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Abstract

The main aim of this report is to study new algorithms for determining rational and
algebraic solutions of first-order algebraic ordinary differential equations (AODEs). The
problem of determining closed form solutions of first-order AODEs has a long history,
and it still plays a role in many branches of mathematics. Our interests are algebraic
general solutions and rational general solutions. We approach first-order AODEs from
algebraic geometric aspects. By considering the derivative as a new indeterminate, a first-
order AODE can be viewed as a hypersurface over the ground field. Therefore tools from
algebraic geometry are applicable. In particular, we use birational transformations of
algebraic hypersurfaces to transform the differential equation to another one for which
we hope that it is easier to solve. This geometric approach leads us to a procedure for
determining an algebraic general solution of a parametrizable first-order AODE. A general
solution contains an arbitrary constant. For the problem of determining a rational general
solution in which the constant appears rationally, we propose a decision algorithm for the
general class of first-order AODEs.



Acknowledgement

I am especially grateful to my supervisor, professor Franz Winkler, for proposing this
project, and for his strong support. I would also like to thank Dr. Georg Grasegger
(RICAM, Linz) for many evaluable discussions and fruitful collaborations.

I want to express my gratitude to professor Alexey Ovchinnikov for hosting me when I
visited The Graduate Center, City University of New York, and for offering me a chance
to collaborate with his research group.

This work is supported by the strategic program “Innovatives 00 2020” by the Upper
Austrian Government, and the Austrian Marshall Plan Foundation.



Contents

1 Introduction 4
2 Preliminaries 6
2.1 General solutions of AODEs . . . . . . ... ... .o, 6
2.2 Parametrization of algebraic curves and surfaces . . . ... ... ... ... 8
3 Algebraic general solutions of first-order AODEs 9
3.1 Associated Differential System . . . . . . ... ... ... ... 10
3.2  Planar rational system and its algebraic general solutions . . .. ... ... 13
3.3 Algebraic general solutions with degree bound . . . . . . ... ... ... .. 19
4 Rational general solutions of first-order AODEs 22
4.1 Strong rational general solution . . . . . .. .. ... 0oL 23
4.2 Optimal parametrization of rational curves . . . .. ... .. ... ..... 25
4.3 Associated differential equation . . . . ... ... L 30
4.4 Algorithm and Examples . . . . . . . .. ... o oL 33



1 Introduction

A first-order AODE is a differential equation of the form F(z,y,y") = 0, where F is a
polynomial in three variables with coefficients in an algebraically closed field, for instance
Q, the field of algebraic numbers. Solving the differential equation is the problem of
determining differentiable functions y = y(x) such that F(z,y(x),y'(z)) = 0. If y(x)
is an algebraic (rational, polynomial) functions, then it is called an algebraic (rational,
polynomial, respectively) solution. A solution may contain an arbitrary constant. Such a
solution is called a general solution. For example, y(z) = 22 + ¢ is a general solution of the
differential equation v’ — 2z = 0. Solving first-order AODEs is a fundamental problem in
the theory of (non-linear) algebraic differential equations.

First-order AODEs have been studied a lot and there are many solution methods for
special classes of such ODEs. The study of these ODEs can be dated back to the work of
Fuchs [10], and later by Poincaré [25]. In [20], Malmquist studied the class of first-order
AODEs having transcendental meromorphic solutions, and Eremenko revisited later in [7].
In the 1970s, Matsuda classified differential function fields having no movable critical points
up to isomorphism of differential fields [21]. The theory by Matsuda brings modern wind
to the algebraic theory of first-order AODEs. Following this direction, Eremenko presented
a theoretical consideration on a degree bound for rational solutions [8].

The problem of finding closed form solutions of first-order AODESs has been considered
widely in the literature. Among non-linear first-order AODEs, Riccati equations can be
considered as the simplest ones. In [19], Kovacic solved completely the problem of comput-
ing Liouvilian solutions of a second order linear ODE with rational function coefficients. In
the process, Kovacic also proposed an algorithm for determining all rational solutions of a
Riccati equation. Solving a first-order first-degree AODE is a much harder problem. The
problem of determining an algebraic general solution for a first-order first-degree AODE
is one of an equivalent version of the Poincaré problem. This problem is still open. In
[5], Carnicer investigated a degree bound for algebraic solutions for first-order first-degree
AODEs in non-dicritical cases. Hubert [16] found implicit solutions by computing Grébner
bases.

The problem of studying symbolic solutions for first-order AODEs from an algebro-
geometric approach has received much attention in the last decade. Algorithms for the
class of first-order autonomous AODEs has been proposed by Feng and Gao [9, 1]. The al-
gorithm is based on the fact that by considering the derivative as a new indeterminate, the
differential equation can be viewed an algebraic curve. Applying this idea to the general
class of first-order AODEs, and combining it with Fuchs’ theorem on first-order AODEs
without movable critical points, Chen and Ma [6] presented an algorithm for determining
a special class of rational general solutions. However, their algorithm is incomplete due to
two reasons: the necessary condition for the existence of the solution is not proven to be
algorithmically checkable, and a good rational parametrization is required in advance. Ngb
and Winkler [22, 24, 23] applied the algebro-geometric approach to general non-autonomous



first-order AODEs. Using parametrization of algebraic surfaces, they associate to the given
parametrizable AODE an associated system of algebraic equations in the parameters. This
associated system is a planar rational system. In order to complete the algorithm, a degree
bound for irreducible invariant algebraic curves of the planar rational system is required.
The problem of finding a uniform bound for the degree of invariant algebraic curves for
planar rational systems is known as the Poincaré problem. This difficult problem has been
solved by Carnicer [5], but only generically for the non-dicritical case. So the algorithm
of Ngb and Winkler, although producing general rational solutions in almost all situations
where such a solution exists, is still no complete decision algorithm. Following this di-
rection, a generalization to the class of higher order AODEs [15], and even to algebraic
partial differential equations [11] is presented. So far no general algorithm for deciding the
existence and, in the positive case, computing an algebraic/rational general solution, and
all particular rational solutions exists.
In this report, we present:

1. A procedure for determining an algebraic general solution of a parametrizable first-
order AODE (see Algorithm 2).

2. A full algorithm for determining a rational general solution, in which the constant
appears rationally, for a general first-order AODE (see Algorithm 4).

This generalizes the works by Feng and Gao [9], Chen and Ma [6], Ng6 and Winkler
22, 24, 23].

In Section 2, we recall basic notations from differential algebra and algebraic geometry.
In Section 3, we approach first-order AODEs from an algebraic geometric aspect. By
considering the derivative as a new indeterminate, a given first-order AODE can be seen as
an algebraic equation. This algebraic equation defines an algebraic surface over the ground
field. An algebraic solution of the differential equation corresponds to an algebraic curve
on the surface which satisfies certain condition. Therefore tools from algebraic geometry
are applicable. In particular, birational transformation of algebraic surfaces is used to
transform the differential equation to a planar rational system. The key point is that there
is a faithful relation between algebraic general solutions of the given differential equation
and algebraic general solutions of the planar rational system. Solving a general planar
rational system is still a very hard problem. But in many cases, the obtained planar
rational system is easy to solve. This algebraic geometric approach leads to a procedure
for determining an algebraic general solution for first-order AODEs.

A similar method is presented in Section 4. By considering the derivation as a new
indeterminate, we can also view the differential equation as an algebraic equation which
defines an algebraic curve over the field of rational functions over the ground field. With
a similar process, birational transformation of algebraic curves is used to transform the
given differential equation to a first-order first-degree AODE. We prove that optimal pa-
rametrization of algebraic curves over the field of rational functions can be achieved within



the field of rational functions. This guarantees us to do the process in a controllable way.
Consequently, a decision algorithm for determining a rational general solution for which
the constant appears rationally of a first-order AODE is established.

2 Preliminaries

In this section, we briefly recall some basic notions in differential algebra and algebraic
geometry. This section should not be considered as an introduction to differential algebra
and parametrization of hypersurface. For further detail, we refer the reader to [18, 27] for
differential algebra, and to [31, 28] for parametrization of algebraic curves and surfaces.

2.1 General solutions of AODEs

From now on by K we denote a computational algebraically closed field of characteristic
zero with the trivial derivation. In practice, we might choose K = Q the field of algebraic
numbers. All derivatives are understood as the usual ones.

An algebraic ordinary differential equation is a differential equation of the form

F(x7y7y/7"'7y(n)) = 0 (1)

where F' € K[z][{y}\K[z][y]. Without lost on generality, we can always assume that F is an
irreducible polynomial in K[z, y,v/, ..., y(”)]. Otherwise F' can be factored as the product
of irreducible factors. In this case, the set of solutions of the given differential equation is
equal to the union of the sets of solutions of AODEs which are defined by the irreducible
factors of F.

The notion ”general solution” of an AODEs can be described from differential algebra
context. In general a general solution of an AODE is defined as a generic zero of a certain
associated prime differential ideal. In our situation such ideal much be established from F'.
It is well-known that, in a polynomial ring in finitely many variables over a field, a principle
ideal generated by an irreducible polynomial is prime. It is no longer true in the case of
differential polynomial rings. In particular, neither [F] nor {F'} is a prime differential ideal
of K(z){y}, even if F' is an irreducible polynomial. Fortunately, Ritt proved that:

Lemma 2.1 (see [27]). Let F' € K(z){y} such that F is an irreducible polynomial in
Kz, y,9,...,y"™]. Then the ideal {F} can be factored as:

{F} = ({F}:Sp)N{F, SF}
where ({F'} : Sp) .= {G € K(x){y} | G.Sr € {F}} is a prime differential ideal.

The lemma shows that the ideal ({F'} : Sp) is the unique essential component (among
finitely many essential components of {F'}) that does not contain the separant Sp of F.
On the other hand the second component {F, Sp} is the intersection of the other essential
components of {F'}. It leads us to the definition of general solutions of an AODE.



Definition 2.2. Consider the differential equation F(z,y,y/,...,y™) =0.
i. A zero of the radical ideal {F'} is called a solution of the differential equation.
ii. A generic zero of the differential ideal ({F'} : Sr) is called a general solution.
iii. A zero of the ideal {F, Sr} is called a singular solution.

Definition 2.3. Consider the differential equation F(z,,7/,...,y™) = 0, let £ be a
solution which is contained in a differential field L extended from K(z). We denote by K
the field of constants of L.

i. ¢ is called an algebraic solution if there is a non-zero polynomial G € K|z, y] such
that G(z,&) = 0.
In this case, G is called an annihilating polynomial of .

ii. If furthermore deg, G = 1, then ¢ is called a rational solution.

iii. £ is called an algebraic (resp. rational, polynomial) general solution if it is a general
solution and algebraic (resp. rational, polynomial).

Given an algebraic solution £ of the differential equation F(z,y,v/, ... ,y(")) =0, there
are infinitely many corresponding annihilating polynomials. If we ask for irreducible poly-
nomials among them, then there is only one up to multiplying by a non-zero constant. If
G(z,y) is an irreducible annihilating polynomial of £, then all root y = y(z) of the alge-
braic equation G(z,y) = 0 are solutions of the differential equation, (see [1], Lemma 2.4).
Therefore, by abuse of notation, G is sometimes called a solution.

The following lemma is a well-know criteria for checking whether a solution is general
(see [27]).

Lemma 2.4. A solution £ of the differential equation
F(x,y,y,... ,y(”)) =0
is a general solution if and only if
VH € k(x){y}, H() =0= prem(H,F) =0
Proposition 2.5. Let £ be an algebraic solution of the differential equation
F(:z:,y,y',...,y(”)) =0

with the irreducible annihilating polynomial G. If £ is a general solution, then at least one
of the coefficients of G contain a constant which is transcendental over K.



Proof. By contradiction, if G(x,y) € K[z, y|, then G = prem(G, F') # 0. It is contradiction
with the fact that G(z, &) = 0. Thus at least one of the coefficients of G is a constant which
is not in K. Since K is algebraically closed, such constant is transcendental over K. O

From the previous proposition, an algebraic general solution can be viewed as a class of
algebraic solutions which is parametrized by a certain number of parameters. In particular
if (™ is the highest derivation appearing on F, then the number of independent parameters
needed to paramatrized a general solution is exactly n (see [18, Thm. 6, Sec. 12, Chp. 2|).

2.2 Parametrization of algebraic curves and surfaces

Consider a first-order AODE, F(z,y,y’) = 0, for an irreducible non-constant polynomial F.
We view the equation to be an algebraic one by replacing the derivative by an independent
variable, i.e. F'(x,y, z) = 0. Depending on the ground field the zero set of such an equation
defines an algebraic curve or an algebraic surface.

¢ = {(a1,02) € A*(K(@)) | F(2,a1,00) = 0} ,
S = {(ao,al,ag) € AS(KHF(CL(),CU,GQ) = O} .

For higher dimensional spaces such zero sets of single polynomials are called hypersurfaces.

Definition 2.6. The algebraic curve C is called the corresponding curve. The algebraic
surface § is called the corresponding surface.

By definition the algebraic curves and surfaces are given implicitly by the defining
equation. Very often it is useful to have a parametric expression for the points on the
curve or surface.

Definition 2.7. A rational parametrization, or briefly, a parametrization of a curve C over
A%(K) is a rational map P : AY(K) — C C A?(K) such that the image of P is dense in C
(with respect to the Zariski topology).

Similarly a (rational) parametrization of a surface S over A%(K) is a rational map
P : A%2(K) — S C A3(K) such that the image of P is dense in S.

If, furthermore, P is a birational equivalence, P is called a proper parametrization.

A parametrization is called optimal, if the degree of its coefficient field is minimal (see
[31] for further details).

Let Pe(t) = (p1(z,t),pa(x,t)) be a parametrization over K(x) of the corresponding
curve of an AODE. Then Ps(s1, s2) = (s1,p1(51, 52), p2(s1, s2)) is an algebraic parametri-
zation of the corresponding surface. If Pe is rational in x then Pg is a rational parametri-
zation. However, there are first-order AODEs which admit a rational parametrization of
the corresponding surface but not of the corresponding curve. Consider for instance the



AODE, F(z,y,vy'") = ?> — y® — 22 = 0. The corresponding curve has genus 1, whereas the

2
5(1_3 ) 1-s2 1-s2
+3 Y $2 9 43 .

corresponding surface can be parametrized by

It is well-known that if an algebraic curve or surface admits a rational parametrization,
then it admits a proper parametrization. In the affirmative case, for curves one can compute
such a proper parametrization with optimal coefficient field. For more details on rationality
we refer to [31] and [35, 32, 28] for curves and surfaces respectively.

Theorem 2.8 (Rationality Criterion). An algebraic curve admits a rational parametriza-
tion if and only if its genus is equal to zero.

An algebraic surface admits a rational parametrization if and only if both its arithmetic
genus and the second plurigenus are equal to zero.

Furthermore, there is a relation between different proper parametrizations of curves
and surfaces respectively.

Lemma 2.9. Let P and Q be two proper parametrizations of some algebraic hypersurface.
Then there exists a rational function R such that Q@ = P(R).

e In case of curves, R is a Mdbius transformation, i.e. a linear rational function

R(Sl) = Zgiigllssf with a0b1 - albo 75 0.

e In case of surfaces, R is a Cremona transformation, i. e. a birational map of the plane
to itself, and hence by the Theorem of Castelnuovo-Noether a finite composition of
quadratic transformations and projective linear transformations (c. f. [32, 35]).

Definition 2.10. A point A on the corresponding curve C is called an algebraic solution
point if its coordinates have the form (y(z),y'(z)) for some y(z) € K(x). If furthermore
y(z) € K(x), A is called a rational solution point.

Finding an algebraic/rational general solution of F(x,y,y’) = 0 is reduced to looking
for a class of algebraic/rational solution points (y(z),y’(x)) which depend on a parameter
c.

3 Algebraic general solutions of first-order AODEs

This section is based on the author’s works in [33]. In this section we present a procedure
for determining an algebraic general solution of a first-order AODE. In order to use the
technique of rational parametrization, we add an additional assumption to the initial dif-
ferential equation, that the algebraic equation obtained when we replace the derivation v’
by a new indeterminate defines a rational surface. A first-order AODE satisfying this ad-
ditional assumption is called surface-parametrizable. The general schedule for determining
an algebraic general solution of a surface-parametrizable first-order AODE is as follows.



We associate for each surface-parametrizable first-order AODE a planar rational system,
which is so called the associated differential system. The key observation is that algebraic
general solutions of the initial differential equation can be determined faithfully from an
algebraic general solution of the associated differential system (see Section 3.1). This step
is inherited from the work by Ngbé and Winkler in [22].

The problem of determining an algebraic general solution of a surface parametrizable
first-order AODE is now reduced to the problem of computing an algebraic general solution
of a planar rational system. The latter problem is hard in general. But in case a rational
first integral is provided, or even only a degree bound for a rational first integral is given, we
propose an algorithm to determine an algebraic general solution (see Section 3.2). Finally,
if a surface-parametrizable first-order AODE is given together with a degree bound for
an algebraic general solution, we can compute an algebraic general solution explicitly (see
Section 3.3).

3.1 Associated Differential System

In this section, we construct for each surface-parametrizable first-order AODE a planar
rational system. Although the construction is as similar as the one described in Ngd and
Winkler [22], it is briefly summarized here for self-containedness. Several facts relating to
their algebraic general solutions are investigated.

Let us first give a formal definition for surface-parametrizable first-order AODE.

Definition 3.1. A first-order AODE F(x,y,y") = 0 is called surface parametrizable if its
corresponding surface, say S, in A%(K) defined by F(x,y,2) = 0 is rational.

In the other words, there is a rational map P : A%{ - S C A% defined by P(s,t) :=
(x1(s,t), x2(s,t), x3(s,t)) for some rational functions 1, x2, x3 € K(s,t) such that F(P(s,t)) =
0, and P is invertible. Such P is called a proper parametrization of the surface S. Algorithm
for determining a parametrization of a rational surface is investigated, for instance, there is
one in [28]. During this section and so on, we always assume that a surface parametrizable
first-order AODE is equipped with a proper parametrization P.

Now let us fix an algebraic general solution { = £(z) of the surface parametrizable
first-order AODE F(z,y,y’) = 0. Then F(z,£{(z),&(z)) = 0. Denote (s(z),t(x)) =
P~ Yz, &(x),& (7)), a representation of the inverse of (z,&(z),&'(z)) via P. Since P is
proper, (s(x),t(x)) is a pair of algebraic functions satisfying P(s(z), t(z)) = (z,&(z),£ (x)).
Therefore

{xl(S(w),t(w)) =
Xa(s(@), t(x)) = x3(s(), t(x))

Differentiating both sides of the first equation, and expanding the second one gives us a
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linear system on s'(x) and ¢(z).

(@) o xa (), 1)) + £ x) oo (s(), Ha)) = 1

() oo (), ) + 2 ) oo (s(), 1(2)) = xs(s(a), 1)

Since P is a birational equivalent, the Jacobian matrix

Ix1 Ox2 Oxs
Os Os Os

Ix1 Ox2 Oxs
ot ot ot

has generic rank 2. Without lost on general, we can always assume that the determinant

o1 Oxe
ds Os
a Oxa
ot ot

is non-zero. Furthermore, we claim that g(s(x),t(z)) # 0. It will be asserted by the
following lemma.

Lemma 3.2. With notation as above. Then
VR € K(s,t), R(s(z),t(z))=0=R=0

Now s'(z) and t'(z) can be solved by Cramer’s rule from the linear system. Thus
(s(x),t(x)) is an algebraic solution of the planar rational system:

/ X3(Sat)%X1(Sat) - %XQ(Svt)

- 9(s,t) )
o gexe(sit) = xa(s, ) goxa (s b) (2)
9(s, 1)

Definition 3.3. System (2) is called the associated differential system of the differential
equation F(x,y,y’) = 0 with respect to the proper parametrization P.

We summary here the result of the construction of the associated system above.

Theorem 3.4. Let F(z,y,y') =0 be a surface parametrizable first-order AODE and con-
sider its associated differential system (2) with respect to a given proper parametrization
P. If y = y(z) is an algebraic general solution of the differential equation F(x,y,y") =0,
then

(s(x), t(2)) =P~ (2, y(2),y/ ()

is an algebraic general solution of the associated system.

11



Proof. (s(z),t(x)) is an algebraic solution of the associated system as we established.
Lemma 3.2 asserts that it is in fact a general solution. O

Theorem 3.5. Let F(x,y,y') = 0 be a surface parametrizable first-order AODE and
consider its associated system (2) with respect to a given proper parametrization P. If
(s(x),t(x)) is an algebraic general solution of the associated system, then

y(@) == x2 (s (22 — x1(s(), t(2))) . t 2z — x1(s(2), t(2))))
is an algebraic general solution of the differential equation F(z,y,y") = 0.

Proof. As in the construction, s(z),¢(x) must satisfies the following system:

{Xﬁ(S(l’)at(w)) =1
Xa(s(@), t(x)) = x3(s(), t(x))

The first relation yields ¢ := x1(s(z),t(z)) — = is an arbitrary constant. Thus we have

xi(s(x —c),t(x —c¢)) ==
xa(s(x =), iz —¢)) = y(z)
x3(s(z = o), t(z — c)) =/ (2)

Therefore y(x) is an algebraic general solution of F(x,y,y") = 0.

It remains to prove that y(z) is a general solution. To this end, let arbitrary G €
K(z){y} such that G(y(z)) = 0. Since F' is of order 1, prem(G, F) € K(x)[y,y']. Let R €
K, y,y'] be the numerator of prem(G, F'). Then R(z,y(z),y' (x)) = 0. It implies R(P(s(z —
¢),t(x —¢))) = 0. Since ¢ can be chosen arbitrary, we have R(P(s(z),t(x))) = 0. Now,
applying the lemma 3.2 yields R(P(s,t)) = 0. So that R(z,y,2) = R(P(P~(z,y,2))) = 0.
It follows prem(G, F') = 0. Hence y(x) is a general solution. O

The previous two theorems establish a one-to-one correspondence between algebraic
general solutions of a paramatrizable first-order AODE and algebraic general solutions of
its associated system which is a planar rational system. Furthermore the correspondence
is formulated explicitly. Omnce an algebraic general solution of its associated system is
known, the corresponding algebraic general solution of the given surface parametrizable
first-order AODE can be determined immediately. The problem of finding an algebraic
general solution of paramatrizable first-order AODEs can be reduced to the problem of
determining an algebraic general solution of a planar rational system.

Is is important to notice that the one-to-one correspondence holds not only for the class
of algebraic general solutions, but also for the general class of general solutions (which do
not necessary satisfy the property of being algebraic functions). By just repeating the
above process without assumption that the general solutions are algebraic, we obtain:

12



Theorem 3.6. Let F(x,y,y’) =0 be a surface parametrizable first-order AODE and con-
sider its associated system (2) with respect to a given proper parametrization P.

i. If y(x) is a general solution of the differential equation F(x,y,y') =0, then

(s(2), t(x)) = Pz, y(x), ¥/ (x))
is a general solution of the associated system.

ii. If (s(x),t(x)) is a general solution of the associated system, then

y() = xa(s(2z = xa(s(2), 1(x))), 122 — x1(s(2), t(2))))

is a general solution of the given differential equation.

3.2 Planar rational system and its algebraic general solutions

This section is devoted to the problem of computing explicitly an algebraic general solution
of the planar rational system. Whereas the problem of finding explicit algebraic solutions
of planar rational systems has received only little attention in the literature, the problem
of finding implicit algebraic solutions, or in the other words, finding irreducible invariant
algebraic curves and rational first integral, has been heavily studying. By combining these
results and the idea for finding algebraic general solutions of autonomous first-order AODEs
of Aroca et. al. (see [1]), we will present an algorithm for determining an algebraic general
solution of a planar rational system with a given rational first integral.

Definition 3.7. A planar rational system is a differential system of order 1 of the form:

s’ = M(s,t)
, (3)
t' = N(s,t)
where M, N are rational functions on s,t with coefficients in K.
If M, N are polynomials, it is called a planar polynomial system.

Given a planar rational system, we are interested in its algebraic solutions. The key
objects to investigate information about algebraic solutions of a planar rational system
are invariant algebraic curves and rational first integrals. Our plan is first using known
algorithms to find a rational first integral of the system, and then its irreducible alge-
braic curves. Secondly, each irreducible algebraic curve will derive the system into two
autonomous first-order AODEs which can be solved explicitly by the procedure of Aroca
et. al. (see [1]).

13



Definition 3.8. An algebraic curve defined by G(s,t) = 0 is called an invariant algebraic
curve of the planar rational system

{3 = M(s,t) )

t' = N(s,t)
where M, N are rational functions on s,t with coefficients in K, if

oG oG
MlNQg + Mlea — GH

for some H € K[s,t]. In this case, H is called the cofactor of G.

Definition 3.9. A differentiable function W (s, t) on two variables s, ¢ with coefficients in
K is a first integral of the planar rational system

{sle(s,t)

t' = N(s,t) (5)

where M, N are rational functions on s,t with coefficients in K, if it is not a constant
function and
oG oG

M—+N— =
83+ ot 0

If furthermore W is a rational function, it is called a rational first integral.

It is not hard to see that the set of all first integrals of a planar rational system together
with constant functions has an algebraic structure as a field. The intersection of such field
and K(s,t) is the set of all rational first integrals with constants in K. If the planar
differential system has a rational first integrals, there is a non-composite reduced rational
function, say F, such that every rational first integral has the form wu(F'(s,t)) for some
univariate rational function u with coefficients in K (see [4]). In the other words, the set of
all rational first integrals of the planar rational system is either an empty set or K(F) \ K,
where K(F) is the field extended from K by F. Such the F' is unique up to a composition
with a homography. In particular, instead of finding all rational first integrals, looking for
a non-composite one is enough.

On the other hand, the set of rational first integrals, and all invariant algebraic curves
of a planar rational system does not change if we multiply the right hand side of the
two differential equations of the system by the same non-zero rational function in K(s,t).
Therefore it is suffices to consider planar polynomial systems for studying invariant alge-
braic curves and rational first integrals. Furthermore, by multiplying the right hand side
of the differential equations in the system (3) by m, one can always assume
that M, N are polynomials such that ged(M, N) = 1.

The following theorem is a classical result on relation between irreducible invariant
algebraic curves and rational first integrals of a planar rational system. We recall here for
technique purpose. For further detail, we prefer to many classical literatures about rational
first integrals, for instance, see [26].

14



Theorem 3.10. There is a natural number N such that a given planar rational system
has a rational first integral if and only if the system has more than N irreducible invariant
algebraic curves. Furthermore, if W = g 1s a reduced rational first integral then every
irreducible invariant algebraic curves is defined by an irreducible factor of c1. P —coQ), where
c1,co are arbitrary constants.

Proposition 3.11. If the parametriazable first-order AODE F(x,y,y’) = 0 has an al-
gebraic gemeral solution, then its associated differential system with respect to a proper
parametrization has a rational first integral.

Proof. 1f the differential equation F(z,y,3’) = 0 has an algebraic general solution, then
so is its associated system. In this case, the associated system must have an irreducible
invariant algebraic curve G(s,t) = 0 such that G is monic and at least one of the coefficients
of G contains a constant which is transcendental over K. In the other words, the associated
system has infinitely many irreducible invariant algebraic curves. Thus it has a rational
first integral. O

Theorem 3.12. Assume that W = g is a reduced rational first integral of the planar
rational system

s — Ml(svt)
MZ(Svt)
t/ — N1(87t)

t
where My, Mo, N1, No € K[s,t], and that (s(x),t(x)) is an algebraic solution in which not
both s(x) and t(z) are constants. Then (s(x),t(x)) is an algebraic general solution if and
only if W(s(z),t(x)) is a constant which is transcendental over K.

Proof. Assume that (s(x),t(z)) is an algebraic general solution of the planar rational sys-
tem, then

W(s(a),t(e) = o () 5 (s(2), ) + £ ) o0 (s(), 1(2)
_ (M%VZ + NaavtV) (s(2), t(x)) = 0

Therefore W (s(x),t(x)) = c is an arbitrary constant. If ¢ € K, then P — cQ € K]s, t]
has an irreducible factor in K[s, ] vanished at (s(x),¢(z)). It can not happen. Hence ¢ ¢ K.
Since K is algebraically closed, c is transcendental over K.

Conversely, assume that (s(x),t(x)) is a non-constant algebraic solution of the given
planar rational system such that W (s(z),t(z)) = ¢, where ¢ is a constant being transcen-
dental over K. Let G be an irreducible polynomial such that G(s(z),t(x)) = 0. Since
P — c(Q is also vanished a long (s(z),t(z)), G must be an irreducible factor of P — c¢(Q). As
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n [29, Ch. 3, Thm. 3.6], G has the form A 4+ aB for some A, B € K]s,t], B # 0, and
a € K(c) which is still transcendental over K.

Now let H € K(x){s,t} be a differential polynomial such that H(s(z),t(z)) = 0. We
denote H := prem(H,{M,N}) where M := Mys' — M; and N := Not' — N;. To finish
the proof, we need to show that H = 0. It is clear that H € K(z){s,t} and satisfies
H(s(x),t(z)) = 0. Let consider both G = A 4+ aB and H as polynomials in s,t with
coefficient in K(o,x). Then they are both vanished along (s(x),t(z)), and G is, again,
irreducible. Thus H must be divisible by G. It is only possible in the case H = 0,
because « is transcendental not only on K but also on K(z). Hence (s(z),t(z)) is a general
solution. O

The following corollary is an immediately consequence of the above theorem. It help
us to split a planar rational system into two autonomous first-order AODEs, which lead
us to the algorithm for determining explicit algebraic general solution of a planar rational
system.

Corollary 3.13. Assume that W = % is a reduced rational first integral of the system

P

Q
Ml(sv
M2(87
Nl( )

N2 87

H~H~H~
S— N | N

VA

o~

)

where My, Mo, N1, Ny € K[s,t] and that (s(x),t(x)) is an algebraic general solution. Then

i. s(x) is an algebraic general solution over K(c) of the autonomous first-order AODE
Fi(s',s) =0, where
Fy := Res;(P — ¢Q, Mas' — M)

it. t(x) is an algebraic general solution over K(c) of the autonomous first-order AODE
Fy(s',s) =0, where
Fy := Ress(P — cQ, Nos' — Ny)

Fortunately the problem of finding algebraic general solutions of autonomous first-
order AODEs is investigated. In [1], Aroca et. al. proposed a criteria to decide whether
an autonomous first-order AODE having an algebraic general solution and compute such
solution in affirmative case. Combining the previous theorem and the corollary, together
with the result of Aroca et. al., an algorithm for computing explicit algebraic general
solutions of planar rational systems with a given rational first integral will be proposed next.
For determining a rational first integral, one can use the package RationalFirstintegrals
which have been implementing by A. Bostan et. al. [4].
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Algorithm 1 Algebraic general solution of a planar rational system

Require: The planar rational system

8/ _ M1(87t)
M2(37t)
t/ — N1(87t)
N2(87t)

and W = g a reduced rational first integral.

Ensure: An algebraic general solution (s(z),t(x)).

—_
= o

If M =0, then s(z) = ¢ and t(z) is an algebraic general solution of ¢’ = N (¢, t)
If N =0, then ¢(x) = ¢ and s(x) is an algebraic general solution of ' = M (s, ¢1)
Compute F} := Rest(P — 1Q, Ma(s,t)s’ — My(s,t))
S := the set of all irreducible factors of Fy in K(c)[s/, s] containing s’
for all H € S do
If H(s',s) = 0 has no algebraic solution, then return "No algebraic general solution”
s(x) := an algebraic solution of H(s',s) =0
t(z) := a solution of the equation W (s(z),t) = c1
If ' (x) =M (s(x),t(x)) = t/(x)—N(s(x), t(x)) = 0, then return ”(s(x+ca), t(z+c2))”
end for

: Return ”"No algebraic general solution”
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Example 3.14. Consider the palanar rational system

s =t
gt (6)
28

By multiplying the right hand sides of the two differential equations of the system
with 2%, we obtain a new system which shares the same set of rational first integrals and

{5 = 2s (7)

invariant algebraic curves:
/
t =1

Using the package RationalFirstIntegrals of A. Bostan et. al. (see [4]), we can evaluate
a non-composite rational first integral of the last system, for instance W = 10_0?22. W is
also a non-composite rational first integral of the system (6). Now we can use the algorithm

1 to find an algebraic general solution of the system (6). First we set

Fi(s,s") := Resy(s' — t, —64s — ¢1(100s — t?)) = (64 4 100¢;)s — ¢18’

which is an irreducible polynomial in k(c1)[s, s']. Solving the differential equation Fi (s, s’) =
0 (by using Aroca’s et. al. algorithm, or just by integrating) yields an algebraic solution:

1
= —(16 + 25¢ )22
C1

s(x)

Next, we find ¢(z) by solving the algebraic equation W (s(x),t) = ¢;. It gives two candidates
%(16 + 25¢; )z and —%(16 + 25¢1)z. By substituting them to the system (6), we see that

1 2
— (16 + 25¢1)2?, =(
c ¢

(s(x),t(z)) = ( 16 + 2501)30)

is an algebraic solution. Since the system is autonomous, (s(x + c2),t(x + c2)) is an alge-
braic general solution.

Example 3.15. Consider the planar rational system

2
s ==
2 8
p Q
r_ v
252 —1
A rational first integral, for instance W = SQtZI, can be found by a process similar to

the one in the previous example. Let

Fi(s,7) := Res; (57‘ — 1%, 85— 1 — ct4) = (6827‘2 — s+ 1)2
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By solving the autonomous differential equation F'(s,s’) = 0 we obtain an algebraic solu-

tion, for instance,
2
x
s(x) =%y —+1
c

Next we find ¢(z) by solving the algebraic equation W (s(x),t) = c. Therefore, t(x) = i\/% .

Finally,
2
(i\/(:c+d) +17i\/x+d)
C C

are algebraic general solutions of the given planar rational system, where ¢ and d are
arbitrary constants.

3.3 Algebraic general solutions with degree bound

In this section, we will combine previous results to study further the problem of finding
an algebraic general solution of a surface parametrizable first-order AODEs. In particular,
given a surface parametrizable first-order AODE and a positive integer n, we will present
an algorithm for finding an algebraic general solution whose irreducible annihilating poly-
nomial has total degree less than or equal to n.

Consider the surface parametrizable first-order AODE F(z,y,y’) = 0 with a given
proper parametrization

P(37 t) = (Xl(sa t)v X2(37 t): X3(37 t))

for some x1,x2,x3 € K(s,t). Assume that y = y(z) € K(x) is an algebraic general
solution of the differential equation F(z,y,y’) = 0, where the field K is extended from K by
transcendence constants. Let Y (z,y) € K[z,y] be an irreducible annihilating polynomial
of y(z). We sometimes call Y (z,y) = 0 an algebraic general solution instead of y(x).

We denote degY,deg, Y as the total degree of Y (x,y) and the degree of x in Y, re-
spectively.

Theorem 3.16. With notation as above, let (o1(x,y, 2),02(x,y, 2)) := P~ Y(x,y, 2) be the
inverse map of P. If the differential equation F(x,y,y’) = 0 has an algebraic general
solution Y (x,y) = 0 with degY < n, then the associated system has a rational first integral
whose total degree is less than or equal to

m:=n3 (degm o1 + deg, 01 + deg, 02 + deg, 02) + 2n? (deg, o1 + deg, 09) .
Proof. Denote s(z) := o1(z,y(x),y (x)) and t(x) := o2(x, y(z),y'(x)), then the pair (s(x), t(z))

is an algebraic general solution of the associated system. Let G(s,t) € K]Js,t] be an ir-
reducible polynomial such that G(s(x),t(xz)) = 0. G(s,t) = 0 is in fact an irreducible
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invariant algebraic curve of the associated system with coefficients in K. We will first
claim that deg G < m.
Denote

and

QZ(xvy) =02 <$7ya 78817

which are rational functions in K(z,y). Then s(z) = Q1(z,y(z)) and t(z) = Q2(z,y(z)).
The degree of x and y on )1 and ()2 can be estimated in terms of 01,09 and Y as follow:

deg, @1 < n.deg, o1 + deg, 01 (9)
degy Q1 < n. degy o1 +deg, 01 (10)
deg, Q2 < n.deg, 02 + deg, 02 (11)
deg, Q2 < n.deg, o2 + deg, 02 (12)

Now in order to get annihilating polynomials of s(x),t(x), using the resultant is a fast way.
In particular, the polynomials

R (s, x) := Resy(numer(Q1) — s.denom(Q1),Y (z,y))
Ry (s, x) := Resy(numer(Q2) — t.denom(Q2),Y (z,y))

are annihilating polynomials of s(z) and ¢(x) respectively, where numer(Q1) is the numera-
tor of @1 and denom(Q1) the denominator one. Therefore H(s,t) := Res,(R1(s,x), Ra(t, x))
is a polynomial in Ks, t] satisfying H(s(z),t(x)) = 0. It implies that G must be divide H.
From the definition of the resultant, one can determine immediately an upper bound for
the total degree of H, and thus of G. In fact,

deg, H < deg, R;.deg, Ry < N*(deg, Q2 + deg, Q2)
Equivalently, we also have
deg, H < N?*(deg, Q1 + deg, Q1)

Combining with (9), (10),(11) and (12) yields deg G < m.

Moreover, since (s(z),t(x)) is an algebraic general solution, G(s,t = 0) can be seen as
the class of all irreducible invariant algebraic curves of the associated system. Therefore
its degree bound is also a degree bound for the non-composite rational first integral. [

As an immediate consequence, the theorem leads us to the following algorithm for
finding an algebraic general solution Y (z,y) = 0 with deg Y < n of the differential equation
F(z,y,y') = 0.
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Algorithm 2 Algebraic general solution of a first-order AODE with degree bound

Require: Differential equation F(x,y,y’) = 0 with a proper parametrization P, and a

positive integer n.

Ensure: An algebraic general solution Y (z,y) = 0 such that degY < n.

1:
2:

(01,09) :=P~!
Determine a degree bound for a rational first integral for the associated differential
System

m = n3 (degx o1 + deg, 01 + deg, 09 + deg, 02) + 2n? (deg, o1 + deg, 09)
Determine the associated differential system {s' = M,t' = N}, where

x3(s, ) 5xa (s, ) — Fxa(s, b)
%Xl(s,t)%xgl(s,t) - %xl(s,t)%xg(s, t)
Sxa(s,t) — xa(s,t) & xa(s, 1)
Foxa(s, ) X2l (s, t) — Sxa(s,t) Fsxa(s, t)

M(s,t) :=

N(s,t):=

If the associated differential system has no rational first integral of total degree at most
m, then return "No algebraic general solution of total degree at most n”. Otherwise,
go to next step.

W := a rational first integral of degree at most m of the system, and solving the system
by using the algorithm 1

If the system has no algebraic general solution, then return "No algebraic general
solution of total degree at most n”

7. (s(x),t(x)) := an algebraic general solution of the system
. Compute y(z) = x (5(2 — x1(5(2), £(x))), H2z — x1(5(x), H(x))))

10:
11:

Y (z,y) := an irreducible annihilating polynomial of y(x)
If deg Y > n, then return "No algebraic general solution of total order at most n”
Return "Y (z,y) = 0"
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Example 3.17. Consider the differential equation
y? —dzyy +8y> =0 (13)
The solution surface is rational, because it admits the proper parametrization
3 + 852
P(s,t) = | ——,s,t
(%) ( 4st )

The inverse map of the parametrization is (o1(z,vy, 2), 02(x,y, 2)) := (y, z). The associated
system of the given differential equation with respect to P is

=t
t’:ﬁ
2s

If we look for an algebraic general solution Y (z,y) = 0 with degy < 2, then we
need to find a rational first integral of total degree at most 16 of the associated sys-
tem. As we have seen in previous example, the associated system has the rational first

integral W = 15025, of total degree 2, and the algebraic general solution (s(z),t(x)) :=

(%(16 + 25¢1)(x + ¢2)2, 2 (16 + 25¢1 ) (= + 62)). By apply the theorem 3.5, we have

)1

1
y(z) = c—3(c1m — 25¢; — 16)(16¢12 + 25¢3x — 625¢ — 800¢; — 256)
1

is an algebraic general solution of the given differential equation.

4 Rational general solutions of first-order AODEs

This section is devoted for studying rational general solutions of first-order AODEs. A
general solution contains an arbitrary constant. A rational general solution in which the
constant appears rationally is called strong. In this section, we present a full algorithm for
determining a strong rational general solution for a first-order AODE.

In order to obtain the algorithm, we also approach the differential equation from a
geometric point of view. However, different from the previous section, we are going to view
first-order AODEs as algebraic curves over the field of algebraic functions. We intrinsically
use parametrization of algebraic curves to transform the differential equation to a first-
order first-degree AODE (see Section 4.3). Parametrizations to be used must be "good”
enough to make sure that every coefficient appears during the transformation is a rational
function. In order to do that, we study some properties of optimal parametrizations for
rational curves over the field of rational functions (see Section 4.2). Among first-order first-
degree AODESs, only Riccati and linear differential equations potentially admit a rational
general solution. This leads us to a decision algorithm for determining a strong rational
general solution of a first-order AODE (see Section 4.4). This section is based on author’s
work in [34, 12].
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4.1 Strong rational general solution

In this section, we give a necessary condition for a first-order AODE to admit a rational
general solution of the form y(z,c¢) € K(z, c¢) \ K(z), where ¢ is a transcendental constant.
Consider a first-order AODE, F(xz,y,y’) = 0, for an irreducible polynomial F. We view
the equation to be an algebraic one by replacing the derivative by an independent variable,
i.e. F(z,y,2) =0.

Definition 4.1. The algebraic curve Cp over K(z) defined by F(x,y,z) = 0 is called the
corresponding curve of the differential equation F(z,y,y’) = 0.

The following theorem is a slightly different version of Theorem 2.4 in [6]. Note, that
we assume irreducibility in K[z, y, z].

Theorem 4.2. Let F be an irreducible polynomial in K[z, y, z] \ K[z, y]. If the differential
equation F(x,y,y’) = 0 has a rational solution of the form y(x,c) € K(x,c) \ K(x) for an

arbitrary constant c, then its corresponding curve in A%(K(z)) is rational, and admits a
parametrization with coefficients in K(x).

Proof. First, we need to prove that F' is still irreducible as a polynomial in K(z)[y, z]. In
order to do that, let us consider the ideal

I={H e K(x)[y, 2] | H(x,y(x, c),y'(x,c)) = 0}

in the polynomial ring K(x)[y, z]. We claim that I is a principle prime ideal. Consider the
ring homomorphism ¢ : K(z)[y, z] — K(z)(c), defined by ¢(H) := H(z,y(z, ),y (z,c)) for
H € K(x)[y, z]. The kernel of ¢ is exactly I. Therefore ¢ induces an embedding from the
quotient ring K(z)[y, z]/I to K(x)(c). Thus K(z)[y, z]/I is a domain, and then [ is a prime
ideal. Since K(z)[y, 2] is a noetherian unique factorization domain, we know from [13,
Prop. 1.12A, p. 7] that every prime ideal of height one is principle. Hence, I is principle.

Next we prove that I can be generated by an irreducible polynomial G in K|z, y, z].

We construct such a generator by the method of Grobner bases. Let y(z,c) = 2&3 and
Y (z,c) = %Eig be in reduced form, i.e. Py, Py, Q1,Q2 € K|z, c| such that gcd(Py, P) =

ged(Q1,Q2) = 1. From the definition of the ideal I, we know by implizitation that

I =(yP,— P, 2Q2 — Q1,1 — Pot1,1 — Qata) N K(2)[y, 2] .

In which the first component of the right hand side is an ideal in K(x)[c, t1, t2, y, 2] generated
by the polynomials yPy — P, 2Q2 — Q1,1 — Poto and 1 — QQ2ts. We fix the lexicographic
ordering on K(z)[c, t1,t2,y, 2] with ¢ > t; > to > y > z. Using this ordering we compute
a reduced Grobner basis of I by first computing a reduced Grobner basis for the first
component of the right hand side, and then eliminating all elements containing c,t1,ta.
Buchberger’s algorithm and reduction of the obtained basis yields a list of polynomials in
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the variables ¢, t1, ta, y, z with coefficients in K(x). Therefore, after eliminating polynomials
containing ¢, t1,te, we obtain a reduced Grébner basis of I which contains only polynomials
in K(z)[y, z]. Since I is principle, the reduced Grobner basis of I contains only one element,
say G1 € K(z)[y,z]. Moreover, since I is a prime ideal, G; must be irreducible over
K(z)[y, z] and hence also in K(z)[y, z]. Let G € K[z, vy, z] such that G; = %G for some
a(z),b(z) € K[z] and G is primitive over K[z]. Hence, G is irreducible over K(z)[y, 2]
(since G is irreducible). Then we have I = (G;) = (G) over K(x)[y,2]. Therefore, G is
irreducible over K(z)[y, 2].

Since F' is an irreducible element in the ideal I, F differs from G by multiplication with
a non-zero constant factor in K. Therefore, F' is also irreducible over K(z)y, z].

By now, the corresponding curve Cp is irreducible. Since F(z, y( ),y (z,¢)) =0, Cp
can be parametrized by a pair of rational functions P(t) := (y(,t), 2 5zy(x,t)). Hence C is
rational. O

Theorem 4.2 motivates the following definitions.

Definition 4.3. The first-order AODE, F(z,y,y’) = 0, is called parametrizable if its
corresponding curve is rational.

A parametrizable first-order AODE is surface parametrizable. But the converse direc-
tion is not always true. In fact, we will see in Section 4.2 that if a first-order AODE is pa-
rametrizable, then its corresponding curve can be parametrized by a pair (p1(z,t), p2(x,t))
of rational functions in x and t. In this case, (x,pi(z,t), p2(z,t)) is a rational parame-
trization for the corresponding surface. However, it is easy to check that the differential
equation

y/2 _ y3 —rx=0

is surface parametrizable but not parametrizable.

All differential equations of the form y'Fy(z,y) = Fo(x,y), where Fy, Fy € K[z, y],
are parametrizable. As a consequence, we might also say that all quasi-linear differential
equations of the form ¢y’ = ??Ezzg are parametrizable.

Note, that almost all of the first-order AODEs listed in the collection of Kamke [17] are
parametrizable. In fact 89 percent are parametrizable AODEs. The remaining ones consist
of two classes. One part contains the reducible AODESs, hence, parametrizability of the
factors can be considered. Around one half of the reducible AODEs have parametrizable
factors. The other part consists of AODEs or which the corresponding curve has genus
greater than 0.

The class of first-order AODEs covers around 64 percent of the entire collection of
first-order ODEs in Kamke. Some of the remaining ODEs contain arbitrary functions. For
certain choices of these functions, the ODEs might be algebraic. For further details on
statistical investigations of Kamke’s list we refer to [12].
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A rational general solution of a first-order AODE is not necessary of the form y(z,c) €
K(z,c) \ K(x) for some transcendental constant c. However, if the y(z,c) is a solution of
a first-order AODE, then it is a general solution in the sense of Ritt. In fact, let assume
that H € K(x){y} be an arbitrary differential polynomial such that H(y(z,c)) = 0, and
that G := prem(H, F)). Then G € K(z)[y,y']. From the definition of pseudo differential
remainder, we know that there are natural numbers m,n such that SPIAG — H is a
linear combination of F' and its derivatives with coefficients in K(z){y}, where Sr and
I are separant and initial of F' respectively. Sp and Ip are not vanished at y = y(z, ¢).
Otherwise, as we have seen in the proof of Theorem 4.2, that Sp and Ip are different
from F' by multiplying a rational function in K(z), which is not possible. Therefore G is
vanished at y = y(x,c). It implies that G is different from F' by multiplying a rational
function in K (z). This implies G = 0. Hence y(z, ¢) is a general solution.

Definition 4.4. A solution y of the differential equation F(x,y,y’) = 0 is called a strong
rational general solution if y = y(z, c) € K(z, ¢)\K(x), where ¢ is a transcendental constant
over K(x).

Theorem 4.2 is not true if the given rational general solution is not strong. For instance,
the differential equation

x3y/3 _ (3$2y _ 1)3/2 + 3xy2y/ _ yS + 1 — 0
has a rational general solution
2 1
y(@) = o + (& +1)3,

which is not strong. The corresponding curve has genus 1. Therefore, the differential
equation has no strong rational general solution. However, as we will see later, if a param-
etrizable first-order AODE has a rational general solution, then it has a strong rational
general solution.

4.2 Optimal parametrization of rational curves

We have seen that the corresponding curve of a first-order AODE having a strong rational
general solution is rational. Moreover, by Theorem 4.2 the corresponding curve admits a
parametrization with coefficients in K(x). In case we have a parametrization with coeffi-
cients in K(z) we can decide the existence of a strong rational general solution and compute
it. Indeed, as we show in this section, such a parametrizations always exists.

Optimal parametrization is a key notion to answer the question. Several algorithms for
determining an optimal parametrization of a rational curve were provided. In [31], Sendra,
Winkler and Pérez-Diaz proposed an algorithm for computing an optimal parametrization
of a rational curve over the field Q of rational numbers. Similar result for the class of
rational curves over the field Q(x) of rational functions is presented in [14]. From a different
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method, Beck and Schicho studied the optimal parametrization problem for rational curves
over perfect fields [2]. Since K(z) is a perfect field, the algorithm of Beck and Schicho is
applicable over K(x). Below, we follows the idea by Hilgarter and Winkler [14] to describe
the field of an optimal parametrization of a rational curve over K(z).

Let us fix a rational curve C in A%(K(z)) defined by G(x,y, z) = 0 for some irreducible
polynomial G € K(z)ly,z]. As a consequence of Hilbert-Hurwitz theorem [31, Ch. 5,
p. 152], C can be rationally transformed down to a line or a conic over K(z), depending
on whether the total degree of G is odd or even, respectively. The transformation was
described in [31] by using the notion of adjoint curves. The line is always parametrizable
over K(x). To parametrize the conic, it is sufficient to search for a K(z)-rational point on
it.

In the following we show, along the lines of [14, 31], that indeed there always exists

such a K(x)-rational point. Let us consider the projective conic £ € P?(K(x)) defined by
G(y,z,w) = 0, where

Gy, z,w) == A1y + Agyz + Azz® + Agyw + Aszw + Agw?

is a polynomial in K[z][y,z,w]| such that (A, As, Az) # (0,0,0). Our next goal is to
determine a K(z)—rational point of £.

Without loss of generality, we may assume that A; # 0. Otherwise, we just swap y
with z or w. Then G can be written as

B Ay A \? (44145 — A2\
G(y,z,w)—A1<y—|—2Alz+2Alw> +<% 25+
2A1A5 — AgAy 44146 — AT\ o
+ ( A, ) zw + ( 1A, w

If 4A; A3— A2 = 0, we see immediately that G (QATQI, -1, O) = 0. Therefore (2‘4721, -1, 0) €
P2(K(x)) is a K(x)—rational point of £. In general, if 441 A3 — A2 =0 or 44146 — A3 =0
or 4A3Ag — A2 = 0, the conic £ is called a parabola. However, the condition for a conic to
be a parabola does not invariant under linear projective transformations. In other words,
a parabola can be transformed to a conic which is not a parabola by using a suitable linear
projective map.

Let us assume that 441 A3 — A% # 0. We rewrite G as follow:

2A1A5 — Ay Ay

o A2 A4 2 o 2 —
=A —z+ — A A
G(y, z,w) 1(y+2Alz+2Alw> + 2(24— T Ay — A2 w) + Asw

where
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Zl = A1

— 4A A — A2

Ay = L8 12
2 1A,

. A4 — AT (24145 — A Ay
ST A 1A, (4A, A3 — A2)

Therefore, by using the linear transformation

_ 1 A2 Ay
Y A Ay
| = 0 1 2A1A5—AsAy
= 1A, A3—A2
w 0 O 1 w

the conic £ can be transformed to a projective conic which is defined by
Ay + AZP 4+ A3w® =0

Moreover, by multiplying both side of the equation by the common denominator, we may
assume that A, Ay, A3 are polynomials.

Next, let AjA3 = AP? and Ay A3 = BQ? for some A, B, P,Q € K[z] such that A and
B are square-free polynomials. We transform the previous conic one more time by using
the following linear transformation:

Y P 0 0 ]
Z| =10 @ 0 z
w 0 O Zg\/—l w

The obtained conic is the one defined by AY? + BZ? — W?2 = 0. By abuse of notation, we
rename this conic by £. Note that, the above transformations are bijective if A3 # 0 and
easy to computer the inverse maps. (The case when A3 = 0 is trivial.)

Proposition 4.5. For every square-free polynomials A, B € K[z], the projective conic
defined by AY? + BZ? — W? = 0 always has a K(z)—rational point.

Before giving a proof for this proposition, we need the following lemma.

Lemma 4.6. Let A, B be polynomials in K[z| such that A is square-free and deg A >
deg B > 1. Then there exists a,b,m € Klz| such that a is square-free, dega < deg A, and
b2 — B = am?A.

Proof. Denote by n the degree of A and let x1,...,x, € K be roots of A. There exists a
polynomial b € K[xz] of degree at most n—1 such that b(z;) = \/B(x;) foreveryi =1,...,n,
where \/B(x;) is a square root of B(x;). We see that B(z) = b(x)?> mod (x — x;) for every
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i =1,...,n. Since A is square-free, Chinese Remainder Theorem yields B(z) = b(x)?

mod A(x).
Now let a, m € K[z] such that a is square-free and I)Q%B = a.m?. Note that such a pair
(a,m) is always exist. It remains to prove that dega < deg A. Indeed, we have

dega = deg(b® — B) — deg(Am?)
< deg(h®* — B) —deg A
< max{2(deg A — 1),deg B} —deg A
< degA.

O]

From the proof, we see that degb < deg A — 1. This fact leads us to an algorithmic way
to determine the triple (a,b, m) by using indeterminate coefficient method. In particular,
we first set b a polynomial of degree deg A — 1 in = with indeterminate coefficients. The
remainder of the division b> — B by A can be computed by using Euclidean algorithm.
Since A divides b?> — B, the remainder must be equal to zero. This yields an algebraic
system on the indeterminate coefficients. By solving the obtained algebraic system, we can
find all possible choices for b, and hence for a and m.

Proof of Proposition /J.5. This proof follows the lines of [14].

Let A, B € K[z] be square-free polynomials, and consider the projective conic £ defined
by AY? + BZ? —W? = 0. Denote d(€) := min(deg A, deg B). We prove the existence of a
K(z)—rational point on £ by induction on d(£). In the induction base case, i.e. d(€) =0,
for instance deg A = 0, then (1: 0 : v/A) € P2(K(2)) is a K(z)—rational point of the conic.

Let m > 1 be an arbitrary natural number, and assume that for every projective conic
£ defined by AY? + BZ% — W? = 0 for some square-free polynomials A, B € K[z], if
d(€) < m then € admits a K(x)—rational point. We need to prove that if d(£) = m, then
£ also admits a K(x)—rational point.

In case d(€) = m, we process as follows. We may assume further that deg A > deg B =
m, otherwise we just swap Y and Z. By Lemma 4.6, there exists Ay,b,m € K|[z] such that
Ay is square-free, deg A; < deg A, and b*> — B = A;ym?A. We transform the coordinate
system (Y, Z, W) to the new one (Y, Z, W) by the linear transformation

Y Am 0 0| |Y
Z| = 0 b 1 A
w 0 B b||W

Then we see that

A\Y’+BZ° —W* = (1> — B)(AY? + BZ2 - W?).
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Since B is square-free, b> — B # 0. Thus the conic € has a K(x)—rational point if and only
if the projective conic & defined by Al?z +BZ°-W’=0hasa K(x)—rational point.

If deg A1 < deg B, then d(&;1) = deg A1 < deg B = m. Therefore & satisfies the
induction hypothesis. This show that & admits a K(z)—rational point. Then so is £.

In case deg A1 > deg B, we can repeat the above process recursively until we get
a projective conic &, defined by A,Y? + BZ? — W?2 = 0, where A}, is square-free and
deg A < deg B. Note that, the polynomial B does not change via these transformations.
At this step we have d(&;) = deg Ay < degB = m. In other words, & satisfies the
induction hypothesis. Therefore & contains a K(z)—rational point. Then so is £. O

The proof is constructive. We now conclude the above discussion by the following
theorem.

Theorem 4.7. A rational curve defined over K(x), i. e. a curve which can be parametrized

over K(x), can actually be parametrized over K(x). Therefore optimal parametrizations of
a rational curve over K(x) always have coefficients in K(z).

Furthermore, an algorithm for determining such an optimal parametrization can be pro-
vided by following the process of Hillgarter and Winkler [14]. We summarize the discussion
by a short description for the algorithm.

Algorithm 3 OpTIMALPARA (Optimal Parametrization)

Require: A rational curve C over K(xz)
Ensure: An optimal parametrization for C
1: Determine a birational transformation, say G, to transform the curve down to a conic,
say &, or a line by algorithm derived from the theorem of Hilbert-Hurwitz (see Theorem
5.8 and Algorithm HLBERT-HURWITZ in [31]). If it is a line, go to step 2. Otherwise,
go to step 3.
2:  Determine an optimal parametrization for the line, say P(t), and then return
g1 (P(1).
3: Linearly transform the conic £ to a projective conic of the form AY? +BZ? -W? =0
for some A, B € K[z] square-free polynomials.
4: Construct a K(z)—rational point for the latter conic as the method described in this
section.
5: Determine the corresponding K(x)—rational point point in &, say M.
6: Determine a parametrization, say P(t), for £ by using the point M (see Algorithm
CONIC-PARAMETRIZATION [31]).
7: Return G~1(P(t))
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4.3 Associated differential equation

In this section, we only work with the class of parametrizable first-order AODEs. Based
on optimal parametrizations of the corresponding curves, we construct for each parametri-
zable first-order AODE an associated differential equation, which is a quasi-linear ordinary
differential equation. Several facts about connections between rational general solutions
of a parametrizable first-order AODE and its associated differential equation will be pre-
sented. The problem which remains is looking for rational general solutions of quasi-linear
differential equations. This problem is discussed at the end of this section.

Consider a parametrizable first-order AODE F(x,y,y’) = 0 and assume that an optimal
parametrization P = p1, p2 € (K(x)(t))? of the corresponding curve is given, where we write
pi(t) = pi(x,t) to indicate the dependence on x. Let y(z) € K(z) be an algebraic solution.
Then the pair of two algebraic functions (y(x),y'(x)) can be seen as an algebraic solution
point on the corresponding curve C. Two cases arise.

(i) (y(z),y(x)) ¢ im(P), where im(P) is the image of P. Then (y(z),y'(x)) can be
determined from the finite set C \ im(P).

(ii) (y(z),y(x)) = P(w(x)) for some w(x) € K(x). In this case we identify the algebraic
function w(z) with a point on the affine line A'(K(x)).

Let us take a look at the algebraic function w(z). It satisfies the system

Therefore,

By expanding the left hand side, we have

() P @) + L, 0(a)) = o, )

Thus w(x) either satisfies the algebraic relation

dp
g (@w(@) =0,

P, 0(2)) = ()

or it is an algebraic solution of the quasi-linear differential equation

0
r_ p2($,w) - %(x’w)
P (2, w)

The ODE in (14) will be of further importance.

(14)
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Definition 4.8. Let F(z,y,y') = 0 be an AODE and let P(t) = (pq(x,t),p2(z,t)) be a
proper rational parametrization of the corresponding curve. Then the ODE (14) is called
the associated differential equation.

In the above, we have proven the following lemma.

Lemma 4.9. With notations as above, if y = y(x) € K(z) is an algebraic solution of the
differential equation F(z,y,y’) =0, then one of the following holds:

(i) The algebraic solution point (y(zx),y'(x)) lies in the finite set C \ im(P).

(ii) y(z) = pi1(x,w(x)) for some algebraic solution w(x) of the algebraic system:
op
ot

0
%(m,w) = po(z,w).

(z,w) =0,

(iii) y(x) = p1(z,w(x)) for some algebraic solution w(x) of the associated quasi-linear
differential equation (14).

Theorem 4.10. We use the notation from above and assume that the parametrization P
is proper. Then there is a one-to-one correspondence between rational general solutions
of the differential equation F(x,y,y’) = 0 and rational general solutions of its associated
differential equation (14).

In particular, if w(x) is a rational general solution of the associated equation (14), then
y(z) = p1(z,w(x)) is a rational general solution of given differential equation.

Conversely, if y(x) is a rational general solution of the given differential equation, then
w(z) =P~ Yy(z),y (z)) is a rational general solution of the associated equation (14), where
P~ is a rational representation of the inverse of P.

Proof. Assume that w(z) is a rational general solution of the associated differential equation
(14), and denote y(x) := p1(z,w(z)). From the construction above, it is clear that y(z) is
a rational solution of the differential equation F'(z,y,y’) = 0.

It remains to show that y(z) is a general solution. Let G € K(z){y} be a differential
polynomial such that G(y(z)) = 0, and let H := prem(G, F). We need to show that
H = 0. Since 3/ is the highest derivative occurring in F', we know that H € K(z)[y,v'].
Both G and F' vanish at y(z), hence so does H regarded as a differential polynomial.
Therefore, H(P(w(z))) = H(y(z),y' (x)) = 0 regarding H as a polynomial. Note, that
(HoP)(w) = H(f1(z,w), fo(z,w)) € k(z,w). In order to fulfill (HoP)(w) = 0, w has to be
in K(x). Since w(z) is a general solution of the associated differential equation, it contains
an arbitrary constant and hence, H o P = 0. Therefore, H = (HoP)oP~! = 0.

Equivalently, if y(z) is a rational general solution of the given differential equation,
then, by the construction of the associated equation, w(z) := P~!(y(x),y(x)) is a rational
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solution of (14). By a similar argument as above w is a rational general solution of the
associated differential equation (14). O

Lemma 4.9 tells us that for finding rational solutions of a parametrizable first-order
AODE, working with the class of quasi-linear first-order ODEs is essentially enough. If we
look for rational general solutions, the situation is even much stricter. In fact, in [3], Behloul
and Cheng proved that if a quasi-linear differential equation has infinitely many rational
solutions, then it must be either a linear differential equation or a Riccati equation. The
following theorem is a combination of Theorem 4.10 and the result of Behloul and Cheng.

Theorem 4.11. Let F(x,y,y’) =0 be a first-order AODE.

(i) If F = 0 has a strong rational general solution, then it is parametrizable and its
associated differential equation is of the form

W' = ag(z) 4 a1 (z)w + ag(x)w?, (15)

for some ag,a1,as € K(z).

(ii) If F = 0 is parametrizable and has a rational general solution, then its associated
quasi-linear differential equation is of the form (15).

Proof. If a parametrizable first-order AODE has a rational general solution, then so does
its associated differential equation. In this case the associated differential equation has
infinitely many rational solutions. Then (ii) follows from the result of Behloul and Cheng
in [3]. Finally, (i) follows immediately from Theorem 4.2 and (ii). O

Corollary 4.12. If a parametrizable first-order AODE has a rational general solution,
then it has a strong rational general solution.

Proof. 1t is a consequence of the previous theorem and [30, Cor. 2.1, p. 18] O

We are looking for rational general solutions of first-order AODEs. The problem re-
mained now is computing a rational general solution of the differential equation (15). In
the case a2 = 0, it is a linear differential equation of degree 1 which can be easily solved
by integrating. In the case ao # 0, it is a classical Riccati equation.

For the problem of computing rational general solution, or even all rational solutions,
of a Riccati equation, readers can refer [19] for a completed algorithm. In [19], Kovacic
proposes an algorithm for computing Liouvilian solutions of a linear second order ODE.
As a special case, Section 3.1 in that paper leads to a full algorithm for determining all
rational solutions of a Riccati equation. Note that for a Riccati equation, the notion of
rational general solutions and strong rational general solutions are coincide. In [6], Chen
and Ma do a slight modification of the algorithm by Kovacic to seek for only strong rational
general solution.
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4.4 Algorithm and Examples

This section is devoted to an algorithm for finding strong rational general solutions of first-
order AODEs. As we have seen before, if a first-order AODE has a strong rational general
solution, then it is parametrizable, i.e. its corresponding curve is rational. Whenever
a first-order AODE is parametrizable, the notions of rational general solution and strong
rational general solution coincide. Moreover, in the case of having a strong rational general
solution, the associated ODE is either a linear differential equation or a Riccati equation.

In Algorithm 4 we present a full algorithm which computes for a given first-order AODE
a strong rational general solution, if it exists. Otherwise it decides that such a solution
cannot exist.

Algorithm 4 Strong rational general solutions of first-order AODESs
Require: A first-order AODE, F(x,y,y') = 0, where F' € K|z, y, 2] \ K[z, y] is irreducible.
Ensure: A strong rational general solution y(x), or "No strong rational general solution
exists”.
1: if genus of the corresponding curve is zero then
2: Use Algorithm 3 to compute an optimal parametrization of the corresponding curve,
say (p1(2,1),pa2(z,)) € (K(2)(1))*
3: Compute

p2($7 t) - %pl (.T7 t)
%pl (IE, t)
if f(x,t) has the form ag(z) + a1 (x)t + a(x)t? for some ag, a1, as € K(z) then

Computing a rational general solution of the linear or Riccati equation w’' =

f(z,w).

f(z,t) :=

6: if w = w(x) is a rational general solution then
7: return y(z) = p1(z,w(x))

8: end if

9: end if

10: end if

11: return "No strong rational general solution exists”.

Theorem 4.13. Algorithm /J returns a strong rational general solution of the given first-
order AODE, F(x,y,y') = 0, if there is any, and it returns "No strong rational general
solution exists” if the differential equation has no strong rational general solution.

Hence, Algorithm 4 decides the existence of strong rational general solutions of the
whole class of first-order AODEs. Furthermore, due to Corollary 4.12, Algorithm 4 can
also be used for determining the existence of rational general solutions of parametrizable
first-order AODEs. In the affirmative case it always computes such a solution.
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Example 4.14 (Example 1.537 in Kamke [17]). Consider the differential equation

F(z,y,y) = 2°y"® — 32%yy” + (2% + 32”)y — y° — 227y
= (zy/ — y)3 + 2% — 22%y = 0.

The associated curve defined by F'(z,y,2) = 0 can be parametrized by

325 ’ 1326

(1) — (_t3x5 — 225 4 (t —x)® 232 — 26220 + (t — x)3> .

Therefore, the associated differential equation with respect to P is

1
/
w=— w-(2w-1),
5w (20— a)
which is a Riccati equation. By applying the algorithm by Kovacic, we can determine a
rational general solution of the last differential equation, such as w(z) = Hﬁ Hence, the

differential equation F(z,y,y’) = 0 has the rational general solution y(x) = cx(x + c?).

Observe, that this is just an arbitrary example from the collection of Kamke [17]. In
total around 64 percent of the listed ODEs there are AODEs and almost all of them are
parametrizable and hence suitable for Algorithm 4. For further detail see [12].
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