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Abstract

Ageing is a combination of multifactorial changes that occur to an or-
ganism throughout time. Large number of studies have tried to define the
exact mechanisms of the process, dealing with isolated phenomena that
occur during ageing. However, most analyses are very limiting, either
focusing on a specific pathway or quantitative trait, while missing a mul-
titude of interactions. The era of next generation techniques has brought
us the promised step forward in overcoming these limitations, allowing the
complete catalogue of a cell or tissues macromolecules to be considered
for analysis.

Here I present a framework for analysis of transcriptomic data ob-
tained by next generation RNA sequencing of muscle biopsies obtained
within the Vienna Active Ageing Study (VAAS), a large collaborative
study conducted from 2011 to 2013 in Vienna.

We have obtained a set of results that can be directly used, in com-
bination with other parameters, to test our hypothesis that a lifestyle
intervention can improve the transcriptome signature in the ageing mus-
cle. This will be useful in assessing whether regular exercise might delay
the onset of sarcopenia and improve the general fitness of an individual.
The knowledge can be then translated into creating guidelines for creat-
ing training protocols specifically for this age group in order to prevent
sarcopenia and improve the overall quality of life.
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1 Introduction

Ageing is defined as a progressive loss of body functions with decreasing fertility
and increasing morbidity and mortality. As the organisms age their normal
functions decline, mainly as a result of accumulated molecular damage in their
cells and tissues. Up to now, there have been numerous attempts to explain the
molecular mechanisms of ageing. What is common in all of them is the increased
production of ROS with decreased defensive capacity, telomere attrition and
mitochondrial dysfunction.

Furthermore, ageing is generally not a devastating condition by itself; however
it is highly associated to number of diseases, such as metabolic syndrome, type
2 diabetes mellitus, cardiovascular diseases, cancer, cognitive decline, sarcope-
nia, osteoporosis etc. These conditions are generally referred to as age-related
diseases. It is known that the susceptibility of an individual for developing one
of these conditions is not only genetically determined, but depends on number
of environmental factors. Lifestyle factors, such as nutrition, exercise, smoking
etc, are implied to have the highest influence on an individuals healthy ageing.
However, there is no firm evidence on how these factors are involved in the
ageing process and to which extent they control the molecular mechanisms of
ageing [McLean and Le Couteur, 2004].

Next Generation Sequencing (NGS) has emerged as a powerful technique with a
great potential for uncovering characteristics of organisms potentially related to
accelerated ageing or higher life expectancy, such as susceptibility to disease or
resistance to certain external influences etc. This information can be revealed
upon analysis of the genome of different organisms and variations in the genetic
code of individuals or subgroups in the population, called genetic variants, but
also by assessing the transcriptional activity of different cells and tissues. The
transcriptional activity of the cell is very dynamic and specific for a certain cell
type, developmental stage and condition. As such, capturing the transcriptional
changes upon different conditions can unravel mechanisms of both cell function
and dysfunction. Qualitative and quantitative analysis of mRNA has started
with the labour intensive and low throughput Nortern Blotting , to quantita-
tive polimerase chain reaction for relative expression analysis and large scale
microarray assays [Ding et al., 2007]. Ever since, RNA sequencing has devel-
oped as a faster and more reliable technique, all in order to produce the same
or improved result output using a less time-consuming process with lower error
rates. In fact, with the possibility to sequence and assemble complete genomes
or transcriptomes, NGS has allowed for detection of even minor variations in
the genome of different individuals of the same species, such as single-nucleotide
polymorphisms (SNPs), which were often found to be associated with a number
of diseases [Hutchison, 2007]. In the last years, due to the higher availability
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and affordability, RNAseq has grown into a standard method for transcriptome
analysis, opening up new possibilities for large-scale data integration and inter-
pretation.

An interesting aspect of dealing with RNA extracted from tissues is the pres-
ence of several different cell types in a certain tissue. These cell types often have
different set of genes expressed at a higher level whereas other genes are either
not expressed or downregulated. In addition, different conditions and develop-
mental stages can ”turn on” and ”turn off” different genes. This can often lead
to errors in interpretation of the obtained results as apparent changes in gene
expression often just reflect a shift in cell populations or difference in sample
quality. Tissue deconvolution can be performed using RNAseq data unraveling
how signatures differ between cell types, and hence discriminating between real
changes in expression and population shifts. With various protocols it is possi-
ble to sequence whole exomes, to find protein-DNA interaction sites (ChIP-seq)
and most importantly RNA-sequencing sheds light on transcriptional patterns
(reviewed by Buermans and Den Dunnen [2014], van Dijk et al. [2014]).

The most successful among Next generation sequencers are the products of
Roche and Illumina or Solexa, which dominated the markets with their plat-
forms. The methods are roughly based on the detection of a light signal upon the
incorporation of a nucleotide during a PCR-like amplification step. The main
benefits from NGS are the possibility to obtain millions of sequence reads for
each run in a short time, along with relatively little costs (reviewed by van Dijk
et al. [2014]). After the filtering and trimming steps of the sequences according
to their quality, the first step of a workflow, only working with low computa-
tional power, aiming the calculation of a genome is usually the indexing of the
reference genome as it is compressing its size by creating patters being present a
few times in the genome. That is necessary as it allows a faster alignment later
on. Such indexing can be done either by Bowtie 2 [Langmead and Salzberg,
2012], which can do both, the indexing by using an algorithm based on the
Burrow-Wheeler-Algorithm and the alignment or only with the BWA algorithm
and another tool of choice [Li and Durbin, 2009]. After the alignment, the data
still has to be processed in order to get rid of e.g. alignment artifacts. These
tasks can be conveniently performed by samtools [Li et al., 2009] or the Genome
Analysis Toolkit (GATK - [McKenna et al., 2010]).

A typical protocol for analysis of RNAseq datasets starts with mapping the
sequence reads to a reference genome. A very fast and memory-saving align-
ment program is e.g. Bowtie, with the main downside that it does not allow for
big gaps (deriving e.g. from introns) in the alignment. Therefore, TopHat was
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developed to break down unmappable reads into smaller parts, thus rendering
them mappable and in addition it discovers possible splice sites. The main rea-
sons for choosing TopHat instead of the, more widely used for genomic DNA,
Burrows-Wheeler Aligner in RNAseq is the fact that BWA does not consider
splicing events [Borozan et al., 2013], whereas TopHat is a spliced read aligner
[Trapnell et al., 2009], thus more suitable for RNAseq analyses. Finally, once
the reads have been aligned to the prospective positions, it is time to evaluate
whether differences in expression between different conditions can be detected.
The entire RNAseq workflow and the latest updates have been thoroughly ex-
plained on RNA-seqlopedia 1 as well as by Griffith et al. [2015].

The biological interpretation of RNA seq data depends highly on the problem
being investigated, as well as the design and statistical approach. Unlike clinical
data where most tests are performed routinely in blood samples, tissue biopsies
can pose an increased challenge, as they are more difficult to obtain, require
adaptation of experimental protocols and there is often scarce information in
the published literature. Hence, one of the aims of this project was to bring
big data analysis with NGS and data interpretation on the effect of physical
activity on muscle transciptome.

With regards to physical activity, it has been shown previously, that even mod-
erate resistance training can reduce morbidity and mortality and prevent from
development sarcopenia and dynapenia. Muscle strength can be improved even
at very advanced age. For instance, one study showed that 24 weeks of strength
training can lead to a 15.6% increase in muscle strength in 70 year-olds, whereas
the control lost 0.6% of their baseline strength [Rabelo et al., 2011]. Another
study reported of a —verb—41-47after 12 weeks of resistance training. A sys-
tematic review evaluated that an evidence-based training protocol, consisting of
balance training and progressive resistance training at mid to high intensity, can
influence physical fitness, functional health and quality of life in institutional-
ized elderly individuals in a positive manner [Weening-Dijksterhuis et al., 2011].
Similar results were observed employing a meta-analysis, showing that the ef-
ficiency of strength training is more meaningful with higher training intensity
[Peterson et al., 2010]. One common assumption, is that a combination of pro-
tein and micromolecular-based nutrients combined with strength training could
be beneficial. One study, for instance, has investigating the effect of strength
training in a combination with with a carbohydrate/ amino acid supplementa-
tion on functional parameters and physical performance in elderly participants.
The participants were provided the carbohydrate drink before training and the
amino acid supplement after. However, in a lack of a control group, the improve-
mentcould not be atributed to a certain type of intervention [Onambélé-Pearson

1www.rnaseq.uoregon.edu
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et al., 2010]. No additional effect of ingesting 10g of protein before and also af-
ter resistance training was observed in elderly men (722 years) after 12 weeks
of training [Verdijk et al., 2009]. Another positive effect of strength training,
besides increased muscle protein synthesis, could be a decrease of oxidative and
inflammatory stress, all of which are strongly associated with the aging process.

The aim of the present study is to investigate the effect of progressive resis-
tance training with or without consuming a commercially available nutritional
supplement for the elderly on clinical functional parameter (muscle mass and
function, physical performance) institutionalized elderly. The data used within
the current project originate from the Vienna Active Ageing Study (VAAS). It
was a collaborative randomized intervention trial that span over a period of 18
months aiming to assess the effect of regular exercise on biomarkers of ageing
and physical fitness in institutionalized elderly (6598 years of age). The study
participants were predominantly females. A number of parameters have already
been analyzed individually and the outcomes have been reported [Franzke et al.,
2014, Oesen et al., 2015]. In addition to numerous anthropological and func-
tional measurements, blood, urine and saliva samples collected within the study,
a subset of muscle biopsies have been obtained for whole genome RNA sequenc-
ing. The resulting dataset has been approached from two directions. First,
by looking at a baseline set of coding or non-coding RNAs in the ageing mus-
cle. Second, looking at the effect of resistance training and supplementation on
changes in the transcriptome over 6 months. This approach allows us to dissect
the changes occurring in the muscle during ageing and in respect to certain
medical conditions often present in the elderly.
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2 Methodology

2.1 Study design, sample and library preparation and se-
quencing

In the following section I will briefly describe the background study design,
initial sample preparation and sequencing. This part of the work was not directly
part of the project but a brief description is essential for interpretation of the
results. The workflow is presented schematically in 3.

Muscle biopsy → Quadriceps femoris

Training group
N = 11

Control
N = 6

Training&Supplement
N = 5

6-months interventionBaseline

Institutionalized females; ≥ 65 y.o.; no severe disease

Total RNA extraction; library preparation

HiSeq 3000/4000; 150+66 bp PE

Alignment → TopHat 2.1.0

Figure 3: Study design of the Vienna Active Ageing Study. The workflow prior
to data analysis is shown. Only those samples on which RNAseq was performed
are shown.

2.1.1 Study design

The recruitment characteristics of the participants in the Vienna Active Age-
ing Study (VAAS) have been published previously [Franzke et al., 2014, Oesen
et al., 2015]. Briefly, 14 males and 103 females study participants, residents of 5
different senior residencies in Vienna, gave their written informed consent prior
to inclusion in the study. The VAAS was conducted in accordance with the
Declaration of Helsinki and approved by the ethical committee of the City of
Vienna (EK11-151-0811). The study was designed as a prospective randomised
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and controlled intervention study and further details can be found under Clini-
calTrials.gov, project number NCT01775111.

Study inclusion criteria:

• Women and Men aged 65 or more

• Adequate mental condition in order to follow the instructions and to per-
form the resistance exercise independently (Mini-Mental-State higher than
23)

• Ability to walk 10 meters independently (without orthopaedic devices)

• at least 4 points at the Short Physical Performance Battery (SPPB)

Study exclusion criteria:

• Chronic diseases, which contraindicate a medical training therapy

• Serious cardiovascular diseases (congestive chronic heart failure, severe or
symptomatic aortic stenosis, unstable angina pectoris, untreated arterial
hypertension, cardiac arrhythmias)

• Diabetic retinopathy

• Manifest osteoporosis

• Anticoagulants (example: Marcomar)

• Regular use of cortisone-containing drugs

• Regular strength training (more than once per week) in the last 6 months
before inclusion

• Lack of written declaration of consent for testing physical fitness

All inclusion criteria had to be fulfilled in order to take part in the study, whereas
only one exclusion criterion was enough for disqualification.
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2.1.2 Intervention

The study participants were randomly assigned to three groups: resistance train-
ing (RT), resistance training + supplementation (RTS) and control (CT).

• Training (RT): 2x/week progressive resistance training using easy acces-
sible Therabands in order to increase sustainability. One unit consists
of 10 minutes warm-up, 35-40min strength training of the major muscle
groups and 10min cool down. In the habituation phase (4 weeks, M1) 15
repetitions of the easiest exercise are performed (increase to heavier exer-
cise only when strongly underutilized). From the fifth week intensity and
volume increase progressively to two sets of light exercise, if easily done
to one set of heavy exercise and one set of easy exercise and further to
two sets of heavy exercise. Easily done means that 15 repetitions in the
2nd set is within reach without any problems (2 more repetitions in the
2nd set would be possible) (training program in annex). Within the first
6 months (M1-M6) the guided training was performed 2x/week on non-
consecutive days; M7-M12: guided 1x/week + self-organized 1x/week;
M13-M24; self-organized 2x/week.

• Training + Supplementation (RTS): 1 daily dose of 1 portion FortiFit
(Nutricia) = 150kcal; 20.7g protein (56 En%, 19.7g whey protein, 3g leucine,
more than 10g essential amino acids); 9.3g carbohydrates (25 En%; 0.8
BE); 3.0g fat (18 En%); 1.2 g fiber (2 En%); 800 IU (20microg) vitamin D;
250mg calcium; vitamins B6 and B12 folate; magnesium. The supplement
was consumed every morning with breakfast and additionally after every
training session.

• Control (CT): Maintaining the current exercise and eating habits, with
additional supervised units for training of cognition, fine motor skills and
relaxation exercises twice a week.

For the current analysis, resting skeletal muscle biopsies at baseline (before the
beginning of the intervention) and six months post intervention have been ob-
tained from a subgroup of the study population. After quality assessment a
subgroup of samples from 22 women was used for RNA extraction and down-
stream analyses.
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2.1.3 Skeletal muscle biopsies

Biopsies were obtained from the middle portion of the muscle vastus lateralis,
the largest and most powerful part of the quadriceps femoris. The procedure was
performed using a percutaneous needle biopsy technique according to Bergstrm.
After dissecting the muscle samples from blood, adipose and connective tissues,
the samples were flash-frozen in liquid nitrogen and stored at -80C until further
analyses. The weight of the obtained muscle tissue was at least 7 mg up to a
maximum of 120 mg (44 +/- 24 mg).

2.1.4 Isolation of mRNA

Total mRNA was extracted from the muscle biopsy samples using Qiazol Ly-
sis Reagent (QIAGEN) according to the protocol given by the manufacturer.
The sample quality was assessed using the Agilent 2100 Bioanalyzer, and were
rendered suitable for downstream application.

2.1.5 Library preparation

The sequencing library was prepared using a commercial NEBNext Ultra Direc-
tional RNA Library Prep Kit (New England Biolabs) following the protocol for
polyA enrichment for preparation of the mRNA libraries. The library fragment
size ranged between 200 and 1000 bp, with the highest abundance at around
350 bp. All samples produced libraries of acceptable quality.

2.1.6 Sequencing

The libraries were run in four lanes (batches) on an Illumina HiSeq 3000/4000.
The output generated 150+66 bp paired end (PE) reads with 30x nominal cov-
erage.

2.2 RNA-seq data analyses

The analyses of RNAseq data starts with collecting the reads and demultiplexing
them. As mentioned previously, muscle biopsies from the active ageing study
group have been collected from 22 individuals at two time-points: pre and post
intervention, yielding a total number of 44 data files. The initial extension of the
files is FASTA, and after quality check and trimming the reads are stored into
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a FASTQ file, which contains the quality scores in addition to the nucleotide
sequence. The initial step in the analysis is mapping fragments to a reference
genome, counting the number of reads aligning to a feature, sample comparison
and quality check and differential expression.

2.2.1 Read alignment with TopHat 2.1.0

TopHat is built on the ultrafast short read mapping program Bowtie2 and is
specifically designed to align RNAseq reads while taking in account exon-exon
junctions. It runs on Linux and OS X. TopHat can use both FASTA and FASTQ
formats as input.

Typical usage of TopHat:

tophat [options] <genome_index_base> PE_reads_1.fq.gz PE_reads_2.fq.gz

Here, <genome_index_base> corresponds to the basename of the genome index
to be searched; PE_reads_1 and _2 are separate comma-delimited lists corre-
sponding to the paired end reads, and the files in the list must have the same
file order in both *_1 and *_2.

TopHat reports splice junctions on the basis of RNA-Seq read alignments in
UCSC BED track format. Each junction consists of two connected BED blocks,
where each block is as long as the maximal overhang of any read spanning the
junction. The score is the number of alignments spanning the junction. UCSC
BED tracks of insertions and deletions are also reported by TopHat. Before
comparing samples and calling differential expression the individual-sample spe-
cific GTF files are merged. The merged file defines the comparison run-specific
XLOC (gene) and TCOMNS (transcript) identifiers that are used throughout
the differential expression tables. The reference transcriptome GTF file of En-
sembl gene, transcript and exon annotation from release e75 on GRCh37. De-
pending on the actual read data some transcript clusters (i.e. genes) may be
merged, for example, because the data suggests a read-through event.

The main output file from read alignment with TopHat is a SAM file, or its
compressed counterpart, a BAM file. A BAM file contains the same information
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as a SAM file, in a binary form. A useful package for working with SAM/BAM
files is samtools 2. Although some minor features of samtools have been used
for this work, I will not describe the package here. The file required for the next
step is an aligned BAM file in combination with a corresponding index file with
the extension BAI.

A newer version of TopHat, 2.1.1, has been released since the initial analyses,
however, at this point TopHat has entered a low maintenance and low support
stage, due to its replacement with the more efficient HISAT2. Another alter-
native to TopHat is the Spliced Transcripts Alignment to a Reference (STAR)
software, described as an ultrafast universal sequence aligner.

2.2.2 Counting reads with HTSeq count 0.6.1p2

In the next step HTSeq version 0.6.1p2 was used to estimate the read counts
from HTSeq is a Python-based framework that allows for efficient analyses of
high-throuput sequencing data [Anders et al., 2014]. The command ”count”
is used to determine the number of reads from an aligned genome map to a
certain feature. Depending on the question and method for generating reads,
the feature can be a gene, a transcript (exon) or a region. In the case of RNA
seq the features are normally genes; exons can be used as features in the case
when alternative splicing is under investigation.

The function can be called using the following code:

python -m HTSeq.scripts.count [options] <alignment_file> <gff_file>

Here, according to the options described in the HTSeq documentation 3 The
options used are:

”-f <format>, --format=<format>

Format of the input data. Possible values are sam (for text SAM files) and bam
(for binary BAM files). Default is sam.

2http://samtools.github.io/hts-specs/SAMv1.pdf
3http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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-r <order>, --order=<order>

For paired-end data, the alignment have to be sorted either by read name or by
alignment position. If your data is not sorted, use the samtools sort function of
samtools to sort it. Use this option, with name or pos for order to indicate how
the input data has been sorted. The default is name.

If name is indicated, htseq-count expects all the alignments for the reads of
a given read pair to appear in adjacent records in the input data. For pos,
this is not expected; rather, read alignments whose mate alignment have not
yet been seen are kept in a buffer in memory until the mate is found. While,
strictly speaking, the latter will also work with unsorted data, sorting ensures
that most alignment mates appear close to each other in the data and hence the
buffer is much less likely to overflow.

-s <yes/no/reverse>, --stranded=<yes/no/reverse>

whether the data is from a strand-specific assay (default: yes)

For stranded=no, a read is considered overlapping with a feature regardless of
whether it is mapped to the same or the opposite strand as the feature. For
stranded=yes and single-end reads, the read has to be mapped to the same
strand as the feature. For paired-end reads, the first read has to be on the same
strand and the second read on the opposite strand. For stranded=reverse, these
rules are reversed.

-a <minaqual>, --a=<minaqual>

skip all reads with alignment quality lower than the given minimum value (de-
fault: 10 Note: the default used to be 0 until version 0.5.4.)

-t <feature type>, --type=<feature type>

feature type (3rd column in GFF file) to be used, all features of other type
are ignored (default, suitable for RNA-Seq analysis using an Ensembl GTF file:
exon)

-i <id attribute>, --idattr=<id attribute>

GFF attribute to be used as feature ID. Several GFF lines with the same feature
ID will be considered as parts of the same feature. The feature ID is used to
identity the counts in the output table. The default, suitable for RNA-Seq
analysis using an Ensembl GTF file, is gene-id
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-m <mode>, --mode=<mode>

Mode to handle reads overlapping more than one feature. Possible values for
mode are union, intersection-strict and intersection-nonempty (default: union)

-o <samout>, --samout=<samout>

write out all SAM alignment records into an output SAM file called samout,
annotating each line with its assignment to a feature or a special counter (as an
optional field with tag XF)”

2.2.3 Data normalization and differential expression analyses with
DESeq2

The count output files from HTSeq can be used further directly as input files for
DESeq. A designated function, DESeqDataSetFromHTSeqCount, is designed in
order to create a matrix directly from HTSeq count files. The default DESeq
input is a count matrix that contains features such as genes as rows and samples
as columns. The count matrix consists of integers Xij where i corresponds to
the gene and j to the sample. These integers represent non-normalized counts of
sequencing reads in the case of a single-end RNAseq experiment or fragments in
paired-end experiment. In order to avoid over-normalization, normalized counts
should not be used as the DESeq2 model corrects for library size.

According to the extensive and easy to follow DESeq2 manual 4 the design
formula expresses the variables which will be used in modeling. The formula is
written with a tilde (~) followed by the variables or factors of interest connected
by a plus sign. An intercept is included, representing the base mean of the
counts. In order to benefit from the default settings of the package, you should
put the variable of interest at the end of the formula and make sure the control
level is the first level.

To test for differentially expressed genes throughout condition and treatment,
we have used two approaches. One was looking at both time and condition
as factors in the same formula and looked at the differential gene expression
post intervention, taking in account the group differences that might have been
present at baseline. The second approach takes each group separately and com-
pares the post-intervention condition to the pre-intervention condition.

4http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/

DESeq2.pdf
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The following code has been used for the current analysis, with some modifica-
tions regarding the desired output:

# set a working directory where the HTSeq ouput files are located

dir<- "/source_directory/Data"

# load the DESeq2 package

library(DESeq2)

# first, from the working directory select all HTSeq output files using

the command "grep" and a common name excerpt

sampleFiles <- grep("*samout.txt",list.files(dir),value=TRUE)

# next, set the conditions in a data.frame corresponding to each sample;

at this point the sample names are listed alphabetically

pd <- data.frame(group=rep(c(’Cntrl’,

’Cntrl’,’Cntrl’,’Cntrl’,’Cntrl’,’Cntrl’,

’Cntrl’,’Cntrl’,’Cntrl’,’Cntrl’, ’Training’, ’Training’,

’Training’,’Training’,’Training’,’Training’,’Training’,

’Training’,’Training’,’Training’,’Training’,’Training’,

’Training’,’Training’,’Training’,’Training’,’Training’,

’Training’,’Training’,’Training’,’Training’,’Training’,

’TrSuplement’, ’TrSuplement’,’TrSuplement’,’TrSuplement’,

’TrSuplement’,’TrSuplement’,’TrSuplement’,’TrSuplement’,

’TrSuplement’,’TrSuplement’)),

time=rep(c( ’post’,’pre’), 21))

# alternatively prepare a csv file containing the condition variables

(it can contain other variables such as age, clinical parameters

etc.

pd <- read.csv("/source_directory/Data/PD_file.csv")

# generate the sample table

sampleTable <- data.frame(sampleName = sampleFiles, fileName =

sampleFiles, condition = pd)

# generate the DESeq data set; the design formula can contain more than

one factor, however, DESeq2 calculates differential expression for

the last listed factor and the rest are used as covariates
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ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,

directory = dir, design= ~ condition.group + condition.time)

# remove all features that have less than 1 read per sample (42 samples)

dds <- ddsHTSeq[ rowSums(counts(ddsHTSeq)) > 42, ]

# estimate size factors; this feature is useful in order to normalize

the data

geoMeans <- exp(rowMeans(log(counts(dds))))

dds <- estimateSizeFactors(dds,geoMeans=geoMeans)

sizeFactors(dds)

# export the normalized counts as a matrix-like table in csv or tsv

format; this table can be used then to estimate outliers by PCA or

SaVant

norm<- counts(dds, normalized=TRUE)

write.table(norm, file="/source_directory/Data/DESeq_matrix_norm.tsv",

quote=FALSE, sep=’\t’, col.names = NA)

# set the reference condition, in this case "pre"

dds$condition <- relevel(dds$time, ref="pre")

# run DESeq and collect results in a tabelar form

dds <- DESeq(dds)

res <- results(dds)

res

write.table(res, file="/source_directory/Data/DEG_all.tsv", quote=FALSE,

sep=’\t’, col.names = NA)

# examine the results

sum(res$padj < 0.05, na.rm=TRUE)

sum(res$padj < 0.1, na.rm=TRUE)

sum(res$pvalue < 0.05, na.rm=TRUE)

# plot the results

svg("/source_directory/Data/Plot_DEG.svg")

plotMA(res, main="DESeq2", ylim=c(-2,2))

dev.off()

# to view results related to a different condition

results(dds, contrast=c("condition","Cntrl","Training"))
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# to look at the cumulative effect of two conditions and compare

subgroups (eg. Cntrl post vs. Cntrl pre) independently of the other

groups

dds$cumulative <- factor(paste0(dds$group, dds$time))

design(dds) <- ~ cumulative

dds <- DESeq(dds)

resultsNames(dds)

results(dds, contrast=c("cumulative", "Cntrlpost", "Cntrlpre"))

2.2.4 Signature Visualization with SaVant

In order to estimate the predominant tissue and cell type through all samples we
used SavAnt (Lopez et. al, unpublished, 5), a web service aimed at estimating
specific tissue and cell signatures from RNAseq data. 6

Using SaVant is relatively simple, it requires a table containing Gene symbols in
the first column and samples in the other columns; the rows represent normalized
read counts of a certain feature. At The user can choose a signature category
(at the moment between human and mouse). Additional features are described
in 7. The output is a heat map matrix showing the abundance of signatures per
tissue or cell type for the given sample.

2.2.5 PCA analysis and clustering with COVAIN

Principal Component analysis and bi-clustering were utilized in order to identify
outliers among the tested samples. For this purpose, a Matlab toolbox, CO-
VAIN, was used [Sun and Weckwerth, 2012]. This toolbox allows for input of
up to 500 features across all samples. The input matrix uses normalized counts
from DESeq2 followed by log transformation. The 500 genes with the highest
coefficient of variation across all samples were used for this purpose.

2.2.6 Pathway analyses with ConsensusPathDB

In order to identify pathways that are up- or downregulated upon intervention
in the groups, after running differential expression analyses, a pathway analyses
can be employed. There are several tools that can be utilized for this purpose,

5http://pellegrini.mcdb.ucla.edu/Lab/pellegrinilabscps/SCP_SaVant.pdf
6http://pathways.mcdb.ucla.edu/savant/
7http://pellegrini.mcdb.ucla.edu/Lab/pellegrinilabscps/SCP_SaVant.pdf

15



including Ingenuity Pathway Analysis (IPA) or Gene Set Enrichment Analysis
(GSEA). A commonly used database is The Database for Annotation, Visual-
ization and Integrated Discovery (DAVID), that provides gene-annotation en-
richment analysis and functional annotation clustering. However, this database
has not been regularly maintained, and the current version v6.7 will be replaced
in October 2016 with the updated version v6.8. Hence, ConsensusPathDB is
used here as an alternative with very similar interphase and output. Consen-
susPathDB is a database integrating interactions between genes or transcripts
on a functional level.Cur The information on the interactions comes from 30
public resources and is integrated into a common network. Gene regulatory
interactions are mapped and grouped together according to similarity. This
database content is updated every three months, to make sure it contains the
latest information.

The statistical approach used to analyze user-specified lists of genes by Consen-
susPathDB is over-representation analysis, where predefined lists of functionally
associated genes (pathways, Gene Ontology (GO) categories and neighborhood-
based entity sets) are tested for over-representation in the user-specified list
based on the hypergeometric test. The over-representation functionality takes as
input a relatively short, non-weighted list of differentially expressed genes. The
input identifiers are then mapped to physical entities and over-represented sets
are searched among three categories of predefined gene sets: network neighborhood-
based sets, pathway-based sets and Gene Ontology-based sets. The user can
select which functionality is most informative for the specific experiment 8. As
an input we used differentially expressed genes identified by DESeq2, with ad-
justed p values lower than 0.1. As the list of such genes was very short, we have
additionally used a list of genes where the non-adjusted p-value was lower than
0.05. This set was further divided in two subsets: genes that are upregulated
after intervention and genes that are downregulated.

8http://cpdb.molgen.mpg.de/
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3 Results and Conclusions

3.1 Count features

The output from HTSeq count is a table containing raw reads per feature in
a given sample. HTSeq count outputs the data as a list of features (genes or
transcripts) with their Ensembl identifiers and raw count of reads per feature.
In addition, as an output HTSeq count gives a statistical evaluation on the
number of reads that correspond to different features.

eg. MG_24_pre

• __no_feature 1228833

• __ambiguous 472619

• __too_low_aQual 0

• __not_aligned 0

• __alignment_not_unique 916119

These features were similar in all samples rendering around 6% of the reads not
aligning to a feature, 2% being ambiguous and approximately 5% of all reads
aligning to more than one feature. A large number of features were not covered
by reads, yielding a count result of zero. Such features could be problematic for
downstream analyses and can be filtered out at this point or in the next step.

3.2 Sample signature visualtisation with SaVant, PCA anal-
yses and clustering

Using SaVant for signature visualisation on log-transformed, normalized counts
and using the Human Body atlas signature database. We could confirm that the
predominant cell type in all samples was skeletal muscle (figure 4). However,
one of the samples showed a very distinct signature, indicative of potential
infiltration of immune cells (figure 4).
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Figure 4: Signature Visualisation with Savant revealed a consistent and strong
skeletal muscle signature in all samples. One of the samples contains signals
corresponding to immune cells. Only the most relevant tissues from the human
body atlas are shown.
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Validation using PCA on the 500 most variable genes across all samples showed
that this sample does not cluster closely with all other samples (figure 5). This
lead to exclusion of the sample from all further analyses, in order to minimize
potential discrepancies in the results due to inadequate sample quality.

Figure 5: Principal component analysis reveals how samples cluster together.
One sample deviates significantly from the rest.

3.3 Differential gene expression with DESeq2

Using the condition.group + condition.time formula in the DESeq design
we could identify genes that were differentially expressed post intervention com-
pared to pre intervention, taking in account the intervention group of the study
participant. The output data frame has 6 columns: baseMean, log2FoldChange,
lfcSE, stat, pvalue and padj. The log2FoldChange shows the size of the effect,
and whether it is positive or negative. The padj corresponds to an adjusted
p-value that takes in account multiple testing artefacts present in big data anal-
yses. The MA plot in figure 6 shows the number of genes with padj value lower
than 0.1, marked with red. As observed, only a small number of genes were dif-
ferentially expressed, mostly downregulated, after intervention, and the overall
effect was not very large.
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Figure 6: MA-plot of log2fold values between post and pre-treatment, taking
in account the intervention group. Red dots represent differentially expressed
genes, p(adjusted) ≤ 0.1.

We next compared each of the three intervention groups separately, using the
interaction feature from DESeq and using different group contrasts. Figure 7
shows the MA plots of differentially expressed genes after intervention in all
three groups. As evident from the plots, there were no differentially expressed
genes in neither the control group nor the traaining and supplementation group
at a padj level below 0.1. In contrast, the training group showed a modest level of
differentially expressed genes. This might indicate that protein supplementation
diminishes the changes occuring in skeletal muscle during exercise training.
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(a) MA-plot of log2fold
values between post and
pre-treatment in the con-
trol group

(b) MA-plot of log2fold
values between post and
pre-treatment in the
training group.

(c) MA-plot of log2fold
values between post and
pre-treatment in the
training and supplemen-
tation group

Figure 7: Red dots represent differentially expressed genes, p(adjusted) ≤ 0.1.
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We further explored the number of genes that showed a modest change with
an unadjusted p-value below 0.05 in the three intervention groups. We were
interested in the overlap of genes that have a potential to be affected in all
three groups. Figure 8 shows the number of features with a p-value below 0.05
in all groups separately, as well as the genes commonly changed among two or
more groups. There was only a very small overlap between each two groups and
almost no common features changed in all three groups at the same time.

Figure 8: Venn diagram representing differentially expressed genes at p-value
≤ 0.05 in all three groups separately, and overlapping differentially expressed
genes between groups.

3.4 Pathway enrichment analyses

In the previous section we could establish a modest effect of exercise training
alone on skeletal muscle, due to the number of differentially expressed genes be-
tween pre and post training intervention. In order to identify which cell function
might be altered and to reduce the number of candidate genes for quantitative
PCR verification, we run a pathway analysis based on gene enrichment sets
using the ConsensusPathDB. We used the pathway analysis option and the sig-
nificantly enriched pathways are shown in table 1. The gene IDs are given as
ENSAMBLE gene IDs. These can be easily translated into different identifiers
using conversion tools such as biodbnet 9.

9https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
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p-value q-value pathway source members_input_overlap

0.000 0.000 KEGG

0.000 0.002 Reactome

0.000 0.002 Reactome

0.000 0.006 Reactome

0.000 0.006 KEGG

0.000 0.006 Reactome

Vascular 
smooth muscle 
contraction - 
Homo sapiens 
(human)

ENSG00000101335; 
ENSG00000065534; 
ENSG00000145936; 
ENSG00000173175; 
ENSG00000107796; 
ENSG00000164116; 
ENSG00000122786; 
ENSG00000163017; 
ENSG00000133392; 
ENSG00000151067; 
ENSG00000072952; 
ENSG00000067900; 
ENSG00000151617; 
ENSG00000125503; 
ENSG00000167641

ECM 
proteoglycans

ENSG00000105664; 
ENSG00000130702; 
ENSG00000157766; 
ENSG00000259207; 
ENSG00000122176; 
ENSG00000041982; 
ENSG00000182492

Smooth Muscle 
Contraction

ENSG00000101335; 
ENSG00000065534; 
ENSG00000107796; 
ENSG00000122786; 
ENSG00000163017; 
ENSG00000133392

Platelet 
degranulation 

ENSG00000196924; 
ENSG00000137801; 
ENSG00000259207; 
ENSG00000130402; 
ENSG00000120885; 
ENSG00000072110; 
ENSG00000174175; 
ENSG00000131236

Focal adhesion 
- Homo sapiens 
(human)

ENSG00000196924; 
ENSG00000105664; 
ENSG00000065534; 
ENSG00000101335; 
ENSG00000169398; 
ENSG00000130702; 
ENSG00000125503; 
ENSG00000259207; 
ENSG00000130402; 
ENSG00000137801; 
ENSG00000072110; 
ENSG00000041982; 
ENSG00000067900

Response to 
elevated 
platelet 
cytosolic Ca2+

ENSG00000196924; 
ENSG00000120885; 
ENSG00000259207; 
ENSG00000130402; 
ENSG00000137801; 
ENSG00000072110; 
ENSG00000174175; 
ENSG00000131236
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0.000 0.007 Wikipathways

0.000 0.017 BioCarta

0.000 0.017 Reactome

0.000 0.019 BioCarta

0.001 0.025 Reactome

0.001 0.025 PharmGKB

0.001 0.026 Wikipathways

0.001 0.028 Reactome

0.001 0.028 Reactome

Endothelin 
Pathways

ENSG00000078401; 
ENSG00000164128; 
ENSG00000065534; 
ENSG00000130176; 
ENSG00000151617

erk and pi-3 
kinase are 
necessary for 
collagen 
binding in 
corneal 
epithelia

ENSG00000169398; 
ENSG00000130402; 
ENSG00000065534; 
ENSG00000067900; 
ENSG00000072110

Syndecan 
interactions

ENSG00000072110; 
ENSG00000137801; 
ENSG00000041982; 
ENSG00000259207

pkc-catalyzed 
phosphorylation 
of inhibitory 
phosphoprotein 
of myosin 
phosphatase

ENSG00000141837; 
ENSG00000065534; 
ENSG00000067900; 
ENSG00000167641

Non-integrin 
membrane-
ECM 
interactions

ENSG00000041982; 
ENSG00000137801; 
ENSG00000130702; 
ENSG00000072110; 
ENSG00000259207

Sympathetic 
Nerve Pathway 
(Neuroeffector 
Junction)

ENSG00000141837; 
ENSG00000164128; 
ENSG00000151067

TGF beta 
Signaling 
Pathway

ENSG00000162772; 
ENSG00000169398; 
ENSG00000259207; 
ENSG00000137801; 
ENSG00000125740; 
ENSG00000185359; 
ENSG00000170345; 
ENSG00000041982; 
ENSG00000067900

RHO GTPases 
activate PAKs

ENSG00000196924; 
ENSG00000065534; 
ENSG00000133392; 
ENSG00000101335

Sema4D 
induced cell 
migration and 
growth-cone 
collapse

ENSG00000164050; 
ENSG00000101335; 
ENSG00000067900; 
ENSG00000133392
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0.001 0.039 KEGG

0.001 0.039 PID

0.001 0.039 Reactome

0.002 0.040 Reactome

0.002 0.042 Focal Adhesion Wikipathways

0.002 0.042 Reactome

0.002 0.043 Reactome

cGMP-PKG 
signaling 
pathway - 
Homo sapiens 
(human)

ENSG00000101335; 
ENSG00000065534; 
ENSG00000145936; 
ENSG00000173175; 
ENSG00000164116; 
ENSG00000151067; 
ENSG00000072952; 
ENSG00000067900; 
ENSG00000151617

Syndecan-4-
mediated 
signaling events

ENSG00000169398; 
ENSG00000041982; 
ENSG00000137801; 
ENSG00000072110

Sema4D in 
semaphorin 
signaling

ENSG00000164050; 
ENSG00000101335; 
ENSG00000067900; 
ENSG00000133392

Muscle 
contraction

ENSG00000101335; 
ENSG00000065534; 
ENSG00000107796; 
ENSG00000122786; 
ENSG00000163017; 
ENSG00000133392
ENSG00000196924; 
ENSG00000105664; 
ENSG00000065534; 
ENSG00000169398; 
ENSG00000130702; 
ENSG00000259207; 
ENSG00000137801; 
ENSG00000072110; 
ENSG00000041982; 
ENSG00000067900

Extracellular 
matrix 
organization

ENSG00000105664; 
ENSG00000130702; 
ENSG00000157766; 
ENSG00000259207; 
ENSG00000137801; 
ENSG00000072110; 
ENSG00000169436; 
ENSG00000122176; 
ENSG00000041982; 
ENSG00000182871; 
ENSG00000182492

EPHA-mediated 
growth cone 
collapse

ENSG00000169398; 
ENSG00000101335; 
ENSG00000067900; 
ENSG00000133392

Table 1: ConsensusPathDB output of significantly enriched pathways affected
by intervention training in the elderly. Input genes that yielded p-value lower
than 0.05 with DESeq analyses were used for this analysis. Only pathways with
q-value lower than 0.05 are shown.
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As observed from table 1, there are numerous pathways that might be of interest
for functional and mechanistic evaluation One of them, the TGF beta signalling
pathway has been evaluated in blood and blood cells in this study population
and hasbeen published previously [Halper et al., 2015, Hofmann et al., 2015].
However, other interesting candidate pathways are yet to be evaluated either in
the context of the present study or using a new in vivo or in vitro model.
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4 Discussion and Future prospects

The analysis of RNA sequencing data is relatively complex, and there are many
different packages that can specifically fulfill a certain task or requirement.
Conesa et al. [2016] have recently summarized the best practices for RNAseq
analyses. The choice of pipeline for RNAseq analysis will greatly influence the
final results as many of the different packages use different statistical methods
or normalization procedures. However, taking in account the current study de-
sign, DESeq2 was the method of choice as it allows for a model that includes
several factors at the same time and in addition it controls for confounders such
as batch differences.

The next step in the analysis and at the same time an important goal of the Ac-
tive Ageing Study would be to investigate effects of blood-based and functional
biomarkers, as well as medication or underlying conditions on the change in tran-
scription in this study group. DESeq2 can be used with continuous variables as
factors in addition to categorical. This approach will be useful for building a
multivariable model for prediction of transriptional changes. However, a more
comprehensive view of the complex interactions between gene expression and
clinical or functional parameters can be obtained by network analysis. To that
end, future plans include weighted correlation network analysis (WGCNA) for
finding clusters of highly correlated genes, and relating these to one another
and to external sample traits [Langfelder and Horvath, 2016]. A similar ap-
proach has been utilized recently [Ponsuksili et al., 2015], however, the Vienna
Active Ageing Study provides a unique and interesting study group of elderly
institutionalized individuals, where the effects of training on the skeletal muscle
transcriptome has not as yet been evaluated.

In order to get more meaningful interpretation of the data obtained, apart from
more extensive bioinformatics analysis, it is of great importance to employ a
highly specialized interpretation of the output. Especially in the case of large
data, the evidence can be often too overwhelming and misinterpreted. Stud-
ies on the interphase of several disciplines such as molecular biology, physiol-
ogy, bioinformatics and statistics are essential for advancement of health-related
biomedical translational research.
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Heloisa T Rabelo, Ĺıdia A Bezerra, Denize F Terra, Ricardo M Lima, Maria AF
Silva, Tailce K Leite, and Ricardo J de Oliveira. Effects of 24 weeks of
progressive resistance training on knee extensors peak torque and fat-free
mass in older women. The Journal of Strength & Conditioning Research, 25
(8):2298–2303, 2011.

29



Xiaoliang Sun and Wolfram Weckwerth. Covain: a toolbox for uni-and mul-
tivariate statistics, time-series and correlation network analysis and inverse
estimation of the differential jacobian from metabolomics covariance data.
Metabolomics, 8(1):81–93, 2012.

Cole Trapnell, Lior Pachter, and Steven L Salzberg. Tophat: discovering splice
junctions with rna-seq. Bioinformatics, 25(9):1105–1111, 2009.

Erwin L van Dijk, Hélène Auger, Yan Jaszczyszyn, and Claude Thermes. Ten
years of next-generation sequencing technology. Trends in genetics, 30(9):
418–426, 2014.

Lex B Verdijk, Richard AM Jonkers, Benjamin G Gleeson, Milou Beelen, Ken-
neth Meijer, Hans HCM Savelberg, Will KWH Wodzig, Paul Dendale, and
Luc JC van Loon. Protein supplementation before and after exercise does
not further augment skeletal muscle hypertrophy after resistance training in
elderly men. The American journal of clinical nutrition, 89(2):608–616, 2009.

Elizabeth Weening-Dijksterhuis, Mathieu HG de Greef, Erik JA Scherder,
Joris PJ Slaets, and Cees P van der Schans. Frail institutionalized older per-
sons: A comprehensive review on physical exercise, physical fitness, activities
of daily living, and quality-of-life. American Journal of Physical Medicine &
Rehabilitation, 90(2):156–168, 2011.

30


