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Abstract:	

Over	 the	 years,	 neuroimaging	 modalities	 such	 as	 Electroencephalogram	 (EEG)	 and	 Function	

Magnetic	 Resonance	 Imaging	 (FMRI)	 have	 been	 used	 in	 the	 field	 of	 neuroscience	 to	 study	

neuronal	activity	at	the	macroscale.	Each	of	these	modalities	have	their	own	limitations	when	it	

comes	 to	 the	 information	 that	 can	 be	 extracted	 from	 them.	 To	 reduce	 those	 limitations,	

researchers	 have	 developed	multimodal	 systems	 that	 integrate	 the	 information	 that	 can	 be	

acquired	from	individual	modalities.	A	current	multimodal	neuroimaging	modality	that	has	been	

gained	popularity	 is	 Simultaneous	EEG-FMRI.	 The	 technique	 can	deliver	both	 the	high	 spatial	

resolution	 of	 the	 FMRI	 with	 high	 temporal	 resolution	 of	 the	 EEG.	 However,	 it	 is	 particularly	

difficult	to	acquire	a	good	quality	EEG	signal	within	the	strong	magnetic	field	of	the	FMRI	since	

the	presence	of	various	artifact,	when	recording,	can	obscure	the	EEG	signal.	Many	technicques	

are	 currently	 being	 employed	 to	 reduce	 these	 artifacts.	 The	 first	 objective	of	 this	 study	 is	 to	

investigate	how	the	FMRI	bold	signal	is	correlated	with	EEG	activity.	The	second	objective	is	to	

examine	if	 implementing	a	Machine	Learning	based	artifact	removal	technique	yields	tangible	

results	for	recovering	EEG	activity.	The	third	goal	is	to	determine	the	degree	at	which	the	EEG	

signal	 quality	 can	 influence	 the	 classification	 of	 different	 EEG	 brain	 waves.	 Although,	 there	

appears	to	be	no	significant	effects	in	the	classification	accuracies	(p	<	0.05),	the	used	method	

shows	 to	 reduce	 the	 power	 of	 the	 PA	 artifact.	 Therefore,	 further	 investigation	 needs	 to	 be	

conducted	on	a	larger	data	set	to	fully	validate	or	invalidate	the	technique.		

	

	

	

	

Keywords:	 	 Support	 Vector	 Machine	 (SVM),	 Gaussian	 Mixture	 Model-Expectation	

Maximization	 (GMM-EM),	Average	Artifact	Subtraction	 (AAS),	Gradient	Artifact	 (GA),	Pulsatile	

Artifact	(PA),	Functional	Magnetic	Resonance	Imaging	(FMRI),	Electroencephalogram	(EEG)
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Introduction:	

The	 conjoined	 field	 composed	 of	 Biomedical	 Engineering,	 Computational	 Neuroscience,	 and	

Neuroscience	 has	 led	 to	 the	 development	 of	 various	 non-invasive	 techniques	 to	 explore	

underlining	neuronal	activity	[4].	One	such	technique,	often	referred	to	as	Simultaneous	EEG-

FMRI,	involves	the	simultaneous	acquisitions	of	EEG	and	FMRI.		

EEG-FMRI	 has	 the	 capacity	 to	 identify	 electrophysiological	 activity	 as	 well	 as	 hemodynamic	

fluctuations,	while	providing	good	spatial-temporal	resolution	[2][3][4].	The	EEG	are	reflections	

of	the	neuronal	activity	occurring	in	deep	brain	structures	and	on	the	surface	of	the	brain	[30].		

This	 technique	 provides	 spatial	 and	 temporal	 resolutions	 on	 the	 order	 of	 centimeter	 and	

milliseconds,	 respectively	 [30].	 	On	 the	other	 hand,	 FMRI	measures	 the	 fluctuations	 in	 blood	

oxygen	concentration	levels	(BOLD	changes)	that	are	being	supplied	to	different	brain	regions	

[8][9].	The	BOLD	signal	gives	insight	on	the	neuronal	activity	by	relying	on	the	fact	that	cerebral	

blood	flow	and	neuronal	activation	are	coupled	[8][9].	The	FMRI	can	give	spatial	and	temporal	

resolution	on	the	order	of	millimeters	and	seconds,	respectively	[1][7].	Simultaneous	EEG-FMRI	

can	reduce	the	disadvantages	when	using	each	technology	by	itself.	However,	the	high	magnetic	

field	of	 the	 FMRI	undermines	 the	quality	 of	 the	 recorded	EEG	by	 causing	 the	occurrences	of	

various	artifacts	in	the	EEG	signal.	Two	of	the	main	studied	artifacts	in	simultaneous	EEG	recoding	

are	the	Gradient	Artifact	(GA)	and	the	Pulsatile	Artifact	(PA)	[2][3][29].	The	GA,	also	referred	to	

as	the	Imaging	Artifact,	are	present	due	to	the	rapid	changes	in	magnetic	field	gradients	[2].	While	

the	PA	artifact	is	caused	by	the	motion	of	the	EEG	electrodes	within	the	static	magnetic	field,	or	

B0	field,	due	to	the	pulsatile	blood	flow	coupled	with	the	cardiac	activity	of	the	participant	[3][29].	

On	the	other	hand,	artifacts	present	in	the	FMRI	due	to	the	presence	of	the	EEG	can	be	neglected	

[18].	The	artifacts	in	the	FMRI	are	mainly	present	due	to	the	radiofrequency	(RF)	interaction	with	

the	conductive	wires	of	 the	EEG	[18].	However,	 these	artifacts	have	been	found	to	affect	 the	

BOLD	 signals	 of	 the	 FMRI	 by	 less	 than	 1%	 [18].	 Therefore,	 since	 similar	 BOLD	 affects	 can	 be	

detected,	 with	 or	 without	 the	 presence	 of	 the	 EEG	 system,	 [18]	 one	 can	 undergo	 the	 same	

processing	stages	as	that	of	a	regular	FMRI.	
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1.1	Purpose	of	Study:	

This	 paper	 will	 introduce	 the	 main	 methodologies	 that	 are	 currently	 being	 used	 to	 process	

simultaneous	 EEG-FMRI	 and	 potential	 techniques	 that	 can	 further	 improve	 the	 processing	 of	

EEG-FMRI	 data.	 Over	 the	 years,	 a	 desire	 to	 integrate	 machine	 learning	 and	 deep	 learning	

algorithms	 has	 upraised.	 In	 fact,	 current	 research	 deals	 with	 incorporating	 deep	 learning	

algorithms	to	predict	a	subject’s	observation	from	either	their	electrophysiological	or	FMRI	bold	

signal	 activity	 [5].	 This	 research	 will	 incorporate	 both	 unsupervised	 and	 supervised	machine	

learning	on	the	simultaneous	EEG	recording.		

The	purpose	of	these	report	can	be	consolidated	in	three	different	stages.	The	first	stage	deals	

with	determining	which	voxels	are	most	correlated	to	the	time	of	stimulus	performed	for	the	

given	behavioral	paradigm.	The	second	stage	involves	the	exploration	of	techniques	for	removing	

artifacts	 present	 in	 the	 simultaneous	 EEG	 recording.	 The	 implemented	 techniques	 for	 the	

removal	 of	 the	 GA	 and	 the	 PA	 Artifact	 were	 Average	 Artifact	 Subtraction	 (AASGA)	 and	

unsupervised	GMM-EM	Wiener	 Filter,	 respectively.	 The	 third	 stage	 is	 to	 explore	 how	 to	 properly	

classify	distinct	brain	waves	from	an	EEG	recording	utilizing	machine	 learning	algorithms.	This	

study	focuses	on	the	technique	known	as	supervised	SVM	to	classify	Motor	Imagery	from	both,	

EEG	acquired	outside	and	inside	the	scanner.		
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1.2	Significance	of	Study:	

Simultaneous	 EEG-FMRI	 have	 been	 used	 to	 investigate	 various	 electrophysiological	 activities	

such	 as	 alpha	 rhythms,	 Event	 Related	 Potentials	 (ERP),	 and	 Evoked	 Potential	 (EP)	 [30].	 The	

removal	of	the	PA	artifact	from	the	EEG	is	essential	to	unveil	these	distinct	electrophysiological	

activities.	 The	 removal	 of	 the	 PA	 artifact	 is	 particularly	 important	 in	 the	 detection	 of	 alpha	

rhythms	since	the	PA	artifact	lies	within	the	same	frequency	range	as	that	of	the	alpha	waves	

[30].	The	recuperation	of	the	alpha	rhythms	is	essential	for	the	generation	of	significance	maps,	

for	 the	 FMRI	 images	 because	 those	maps	 reflect	 EEG-FMRI	 interaction	 [29].	 This	 interaction	

enables	the	to	study	of	how	different	brainwaves	in	the	EEG	are	associated	with	the	acquired	

FMRI	Bold	signal	[29].	A	statistical	method	used	to	implement	voxel-based	correlation	to	examine	

the	EEG-FMRI	interactons	is	the	Generalize	Linear	Model	(GLM)	[1].	Extracted	EEG	features	are	

convolved	with	the	Hemodynamic	Response	Function	(HRF)	to	obtain	the	regressor	for	the	GLM	

but	prior	removal	of	massive	artifacts	is	necessary	to	perform	this	technique	using	Simultaneous	

EEG	data.		

Different	signal	processing	techniques	have	been	employed	to	reduce	massive	artifacts.	The	most	

commonly	used	method	to	reduce	GA	and	PA	artifacts	is	Average	Artifact	Subtraction	(AAS)	[29].	

The	effectiveness	of	the	method	relies	on	the	repetitive	nature	of	the	waveforms	from	both	the	

GA	and	PA	artifacts	[2][3][12][13].	This	makes	the	technique	ideal	for	the	removal	of	the	GA.	The	

AASGA	subtracts	a	gradient	artifact	template	from	the	original	EEG	signal	[2][12].	The	gradient	

artifact	template	is	obtained	by	averaging	various	intervals	(epochs)	in	the	EEG	signal	were	either	

a	set	of	FMRI	slices	or	a	set	of	FMRI	volumes	were	acquired	[2][12][29].	Despite	the	effectiveness	

of	the	AAS	to	reduce	the	GA,	it	is	ineffective	at	completely	suppressing	the	PA	artifact	[29].	This	

is	mainly	due	to	the	time	varying	nature	of	both	the	artifact’s	period	and	waveform	[3].	Therefore,	

an	interest	has	risen	for	the	development	of	new	sophisticated	algorithm	for	the	removal	of	the	

PA	 artifact.	 The	 algorithm	 for	 the	 PA	 artifact	 removal	 employ	 in	 this	 study	 is	 a	 time-varying	

multichannel	Weiner	filter	with	a	prior	learned	utilizing	GMM-EM.		
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Neuro-Imaging	Background:	

This	 section	describes	 the	underlining	 physics	 of	 each	of	 the	 individual	modalities	within	 the	

multimodal	simultaneous	EEG-FMRI.	The	first	subsection	 introduces	the	basic	biology	of	brain	

anatomy	and	functionality.	The	second	subsection	deals	with	the	basic	principles	of	EEG	recoding,	

the	 different	 brain	 signals	 that	 are	 generated	 from	 it	 and	 their	 interpretation.	 The	 third	

subsection	describes	the	functionality	of	the	FMRI,	as	well	as,	the	biological	implications	of	FMRI.	

The	 final	 subsection	 focuses	on	 the	principles	of	 simultaneous	EEG-FMRI,	 as	well	 as,	 the	 two	

major	studied	artifacts	encounter	in	the	simultaneous	EEG	recording.		

	

2.1	Brain	Anatomy:	

The	brain	is	an	organ	with	the	complex	function	of	giving	rise	to	consciousness	and	processing	

sensory	 input.	These	two	main	functions	are	processed	by	different	brain	areas	which	can	be	

divided	into	three	functional	groups	sensory	maps	(retina,	hair	cells	in	the	ear,	olfactory	bulb),	

primary	sensory	cortex	(such	as	primary	visual	cortex)	and	higher	order	neocortex	(such	as	the	

parietal	area,	prefrontal	cortex)	[30].	Overall,	the	brain	is	composed	of	different	regions	such	as	

the	cerebral	cortex,	brain	stem,	the	cerebellum,	basal	ganglia,	thalamus	and	the	hypothalamus	

as	depicted	in	figure	2.1.		

The	 Cerebral	 Cortex	 consists	 of	 the	 left	 and	 right	 hemispheres,	which	 are	 interlinked	 by	 the	

corpus	callosum	[29][30].	The	two	hemispheres	are	composed	of	the	Frontal	lobe,	Temporal	lobe,	

Parietal	 lobe,	 and	 the	 Occipital	 lobe	 [29][30].	 Each	 of	 these	 regions	 are	 responsible	 for	 the	

processing	of	different	sensory	information.	The	Frontal	lobe	focuses	on	carrying	out	higher	order	

thinking,	decision	making,	and	planning	[29][30].	The	Temporal	lobe	functions	in	the	processing	

of	auditory	information	from	the	ears	[29][30].	The	Occipital	lobe	carries	out	processing	of	visual	

information	obtained	from	the	eyes	[29][30].	The	Parietal	lobe	processes	information	from	the	

limbs	[29][30].	This	report	aims	at	examining,	non-invasively,	the	activity	from	the	Parietal	lobe.	
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Sources:	https://inside-the-brain.com/2013/03/07/what-is-attention-and-where-is-it-in-the-brain/	

Figure	2.1:	Brain	Parts	

	

2.2	Neuronal	Network	Structure	and	Function:	

The	brain	is	composed	of	various	cell	called	neurons.	The	brain	is	often	described	by	its	gray	and	

white	matter	components	[6].	The	cerebral	cortex	is	considered	to	be	gray	matter	due	the	strong	

presence	of	a	number	of	neuronal	cell	bodies	[6].	On	the	other	hand,	white	matter	consists	of	all	

the	interconnected	myelinated	axons	of	a	neuron	that	often	travel	in	bundles	across	the	brain	to	

reach	different	brain	areas	[6].		

Nerve	 impulses	 transmit	 information	 to	 and	 from	 distinct	 brain	 regions	 to	 activate	 and/or	

deactivate	these	brain	regions	[30].	A	neuron	consists	of	cell	body	known	as	the	soma,	dendrites,	

axon,	and	axon	terminals	as	depicted	in	Figure	2.2.	The	function	of	an	axon	is	to	propagate	the	

voltage	 changes	 all	 the	 way	 to	 the	 terminal	 where	 it	 can	 release	 neurotransmitters	 onto	

neighboring	neurons,	muscles	and	other	body	organs	[30].	To	enable	a	faster	signal	transmission	

in	the	form	of	voltage	changes,	axons	are	covered	by	a	myelin	sheath	which	serve	as	insulators	

[30].	Axons	act	as	conduction	pathway	for	electrical	activity.	The	axon	of	a	single	neuron	may	
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form	 attachments	 (or	 synapses)	 with	 as	 many	 as	 1000	 distinct	 neurons	 [29][30].	 Between	

neurons,	 the	 activity	 is	 transmitted	 from	 the	 presynaptic	 neuron	 to	 the	 postsynaptic	 neuron	

through	the	site	known	as	the	synapse	[29][30].	The	electrical	activity	is	driven	by	ionic	gradients	

established	by	differences	of	anion	and	cation	concentrations	inside	and	outside	the	neuron.	The	

occurrence	of	a	neuron	activation	depends	on	action	potentials	and	neurotransmitters.	

	

	

	

	

	

	

	

	

	

Sources:http://zoologicalzone.blogspot.com/2013/12/general-structure-of-neuron-axons-vs.html	

Figure	2.2:	Nerve	Cell	Structure	

	

2.3	Fundamentals	of	an	Action	Potential:	

Action	potentials	are	regarded	as	all	or	non-responses,	meaning	a	neuron	can	only	fire	if	a	specific	

ionic	gradient	(Voltage	difference)	is	achieved	[30].	The	steady	state	potential	(resting	state)	of	a	

nerve	cell	 is	approximately	-65	mV	[30].	The	potential	need	for	a	neuron	to	achieve	an	action	

potential	is	approximately	-55	mV	[30].	Once	a	neuron	depolarization	reaches	the	threshold	value	

of	-55	mV	then	the	neuron	fires	an	action	potential	and	it	is	said	to	be	active.	
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2.4	Electroencephalogram	(EEG):	

The	 electroencephalogram	 is	 a	 non-invasive	 modality	 that	 measures	 brain	 activity	 using	

electrodes	that	are	placed	in	different	areas	of	the	scalp	(Figure	2.3).	The	captured	EEG	signal	is	

a	collection	of	electric	voltage	 fields	generated	 from	various	clusters	of	neurons	 [30].	Electric	

voltage	fields	(or	local	field	potentials)	are	the	sum	of	overlapping	currents	that	flows	from	the	

intracellular	to	extracellular	space	and	vice	versa	wheather	neurons	fire	synchronously	[30].	The	

EEG	 activity	 is	 the	 conduction	 from	 the	 sum	projections	 of	 the	 various	 local	 field	 potentials.	

Therefore,	it	can	be	said	that	scalp	EEG	is	simply	described	by	a	radon	transform	of	the	various	

local	field	potentials.	

	

	

	

	

	

	

	

	

	

Sources:	https://speakingofresearch.com/tag/eeg/	

Figure	2.3:	Electroencephalogram	

	

The	amplitude	of	the	brain	waves	in	the	EEG	is	determined	by	the	quantity	of	neurons	and	fibers	

that	 fire	synchronously	 to	one	another	 [30].	The	temporal	 resolutions	of	EEG	on	the	order	of	

milliseconds	makes	it	a	perfect	tool	to	measure	short	duration	signals.	However,	since	EEG	is	only	
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the	sum	projections	of	various	local	field	potentials	(LFP)	sources,	it	has	a	poor	spatial	resolution.	

The	ability	to	read	LFPs	and	correlate	it	with	different	brain	states	lies	in	the	cyclical	nature	of	

voltage	changes.	EEG	LFP	signals	ranges	between	frequencies	of	0.1	–	100	cycles	per	second	(Hz)	

[4][30].	Researchers	have	been	able	to	show	that	specific	frequency	ranges	that	relate	to	either	

motor,	sleep,	cognitive	behaviors	depend	on	which	brain	areas	are	being	recruited	and	working	

together	to	drive	such	behaviors.	The	brain	waves	are	usually	classified	in	six	main	categories,	

the	Delta	 (d),	Theta	(θ),	Alpha	(a),	Beta	(b),	and	Gamma	(g)	as	shown	 in	Figure	2.4	[30].	Each	

category	 can	 be	 differentiated	 by	 both	 amplitude	 and	 frequency	 ranges	 and	 they	 might	 be	

pronounced	during	specific	behaviors	(Table	2.5)	[30].	The	Delta	wave	is	strong	during	deep	sleep	

[30].	The	Theta	wave	is	associated	with	early	stages	of	sleep	[30].	Alpha	wave	is	present	during	a	

relaxed	 state	of	mind.	Beta	wave	 is	an	 indication	of	awareness	and	 focus	attention	 [30].	 The	

Gamma	wave	is	related	to	being	in	a	state	of	high	perception	[30].	Although,	this	are	the	main	

brain	waves	there	are	others	such	as	the	mu	(µ)	brain	wave.	The	frequency	range	of	the	mu	wave	

is	the	same	as	the	alpha	wave.	The	mu	(µ)	brain	wave	reflects	synchronous	firing	of	pyramidal	

neurons	 of	 the	motor	 cortex	 [4][30].	 The	mu	waves	 are	 present	 during	 sensorimotor	 cortex	

activity	and	this	signal	is	often	used	to	decode	movements	for	brain	machine	interface	prosthetic	

devices	[4][11][30].	In	the	context	of	this	study	the	brain	wave	of	interest	is	a	superposition	of	

the	Alpha,	Beta,	and	Mu	brain	waves.	
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Sources:	http://wolfcrow.com/blog/notes-by-dr-optoglass-motion-and-the-frame-rate-of-the-human-
eye/	

Figure	2.4:	Brain	Waves	in	EEG	
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Sources:	http://slideplayer.com/slide/5855779/	

Table	2.5:	Frequency	and	Amplitudes	of	Brain	Waves	

2.5	Magnetic	Resonance	Imaging	(MRI):	

Magnetic	Resonance	Imaging	is	an	imaging	modality	that	exploits	the	nuclear	spin	resonance	of	

atoms	in	the	body.	The	MRI	relies	on	the	concept	that	when	a	magnet	is	exposed	to	an	external	

magnetic	field	(B0	field),	it	tends	to	orient	itself	in	the	same	direction	as	the	external	magnetic	

field.	The	first	stage	of	MRI	acquisition	is	to	expose	the	participant	to	the	static	magnetic	field	

called	the	B0	field.	This	causes	the	hydrogen	atoms	to	align	either	parallel	or	anti-parallel	to	the	

B0	field.	The	second	stage	is	to	send	a	Radio-Frequency	(RF)	pulse	with	the	same	frequency	as	

that	of	particles	spin	to	make	their	procession	synchronous	to	each	other.	The	frequency	needed	

to	make	the	atoms’	phase	aligned	is	determined	by	the	Larmor	frequency.	The	Larmor	frequency	

is	proportional	to	the	gyromagnetic	ratio	and	the	magnetic	field	strength	of	the	MRI	(Equation	

2.6)	[29]	

	

Sources:	https://www.hdiac.org/node/1910	

Equation	2.6:	Larmor	Equation	

The	gyromagnetic	 ratio	 (MHz/T)	of	a	particle	 is	 a	measure	of	 the	 ratio	between	 the	particles	

magnetic	 moment	 to	 its	 angular	 momentum	 (𝜔 )	 [29].	 Different	 particles	 used	 in	 MRI	 have	
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different	gyromagnetic	ratios	(Table	2.7).	B0	field	is	the	magnitude	of	the	static	magnetic	field	in	

the	MRI.	

	

	

	

	

	

	

	

	

	

	

Sources:	http://mriquestions.com/gyromagnetic-ratio-gamma.html	

Table	2.7:	Gyromagnetic	ratio	of	different	particles	

The	final	stage	is	to	introduce	a	gradient	magnetic	field,	which	varies	proportionally	in	space.	The	

gradient	magnetic	field	causes	predictable	variations	in	the	Larmor	frequencies	given	off	by	the	

synchronous	processions	of	the	particle	of	interest	[29].	Therefore,	one	can	determine	where	in	

the	human	body	a	given	frequency	comes	from.	By	 introducing	a	gradient	magnetic	field,	the	

Larmor	equations	becomes	Equation	2.8	[29].	

	

Sources:	https://www.hdiac.org/node/1910	

Equation	2.8:	Modify	Larmor	equation	

	

The	G(t)	term	is	the	magnetic	field	gradient	which	causes	predictable	frequency	fluctuations	of	

the	signal.	This	basic	 template	has	been	used	to	obtain	MRI	 images	with	excellent	soft	 tissue	
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contrast	[29].	For	instance,	this	property	of	MRI	enables	radiologist	to	observe	difference	in	the	

nuclear	relaxation	times	of	health	and	cancerous	tissue	[29].		

2.6	Functional	Magnetic	Resonance	Imaging	(fMRI):	

Functional	Magnetic	 Resonance	 Imaging	 (fMRI)	 is	 a	 popular	 imaging	modality	 in	 the	 field	 of	

neuroscience.	 This	 tool	 enables	 the	 study	 of	 neuronal	 activity	 by	 relying	 on	 the	 bidirectional	

interaction	between	both	neuronal	and	hemodynamic	activities	[1][7][8][10].	fMRI	detects	Blood	

Oxygen	 Dependent	 changes	 (BOLD)	 to	 infer	 on	 neural	 activity	 [1][7][8][10].	 The	 magnetic	

properties	 of	 cerebral	 blood	 are	 determined	 by	 the	 oxygen	 concentration	 attached	 to	

hemoglobin.	During	neuronal	metabolic	activation,	oxygen	rich	hemoglobin	supplies	the	neurons	

with	oxygen	necessary	for	their	survival.	The	intensity	of	a	single	voxel	unit	in	the	fMRI	represent	

the	oxygen	supplied	to	a	region	of	the	brain	at	an	instance	of	time.	Therefore,	the	time	series,	

known	as	the	BOLD	signal,	can	be	acquired	by	taking	the	mean	voxel	intensity	of	the	same	brain	

region	for	various	sequentially	acquired	fMRI	volumes	(Figure	2.9).		

	

	

	

	

	

	

	

	

	

	

Sources:	www.brainvoyager.com	

Figure	2.9:	Representation	of	Bold	signal.	
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A)	 B)	

2.7	Simultaneous	EEG-fMRI:	

EEG-fMRI	 data	 allows	 a	 researcher	 to	 obtain	 information	 on	 fast	 voltage	 changes	 and	

hemodynamic	activity	synchronously	[4].	The	main	advantage	of	acquiring	EEG	inside	the	scanner	

is	 that	 it	 provides	 an	 excellent	 spatial-temporal	 resolution	 [4].	 However,	 the	 simultaneously	

recorded	EEG	signal	is	subjected	to	the	presence	of	various	artifacts	(Figure	2.10	a).	Two	of	the	

most	studied	artifacts	are	the	Gradient	Artifact	(GA)	and	the	Pulsatile	Artifact	(PA)	[2][3].		

	 	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	

Figure	2.10:	(A)	Is	Raw	Simultaneous	EEG	recording	(with	GA)	as	demonstrated	by	the	high	

amplitudes	in	the	order	of	1500	𝜇𝑉𝑜𝑙𝑡𝑠	and	(B)	is	the	Raw	EEG	signal	recorded	outside	the	

scanner	with	no	Gradient	Artifact.	
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Single	Slice	
Imaging	Artifact	
	

2.8	Gradient	Artifact	(GA):	

The	Gradient	Artifact	(or	Imaging	Artifact)	is	introduced	in	the	EEG	due	to	the	switching	of	the	

gradient	 field	 in	 the	 scanner	 (Figure	2.11).	 In	 echo	planar	 imaging	 (EPI),	 the	 switching	of	 the	

gradient	 field	occurs	every	 time	a	new	MR	 slice	 is	 acquired	 [2][12][29].	MR	 slices	 tend	 to	be	

acquired	in	the	range	of	50-150	msec,	it	is	during	this	time	that	dthe	gradient	fields	and	Radio-

Frequency	(RF)	pulses	induces	a	repetitive	artifact	waveform	in	the	electrical	potential	of	the	EEG	

signal	 that	 can	 be	 approximated	 as	 the	 differential	 form	 of	 the	 gradient	 pulse	 [2][12].	 The	

magnitude	 of	 the	 gradient	 artifact	 can	 be	 up	 to	 104	µV	higher	 than	 the	 neuronal	 EEG	 signal	

[2][12].			

	

		

	

	

	

	

	

Figure	2.11:	Gradient	Artifacts	present	in	Simultaneous	EEG	
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A)	

2.9	Pulsatile	Artifact	(PA):	

The	presence	of	 the	Pulsatile	Artifact	 (PA)	 is	due	 to	 the	electromotive	 force	 induced	by	head	

movements	that	arise	from	cardiac	pulsation	while	the	subject	lays	inside	the	MR	scanner	[3].	

The	shape	of	the	PA	differs	from	the	shape	of	a	typical	Ballistocardiogram.	Even	when	the	PA	is	

caused	by	electromotive	forces,	a	typical	Ballistocardiogram	is	determined	by	heart	dynamics,	

ventricular	forces,	and	directional	fluctuations	in	blood	ejection	from	the	heart	[3][29]	(Figure	

2.12).	The	PA	greatly	distorts	and	hides	 the	physiological	activity	present	 in	 the	EEG	signal.	A	

property	 of	 this	 artifact	 is	 that	 it	 possesses	 high	 power	 in	 the	 frequency	 range	 of	 4-10	 Hz	

[3][13][21].	The	amplitude	for	the	PA	artifact	varies	between	channels	and	subjects,	but	they	can	

exceed	amplitudes	of	50	µV	(Figure	2.13).	Therefore,	the	presence	of	this	artifact	makes	it	difficult	

to	detect	or	classify	the	alpha	(a)	and	mu	(µ)	brain	waves	in	both	time	and	frequency	domains.	

	

	

	

	

	

	

	

	

Sources:	http://abrc.snu.ac.kr/korean/viewforum.php?f=172	

Figure	2.12:	Comparison	of	Balliscardiogram	in	ECG	and	Pulsatile	Artifact	in	EEG.	
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B)	
	

	

	

	

	

	

	

	

	

	

	

Sources:	Allen,	1998	

Figure	2.13:	Chart	of	peak-peak	amplitude	of	Pulsatile	Artifact.	

	

	

	

	

	

	

	

	

	



	 18	

Theoretical	Background:	
This	section	highlights	the	mathematical	background	of	the	techniques	that	are	currently	being	

used	in	the	field	and	the	newly	implemented	by	this	study	for	the	analysis	of	the	simultaneous	

FMRI	data,	removal	of	the	artifacts	from	the	simultaneous	EEG,	and	classification	of	brain	waves	

from	EEG	data.	The	first	subsection	introduces	the	mathematics	of	different	stages	of	fMRI	data	

analysis.	The	second	subsection	deals	with	different	signal	processing	techniques	to	remove	the	

two	 different	 artifacts	 present	 in	 simultaneous	 EEG	 recording.	 The	 final	 subsection	 aim	 is	 to	

introduce	 the	 technique	used	 in	 this	 project	 for	 both	 the	 removal	 of	 the	PA	 artifact	 and	 the	

classification	of	the	brain	waves	of	interest.		

3.1	fMRI	Processing:	

fMRI	 processing	 is	 divided	 in	 multiple	 stages.	 These	 stages	 are	 realignment,	 normalization,	

smoothing,	 parameter	 estimation,	 statistical	 parametric	 mapping,	 and	 statistical	 inference	

(Figure	3.1)	[1].	

	

	

	

	

	

	

	

	

Sources:	http://slideplayer.com/slide/4918616/	

Figure	3.1:	fMRI	processing	
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3.2	Affine	Transforms:	

Affine	transformations	are	the	simplest	models	used	 in	 fMRI	that	uses	of	 linear	operations.	A	

property	of	these	transformations	is	that	any	set	of	points	that	fall	in	a	line	will	continue	to	fall	

on	a	 line	after	the	transformation	[9].	This	prevents	the	 image	to	be	distorted	because	 is	not	

possible	 to	 make	 radical	 changes	 to	 shape	 of	 an	 object	 [9].	 Affine	 transforms	 involve	 the	

combination	of	many	linear	transforms	such	as	translation	along	each	axis,	rotation	around	each	

axis,	scaling	along	each	axis,	and	shearing	along	each	axis	[9]	(Figure	3.2).		

	

	

	

	

	

	

	

	

	

	

Figure	3.2:	Demonstration	of	affine	transformations	on	a	MRI	slice	
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3.3	Mathematics	of	affine	transforms:	

Affine	transforms	involve	the	applications	of	a	linear	operator	to	the	coordinate	system	of	an	

image	(Equation	3.3).		

Ctransformed	=	T*Corig	

Equation	3.3:	Representation	of	Affine	transform	

In	 Equation	 3.3,	 Ctransformed	 represents	 the	 transformed	 coordinates,	 Corig	 are	 the	 original	

coordinates,	and	T	is	the	transformation	matrix	[9].	The	transformation	matrix	can	be	individual	

as	 previously	 shown	 in	 Figure	 3.4	 or	 any	 combination	 of	 those	 linear	 transforms.	 For	 two-

dimensional	coordinate	image	the	transformation	matrixes	can	be	defined	as	follows	(Equations	

3.4):	

(a) 																																												 	 (b)	

Tscale	=	
𝑆𝑐𝑎𝑙𝑒, 0 0
0 𝑆𝑐𝑎𝑙𝑒. 0
0 0 1

																			TTrans	=	
1 0 𝑇𝑟𝑎𝑛𝑠,
0 1 𝑇𝑟𝑎𝑛𝑠.
1 0 1

	

																									(c)																																																																(d)	

Trotat	=	
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

																TShear	=	
1 𝑆ℎ𝑒𝑎𝑟, 0

𝑆ℎ𝑒𝑎𝑟. 1 0
0 0 1

	

	

	

Equations	3.4:		Transformation	matrix	for	the	(a)	Scaling,	(b)	Translation,	(c)	Rotation,	and	(d)	

Shearing	of	a	2D	image.	
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3.4	Cost	functions:	

Motion	Correction	of	fMRI	deals	with	minimizing	the	differences	between	the	FMRI	volumes	and	

reference	structural	MRI	volume.	To	estimate	the	parameters	for	the	affine	transform	model	to	

best	align	the	fMRI	images	to	the	reference	structural	MRI	images,	the	difference	between	the	

images	 need	 to	 be	 determine	 [9].	 The	 difference	 between	 images	 is	 referred	 to	 as	 the	 cost	

function.	A	proper	cost	function	should	be	sufficiently	small	when	two	images	are	well-aligned	

and	 larger	as	 they	become	misaligned.	The	type	of	cost	 function	depends	on	types	of	 images	

being	registered	or	aligned.	If	the	images	are	of	the	same	type,	like	the	realignment	of	fMRI	voxels	

units	across	different	time-points,	then	the	cost	function	can	be	determined	by	minimizing	the	

difference	between	intensity	values	[9].	However,	when	dealing	with	images	of	different	contrast	

the	optimal	alignment	will	not	result	in	similar	intensity	values	across	images	[9].	This	is	known	

as	“between-modality”	registration	[9].	Therefore,	other	methods	are	used	that	are	sensitive	to	

the	 relative	 intensities	 of	 different	 sets	 of	 voxels	 [9].	 Two	 of	 the	most	 commonly	 used	 cost	

functions	are	the	least	square	and	the	normalized	correction.	

The	 least	 square	 cost	 function	 measures	 the	 average	 squared	 difference	 between	 voxel	

intensities	in	each	of	the	images	begin	registered	(Equation	3.5)	

C	=	 (𝐴> −	𝐵>)AB
>CD 	

Equation	3.5:	Least	Square	Cost	Function	

Av	and	Bv	represent	the	intensities	of	the	vth	voxels	in	the	images	A	and	B,	respectively	[9].	This	

technique	 measures	 similarities	 of	 intensity	 values	 at	 each	 voxel	 unit.	 Therefore,	 it	 is	 only	

appropriate	to	use	this	method	for	within-modality	registrations.	

The	Normalized	correction	considers	the	linear	relationship	between	voxel	intensities	in	the	two	

images	being	aligned	[9]	(Equation	3.6).	

C	=	
(EFGF)H

FIJ

EFKH
FIJ GFKH

FIJ

																	Equation	3.6:	Normalized	correlation	cost	function	
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3.5	Generalized	Linear	Model:	

The	generalize	linear	model	is	a	common	technique	in	FMRI	to	perform	voxel-based	correlation	

analysis.	This	model	relates	a	single	continuous	dependent	variable	to	one	or	more	continuous	

or	categorical	independent	variables	[1][7][8](Equation	3.7).																																																				

	

Equation	3.7:	The	Generalized	Linear	Model	is	a	statistical	tool	that	enables	one	to	determine	

the	level	of	influence	predictive	variables	are	having	on	a	observation.	The	terms	yi,	Xi,j	,	bj,	and	

ei	represent	the	observation	i,	value	i	for	predictor	variable	j	(known	as	a	regressor),	parameter	

estimate	for	predictor	variable	j,	and	error	for	observation	i;	respectively.	

The	 error	 term	 e,	 typically	 is	 written	 as	 e	 ~	 N(0,	𝜎 2I),	 where	 N	 is	 the	 multivariate	 normal	

distribution	and	I	is	the	identity	matrix	[8].		

	

	

	

	

	

	

	

Figure	3.8:	Matrix	form	of	GLM.	For	FMRI	data	the	ith	observation	would	contain	the	observer	

bold	signals	for	a	given	MR	voxels	unit.	The	j	predictor	variables	are	the	modeled	hemodynamic	

functions	for	a	given	testing	set	up.	The	vector	of	b	represent	the	level	that	each	of	the	design	

HRF	 influence	the	observed	bold	signal.	While,	the	error	terms	would	represent	any	Gaussian	

distributed	component	of	the	observed	bold	signal	not	accounted	by	the	modelled	HRF.	
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In	terms	of	FMRI	analysis,	the	observed	data	is	the	BOLD	signal	of	each	voxel	unit	in	the	FMRI	

volume	[2][8].	Each	of	the	time	series	of	individual	voxels	are	treated	as	a	separate	column	vector	

of	data	[1][8].	The	design	matrix	contains	various	explanatory	components	that	describes	a	given	

observation	 [1][8].	 The	 b	 values	 represent	 the	 degree	 of	 influence	 a	 particular	 explanatory	

component	has	in	the	description	of	the	observed	BOLD	signal	for	a	given	voxel	unit	[1][8].	The	

error	is	the	amount	of	variability	in	the	observe	BOLD	signal	that	cannot	be	accounted	with	by	

the	explanatory	variables	in	the	design	matrix	[1][7][8].	

In	practice,	Equation	3.7	 cannot	be	 fully	 solved	with	e	 =	0.	 The	main	objective	 is	 to	estimate	

parameters	 b,	 such	 that	 mean	 square	 error	 between	 the	 model	 and	 the	 observe	 data	 is	

minimized	[1][7][8].	Linear	algebra	enables	such	estimations	by	finding	the	minimum	value	to	the	

residual	sum	of	squares	(Equation	3.9).	

	

	

Equation	3.9:	The	Residual	Sum	of	Squares	 represents	 the	sum	differences	between	the	best	

estimated	models	and	given	observation	squared.	

The	minimization	of	the	residual	sum	of	square	can	be	derived	by	taking	the	derivative	and	

setting	it	equal	to	zero	(Equation	3.10).	The	expression	in	Equation	3.10	can	be	solved	

analytically.	

	

Equation	3.10:	Derivative	of	Residual	Sum	of	Squares	

For	the	general	analytical	solution	one	needs	to	consider	that	Equation	3.9	can	be	restated	as	

Equation	3.11	by	using	the	Equation	3.12	[17].		

𝑒MAN
MCD 	=	𝑒O𝑒	=	(Y	-	X𝛽)T(Y	-	X𝛽)	

Equation	3.11:	Matrix	form	of	Residual	Sum	of	Squares	
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𝑒	=	Y	-	X𝛽	

Equation	3.12:	Vector	of	residuals	

	𝑒O𝑒	=	YTY	-	XYT	𝛽	-	XT𝛽TY	+	𝛽TXTX𝛽	

Since	the	term		𝑒O𝑒	is	a	scalar,	then	the	term	XT𝛽TY	is	also	a	scaler.	Use	the	fact	that	the	transpose	

of	 a	 scalar	 is	 also	 a	 scaler	 [17],	 one	 arrives	 at	 the	 following	 expression	 (1).	 By	 substituting	

expression	(1)	into	Equation	3.12,	one	arrives	at	the	expression	(2).	The	Final	solution	is	obtained	

by	taking	the	derivative	of	(2),	setting	it	equal	to	zero	(3),	and	solving	for	b	(4)	(5).	

	 	 	 																									X𝛽YT	=	(X𝛽YT)T	=	XTY𝛽T																																													(1)	

																																				S	=	𝑒O𝑒	=	YTY	-	2XTY	𝛽T	+	XTX𝛽2																																										(2)		

																																										𝜕𝑆
𝜕𝛽
	=	-2XTY	+	2XTX𝛽	=	0																																																			(3)	

																																																														XTX𝛽	=	XTY	 	 	 	 (4)	

																																																		(XTX)-1(XTX)	𝛽	=	(XTX)-1XTY	 	 	 (5)	

The	analytical	solution	is	given	by	Equation	3.13,	assuming	XTX	is	invertible.	

I𝛽	=	𝛽	=	(XTX)-1XTY	

Equation	3.13:	Least	Squares	Solution		
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3.6	Statistical	Parametric	Maps:	

Statistical	 Parametric	Maps	 (SPMs)	 is	 the	 construction	 of	 spatial	 statistical	 processes	 to	 test	

hypothesis	about	specific	effects	within	a	region	[8][9][10].	SPMs	are	processes	with	voxel	values	

that	are	under	the	null	hypothesis,	which	distributed	with	a	known	probability	density	function	

[7][8].	In	FMRI	analysis	the	most	commonly	used	SPMs	used	are	T	and	F	maps	[1][7][8].	In	this	

study	only	T	maps	were	generated	for	the	FMRI	analysis	because	the	main	goal	is	to	examine	the	

net	affect	that	a	delay	and	no	delay	HRF	have	on	the	correlation	between	voxels.		

In	this	section,	the	mathematical	background	of	t	statistics	will	be	discussed.	The	T-test	can	be	

used	to	test	the	significance	of	a	particular	contrast	of	𝛽i’s.	For	a	vector	of	𝛽0,	𝛽1,	𝛽2,	….,	𝛽n,	a	

contrast	vector	of	length	n+1	needs	to	be	specified	[1][9].	The	contrast	vector	can	be	stated	to	

determine	if	a	𝛽i	value	is	different	from	0	or	if	values	𝛽i	and	𝛽	M	≅	S 	are	different	from	each	other	

[1][9].	For	each	of	the	respective	cases,	if	i	=	1	and	j	=	2	then	the	following	contrast	vectors	can	

be	specified	c	=	 [0	1	0	…	0]	or	c	=	 [0	1	 -1	0	….	0].	The	null	hypothesis	 for	 the	previous	given	

conditions	are	H0:	c𝛽 = 𝛽1	=	0	and	H0:	c𝛽 = 𝛽1	–	𝛽2	=	0,	respectively.	It	can	be	demonstrated	

that	 the	distribution	of	c𝛽	is	normally	distributed	with	properties	of	N(c𝛽,	c(XTX)-1cT𝜎2)	 [1][9].	

Therefore,	under	the	null	hypothesis,	c𝛽	~	N(0,	c(XTX)-1cT𝜎2)	[9].	However,	a	normal	distribution	

cannot	be	used	to	conduct	the	hypothesis	test	since	𝜎2	is	unknown.	Instead,	a	t	statistic	is	used	

to	perform	the	hypothesis	test	(Equation	3.14).	

	

tvalues	=	
UV

U(WXW)YJUXZK
	=	 UV

[\]	^__`_
	

Equation	3.14:	t	statistic	equation	

	In	Equation	3.14,	the	standard	error	(std	error)	=	mean	square	error	=	
(ab	–	 Wb,eVef

eIJ )KH
bIJ

B
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3.7	Current	techniques	for	Artifact	removal:	

The	two	most	studies	artifacts	present	in	simultaneous	EEG	recording	are	the	Gradient	Artifact	

(or	Imaging	Artifact)	and	the	Pulsatile	Artifact	(PA).	The	most	widely	used	technique	used	for	

the	removal	of	the	GA	is	Average	Artifact	Subtraction	(AAS)	[2].	

	3.8	Average	Artifact	Subtraction	for	GA	removal	(AASGA):	

This	technique	involves	taking	the	average	of	a	fixed	quantity	of	epochs	to	calculate	an	average	

artifact	 template	 [2][12].	 The	 average	 artifact	 template	 represents	 the	 gradient	 artifact	

waveform,	which	is	subtracted	from	the	original	EEG	for	each	of	the	epochs	[2][12].	An	epoch	

can	be	defined	as	either	one	volume	scan	or	as	one	slice	acquisition	[2][12].	The	most	appropriate	

definition	of	an	epoch	will	depend	on	how	the	FMRI	was	acquired.	 If	 the	 fMRI	sequence	was	

periodic	with	delays	between	volume	 scans,	 then	 the	epoch	 is	better	defined	by	 the	 volume	

repetition	time	(TR).	The	TR	being	the	time	it	takes	to	acquire	one	fMRI	volume	scan	[2][12].	On	

the	other	hand,	if	the	fMRI	was	acquired	continuously	without	delay	between	volumes,	then	an	

epoch	is	best	characterized	by	the	acquisition	time	(TA).	The	TA	being	the	time	it	takes	to	acquire	

a	single	fMRI	slice	[2][12].	To	optimize	the	calculation	of	the	average	artifact	each	of	the	defined	

epochs	are	interpolated	by	a	Sinc	function	[2][12].	In	addition,	prior	to	the	template	formation	

all	 the	epochs	are	maximally	aligned	to	each	other	using	of	cross-correlation	 (Equation	3.15).	

After	the	formation	of	the	GA	template,	the	template	is	subtracted	from	each	of	the	interpolated	

epochs.	Finally,	the	EEG	recording	is	usually	down-sampled	at	a	sampling	frequency	typically	used	

for	EEG	(~200	–	250	Hz)	[2][12].	

𝑅,.	=	 𝑥 𝑛 𝑦(𝑛 − 𝑘)NkD
BCl 	

Equation	3.15:	Discrete	Cross-Correlation	

Many	 other	 signal	 processing	 techniques	 have	 been	 proposed	 for	 the	 removal	 of	 the	 GA.	

However	not	only	 is	AASGA	 is	 the	simplest	 techniques	to	 implement,	but	previous	works	have	

shown	that	it	delivers	one	of	the	best	results	for	the	removal	of	the	GA	[2][12].	For	these	reasons,	

AASGA	is	the	only	method	introduced	in	this	report	for	the	removal	of	the	GA.		
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The	removal	of	the	GA	not	only	uncovers	some	EEG	activity	but	also	uncovers	the	presence	of	

the	 PA	 artifact.	 Some	 of	 the	 PA	 artifact	 removal	 techniques	 presented	 here	 are	 AASPA,	

Independent	 Component	 Analysis	 (ICA),	 Optimal	 Basis	 Set	 (OBS)	 using	 Principle	 Component	

Analysis	(PCA),	and	Adaptive	Filtering	[29].	

3.9	Average	Artifact	Subtraction	for	Pulsatile	Artifact	(PA)	removal	(AASPA):	

AASPA	 simplest	and	most	 frequently	used	 technique	 for	 the	 removal	of	 the	PA	 [3][29].	 In	 this	

method,	 the	 cardiac	 cycles	 from	 ECG	 are	 used	 to	 determine	 EEG	 epochs	 containing	 PAs.	 To	

compute	 the	 average	 PA	 template	 in	 each	 EEG	 channel,	 sections	 of	 the	 EEG	 signal	∓	½	 the	

average	of	R-R	interval	centered	about	the	R	amplitude	plus	a	time	delay	(~0.21	s)	are	average	

[12]	[13].	The	R-R	 interval	 is	defined	as	the	distance	between	an	 initial	maximum	peak	to	the	

consecutive	max	peak	in	ECG	data.	The	R	peaks	are	used	because	previous	works	have	found	that	

the	PA	tend	to	occur	after	the	presence	of	R	peaks	in	an	ECG	recoding	[13].	

This	technique	has	the	capability	to	improve	the	probability	of	PA	Artifact	peak	detection	[13].	

However,	the	method	has	major	problems	in	the	complete	removal	of	the	Artifacts.	In	previous	

studies,	 it	 has	 been	 examined	 that	 this	 technique	 has	 only	 reduced	 the	 number	 of	 Pulsatile	

artifact	by	~45%	[13].	This	is	mainly	due	to	the	underlining	assumption	made	by	AAS	which	is	that	

Pulsatile	Artifacts	are	 stationary	over	a	 fixed	period	of	 cardiac	 cycles	 [13].	This	assumption	 is	

highly	non-descriptive	of	the	properties	of	PA	as	they	tend	to	vary	continuously	in	form,	time,	

and	amplitude	[13].		Another	major	drawback	of	this	methodology,	is	that	the	ECG	signal	used	

for	the	PA	template	formation	are	also	subjected	to	the	presence	of	PA	[13].	Therefore,	it	is	rather	

difficult	to	distinguish	true	R	peaks	from	the	peak	of	a	PA	to	properly	capture	the	presence	of	the	

PA	in	the	EEG	signal.		
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3.10	Independent	Component	Analysis	(ICA):	

Independent	Component	Analysis	(ICA)	is	a	statistical	method	use	to	remove	artifacts	or	noise	

from	a	signal	interest.	It	is	only	able	to	remove	those	artifacts	that	are	linearly	and	independently	

mixed	with	the	signal	of	interest	[30].	ICA	can	extract	independent	sources	in	a	signal	if	the	source	

signal	is	considered	to	be	a	linear	mix	of	signals	[30].	Utilizing	this	method,	the	data	can	model	as	

Equation	3.16.	

	

Sources:	Jutten	&	Herault,	1991;	Comon,	1994	

Equation	3.16:	 ICA	model	 tries	 to	 return	 independent	 sources	 from	a	bunch	of	noise	 linearly	

mixed	observation.		

In	Equation	3.16,	the	terms	X,	S,	and	A	represent	a	stack	of	row	vectors	representing	data	from	

each	EEG	channels,	the	stack	of	row	vectors	representing	each	of	the	independent	sources,	and	

the	mixing	matrix,	respectively	[30].	Given	an	input	X,	the	ICA	algorithm	can	deliver	estimates	for	

parameters	A	and	S	[30].	Then,	the	estimated	parameter	S	(the	independent	components)	can	

be	used	to	 reject	artifacts	 from	the	signal	of	 interest	 [30].	The	 two	major	assumptions	 in	 the	

application	 of	 ICA	 to	 EEG	 signals	 are	 summarized	 by	Maki,	 2015.	 Firstly,	 the	 ICA	 component	

projections	are	summed	linearly	at	the	scalp	electrodes	[24].	Secondly,	the	time	series	of	EEG	

activity	 and	 artifacts	 are	 statistically	 independent	 [24].	 Partially,	 these	 assumptions	 impose	 a	

major	drawback	for	the	elimination	of	PA	artifact	from	the	EEG	signal.	This	two	assumptions	imply	

the	PA	in	each	EEG	channel	are	linear	independent	mixtures	form	isolated	PA	sources,	which	is	

not	the	case	[24][29][30].	Another	major	drawback	imposed	on	the	extent	of	PA	elimination	by	

ICA	is	that	of	under-determined	[24].	The	concept	of	under-determined	refers	to	the	inability	of	

ICA	to	separate	more	than	N	sources,	were	N	represents	the	number	of	electrodes	[24].	These	

prevents	the	proper	separation	of	 independent	sources	because	EEG	signals	are	generated	by	

various	synapses,	which	vastly	outnumbers	N	[24].		
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3.11	Adaptive	Filtering:	

There	have	been	multiple	approaches	to	implement	Adaptive	Filtering	for	PA	Artifact	removal.	

The	first	method	deals	with	the	property	of	PA	artifact	to	diffuse	more	spatially	than	a	neuronal	

signal	of	interest	[29].	In	this	technique,	N	EEG	electrodes	are	used	to	derive	a	spatial	filter	by	

projecting	the	multiple	channel	signal	into	a	single	dimensional	space	[29].	The	second	approach	

deals	with	the	use	of	a	piezoelectric	transducer	placed	directly	in	a	participant’s	temporal	artery.	

The	motion	artifact	noise	detected	by	the	piezoelectric	transducer	is	used	along	with	a	Wiener	

or	Kalman	filter	for	PA	artifact	removal	[29].	The	method	has	proven	to	be	particularly	good	at	

alpha	 detection	 since	 it	 is	 capable	 of	 reducing	 noise	 in	 the	 frequency	 band	 of	 interest	 [29].	

Previous	works	have	shown	that	this	technique	is	better	than	AAS	because	it	does	not	assume	

prior	knowledge	related	the	artifact	waveform	[29].	The	third	technique	 involves	the	use	of	a	

reference	 layer	adaptive	 filter.	 This	 involves	 the	use	of	an	EEG	cap,	which	contain	electrodes	

positioned	 directly	 above	 the	 EEG	 electrodes	 [22][23].	 These	 extra	 set	 of	 electrodes	 are	 the	

reference	electrodes,	which	are	not	in	contact	with	the	scalp.	Therefore,	the	reference	electrodes	

will	detect	the	presence	of	the	artifact	for	each	of	the	individual	EEG	electrode	positions.	The	

signal	from	both	the	EEG	and	reference	electrodes	are	processed	using	both	AASGA	and	AASPA	

[23].	The	residual	artifacts	in	the	reference	electrodes	are	used	with	an	adaptive	filter	to	remove	

remaining	residual	artifacts	in	the	EEG	signal	[23].		

3.12	Machine	Learning	Algorithm:	

Machine	 Learning	 (ML)	 Algorithm	 can	 be	 either	 Supervised,	 Unsupervised,	 Reinforced,	 Semi-

Supervised,	 and	 Active	 learning	 [20].	 The	 report	 elaborates	 on	Unsupervised	 and	 Supervised	

Learning.	
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3.13	Unsupervised	Learning:	

Unsupervised	Learning	does	not	involve	the	prediction	of	any	outcome	(dependent)	variable	[20].	

This	type	of	learning	is	only	dependent	on	the	intrinsic	correlation	among	the	input	data	[20].	

These	types	of	ML	Algorithms	are	used	to	uncover	significant	patterns	or	features	in	the	input	

data	without	the	use	of	labels	[20].	Unsupervised	Learning	is	suitable	for	biological	learning	since	

it	does	not	depend	on	the	utilization	of	labels,	but	rather	uses	primitives	like	neural	competition	

and	cooperation	[20].	Unsupervised	Gaussian	Mixture	Model	–	Expectation	Maximization	(GMM-

EM)	 Algorithm	 was	 employed	 to	 learn	 a	 prior	 of	 the	 brain	 wave	 of	 interests	 from	 the	 EEG	

recorded	outside	the	MR	scanner.	The	prior	will	serve	as	a	basis	for	Wiener	filter	to	extract	the	

variability	in	the	simultaneous	EEG	signal,	which	mostly	resembles	that	of	the	learned	prior.	

3.14	Gaussian	Mixture	Model	with	Expectation	Maximization:	

The	technique	of	GMM-EM	will	be	elaborated	as	in	Maki,	2015,	but	in	the	time	domain.	The	data	

from	a	multi-channel	EEG	signal	relating	the	kth	event	of	interest	from	a	given	set	of	channels	C	

is	represented	as	Ek(t)	=	[Ek,1(t),	Ek,2(t),	…,	Ek,C(t)]T	at	time	t	in	the	time	domain.	This	can	also	be	

represented	in	the	following	expression	(Equation	3.17):	

Ek(t)	=	 ℎn𝑠n(𝑡)n	o	Ep 	

ℎn 	=	[ℎD,n,	ℎA,n,	…	,	ℎq,n]	

Equation	3.17:	Representation	of	kth	event	in	EEG	as	the	linear	mixture	of	active	sources	

In	Equation	3.17,	the	terms	ℎS,n,	𝑠n(t),	and	𝐴rrepresent	the	transfer	function	from	the	𝑙th	source	

to	 the	C	channel	as	 long	as	assumption	 	0	≤	ℎq,n 	≤	1	holds	 for	 the	source	signal	 from	various	

sources	and	the	subset	of	sources	active	in	the	k-th	event,	respectively	[24].	The	observed	multi-

channel	 EEG	 signal	 is	 X(t)	 =	 [x(t)1,	 x(t)2,	 x(t)3,	 …,	 x(t)C]	 [24].	 The	 observed	 signal	 can	 be	 also	

expressed	as	the	superposition	of	the	various	Ek(t)	 (Equation	3.18),	where	K	 is	 the	number	of	

events.	
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X(t)	=	 𝐸r(𝑡)u
rCD 	

Equation	3.18:	Superposition	of	kth	events		

It	was	assumed	that	the	probability	density	function	(PDF)	of	𝑠n(𝑡)	can	be	model	by	a	zero-mean	

Gaussian	Distribution	(Equation	3.19)	

𝑃(𝑠n 𝑡 )	=	𝒩x(𝑠n 𝑡 ;	0,	𝑣r(t))			𝑙	𝜖	𝐴r 	

Equation	3.19:		Gaussian	Distribution	

In	Equation	3.19,	the	kth	dependent	𝑣r(t)	term	represents	the	variance	of	the	complex	Gaussian	

in	the	time	domain.	Further,	under	the	assumption	that	the	source	signals	are	non-correlated	to	

each	other	then	the	PDF	for	𝐸r(𝑡)	can	be	model	by	a	multivariate	Gaussian	distribution	as	follows	

(Equation	3.20)	[24].	

𝑃(𝐸r 𝑡 )	=	𝒩x(𝐸r 𝑡 ;	0,	𝑅Up(t))	

𝑅Up(t)	=	𝑣r(t)𝑅r 	

Equation	3.20:	Multivariate	Gaussian	Distribution	

The	spatial	covariance	matrix	𝑅Up(t)	is	the	composed	of	the	product	of	both	the	time	invariant	

matrix	𝑅r	and	the	time	variant	component	𝑣r(t)	[24].	Also,	under	the	assumption	that	a	single	

event	signal	is	active	in	each	time	slot	as	expressed	in	Equation	3.21,	then	the	PDF	of	the	observed	

signal	can	be	model	by	a	Gaussian	Mixture	Model	(Equation	3.22).	

X(t)	=	𝐸{ \ (𝑡)	

Equation	3.21:	Active	events	in	each	slot	
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𝑝(𝑋|𝜃)	=	 𝑝(𝑋(𝑡)|𝜃)\ 	

=	 𝛼r𝒩x(𝑋 𝑡 ; 0, 𝑅xp 𝑡 )
u
rCD\ 	

Equation	3.22:	Gaussian	Mixture	Model	

In	Equation	3.21,	 the	 term	𝑧(𝑡)	represents	 the	 index	of	 the	active	event	signal	 [24].	While,	 in	

Equation	3.22	the	terms	𝛼r	is	 the	prior	probability	of	a	given	kth	event	to	be	active	[24].	The	

parameter	𝜃	=	{𝛼r,	𝜈r(t),	𝑅xp}	of	each	mixture	component	[24][27].	Given	an	observation	X,	the	

parameter	𝜃 	is	 estimated	 by	maximizing	 the	 likelihood	 function	 of	 the	GMM	 (Equation	 3.23)	

[20][24][27].	

𝜃	=	argmax
�
𝑝(𝑋|𝜃)	

Equation	3.23:	Maximization	of	Likelihood	Function	

This	problem	is	tackled	by	using	the	Expectation-Maximization	(EM)	Algorithm.	The	Expectation	

step	 computes	 the	 posterior	 probability	 for	 every	 observation	 X	with	 respect	 to	 each	 of	 the	

components	 in	 the	 GMM	 [20][27].	 The	Maximization	 step	 takes	 the	 computed	membership	

posterior	 probabilities	 as	weights	 to	 provide	 estimates	 of	 the	means,	 covariance	matrix,	 and	

mixing	proportion	for	each	component	utilizing	maximum	likelihood	[20][27].	The	EM	algorithm	

iterates	over	these	two	steps	until	convergence	[20][27].		

3.15	Implemented	Adaptive	Filtering:	

A	Weiner	Filter	can	be	represented	as	follows	(Equation	3.24):	

𝐸r(𝑡)	=	𝑅xp(𝑡)𝑅W
-1𝑋(𝑡)	

𝑊	=		𝑅xp(𝑡)𝑅W
-1	

Equation	3.24:	Wiener	Filter	Equation	
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The	 term	𝑊 ,	 introduced	 in	 Equation	 3.25,	 represents	 the	 estimated	 weighting	 necessary	 to	

minimize	the	square	difference	between	the	noisy	signal	and	the	desired	filtered	signal	(Equation	

3.25).	

𝑊	=	argmin
�

|𝐸r(𝑡) 	− 	𝑋(𝑡)| 2	

Equation	3.25:	Minimization	of	Mean	Squares	Error	

An	example	code	was	developed	 to	 illustrate	 the	basic	concept	behind	 the	use	of	covariance	

matrixes	in	a	Wiener	filter	(Figure	3.26).	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 3.26:	 Illustration	 for	 Wiener	 Filter	 with	 Covariance	 Matrix.	 The	 red,	 blue,	 and	 black	

sinusoid	indicate	the	noise,	true,	and	filtered	sinusoid,	respectively.	The	goal	of	the	Wiener	filter	
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is	to	reduce	the	power	of	the	noise,	such	as	the	mean	square	error	between	the	noise	signal	and	

the	signal	of	interest	is	reduced.	

The	assumptions	for	a	Wiener	Filter:	

1. The	noise	being	suppressed	by	the	filter	has	to	be	additive	(Equation	3.27)	[25].	

𝑥 𝑡 = 	𝑠 𝑡 + 	𝜂 𝑡 	

Equation	3.27:	Representation	of	Observed	Noise	

2. Both	 𝑠(𝑡) 	and	 additive	 𝜂(𝑡) 	have	 well-defined	 power	 spectra	 over	 some	 period	 of	

interest	[25][26].	

3. 𝑠(𝑡)	and	additive	𝜂(𝑡)	are	stationary	linear	stochastic	processes	[25][26].	

The	primary	challenge	of	Wiener	filtering	is	the	estimation	of	two	district	power	spectrum	from	

a	 single	 signal	𝑥 𝑡 .	 The	 reason	being,	 as	 opposed	 to	 the	 example	 in	 Figure	 3.26,	 the	 power	

spectrum	of	the	actual	signal	of	interest	is	often	unknown.	The	Wiener	filter	can	be	either	applied	

in	 the	 time	and/or	 frequency	domain	 [25][26].	Currently,	 two	mathematical	 tools	 for	 relating	

second-order	 statistical	 properties	 of	mixtures	with	 deterministic	 and	 stochastic	 finite-power	

signals	are	autoconvolution	and	panorama	[25].	The	learned	covariance	prior	from	the	mixture	

of	features	represents	the	variability	of	the	EEG	signal	that	accounts	for	the	power	that	a	brain	

wave	has	in	the	overall	power	of	an	EEG	signal.	However,	GMM-EM	gives	a	covariance	matrix	

from	a	higher	dimensional	feature	space	rather	than	from	a	single	channel	signal.	

For	∀	𝑓	𝜖	𝑉,	where	𝑉 	is	 a	 vector	 of	 features,	 GMM-EM	 can	 provide	 a	 covariance	matrix	with	

dimensions	 equal	 to	𝑉 	for	 each	 independent	 kth	 component.	 The	 general	 covariance	matrix,	

computed	from	the	class	data	covariance	of	the	EEG,	can	be	used	for	a	Multichannel	Wiener	filter	

[19].	The	space	covariance	can	be	computed	by	averaging	all	same	class	data	covariance	of	the	

multichannel	EEG	[19].	Therefore,	the	covariance	matrix	of	all	set	of	features,	used	to	distinguish	

each	of	the	independent	components,	can	be	averaged	to	calculate	the	space	covariance	of	each	

component	(Equation	3.28).	Then,	the	general	covariance	of	the	two	independent	components	

(or	the	two	class)	can	be	expressed	as	a	sum	between	the	space	covariance	of	each	component	

[19]	(Equation	3.29).		
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𝑅D	=	
�J,�J�	�J,�K�	�J,���⋯�	�J,�H

B
	;		𝑅A	=	

�K,�J�	�K,�K�	�K,���⋯�	�K,�H
B

	

Equation	3.28:	Space	Covariance	for	a	two-class	system	

𝑅U 	=	𝑅D	+	𝑅A	=	 𝑅ruCA
rCD 	

Equation	3.29:	General	Covariance	for	a	two-class	system	

Knowing	 the	 general	 covariance	 for	 a	 two-class	 (component)	 Gaussian	 Mixture	 Model,	 the	

following	Multichannel	Wiener	filter	can	be	implemented	(Equation	3.30):	

𝑋U(𝑡)	=	𝑅U(𝑡)𝑅W -1𝑋(𝑡)	

Equation	3.30:	Multi-Channel	Wiener	Filter	

In	Equation	3.3.13,	the	term	𝑋U(𝑡)	is	the	filtered	Multichannel	EEG	recorded	inside	the	scanner	

by	 using	 the	 learned	𝑅U(𝑡)	from	 a	Multichannel	 EEG	 recorded	 outside	 the	 scanner.	 Equation	

3.3.12	and	Equation	3.3.13,	can	be	generalize	for	a	multi-class	GMM	but	for	the	purposes	of	this	

project	only	a	two-class	GMM	was	used.		

3.16	Supervised	Learning:	

Supervised	Learning	 involves	 target	 (or	dependent)	 variables	which	 is	 to	be	predicted	 from	a	

given	set	of	predictors	(independent	variables)	[20].	Using	the	set	of	variables,	the	algorithm	can	

learn	a	mapping	from	inputs	to	a	desired	output.	The	training	process	continues	iteratively	until	

the	 model	 reaches	 a	 desired	 accuracy	 on	 the	 training	 data	 [20].	 Two	 common	 supervised	

classification	 algorithms	 commonly	 use	 in	 Brain	 Computer	 Interfaces	 (BCI)	 are	 Linear	

Discriminant	Analysis	(LDA)	and	Support	Vector	Machine	(SVM)	[16].	In	this	project,	a	Supervised	

Support	Vector	Machine	Algorithm	was	utilized	for	the	classification	of	different	brain	waves	of	

interest.	
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3.17	Support	Vector	Machine	(SVM):	

Support	 Vector	 Machines	 uses	 a	 discriminate	 hyperplane	 to	 identify	 different	 classes	

[11][14][20].	The	selection	of	the	hyperplane	is	the	one	that	maximizes	the	margins	(Figure	3.31).	

In	SVM,	the	margins	are	defined	by	the	distance	from	the	nearest	training	point	 [11][14][20].	

Something	that	is	highly	crucial	is	the	design	and	selection	of	descriptive	features	of	the	particular	

brain	waves	of	 interest	 [11][14][20].	 The	extracted	 features	used	 for	 the	 classification	 in	 this	

report	will	be	emphasize	in	the	following	chapter.		

	

	

	

	

	

Sources:	http://shm.ucsd.edu/Site/research/shmalgorithms.html	

Figure	3.31:	Illustration	of	SVM	classification	in	Higher	Dimensional	Feature	Space	

3.18	Cross-Validation:	

Training	a	classifier	requires	the	assessment	of	its	performance.	The	accuracy	of	the	classifier	is	

quantified	by	comparing	the	number	of	correctly	label	data	to	its	original	assigned	label.	Cross-

Validation	is	a	standard	model-selection	method	in	statistics	[20].	In	this	method,	the	total	data	

set	is	randomly	partitioned	into	a	training	and	testing	set	[20].	The	major	part	of	the	partitioning	

is	incorporated	in	the	training	set,	which	is	utilized	to	train	the	ML	algorithm	[20].	Typically,	10-

20%	of	the	whole	data	set	is	included	in	the	testing	set	and	is	used	to	examine	the	overall	accuracy	

of	the	classifier	[20].	The	testing	set	 is	different	from	the	training	set	and	so	the	testing	set	 is	

completely	independent	from	the	set	used	to	estimate	the	model	[20].	
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A	 popular	 type	 of	 cross-validationthat	 is	 often	 used	 to	 diagnose	 the	 efficiency	 of	 the	 ML	

Algorithm	 is	 K-folds	 [20].	 In	 K-folds	 cross-validation,	 the	 whole	 dataset	 is	 split	 into	 K	 non-

overlapping	data	subsets	with	the	same	dimensions	[20].	Each	data	subset	can	be	partition	into	

testing	and	training	sets.		The	K-fold	cross-validation	estimation	error	is	the	average	value	of	the	

errors	for	each	of	the	K	fold	subsets.	This	error	estimation	depends	on	both	the	training	set	and	

the	K-fold	portioning	[20].			
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Materials	and	Methods:	

The	aim	of	the	study	is	to	examine	the	performance	of	statistical/machine	learning	method	in	

the	analysis	of	simultaneous	EEG-FMRI	data.	These	techniques	were	implemented	for	both	the	

analysis	of	FMRI	images	and	the	effective	removal	of	artifacts	in	the	simultaneous	EEG	recoding.		

4.1	EEG-FMRI	Data:	

The	two	datasets	acquired	were	Simultaneous	EEG-fMRI	data	and	the	EEG	data	recorded	outside	

the	scanner.	Both	of	the	datasets	were	obtained	from	the	same	participant.	The	data	used	in	this	

study	was	provided	by	the	 Institute	of	Neural	Engineering	at	TU	Graz.	The	data	provided	was	

collected	from	a	single	23-year-old	male	participant	[21].	The	participant	resided	inside	an	fMRI	

scanner,	while	receiving	instructions	for	performing	a	Motor	Imagery	(MI)	task	[21].		

4.2	Motor	Imagery	(MI)	Paradigm	Description:	

This	paradigm	applies	for	both	the	simultaneously	acquired	EEG	recording	and	the	EEG	recorded	

outside	the	FMRI	scanner.	At	the	start	of	each	trial,	a	fixed	cross	appeared	on	the	screen.	The	

fixed	 cross	 remained	 on	 the	 screen	 for	 ~	 8.5	 seconds.	 The	 first	 2.5	 seconds	were	 used	 as	 a	

reference	period,	while	the	remaining	4	seconds	were	used	to	label	either	right	hand	or	right	feet	

MI	 [21].	The	 indication	of	performing	either	right	hand	or	right	 feet	MI	was	randomized	[21].	

After	indication	for	MI,	the	participant	was	asked	to	maintain	the	MI	until	the	screen	appeared	

blank	 [21].	The	break	duration	for	each	trial	 lasted	from	a	range	of	8	–	10	seconds.	The	total	

number	of	runs	performed	during	the	simultaneous	recording	and	non-simultaneous	recording	

were	 4	 and	 7,	 respectively.	 Every	 run	 in	 the	 simultaneous	 EEG	 and	 non-simultaneous	 EEG	

recording	contained	20	and	30	trials,	respectively.	During	this	trials,	the	participant	performed	

either	right	hand	or	right	feet	MI.	The	following	paradigm	is	illustrated	by	Figure	4.1.	
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Sources:	Institute	of	Neural	Engineering	of	TU	Graz	(by	David	Steyrl)	

Figure	4.1:	Illustration	of	Motor	Imagery	(MI)	paradigm.	Figure	shows	how	the	time,	in	which	the	

fMRI	 volumes	were	 acquired,	was	 broken	 down.	 The	 color	 of	 the	 fixation	 cross	 represented	

whether	the	participant	needed	to	perform	either	right	hand	or	right	feet	motor	imagery.	The	

cue	on	the	screen	markes	the	time	were	the	EEG	signal	need	to	consider	as	Motor	Imagery.	The	

time	prior	to	the	cue	marker,	highlighted	in	red	(ref),	indicates	the	time	were	the	EEG	signal	does	

not	represent	any	MI	activity.	Once	the	screen	goes	blnk,	the	participant	could	stop	performing	

MI.	

4.3	Simultaneous	EEG-FMRI	Acquisition:	

A	 32	 channels	 MRI	 compatible	 EEG	 cap	 (BrainCap-MR	 with	 Multitrodes,	 EASYCAP	 GmbH,	

Herrsching,	Germany)	(Figure	4.2)	was	used	for	recording.	The	EEG	cap	was	synchronized	with	

the	gradient	field	clock	of	the	MR	scanner	[22].	All	32	EEG	electrodes	were	made	of	Ag/AgCl	with	

safety	resistors	[22].	To	fully	capture	the	waveform	of	the	GA	the	EEG	activity	was	acquired	at	

the	sampling	rate	of	5000	Hz	[22].	The	cut	off	frequency	of	analogue	high	pass	and	low	pass	filters	

were	set	to	0.016	Hz	and	250	Hz,	respectively.	During	recording,	the	voltage	range	was	set	to	∓	

16.384	 mV	 [22].	 The	 EEG	 recording	 was	 conducted	 within	 a	 3T	 Skyra	 (Siemens,	 Erlangen,	

Germany)	MRI	scanner	[22].	The	MR	scanner	was	equipped	with	standard	24	channel	head	coils	

[22].	 During	 the	 activation	 time	 of	 the	 scanner	 an	 echo	 planar	 imaging	 (EPI)	 sequence	 was	
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running	with	repetition	time	(TR)	of	2200	ms.	To	reduce	the	motion	of	the	EEG	electrode	cables	

sand	bags	were	used	to	hold	them	in	place	[22].	

	

	

	

	

	

	

	

	

	

	

	

	

Source:	EASYCAP	GmbH,	Herrsching,	German	

Figure	4.2:	32	channels	MRI	compatible	EEG	cap	

4.4	Non-Simultaneous	EEG	Acquisition:	

A	“BrainCap-MR”	electrode	system	by	EasyCap	(EASYCAP	GmbH,	Herrsching,	German)	was	used	

to	 record	 EEG	 activity	 outside	 the	 MRI	 scanner	 [21].	 The	 cap	 consists	 of	 one	 ground,	 one	

reference,	one	electrocardiogram	(ECG)	and	63	EEG	electrodes	[21].	The	EEG	electrodes	were	

regularly	place	on	the	scalp	with	a	distance	of	2.5	cm	from	each	other	[21].	The	rectangular	grid	

was	centered	on	a	10-20	system	positions	C3,	Cz,	and	C4	[21].	To	simulate	the	same	conditions	
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as	the	simultaneous	EEG,	the	participates	rested	in	a	face	up	position	while	the	non-simultaneous	

EEG	activity	was	recorded.	The	sampling	frequency	used	for	recording	was	of	200	Hz.		

4.5	Data	processing:	

The	 raw	FMRI	data	provided	were	 formatted	 in	 .IMA	 format.	The	FMRI	dataset	contained	64	

consecutive	acquired	volumes	form	one	participant.	Each	of	the	64	volumes	were	imported	into	

the	free	FSL	software	(Analysis	Group,	FMRIB,	Oxford,	UK)	version	5.0	and	were	motion	corrected	

with	the	default	Normalized	correlation	cost	function.	Six	degrees	of	freedom	(DOF)	were	used	

for	FMRI	registration,	with	a	structural	MR	reference	volume,	rather	than	12	DOF.	Six	DOF	(3	

translations	and	3	rotations)	is	reasonable	because	during	image	realignment	the	brain	does	not	

vary	in	size	or	shape.		The	voxel	time	series	(or	Bold	signal)	were	obtained	by	taking	the	mean	

intensity	for	same	voxel	unit	in	the	different	volumes	and	plotting	them	over	time	(Figure	4.3).	

	

	

	

	

	

	

	

	

	

Figure	4.3:	The	co-registered	fMRI	 images	 from	 left	 to	right,	display	the	sagittal,	coronal,	and	

traverse	views	of	the	brain.	The	position	of	green	cursor	indicated	coordinates	of	a	voxel	unit	of	

interests	and	the	plot	displayed	directly	beneath	the	images	is	the	observed	bold	signal	for	voxel	

units	indicated	by	the	cursor.	
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4.6	FMRI	Voxel-Based	Correlation	Procedure:	

1. After	motion	correction,	 the	 skull	was	 stripped	off	 the	brain	 images	by	applying	a	0.6	

fractional	intensity	threshold.	

2. After	skull	stripping,	a	Full	Wight	Half	Maximum	Gaussian	kernel	of	4mm	was	applied	to	

the	MOCO	fMRI.	This	spatially	smooths	out	the	intensity	to	increase	the	signal	to	noise	

ratio	(SNR).	

3. A	mask	was	created	 to	 remove	 the	surrounding	voxels	activity	which	 lie	outside	brain	

regions.	

4. The	design	matrix	for	the	GLM	model	uses	Mark	Cohen’s	Gamma-variate	function	along	

with	 its	 first	 and	 second	 temporal	 derivatives	 (Equation	 4.4)	 convoluted	 with	 a	 non-

shifted	 and	 shifted	 (6-seconds)	 box-car	 function.	 The	 box-car	 function	was	 assigned	 a	

value	of	1	during	the	time	segments	were	either	right	hand	or	right	feet	MI	was	performed	

and	zeros	during	the	other	time	periods.	The	purpose	of	including	both	first	and	second	

temporal	derivatives	of	the	HRF	is	to	capture	peaks	that	occur	earlier	or	later	in	the	bold	

signal	and	to	capture	narrower	or	wider	responses	in	the	signal,	respectively.		

r(t)	=	𝑡�𝑒k
�
�	

Equation	4.4:	Mark	Cohen’s	Gamma-variate	 function	used	 to	 represent	Hemodynamic	

Response	Function	(HRF).	The	terms	b	and	c	are	constant	with	values	of	8.6	and	0.547,	

respectively.	

5. The	Ordinary	Least	Square	was	used	to	solve	for	the	best	𝛽	estimates	for	the	GLM.	T	maps	

were	calculated	for	each	of	the	FMRI	slices.	The	T	Maps	are	then	overlay	to	its	appropriate	

fMRI	slice.		
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4.7	Procedure	for	MI	classification	from	non-Simultaneous	EEG:	

1. The	EEG	was	bandpass	filtered,	using	a	Finite	Impulse	Response	(FIR)	filter	of	order	1000,	

from	1Hz	to	80	Hz.	The	high	pass	at	1	Hz	removes	low-frequency	drifts,	while	the	low	pass	

at	80Hz	removes	any	frequency	that	is	not	part	of	the	EEG	signal.	

2. A	 Butterworth	 Notch	 filter	 of	 8th	 order	 and	 zero	 phase	 was	 used	 to	 remove	 50	 Hz	

powerline	noise	in	the	EEG	signal.	

3. A	second	FIR	bandpass	filter	of	order	1000	was	applied	from	8	Hz	to	30	Hz.	This	was	done	

to	 enhance	MI	 features	 which	 have	 been	 found	 to	 predominate	 in	 the	mu	 and	 beta	

ranges.	

4. One	 second	 long	 epochs	 were	 extracted	 from	 channels	 C3,	 Cz,	 Pz,	 and	 CP1.	 Every	

extracted	epoch	began	from	the	time	when	the	cue	to	perform	either	right	hand	or	right	

feet	MI	appeared	on	the	screen.	

5. The	SVM	classifier	was	 train	using	 the	 time	domain	 feature	vector	 from	the	extracted	

epochs	 of	 channels	 C3	 and	 Cz.	 After	 training,	 the	 performance	 was	 quantified	 by	

calculating	the	proportionality	of	the	correctly	labeled	MI	to	the	total	number	of	epochs	

extracted	from	both	Pz	and	CP1	channels.	

6. Repeat	steps	1-4,	then	a	power	estimation	was	obtained	by	squaring	each	of	the	1	second	

long	epochs	extracted	from	channels	C3,	Cz,	Pz,	and	CP1	(Figure	4.5).	Step	5	was	repeated	

but	using	the	new	power	band	feature	vector.		

	

	

	

Sources:	Lotte	2014	

Figure	4.5:	 Illustration	of	band	power	 feature	extraction	 from	channel	C3.	 The	 left	most	plot	

indicated	a	one	second	long	epoch	containing	MI	activity.	The	center	plot	is	the	bandpass	filtered	

(8-12	 Hz)	 raw	 EEG	 signal	 containing	 the	 MI	 activity.	 The	 right	 plot	 is	 the	 power	 estimation	

obtained	by	squaring	the	bandpass	filtered	signal.	
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4.8	Procedure	for	MI	classification	from	Simultaneous	EEG:	

1. Implement	 an	AASGA	 algorithm	 for	 the	 removal	 of	 the	GA	 from	 the	Multichannel	 EEG	

signal.	The	algorithm	extracts	EEG	epochs	defined	by	the	time	intervals	when	the	fMRI	

volumes	were	acquired.	For	each	individual	channel,	the	epochs	were	interpolated	to	5	

times	the	original	sampling	frequency	of	the	EEG.		

2. All	 the	 epochs	 belonging	 to	 a	 given	 channel	were	 cross-correlated	with	 one	 another.	

Then,	they	were	shifted	in	time	until	the	epochs	were	maximally	cross-correlated	with	

each	other.	

3. For	 all	 the	 cross-correlated	 epochs,	 the	 average	 artifact	 template	 was	 obtained	 by	

averaging	50	epochs	before	and	50	epochs	after	 a	 given	epoch.	 This	process	helps	 to	

accounts	for	extract	variability	in	the	GA	waveform	due	to	the	participant’s	motion.		

4. After	obtaining	the	average	artifact	template	for	a	given	epoch,	the	 least	square	error	

between	the	epoch	and	the	template	was	minimized	using	ordinary	 least	squares.	The	

template	was	 then	shifted	 in	 time	until	 it	was	maximally	cross-correlated	 to	 the	given	

epoch	and	subtracted.	Steps	1	–	4	will	repeat	for	all	the	EEG	channels.	

5. The	 AASGA	 EEG	 data	 is	 low	 pass	 at	 70	 Hz	 and	 subsequently	 down-sampled	 at	 a	 new	

sampling	frequency	of	250	Hz.	

	

	

	

	

	

	

	

Figure	4.6:	Illustration	showing	the	general	process	of	the	implemented	AASGA	

6. To	 remove	 the	 PA	 artifact,	 the	 algorithm	 described	 in	 section	 3.14	 and	 3.15	 was	

employed.	The	first	100	ms	of	each	of	the	C3	and	Cz	extracted	epochs	were	used	to	learn	

the	spatial	covariance	prior.	
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7. After	the	removal	of	the	PA	artifact,	a	Butterworth	Notch	filter	of	8th	order	and	zero	phase	

was	used	to	remove	50	Hz	powerline	noise	in	the	EEG	signal.	

8. Steps	3	–	6	are	repeated	for	the	non-simultaneous	multichannel	EEG	data	with	channels	

C3,	Cz,	C21,	and	C22.	
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Results:	

5.1	Regressors	used	for	GLM:	

A	total	of	6	regressors	were	used	in	the	GLM	model,	excluding	the	baseline	regressor.	The	first	3	

regressors	were	the	HRF	and	its	first	and	second	temporal	derivates	without	delay	with	respect	

to	the	time	of	MI	activity	(Figure	5.1).	The	second	set	of	3	regressors	used	were	the	same	HRF	

and	 its	temporal	derivatives	with	an	 induced	6	second	delay	with	respect	to	the	period	of	MI	

activity	(Figure	5.2).	

	

	

	

	

	

	

	

	

	

Figure	5.1:	GLM	regressors	with	no	induced	time	delay	with	respect	to	MI	activity	
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Figure	5.2:	GLM	regressors	with	6	seconds	induced	time	delay	with	respect	to	MI	activity.	

5.2	T-Maps	from	GLM:	

The	 t-value	 maps	 were	 calculated	 for	 each	 individual	 FMRI	 voxel.	 To	 evaluate	 the	 level	 of	

correlation	each	voxel	had	with	a	given	contrast	vector	 (or	null	hypothesis)	 the	T	maps	were	

threshold	at	a	value	of	1.5	times	the	interquartile	range	(IQR)	plus	the	50th	percentile.	The	null	

hypothesis	in	question	were:	

1. If	the	combination	effects	of	the	zero	time-delayed	regressors	are	equal	to	zero.	

2. If	the	combination	effects	of	the	6	second	time-delayed	regressors	are	equal	to	zero.	

3. If	 the	difference	between	the	effects	of	 the	6	second	time-delayed	regressors	and	the	

effects	of	the	zero	time-delayed	regressors	are	equal	to	zero.		

The	 resulted	 threshold	 T-maps	were	 overlay	 on	 to	 appropriate	 2D	 FMRI	 slices.	 A	 few	 of	 the	

transverse	 slices	 are	 shown	 in	 Figure	5.3,	 showing	motor	 related	brain	 regions,	 for	 the	 three	

scenarios.	The	colored	heat	map	shows	the	voxels	with	t-values	greater	than	the	50th	percentile	

plus	1.5	times	the	IQR.	The	colormap	show	color	representation	given	to	each	t-value.		
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Figure	 5.3:	 Displays	 the	 overlay	 T	 maps	 slices	 1-5,	 9-13,	 and	 29-33	 onto	 the	 FMRI	 slices	

(Transverse	axis).	Each	of	the	displayed	collage	of	t-maps	have	labels	A,	P,	R,	and	L	which	indicate	

the	Anterior,	Posterior,	Right,	and	Left	sides	of	the	brain.	The	colored	voxels	are	those	with	t-

values	greater	than	the	50th	percentile	of	the	entire	distribution	of	t-values	plus	1.5	the	in	IQR.	

This	is	shown	for	(a)	Regressors	with	no	time	delay	with	respect	to	the	times	of	MI	activity,	(b)	

Regressors	with	an	induced	6	second	time	delay	with	respect	to	times	of	MI	activity,	and	(c)	The	

difference	in	influence	between	(b)	and	(a).	

Overall,	the	T	Maps	show	more	synchronized	clustered	activity	when	the	HRF	is	delay	(6	seconds)	

from	the	time	of	MI	activity.	Slices	9-13	in	figure	5.3	(b)	shows	most	on	the	underlining	activity	

being	concentrated	in	the	right	hemisphere	of	the	brain.	On	the	other	hand,	the	same	slices	in	

figure	5.3	(a)	show	rather	scattered	activity.		
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A)	 B)	

5.3	Classification	of	MI	activity:	

The	binary	SVM	classifier	in	MATLAB	(Mathworks	Inc.,	Natick,	MA,	USA)	version	2017b	was	used	

to	learned	features	that	distinguishes	right	hand	from	right	feet	motor	imagery	(MI).	The	2-class	

classification	problem	was	defined	by	the	identifier	set	{1,2}	where	1	and	2	represented	an	event	

being	 right	 hand	 MI	 or	 right	 feet	 MI,	 respectively.	 To	 reduce	 the	 effects	 of	 the	 curse	 of	

dimensionality,	due	to	low	amounts	training	data,	only	channels	C3	and	Cz	were	used	for	training.	

These	two	channels	were	used	since	they	lie	directly	above	the	parietal	lobe	of	the	brain.	Two	

types	 of	 feature	 vectors	were	 used	 individually	 to	 examine	 the	 overall	 affect	 that	 the	 set	 of	

features	had	in	the	discriminative	power	of	the	learning	algorithm.	The	two	individual	feature	

vectors	were	a	time	domain	and	a	power	feature	vector.	The	learning	algorithm	ran	7	times,	one	

for	 each	 run	 of	 the	 non-simultaneous	 EEG	 acquisition.	 The	 error	 rate	 of	 the	 algorithm	 was	

quantified	as	the	amount	of	times	the	algorithm	misclassified	a	type	of	MI	over	the	total	size	of	

the	testing	set.	The	overall	accuracy	was	calculated	as	one	minus	the	average	of	all	the	error	rates	

(Figure	5.4	and	5.5).		The	difference	between	right	hand	and	right	feet	MI	was	established	by	the	

likeliness	of	an	observation,	in	the	testing	set,	to	be	either	hand	or	feet	MI	based	on	a	learned	

set	of	 features	 (or	Posterior	Probability).	 If	 the	posterior	probability	of	 an	observation	 in	 the	

testing	 set	was	≥	than	0.5	 then	 the	event	was	 considered	 a	 right	 feet	MI,	 anything	 else	was	

considered	to	be	right	hand	MI.		
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C)	 D)	

E)	 F)	
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Figure	5.4:	Shown	above	are	the	error	rates	of	the	algorithm	with	respect	to	each	of	the	7	non-

simultaneous	EEG	runs	(A-G),	when	using	a	time	feature	vector.	The	1	and	2	in	both	original	and	
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A)	 B)	

C)	 D)	

E)	 F)	

predicted	labels	represents	a	right	hand	MI	and	right	feet	MI,	respectively.	(H)	Shows	the	overall	

accuracy	of	correctly	classifying	a	given	type	of	MI	overall	the	7	EEG	runs.	
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G)	

H)	

	

	

					 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	

	

Figure	5.5:	Shown	above	are	the	error	rates	of	the	algorithm	with	respect	to	each	of	the	7	non-

simultaneous	EEG	runs	(A-G),	when	using	a	power	feature	vector.	The	1	and	2	in	both	original	

and	predicted	labels	represents	a	right	hand	MI	and	right	feet	MI,	respectively.	(H)	Shows	the	

overall	accuracy	of	correctly	classifying	a	given	type	of	MI	overall	the	7	EEG	runs.					

The	overall	mean	accuracy	obtained	for	both	the	time	domain	and	power	feature	vectors	were	

0.8524	(or	85.24%)	and	0.8333	(or	83.33%),	respectively.	The	difference	in	the	mean	accuracies	

between	both	features	was	of	0.0196	(or	1.96	%).	These	indicates	that	there	does	not	appear	to	

be	a	difference	in	the	mean	accuracy	of	correctly	classifying	the	two	MI	based	on	using	either	a	

time	domain	or	power	feature	vector.		
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A)	

C)	

B)	

5.4	Implementation	of	AASGA	Algorithm:	

	

	

	

		

	

	

	

	

	

	

	

	

	

	

	

Figure	5.6:		Generated	plots	show	(A)	a	comparison,	in	the	time	domain,	between	the	raw	EEG	

signal	in	C4	channel	(Blue)	and	the	signal	after	Average	Artifact	Subtraction	of	GA	(Red),	(B)	the	

calculated	GA	Template,	and	(C)	the	remaining	Pulsatile	artifacts	(indicated	by	the	black	arrows)	

after	the	subtraction	of	the	GA	template	from	the	signal.					
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A)	

B)	 C)	

D)	 E)	

		5.5	Implementation	of	GMM-EM	Wiener	Filter:	
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A)	

B)	

Figure	5.7:	The	Generated	plot	shows	comparisons	in	the	time	domain	of	(A)	the	down-sampled	

C3	channel	EEG	signal	after	AASGA	(Blue)	and	after	AASGA/GMM-EM	Wiener	Filter	(Red),	(B)	the	first	3	

seconds	of	the	EEG	signal	at	channel	C3	after	AASGA	(Blue)	and	after	AASGA/GMM-EM	Wiener	Filter	

(Red),	(C)	the	difference	between	each	of	the	signals	 in	(B),	(D)	the	first	3	seconds	of	the	EEG	

signal	at	Channel	C22	after	AASGA	(Blue)	and	after	AASGA/GMM-EM	Wiener	Filter	(Red),	and	(E)	the	

difference	between	each	of	the	signals	in	(D).	

To	quantitatively	assess	the	effectiveness	of	GMM-EM	Wiener	Filter	to	suppress	PA	artifacts	the	root-

mean-square-error	 (RMSE)	was	calculated	for	each	EEG	channel	 (Appendix).	The	mean	RMSE,	

over	 all	 the	 EEG	 channels,	 was	 computed	 to	 compare	 it	 with	 the	mean	 RMSE	 presented	 by	

Mahadevan,	2008	(Figure	5.8)	[29].		

 

	

	

	

	

	

	

																		Sources:	Mahadevan,	2008		

Figure	5.8:	 (A)	 Table	 shows	 the	mean	RMSE	 values	of	 64	 EEG	 channels	 after	 applying	AASPA,	
Dilated	Discrete	Hermite	Transform	Method,	and	ICA	for	PA	removal	of	3	different	subjects’	EEG	
activity	(Mahadevan,	2008)	[29].	(B)	Shows	the	mean	RMSE	value	of	the	31	channels,	of	our	subject,	
after	implementation	of	the	GMM-EM	Wiener	Filter.	

A	statistical	comparison	between	the	efficiency	of	GMM-EM	Wiener	Filter	technique	to	remove	the	

PA	and	the	techniques	presented	by	Mahadevan,	2008	 is	not	possible.	The	reason	being	that	

variation	 due	 to	 participant’s	 EEG	 activity	 and	 electrode	 positions	 are	 not	 accounted	 for.	
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A)	 B)	

C)	 D)	

Therefore,	one	cannot	establish	the	verdict	that	the	GMM-EM	Wiener	Filter	significantly	reduces	the	

PA	compare	to	the	other	methods.	However,	the	almost	all	the	mean	RMSE	for	each	of	the	PA	

removal	 techniques	 examined	 by	 Mahadevan,	 2008	 are	 larger	 than	 the	 mean	 RMSE	 values	

calculated	for	the	GMM-EM	Wiener	Filter.	Therefore,	GMM-EM	Wiener	Filter	could	potentially	be	better	

than	most	techniques	at	suppressing	the	PA	from	simultaneous	EEG	signals.		

5.6	Classification	of	MI	activity:	

To	carry	out	classification,	the	same	approach	as	described	in	section	5.3	was	used.	However,	the	
learning	algorithm	ran	4	times,	since	the	non-simultaneous	EEG	data	only	consisted	of	4	runs	
rather	than	7	runs.	The	classification	involved	the	same	two	individual	feature	vectors	of	time	
and	power.	In	this	section,	the	average	accuracies	obtained	after	just	AASGA	and	AASGA/GMM-EM	

Wiener	Filter	were	compared	for	the	two	types	of	features	(Figure	5.9	and	Figure	5.10).	
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E)	 F)	

G)	 H)	

I)	 J)	

	 	 	 	 	 	 	 	

	

	

	 	 	 	 	 	 	 	

	

	

	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	

	

	

	

	

	 	 	 	 	 	 	 	

	

	

Figure	 5.9:	 Shown	 above	 are	 the	 error	 rates	 of	 the	 algorithm	 with	 respect	 to	 each	 of	 the	

simultaneous	EEG	runs	(A-J),	when	using	a	time	feature	vector.	The	1	and	2	in	both	original	and	

predicted	labels	represents	a	right	hand	MI	and	right	feet	MI,	respectively.	All	the	charts	on	the	

left	side	were	the	results	from	data	after	the	implementation	of	AASGA	only.	The	charts	on	the	

right	are	results	obtained	after	both	AASGA	and	GMM-EM	Wiener	Filter	were	performed.	(I-J)	Shows	

the	overall	accuracy	of	correctly	classifying	a	given	type	of	MI	overall	the	4	EEG	runs.	
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A)	 B)	

C)	 D)	

E)	 F)	

	 	 	 	 	 	 	 	

	

	

	

	

	

	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	

	

	

	

	

	



	 60	

G)	 H)	

I)	 J)	

	 	 	 	 	 	 	 	

	 	 	

	

	

	

	

	 	 	 	 	 	 	 	 	

	

Figure	 5.10:	 Shown	 above	 are	 the	 error	 rates	 of	 the	 algorithm	 with	 respect	 to	 each	 of	 the	

simultaneous	EEG	runs	(A-J),	when	using	a	power	feature	vector.	The	1	and	2	in	both	original	and	

predicted	labels	represents	a	right	hand	MI	and	right	feet	MI,	respectively.	All	the	charts	on	the	

left	side	were	the	results	from	data	after	the	implementation	of	AASGA	only.	The	charts	towards	

the	 right	 are	 results	 obtained	 after	 both	AASGA	and	GMM-EM	Wiener	 Filter	were	 performed.	 (I-J)	

Shows	overall	accuracy	of	correctly	classifying	a	given	type	of	MI	overall	the	4	EEG	runs.	

The	 average	 classification	 accuracies	 for	 the	 AASGA	 and	 AASGA/GMM-EM	Wiener	 Filter	 processed	

signals,	 using	 the	 time	 domain	 feature	 vector,	 were	 0.625	 (or	 62.6%)	 and	 0.700	 (or	 70.0%);	

respectively.	The	mean	accuracies	using	an	estimated	power	feature	vector	were	0.575	(or	57.5	

%)	and	0.725	(or	72.5%),	respectively.	The	difference	between	the	four	categories	may	not	seem	

substantial,	since	the	standard	deviation	is	rather	large.	This	could	be	due	to	small	amount	of	

training	set	used	for	the	classification.	However,	it	is	interesting	to	observe	differences	in	overall	

classification	performance	between	the	two	artifact	removal	stages	for	the	same	type	feature	

vector.	The	differences	in	accuracies	between	artifact	removal	stages	for	a	given	time	domain	

and	power	feature	vector	were	0.075	(or	7.5	%)	and	0.150	(or	15.0	%),	respectively.	To	determine	

whether	a	parametric	or	non-parametric	significance	test	should	be	use	a	one-sided	t	test	was	

performed	to	determine	if	the	both	populations	came	from	a	normal	distribution.	The	test	failed	
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to	reject	the	null	hypothesis	for	the	group	using	a	time	domain	feature	vector.	On	the	other	hand,	

the	t-test	did	reject	the	null	for	the	group	using	a	power	feature	vector	for	classification.		This	

means	that	the	differences	in	accuracy	between	the	two	stages	for	the	time	domain	and	power	

feature	vectors	were	normally	distributed	and	non-normally	distributed,	respectively.	The	non-

parametric	Wilcoxon	rank	sum	test	was	employed	to	examine	if	a	significant	difference	between	

these	two	groups	could	be	established.	The	test	failed	to	reject	the	null	hypothesis,	with	p-value	

of	0.143	(p-value	>	0.05),	establishing	that	there	was	no	significant	difference	between	the	two	

groups.		
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Conclusion:	

The	results	of	the	GLM	does	seem	demonstrate	high	levels	of	activity	in	slices	29	and	30,	which	

could	 represent	 the	 sections	 of	 the	 Parietal	 lobe.	 However,	 to	 conclusively	 determine	 if	 the	

correlated	voxels	are	present	in	brain	regions	responsible	for	motor	imagery	the	T-maps	must	be	

overlay	onto	a	structural	MRI	brain	volume	and	a	3D	rendering	of	the	maps	most	be	created.	A	

way	 to	possibly	obtain	more	 representative	T-maps	of	MI	activity	 is	 to	use	 the	energy	of	 the	

simultaneous	EEG	signal	were	MI	was	performed	as	a	regressor	for	the	GLM.	

The	offline	classification	of	the	two	different	MI	activity	in	channels	Pz	and	CP1	from	the	non-

simultaneous	EEG	show	to	deliver	good	overall	mean	accuracies.		The	mean	accuracies	were	in	

the	80’s	range,	which	lies	in	the	higher	range	of	possible	offline	classification	accuracies	as	stated	

in	Pfurtscheller,	2006.	Although,	lower	average	accuracies	were	obtained	for	C22	and	C21	in	the	

processed	simultaneous	EEG	data,	 they	still	 lied	within	the	specified	range	of	50.8%	to	93.3%	

[28].	These	results	are	rather	reasonable	when	accounting	for	the	fact	that,	as	of	now,	not	a	single	

technique	can	 fully	 recuperate	 the	EEG	activity	 from	the	massive	artifacts	present	 in	 the	EEG	

recording.	Therefore,	it	can	be	said	that	more	time	needs	to	be	invested	in	the	development	of	

new	techniques.	The	technique	employed	in	this	report,	for	the	Pulsatile	Artifact	(PA)	removal,	

was	GMM-EM	Wiener	Filter.	This	technique	seems	to	have	potential	to	recover	the	underlining	EEG	

activity	within	the	mu	and	beta	ranges.	This	idea	is	reflected	through	both	the	acquired	mean	

RMSE	value	and	acquired	classification	accuracies.	The	technique	may	be	better	at	recuperating	

the	 underlining	 power	 of	 the	 EEG	 signal,	 than	 its	 waveform	 present	 in	 the	 time	 domain	 as	

demonstrated	 in	 figure	 3.3.10.	 This,	 in	 principle,	 is	 because	 the	 Wiener	 Filter	 works	 by	

suppressing	 the	 power	 of	 the	 noise	 (or	 artifact)	 but	 cannot	 itself	 recover	 properties	 of	 the	

waveform	of	the	signal	that	have	been	distorted	by	the	noise	[25].	If	this	is	the	case,	then	the	

classification	 of	 MI	 activity	 using	 power	 features	 should	 be	 significantly	 better	 the	 MI	

classification	using	time	domain	features.	The	non-parametic	Wilcoxon	significance	test	was	used	

to	see	if	there	was	a	significant	difference	between	the	classification	accuracies	of	obtained	by	

the	use	of	either	a	time	domain	or	power	features.	The	Wilcoxon	test	dictated	that	no	significant	

difference	was	found	between	the	accuracies	obtain	by	using	time	domain	or	power	features.	
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However,	the	non-significance	differences	between	both	set	of	feature	might	be	a	result	of	the	

small	data	set	used	to	establish	significance.	Therefore,	a	similar	study	needs	to	be	conducted	on	

a	larger	dataset	to	establish	if	there	is	truly	no	significant	difference	between	using	a	time	domain	

feature	vector	or	a	power	 feature	vector	when	classifying	MI	activity	after	 the	application	of	

GMM-EM	Wiener	Filter.		
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Appendix:	

Results	of	Section	5.5:	
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Developed	Python	and	Matlab	Scripts:	
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Sources	code	of	 section	4.6:	The	above	python	script	was	developed	 to	performed	the	steps	

described	 in	 section	 4.6.	 The	 script	 is	 an	 implementation	 of	 voxel-based	 correlation	 using	

Generalized	 Linear	 Model	 and	 Ordinary	 Least	 Squares.	 The	 script	 can	 only	 be	 used	 when	

analyzing	data	of	a	single	subject.	
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Sources	code	of	 section	4.7:	The	above	Matlab	script	was	developed	 to	performed	the	steps	

described	in	section	4.7.	The	script	is	an	implementation	of	Support	Vector	Machine	classification	

using	Matlab’s	fitsvm()	function.		
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Sources	code	of	section	4.8:	The	above	Matlab	script	was	developed	to	performed	the	technic	

AASGA	described	by	Allen	(2000).	The	number	of	GA	epochs	averaged	to	calculate	the	Average	

Artifact	Template	was	taken	from	Steyrl	(2017).	
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Sources	code	of	section	3.14,	3.15,	and	4.8:	The	above	Matlab	script	first	implements	the	GMM-

EM	Wiener	Filter	as	described	by	sections	3.14	and	3.15.	The	Matlab	function	used	for	GMM-EM	with	
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two	components	was	gmdistribution.fit().	Then,	the	steps	described	in	4.8	for	the	classification	

of	MI	activity	were	perform	on	the	processed	simultaneous	EEG	data.	


