance
of Obstacle Removal as a geometric instance of Geomertic Obstacle Removal, the above
results about Obstacle Removal extend to the restriction of Geomertic Obstacle Removal
to instances whose auxiliary graphs satisfy the properties in the statements of the results. The only
thing that may be affected by this geometric realization is the number of obstacles that overlap at
any region, which corresponds to the number of colors at the vertex in the graph that corresponds
to the region; this number might increase by at most 4.

As we note in Remark 3.11, the color connectivity property without the planarity of the input
graph is a hopeless case: we can tradeoff planarity for color-connectivity by adding a single vertex
that serves as a color-connector, thus establishing the W[SAT]-hardness of the connected obstacle
removal problem on apex graphs. Therefore, after establishing the aforementioned hardness results,
we focus our attention on Connected Obstacle Removal. We show the following result:

• Connected Obstacle Removal, parameterized by both k and the treewidth ω of the input
graph, is in FPT (Theorem 5.12).

The folklore dynamic programming approach based on tree decomposition, that is used for
the Hamiltonian Path/Cycle problems, does not work for Connected Obstacle Removal
for the following reasons. As opposed to the Hamiltonian Path/Cycle problems, where it is
sufficient to keep track of how the path/cycle interacts with each bag in the tree decomposition,
this is not sufficient in the case of Connected Obstacle Removal because we also need to keep
track of which color sets are used on both sides of the bag. Although (by color-connectivity) any
subset of colors appearing on both sides of the bag must appear on vertices in the bag as well, there
can be too many such subsets (up to |C|k, where C is the set of colors), and certainly we cannot

4

2 PRELIMINARIES

afford to enumerate all of them if we seek an FPT algorithm. To overcome this issue, we prove in
Section 4 structural results that exploit the planarity of the graph and the connectivity of the colors
to show the following. For any vertex w ∈ V (G), and for any pair of vertices u, v ∈ V (G), the set
of (valid) u-v paths in G− w that use colors appearing on vertices in the face of G− w containing
w can be “represented” by a minimal set of paths P whose cardinality is a function of k. To derive
such an upper bound on the cardinality of P, we select a maximal setM of color-disjoint paths in
P, and show that the cardinality of P is upper bounded by that ofM multiplied by some function
of k. The problem then reduces to upper bounding |M|. To do so, we use an inductive proof whose
main ingredient is showing that the subgraph induced by the paths inM has a u-v vertex-separator
of cardinality O(k). We then upper bound |M| by upper bounding the number of different traces
of the paths ofM on this small separator, and inducting on both sides of the separator.

In Section 5, we extend the notion of a minimal set of paths w.r.t. a single vertex to a “repre-
sentative set” of paths w.r.t. a specific bag, and a specific enumerated configuration for the bag, in
a tree decomposition of the input graph. This enables us to use the upper bound on the cardinality
of a minimal set of paths, derived in Section 4, to upper bound the size of a representative set of
paths w.r.t. a bag and a configuration. This, in turn, yields an upper bound on the size of the table
stored at a bag, in the dynamic programming algorithm, by a function of both k and the treewidth
of the input graph, thus yielding the desired result.

In Section 6 we extend the FPT results for Connected Obstacle Removal w.r.t. the com-
bined parameters k and ω—the treewidth of the input graph, to show that the Connected Obstacle
Removal problem parameterized by both k and the length `, is FPT:

• Bounded-length Connected Obstacle Removal parameterized by both k and the
length of the path is in FPT(Theorem 6.13).

We then present some applications of the above result to show that Connected Obstacle
Removal, restricted to instances in which the number of occurrences of each color is bounded, is
FPT:

• Bounded-intersection Connected Obstacle Removal is FPT (Theorem 6.15).

Clearly, all our FPT results extend to the restriction of Geomertic Connected Obstacle
Removal to instances whose auxiliary graphs satisfy the properties in the statements of the results.

The above result has applications pertaining to instances of Geomertic Connected Ob-
stacle Removal whose auxiliary graph is an instance of Bounded-intersection Connected
Obstacle Removal. In particular, an interesting case that was studied in the literature corre-
sponds to the case in which the obstacles are convex polygons, each intersecting at most a constant
number of other polygons. The complexity of this problem was left as an open question in [8], and
remains unresolved. The above results shows that this problem is FPT.

We finally mention that it remains open whether Connected Obstacle Removal is FPT
parameterized by k only.

2 Preliminaries

We assume familiarity with the basic notations and terminologies in graph theory and parameterized
complexity. We refer the reader to the standard books [5, 6] for more information on these subjects.

5

2 PRELIMINARIES

Graphs. All graphs in this paper are simple (i.e., loop-less and with no multiple edges). Let G
be an undirected graph. For an edge e = uv in G, contracting e means removing the two vertices u
and v from G, replacing them with a new vertex w, and for every vertex y in the neighborhood of
v or u in G, adding an edge wy in the new graph, not allowing multiple edges. Given a vertex-set
S ⊆ V (G), contracting S means contracting the edges between the vertices in S to obtain a single
vertex at the end.

A graph is planar if it can be drawn in the plane without edge intersections (except at the
endpoints). An apex graph is a graph in which the removal of a single vertex results in a planar
graph. A plane graph has a fixed drawing. Each maximal connected region of the plane minus the
drawing is an open set; these are the faces. One is unbounded, called the outer face. An outerplane
graph is a plane graph for which every vertex is incident to the outer face; and outerplanar graph
is a graph that has such a plane embedding. An i-outerplane graph (resp. i-outerplaner graph),
for i > 1, is defined inductively as a graph such that the removal of its outer face results in an
(i− 1)-outerplane graph (resp. (i− 1)-outerplaner graph) graph.

Let S be a set of points in the plane, and let C1, C2 be two non self-intersecting curves that
meet S in precisely their common endpoints a and b. We say that C1 and C2 are isotopic w.r.t. S
(also known as homotopic rel. boundary) if there is a continuous deformation from C1 to C2 through
curves between a and b such that no intermediate curve in this deformation meets a vertex of S in
its interior.

Let W1 = (u1, . . . , up) and W2 = (v1, . . . , vq), p, q ∈ N, be two walks such that up = v1.
Define the gluing operation ◦ that when applied to W1 and W2 produces that walk W1 ◦W2 =
(u1, . . . , up, v2, . . . , vq).

For a graph G and two vertices u, v ∈ V (G), we denote by dG(u, v) the distance between u and
v in G, which the length of a shortest path between u and v in G.

Treewidth, Pathwidth and Tree Decomposition.

Definition 2.1. Let G = (V,E) be a graph. A tree decomposition of G is a pair (V, T) where V is
a collection of subsets of V such that

⋃
Xi∈V = V , and T is a rooted tree whose node set is V, such

that:

1. for every edge {u, v} ∈ E, there is an Xi ∈ V, such that {u, v} ⊆ Xi; and

2. for all Xi, Xj , Xk ∈ V, if the node Xj lies on the path between the nodes Xi and Xk in the
tree T , then Xi ∩Xk ⊆ Xj .
The width of the tree decomposition (V, T) is defined to be max{|Xi| | Xi ∈ V} − 1. The
treewidth of the graph G is the minimum width over all tree decompositions of G.

A path decomposition of a graph G is a tree decomposition (V, T) of G, where T is a path. The
pathwidth of a graph G is the minimum width over all path decompositions of G.

A tree decomposition (V, T) is nice if it satisfies the following conditions:

1. Each node in the tree T has at most two children.

2. If a node Xi has two children Xj and Xk in the tree T , then Xi = Xj = Xk; in this case node
Xi is called a join node.

3. If a node Xi has only one child Xj in the tree T , then either |Xi| = |Xj | + 1 and Xj ⊂ Xi,
and in this case Xi is called an insert node; or |Xi| = |Xj | − 1 and Xi ⊂ Xj , and in this case
Xi is called a forget node.

4. If Xi is a leaf node or the root, then Xi = ∅.

6

2 PRELIMINARIES

Boolean Circuits and Parameterized Complexity. A circuit is a directed acyclic graph. The
vertices of indegree 0 are called the (input) variables, and are labeled either by positive literals xi
or by negative literals xi. The vertices of indegree larger than 0 are called the gates and are labeled
with Boolean operators and or or. A special gate of outdegree 0 is designated as the output gate.
We do not allow not gates in the above circuit model, since by De Morgan’s laws, a general circuit
can be effectively converted into the above circuit model. A circuit is said to be monotone if all its
input literals are positive. The depth of a circuit is the maximum distance from an input variable to
the output gate of the circuit. A circuit represents a Boolean function in a natural way. The size of
a circuit C, denoted |C|, is the size of the underlying graph (i.e., number of vertices and edges). An
occurrence of a literal in C is an edge from the literal to a gate in C. Therefore, the total number of
occurrences of the literals in C is the number of outgoing edges from the literals in C to its gates.

We say that a truth assignment τ to the variables of a circuit C satisfies a gate g in C if τ
makes the gate g have value 1, and that τ satisfies the circuit C if τ satisfies the output gate of C.
A circuit C is satisfiable if there is a truth assignment to the input variables of C that satisfies C.
The weight of an assignment τ is the number of variables assigned value 1 by τ .

A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet. Each instance
of the parameterized problem Q is a pair (x, k), where k ∈ N is called the parameter. We say that
the parameterized problem Q is fixed-parameter tractable (FPT) [6], if there is a (parameterized)
algorithm, also called an FPT-algorithm, that decides whether an input (x, k) is a member of Q in
time f(k) · |x|O(1), where f is a computable function. Let FPT denote the class of all fixed-parameter
tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there is an
algorithm, called an FPT-reduction, that transforms each instance (x, k) of Q into an instance
(x′, k′) of Q′ in time f(k) · |x|O(1), such that k′ ≤ g(k) and (x, k) ∈ Q if and only if (x′, k′) ∈ Q′,
where f and g are computable functions. By FPT-time we denote time of the form f(k) · |x|O(1),
where f is a computable function and |x| is the input instance size.

Based on the notion of FPT-reducibility, a hierarchy of parameterized complexity, the W-
hierarchy

⋃
t≥0 W[t], where W[t] ⊆W[t+1] for all t ≥ 0, has been introduced, in which the 0-th level

W[0] is the class FPT. The hardness and completeness have been defined for each level W[i] of the
W-hierarchy for i ≥ 1 [6]. It is commonly believed that W[1] 6= FPT (see [6]). The W[1]-hardness
has served as the main working hypothesis of fixed-parameter intractability.

The class W[SAT] contains all parameterized problems that are FPT-reducible to the weighted
satisfiability of Boolean formulas. It contains the classes W[t], for every t ≥ 0. Boolean formulas can
be represented (in polynomial time) by Boolean circuits that are in the normalized form (see [6]). In
the normalized form every (nonvariable) gate has outdegree at most 1, and the gates are structured
into alternating levels of ors-of-ands-of-ors.... Therefore, the underlying undirected graph of the
circuit with the input variables removed is a tree; the input variables can be connected to any gate
in the circuit, including the output gate. The class W[P] contains all parameterized problems that
are FPT-reducible to the weighted satisfiability of Boolean circuits of polynomial size, and contains
the class W[SAT].

The Exponential Time Hypothesis (ETH) states that the satisfiability of k-cnf Boolean formulas,
where k ≥ 3, is not decidable in subexponential-time O(2o(n)), where n is the number of variables
in the formula. ETH has become a standard hypothesis in complexity theory for proving hardness
results that is closely related to the computational intractability of a large class of well-known NP-
hard problems, measured from a number of different angles, such as subexponential-time complexity,
fixed-parameter tractability, and approximation.

The asymptotic notation O∗ suppresses a polynomial factor in the input length.

7

2 PRELIMINARIES

Obstacle Removal and Connected Obstacle Removal. For a set S, we denote by 2S the
power set of S. Let G = (V,E) be a graph, let C ⊂ N be a finite set referred to as a set of colors, and
let χ : V −→ 2C . A vertex v in V is said to be empty if χ(v) = ∅. We say that a color c appears on,
or is contained in, a subset of vertices S if c ∈ ⋃v∈S χ(v). For two vertices u, v ∈ V (G), a u-v path
P = (u = v0, . . . , vr = v) in G is said to be `-valid if |⋃r

i=0 χ(vi)| ≤ `; that is, if the total number
of colors appearing on the vertices of P is at most `. A color c ∈ C is connected in G, or simply
connected—if it is clear from the context which graph is meant, if

⋃
c∈C(v){v} induces a connected

subgraph of G. The graph G is said to be color-connected, if for each c ∈ C, c is connected in G.
The Obstacle Removal problem is formally defined as follows:

Obstacle Removal
Given: A planar graph G; a set of colors C; χ : V −→ 2C ; and two designated vertices s, t ∈ V (G)
Parameter: k
Question: Does there exist a k-valid s-t-path in G?

We denote by Connected Obstacle Removal the restriction of Obstacle Removal to
instances in which the input graph G is color-connected.

For an instance (G,C, χ, s, t, k) of Obstacle Removal or Connected Obstacle Removal,
if s and t are nonempty vertices, we can remove their colors and decrement k by |χ(s)∪χ(t)| because
their colors appear on every s-t path. If afterwards k becomes negative, then there is no k-valid
s-t path in G. Moreover, if s and t are adjacent, then the path (s, t) is a path with the minimum
number of colors among all s-t paths in G. Therefore, we will assume the following:

Assumption 2.2. For an instance (G,C, χ, s, t, k) of Obstacle Removal or Connected Ob-
stacle Removal, we can assume that s and t are nonadjacent empty vertices.

Definition 2.3. Let s, t be two designated vertices in G, and let x, y be two adjacent vertices in
G such that χ(x) = χ(y). We define the following operation to x and y, referred to as a color
contraction operation, that results in a graph G′, a color function χ′, and two designated vertices
s′, t′ in G′, obtained as follows:

• G′ is the graph obtained from G by contracting the edge xy, which results in a new vertex z;

• s′ = s (resp. t′ = t) if s /∈ {x, y} (resp. t /∈ {x, y}), and s′ = z (resp. t′ = z) otherwise; and

• χ′ : V (G′) −→ 2C is the function defined as χ′(w) = χ(w) if w 6= z, and χ′(z) = χ(x) = χ(y).

G is irreducible if there does not exist two vertices in G to which the color contraction operation is
applicable.

Lemma 2.4. Let G be a color-connected plane graph, C a color set, χ : V −→ 2C , s, t ∈ V (G),
and k ∈ N. Suppose that the color contraction operation is applied to two vertices in G to obtain
G′, χ′, s′, t′, as described in Definition 2.3. Then G′ is a color-connected plane graph, and there is
a k-valid s-t path in G if and only if there is a k-valid s′-t′ path in G′.

Proof. Let x and y be the two adjacent vertices in G to which the color contraction operation
is applied, and let z be the new vertex resulting from this contraction. It is clear that after the
contraction operation the obtained graph G′ is a plane color-connected graph.

Suppose that there is a k-valid s-t path in G, and let P = (s = v0, . . . , vr = t) be such a path.
We can assume that P is an induced path. If no vertex in {x, y} is on P , then P ′ = P is a k-valid
s′-t′ in G′. If exactly one vertex in {x, y}, say x, is on P , then since the color set of every vertex
other than x on P is the same before and after the contraction operation, and since χ′(z) = χ(x),

8

3 HARDNESS RESULTS

the path P ′ obtained from P by replacing x with z is a k-valid s′-t′ in G′. (Note that if x = s then
s′ = z, and replacing x with z on P is obsolete in this case.) Finally, if both x and y are on P , then
since P is induced, x and y must appear consecutively on P . Without loss of generality, assume
x = vi and y = vi+1, for some i ∈ {0, . . . , r − 1}. Since the color set of every vertex other than x
and y on P is the same before and after the operation, and since χ′(z) = χ(x) = χ(y), the path
P ′ = (s′ = v0, . . . , vi−1, z, vi+1, . . . , t = vr) is a k-valid s′-t′ path in G′.

Conversely, suppose that there is a k-valid s′-t′ path in G′, and let P ′ = (s′ = v′0, . . . , v
′
p = t′),

where p > 0, be such a path. If z does not appear on P ′ then P ′ is a k-valid s-t path in G.
Otherwise, z = v′i for some i ∈ {0, . . . , p}. If i = 0 and P ′ consists only of vertex z, then since
χ(x) = χ(y) = χ′(z), either s = t, and in which case there is a trivial k-valid s-t path in G, or
s 6= t, and in this case P = (x, y) is a k-valid s-t path in G. Otherwise, when i = 0 we must have
s = x or s = y, v′i ∈ G for i ∈ [p], and t′ = t; without loss of generality, assume that s = x. Since
z is adjacent to v′1, either x = s or y (or both) is adjacent to v′1. Since χ(x) = χ(y) = χ′(z), if x
is adjacent to v′1 then P = (s = x, v′1, . . . , v

′
p = t′) is a k-valid s-t path in G, and if y is adjacent

to v′1 then P = (s = x, y, v′1, . . . , v
′
p = t′) is a k-valid s-t path in G. The case is similar if i = p.

Suppose now that i 6= 0 and i 6= p. If x (resp. y) is adjacent to both v′i−1 and v′i−1, then the path
P = (s, v′1, . . . , v

′
i−1, x, v

′
i+1, . . . , v

′
p = t) (resp. P = (s, v′1, . . . , v

′
i−1, y, v

′
i+1, . . . , v

′
p = t) is a k-valid

s-t-path in G; otherwise, one vertex in {x, y}, say x, must be adjacent to v′i−1, and the other vertex
y must be adjacent to v′i+1. In this case the path P = (s, v′1, . . . , v

′
i−1, x, y, v

′
i+1, . . . , v

′
p = t) is a

k-valid s-t-path in G.

3 Hardness Results

In this section, we study the complexity and the parameterized complexity of Obstacle Removal
and Connected Obstacle Removal. We start by showing that both problems are NP-hard,
even when restricted to graphs of small outerplanarity and pathwidth.

O

O2
1

O1
1 O1

2

O2
2 O2

i

O1
i

O2
m

O1
m

s t

Z0 Z1 Z2 Zi−1 Zi Zm−1 Zm

s ts t

x1

y1

z1

x2

y2

xi

yi

zi

xm

ym

Figure 2: Illustration of the construction in the proof of Theorem 3.1. The left figure shows the
geometric instance of Obstacle Removal, and the right figure the graph associated with it.

Theorem 3.1. Obstacle Removal, restricted to outerplanar graphs of pathwidth at most 2 and
in which every vertex contains at most one color, is NP-complete.

Proof. It is clear that Obstacle Removal is in NP. To show its NP-hardness, we reduce from
the NP-hard problem Vertex Cover [10]. Let (G, k) be an instance of Vertex Cover, where
V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. In the rest of the proof, when we write e = uw for
an edge e in E(G), we assume that u = vi and w = vj such that i < j (i.e., the vertex of smaller
index always appears first). Although not necessary for the proof, we first describe a geometric
instance I of Obstacle Removal whose associated graph is the desired instance of Obstacle

9

3 HARDNESS RESULTS

Removal. The regions of I are O∪{Z0, . . . , Zm}∪
⋃m
i=1{O1

i , O
2
i }, depicted in Figure 2 (left figure).

The obstacles of I are defined as follows. For each vertex vj ∈ V (G), the obstacle corresponding to
vj is the polygon whose boundary is the boundary of the region formed by the union of O, each O1

i

such that ei = vjvq, and each O2
i such ei = vpvj . More formally, the obstacle corresponding to vj is

∂(O∪⋃ei=vjvq
O1
i ∪
⋃
ei=vpvj

O2
i). The graph associated with I, GI , is defined as follow. Each (empty)

region Zi, i = 0, . . . ,m, corresponds to a vertex zi ∈ V (GI), where Z0 corresponds to s and Zm to
t. Each region O1

i , i ∈ [m], corresponds to a vertex yi, and each region O2
i , i ∈ [m], corresponds

to a vertex xi. The set of edges E(GI) is E(GI) = {zi−1xi, zi−1yi, xiyi, zixi, ziyi | i ∈ [m]}. The
color function χ : V (GI) −→ 2C , where C = [n], is defined as follows: χ(zi) = ∅, for i = 0, . . . ,m;
χ(xi) = {j} and χ(yi) = {p}, where ei = vpvj , for i ∈ [m]. This completes the construction of GI ;
see Figure 2 (right figure) for illustration. It is easy to see that GI is outerplanar and has pathwidth
at most 2.

Define the reduction from Vertex Cover to Obstacle Removal that takes an instance (G, k)
to the instance (GI , C, χ, s, t, k). Clearly, this reduction is polynomial-time computable. Suppose
that Q, where |Q| = r ≤ k, is a vertex cover of G. Consider the s-t path P = (s, w1, z1, , . . . , wm, zm)
in GI , where wi = yi if edge ei = vpvq is covered by vp, and wi = xi otherwise, for i ∈ [m]. Clearly
this is a k-valid s-t path in GI since each edge ei is covered by a vertex in Q, each wi is colored
by the index of one of the vertices in Q, and each vertex in GI (and hence each wi) contains at
most one color. Conversely, suppose that P is a k-valid s-t path in GI . By construction of GI ,
P has to contain at least one vertex from {xi, yi}, for each i ∈ [m]. If P contains both xi and yi,
for some i ∈ [m], then clearly, from the construction of P , P must contain either (zi−1, xi, yi, zi)
or (zi−1, yi, xi, zi), as a subpath, and we can shortcut this subpath by removing one of xi, yi, to
obtain another k-valid s-t path in GI . Therefore, without loss of generality, we may assume that P
contains exactly one vertex wi from {xi, yi}, for i ∈ [m]. Now define the set of vertices Q in G as
the vertices in G whose indices are the colors appearing on (the wi’s in) P . More formally, define
Q = {vp | wi = xi ∈ P ∧ ei = vqvp} ∪ {vp | wi = yi ∈ P ∧ ei = vpvq}. Since P is a k-valid path
in GI , the total number of colors appearing on {w1, . . . , wm} is at most k. Notice that the color of
each of xi, yi is the index of a vertex in G that covers edge ei. It follows that the set Q of vertices
in G, that are the indices of the colors on P , form a k-vertex cover of G.

s ts t

x1

y1

z1

x2

y2

xi

yi

zi

xm

ym

Figure 3: Illustration for the proof of Corollary 3.2.

Corollary 3.2. Connected Obstacle Removal, restricted to 2-outerplanar graphs of pathwidth
at most 3, is NP-complete.

Proof. This follows directly from the NP-hardness reduction in the proof of Theorem 3.1 by ob-
serving the following. The graph GI resulting from the reduction is outerplanar. We can add a

10

3 HARDNESS RESULTS

new vertex to the outer face of GI (see Figure 3) containing all colors that appear on GI , and add
edges between the new vertex and all vertices in GI . The obtained graph is color-connected and
has pathwidth at most 3.

Assuming ETH, the following corollary rules out the existence of subexponential-time algorithms
for Connected Obstacle Removal (and hence for Obstacle Removal), even for restrictions
of the problem to graphs of small outerplanarity, pathwidth, and maximum number of occurrences
of each color:

Corollary 3.3. Unless ETH fails, Connected Obstacle Removal, restricted to 2-outerplanar
graphs of pathwidth at most 3 and in which each color appears at most 4 times, is not solvable in
O(2o(n)) time, where n is the number of vertices in the graph.

Proof. It is well known, and follows from [17] and the standard reduction from Independent Set
to Vertex Cover, that unless ETH fails, Vertex Cover, restricted to graphs of maximum
degree at most 3, denoted VC-3, is not solvable in subexponential time. Starting from an instance
of VC-3 with n vertices, and observing that the reduction in the proof of Theorem 3.1 results in an
instance of Connected Obstacle Removal whose number of vertices is O(n), of pathwidth at
most 3, and in which each color appears at most 4 times, proves the result.

Next, we shift our attention to studying the parameterized complexity of Obstacle Re-
moval and Connected Obstacle Removal. To show the NP-hardness of Obstacle Removal,
Hauser [13] gave a reduction from Set Cover to Obstacle Removal. This reduction is in fact
an FPT-reduction, which implies that Obstacle Removal is W[2]-hard. We will strengthen this
result, and show in the remainder of this section that Obstacle Removal is W[SAT]-hard. We
will also prove the membership of the problem in W[P], which adds a natural W[SAT]-hard problem
to this class. The W[SAT]-hardness result shows that the problem is hopeless in terms of it having
FPT-algorithms. We start by showing that the problem remains W[1]-hard, even when restricted to
instances of small pathwidth (and hence small treewidth) and maximum number of occurrences of
each color. We then show that the problem remains W[1]-hard even when parameterized by both k
and the length of the sought path.

Remark 3.4. Before we prove our hardness results for Obstacle Removal, we remark that we
can obtain equivalent hardness results for Geomertic Obstacle Removal using the following
generic realization of instances of Obstacle Removal as instances of Geomertic Obstacle
Removal. Given an instance (G,C, χ, s, t, k) of Obstacle Removal, we define an equivalent
instance of Geomertic Obstacle Removal as follows. We start by fixing a straight-line plane
embedding Π of G, which always exists by Fáry’s theorem [9]. Moreover, we can compute such an
embedding in linear time [4]. We define the starting and finishing positions for the robot as the
images of vertices s and t under Π, respectively. To force the robot to walk along the edges of G,
we correspond with every edge a “corridor” by putting on both sides of the image of every edge
k+ 1 trapezoids as shown in Figure 6. The only possible way to move between vertices of the graph
G without intersecting more than k obstacles is to move within these corridors. Finally, for each
color c ∈ C and every vertex v ∈ V (G) such that c ∈ χ(v), we create a rectangle around the image
of the vertex v under Π that intersects all the trapezoids corresponding to the edges incident to
v. We define the obstacle corresponding to the color c in the geometric instance to be the union
of these rectangles. This disallows the use of less than k + 1 trapezoid obstacles to go through a
vertex v of G without intersecting all the obstacles representing the color set χ(v). Note that the
only thing that is affected by this geometric realization is the number of obstacles that overlap at

11

3 HARDNESS RESULTS

uj
i

C1 Cj−1 Cj+1 CkCj

C1 Cj−1 Cj+1 CkCj

C ′1 C ′j−1 C ′j C ′k−1

Figure 4: Illustration for the construction of the gadget Gi,j in the proof of Lemma 3.5.

12

3 HARDNESS RESULTS

C ′1 C ′j−1 C ′j C ′k−1

zj−1
zj

zjs = z0 z1 zj−1 zk−1 zk = t

G1,1

Gi,1

GN,1

G1,j

Gi,j

GN,j

G1,k

Gi,k

GN,k

Figure 5: Illustration for the construction of G′ in the proof of Lemma 3.5.

a region, which corresponds to the number of colors on the vertex in the graph that corresponds to
the region; this number might increase by at most 4.

s

t

s

t

Figure 6: Illustration for the realization of an instance of Obstacle Removal as an instance of
Geomertic Obstacle Removal.

Lemma 3.5. Obstacle Removal, restricted to instances of pathwidth at most 4 and in which
each vertex contains at most one color and each color appears on at most 2 vertices, is W[1]-hard
parameterized by k.

Proof. We reduce from the W[1]-hard problem Multi-Colored Clique [12]. Let (G, k) be an
instance of Multi-Colored Clique, where V (G) is partitioned into the color classes C1, . . . , Ck.
Let Cj = {uji | i ∈ [|Cj |]}. We describe how to construct an instance (G′, C ′, χ′, s, t, k′) of Obstacle
Removal. For an edge e ∈ G, associate a distinct color ce, and define C ′ = {ce | e ∈ E(G)}. To

13

3 HARDNESS RESULTS

simplify the description of the construction, we start by defining a gadget that will serve as a
building block for this construction.

For a vertex uji in color class Cj , we define the gadget Gi,j as follows. Create a copy of each
color class Cj′ , j′ 6= j, and remove from each Cj′ all copies of vertices that are not neighbors of uji
in G. Let the resulting copies of the color classes be C ′1, . . . , C ′k−1. We define the color of a copy
v′ of a neighbor v of uji as χ′(v′) = {ce}, where e = ujiv. Next, we introduce k − 2 empty vertices
yr, r ∈ [k − 2]. For r ∈ [k − 2], we connect all vertices in C ′r to yr, and connect yr to all vertices in
C ′r+1. This completes the construction of gadget Gi,j ; we refer to C ′1 and C ′k−1 as the first and last
color classes in gadget Gi,j , respectively. See Figure 4 for illustration of Gi,j . Observe that every
path from a vertex in C ′1 to a vertex in C ′k−1 contains exactly one vertex from each C ′r, r ∈ [k− 1],
and contains all vertices yr, r ∈ [k − 2]. Therefore, any such path contains the colors of exactly
k − 1 distinct edges that are incident to uji .

We finish the construction of G′ by introducing k+1 new empty vertices z0, . . . , zk, and connect-
ing them as follows. For each color class Cj , j ∈ [k], and each vertex uji ∈ Cj , we create the gadget
Gi,j , connect zj−1 to each vertex in the first color class of Gi,j , and connect each vertex in the last
color class of Gi,j to zj . Let G′ be the resulting graph. Finally, we set s = z0, t = zk, and k′ =

(
k
2

)
.

See Figure 5 for illustration. This completes the construction of the instance (G′, C ′, χ′, s, t, k′) of
Obstacle Removal. Observe that each vertex in G′ contains at most one color, and that each
color ce of an edge e = ujiu

j′
i′ in G, appears on exactly two vertices in G′: the copy of uj

′
i′ in the

gadget Gi,j of u
j
i , and the copy of uji in the gadget Gi′,j′ of u

j′
i′ .

Clearly, the reduction that takes an instance (G, k) of Multi-Colored Clique and produces
the instance (G′, C ′, χ′, s, t, k′) of Obstacle Removal is computable in FPT-time. To show its
correctness, suppose that (G, k) is a yes-instance of Multi-Colored Clique, and let Q be a
k-clique in G. Then Q contains a vertex from each Cj , for j ∈ [k]. For a vertex uji ∈ Q, let Gi,j be
its gadget, and define the path Pj as follows. In each color class in Gi,j , pick the unique vertex that
is a copy of a neighbor of uji in Q; define Pj to be the path in Gi,j induced by the picked vertices,
plus the empty vertices yr, r ∈ [k − 2], that appear in Gi,j . Finally, define P to be the s-t path in
G′ whose edges are: the (unique) edge between zr−1 and an endpoint of Pr, Pr, and the (unique)
edge between an endpoint of Pr and zr, for r ∈ [k]. To show that P is k′-valid, observe that all
the nonempty vertices in P are vertices whose color is the color of an edge between two vertices in
Q. This shows that the number of colors that appear on P is at most k′ =

(
k
2

)
, and hence, P is

k′-valid. It follows that (G′, C ′, χ′, s, t, k′) is a yes-instance of Obstacle Removal.
Conversely, suppose that P is a k′-valid s-t path in G′. Then P ′ must start at s, visit the gadgets

of exactly k vertices ujij ∈ Cj , for j ∈ [k], ij ∈ [|Cj |], and end at t. We claim that Q = {ujij | j ∈ [k]}
is a clique in G. Recall that the subpath of P that traverses a gadget Gi,j of u

j
ij
contains the colors

of exactly k− 1 edges that are incident to ujij . Therefore, the total number of occurrences of colors
(counting multiplicities) on P is precisely (k−1)k. Since P is

(
k
2

)
-valid, and each color ce of an edge

e in G appears exactly twice in G′, it follows that each color that appears on P appears exactly
twice on P . This is only possible if the gadgets corresponding to the two endpoints of the edge are
traversed by P , and hence, both endpoints of the edge are in Q. Therefore, P contains the colors
of k′ =

(
k
2

)
edges, whose both endpoints are in Q. Since |Q| = k, it follows that Q is a k-clique in

G, and that (G, k) is a yes-instance of Multi-Colored Clique.

Lemma 3.6. Obstacle Removal, parameterized by both k and the length of the path `, is in
W[1].

Proof. To prove membership in W[1], we use the characterization of the class W[1] given by Chen

14

3 HARDNESS RESULTS

et al. [3]:

A parameterized problem Q is in W[1] if and only if there is a computable function h
and a nondeterministic FPT algorithm A for a nondeterministic-RAM machine deciding
Q, such that, for each instance (x, k) of Q (k is the parameter), all nondeterministic
steps of A take place during the last h(k) steps of the computation.

Therefore, to show that Obstacle Removal is in W[1], it suffices to exhibit such a nondeter-
ministic FPT algorithm A. A works as follows: it guesses a set C ′ of k colors and guesses a sequence
of `− 1 internal vertices v1, . . . , v`−1 of the path. Then it verifies that (s = v0, v1, . . . , v`−1, v` = t)
is a path in G, and that χ(vi) ⊆ C ′, for i = 0, . . . , `. It is not difficult to see that this verification
can be implemented in h(k) steps, where h is a computable function.

By Lemma 2.4, we can assume that in an instance of Obstacle Removal, no two adjacent
vertices are empty. With this assumption in mind, if the instance satisfies that each vertex contains
at most one color and that each color appears on at most 2 vertices, then any k-valid s-t path has
length at most 4k + 1. It follows from Lemma 3.5 and Lemma 3.6 that:

Theorem 3.7. Obstacle Removal, parameterized by both k and the length of the path `, is
W[1]-complete.

Theorem 3.8. Obstacle Removal, restricted to instances of pathwidth at most 4 and in which
each vertex contains at most one color and each color appears on at most 2 vertices, is W[1]-complete
parameterized by k.

Next, we show that Obstacle Removal sits high up in the parameterized complexity hierarchy.
We start by showing its membership in W[P]:

Theorem 3.9. Obstacle Removal, parameterized by k, is in W[P].

Proof. We give an FPT-reduction from Obstacle Removal to Weighted Boolean Circuit
Satisfiability (WBCS) on polynomial size (monotone) circuits. Given an instance (G,C, χ, s, t, k)
of Obstacle Removal, we construct an instance (B, k) of WBCS, where B is a circuit whose out-
put gate is an or-gate, as follows. By Assumption 2.2, we can assume that s and t are nonadjacent
empty vertices. By Lemma 2.4, we can also assume that no two adjacent vertices are empty. For
each color c ∈ C, we create a variable xc; those are the input variables to B. In addition to the
output gate, B contains n = |V (G)| layers of gates, where each layer, except the first, consists of
two rows of gates, Ui, Li, for i = 2, . . . , n, and the first layer consists of one row L1 of gates. The
layers of B are defined as follows.

Each gate in L1 is an and-gate gv that corresponds to a neighbor v of s; the input to gv is the
set of input variables corresponding to the colors in χ(v). Suppose that row Li in layer i, i ≥ 1,
has been defined, and we describe how Ui+1 and Li+1 are defined. For every vertex v ∈ V (G) with
a neighbor u such that u has a corresponding and-gate g2

u in Li, we create an or-gate g1
v in Ui+1

and an and-gate g2
v in Li+1 corresponding to v; we connect the output of each and-gate g2

u in Li
corresponding to neighbor u of v to the input of or-gate g1

v in Ui+1, and connect the output of the
or-gate g1

v and each input variable xc such that c ∈ χ(v) to the and-gate g2
v in Li+1. If v = t,

then we connect the output of the and-gate g2
v to the output gate of the circuit. This completes

the description of B. Clearly, the reduction that takes (G,C, χ, s, t, k) to (B, k) runs in polynomial
time, and hence in FPT-time. Next, we prove its correctness.

First observe that the only gates in B that are connected to its output gate are the and-gates
that correspond to t. Second, every gate in B corresponds to a vertex that is reachable from s in

15

3 HARDNESS RESULTS

G. Moreover, for every and-gate g corresponding to a vertex v, and every s-v path in G, the truth
assignment that assigns 1 to the variables corresponding to the colors of this path satisfies g.

Suppose now that (G,C, χ, s, t, k) is a yes-instance of Obstacle Removal. Then there is an
s-t k-valid path P in G. Based on the above observations, the assignment that assigns xc = 1 if
and only if c ∈ χ(P) is a satisfying assignment to B of weight at most k. Conversely, suppose that
B has a satisfying assignment τ of weight at most k. Then there is an and-gate g corresponding to
t that is satisfied by τ , and there is a path in B from a gate corresponding to neighbor of s in L1

to g, all of whose gates are satisfied by τ . It is easy to verify that this path in B corresponds to an
s-t path all of whose colors correspond to the input variables assigned 1 by τ , and hence this path
is k-valid.

ing outg

G1

Gi

Gr

ing outg
G1 Gi Gr

Figure 7: Illustrations of the construction of the gadgets for an or-gate (top) and an and-gate
(bottom) in the proof of Theorem 3.10.

Theorem 3.10. Obstacle Removal, parameterized by k, is W[SAT]-hard.

Proof. We give an FPT-reduction from the W[SAT]-complete problem Monotone Weighted
Boolean Formulas Satisfiability (M-WSAT) [6].

Recall that a Boolean formula corresponds to a circuit in the normalized form. Therefore, we
can assume that the input instance of M-WSAT is (B, k), where B is a monotone Boolean circuit
in which each (non-variable) gate has fan-out at most 1, and the gates of B are structured into
alternating levels of ors-of-ands-of-ors. We construct an instance (G,C, χ, s, t, k) of Obstacle
Removal as follows.

First, we let C = [n], where color i will represent input variable xi in B. We define G from B
by defining a gadget for each gate in B recursively, starting the recursive definition at the output
gate of B. For a gate g in B, its gadget is defined as follows by distinguishing the type of g.

If g is an and-gate, let g1, . . . , gr be the or-gates, and xi1 , . . . , xip be the input variables that feed
into g. The gadget of g is defined as follows. First, create two empty vertices ing and outg, which
will serve as the “entry” and “exit” vertices of the gadget for g, respectively. For each xij , j ∈ [p],
create a vertex vj colored with color ij and an entry vertex v0 and an exit vertex vp+1; form a path

16

3 HARDNESS RESULTS

G0 consisting of the vertices v0, v1, . . . , vp, vp+1. For each or-gate gi, i ∈ [r], recursively construct
the gadget Gi for gi. Connect all these gadgets G0, . . . , Gr serially in arbitrary order, starting by
identifying ing with the entry vertex of the first gadget, the exit vertex of the first gadget with the
entry of the second, ..., and the exit vertex of the last gadget with outg. See Figure 7 (bottom) for
illustration.

If g is an or-gate, let g1, . . . , gr be the or-gates, and xi1 , . . . , xip be the input variables that feed
into g. The gadget of g is defined as follows. First, create two empty vertices ing and outg, which
will serve as the “entry” and “exit” vertices of the gadget for g, respectively. For each xij , j ∈ [p],
create a vertex vj colored with color ij , and connect each vj to ing and outg. For each and-gate gi,
i ∈ [r], recursively construct the gadget Gi for gi. Connect all these gadgets G1, . . . , Gr in parallel
by identifying all the entry vertices of G1, . . . , Gr with ing and all their exit vertices with outg.
This complete the description of G. It is not difficult to see that since B with its input variables
removed is a tree, the above construction runs in polynomial time and results in a planar graph G.
See Figure 7 (top) for illustration.

Finally, set s and t to be the entry and exit vertices of the gadget corresponding to the output
gate of B. Clearly, the reduction that takes (B, k) and produces (G,C, χ, s, t, k) runs in FPT-time.
Next, we prove its correctness.

We will prove the following statement: For any gate g in B, and any assignment τ to B that
assigns variables xi1 , . . . , xip the value 1, and all other variables the value 0, τ satisfies g if and only
if there is a path P in G from the entry vertex to the exit vertex of the gadget corresponding to g
such that P uses a subset of the colors {i1, . . . , ip}. Clearly, proving the aforementioned statement
implies that there is a k-valid s-t path in G if and only if there is an assignment of weight at most
k that satisfies the output gate of B, and hence satisfies B.

We prove the above statement by induction on the depth of the gate g in B. The base case is
when g has depth 1. In this case the input to g consists only of input variables. Suppose first that
g is an or-gate, and let τ be an assignment that assigns exactly variables xi1 , . . . , xip the value 1.
Then τ satisfies g if and only if xij is an input variable to g, for some j ∈ [p], which is true if and
only if there is a path from the entry vertex of the gadget for g to its exit vertex that uses color
ij . Suppose now that g is an and-gate, and let τ be an assignment that assigns exactly variables
xi1 , . . . , xip the value 1. Then τ satisfies g if and only if the input variables to g form a subset S of
{xi1 , . . . , xip}; let η(S) be the indices of the variables in S. Since the gadget for g consists of a path
P between the entry and exit vertices of the gadget for g such that χ(P) = η(S), the statement
follows.

Suppose, by the inductive hypothesis, that the statement we are proving is true for any gate g
of depth 1 ≤ a < `, and let g be a gate of depth `. Let xj1 , . . . , xjq be the input variables to g, and
g1, . . . , gr be the input gates to g. We again distinguish two cases based on the type of g.

Gate g is an or-gate. Let τ be an assignment that assigns exactly variables xi1 , . . . , xip the value
1. Suppose first that τ satisfies g. Then either τ satisfies an input variable xjz , z ∈ [q], or τ satisfies
an input and-gate gy, y ∈ [r]. If τ satisfies xjz then there is a path between the entry and exit
vertices of the gadget for g that uses color jz. Otherwise, τ satisfies gy, y ∈ [r], and by the inductive
hypothesis applied to gy, there is a path Py between the entry and exit vertices of the gadget for
gy such that χ(Py) ⊆ {i1, . . . , ip}. From the way the gadget for g was constructed, it follows that
Py is also a path between the entry and exit vertices of the gadget for g. To prove the converse,
suppose that there is a path Pg between the entry and exit vertices of the gadget for g that uses
a subset of colors in {i1, . . . , ip}. Either Pg is a path whose only internal vertex corresponds to an
input variable, and in such case the input variable is in {xi1 , . . . , xip}, and g is satisfied; or Pg is a
path between the entry and exit vertices of the gadget for an and-gate gy that feeds into g, and by

17

4 STRUCTURAL RESULTS

the inductive hypothesis, τ satisfies gy and also g.

Gate g is an and-gate. Let τ be an assignment that assigns exactly variables xi1 , . . . , xip the value
1. Suppose first that τ satisfies g. Then τ assigns 1 to every input variable xjz to g, z ∈ [q]. Hence,
there is a path P between the entry and exit vertices of the gadget corresponding to xj1 , . . . , xjq
such that χ(P) ⊆ {i1, . . . , ip}. Assignment τ also satisfies each or-gate gy, where y ∈ [r]. By the
inductive hypothesis, there is a path Py between the entry and exit vertices of the gadget for gy such
that χ(Py) ⊆ {i1, . . . , ip}. From the construction of g, it follows that the path between the entry
and exit vertices of the gadget for g, which is Pg = P ◦ P1 ◦ · · · ◦ Pr, satisfies χ(Pg) ⊆ {i1, . . . , ip}.
Conversely, suppose that there is a path Pg between the entry and exit vertices of the gadget for
g such that χ(Pg) ⊆ {i1, . . . , ip}. Then Pg can be decomposed into a subpath P that traverses
the vertices corresponding to xj1 , . . . , xjq , and subpaths P1, . . . , Pr, where Py is a subpath between
the entry and exit vertices of the gadget for gy. Since P traverses the vertices corresponding to
xj1 , . . . , xjq , it follows that {xj1 , . . . , xjq} ⊆ {xi1 , . . . , xip}. Since Py, y ∈ [r], is a subpath between
the entry and exit vertices of the gadget for gy, by the inductive hypothesis, it follows that τ satisfies
gy. It follows that τ assigns 1 to all input variables to g and satisfies all the input or-gates to g,
and hence, τ satisfies g.

Remark 3.11. A noteworthy remark that we close this section with, is to comment on the role
that planarity plays in the parameterized complexity of Connected Obstacle Removal. If one
drops the planarity requirement on the instances of Connected Obstacle Removal(i.e., con-
siders Connected Obstacle Removal on general graphs), then it follows from the proof of
Theorem 3.10 that the resulting problem is W[SAT]-hard. This can be seen by adding a single vertex
containing all colors, that serves as a “color-connector,” to the instance of Obstacle Removal
produced by the FPT-reduction; this modification results in an instance of the connected obstacle
removal problem on apex graphs, establishing the W[SAT]-hardness of this problem on apex graphs.

4 Structural Results

Let G be a color-connected plane graph, C a set of colors, and χ : V −→ 2C . In this section, we
present structural results that are the cornerstone of the FPT-algorithm for Connected Obstacle
Removal presented in the next section. The ultimate goal of this section is to show that, for any
vertex w ∈ V (G), and for any pair of vertices u, v ∈ V (G), the set of k-valid u-v paths in G−w that
use colors external to w can be “represented” by a minimal set whose size is a function of k. This
result is the key ingredient of the dynamic programming FPT-algorithm in the next section, that is
based on tree decomposition of the input graph; it allows us to extend the notion of a minimal set
of k-valid u-v paths w.r.t. a single vertex w, to all the vertices of a bag in the tree decomposition,
yielding a representative set for the whole bag. Throughout this section, we shall assume that G is
color-connected. We start with the following simple observation:

Observation 4.1. Let x, y ∈ V (G) be such that there exists a color c ∈ C that appears on both x
and y. Then any x-y vertex-separator in G contains a vertex on which c appears.

Proof. This follows because color c is connected.

Let G′ be a plane graph, let w ∈ V (G′), and let f be the face in G′ − w such that w is interior
to f ; we call f the external face with respect to w in G′, and the vertices incident to f external
vertices with respect to w in G′. A color c ∈ C is said be an external color with respect to w in G′,

18

4 STRUCTURAL RESULTS

or simply external to w in G′, if c appears on an external vertex with respect to w in G′; otherwise,
c is said be internal to w in G′. The following observation is easy to see:

Observation 4.2. Let G be a color-connected graph, and let w ∈ V (G). Let H be any subgraph of
G − w. If c is an external color to w in G − w and c appears on some vertex in H, then c is an
external color to w in H. This also implies that the set of internal colors to w in H is a subset of
the set of internal colors to w in G− w.

Definition 4.3. Let P = (w1, . . . , wr) be a path in a graph G, and let x, y ∈ V (G). Suppose that
we apply the color contraction operation to x and y, and let z be the new vertex resulting from this
contraction. We define an operation, denoted Λxy, that when applied to path P results in another
path Λxy(P) defined as follows:

1. If {x, y} ∩ {w1, . . . , wr} = ∅ then Λxy(P) = P .

2. If {x, y} ∩ {w1, . . . , wr} = {wi}, where i ∈ [r], then Λxy(P) = (w1, . . . , wi−1, z, wi+1, . . . , wr).

3. If {x, y}∩{w1, . . . , wr} = {wi, wj}, where i < j, then Λxy(P) = (w1, . . . , wi−1, z, wj+1, . . . , wr).

For a set of paths P, we define Λxy(P) = {Λxy(P) | P ∈ P}.

Definition 4.4. Let u, v, w ∈ V (G). A set P of k-valid u-v paths in G − w is said to be minimal
with respect to w if:

(i) There does not exist two paths P1, P2 ∈ P such that χ(P1) ∩ χ(w) = χ(P2) ∩ χ(w);

(ii) there does not exist two paths P1, P2 ∈ P such that χ(P1) ⊆ χ(P2); and

(iii) for any P ∈ P, there does not exist a u-v path P ′ in G− w such that χ(P ′) (χ(P).

Clearly, for any u, v, w ∈ V (G), a minimal set of k-valid u-v paths in G− w exists.

Observation 4.5. Let u, v, w ∈ V (G). Any set of u-v paths that is minimal with respect to w
contains at most one path whose vertices contain only internal colors w.r.t. w in G− w.

Proof. Since the external face f of w in G− w is a Jordan curve that separates w from any vertex
in G − w that is not incident to f , by Observation 4.1, any color that appears both on w and on
a vertex in G − w must appear on a vertex incident to f , and hence, must be external to w by
definition. Therefore, any path P containing only internal colors to w satisfies χ(P) ∩ χ(w) = ∅.
The observation now follows from property (i) in Definition 4.4.

Lemma 4.6. Let u, v, w ∈ V (G), and let P be a minimal set of k-valid u-v paths in G−w. Suppose
that we apply the color contraction operation to an edge xy ∈ G−w, and let G′, χ′ be the graph and
color function obtained from the contraction operation, respectively. Let P ′ = Λxy(P). Then P ′ is
minimal w.r.t w in G′.

Proof. Let H ′ be the subgraph of G′ − w induced by the edges of the paths in P ′, and denote by
z the new vertex obtained from the contraction of the edge xy. We start by showing the following
claim:

Claim 1. For every P ∈ P, it holds that χ(Λxy(P)) = χ(P).

19

4 STRUCTURAL RESULTS

Let P = (u = w1, . . . , wr = v). Since χ′(z) = χ(x) = χ(y), it follows from Definition 4.3 that
if |{x, y} ∩ {w1, . . . , wr}| ≤ 1, then χ(Λxy(P)) = χ(P). Now assume that {x, y} ∩ {w1, . . . , wr} =
{wi, wj}, where i < j, and suppose to get a contradiction that χ(Λxy(P)) 6= χ(P). Since Λxy(P) =
(w1, . . . , wi−1, z, wj+1, . . . , wr), it follows that χ(Λxy(P)) (χ(P). However, G − w contains the
u-v path P ′ = (w1, . . . , wi−1, wi, wj , wj+1, . . . , wr), which satisfies χ(P ′) = χ(Λxy(P)) (χ(P); this,
together with P ∈ P, contradicts the minimality of P.

We now proceed to verify that P ′ is indeed minimal with respect to w. Properties (i) and (ii)
in Definition 4.4 follow directly from Claim 1 and the minimality of P. To prove that property (iii)
holds, assume that there is a path P ′ ∈ P ′, and a path Q′ in G′ − w between the endpoints of P ′

such that χ(Q′) (χ(P ′). Let P be the path in P such that Λxy(P) = P ′. It is straightforward
to verify that G − w contains a u-v path Q that is either identical to Q′, or obtained from Q′ by
replacing z by either a single vertex x or y, or by the pair x, y. Clearly, χ(Q) = χ(Q′). Since
χ(Q′) (χ(P ′) = χ(P) by Claim 1, it follows that χ(Q) (χ(P), contradicting the minimality of P.
It follows that Property (iii) holds, and the proof is complete.

To upper bound the cardinality of a minimal set of k-valid u-v path w.r.t. a vertex w by a
function of k, we first select a maximal subset of color-disjoint paths in this set, and upper bound
the cardinality of this subset; we do so by showing that this subset induces a graph that has a
small vertex-separator, and then applying an inductive counting argument based on this separator.
We then show, again using an inductive proof, that the upper bound on the cardinality of this
color-disjoint subset of paths implies an upper bound on the cardinality of the whole minimal set
of k-valid u-v paths w.r.t. w.

For the rest of this section, we let u, v, w ∈ V (G), and let P be a set of minimal k-valid u-v
paths in G−w. LetM be a set of minimal k-valid color-disjoint u-v paths in G−w. Let H be the
subgraph of G−w induced by the edges of the paths in P, and let M be that induced by the edges
of the paths inM.

Observation 4.7. If P ∈ M contains a color c that is external to w in M , then c appears on a
vertex in P that is incident to the external face to w in M .

Proof. By definition, c appears on a vertex x incident to the external face with respect to w in M .
Since the paths inM are pairwise color-disjoint and c appears on P , it follows that x is a vertex of
P .

Lemma 4.8. Let G′ be a plane graph, and let x, y, z ∈ V (G′). Let x1, . . . , xr, r ≥ 3, be the neighbors
of x in counterclockwise order. Suppose that, for each i ∈ [r], there exists an x-y path Pi containing
xi such that Pi does not contain z and does not contain any xj, j ∈ [r] and j 6= i. Then there exist
two paths Pi, Pj, i, j ∈ [r] and i 6= j, such that the two paths Pi, Pj induce a Jordan curve separating
{x1, . . . , xr} \ {xi, xj} from z.

Proof. The proof is by induction on r ≥ 3. The base case is when r = 3. Consider the faces induced
by the two paths P1 and P2 in the embedding. If z and x3 are in two separate faces, then clearly
P1 and P2 induce a Jordan curve separating x3 from z, and we are done. Therefore, we can assume
that z and x3 are in the same face induced by P1 and P2. Since P1 does not contain x2, we can
continuously deform P1 into an isotopic non self-intersecting curve P ′1 w.r.t. x3, x2, z, that includes
xx1, intersects edges xx2 and xx3 only at x, and intersects P2 only at x and y. Similarly, if P2 and
P3 do not separate z from x1, then z and x1 are in the same face induced by P2 and P3 and we can
define a curve P ′3 that is isotopic to P3 w.r.t. x2, x1, z, and such that P ′3 contains xx3, intersects
xx2 and xx1 only at x, and intersects P2 only at x and y. Now if z and x2 are in different faces
induced by P ′1 and P ′3, then P ′1 and P ′3 separate z from x2, and since P1 is isotopic to P ′1 w.r.t. z

20

4 STRUCTURAL RESULTS

and x2, and P ′3 is isotopic to P3 w.r.t. z and x2, it follows that P1 and P3 induce a Jordan curve
that separates x2 from z. Assume now that z and x2 are in the same face f induced by P ′1 and
P ′3. Since P2 intersects with each of P ′1 and P ′3 precisely at x and y, it follows that P2 splits f
into two faces f1, f2, where xx2, xx1 are two consecutive edges on the boundary of f1 and xx2, xx3

are two consecutive edges on the boundary of f2. Then, z must be interior to exactly one of the
two faces f1, f2. If z is interior to f1, let f ′1 be the face induced by P ′1 and P2 and containing z.
Then f ′1 contains f1, and does not contain x3 (because P ′1 intersects xx3 only at x). Therefore, f ′1,
and hence, P ′1 and P2 induce a Jordan curve that separates z from x3. It follows that P1, which is
isotopic to P ′1 w.r.t. x2, x3, z, and P2 induce a Jordan curve that separates z from x3. Similarly, if
z is interior to f2, then P ′3, P2 induce a Jordan curve that separates z from x1, and hence, P3 and
P2 induce a Jordan curve that separates z from x1.

Assume inductively that the statement of the lemma is true for any 3 ≤ ` < r. By the inductive
hypothesis applied to x1, . . . , xr−1, there exist two paths Pi, Pj , i, j ∈ [r − 1] and i 6= j, such that
the two paths Pi, Pj induce a Jordan curve separating {x1, . . . , xr−1} \ {xi, xj} from z. If xr and
z are not in the same face induced by Pi, Pj , then Pi, Pj separate xr from z as well, and we are
done. Assume now that z and xr are in the same face f induced by Pi, Pj . Since Pi, Pj separate z
from {x1, . . . , xr−1} \ {xi, xj}, none of {x1, . . . , xr−1} \ {xi, xj} is interior to f , and hence, xr is the
only neighbor of x between xi and xj w.r.t. the rotation system of G′, which implies w.l.o.g. that
x1 = xi and xr−1 = xj . By the inductive hypothesis applied to x1, xr−1, xr there are two paths in
P1, Pr−1, Pr that induce a Jordan curve that separates z from one of x1, xr−1, xr. Since P1 and Pr−1

do not separate xr from z, one of these two path must be Pr; assume, w.l.o.g., that the two paths
are P1 and Pr. Since x1 and xr are consecutive neighbors in the rotation system, and since P1, Pr do
not contain any of x2, . . . , xr−1, it follows that x2, . . . , xr−1 are in the same face induced by P1, Pr,
and this face does not contain z because P1, Pr separate z from xr−1. It follows that P1, Pr induce
a Jordan curve that separates z from x2, . . . , xr−1. This completes the inductive proof.

Lemma 4.9. Let G′ be a plane graph with a face f , and let u, v ∈ V (G′). Let u1, . . . , ur, r ≥ 3, be
the neighbors of u. Suppose that, for each i ∈ [r], there exists a u-v path Pi in G′ containing ui and a
vertex incident to f different from v, and such that Pi does not contain any uj, j ∈ [r], j 6= i. Then
there exist two paths Pi, Pj, i, j ∈ [r], i 6= j, such that V (Pi) ∪ V (Pj) − {v} is a vertex-separator
separating {u1, . . . , ur} \ {ui, uj} from v.

Proof. Create a new vertex y interior to f . Each path Pi, i ∈ [r], contains a vertex yi incident to
f and different from v; we define a new path P ′i from u to y, consisting of the prefix of Pi up to
yi, and extending this prefix by adding a new edge between yi and the new vertex y. Note that we
can extend the rotation system of G′ in a straightforward manner to obtain a rotation system for
the plane graph resulting from adding y and the edges yiy to G′, i ∈ [r]. Since v is the endpoint of
Pi and v 6= yi, it follows that v is not contained in P ′i , for i ∈ [r]. By Lemma 4.8, there exist two
paths P ′i , P

′
j , i, j ∈ [r], and i 6= j, such that the two paths P ′i , P

′
j induce a Jordan curve separating

{u1, . . . , ur}\{ui, uj} from v in G′+y. It follows that V (P ′i)∪V (P ′j) is a vertex separator separating
{u1, . . . , ur} \ {ui, uj} from v in G′ + y, and hence, V (P ′i) ∪ V (P ′j)− {y} ⊆ V (Pi) ∪ V (Pj)− {v} is
a vertex-separator separating {u1, . . . , ur} \ {ui, uj} from v in G′.

Lemma 4.10. Let x, y be two vertices in an irreducible subgraph G′ of G, and let f be a face in G′.
Then there are at most two color-disjoint x-y paths in G′ that contain only colors that appear on f .

Proof. Suppose, to get a contradiction, that there are three color-disjoint x-y paths P1, P2, P3 in G′

that contain only colors that appear on f . We create a new vertex z interior to f and add edges
between z and each vertex incident to f . Note that we can extend the rotation system of G′ in a

21

4 STRUCTURAL RESULTS

straightforward manner to obtain a rotation system for the plane graph resulting from adding z and
the edges incident to it to G′. Clearly, none of P1, P2, P3 contains z. Because the paths P1, P2, P3

are color-disjoint, both x and y must be empty vertices. Let v1, v2, v3 be the neighbors of x on
P1, P2, P3, respectively. Since x is an empty vertex and G′ is irreducible, none of v1, v2, v3 is an
empty vertex, and hence each vi, i ∈ [3], must contain a color ci that appears on f . Since P1, P2, P3

are pairwise color-disjoint, it follows that no vertex in {v1, v2, v3}\{vi} is contained in Pi, for i ∈ [3].
By Lemma 4.8, there is a vi, i ∈ [3], such that the two paths in {P1, P2, P3} − Pi induce a Jordan
curve in G′ + z separating vi and z, and hence separating vi from each vertex incident to f . Since
ci appears on both vi and a vertex incident to f , by Observation 4.1, it follows that ci must appear
on a vertex in V (P1) ∪ V (P2) ∪ V (P3)− V (Pi). This is a contradiction since ci appears on Pi and
the paths P1, P2, P3 are pairwise color-disjoint.

u v

P1

Q1

Q2

Qi

Qi+1

Qr−1

Qr

P 1
1

P i
1

P r−1
1

v1

vi

vr−1

Figure 8: Illustration for the proof of Lemma 4.11.

Lemma 4.11. Suppose that M is irreducible, then there exist paths P1, P2, P3 ∈ M such that
M − P1 − P2 − P3 has a u-v vertex-separator of cardinality at most 2k + 3.

Proof. By Observation 4.5, M contains at most one path that contains only internal colors with
respect to w in M . Therefore, it suffices to show that M contains two paths P ′1, P ′2 such that
M − P ′1 − P ′2 has a u-v vertex-separator of cardinality at most 2k + 3, assuming that every path in
M contains an external color w.r.t. w in M .

By Observation 4.7, every path in M passes through an external vertex w.r.t. w in M that
contains an external color to w in M . Because the paths in M are pairwise color-disjoint, u and
v are empty vertices, and hence, every path inM passes through a vertex on the external face of
w in M that is different from u and v. Let u1, . . . , uq be the neighbors of u in M , and note that
since u is empty and M is irreducible, each ui, i ∈ [q], contains a color. Let P1, . . . , Pq be the paths
in M containing u1, . . . , uq, respectively, and note that since the paths in M are color-disjoint,
no Pi passes through uj , for j 6= i. By Lemma 4.9, there are two paths in P1, . . . , Pq, say P1, P2

without loss of generality, such that V12 = V (P1)∪V (P2)−{v} is a vertex separator that separates
{u3, . . . , uq} from v.

22

4 STRUCTURAL RESULTS

We proceed to prove the lemma by contradiction and assume that M− = M −P1−P2 does not
have a u-v vertex-separator of cardinality 2k + 3. By Menger’s theorem [5], there exists a set D of
r′ ≥ 2k + 3 vertex-disjoint u-v paths in M−. Since V12 separates {u3, . . . , uq} from v in M , every
u-v inM− intersects (shares a vertex with) at least one of P1, P2 at a vertex other than v. It follows
that there exists a path in {P1, P2}, say P1, that intersects at least k + 2 paths in D at vertices
other than v. Since the paths in D are vertex-disjoint and incident to u, we can order the paths in
D that intersect P1 around u (in counterclockwise order) as 〈Q1, . . . , Qr〉, r ≥ k + 2, where Qi+1

is counterclockwise from Qi, for i ∈ [r − 1]. P1 intersects each path Qi, i ∈ [r], possibly multiple
times. Moreover, since the paths inM are pairwise color-disjoint, each intersection between P1 and
a path Qi, i ∈ [r], must occur at an empty vertex. We choose r − 1 subpaths of P1, P 1

1 , . . . , P
r−1
1 ,

satisfying the property that the endpoints of P i1 are on Qi and Qi+1, for i = 1, . . . , r − 1, and the
endpoints of P i1 are the only vertices on P i1 that appear on a path Qj , for j ∈ [r]. It is easy to verify
that the subpaths P 1

1 , . . . , P
r−1
1 of P1 can be formed by following the intersection of P1 with the

sequence of (ordered) paths Q1, . . . , Qr. See Figure 8 for illustration.
Recall that the endpoints of P 1

1 , . . . , P
r−1
1 are empty vertices. Since M is irreducible, no two

empty vertices are adjacent, and hence, each subpath P i1 must contain an internal vertex vi that
contains at least one color. We claim that no two vertices vi, vj , 1 ≤ i < j ≤ r − 1, contain the
same color. Suppose not, and let vi, vj , i < j, be two vertices containing a color c. Since vi, vj
are internal to P i1 and P j1 , respectively, Q1, . . . , Qr are vertex-disjoint u-v paths, and by the choice
of the subpaths P 1

1 , . . . , P
r−1
1 , the paths Qi and Qi+1 form a Jordan curve, and hence a vertex

separator in G, separating vi from vj . By Observation 4.1, color c must appear on a vertex in Qp,
p ∈ {i, i + 1}, and this vertex is clearly not in P1 since P1 intersects Qp at empty vertices. Since
every vertex in M appears on a path inM, and c appears on P1 ∈ M and on a vertex not in P1,
this contradicts that the paths inM are pairwise color-disjoint, and proves the claim.

Since no two vertices vi, vj , 1 ≤ i < j ≤ r, contain the same color, this implies that the number
of subpaths P 1

1 , . . . , P
r−1
1 , r − 1, is upper bounded by the number of distinct colors that appear on

P1, which is at most k. It follows that r, and hence, the number of vertex-disjoint u-v paths in M
is at most k + 1, contradicting our assumption above and proving the lemma.

Lemma 4.12. Let S be a minimal u-v vertex-separator in M . Let Mu,Mv be a partition of M −S
containing u and v, respectively, and such that there is no edge between Mu and Mv. For any vertex
x ∈ S, Mu is contained in a single face of Mv + x.

Proof. Let x ∈ S. It suffices to show that the subgraph F of M induced by V (Mu) ∪ (S \ {x}) is
connected. This suffices because V (F) and V (Mv + x) are disjoint, and hence every face in Mv + x
separates the vertices in V (F) inside the face from those outside of it. We will show that F is
connected by showing that there is a path in F from each vertex in F to u ∈ V (F). Let z ∈ V (F).
If z ∈ S, then by minimality of S, there is a path from u to z whose internal vertices are all in Mu,
and hence this path is in F . If z /∈ S, let P be a u-v path containing z. If P passes through z before
passing through any vertex in S, then clearly there is a path from u to z in F . Otherwise, P passes
through a vertex y ∈ S before passing through z. In this case, there exists a vertex y′ ∈ S, such
that y′ 6= y and P passes through y′ after passing through z. Either y or y′, say y′, is different from
x. From the above discussion, there is a path P ′ from u to y′ in F , which when combined with the
subpath of P between y′ and z yields a path from u to z in F .

Lemma 4.13. |M| ≤ g(k), where g(k) = O(ckk2k), for some constant c > 1.

Proof. By Observation 4.5, there can be at most one path inM that contains only internal colors
w.r.t. w in G−w. Therefore, it suffices to upper bound the number of paths inM that contain at

23

4 STRUCTURAL RESULTS

least one external color to w in G−w. Without loss of generality, in the rest of the proof, we shall
assume that M does not include a path that contains only internal colors w.r.t. w in G − w, and
upper bound |M| by g(k); adding 1 to g(k) we obtain an upper bound on |M| with this assumption
lifted. Note that by Observation 4.2, the previous assumption implies that every path inM contains
a color that is external to w in M .

The proof is by induction on k, over every color-connected plane graph G, every triplet of
vertices u, v, w in G, and every minimal set w.r.t. w of k-valid pairwise color-disjoints sets of u-v
paths M in G − w. If k = 1, then any path in M contains exactly one external color w.r.t. w in
M . By Lemma 4.10, at most two paths inM contain only external colors. It follows that for k = 1
|M| ≤ 2 ≤ g(1), if we choose the hidden constant in the O asymptotic notation to be at least 2.

Suppose by the inductive hypothesis that for any 1 ≤ i < k, we have |M| ≤ g(i). We can assume
that M is irreducible; otherwise, we apply the color contraction operation to any edge xy inM to
which the operation is applicable, and replaceM with the set of paths Λxy(M), which is pairwise
color-disjoint, contains the same number of paths asM, and is minimal w.r.t. w by Lemma 4.6.

By Lemma 4.11, there are at most 3 paths in M, such that the subgraph of M induced by
the remaining paths of M has a u-v vertex-separator S satisfying |S| ≤ 2k + 3. To simplify the
argument, in what follows, we assume that we already removed these 3 paths fromM and that M
already has a u-v vertex-separator S satisfying |S| ≤ 2k + 3. We will add 3 to the count of |M| at
the end to account for these removed paths. We can assume, without loss of generality, that S is
minimal (w.r.t. containment). S separatesM into two subgraphsMu andMv such that u ∈ V (Mu),
v ∈ V (Mv), and there is no edge between Mu and Mv. We partitionM into the following groups,
where each group excludes the paths satisfying the properties of the groups defined earlier: (1) The
set of paths inM that contain a nonempty vertex in S; (2) the set of pathsMk

u consisting of each
path P inM such that all colors on P appear on vertices in Mu (these colors could still appear on
vertices in Mv as well); (3) the set of pathsMk

v consisting of each path P inM such that all colors
on P appear on vertices in Mv; and (4) the setM<k of remaining paths inM, satisfying that each
path contains a nonempty external vertex to w in M and contains less than k colors from each of
Mu and Mv. Note that by Observation 4.7, each path inM belongs to one of the 4 groups above.

Since the paths in M are pairwise color-disjoint, no nonempty vertex in S can appear on two
distinct paths from group (1). Therefore, the number of paths in group (1) is at most |S| ≤ 2k+ 3.
Observe, that the vertices in S contained in any path in groups (2)-(4) are empty vertices.

To upper bound the number of paths in group (2), for each path P , there is a last vertex xP
(i.e., farthest from u) in P that is in S. Fix a vertex x ∈ S, and let us upper bound the number
of paths P in group (2) for which x = xP . Let Pv be the subpath of P from x to v. Note that
since v is empty and all the vertices in S that are contained in paths in group (2) are empty, and
since M is irreducible, Pv must contain at least one color. Since all colors appearing on P appear
on vertices in Mu, all colors appearing on Pv appear in Mu. By Lemma 4.12, Mu is contained in a
single face f of Mv + x. Since f is a vertex-separator that separates V (Mu) from V (Pv) in G, by
Observation 4.1, every color that appears on Pv appears on f . By Lemma 4.10, there are at most
two x-v paths that contain only colors that appear on f . This shows that there are at most two
paths in group (2) for which x is the last vertex in S. Since |S| ≤ 2k + 3, this upper bounds the
number of paths in group (2) by 2(2k + 3) = 4k + 6. By symmetry, the number of paths in group
(3) is upper bounded by 4k + 6.

Finally, we upper bound the number of paths in group (4). Let S = {s2, . . . , sr−1}, where
r ≤ 2k + 5, and extend S by adding the two vertices s1 = u and sr = v to form the set A =
{s1, s2, . . . , sr}. For every two (distinct) vertices sj , sj′ ∈ A, j, j′ ∈ [r], j < j′, we define a set of
paths Pjj′ in G − w whose endpoints are sj and sj′ as follows. For each path P in group (4),
partition (the edges in) P into subpaths P1, . . . , Pq satisfying the property that the endpoints of

24

4 STRUCTURAL RESULTS

each Pi, i ∈ [q], are in A, and no internal vertex to Pi is in A. Since each P is a u-v path, clearly,
P can be partitioned as such. For each Pi, i ∈ [q], such that Pi contains a vertex that contains
an external color to w in G − w, let P ′i (possibly equal to Pi) be a subpath in G − w between the
endpoints of Pi satisfying that χ(P ′i) ⊆ χ(Pi) and χ(P ′i) is minimal with respect to containment
(i.e., there does not exist a path P ′′i in G−w between the endpoints of Pi satisfying χ(P ′′i) (χ(P ′i)).
Since P contains a vertex that contains an external color to w in G−w, there exists an i ∈ [q] such
that P ′i contains a vertex that contains an external color to w in G−w; otherwise, by concatenating
(in the right sequence) the Pi’s that do not contain an external color to w (in G−w) with the P ′i ’s,
instead of Pi, for the Pi’s that contain an external color to w (in G − w) we would obtain a u-v
path P ′ in G − w satisfying χ(P ′) (χ(P) (since χ(P ′) ⊆ χ(P) and P contains an external color
to w and P ′ does not), thus contradicting the minimality ofM. Pick any i ∈ [q] satisfying that P ′i
contains a vertex that contains an external color to w in G − w, associate P with P ′i , and assign
P ′i to the set of paths Pjj′ such that sj and sj′ are the endpoints of P ′i . Since each P ′i contains an
external color that appears on P and the paths inM are pairwise-color disjoint, it follows that the
map that maps each P to its P ′i is a bijection.

Therefore, to upper bound the number of paths in group (4), it suffices to upper bound the
number of paths assigned to the sets Pjj′ , where j, j′ ∈ [r], j < j′. Fix a set Pjj′ . The paths in
Pjj′ have sj , sj′ as endpoints, and are pairwise color-disjoint. Moreover, each path in Pjj′ contains
a vertex that contains an external color to w in G − w. It follows from the previous statements
that Pjj′ satisfies properties (i) and (ii) of Definition 4.4 with respect to G and w. Moreover, from
the definition of each path in Pjj′ , Pjj′ satisfies properties (iii) of Definition 4.4 as well. Finally,
observe that each path P ′i ∈ Pjj′ was constructed based on a subpath Pi of a path P in group 4, and
satisfying that Pi has endpoints sj , sj′ and no internal vertex on Pi is in A. Since P is a u-v path
inM and S is a vertex-separator of M , V (Pi) is either contained in V (Mu) ∪ S or in V (Mv) ∪ S.
Since P is in group (4), P contains at most k−1 colors from each of Mu and Mv. Since the vertices
in S are empty, we deduce that Pi contains at most k − 1 colors. Since χ(P ′i) ⊆ χ(Pi), P ′i contains
at most k − 1 colors as well, and hence, every path in Pjj′ contains at most k − 1 colors. It follows
that Pjj′ is a minimal set of (k − 1)-valid sj-sj′ paths in G with respect to w. By the inductive
hypothesis, we have |Pjj′ | ≤ g(k − 1). Since the number of sets Pjj′ is at most

(
2k+5

2

)
, the number

of paths in group (4) is O(k2) · g(k − 1).
It follows from the above that |M| ≤ g(k), where g(k) satisfies the recurrence relation g(k) ≤

3 + (2k + 3) + 2(4k + 6) +O(k2) · g(k − 1) = O(k2) · g(k − 1), where 3 acounts for the 3 paths we
removed from M at the beginning of the proof to get a small u-v vertex separator. Solving the
aforementioned recurrence relation we get g(k) = O(ckk2k), where c > 1 is a constant. Adding 1 to
g(k) to account for the single path in M containing only internal colors w.r.t. w in M yields the
same asymptotic upper bound.

Theorem 4.14. Let G be a plane color-connected graph, let u, v, w ∈ V (G), and let P be a set of
minimal k-valid u-v paths w.r.t. w in G − w. Then |P| ≤ h(k), where h(k) = O(ck

2
k2k2+k), for

some constant c > 1.

Proof. The proof is by induction on k. If k = 1, then by minimality of P, we have P = M.
Lemma 4.13 gives an upper bound of O(ckk2k) = O(ck

2
k2k2+k) on |P|.

Assume by the inductive hypothesis that the statement of the lemma is true for 1 ≤ i < k. Let
M be a maximal set of pairwise color-disjoint paths in P. By Lemma 4.13, |M| ≤ g(k) = O(ckk2k).
The number of colors contained in vertices ofM is at most r ≤ k · g(k). We group the paths in P
into r groups P1, . . . ,Pr, such that all the paths in Pi, i ∈ [r], share the same color ci, where i ∈ [r],
that is distinct from each color cj shared by the paths Pj , for j 6= i. We upper bound the number
of paths in each Pi, i ∈ [r], to obtain an upper bound on |P|.

25

5 THE ALGORITHM

Let Gi be the graph obtained by removing color ci from each vertex in G that c appears on,
and let P ′i be the set of paths obtained from Pi by removing color ci from each vertex in Pi that c
appears on. Clearly, every path in P ′i is a (k− 1)-valid u-v path. Moreover, it is easy to verify that
P ′i satisfies properties (i)-(iii) in Definition 4.4, and hence, P ′i is minimal w.r.t. w in Gi − w. By
the inductive hypothesis, we have |P ′i| ≤ h(k− 1). It follows that the total number of paths in P is
at most h(k), where h(k) satisfies the recurrence relation h(k) ≤ r · h(k − 1) ≤ k · g(k) · h(k − 1).
Solving the aforementioned recurrence relations yields h(k) = O((k · g(k))k) = O(ck

2
k2k2+k).

The result of Theorem 4.14 will be employed in the next section in the form presented in the
following corollary:

Corollary 4.15. Let G be a plane color-connected graph, and let w ∈ V (G). Let G′ be a subgraph
of G − w, and let u, v ∈ V (G′). Every set P of minimal k-valid u-v paths in G′ w.r.t. w satisfies
|P| ≤ h(k), where h(k) = O(ck

2
k2k2+k), for some constant c > 1.

Proof. Contract every connected component of (G−w)−G′ into a single vertex containing the union
of the color-sets of the vertices in the component, and add k+ 1 new distinct colors to the resulting
vertex. Denote the resulting graph by G′′. Observe that the resulting graph is color-connected,
and that every k-valid u-v path in G′ w.r.t. w is a k-valid u-v path in G′′ w.r.t. w, and vice versa.
Therefore, every set P of minimal k-valid u-v paths in G′ w.r.t. w is also a set of minimal k-valid
u-v paths in G′′ w.r.t. w. For any set P of minimal k-valid u-v paths w.r.t. w in G′, by applying
Theorem 4.14 to P in G′′ − w, the corollary follows.

5 The Algorithm

In this section, we present an FPT algorithm for Connected Obstacle Removal, parameterized
by both k and the treewidth of the input graph. The main obstacle that faces a standard dynamic
programming approach based on tree decomposition is that there can be too many (i.e., more than
FPT-many) subsets of colors that appear in a bag, and hence, that the algorithm may need to
store/remember. To overcome this obstacle, we show how to extend the notion of a minimal set of
k-valid u-v paths w.r.t. a vertex w—from the previous section—to a “representative set” of paths
w.r.t. a specific bag and a specific enumerated configuration for the bag. This allows us to upper
bound the size of the table, in the dynamic programming algorithm, stored at a bag by a function
of both k and the treewidth of the input graph.

Let (G,C, χ, s, t, k) be an instance of Connected Obstacle Removal. The algorithm is a
dynamic programming algorithm based on a tree decomposition of G. Let (V, T) be a nice tree
decomposition of G. By Assumption 2.2, we can assume that s and t are nonadjacent empty vertices.
We add s and t to every bag in T , and from now on, we assume that {s, t} ⊆ Xi, for every bag
Xi ∈ T . For a bag Xi, we say that v ∈ Xi is useful if |χ(v)| ≤ k. Let Ui be the set of all useful
vertices in Xi and let Ui = Xi \ Ui. We denote by Vi the set of vertices in the bags of the subtree
of T rooted at Xi.

Let Xi be a bag. For any two vertices u, v ∈ Xi, let Giuv = G[(Vi \ Xi) ∪ {u, v}]. We extend
the notion of a minimal set of k-valid u-v paths with respect to a vertex, developed in the previous
section, to the set of vertices in a bag of T .

Definition 5.1. A set of k-valid u-v paths Puv in Giuv is minimal w.r.t. Xi if it satisfies the following
properties:

(i) There does not exist two paths P1, P2 ∈ Puv such that χ(P1) ∩ χ(Xi) = χ(P2) ∩ χ(Xi);

26

5 THE ALGORITHM

(ii) there does not exist two paths P1, P2 ∈ Puv such that χ(P1) ⊆ χ(P2); and

(iii) for any P ∈ Puv there does not exist a u-v path P ′ in Giuv such that χ(P ′) (χ(P).

The following lemma uses the upper bound on the cardinality of a minimal set of k-valid u-v
paths w.r.t. a vertex, derived in Corollary 4.15 in the previous section, to obtain an upper bound
on the cardinality of a minimal set of k-valid u-v paths with respect to a bag of T :

Lemma 5.2. Let Xi be bag, u, v ∈ Xi, and Puv a set of k-valid u-v paths in Giuv that is minimal
w.r.t. Xi. Then the number of paths in Puv is at most h(k)|Xi|, where h(k) = O(ck

2
k2k2+k), for

some constant c > 1.

Proof. Let Xi \ {u, v} = {w1, . . . , wr}, where r = |Xi| − 2. For each wj ∈ Xi, j ∈ [r], let Pj be a
minimal set of k-valid u-v paths w.r.t. wj in Giuv. Without loss of generality, we can pick Pj such
that there is no k-valid u-v path P in Giuv such that Pj ∪ {P} is minimal. From Corollary 4.15, we
have |Pj | ≤ h(k) = O(ck

2
k2k2+k), for some constant c > 1. For each P ∈ Puv, and each j ∈ [r],

define Cj = χ(P)∩χ(wj). Define the signature of P (w.r.t. the colors of w1, . . . , wr) to be the tuple
(C1, . . . , Cr). Observe that no two (distinct) paths P1, P2 ∈ Puv have the same signature; otherwise,
since u and v appear on both P1, P2, χ(P1) ∩ χ(Xi) = χ(P2) ∩ χ(Xi), which contradicts condition
(i) of the minimality of Puv. For each P ∈ Puv, and each j ∈ [r], there is a path P ′ ∈ Pj such that
χ(P ′) ∩ χ(wj) = Cj . If this were not true, then P would have been added to Pj for the following
reasons. Clearly, P does not contradict conditions (i) and (iii) of the minimality of Pj . It cannot
contradict (ii) either, because otherwise, and since P does not contradict (i), there would be a path
P ′′ ∈ Pj such that χ(P ′′) (χ(P), contradicting the minimality of Puv. It follows that the number
of signatures of paths in Puv is at most

∏r
j=1 |Pj | ≤ h(k)|Xi|. Since no two distinct paths in Puv

have the same signature, it follows that |Puv| ≤ h(k)|Xi|.

Definition 5.3. Let Xi be a bag in T . A pattern π for Xi is a sequence
(v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t), where σi ∈ {0, 1} and vi ∈ Ui. For a bag Xi, and a pattern
(v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) for Xi, we say that a sequence of paths S = (P1, . . . , Pr−1)
conforms to (Xi, π) if:

• for each j ∈ [r − 1], σj = 1 implies that Pj is an induced path from vj to vj+1 whose internal
vertices are contained in Vi \Xi and Pj is empty otherwise; and

• |χ(S)| = |⋃j∈[r−1] χ(Pj)| ≤ k.

Definition 5.4. Let Xi be a bag, π a pattern for Xi, and S1,S2 two sequences of paths that conform
to (Xi, π). We write S1 �i S2 if |χ(S1) ∪ (χ(S2) ∩ χ(Xi))| ≤ |χ(S2)|.

We note that at a certain point during the dynamic programming algorithm, we will have to
deal for a short while with sequences of walks instead of sequences of paths (until we refine them),
but the definition of a sequence of paths conforming to a bag and a pattern, and the relation �,
extend seamlessly to sequences of walks.

Lemma 5.5. Let Xi be a bag and π a pattern for Xi. The relation �i is a transitive relation on
the set of all sequences of paths that conform to (Xi, π).

Proof. Let S1,S2,S3 be three sequences that conform to (Xi, π). Suppose that S1 �i S2 and
S2 �i S3. We need to show that S1 �i S3. To simplify the notation in the proof, let A =
χ(S1), B = χ(S2), C = χ(S3), X = Xi. Since S1 �i S2, we have

27

5 THE ALGORITHM

|A ∪B ∩X| ≤ |B|
|A|+ |B ∩X| − |A ∩B ∩X| ≤ |B|, (1)

and since S2 �i S3 we have:

|B ∪ C ∩X| ≤ |C|
|B|+ |C ∩X| − |B ∩ C ∩X| ≤ |C|. (2)

From Inequalities (1) and (2) we get:

|A|+ |C ∩X|+ |B ∩X| − |A ∩B ∩X| − |B ∩ C ∩X| ≤ |C|
|A|+ |C ∩X|+ |B ∩X| − (|A ∩B ∩X|+ |B ∩ C ∩X| − |A ∩B ∩ C ∩X|+ |A ∩B ∩ C ∩X|) ≤ |C|

|A|+ |C ∩X|+ |B ∩X| − (|A ∩B ∩X ∪B ∩ C ∩X|+ |A ∩B ∩ C ∩X|) ≤ |C|
|A|+ |C ∩X|+ |B ∩X| − (|(A ∪ C) ∩ (B ∩X)|+ |A ∩B ∩ C ∩X|) ≤ |C|

|A|+ |C ∩X|+ |B ∩X| − (|B ∩X|+ |A ∩B ∩ C ∩X|) ≤ |C|
|A|+ |C ∩X| − |A ∩B ∩ C ∩X|) ≤ |C|
|A|+ |C ∩X| − |A ∩ C ∩X|) ≤ |C|.

The last inequality proves that S1 �i S3.

Using the relation �i on the set of sequences that conform to (Xi, π), we are now ready to define
the key notion that makes the dynamic programming approach work:

Definition 5.6. Let Xi be a bag and π = (v1, σ1, v2 . . . , σr−1, vr) a pattern for Xi. A set Rπ of
sequences that conform to (Xi, π) is a representative set for (Xi, π) if:

(i) For every sequence S1 ∈ Rπ, and for every sequence S2 6= S1 that conforms to (Xi, π), if
S1 �i S2 then S2 /∈ Rπ;

(ii) for every sequence S ∈ Rπ, and for every path P ∈ S between vj and vj+1, j ∈ [r − 1], there
does not exist a vj-vj+1 path P ′ in Givjvj+1

such that χ(P ′) (χ(P); and

(iii) for every sequence S /∈ Rπ that conforms to (Xi, π) and satisfies that no two paths in S share
a vertex that is not in Xi, there is a sequence W ∈ Rπ such that W �i S.

Observation 5.7. Let Xi and Xj be two bags such that Xi ⊆ Xj, let π be a pattern for both Xi

and Xj, and let S,S ′ be two sequences that conform to both (Xi, π) and (Xj , π). If S �j S ′ then
S �i S ′.

Proof. Since Xi ⊆ Xj , we have |χ(S) ∪ χ(S ′) ∩ χ(Xi)| ≤ |χ(S) ∪ χ(S ′) ∩ χ(Xj)|.

Lemma 5.8. Let Xi be a bag, π a pattern for Xi, and S1,S ′1,S2,S ′2,S,S ′ sequences that conform to
(Xi, π) and that satisfy the following: S ′1 �i S1, S ′2 �i S2, χ(S1) ∪ χ(S2) = χ(S), χ(S ′1) ∪ χ(S ′2) =
χ(S ′), and χ(S1) ∩ χ(S2) ⊆ χ(Xi). Then S ′ �i S.

28

5 THE ALGORITHM

Proof. Let A = χ(S1), B = χ(S2), C = χ(S), A′ = χ(S ′1), B′ = χ(S ′2), C ′ = χ(S ′), and X = χ(Xi).
Since S ′1 �i S1 we have:

|A′ ∪A ∩X| ≤ |A|
|A′|+ |A ∩X| − |A′ ∩A ∩X| ≤ |A|. (3)

Since S ′2 �i S2 we have:

|B′ ∪B ∩X| ≤ |B|
|B′|+ |B ∩X| − |B′ ∩B ∩X| ≤ |B|. (4)

Adding Inequality (3) to (4) and subtracting |A ∩B| from each side of the resulting inequality,
we obtain:

|A′|+ |B′|+ |A ∩X|+ |B ∩X| − |A′ ∩A ∩X| − |B′ ∩B ∩X| − |A ∩B| ≤ |A ∪B|. (5)

Replacing in the last Inequality (5) |A′| + |B′| by |A′ ∪ B′| + |A′ ∩ B′|, and |A ∩X| + |B ∩X|
with |(A ∪ B) ∩X|+ |A ∩ B ∩X|, observing that A ∩ B ∩X = A ∩ B (because A ∩ B ⊆ X), and
simplifying, we get:

|A′ ∪B′|+ |(A ∪B) ∩X|+ |A′ ∩B′| − |A′ ∩A ∩X| − |B′ ∩B ∩X| ≤ |A ∪B|
|(A′ ∪B′) ∪ (A ∪B) ∩X|+ |(A′ ∪B′) ∩ (A ∪B) ∩X|+ |A′ ∩B′| − |A′ ∩A ∩X| − |B′ ∩B ∩X| ≤ |A ∪B|.

Replacing −|A′ ∩A ∩X| − |B′ ∩B ∩X| in the last inequality with −(|A′ ∩A ∪B′ ∩B) ∩X|+
|A′ ∩A ∩B′ ∩B ∩X|) = −(|A′ ∩A ∪B′ ∩B) ∩X|+ |A′ ∩A ∩B′ ∩B|) (because A ∩B ⊆ X), and
observing that |(A′∩A∪B′∩B)∩X| ≤ |(A′∪B′)∩ (A∪B)∩X|, and |A′∩A∩B′∩B| ≤ |A′∩B′|,
we conclude that:

|(A′ ∪B′) ∪ (A ∪B) ∩X| ≤ |A ∪B|. (6)

Inequality (6) establishes that S ′ �i S.

Lemma 5.9. Let Xi be bag, π a pattern for Xi, and Rπ be a representative set for (Xi, π). Then
the number of sequences in Rπ is at most h(k)|Xi|2, where h(k) = O(ck

2
k2k2+k), for some constant

c > 1.

Proof. Let π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) and let vj and vj+1 be two consecutive vertices
in π such that σj = 1. For each j ∈ [r−1] such that σj = 1, let Pj be a minimal set of k-valid vj-vj+1

paths w.r.t. Xi. Without loss of generality, we can pick Pj such that there is no k-valid u-v path P
in Givjvj+1

such that Pj ∪{P} is minimal w.r.t. Xi. From Lemma 5.2 it follows that |Pj | ≤ h(k)|Xi|,
where h(k) = O(ck

2
k2k2+k), for some constant c > 1. For a sequence S = (P1, . . . , Pr−1) in Rπ we

define the signature of S (w.r.t. Xi) to be the tuple (χ(P1)∩ χ(Xi), . . . , χ(Pr−1)∩ χ(Xi)). Observe
that if S1 and S2 have the same signature w.r.t. Xi, then χ(S1) ∪ (χ(S2) ∩ χ(Xi)) = χ(S1) and
χ(S2) ∪ (χ(S1) ∩ χ(Xi)) = χ(S2); hence, either S1 �i S2 or S2 �i S1. It follows from property
(i) of representative sets that no two sequences in Rπ have the same signature w.r.t. Xi. Now let
S = (P1, . . . , Pr−1) be a sequence in Rπ with a signature (C1, . . . , Cr−1). Note that if Cj 6= ∅,

29

5 THE ALGORITHM

then Pj is not the empty path, and hence σj = 1. We show that for each j ∈ [r − 1] such that
Cj 6= ∅, there is a path P ∈ Pj such that χ(P) ∩ χ(Xi) = Cj . Suppose, for a contradiction, that
this is not the case. Then for some j ∈ [r − 1] such that Cj 6= ∅, there is no path P ∈ Pj such
that χ(P) ∩ χ(Xi) = Cj . Clearly, Pj /∈ Pj , and therefore, by our choice of Pj , the set Pj ∪ {Pj}
is not a minimal set w.r.t. Xi. By assumption, Pj ∪ {Pj} does not contradict property (i) in the
definition of minimal set of paths w.r.t. Xi. Moreover, since S ∈ Rπ, it follows from property (ii)
of representative sets that Pj , and hence Pj ∪ {Pj}, satisfies property (iii) of minimal set of paths
w.r.t. Xi. Therefore, Pj ∪ {Pj} has to contradict property (ii) in the definition of minimal set of
paths w.r.t. Xi, and there are two paths Q1, Q2 ∈ Pj ∪ {Pj} such that χ(Q1) ⊆ χ(Q2). However,
if χ(Q1) = χ(Q2), then Q1 and Q2 contradict property (i) of a minimal set of paths w.r.t. Xi, and
if χ(Q1) (χ(Q2), then Q2 contradicts property (iii), and we already established that Pj ∪ {Pj}
satisfies properties (i) and (iii). Therefore, Pj ∪ {Pj} is a set of minimal paths w.r.t. Xi, which is
a contradiction. We conclude that, for each j ∈ [r − 1] such that Cj 6= ∅, there is a path P ∈ Pj
such that χ(P) ∩ χ(Xi) = Cj . It follows that the number of signatures of paths in Puv is at most∏r−1
j=1 |Pj | ≤ h(k)|Xi|2 . Since no two distinct sequences in Rπ have the same signature, it follows

that |Rπ| ≤ h(k)|Xi|2 .

For each bag Xi, we maintain a table Γi that contains, for each pattern for Xi, a representative
set of sequences Rπ for (Xi, π). For two vertices vertices u, v ∈ Xi and two u-v paths P, P ′

in Giuv, we say that P ′ refines P if χ(P ′) ⊆ χ(P). For two sequences S = (P1, . . . , Pr−1) and
S ′ = (P ′1, . . . , P

′
r−1) that conform to (Xi, π), we say that S ′ refines S if each path P ′j refines Pj , for

j ∈ [r − 1].

Lemma 5.10. Let Xi be a bag, π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) a pattern for Xi, and
W = (W1, . . . ,Wr−1) a sequence of walks, where each Wj is a walk between vertices vj and vj+1 in
Givjvj+1

satisfying χ(Wj) ≤ k. Then in time O∗(2k) we can compute a sequence S = (P1, . . . , Pr−1)

of induced paths, where each Pj is an induced path between vertices vj and vj+1 in Givjvj+1
such that

χ(Pj) ⊆ χ(Wj), for j ∈ [r − 1], and such that S satisfies property (ii) of representative sets.

Proof. For each walk Wj , j ∈ [r − 1], we do the following. For each subset C ′ ⊆ χ(W) considered
in a nondecreasing order of cardinality, we form the subgraph G′ from Givjvj+1

by removing every
vertex x in Givjvj+1

that does not satisfy χ(x) ⊆ C ′. We then check if there is a vj-vj+1 induced
path in G′, and set Pj to this path if it exists. It is clear that the path Pj satisfies χ(Pj) ⊆ χ(Wj)
and that the sequence S ′ = (P1, . . . , Pr−1) conforms to π w.r.t. Xi and satisfies property (ii) of
representative sets. Since each Wj satisfies χ(Wj) ≤ k, we can enumerate all subsets of χ(Wj) in
time O∗(2k). Since checking if there is an induced vj-vj+1 path in G′ takes polynomial time, it
follows that computing Pj from Wj takes O∗(2k), and so does the computation of S.

For a bag Xi, pattern π for Xi, and a set of sequences R that conform to (Xi, π), we define the
procedure Refine() that takes the set R and outputs a set R′ of sequences that conform to (Xi, π),
and does not violate properties (i) and (ii). For each sequence S in R, we compute a sequence
S ′ that refines S and satisfies property (ii), and replace S with S ′ in R. Afterwards, we initialize
R′ = ∅, and order the sequences in R arbitrarily. We iterate through the sequences in R in order,
and add a sequence Sp to R′ if there is no sequence S already in R′ such that S �i Sp, and there
is no sequence Sq ∈ R, q > p (i.e., Sq comes after Sp in the order), such that Sq � Sp.

Lemma 5.11. Let Xi be a bag, π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) a pattern for Xi, and W =
(W1, . . . ,Wr−1) a sequence of walks, where each Wj is a walk between vertices vj and vj+1 in Givjvj+1

satisfying χ(Wj) ≤ k. The procedure Refine() on input W produces a set of sequences R′ that

30

5 THE ALGORITHM

conforms to (Xi, π) satisfying properties (i) and (ii), and such that for each sequence S ∈ W, there
is a sequence S ′ ∈ R′ satisfying S ′ �i S. Moreover, the procedure runs in time O∗(2k|W|+ |W|2).

Proof. By Lemma 5.10, refining a sequence inW takesO∗(2k) time, and hence, refining all sequences
inW takes O∗(2k|W|) time. After refiningW, we initialize R′ to the empty set, and iterate through
the sequences in W, adding a sequence Sp ∈ W to R′ if there is no sequence S already in R′ such
that S �i Sp; clearly this takes O∗(|W|2) time, and the lemma follows.

If a bag Xi is a leaf in T , then Xi = Vi = {s, t}, and there are only two patterns (s, 0, t) and
(s, 1, t) for Xi. Clearly, the only sequence that conforms to (s, 0, t) is the sequence (()) containing
exactly one empty path. Moreover, there is no edge st ∈ E(G). Therefore, there is no sequence
that conforms to (s, 1, t), and the following claim holds:

Claim 2. If a bag Xi is a leaf in T , then Γi = {((s, 0, t), {(())}), ((s, 1, t), ∅)} contains, for each
pattern for Xi, a representative set for (Xi, π).

We describe next how to update the table stored at a bag Xi, based on the tables stored at its
children in T . We distinguish the following cases based on the type of bag Xi.

Case 1. Xi is an introduce node with child Xj . Let Xi = Xj ∪ {v}.

Clearly, for every pattern π for Xi that does not contain v, we can set Γi[π] = Γj [π]. Γj [π] is a
representative set for (Xi, π) for the following reasons: (i) follows because every color in χ(Xi)\χ(Xj)
does not appear in Vj , since Xi is a vertex separator in G separating v and Vj and colors are
connected. Hence, if two sequences in Γj [π] that conform to (Xi, π) contradict (i), they contradict
(i) w.r.t. (Xj , π) as well, but Γj [π] is a representative set for (Xj , π). For properties (ii) and (iii),
it is easy to observe that v does not appear on any path between two vertices in π having internal
vertices in Vi \Xi, and hence, these properties are inherited from the child node Xj .

Now let π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) be a pattern such that vq = v, q ∈ [2..r − 1],
and let π′ = (v1, σ1, . . . vq−1, 0, vq+1, σq+1, . . . , σr−1, vr). Note that since Xj is a separator between v
and Vj , the only possibility for a path from v to a different vertex in Xi to have all internal vertices
in Vi \Xi is if it is a direct edge. Therefore, if σq−1 = 1 (resp. σq = 1) then vq−1v (resp. vqv) is an
edge in G. Otherwise, there is no sequence conforms to (Xi, π).

We obtain Γi[π] from Γj [π
′] as follows. For every S ′ = (P ′1, P

′
2, . . . , P

′
r−2) ∈ Γj [π

′], we replace
the empty path corresponding to 0 between vq−1 and vq+1 in π′ by two paths Pq−1, Pq such that
Pq−1 = () (resp. Pq = ()) if σq−1 = 0 (resp. σq = 0) and Pq−1 = (vq−1, v) (resp. Pq−1 = (v, vq))
otherwise and we obtain S = (P ′1, . . . , P

′
q−2, Pq−1, Pq, P

′
q, . . . , P

′
r−2). Denote by Rπ the set of all

formed sequences S. Finally, we set Γi[π] = Refine(Rπ). We claim that Γi[π] is a representative
set for (Xi, π).

Claim 3. If Xi is an introduce node with child Xj, and Γj contains for each pattern π′ for Xj a
representative set for (Xj , π

′), then Γi[π] defined above is a representative set for (Xi, π).

Proof. It is clear that from the application of Refine(), Γi[π] does not contradict properties (i)-(ii)
of the definition of representative sets. Assume now that there exists a sequence S /∈ Γi[π] that
conforms to (Xi, π) such that S violates property (iii). We define the sequence S ′ that conforms to
π′, and is the same as S on all paths that π and π′ share. Since no two paths in S share a vertex
that is not in Xi (since S violates (iii)), and all paths in S ′ are also in S, it follows that no two paths
in S ′ share a vertex that is not in Xj . Since Γj [π

′] is a representative set for (Xj , π
′), it follows

that there exists S ′1 ∈ Γj [π
′] such that S ′1 �j S ′. Let S1 be the sequence obtained from S ′1 and

31

5 THE ALGORITHM

conforming to (Xi, π). Then S1 ∈ Rπ, and hence by Lemma 5.11, there is a sequence S2 ∈ Γi[π]
such that S2 �i S1. Since either both S1 and S contain v or none of them does, we have S1 �i S.
By transitivity of �i (Lemma 5.5), it follows that S2 �i S. This contradicts the assumption that S
violates property (iii).

Case 2. Xi is a forget node with child Xj . Let Xi = Xj \ {v}.

Let π = (s = v1, σ1, . . . , σr−1, vr = t) be a pattern for the vertices in Xi. For q ∈ [r − 1], such
that σq = 1, we define πq = (s = v′1, σ

′
1, . . . , σ

′
r, v
′
r+1 = t) to be the pattern obtained from π by

inserting v between vq and vq+1 and setting σ′q = σ′q+1 = 1. More precisely, we set v′p = vp and
σ′p = σp for 1 ≤ p ≤ q, v′q+1 = v and σ′q+1 = 1, and finally v′p = vp−1 and σ′p = σp−1 for q+2 ≤ p ≤ r.
We define Rπ as follows:

Rπ = Γj [π] ∪ {S = (P1, . . . , Pq−1, Pq ◦ Pq+1, Pq+2, . . . , Pr) | (P1, . . . , Pr) ∈ Γj [π
q], q ∈ [r − 1] ∧ σq = 1}.

Finally, we set Γi[π] = Refine(Rπ) and we claim that Γi[π] is a representative set for (Xi, π).

Claim 4. If Xi is a forget node with child Xj, and Γj contains for each pattern π′ for Xj a
representative set for (Xj , π

′), then Γi[π] defined above is a representative set for (Xi, π).

Proof. It is straightforward to see that Γi[π] satisfies properties (i) and (ii) due to the way procedure
Refine() works. Assume for a contradiction that there exists a sequence S that violates property
(iii). We distinguish two cases.

First, suppose that no path in S contains the vertex v. Then this path conforms to the pattern π
inXj . Since no two paths in S share a vertex that is not inXi, and since Γj [π] is a representative set,
there exists S1 ∈ Γj [π] such that S1 �j S. Then S1 ∈ Rπ, and hence by Lemma 5.11, Γi[π] contains
a sequence S2 such that S2 �i S1. Since S1 �j S and Xi (Xj , it follows from Observation 5.7 that
S1 �i S. By transitivity of �i, it follows that S2 �i S, which is a contradiction to the assumption
that S violates property (iii).

Second, suppose that there is a path Pq in S that contains v on a path between vq and vq+1. We
form a sequence S ′ from S by keeping every path P 6= Pq in S, and replacing Pq in the sequence
by the two subpaths of Pq, P ′q = (vq, . . . , v) and P ′q+1 = (v, . . . , vq+1). The sequence S ′ conforms to
(Xj , π

q), and since no two paths in S share a vertex that is not in Xi, no two paths in S ′ share a
vertex that is not in Xj . Since Γj [π

q] is a representative set for (Xj , π
q), it follows that there exists

a sequence S ′1 ∈ Γj [π
q] such that S ′1 �j S ′. Let S1 be the sequence conforming to (Xi, π) obtained

from S ′1 by applying the operation ◦ to the two paths in S ′1 that share v. Then S1 ∈ Rπ. Therefore,
by Lemma 5.11, Γi[π] contains a sequence S2 such that S2 �i S1. Since S ′1 �j S ′, χ(S ′) = χ(S),
χ(S ′1) = χ(S1), and Xi (Xj , it follows that S1 �i S. By transitivity of �i, it follows that S2 �i S,
which is a contradiction to the assumption that S violates property (iii).

Case 3. Xi is a join node with children Xj , Xj′ .

Let π = (s = v1, σ1, . . . , σr−1, vr = t) be a pattern for Xi. Initialize Rπ = ∅. For every two
patterns π1 = (s = v1, τ1, . . . , τr−1, vr = t) and π2 = (s = v1, µ1, . . . , µr−1, vr = t) such that
σq = τq + µq, and for every two sequences S1 = (P 1

1 , . . . , P
r−1
1) ∈ Γj [π1] and S2 = (P 1

2 , . . . , P
r−1
2) ∈

Γj′ [π2], we add the sequence S = (P1, . . . , Pr−1) to Rπ, where Pq = P q1 if P q2 is the empty path,
otherwise, Pq = P q2 , for q ∈ [r − 1]. We set Γi[π] = Refine(Rπ), and we claim that Γi[π] is a
representative set for (Xi, π).

32

5 THE ALGORITHM

Claim 5. If Xi is a join node with children Xj, Xj′, and Γj (resp. Γj′) contains for each pattern
π′ for Xj = Xj′ = Xi a representative set for (Xj , π

′) (resp.(π′, Xj′)), then Γi[π] defined above is a
representative set for (Xi, π).

Proof. Clearly Γi[π] satisfies properties (i) and (ii) due to the application of the procedureRefine().
To argue that Γi[π] satisfies properties (iii), suppose not, and let S = (P1, . . . , Pr−1) be a sequence
that violates property (iii). Notice that every path Pq, q ∈ [r − 1] is either an edge between two
vertices in Xi, or is a path between two vertices in Xi such that its internal vertices are either all in
Vj \Xi or in Vj′ \Xi; this is true because Xi is a vertex separator separating Vj \Xi from Vj′ \Xi in G.
Define the two sequences S1 = (P 1

1 , . . . , P
r−1
1) and S2 = (P 1

2 , . . . , P
r−1
2) as follows. For q ∈ [r − 1],

if Pq is empty then set both P q1 and P q2 to the empty path; if Pq is an edge then set P q1 = Pq and
P q2 to the empty path. Otherwise, Pq is either a path in G[Vj] or in G[Vj′]; in the former case set
P q1 = Pq and P q2 to the empty path, and in the latter case set P q2 = Pq and P q1 to the empty path.
Since no two paths in S share a vertex that is not in Xi, and Xi = Xj = Xj′ , no two paths in S1

(resp. S2) share a vertex that is not in Xj (resp. Xj′). Let π1 = (s = v1, τ1, . . . , τr−1, vr = t) and
π2 = (s = v1, µ1, . . . , µr−1, vr = t) be the two patterns that S1 and S2 conform to, respectively, and
observe that, for every q ∈ [r− 1], we have σq = τq +µq. Since Γj [π1] and Γj′ [π2] are representative
sets, it follows that there exist S ′1 = (Y ′1 , . . . , Y

′
r−1) in Γj [π1] and S ′2 = (Z ′1, . . . , Z

′
r−1) in Γj′ [π2] such

that S ′1 �j S1 and S ′2 �j′ S2. Let S ′ = (P ′1, . . . , P
′
r−1), where P ′q = Y ′q if Z ′q is the empty path,

otherwise, Pq = Z ′q, for q ∈ [r − 1]. The sequence S ′ conforms to π and is in Rπ. By Lemma 5.11,
Γi[π] contains a sequence S ′′ such that S ′′ �i S ′. From Observation 5.7, since Xi = Xj = Xj′ , from
S ′1 �j S1 and S ′2 �j′ S2 it follows that S ′1 �i S1 and S ′2 �i S2. Since χ(S1) ∪ χ(S2) = χ(S) and
χ(S ′1) ∪ χ(S ′2) = χ(S ′), and since χ(S1) ∩ χ(S2) ⊆ χ(Xi), by Lemma 5.8, it follows that S ′ �i S.
Since S ′′ �i S ′, by transitivity of �i, it follows that S ′′ �i S, which concludes the proof.

We can now conclude with the following theorem:

Theorem 5.12. There is an algorithm that on input (G,C, χ, s, t, k) of Connected Obstacle
Removal, either outputs a k-valid s-t path in G or decides that no such path exists, in time
O?(f(k)6ω2

), where ω is the treewidth of G and f(k) = O(ck
2
k2k2+k), for some constant c > 1.

Therefore, Connected Obstacle Removal parameterized by both k and the treewidth of the
input graph is in FPT.

Proof. First, in time O(|V (G)|4), we can compute a branch decomposition of G, and hence a tree
decomposition, of width at most 3ω/2, where ω is the treewidth of G [16, 22, 23]. From this tree
decomposition, in polynomial time we can compute a nice tree decomposition (V, T) of G whose
width is at most 3ω/2 and satisfying |V| = O(|V (G)|) [19]. The algorithm starts by removing the
colors of s and t fromG, and decrements k by |χ(s)∪χ(t)| (see Assumption 2.2). Afterwards, if k < 0,
the algorithm concludes that there is no k-valid s-t path in G. If st ∈ E(G) and k ≥ 0, the algorithm
outputs the path (s, t). Now we know that s and t are not adjacent, and that χ(s) = χ(t) = ∅. The
algorithm then adds s and t to every bag in T , and executes the dynamic programming algorithm
based on (V, T), described in this section, to compute a table Γi that contains, for each bag Xi in
T and each pattern π for Xi, a representative set Rπ for (Xi, π).

From Claims 2, 3, 4, 5, it follows, by induction on the height of the tree-decomposition (V, T)
(the base case corresponds to the leaves), that the root node Xr contains a representative set Γr[π]
for the sequence π = (s, 1, t). If Γr[π] is empty, the algorithm concludes that there is no k-valid
s-t path in G. Otherwise, noting that there is only one sequence S in the representative set Γr[π]
since Xr = {s, t} and s and t are empty, the algorithm outputs the k-valid s-t path P formed by S.
The correctness follows from the following argument, which shows that if there is a k-valid s-t path

33

6 EXTENSIONS AND APPLICATIONS

in G, then the algorithm outputs such a path. Suppose that P ′ is a k-valid induced s-t path such
that there does not exist an s-t path P ′′ in G satisfying χ(P ′′) (χ(P ′), and let S ′ = (P ′). Since
Grst = G, it follows that S ′ conforms to (Xr, π). Since S ′ contains exactly one path that is induced,
no two paths in S ′ share a vertex. Therefore, by property (iii) of representative sets, there exists
a sequence S in Γr[π] satisfying S �r S ′. Noting that a sequence in Γr[π] must consist of a single
k-valid s-t path, it follows that the algorithm correctly outputs such a path.

Next, we analyze the running time of the algorithm. We observe that among the three types
of bags in T , the worst running time is for a join bag. Therefore, it suffices to upper bound the
running time for a join bag, and since |V| = O(n), the upper bound on the overall running time
would follow.

Consider a join bag Xi with children Xj , Xj′ . Let ω′ be the width of T plus 1, which serves as an
upper bound on the bag size in T , and note that ω′ ≤ 3ω/2 + 3, where the (additional) plus 2 is to
account for the vertices s and t that were added to each bag. The algorithm starts by enumerating
each pattern π forXi. The number of such patterns is at most 2ω

′ ·ω′ ·ω′! = O∗(2ω′ ·ω′!), where ω′ ·ω′!
is an upper bound on the number of ordered selections of a subset of vertices from the bag, and 2ω

′ is
an upper bound on the number of combinations for the σi’s in the selected pattern. Fix a pattern π
for Xi. To compute Γi[π], the algorithm enumerates all ways of partitioning π into pairs of patterns
π1, π2 for the children bags; there are 2ω

′ ways of partitioning π into such pairs, because for each
σi = 1 in π, the path between vi and vi+1 is either reflected in π1 or in π2. For a fixed pair π1, π2,
the algorithm iterates through all pairs of sequences in the two tables Γj [π1] and Γj′ [π2]. Since
each table contains a representative set, by Lemma 5.9, the size of each table is O(h1(k)ω

′2
), where

h1(k) = O(ck
2

1 k
2k2+k), for some constant c1 > 1, and hence iterating over all pairs of sequences in

the two tables can be done in O(h1(k)2ω′2) time. From the above, it follows that the set Rπ can be
computed in time 2ω

′ ·O(h1(k)2ω′2) = O(h2(k)2ω′2), where h2(k) = O(ck
2

2 k
2k2+k), for some constant

c2 > 1, which is also an upper bound on the size of Rπ. By Lemma 5.11, applying Refine()
to Rπ takes time O∗(2kh2(k)2ω′2 + h2(k)4ω′2) = O∗(h3(k)4ω′2), where h3(k) = O(ck

2

3 k
2k2+k), for

some constant c3 > 1. It follows from all the above that the running time taken by the algorithm to
compute Γi isO∗(h3(k)4ω′2 ·2ω′ ·ω′!) = O∗(h4(k)4ω′2), where h4(k) = O(ck

2

4 k
2k2+k), for some constant

c4 > 1, and hence the running time of the algorithm is O?(f(k)6ω2
), where f(k) = O(ck

2
k2k2+k),

for some constant c > 1.

6 Extensions and Applications

In this section, we extend the FPT results for Connected Obstacle Removal w.r.t. the combined
parameters k and ω—the treewidth of the input graph, to show that the Connected Obstacle
Removal problem parameterized by both k and the length ` of the sought path is FPT. We also
show some applications of these FPT results. We formally define the problem Bounded-length
Connected Obstacle Removal:
Bounded-length Connected Obstacle Removal
Given: A planar graph G; a set of colors C; χ : V −→ 2C ; and two designated vertices s, t ∈ V (G)
Parameter: k, `
Question: Does there exist a k-valid s-t-path of length at most ` in G?

We start with the following lemma that enables us to upper bound the treewidth of the input
graph by a function of the parameter `:

Lemma 6.1. Let (G,C, χ, s, t, k, `) be an instance of Bounded-length Connected Obstacle
Removal, and let v be a vertex in G such that dG(s, v) > ` + 1. Let G′ be the graph obtained

34

6.1 Extended Structural Results 6 EXTENSIONS AND APPLICATIONS

from G by contracting any edge uv that is incident to v, and let χ′(x) = χ(u) ∪ χ(v), where x is
the new vertex resulting from contracting uv, and χ′(w) = χ(w) for any w ∈ V (G) \ {u, v}. Then
(G′, C, χ′, s, t, k, `) is a yes-instance of Bounded-length Connected Obstacle Removalif and
only if (G,C, χ, s, t, k, `) is.

Proof. Since G is color-connected and χ(x) = χ(u)∪χ(v), it is easy to see that G′ is color-connected
as well. Because dG(s, v) > ` + 1, any solution to (G,C, χ, s, t, k, `) does not contain any of u, v,
and hence, is a solution to (G′, C, χ′, s, t, k, `). Conversely, because dG(s, v) ≥ `+ 1 any solution to
(G′, C, χ′, s, t, k, `) does not contain x, and hence is a solution to (G,C, χ, s, t, k, `).

By Lemma 6.1, we may assume, without loss of generality, that in an instance (G,C, χ, s, t, k, `) of
Bounded-length Connected Obstacle Removal, every vertex v ∈ V (G) satisfies dG(s, v) ≤
` + 1. Therefore, we may assume that G has radius at most ` + 1, and hence G has treewidth at
most 3 · (`+ 1) + 1 = 3`+ 4 [22].

At this point we draw the following observation. Although the treewidth of G is bounded by a
function of `, we cannot use the FPT algorithm for Obstacle Removal, parameterized by k and
the treewidth of G, to solve Bounded-length Connected Obstacle Removal because the
k-valid path returned by the algorithm for Obstacle Removal may have length exceeding the
desired upper bound `. In fact, extending the FPT results for Obstacle Removal to Bounded-
length Connected Obstacle Removal turns out to be a nontrivial task, that necessitates
a nontrivial extension of the structural results in Section 4, as well as the dynamic programming
algorithm in Section 5. In particular, the color contraction operation, on which the structural
results developed in Section 4 hinge, is no longer applicable since contracting an edge may decrease
the distance between s and t in the resulting instance, and hence, may not result in an equivalent
instance of the problem. However, we will show in the next section that we can extend the notion of
a minimal set of k-valid paths between two vertices to incorporate the length of these paths, while
still being able to upper bound the size of such a set by a function of both k and the length of these
paths.

6.1 Extended Structural Results

We start with the following definition:

Definition 6.2. Let u, v, w ∈ V (G), and let λ ∈ [`]. Let P be a set of k-valid u-v paths in G− w,
each of length λ. The set P is said to be λ-minimal with respect to w if there does not exist two
paths P1, P2 ∈ P such that χ(P1) ∩ χ(w) = χ(P2) ∩ χ(w).

Let u, v, w ∈ V (G), λ ∈ [`], and let P be a set of λ-minimal k-valid u-v paths in G−w. LetM
be a set of λ-minimal k-valid color-disjoint u-v paths in G − w. Let H be the subgraph of G − w
induced by the edges of the paths in P, and let M be that induced by the edges of the paths inM.

Lemma 6.3. M has a u-v vertex-separator of cardinality at most 2(λ+ 1).

Proof. We proceed by contradiction, and assume that M does not have a u-v vertex-separator of
cardinality at most 2(λ + 1). By Menger’s theorem [5], there exists a set D = {P1, . . . , Pr}, where
r ≥ 2λ+3, of vertex-disjoint u-v paths inM . Let u1, . . . , ur be the neighbors of u in counterclockwise
order such that Pi contains ui, i ∈ [r], and let Qi be a path inM containing ui.

Since all paths inM have the same length λ, Definition 6.2 implies that Observation 4.5 holds.
Therefore, at most one path in M contains only internal colors with respect to w in M . By
Observation 4.7, any vertex on a path inM such that the vertex contains an external color w.r.t. w

35

6.1 Extended Structural Results 6 EXTENSIONS AND APPLICATIONS

in M must be incident to the external face to w in M . Choose r′ ∈ [r] such that |r′ − b r2c| is
minimum and Qr′ contains an external color w.r.t. w in M . Since Qr′ contains an external color
w.r.t. w in M , Qr′ contains a vertex incident to the external face to w in M . Since all paths in
D are u-v vertex-disjoint paths, Qr′ contains vertices other than u and v from at least br/2c − 1
distinct paths (including itself) in D. Since the paths in D are all vertex disjoint, it follows that
|Qr′ | ≥ r/2 − 1, and hence λ ≥ r/2 − 1, which implies that r ≤ 2(λ + 1). This contradicts our
assumption that r ≥ 2λ+ 3.

Lemma 6.4. |M| ≤ g(λ), where g(λ) = O(cλλ3λ), for some constant c > 1.

Proof. As in the proof of Lemma 6.3, Definition 6.2 implies that Observation 4.5 holds, and hence,
at most one path inM contains only internal colors w.r.t. w in G−w. Therefore, we upper bound
the number of paths in M that each contains at least one external color to w in G − w, and add
1 to g(λ) at the end. Henceforth, we shall assume that every path in M contains a color that is
external to w in M .

The proof is by induction on λ, over every color-connected plane graph G, every triplet of vertices
u, v, w in G, and every λ-minimal set M w.r.t. w in G − w of k-valid pairwise color-disjoint u-v
paths. If λ = 1, then |M| ≤ 1 ≤ g(1), if we choose g(1) to be at least 1.

Suppose, by the inductive hypothesis, that for any 1 ≤ i < λ, we have |M| ≤ g(i). By
Lemma 6.3, M has a u-v vertex-separator S satisfying |S| ≤ 2λ + 2. S separates M into two
subgraphsMu andMv such that u ∈ V (Mu), v ∈ V (Mv), and there is no edge betweenMu andMv.
We partitionM into two groups: (1) The set of paths inM that each contains a nonempty vertex in
S; and (2) the set of remaining pathsM∅, which contains each path inM whose intersection with
S consists of only empty vertices. Since the paths in M are pairwise color-disjoint, no nonempty
vertex in S can appear on two distinct paths from group (1). Therefore, the number of paths in
group (1) is at most |S| ≤ 2λ+ 2.

To upper bound the number of paths in group (2), suppose that S = {s2, . . . , sr−1}, where
r ≤ 2λ + 4, and extend S by adding the two vertices s1 = u and sr = v to form the set A =
{s1, s2, . . . , sr}. For every two (distinct) vertices sj , sj′ ∈ A, j, j′ ∈ [r], j < j′, we define a set of
paths Pjj′ in G − w whose endpoints are sj and sj′ as follows. For each path P in group (2),
partition P into subpaths P1, . . . , Pq satisfying the property that the endpoints of each Pi, i ∈ [q],
are in A, and no internal vertex to Pi is in A. Since P contains a vertex that contains an external
color to w in G−w, there exists an i ∈ [q] such that Pi contains a vertex that contains an external
color to w in G − w; pick any such i ∈ [q], and assign Pi to the set of paths Pjj′ such that sj
and sj′ are the endpoints of Pi. Since each Pi contains an external color that appears on P and
the paths inM are pairwise-color disjoint, it follows that the map that maps each P to its Pi is a
bijection. Moreover, since each path P must intersect S \ {u, v}, the length of each path in Pjj′ ,
for j, j′ ∈ [r], j < j′, is strictly smaller than λ.

To upper bound the number of paths in group (2), fix a set Pjj′ . For any fixed length i′ ∈ [λ−1],
the subset of paths in Pjj′ of length i′, P i

′
jj′ , have sj , sj′ as endpoints, and are pairwise color-disjoint.

Moreover, each path in P i′jj′ contains a vertex that contains an external color to w in G − w. It
follows from the previous statements that P i′jj′ satisfies Definition 6.2 with respect to G and w,
and hence P i′jj′ , i′ ∈ [λ − 1], is an i′-minimal set of k-valid sj-sj′ paths in G with respect to w.
By the inductive hypothesis, we have |P i′jj′ | ≤ g(i′). Since the number of sets Pjj′ is at most(

2λ+4
2

)
, i′ ≤ λ− 1, and noting that g is an increasing function, the number of paths in group (2) is

O(λ2) · (λ− 1) · g(λ− 1) = O(λ3) · g(λ− 1).
It follows from the above that |M| ≤ g(λ), where g(λ) satisfies the recurrence relation g(λ) ≤

(2λ+ 2) +O(λ3) · g(λ− 1) = O(λ3) · g(λ− 1). Solving the aforementioned recurrence relation gives

36

6.2 The Extended Algorithm 6 EXTENSIONS AND APPLICATIONS

g(λ) = O(cλλ3λ), where c > 1 is a constant. Adding 1 to g(λ) to account for the single path inM
containing only internal colors w.r.t. w in M yields the same asymptotic upper bound.

Theorem 6.5. Let G be a plane color-connected graph, let u, v, w ∈ V (G), let λ ∈ [`], and let P
be a set of λ-minimal k-valid u-v paths w.r.t. w in G − w. Then |P| ≤ h(k, λ), where h(k, λ) =
O(cλk · kk · λ3λk), for some constant c > 1.

Proof. The proof is by induction on k. If k = 0, then by minimality of P, there can be at most
one path in P, namely the path consisting of empty vertices. If k = 1, then by minimality of P, we
have P =M, and by Lemma 6.4, |P| = O(cλλ3λ) = O(cλk · kk · λ3λk).

Assume by the inductive hypothesis that the statement of the lemma is true for 1 ≤ i < k. Let
M be a maximal set of pairwise color-disjoint paths in P. By Lemma 4.13, |M| ≤ g(λ) = O(cλλ3λ).
The number of colors contained in vertices ofM is at most r ≤ k · g(λ). We group the paths in P
into r groups P1, . . . ,Pr, such that all the paths in Pi, i ∈ [r], share the same color ci, where i ∈ [r],
that is distinct from each color cj shared by the paths Pj , for j 6= i. We upper bound the number
of paths in each Pi, i ∈ [r], to obtain an upper bound on |P|.

Let Gi be the graph obtained by removing color ci from each vertex in G that c appears on, and
let P ′i be the set of paths obtained from Pi by removing color ci from each vertex in Pi that c appears
on. Clearly, every path in P ′i is a (k−1)-valid u-v path of length λ. Moreover, it is easy to verify that
P ′i satisfies Definition 6.2, and hence, P ′i is λ-minimal w.r.t. w inGi−w. By the inductive hypothesis,
we have |P ′i| ≤ h(k− 1, λ). It follows that the total number of paths in P is at most h(k, λ), where
h(k, λ) satisfies the recurrence relation h(k, λ) ≤ r · h(k − 1, λ) ≤ k · g(λ) · h(k − 1, λ). Solving the
aforementioned recurrence relations yields h(k, λ) = O((k · g(λ))k) = O(cλk · kk · λ3λk).

The result of Theorem 6.5 will be employed in the next section in the form presented in the
following corollary:

Corollary 6.6. Let G be a plane color-connected graph, let w ∈ V (G), and let λ ∈ [`]. Let G′ be a
subgraph of G−w, and let u, v ∈ V (G′). Every set P of λ-minimal k-valid u-v paths in G′ w.r.t. w
satisfies |P| ≤ h(k, λ), where h(k) = O(cλk · kk · λ3λk), for some constant c > 1.

Proof. Contract every connected component of (G−w)−G′ into a single vertex containing the union
of the color-sets of the vertices in the component, and add k+ 1 new distinct colors to the resulting
vertex. Denote the resulting graph by G′′. Observe that the resulting graph is color-connected, and
that every k-valid u-v path of length λ in G′ w.r.t. w is a k-valid u-v path of length λ in G′′ w.r.t. w,
and vice versa. Therefore, every set P of λ-minimal k-valid u-v paths in G′ w.r.t. w is also a set of
λ-minimal k-valid u-v paths in G′′ w.r.t. w. For any set P of λ-minimal k-valid u-v paths w.r.t. w
in G′, by applying Theorem 6.5 to P in G′′ − w, the corollary follows.

6.2 The Extended Algorithm

Let (G,C, χ, s, t, k, `) be an instance of Bounded-length Connected Obstacle Removal. The
algorithm is a dynamic programming algorithm based on a tree decomposition of G. Let (V, T) be
a nice tree decomposition of G. By Assumption 2.2, we can assume that s and t are nonadjacent
empty vertices. We add s and t to every bag in T , and from now on, we assume that {s, t} ⊆ Xi,
for every bag Xi ∈ T . For a bag Xi, we say that v ∈ Xi is useful if |χ(v)| ≤ k. Let Ui be the set of
all useful vertices in Xi and let Ui = Xi \Ui. We denote by Vi the set of vertices in the bags of the
subtree of T rooted at Xi.

Let Xi be a bag. For any two vertices u, v ∈ Xi, let Giuv = G[(Vi \Xi)∪ {u, v}]. We extend the
notion of a λ-minimal set of k-valid u-v paths with respect to a vertex, developed in the previous
section, to the set of vertices in a bag of T .

37

6.2 The Extended Algorithm 6 EXTENSIONS AND APPLICATIONS

Definition 6.7. Let λ ∈ [`]. A set of k-valid u-v paths Puv in Giuv is λ-minimal w.r.t. Xi if
each path in Puv has length exactly λ and there does not exist two paths P1, P2 ∈ Puv such that
χ(P1) ∩ χ(Xi) = χ(P2) ∩ χ(Xi).

Lemma 6.8. Let Xi be bag, u, v ∈ Xi, λ ∈ [`] and Puv a λ-minimal set of k-valid u-v paths w.r.t. Xi

in Giuv. Then the number of paths in Puv is at most h(k, λ)|Xi|, where h(k, λ) = O(cλk · kk · λ3λk),
for some constant c > 1.

Proof. Let Xi \ {u, v} = {w1, . . . , wr}, where r = |Xi| − 2. For each wj ∈ Xi, j ∈ [r], let Pj be a
λ-minimal set of k-valid u-v paths w.r.t. wj in Giuv. Without loss of generality, we can pick Pj such
that there is no k-valid u-v path P in Giuv such that Pj ∪ {P} is λ-minimal. From Corollary 6.6,
we have |Pj | ≤ h(k, λ) = O(cλk · kk · λ3λk), for some constant c > 1. For each P ∈ Puv, and each
j ∈ [r], define Cj = χ(P) ∩ χ(wj). Define the signature of P (w.r.t. the colors of w1, . . . , wr) to be
the tuple (C1, . . . , Cr). Observe that no two (distinct) paths P1, P2 ∈ Puv have the same signature;
otherwise, since u and v appear on both P1, P2, χ(P1) ∩ χ(Xi) = χ(P2) ∩ χ(Xi), which contradicts
the definition of the λ-minimality of Puv. For each P ∈ Puv, and each j ∈ [r], there is a path P ′ ∈ Pj
such that χ(P ′) ∩ χ(wj) = Cj . Otherwise, Pj ∪ {P} satisfy Definition 6.2, which contradicts our
assumption that there is no k-valid u-v path P in Giuv such that Pj ∪ {P} is λ-minimal. It follows
that the number of signatures of paths in Puv is at most

∏r
j=1 |Pj | ≤ h(k)|Xi|. Since no two distinct

paths in Puv have the same signature, it follows that |Puv| ≤ h(k)|Xi|.

We define the length of a sequence of paths (walks) S, denoted by |S|, to be the sum of the
lengths of the paths in S.

Definition 6.9. Let Xi be a bag and π = (v1, σ1, v2 . . . , σr−1, vr) a pattern for Xi. A set Rπ of
sequences of length at most ` that conform to (Xi, π) is a representative set for (Xi, π) if:

(i) For every sequence S1 ∈ Rπ, and for every sequence S2 6= S1 that conforms to (Xi, π), if
S1 �i S2 and |S1| ≤ |S2| then S2 /∈ Rπ; and

(ii) for every sequence S /∈ Rπ, |S| ≤ `, that conforms to (Xi, π) and satisfies that no two paths
in S share a vertex that is not in Xi, there is a sequence W ∈ Rπ such that W �i S and
|W| ≤ |S|.

We mention that Lemma 5.5 and Observation 5.7 extend as they are to the current setting.

Lemma 6.10. Let Xi be bag, π a pattern for Xi, and Rπ a representative set for (Xi, π). Then
the number of sequences in Rπ is at most h(k, `)|Xi|2, where h(k, `) = O(c`k · kk · `3`k), for some
constant c > 1.

Proof. Let π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t), and let Λ = (λ1, . . . , λr−1) be such that, for each
j ∈ [r − 1]: (1) λj = 0 if σj = 0 and λj ∈ [`] otherwise, and (2)

∑r−1
j=1 λj ≤ `. For each λ ∈ [`], the

number of tuples Λ = (λ1, . . . , λr−1) satisfying
∑r−1

j=1 λj = λ is the number of weak compositions of λ
into r−1 parts, which is

(
λ+r−2
r−2

)
. It follows that the number of tuples Λ = (λ1, . . . , λr−1) satisfying∑r−1

j=1 λj ≤ ` is upper bounded by
(
`+r−1
r−2

)
≤
(|Xi|+`
r−2

)
≤ 2|Xi|+`. Therefore, if we upper bound the

number of sequences in Rπ corresponding to some fixed tuple Λ by h1(k, `)|Xi|2 = O(c`k1 · kk · `3`k)
for some constant c1 > 1, then we obtain Rπ ≤ 2|Xi|+` · h1(k, `)|Xi|2 ≤ h(k, `)|Xi|2 , where h(k, `) =
O(c`k·kk·`3`k), for some constant c > 1. Therefore, for the rest of the proof, we fix Λ = (λ1, . . . , λr−1)
and we let RΛ

π be the subset of Rπ such that for each sequence S = (P1, . . . , Pr−1) in RΛ
π it holds

that the length of Pj is λj for each j ∈ [r − 1] such that σj = 1.

38

6.2 The Extended Algorithm 6 EXTENSIONS AND APPLICATIONS

For each j ∈ [r − 1] such that σj = 1, let Pj be a λj-minimal set of k-valid vj-vj+1 paths
w.r.t. Xi. Without loss of generality, we can pick Pj such that there is no k-valid u-v path P of
length λj in Givjvj+1

such that Pj ∪ {P} is λj-minimal w.r.t. Xi. From Lemma 6.8 it follows that
|Pj | ≤ h(k, λj)

|Xi|, where h1(k, λ) = O(cλk1 · kk · λ3λk), for some constant c1 > 1.
For a sequence S = (P1, . . . , Pr−1) in Rπ we define the signature of S (w.r.t. Xi) to be the

tuple (χ(P1) ∩ χ(Xi), . . . , χ(Pr−1) ∩ χ(Xi)). Observe that if S1 and S2 have the same signature
w.r.t. Xi, then χ(S1)∪ (χ(S2)∩χ(Xi)) = χ(S1) and χ(S2)∪ (χ(S1)∩χ(Xi)) = χ(S2); hence, either
S1 �i S2 or S2 �i S1. Since all sequences in RΛ

π have the same length, it follows from property
(i) of representative sets that no two sequences in Rπ have the same signature w.r.t. Xi. Now let
S = (P1, . . . , Pr−1) be a sequence in Rπ with a signature (C1, . . . , Cr−1). Note that if Cj 6= ∅, then
Pj is not the empty path, and hence σj = 1 and the length of Pj is λj . For each j ∈ [r−1] such that
Cj 6= ∅, there is a path P ∈ Pj such that χ(P) ∩ χ(Xi) = Cj ; otherwise, since χ(Pj) ∩ χ(Xi) = Cj
and the length of Pj is λj , Pj ∪ {Pj} would also be a λj-minimal set of paths w.r.t. Xi, which
contradicts our choice of Pj . It follows that the number of signatures of sequences in RΛ

π is at most∏r−1
j=1 |Pj | ≤

∏r−1
j=1 h(k, λj) ≤ h1(k, `)|Xi|2 . Since no two distinct sequences in RΛ

π have the same
signature, it follows that |RΛ

π | ≤ h1(k, `)|Xi|2 and Rπ ≤ 2|Xi|+` · h1(k, `)|Xi|2 ≤ h(k, `)|Xi|2 .

For each bag Xi, we maintain a table Γi that contains, for each pattern for Xi, a representative
set of sequences Rπ for (Xi, π). For two vertices u, v ∈ Xi and two u-v paths P, P ′ in Giuv, we say
that P ′ refines P if χ(P ′) ⊆ χ(P). For two sequences S = (P1, . . . , Pr−1) and S ′ = (P ′1, . . . , P

′
r−1)

that conform to (Xi, π), we say that S ′ refines S if each path P ′j refines Pj , for j ∈ [r − 1].

Lemma 6.11. Let Xi be a bag, π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) a pattern for Xi, and
W = (W1, . . . ,Wr−1) a sequence such that each Wj is a walk between vertices vj and vj+1 in
Givjvj+1

satisfying χ(Wj) ≤ k. Then in time O(r · (|V (G)| + |V (E)|)) we can compute a sequence
S = (P1, . . . , Pr−1), where for each j ∈ [r−1], Pj is an induced path between vj and vj+1 in Givjvj+1

such that χ(Pj) ⊆ χ(Wj) and the length of Pj is at most the length of Wj.

Proof. For each walkWj , j ∈ [r−1], we do the following. We form the subgraph G′ from Givjvj+1
by

removing every vertex x in Givjvj+1
that does not satisfy χ(x) ⊆ χ(Wj). Clearly, Wj is a subgraph

of G′, and hence there exists a vj-vj+1 path of length at most the length of Wj in G′. We find
a shortest vj-vj+1 path in G′ in time O(|V (G)| + |E(G)|) and set Pj to this path. Clearly, the
computation of S takes time O(r · (|V (G)|+ |E(G)|)).

For a bag Xi, pattern π for Xi, and a set of sequences (of walks) R that conform to (Xi, π),
we define the procedure Refine() that takes the set R and outputs a set R′ of sequences of length
at most ` that conform to (Xi, π), and does not violate property (i) of Definition 6.9. First, for
each sequence S in R, we compute a sequence S ′ that refines S and has length at most the length
of S, and replace S with S ′ in R. Afterwards, we initialize R′ = ∅, and order the sequences in R
arbitrarily. We iterate through the sequences in R in order, and add a sequence Sp to R′ if |Sp| ≤ `,
there is no sequence S already in R′ such that S �i Sp and |S| ≤ |Sp|, and there is no sequence
Sq ∈ R, q > p (i.e., Sq comes after Sp in the order), such that Sq � Sp and |Sq| ≤ |Sp|.

Lemma 6.12. Let Xi be a bag, π a pattern for Xi, and W be a set of sequences of walks that
conforms to (Xi, π). The procedure Refine(), on input W, produces a set of sequences of induced
paths R′ that conform to (Xi, π) and satisfy property (i) of Definition 6.9, and such that for each
sequence S ∈ W with |S| ≤ `, there is a sequence S ′ ∈ R′ satisfying S ′ �i S and |S ′| ≤ |S|.
Moreover, the procedure runs in time O∗(|W|2).

39

6.2 The Extended Algorithm 6 EXTENSIONS AND APPLICATIONS

Proof. By Lemma 6.11, refining a sequence inW takes O(|V (G)|+ |E(G)|) time, and hence, refining
all sequences in W takes O∗(|W|) time. After refining W, we initialize R′ to the empty set, and
iterate through the sequences inW, adding a sequence Sp ∈ W toR′ if: |Sp| ≤ `, there is no sequence
S already in R′ such that S �i Sp, and |S| ≤ |Sp|. Clearly, this takes O∗(|W|2) time. Moreover,
for a sequence S ∈ W with |S| ≤ `, the refined sequence S ′ we obtained from the application of
Lemma 6.11 to S satisfies |S ′| ≤ `. The lemma follows.

If a bag Xi is a leaf in T , then Xi = Vi = {s, t}, and there are only two patterns (s, 0, t) and
(s, 1, t) for Xi. Clearly, the only sequence that conforms to (s, 0, t) is the sequence (()) containing
exactly one empty path. Moreover, there is no edge st ∈ E(G). Therefore, there is no sequence
that conforms to (s, 1, t), and the following claim holds:

Claim 6. If a bag Xi is a leaf in T , then Γi = {((s, 0, t), {(())}), ((s, 1, t), ∅)} contains, for each
pattern for Xi, a representative set for (Xi, π).

We describe next how to update the table stored at a bag Xi, based on the tables stored at its
children in T . We distinguish the following cases based on the type of bag Xi.

Case 1. Xi is an introduce node with child Xj . Let Xi = Xj ∪ {v}.

Clearly, for every pattern π for Xi that does not contain v, we can set Γi[π] = Γj [π]. Γj [π] is a
representative set for (Xi, π) for the following reasons: (i) follows because every color in χ(Xi)\χ(Xj)
does not appear in Vj , since Xi is a vertex separator in G separating v and Vj and colors are
connected. Hence, if two sequences in Γj [π] that conform to (Xi, π) contradict (i), they contradict
(i) w.r.t. (Xj , π) as well, thus contradicting that Γj [π] is a representative set for (Xj , π). For
property (ii), it is easy to observe that v does not appear on any path between two vertices in π
having internal vertices in Vi \Xi, and hence, this property is inherited from the child node Xj .

Now let π = (v1 = s, σ1, v2, σ2, . . . , σr−1, vr = t) be a pattern such that vq = v, q ∈ [2..r − 1],
and let π′ = (v1, σ1, . . . vq−1, 0, vq+1, σq+1, . . . , σr−1, vr). Note that since Xj is a separator between v
and Vj , the only possibility for a path from v to a different vertex in Xi to have all internal vertices
in Vi \Xi is if it is a direct edge. Therefore, if σq−1 = 1 (resp. σq = 1) then vq−1v (resp. vqv) is an
edge in G. Otherwise, there is no sequence that conforms to (Xi, π).

We obtain Γi[π] from Γj [π
′] as follows. For every S ′ = (P ′1, P

′
2, . . . , P

′
r−2) ∈ Γj [π

′], we replace
the empty path corresponding to 0 between vq−1 and vq+1 in π′ by two paths Pq−1, Pq such that
Pq−1 = () (resp. Pq = ()) if σq−1 = 0 (resp. σq = 0) and Pq−1 = (vq−1, v) (resp. Pq−1 = (v, vq))
otherwise and we obtain S = (P ′1, . . . , P

′
q−2, Pq−1, Pq, P

′
q, . . . , P

′
r−2). Denote by Rπ the set of all

formed sequences S. Finally, we set Γi[π] = Refine(Rπ). We claim that Γi[π] is a representative
set for (Xi, π).

Claim 7. If Xi is an introduce node with child Xj, and Γj contains for each pattern π′ for Xj a
representative set for (Xj , π

′), then Γi[π] defined above is a representative set for (Xi, π).

Proof. From the application of Refine(), it is clear that Γi[π] does not violate property (i) of the
definition of representative sets. Assume now that there exists a sequence S /∈ Γi[π] of length at
most ` that conforms to (Xi, π) and violates property (ii) of Definition 6.9. We define the sequence
S ′ that conforms to π′, and is the same as S on all paths that π and π′ share. Since no two paths in
S share a vertex that is not in Xi (since S violates (ii)), and all paths in S ′ are also in S, it follows
that no two paths in S ′ share a vertex that is not in Xj . Moreover, |S ′| ≤ |S| ≤ `. Since Γj [π

′]
is a representative set for (Xj , π

′), it follows that there exists S ′1 ∈ Γj [π
′] such that S ′1 �j S ′ and

|S ′1| ≤ |S ′|. Let S1 be the sequence obtained from S ′1 and conforming to (Xi, π). Then S1 ∈ Rπ

40

6.2 The Extended Algorithm 6 EXTENSIONS AND APPLICATIONS

and it is easy to verify that |S1| ≤ `. Hence by Lemma 6.12, there is a sequence S2 ∈ Γi[π] such
that S2 �i S1 and |S2| ≤ |S1|. Since either both S1 and S contain v or none of them does, we have
S1 �i S and |S1| ≤ |S|. By transitivity of �i (Lemma 5.5) and of ≤, it follows that S2 �i S and
|S2| ≤ |S|. This contradicts the assumption that S violates property (ii).

Case 2. Xi is a forget node with child Xj . Let Xi = Xj \ {v}.

Let π = (s = v1, σ1, . . . , σr−1, vr = t) be a pattern for Xi. For q ∈ [r − 1] such that σq = 1, we
define πq = (s = v′1, σ

′
1, . . . , σ

′
r, v
′
r+1 = t) to be the pattern obtained from π by inserting v between

vq and vq+1 and setting σ′q = σ′q+1 = 1. More precisely, we set v′p = vp and σ′p = σp for 1 ≤ p ≤ q,
v′q+1 = v and σ′q+1 = 1, and finally v′p = vp−1 and σ′p = σp−1 for q + 2 ≤ p ≤ r. We define Rπ as
follows:

Rπ = Γj [π] ∪ {S = (P1, . . . , Pq−1, Pq ◦ Pq+1, Pq+2, . . . , Pr) | (P1, . . . , Pr) ∈ Γj [π
q], q ∈ [r − 1] ∧ σq = 1}.

Finally, we set Γi[π] = Refine(Rπ) and we claim that Γi[π] is a representative set for (Xi, π).

Claim 8. If Xi is a forget node with child Xj, and Γj contains for each pattern π′ for Xj a
representative set for (Xj , π

′), then Γi[π] defined above is a representative set for (Xi, π).

Proof. It is straightforward to see that Γi[π] satisfies property (i) due to the way procedureRefine()
works. Assume for a contradiction that there exists a sequence S that violates property (ii). We
distinguish two cases.

First, suppose that no path in S contains v. Then S conforms to (Xj , π). Since no two paths
in S share a vertex that is not in Xi, and since Γj [π] is a representative set, there exists S1 ∈ Γj [π]
such that S1 �j S and |S1| ≤ |S| ≤ `. Then S1 ∈ Rπ, and hence by Lemma 6.12, Γi[π] contains
a sequence S2 such that S2 �i S1 and |S2| ≤ |S1|. Since S1 �j S and Xi (Xj , it follows from
Observation 5.7 that S1 �i S. By transitivity of �i, it follows that S2 �i S. Moreover, |S2| ≤ |S|,
which is a contradiction to the assumption that S violates property (ii).

Second, suppose that there is a path Pq in S between vq and vq+1 that contains v. We form a
sequence S ′ from S by keeping every path P 6= Pq in S, and replacing Pq in the sequence by the two
subpaths of Pq, P ′q = (vq, . . . , v) and P ′q+1 = (v, . . . , vq+1). The sequence S ′ conforms to (Xj , π

q),
and since no two paths in S share a vertex that is not in Xi, no two paths in S ′ share a vertex that
is not in Xj . Moreover, it is straightforward that |S ′| = |S|. Since Γj [π

q] is a representative set
for (Xj , π

q), it follows that there exists a sequence S ′1 ∈ Γj [π
q] such that S ′1 �j S ′ and |S ′1| ≤ |S ′|.

Let S1 be the sequence conforming to (Xi, π) obtained from S ′1 by applying the operation ◦ to the
two paths in S ′1 that share v. Then S1 ∈ Rπ and |S1| = |S ′1| ≤ `. Therefore, by Lemma 5.11,
Γi[π] contains a sequence S2 such that S2 �i S1. Since S ′1 �j S ′, χ(S ′) = χ(S), χ(S ′1) = χ(S1),
and Xi (Xj , it follows that S1 �i S. By transitivity of �i, it follows that S2 �i S. Moreover
|S2| ≤ |S|, which is a contradiction to the assumption that S violates property (ii).

Case 3. Xi is a join node with children Xj , Xj′ .

Let π = (s = v1, σ1, . . . , σr−1, vr = t) be a pattern for Xi. Initialize Rπ = ∅. For every two
patterns π1 = (s = v1, τ1, . . . , τr−1, vr = t) and π2 = (s = v1, µ1, . . . , µr−1, vr = t) such that
σq = τq + µq, and for every two sequences S1 = (P 1

1 , . . . , P
r−1
1) ∈ Γj [π1] and S2 = (P 1

2 , . . . , P
r−1
2) ∈

Γj′ [π2], we add the sequence S = (P1, . . . , Pr−1) to Rπ, where Pq = P q1 if P q2 is the empty path,
otherwise, Pq = P q2 , for q ∈ [r − 1]. We set Γi[π] = Refine(Rπ), and we claim that Γi[π] is a
representative set for (Xi, π).

41

6.2 The Extended Algorithm 6 EXTENSIONS AND APPLICATIONS

Claim 9. If Xi is a join node with children Xj, Xj′, and Γj (resp. Γj′) contains for each pattern
π′ for Xj = Xj′ = Xi a representative set for (Xj , π

′) (resp. (π′, Xj′)), then Γi[π] defined above is
a representative set for (Xi, π).

Proof. Clearly Γi[π] satisfies property (i) due to the application of the procedure Refine(). To
argue that Γi[π] satisfies properties (ii), suppose not, and let S = (P1, . . . , Pr−1) be a sequence that
violates property (ii). Notice that every path Pq, q ∈ [r−1] is either an edge between two vertices in
Xi, or is a path between two vertices in Xi such that its internal vertices are either all in Vj \Xi or
in Vj′ \Xi; this is true because Xi is a vertex separator separating Vj \Xi from Vj′ \Xi in G. Define
the two sequences S1 = (P 1

1 , . . . , P
r−1
1) and S2 = (P 1

2 , . . . , P
r−1
2) as follows. For q ∈ [r − 1], if Pq is

empty then set both P q1 and P q2 to the empty path; if Pq is an edge then set P q1 = Pq and P
q
2 to the

empty path. Otherwise, Pq is either a path in G[Vj] or in G[Vj′]; in the former case set P q1 = Pq and
P q2 to the empty path, and in the latter case set P q2 = Pq and P q1 to the empty path. Since no two
paths in S share a vertex that is not in Xi, and Xi = Xj = Xj′ , no two paths in S1 (resp. S2) share
a vertex that is not in Xj (resp. Xj′). Moreover, it is easy to see that |S1| + |S2| = |S| ≤ `. Let
π1 = (s = v1, τ1, . . . , τr−1, vr = t) and π2 = (s = v1, µ1, . . . , µr−1, vr = t) be the two patterns that
S1 and S2 conform to, respectively, and observe that, for every q ∈ [r − 1], we have σq = τq + µq.
Since Γj [π1] and Γj′ [π2] are representative sets, it follows that there exist S ′1 = (Y ′1 , . . . , Y

′
r−1) in

Γj [π1] and S ′2 = (Z ′1, . . . , Z
′
r−1) in Γj′ [π2] such that S ′1 �j S1, |S ′1| ≤ |S1| and S ′2 �j′ S2, |S ′2| ≤ |S2|.

Let S ′ = (P ′1, . . . , P
′
r−1), where P ′q = Y ′q if Z ′q is the empty path, otherwise, Pq = Z ′q, for q ∈ [r− 1].

The sequence S ′ conforms to π, is in Rπ, and |S ′| = |S ′1|+|S ′2| ≤ |S|. By Lemma 6.12, Γi[π] contains
a sequence S ′′ such that S ′′ �i S ′ and |S ′′| ≤ |S ′|. From Observation 5.7, since Xi = Xj = Xj′ ,
from S ′1 �j S1 and S ′2 �j′ S2 it follows that S ′1 �i S1 and S ′2 �i S2. Since χ(S1)∪χ(S2) = χ(S) and
χ(S ′1) ∪ χ(S ′2) = χ(S ′), and since χ(S1) ∩ χ(S2) ⊆ χ(Xi), by Lemma 5.8, it follows that S ′ �i S.
Since S ′′ �i S ′, by transitivity of �i, it follows that S ′′ �i S. Moreover |S ′′| ≤ |S|, which concludes
the proof.

We can now conclude with the following theorem:

Theorem 6.13. There is an algorithm that on input (G,C, χ, s, t, k, `) of Bounded-length Con-
nected Obstacle Removal, either outputs a k-valid s-t path in G or decides that no such path
exists, in time O?(f(k, `)37`2), where f(k, `) = O(c`k ·kk · `3`k), for some constant c > 1. Therefore,
Bounded-length Connected Obstacle Removal parameterized by both k and the length of
the path is in FPT.

Proof. If dG(s, t) > `, then, by definition, there is no s-t path of length at most `. Hence, we
assume that dG(s, t) ≤ `. By Lemma 6.1, if there exists a vertex v such that dG(s, v) > ` + 1, we
can contract any edge incident to v and obtain an equivalent instance. The contraction of an single
edge can be done in time polynomial in the size of the instance and after applying Lemma 6.1 |E|
times, we would get a trivial instance. Moreover, from the proof of Lemma 6.1 it follows that we
can obtain a solution in the original instance from a solution in contracted instance in polynomial
time. Therefore, we can assume for the rest of the proof that we applied Lemma 6.1 exhaustively,
and hence G has radius at most ` + 1 and treewidth ω that is at most 3` + 4 [22]. Moreover, a
tree decomposition of G of width ω can be computed in (polynomial) time O(` · n) [18]. From such
a tree decomposition, in polynomial time we can compute a nice tree decomposition (V, T) of G
whose width is at most ω ≤ 3`+ 4 and satisfying |V| = O(|V (G)|) [19].

The algorithm starts by removing the colors of s and t from G, and decrements k by |χ(s)∪χ(t)|
(see Assumption 2.2). Afterwards, if k < 0, the algorithm concludes that there is no k-valid s-t
path in G. If st ∈ E(G) and k ≥ 0, the algorithm outputs the path (s, t). Now we know that s

42

6.3 Applications 6 EXTENSIONS AND APPLICATIONS

and t are not adjacent, and that χ(s) = χ(t) = ∅. The algorithm then adds s and t to every bag in
T , and executes the dynamic programming algorithm based on (V, T), described in this section, to
compute a table Γi that contains, for each bag Xi in T and each pattern π for Xi, a representative
set Rπ for (Xi, π).

From Claims 6, 7, 8, 9, it follows, by induction on the height of the tree-decomposition (V, T)
(the base case corresponds to the leaves), that the root node Xr contains a representative set Γr[π]
for the sequence π = (s, 1, t). If Γr[π] is empty, the algorithm concludes that there is no k-valid
s-t path of length at most ` in G. Otherwise, noting that there is only one sequence S in the
representative set Γr[π] since Xr = {s, t} and s and t are empty, the algorithm outputs the k-valid
s-t path P formed by S. The correctness follows from the following argument, which shows that
if there is a k-valid s-t path of length at most ` in G, then the algorithm outputs such a path.
Suppose that P ′ is a k-valid induced s-t path of length at most ` and let S ′ = (P ′). Since Grst = G,
it follows that S ′ conforms to (Xr, π). Moreover |S ′| ≤ ` and S ′ contains exactly one path that is
induced, hence no two paths in S ′ share a vertex. Therefore, by property (ii) of representative sets,
there exists a sequence S in Γr[π] satisfying S �r S ′ and |S| ≤ |S ′|. Noting that a sequence in Γr[π]
must consist of a single k-valid s-t path of length at most `, it follows that the algorithm correctly
outputs such a path.

Next, we analyze the running time of the algorithm. We observe that among the three types
of bags in T , the worst running time is for a join bag. Therefore, it suffices to upper bound the
running time for a join bag, and since |V| = O(n), the upper bound on the overall running time
would follow.

Consider a join bag Xi with children Xj , Xj′ . Let ω′ be the width of T plus 1, which serves as an
upper bound on the bag size in T . Therefore, we have ω′ ≤ 3`+7, where the (additional) plus 2 is to
account for the vertices s and t that were added to each bag. The algorithm starts by enumerating
each pattern π forXi. The number of such patterns is at most 2ω

′ ·ω′ ·ω′! = O∗(2ω′ ·ω′!), where ω′ ·ω′!
is an upper bound on the number of ordered selections of a subset of vertices from the bag, and 2ω

′ is
an upper bound on the number of combinations for the σi’s in the selected pattern. Fix a pattern π
for Xi. To compute Γi[π], the algorithm enumerates all ways of partitioning π into pairs of patterns
π1, π2 for the children bags; there are 2ω

′ ways of partitioning π into such pairs, because for each
σi = 1 in π, the path between vi and vi+1 is either reflected in π1 or in π2. For a fixed pair π1, π2,
the algorithm iterates through all pairs of sequences in the two tables Γj [π1] and Γj′ [π2]. Since
each table contains a representative set, by Lemma 6.10, the size of each table is h1(k, `)ω

′2 , where
h1(k, `) = O(c`k1 · kk · `3`k) for some constant c1 > 1, and hence iterating over all pairs of sequences
in the two tables can be done in O(h1(k, `)2ω′2) time. From the above, it follows that the set Rπ
can be computed in time 2ω

′ · O(h1(k, `)2ω′2) = O(h2(k, `)2ω′2), where h2(k, `) = O(c`k2 · kk · `3`k),
for some constant c2 > 1, which is also an upper bound on the size of Rπ. By Lemma 6.12,
applying Refine() to Rπ takes time O∗(h2(k, `)4ω′2). It follows from all the above that the running
time taken by the algorithm to compute Γi is O∗(h2(k, `)4ω′2 · 2ω′ · ω′!) = O∗(h3(k, `)4ω′2), where
h3(k, `) = O(c`k3 · kk · `3`k), for some constant c3 > 1, and hence the running time of the algorithm
is O?(f(k, `)37`2), where f(k, `) = O(c`k · kk · `3`k), for some constant c > 1.

6.3 Applications

In this subsection, we describe some applications of Theorem 6.13. The first result is a direct
consequence of Theorem 6.13. We still mention it as a theorem due its practical applications, as
one naturally seeks a path that is not very long, and in particular, whose length is not much larger
than the number of obstacles intersected by the path:

43

6.3 Applications 6 EXTENSIONS AND APPLICATIONS

Theorem 6.14. For any computable function h, the restriction of Connected Obstacle Re-
moval to instances in which the length of the sought path is at most h(k) is FPT parameterized by
k only.

We note that the above restriction of Connected Obstacle Removal is NP-hard, as a
consequence of (the proof of) Corollary 3.3.

The second application we describe is related to an open question posed in [8]. For an instance
I = (G,C, χ, s, t, k) of Connected Obstacle Removal, and a color c ∈ C, define the intersection
number of c, denoted ι(c), to be the number of vertices in G on which c appears. Define the
intersection number of G, ι(G), as max{ι(c) | c ∈ C}. Consider the following problem:
Bounded-intersection Connected Obstacle Removal
Given: A planar graph G such that ι(G) ≤ i; a set of colors C; χ : V −→ 2C ; and two designated
vertices s, t ∈ V (G)
Parameter: k, i
Question: Does there exist a k-valid s-t-path in G?

Again, the above problem is NP-hard, as a consequence of (the proof of) Corollary 3.3.

Theorem 6.15. Bounded-intersection Connected Obstacle Removal is FPT.

Proof. Since the number of vertices in G on which any color c ∈ C appears is at most ι(G), the
length of any k-valid s-t path is O(k · i). The result now follows from Theorem 6.13.

The following corollary is a direct consequence of Theorem 6.15:

Corollary 6.16. For any computable function h, Bounded-intersection Connected Obsta-
cle Removal restricted to instances (G,C, χ, s, t, k) satisfying ι(G) ≤ h(k) is FPT parameterized
by k only.

Corollary 6.15 has applications pertaining to geometric instances of the connected obstacle re-
moval problem whose auxiliary graph is an instance of Bounded-intersection Connected
Obstacle Removal. In particular, an interesting case that was studied in the literature corre-
sponds to the case in which the obstacles are convex polygons, each intersecting at most a constant
number of other polygons. The complexity of this problem was left as an open question in [8], and
remains unresolved. The result in Corollary 6.16 subsumes this case, and even the more general case
in which the obstacles are arbitrary connected convex regions satisfying that the number of regions
intersected by any region is a constant, as it is easy to see that the auxiliary graph of such instances
will have a constant intersection number1. In fact, we can even allow the intersection number to be
any function of the parameter:

Theorem 6.17. Let h be a computable function. The restriction of Geomertic Connected
Obstacle Removal to any set of connected convex obstacles in the plane satisfying that each
obstacle intersects at most h(k) other obstacles, is FPT parameterized by k.

Whereas the complexity of the problem in the above theorem is open, the theorem settles its
parameterized complexity by showing it to be in FPT.

1Note that convexity is essential here, as otherwise, the intersection number of the auxiliary graph may be un-
bounded.

44

REFERENCES REFERENCES

References

[1] J. Canny. A new algebraic method for robot motion planning and real geometry. In Proceed-
ings of the 28th Annual Symposium on Foundations of Computer Science, pages 39–48. IEEE
Computer Society, 1987.

[2] D. Chen and H. Wang. Computing shortest paths among curved obstacles in the plane. ACM
Transanctions on Algorithms, 11(4):26:1–26:46, 2015.

[3] Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity theory.
Theoretical Computer Science, 339(2-3):167–199, 2005.

[4] Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting fary embeddings
of planar graphs. In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 426–433, New York, NY, USA, 1988. ACM.

[5] R. Diestel. Graph Theory, 4th Edition. Springer, 2012.

[6] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer
Science. Springer, Berlin, Heidelberg, 2013.

[7] E. Eiben, J. Gemmell, I. Kanj, and A. Youngdahl. Improved results for minimum constraint
removal, 2017. Under submission to a double-blind reviewed conference.

[8] L. Erickson and S. LaValle. A simple, but NP-hard, motion planning problem. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[9] István Fáry. On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci.
Math., 11:229–233, 1948.

[10] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman, 1979.

[11] A. Gorbenko and V. Popov. The discrete minimum constraint removal motion planning prob-
lem. In Proceedings of the American Institute of Physics, volume 1648. AIP Press, 2015.

[12] S. Hartung and R. Niedermeier. Incremental list coloring of graphs, parameterized by conser-
vation. Theoretical Computer Science, 494:86–98, 2013.

[13] K. Hauser. The minimum constraint removal problem with three robotics applications. Inter-
national Journal of Robotics Research, 33(1):5–17, 2014.

[14] J. Hershberger, N. Kumar, and S. Suri. Shortest Paths in the Plane with Obstacle Violations.
In Proceedings of ESA, volume 87 of LIPIcs, pages 49:1–49:14, 2017.

[15] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM Journal on Computing, 28(6):2215–2256, 1999.

[16] I. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal on Computing,
17(4):402–412, 2005.

[17] D. Johnson and M. Szegedy. What are the least tractable instances of Max independent set?
In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
927–928, 1999.

45

REFERENCES REFERENCES

[18] I. Katsikarelis. Computing bounded-width tree and branch decompositions of k-outerplanar
graphs. CoRR, abs/1301.5896, 2013.

[19] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Com-
puter Science. Springer, 1994.

[20] S. LaValle. Planning Algorithms. Cambridge University Press, New York, NY, USA, 2006.

[21] Z. McCarthy, T. Bretl, and S. Hutchinson. Proving path non-existence using sampling and
alpha shapes. In IEEE International Conference on Robotics and Automation, pages 2563–
2569. IEEE, 2012.

[22] N. Robertson and P. Seymour. Graph minors. III. planar tree-width. Journal of Combinatorial
Theory, Series B, 36(1):49 – 64, 1984.

[23] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241,
1994.

46

