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Abstract

For a continuous dynamical system (X, f) on a compact metric space
and a continuous potential Φ : X → Rm the generalized rotation set is the
subset of Rm consisting of all integrals of Φ with respect to all f -invariant
probability measures. We provide an introduction to notions and results of
rotation theory and entropy. For α ∈ Rm and the potential α.Φ, following
[6], we establish a connection between the rotation vectors of the equilibrium
measures and the directional derivative of the pressure. The localized entropy
at a point in the rotation set is defined as the supremum of the measure
theoretic entropies over all f -invariant probability measures whose integral
produce that point. We consider a subshift of finite type and a potential
constant on cylinders of length K. Inspired by [19] we show that in this case
the rotation set is a polyhedron and give formulas for the localized entropy
at extreme points and faces of the rotation set.

1. Introduction

1.1. Motivation. A dynamical system is a rule for the evolution of time on
a state space. Dynamical systems can be motivated by the real world like
for example the motion of a particle in a liquid. It may happen that we have
incomplete knowledge about the system. For instance we do not know the
exact initial conditions. If a system is chaotic a small change in the initial
conditions may impact the outcome. We equip the dynamical system with
an invariant probability measure. An important goal in dynamical systems
is to understand various typical dynamical behaviors of a given system.

1.2. History. The origin of dynamical systems comes from Newtonian phys-
ics. H. Poincarè is regarded as the ”founder” of dynamical systems. He
published two path-breaking works on celestial mechanics at the end of the
19th century and opened the way to modern nonlinear dynamics and chaos.
Before 1960 strange and complicated behavior in deterministic systems was
regarded as an anomaly but it was not considered to be actually regular
or relevant. But with the availability of fast computers, chaotic behavior
was recognized to be present in many systems of the real world. The anal-
ysis of chaotic phenomena requires different tools, namely rather analytic
and especially measure theoretic than geometrical. This changed the per-
spective to consider the probabilities of outcomes, [2]. This sub-field of
dynamics is called ergodic theory and has its actual origin earlier than 1960.
It goes back to the famous ergodic hypothesis of Boltzmann who claimed
equality of time average and space average for systems in statistical me-
chanics. Poincarè observed that the existence of a finite invariant measure
leads to strong conclusions about recurrence. The development of the ter-
minology of ergodic theory started around 1930. Important contributers are
von Neumann, G. D. Birkhoff, E. Hopf, S. Katukani and A. Kolmogorov.
Kolmogorov introduced the notion of entropy and brought ergodic theory in
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a more probabilistic background rather than a functional-analytic one, [7].
Additional to dynamical systems a central concept in this thesis is called
rotation theory. It is developed from the idea of Poincarès rotation num-
bers for circles and later it is brought in the context of general dynamical
systems.

1.3. Set-up and main results. We work in discrete time, deterministic
dynamical systems equipped with at least one invariant probability measure,
which means we need an sufficiently nice phase space. To make this more
precise, we always consider a compact metrizable space X as the phase
space and a continuous map f : X → X describing the evolution of time.
By a dynamical system we mean a tuple (X, f) of such a phase space and a
transformation. Invariance of the measure means that the distribution of a
probability measure µ does not change under f , i.e. µ◦f−1 = µ. Sometimes
we use one invariant probability measure and sometimes we rather work
with a set of invariant probability measures, denoted by M(f). As the
set M(f) may be rather large for many systems, the question arises as
to which f -invariant measure is the natural choice. One idea that might
make sense is to consider a measure that maximizes a certain topological
complexity, i.e. entropy, among all invariant measures. If such a measure
exists, it is called a measure of maximal entropy. The problem may occur
that the restriction to one invariant measure implies the loss of other relevant
dynamical information. To get on top of this issue we need to get deeper
into the set of invariant measures and one way is to work with smaller
partitions, [10]. This idea brings us to the generalized rotation set. For a
better understanding we explain the development from Poincarè’s rotation
number to the generalized rotation set, following Misiurewicz [13]. Therefore
we consider the circle T = R\Z with the natural projection π : R → T.
Suppose f : T → T is continuous. Then there exists a continuous map
F : R→ R, called lifting of f , such that the diagram

R F //

π
��

R
π
��

T
f
// T

commutes. F is unique up to translation by an integer, i.e. F̃ (x) = F (x)+k
for some k ∈ Z. For now it is sufficient to look only at maps f with degree
one. That is, F (x + 1) = F (x) + 1, for all x ∈ R. Note that the degree
is independent of the choice of lifting. We denote the family of all liftings
of degree one of f by L1. This family is closed under iterates of F and for
k ∈ Z we have Fn(x + k) = Fn(x) + k. We define the upper and lower
rotation number of x ∈ R for F ∈ L1 as

ρF (x) = lim
n→∞

Fn(x)− x
n

, ρ
F

(x) = lim
n→∞

Fn(x)− x
n

. (1)
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If they coincide we define the rotation number of x for F as ρF (x) = ρF (x) =
ρ
F

(x). The rotation number measures the average movement of any point
under iteration of the map. For the first step of generalization we let T
be a m-dimensional real torus. Poincarè proved that if f is an orientation
preserving homeomorphism on a circle (m = 1) then all limits in (1) coincide
and do not depend on x.
For the general theory let F ∈ L1 be a lifting of a circle map f . The so
called displacement function ϕ : T→ R is defined by ϕ(x) = F (y)−y, where
π(y) = x. Note that ϕ is independent of the choice of y ∈ π−1(x). Then we
have the telescopic sum

Fn(y)− y =

n−1∑
j=0

ϕ(f j(x)) =: Sn(ϕ(x)).

Thus we obtain the following identity for the rotation number,

ρF (x) = lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)). (2)

This can again be generalized, namely, let X be a compact metric space,
f : X → X a continuous map and Φ : X → Rm a Borel bounded (in most
cases continuous) function, which is called the potential. Also we do not
require x to be a fixed point but allow also sequences. In this set-up ρF,Φ(x)
is called rotation vector instead of rotation number, i.e. if the limit,

ρF,Φ(x) = lim
nl→∞

1

nl

nl−1∑
j=0

Φ(f j(xl)) (3)

exists, it is called rotation vector. The set of all rotation vectors of this
kind is called pointwise rotation set and denoted by RotPt(Φ), [10]. To get
more information about this statistical average we recall Birkhoff’s Ergodic
Theorem which establishes Boltzmann’s hypothesis. For the theorem let B
be the Borel σ-algebra on X and µ be an f -invariant probability measure.

Definition 1.1. Let (X, f, µ) be a dynamical system. We call µ (resp.
(f, µ)) ergodic if all B ∈ B with f−1(B) = B satisfy µ(B) ∈ {0, 1}. By
ME ⊂M(f) we denote the set of all ergodic measures.

Theorem 1.2. Let f : X → X be a continuous transformation and X
be a compact metrizable space. Suppose f ∈ L1(µ) for µ ∈ M(f). Then
(1/n)Sn(ϕ(x)) converges a.e. to a function ϕ∗ ∈ L1(µ). Also ϕ∗ ◦ f = ϕ∗

and
∫
ϕ∗ dµ =

∫
ϕ dµ.

If (X, f, µ) is ergodic ϕ∗ is constant a.e., in particular ϕ∗ =
∫
ϕ dµ a.e.

For the proof and further information we refer to [16, §1.6]. For Φ =
(φ1, . . . , φm) : X → Rm in equation (3) we obtain by the Birkhoff Ergodic
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Theorem

1

n
Sn(Φ(x))→

∫
Φ dµ µ− a.e.,

where both sides are m-dimensional vectors. The integral on the right hand
side is called rotation vector and denoted by rv(µ). The set RotE(Φ) =
{rv(µ) : µ ∈ME} is called the ergodic rotation set of Φ with respect to f . In
the last step we do not ask for µ to be ergodic anymore but only f -invariant
and define the general rotation set to be Rot(Φ) = {rv(µ) : µ ∈ M(f)}.
From these three definitions of rotation sets we get the following inclusions:

RotE(Φ) ⊂ RotPt(Φ) ⊂ Rot(Φ). (4)

First note that both inclusions can be strict. The left-hand side inclusion in
equation (4) is a consequence of the Birkhoff Ergodic Theorem. The right-
hand side inclusion in equation (4) follows from the Banach-Alaoglu theorem
and the sequentially compactness of the set of Borel probability measures.
Consider a sequence of measures supported on the corresponding averages
in equation (3). In general these measures are not f -invariant. However,
any accumulation point is, and the integral over this measure coincides with
the statistical limit. These relations are studied by T. Kucherenko and C.
Wolf in [9].
But it can be proven that the convex hull of the ergodic and the pointwise
rotation sets coincide with the generalized rotation set.

Proposition 1.3. Let (X, f) be a dynamical system and Φ : X → Rm be a
continuous map (X compact). Then

convRotE(Φ) = convRotPt(Φ) = Rot(Φ).

The proof uses the Ergodic Decomposition Theorem (Section 2.5) to show
that for all extreme points w ∈ Rot(Φ) there exists an ergodic measure
µ ∈ME(f) with rv(µ) = w.
For various dynamical systems the pointwise rotation set and the generalized
rotation set coincide. One example for which they coincide are topologically
mixing subshifts of finite type (Section 2.6). It is natural to ask how the
generalized rotation set looks like. There is only limited knowledge about
the shape of rotation sets. However, K. Ziemian proved in [19] that for
subshifts of finite type and potentials which are constant on cylinders of
length two, the rotation set is a polyhedron. We generalize this result to
cylinders of length K. This result is crucial for the research part in this
thesis. Also T. Kucherenko and C. Wolf, [10] gave an example of a rotation
set for which they were able to determine the exact shape.
Next, we will measure the complexity of a system. Topological entropy is
an invariant to quantify the complexity of a system. Roughly speaking,
topological entropy measures the exponential growth rate of the number
of different orbits as we increase the length of the orbits, see also Section
2.2. Furthermore it is possible to define a measure theoretic entropy hµ(f)
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for an f -invariant probability measure µ. Roughly speaking, it measures
the complexity of the system by ignoring µ-null sets. These two entropy
functions are connected by the Variational Principle 2.19. Coming back
to our original approach - a better understanding of the set M(f). We
define the localized entropy for w ∈ Rot(Φ) by h(w) = sup{hµ(f) : µ ∈
M(f), rv(µ) = w}, following [6]. This notion is strongly related to the
idea of a measure of maximal entropy with the difference that we here only
consider invariant measures giving a certain rotation vector w. Again one
can ask if such a measure exists and if it is unique.
For a dynamical system (X, f) and a continuous function ϕ : X → R we
define the pressure of ϕ by

P (ϕ) = sup
µ∈M(f)

(
hµ(f) +

∫
ϕ dµ

)
. (5)

If there exists a measure ν ∈ M(f) with hν(f) +
∫
ϕdν = P (ϕ) we call it

equilibrium state. The set of all equilibrium states is denoted by ESϕ. For a
α ∈ Rm and Φ : X → Rm we define p : Rm → R by p(α) = P (α.Φ). The set
of all subdifferentials of p with respect to α is denoted by ∂p(α), see Section
3 for more information. One of the main goals is to work out the proof of
the following theorem from Jenkinson’s [6].

Theorem 1.4. Let (X, f) be a dynamical system for which entropy map
µ→ hµ(f) is upper semi-continuous and suppose Φ : X → Rm is continuous.
Then for α ∈ Rm we have ∂p(α) = rv(ESα.Φ).

In Section 5 we discuss other main results. This section is also the basis
for a paper we will write to extend these results. First we show that for
potentials constant on cylinders of length K the corresponding rotation set
is a polyhedron. This proof is inspired by Ziemians idea from [19]. In
Theorem 5.3 and Theorem 5.4 we give formulas for the localized entropy of
extreme points respectively of rotation vectors on faces.

2. Preliminaries

2.1. Fundamentals. After giving a broad overview of the objects we will
now give precise definitions and discuss the essential background material.
The fundamental object in this thesis is the notion of a dynamical system.
Recall that throughout the thesis by a dynamical system we mean a tuple
(X, f) of a continuous map f : X → X on a metrizable compact space
X, where X is called the phase space of the dynamical system. There are
other definitions of a dynamical system but we always assume that f is
continuous and X is compact without mentioning it explicitly. The map
f is deterministic and we consider systems discrete in time. As we will
frequently use the notion of ”chaotic” systems we clarify what we mean by
that and give a definition. We follow [3].
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Definition 2.1. A point x ∈ X is called periodic if there exists a p ≥ 1 such
that fp(x) = x. We say x is of period p if p is the smallest such number. A
point of period one is called a fixed point of f .
The set Of (x) = {fn(x) : n ∈ Z} is called orbit of x ∈ X with respect to f .

Definition 2.2. A dynamical system (X, f) is called topologically mixing if
for any two open non-empty sets U, V ⊂ X there exists a positive integer
N = N(U, V ) such that for every n ≥ N the intersection fn(U) ∩ V is
non-empty.

Definition 2.3. A dynamical system (X, f) is called topologically transitive
if there exists a point x ∈ X such that its orbit Of (x) is dense in X.

This definition can be also characterized by the following lemma. We do
not provide a proof but refer to [7, Lemma 1.4.2].

Lemma 2.4. The dynamical system (X, f) is topologically transitive if and
only if for any two nonempty open sets U, V ⊂ X there exists an integer
N = N(U, V ) such that fN (U) ∩ V is nonempty.

We previously mentioned that chaos is strongly related to sensitive depen-
dence on initial conditions. The next definition clarifies the exact meaning
of this.

Definition 2.5. A dynamical system (X, f) is said to have sensitive depen-
dence on initial conditions if there exists a δ > 0, such that for any x ∈ X
and any ε > 0, there exists y ∈ X with d(x, y) < ε and n ∈ N such that
d(fn(x), fn(y)) > δ.

The following definition is related.

Definition 2.6. A dynamical system (X, f) is called expansive if there exists
δ > 0 such that, for any x, y ∈ X, with x 6= y, there exists n ∈ N such that
d(fn(x), fn(y)) > δ. If f is a homeomorphism, (X, f) is called expansive if
there exits δ > 0 such that, for any x, y ∈ X, with x 6= y, there exists n ∈ Z
such that d(fn(x), fn(y)) > δ.

There are various ways to define what chaos means, however we go with
the following definition of [3]. In Section 2.2 we remark on an alternative
definition of chaos.

Definition 2.7. We say a dynamical system (X, f) is chaotic on X if

1. f has sensitive dependence on initial conditions.
2. f is topologically transitive.
3. Periodic points are dense in X.

This definition is motivated by saying that it is reasonable for a chaotic
map to satisfy the following conditions: unpredictability, indecomposability,
and an element of regularity. The system is unpredictable as it sensitively
depends on initial conditions. It cannot be decomposed in two subsystems
because of the topologically transitivity. But in contrast to a random process
we have the regular condition of periodic points being dense.
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2.2. Entropy. As the level of chaos may differ regarding different systems
we want to measure how chaotic a system is. The key notion here is entropy.
We will define topological entropy and measure theoretic entropy, respec-
tively Kolmogorov-Sinai Entropy. Although we rather work with measure
theoretic entropy we also will introduce topological entropy properly. For
more details we refer to [7].
The goal is to obtain an invariant which represents the exponential growth
rate of orbit segments distinguishable with arbitrary fine precision. We con-
sider the dynamical system (X, f) and define the so called Bowen metric

dfn = dn with respect to the metric d on X by

dn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y)). (6)

Therefore the new metric dn measures the distance between the orbit seg-
ments Ixn = {x, . . . , fn−1(x)} and Iyn. Note that dn induces the same topol-
ogy on X as d. We denote the open ball around x with respect to dn by
Bf (x, ε, n), and call E ⊂ X (n, ε)-spanning if X ⊂

⋃
x∈E Bf (x, ε, n). Let

Sd(ε, n) denote the minimal cardinality of a (n, ε)-spanning set. To give
some intuition, this quantity gives the minimal number of initial conditions
we need to approximate the behavior of any initial condition up to time n
with precision ε. In this context we define the exponential growth rate by

h(f, ε) = lim
n→∞

1

n
logSd(ε, n). (7)

Observe that h(f, ε) is non-decreasing as a function of ε and so we can define
the topological entropy as followed.

Definition 2.8. The topological entropy h(f) is defined by

h(f) = lim
ε→0

h(f, ε). (8)

Remark 2.9. At this point it is not clear that the topological entropy does
not depend on the metric d on X. However one can show [7, Proposition
3.1.2] that for another metric d′ on X which defines the same topology as
d, the topological entropy coincides.

We will now discuss an alternative way to define topological entropy since
the concept it uses is important. The definition is via the numbers Nd(ε, n),
the maximal number of points in X with pairwise dn-distances at least ε.
Such sets are called (n, ε)-separated. Those points generate the maximal
number of orbit segments of length n that are distinguishable with precision
ε. To connectNd(ε, n) to Sd(ε, n) we observe that a maximal (n, ε)-separated
set is an (n, ε)-spanning set, because otherwise it would be possible to in-
crease the set by adding any point not covered. Thus

Nd(ε, n) ≥ Sd(ε, n).

On the other hand, no ε-ball can contain two points 2ε apart. Thus

Sd(ε, n) ≥ Nd(2ε, n).
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Skipping some details we obtain

h(f) = lim
ε→0

lim
n→∞

1

n
logSd(ε, n) = lim

ε→0
lim
n→∞

1

n
logNd(ε, n). (9)

For the measure theoretic entropy we need a measure on the dynamical
system. In the context of measures we also need a σ-algebra B which we
always choose to be the Borel σ-algebra on X. Note that the map f : X → X
is B-measurable since f is continuous.

Definition 2.10. Let M denote the set of all (Borel)-probability measures
on X. A measure µ ∈M is called f -invariant if for all B ∈ B, µ(f−1B) =
µ(B) holds true. The set of all f -invariant measures is denoted by M(f).
Sometimes we say the system is measure preserving with respect to µ.

Lemma 2.11. For µ, ν ∈ M(f) we can find µ′, ν ′ ∈ M(f) and λ ∈ [0, 1]
such that ν = λν ′ + (1− λ)µ′ and µ′ � µ ⊥ ν ′.

Proof. Let ν, µ ∈ M(f). By Lebesgue’s Decomposition we can find two
measures ν1, ν2 ∈ M such that ν = ν1 + ν2 and ν1 � µ ⊥ ν2. It might
happen that one of the latter measures is simply the 0-measure, w.l.o.g. let
ν ′ be 0. Then set λ = 1 and take any measure ν̃ ∈ M(f) which is singular
to µ and we are done. Analogously, we proceed if µ′ is the 0-measure. From
now on we assume neither of the two measures is the 0-measure. We have to
show that ν1, ν2 are f -invariant. For that, let A ∈ B and let u be the density
function of ν1 with respect to µ, note that u exists by Radon-Nikodym. Then
we have

ν1(A) =

∫
A

u dµ =

∫
A

u d(µ ◦ f−1) =

∫
f−1A

u dµ = ν1(f−1),

where we use that µ ∈M(f) and hence ν1 is f -invariant. For ν2 we observe

ν2(A) = ν(A)− ν1(A) = ν(f−1A)− ν1(f−1A) = ν2(f−1A).

As we now know that ν1 and ν2 are both f -invariant and since νi(X) ≤ 1
for i = 1, 2 we can find λ ∈ (0, 1) such that 1

λν1(X) = 1 and 1
1−λν2(X) = 1.

Indeed, one can easily check, that λ = ν1(X). To complete the proof we
define

µ′ =
1

λ
ν1,

ν ′ =
1

1− λ
ν2.

We go back to the Lebesgue Decomposition and obtain

ν = ν1 + ν2 =
λ

λ
ν1 +

1− λ
1− λ

ν2 = λµ′ + (1− λ)ν2.

Note that by construction µ′, ν ′ ∈M(f) and λ ∈ (0, 1). �
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The f -invariant measures are essential for describing the statistical prop-
erties of the dynamical system. They also play a fundamental role in the
definition of rotation sets. Later we prove that in our set-up there is always
a f -invariant measure. In order to define the measure theoretic entropy we
start with a probability space (X,B, µ) and a finite partition ξ of measurable
sets. In this case entropy quantifies the amount of knowledge gained when
learning about ξ(x). The higher the entropy, the higher the uncertainty.

Definition 2.12. Let ξ = {Z1, . . . , Zn} be a finite partition of X. Then

Hµ(ξ) = −
n∑
i=1

µ(Zi) logµ(Zi), (10)

where µ(Zi) logµ(Zi) = 0 if µ(Zi) = 0, is called entropy of ξ.

For the origin of the idea we may consider the amount of yes-or-no ques-
tions you have to ask to know in which partition the element x lies. For the
next step we extend the probability space to a dynamical system, i.e. we
add a function f : X → X such that the system is measure preserving, and
define the average knowledge gained per iteration for ξ as

1

n
Hµ(ξn) =

1

n
Hµ

(
n−1∨
i=0

f−iξ

)
, (11)

where

ξ1 ∨ ξ2 = {Z1 ∩ Z2 : Z1 ∈ ξ1, Z2 ∈ ξ2}.

Definition 2.13. The entropy for a dynamical system (X, f) with f -invariant
probability measure µ with respect to ξ is defined by

hµ(f, ξ) = lim
n→∞

1

n
Hµ(ξn). (12)

To make this definition consistent one has to prove that the limit in (12)
exists. At this point we refer to [16]. Finally we can define the measure
theoretic respectively Kolmogorov-Sinai entropy.

Definition 2.14. The measure theoretic entropy of a measure preserving
dynamical system (X, f, µ) is defined by

hµ(f) = sup
ξ finite partition of X

hµ(f, ξ). (13)

Note that all of the foregoing definitions make also sense if ξ is a count-
able partition and H(ξ) < ∞. In the following we frequently refer to a
dynamical system (X, f, µ) where (X, f) is a dynamical system and µ is
a f -invariant measure. We will provide propositions that will allow us to
work with entropy more easily. To make it easier to deal with the measure
theoretic entropy we provide some properties.
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Definition 2.15. Let ξ = {Cα : α ∈ I}, η = {Dα : α ∈ J} be two measur-
able partitions of the probability space (X,B, µ). The conditional entropy of
ξ with respect to η is

H(ξ | η) = −
∑
β∈J

µ(Dβ)
∑
α∈I

µ(Cα | Dβ) logµ(Cα | Dβ).

From this definition we can define a metric on the measurable partitions
of finite entropy. The metric is called Rokhlin metric. For two measurable
partitions ξ, η with H(ξ) <∞ and H(η) <∞ we define the metric by

dR(ξ, η) = H(ξ | η) +H(η | ξ). (14)

Definition 2.16. Let (X, f) be a dynamical system and ξ be a countable
partition.

1. For a non-invertible f , ξ is called a generator if the partitions of the

form
∨k
i=0 f

−i(ξ) (k ∈ N) form a dense subset in the space of all
partitions with finite entropy with respect to the Rokhlin metric (14).

2. For invertible f , ξ is called a generator if for the partitions of the

form
∨k
i=−k f

i(ξ) (k ∈ N) the same holds.

Corollary 2.17. If ξ is a generator for f then hµ(f) = hµ(f, ξ).

Furthermore we have a relation for the entropy of iterations of f , namely:

Lemma 2.18. For µ ∈ M(f) and k ∈ N, we have hµ(fk) = khµ(f). If

f is invertible then hµ(f−1) = hµ(f) and hence hµ(fk) = |k|hµ(f) for any
k ∈ Z.

There is also a connection between the topological and the measure the-
oretic entropy, namely the variational principle. It gives equality of the
topological entropy and the supremum of all measure theoretic entropies.
In 1968, L. W. Goodwyn proved topological entropy is greater or equal.
Then in 1970 E. L. Dinaburg proved equality when X has finite covering
dimension. T. N. T. Goodman proved the general case later in 1970. We
refer to [16, Theorem 8.6] for the proof.

Theorem 2.19. Let (X, f) be a dynamical system. Then

h(f) = sup{hµ(f) : µ ∈M(f)}. (15)

A measure µ satisfying hµ(f) = h(f) is called measure of maximal en-
tropy. As the measure theoretic entropy map µ → hµ(f) is not necessarily
upper semi-continuous there is not always a measure of maximal entropy.
Suppose Y = {0} ∪ {(1/n) : n ≥ 1} with topology as a subset of R. Let
X =

∏
Y be the product space and let f : X → X be the shift homeo-

morphism (Section 2.6). Let µj be the product measure obtained from the
measure on Y that gives measure 1

2 to each of the points 1/(j − 1) and
1/j. Then the measure preserving transformation f on (X,B, µj) is conju-
gate (Definition 2.36) to the two-sided (1

2 ,
1
2)-shift and hence hµj (f) = log 2.
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However, µj → µ where µ is the atomic measure on X that gives measure
1 to the point (. . . , 0, 0, 0, . . . ). Clearly hµ(f) = 0 so that the entropy map
of f is not upper semi-continuous, [16]. To ensure the existence of such a
measure we sometimes consider dynamical systems for which the measure
theoretic entropy is upper semi-continuous, i.e. limµ→µ0 hµ(f) = hµ0(f). It
is well known that upper semi-continuous functions attain their maxima on
compact spaces. This seems to be a strong restriction, however the following
theorem, [16, Theorem 8.2] provides a list of transformations for which the
entropy map is always upper semi-continuous.

Theorem 2.20. Let (X, f) be a dynamical system. If f is an expansive
homeomorphism of a compact metric space the measure theoretic entropy
map µ→ hµ(f) of f is upper semi-continuous.

An alternative way of saying a dynamical system is chaotic is if it has pos-
itive topological entropy or equivalently there exists at least one f -invariant
measure and there is µ ∈ M(f) with positive measure theoretic entropy.
This makes perfectly sense since we defined entropy as measure of chaos
and positive entropy clearly represents the existence of chaos.

Lemma 2.21. Let µ ∈M, then the following are equivalent:

1. (f, µ) is ergodic (Definition 1.1).
2. If ϕ ∈ Lp(X,µ) is f -invariant, p ≥ 1, then ϕ is constant µ-a.e.

Proof. ”1⇒2” Let ϕ ∈ Lp be f -invariant and define the set Ac = {x ∈ X :
ϕ(x) ≤ c}. Since ϕ is f -invariant, Ac is f -invariant as well. As we assumed
(f, µ) is ergodic that means µ(Ac) ∈ {0, 1}. Hence ϕ is constant µ a.e.
”2⇒1” Let A ∈ B be f -invariant. Therefore 1A ∈ Lp is f -invariant. Since
by assumption 1A is constant µ a.e. we know µ(A) ∈ {0, 1} and thus (f, µ)
is ergodic. �

2.3. Rotation sets. After discussing the motivation of rotation sets in the
introduction we recall the definition here.

Definition 2.22. Let Φ = (φ1, . . . , φm) : X → Rm be a continuous potential.
We define the map rv :M(f)→ Rm by

rv(µ) =

(∫
φ1 dµ, . . . ,

∫
φm dµ

)
, (16)

and call rv(µ) the rotation vector of µ. The (generalized) rotation set Rot(Φ)
is defined as the image of all invariant probability measures under rv(·), i.e.

Rot(Φ) =
{

rv(µ) : µ ∈M(f)
}
. (17)

For w ∈ Rot(Φ) we say that rv−1(w) is the rotation class of w.

We divide the set of invariant measures into a filtration of partitions. This
works as follows. Consider a sequence (φk)k∈N of continuous potentials that
is dense in the Banach space C(X) endowed with the supremum norm. Let
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Rot(n) denote the rotation set of the potential Φn = (φ1, . . . , φn). It follows
that

Rot(n+ 1) =
⋃

w∈Rot(n)

w × Iw,

where Iw is a compact interval defined by

Iw =

{∫
φn+1 dµ : µ is f -invariant and rvΦn = w

}
.

We say a sequence (wn)wn∈Rot(n) is decreasing if wn+1 = wn×{αn} for some
αn ∈ Iwn and all n ∈ N. It follows that every decreasing sequence (wn)n is
associated with a decreasing sequence of rotation classes. Moreover, by the
Riesz Representation theorem the intersection of the rotation classes con-
tains precisely one invariant measure µ∞. We say (Rot(n))n is a filtration of
the space of invariant probability measures. Thus, if n is large we can con-
sider Rot(n) as a fairly good approximation of the space of invariant prob-
ability measures, [10]. As we fix n we obtain M(f) =

⋃
w∈Rot(Φ) rv−1(w).

Related to the measure theoretic entropy we define the localized entropy
following [6] on each element of the partition.

Definition 2.23. The localized entropy for w ∈ Rot(Φ) is defined as

h(w) = sup{hµ(f) : µ ∈M(f) and rv(µ) = w}. (18)

One of the main goals in this thesis is to find a formula to calculate the
localized entropy explicitly. Therefore in Section 5 in this thesis we will work
with localized entropy.

2.4. Set structures. After providing these basic definitions we will now
work out some more details about the set structures. We do not provide
proofs for all lemmata and theorems, but refer to [16] for more details.

Lemma 2.24. Let µ, ν ∈M be two probability measures on X. If
∫
ϕ dµ =∫

ϕ dν for all ϕ ∈ C(X) then µ = ν.

Theorem 2.25 (Riesz). Let X be a compact metric space and J : C(X)→
R a continuous linear map, such that J is a positive operator (i.e. ϕ ≥
0 ⇒ J(ϕ) ≥ 0) and J(1) = 1. Then there exists a unique µ ∈ M such that
J(ϕ) =

∫
ϕ dµ, for all ϕ ∈ C(X).

Remark 2.26. So µ→ J is a bijection between M and the collection of all
normalized positive linear functionals on C(X). As this bijection is affine,
M can be identified with a convex subset of the unit ball of C∗(X), the dual
space of C(X). Therefore we get a topology on M from the weak∗-topology
on C∗(X).

Definition 2.27. The weak∗-topology on M is the smallest topology, such
that µ→

∫
ϕ dµ, ϕ ∈ C(X) is continuous.

Furthermore we can also define a metric which is given by the following
lemma and so M is metrizable.
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Lemma 2.28. If X is a compact metrizable space, the set M is metrizable
in the weak∗-topology. Let {ϕn}n≥1 ⊂ C(X) be a dense countable subset,
and define the metric

D(µ, ν) =
∑
n≥1

|
∫
ϕn dµ−

∫
ϕn dν|

2n‖ϕn‖
.

Remark 2.29.

• µn → µ in the weak∗-topology in M if and only if
∫
ϕ dµn →

∫
ϕ dµ,

for all ϕ ∈ C(X).
• For all A ∈ A, with µ(∂A) = 0, µn(A)→ µ(A) if and only if µn → µ

in the weak∗-topology.

Theorem 2.30 (Theorem 6.5). If X is a compact metrizable space, then
M is compact in the weak∗-topology.

Proof. Let us denote µ(ϕ) =
∫
ϕ dµ. Let {µn}n≥1 be a sequence in M. We

need to show that there exists a convergent subsequence. Choose {ϕn}n≥1 ⊂
C(X) countable and dense. Here we used that C(X) is separable if X is com-
pact. We apply Cantor’s diagonal trick. The sequence {µn(ϕ1)}n is bounded
by ‖ϕ1‖∞ and hence there exists a convergent subsequence {µ1

n(ϕ)}n. We
do the same for {µ1

n(ϕ2)}n, which is again bounded by ‖ϕ2‖∞ and hence has
also a convergent subsequence. We continue inductively and obtain a series
of subsequences {µin}i such that {µin(ϕ)}n ⊂ {µi−1

n (ϕ)}n ⊂ · · · ⊂ {µn(ϕ)}n
is converging for ϕ ∈ {ϕ1, . . . , ϕi}. Therefore the diagonal subsequence
{µnn(ϕi)}n converges for all i ∈ N. Since {ϕi}i is dense, {µnn(ϕ)}n converges
for all ϕ ∈ C(X). Therefore we can define J(ϕ) = limn→∞ µ

n
n(ϕ). One can

easily show that J is in C∗(X), normalized and hence there exists µ ∈ M,
such that µ(ϕ) = J(ϕ), for all ϕ ∈ C(X). �

We rather considerM(f) so it is good to know also more about this space.

For the next theorem we define the operator f̃ :M→M by f̃(µ) = µ◦f−1.

Theorem 2.31. Let X be a compact metrizable space, and {σn}n≥1 be a
sequence in M and define the sequence {µn}n≥1 by

µn =
1

n

n−1∑
k=0

f̃kσn.

Then every accumulation point µ of {µn}n is in M(f).

Proof. Since M is compact there exists at least one limit point for every
sequence. We now fix one accumulation point µ = limk→∞ µnk ∈ M and
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show that µ is f -invariant. Let ϕ ∈ C(X). Then∣∣∣ ∫ ϕ ◦ f dµ−
∫
ϕ dµ

∣∣∣ = lim
k→∞

∣∣∣ ∫ ϕ ◦ f dµnk −
∫
ϕ dµnk

∣∣∣
= lim

k→∞

∣∣∣ 1

nk

∫ nk∑
i=0

(ϕ ◦ f i+1 − ϕ ◦ f i) dσnk
∣∣∣

= lim
k→∞

∣∣∣ 1

nk

∫
(ϕ ◦ fnk − ϕ) dσnk

∣∣∣
≤ lim

k→∞

2‖ϕ‖
nk

= 0.

And hence µ ∈M(f). �

One consequence of this theorem is that M(f) is non-empty, as M is
compact. This is one of the reasons that we assume X to be compact.
Although everything we need from convex analysis can be found in the
appendix, we state the definition of extreme points here for convenience. A
more detailed list from convex analysis can be found in the appendix.

Definition 2.32. Let C be a convex set. A point x ∈ C is an extreme point
if for all y, z ∈ C and all λ ∈ (0, 1), λy+(1−λ)z = x implies that x = y = z.

The next theorem provides information about the structure of M(f).

Theorem 2.33. Let (X, f) be a dynamical system, then

1. M(f) is compact.
2. M(f) is convex.
3. µ is an extreme point of M(f) if and only if µ is ergodic with respect

to f .
4. If µ, ν ∈ M(f) are both ergodic and µ 6= ν then they are mutually

singular.

Proof. 1. For compactness take a sequence {µn}n ⊂M(f). As the sequence
is also in the compact set M, there exists a subsequence converging to
µ ∈M. We need to show that µ is f -invariant. Take ϕ ∈ C(X),∫

ϕ df̃µ =

∫
ϕ ◦ f dµ = lim

n→∞

∫
ϕ ◦ f dµn

= lim
n→∞

∫
ϕ dµn =

∫
ϕ dµ.

Thus µ is f -invariant and therefore µ ∈M(f).
2. For convexity let µ, ν ∈M(f), λ ∈ (0, 1) and B ∈ B. Then

λµ(B) + (1− λ)ν(B) = λµ(f−1(B)) + (1− λ)ν(f−1(B)).

Obviously the convex combination is still a probability measure and hence
M(f) convex.
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3. We first assume µ ∈ M(f) is an extreme point. Let f−1(A) = A and
µ(A) > 0. We will show that µ(A) = 1. Define

ν(B) =
µ(A ∩B)

µ(A)
.

Note that also f−1(Ac) = Ac and assume µ(A) < 1. We define

σ(B) =
µ(Ac ∩B)

µ(Ac)
.

By using the f -invariance of µ we know that ν and σ are f -invariant and thus
we obtain µ = µ(A)ν+(1−µ(A))σ, as we assumed µ(A) ∈ (0, 1). But this is
a contradiction to the extreme point property and therefore µ(A) ∈ {0, 1},
which implies that µ is ergodic.
For the reverse direction we assume µ ∈M(f) is ergodic and µ = λν + (1−
λ)σ for ν, σ ∈ M(f) and λ ∈ (0, 1). We must show µ = ν = σ. First we
observe that ν is absolute continuous with respect to µ (ν � µ) such that
there exists the Radon-Nikodym derivative dν

dµ ≥ 0, i.e. for all B ∈ B

ν(B) =

∫
B

dν

dµ
dµ.

Let

B =

{
x :

dν

dµ
(x) < 1

}
. (19)

We obtain ∫
B∩f−1B

dν

dµ
dµ+

∫
B\f−1B

dν

dµ
dµ = ν(B) = ν(f−1B)

∫
B∩f−1B

dν

dµ
dµ+

∫
f−1B\B

dν

dµ
dµ,

and thus ∫
B\f−1B

dν

dµ
dµ =

∫
f−1B\B

dν

dµ
dµ.

The Radon-Nikodym derivative is strictly smaller 1 on the left hand side
and greater or equal 1 on the right hand side. A short calculation gives

µ(f−1B\B) = µ(f−1B)− µ(f−1B ∩B) =

µ(B)− µ(f−1B ∩B) = µ(B\f−1B),

and hence µ(f−1B\B) = µ(B\f−1B) = 0. This implies µ((f−1B\B) ∪
(B\f−1B)) = 0 what means µ(B) ∈ {0, 1}. Suppose µ(B) = 1, then

ν(X) =

∫
B

dν

dµ
dµ < µ(B) = 1
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contradicting ν ∈M(f) and so µ(B) = 0. Similarly for

B̃ =

{
x :

dν

dµ
(x) > 1

}
,

we obtain µ(B̃) = 0 such that dν
dµ = 1 a.e. Hence we obtain ν = µ = σ and

so µ is an extreme point of M(f).
4. By the Lebesgue decomposition theorem there exist unique probability
measures µ1, µ2 and a unique λ ∈ [0, 1] such that µ = λµ + (1 − λ)µ2

where µ1 � ν and µ2 ⊥ ν. But since µ = f̃µ = λf̃µ1 + (1 − λ)f̃µ2 and

f̃µ1 � f̃ν = ν and f̃µ2 singular with respect to f̃ν = ν the uniqueness
of the decomposition implies µ1, µ2 ∈ M(f). Since µ is an extreme point
either λ = 0 or λ = 1. If λ = 1 we have µ = µ1 � ν and as in iii) we get
µ = ν which contradicts to our assumption. If λ = 0 we get µ = µ2 ⊥ ν
which completes the proof. �

2.5. Ergodic Decomposition. The Ergodic Decomposition Theorem is a
classical theorem which gives probability measures on the set of f -invariant
probability measures supported on ergodic measures. The theorem is an
application of the more general Choquet’s theorem. This tool can be ap-
plied to represent measures by ergodic measures and also to see that there
are ergodic measures contained in specific sets, for instance in the set of
equilibrium states. We do not provide a proof but refer to [14]for further
information.

Theorem 2.34. Suppose that X is a metrizable compact convex subset of
a locally convex space M , and that x0 is an element of X. Then there is a
probability measure ν on X which represents x0 and is supported by the ex-
treme points of X, denoted by E(X), i.e. x0 =

∫
X x dµ(x) =

∫
E(X) x dµ(x).

It is easy to apply this theorem to our special case to directly obtain
the Ergodic Decomposition theorem. It is well known that M is locally
convex and we proved that M(f) is convex, compact and ergodic measures
are exactly the extreme points, Theorem 2.33. In general the representation
is not necessarily unique, however, the last part of Theorem 2.33 ensures
that the representation in this case is indeed unique. A space where the
decomposition is unique for every element is called Choquet simplex. Thus
for every µ ∈ M(f) we can find a unique probability measure ν on M(f),
such that µ =

∫
M(f)m dν(m) =

∫
ME

m dν(m).

2.6. Subshift of finite type. A classical and important class of dynamical
systems is the subshift of finite type. In various cases we will work in the
set-up of a subshift of finite type. It seems to be rather restrictive to consider
only subshifts of finite type but we will see that it actually is not. Later
in this section we will explain why it is not such a big restriction and why
it is so important. This subsection follows the exposition in [8]. Consider
a finite set A = {1, . . . , d}. We call A alphabet. We equip A with the
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discrete metric, that is two distinct points have distance one and a point
is distance zero from itself, i.e. d(j, k) = 1 − δjk where δjk = 0 if j 6= k
and 1 otherwise. The topology induced by this metric is compact and has
discrete topology. There are two different sequence spaces. The first one
is the one-sided sequence space X = {x = (xn)n∈N : xn ∈ A ∀n ∈ N} =
{1, . . . , d}N. Please note that by N we understand the set {1, 2, 3, . . . }, i.e.
zero is not included unless explicitly indicated. The second one is the two-
sided sequence space Σ = {x = (xn)n∈Z : xn ∈ A ∀n ∈ Z} = {1, . . . , d}Z.
Both spaces are equipped with the product topology and by Tychonoffs
Theorem for products of compact spaces both spaces are compact. The
product metric naturally obtained is defined by

d(x, y) =

∞∑
i=0

1− δxiyi
2i

on X and analogously on Σ

d(x, y) =
∞∑

i=−∞

1− δxiyi
2|i|

.

Two equivalent metrics we will use are defined by

d(x, y) =

(
1

2

)min{i : xi 6=yi}
(20)

for X, respectively for Σ by

d(x, y) =

(
1

2

)min{|i|:xi 6=yi}
. (21)

A cylinder is a set of the form [x1, . . . , xl] = {y ∈ X : xi = yi ∀i ≤ l}
respectively [x−l, . . . , x0, . . . , xl] = {y ∈ Σ : xi = yi ∀|i| ≤ l}. These cylin-
ders build a countable basis for the topology on each space. Therefore every
open set can be expressed by a countable union of cylinder sets. In order to
get a dynamical system we introduce the shift map σ : X → X respectively
σ : Σ → Σ defined by (σ(x))n = xn+1. The tuple (X,σ) is called one-sided
(full) shift. In this case σ is a continuous and onto, n-to-1 transformation.
Similarly the tuple (Σ, σ) is called two-sided (full) shift. Here the shift map
is a homeomorphism.
Sometimes we would like to consider only sequences of a specific type and
not all sequences. One class of subshifts are the so-called subshifts of finite
type. To determine valid sequences we use a matrix A consisting of zeros
and ones, i.e. A ∈ {0, 1}d×d. We say a step xn to xn+1 is valid if and only if
A(xn, xn+1) = 1. The new one-sided subshift of finite type (XA, σ) is deter-
mined by the space XA = {x ∈ X : A(xn, xn+1) = 1 ∀n ∈ N}. Analogously
ΣA = {x ∈ Σ : A(xn, xn+1) = 1 ∀n ∈ Z} defines the two-sided subshift of
finite type (ΣA, σ). The matrix A is said to be irreducible if for every pair
of indices i and j there is an l > 0 with (Al)ij > 0. Intuitively this means
for a subshift of finite type that we can get from an arbitrary symbol in the



18

alphabet to any other symbol in finitely many steps. Note that the number
of steps needed may differ depending on the pair of indices.
Periodic points play an important role for subshifts of finite type. There
are only countably many periodic points and they are dense in the shift
space and hence also in the subshift space [8],[16, §5]. This makes the shift
space separable. For the shift a periodic point of period p is of the form
(. . . , xp, x1, x2, . . . , xp, x1, . . . , xp, x1, . . . ) = (x1, . . . , xp), such that σp(x) =
x. The right hand side will be the usual notation for periodic points.
Furthermore we can construct σ-invariant measures from periodic points,
namely for a periodic point x = (x1, . . . , xp)

µx =
1

p

p−1∑
i=0

δσi(x), (22)

where δ is the point measure. Measures of this type are called periodic
point measures. For the relation between x being periodic and µx being
σ-invariant we have the following theorem. As it holds in a more general
set-up than shifts we state the general version of it.

Theorem 2.35. Let (X, f) be a dynamical system. Let N ≥ 1 and x ∈ X.
Then fN (x) = x if and only if

µx =
1

N

N−1∑
i=0

δf i(x) ∈M(f).

From the theorem we get an embedding of X in M(f). For transitive
shifts we can also conclude that the periodic point measures are dense in
M(f).
Subshifts have a lot of convenient properties but seem to be very restrictive
as it is one particular dynamical system. An important tool for dynamical
systems is topological conjugacy. That basically means to find another (eas-
ier) dynamical system which is in some sense ”equivalent” to the original
one. At this point it is not clear what ”equivalent” means. But there are
some things that immediately come to our mind which we ask for to call
another system equivalent. For instance we would like to have the same
periodic points, the same invariant probability measures, and same entropy.
Also there should exist a map connecting both systems. This idea leads to
the following definition which is not only important for subshifts but for all
dynamical systems.

Definition 2.36. Two continuous maps f : X → X and g : Y → Y are
called (topologically) conjugate if there is a homeomorphism ψ such that
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f = ψ−1 ◦ g ◦ ψ, i.e. the following diagram

X
f //

ψ
��

X

ψ
��

Y g
// Y

commutes. The map ψ is called conjugacy.

A little bit weaker but still useful concept is called semi-conjugacy respec-
tively factor.

Definition 2.37. A map g : Y → Y is a (topological) factor of f : X → X
if there exists a surjective continuous map ψ : X → Y such that ψ◦f = g◦ψ.
The map ψ is called semiconjugacy.

In Section 5 we will use the idea of conjugates for two subshifts of fi-
nite type. For now we just briefly explain the connection between general
dynamical systems and subshifts of finite type. For the idea of coding in
a dynamical system (X, f, µ) we take a countable µ-partition ξ of X. In-
stead of looking at a certain x, we look at the partition element ξ(x) it is
contained. Let ξ = {Zi : i ∈ I}, then we define

d(x) = i if ξ(x) = Zi.

We define the map D : X → IN0 by

Dx = (d(x), d(f(x)), . . . )

and is called coding map. We obtain the commuting diagram

X
f //

D
��

X

D
��

IN0
σ
// IN0

and so D is a semi-conjugacy. This concept is particularly useful if D is
invertible. In this case the first n coding numbers tell us in which set of

ξn =

n−1∨
j=0

f−jξ

x lies. If the fineness of ξn increases, ξn(x)→ {x} holds and so D is invert-
ible. This is for example the case if f has enough ”expansion”. For more
details we refer to [7, §2].
Besides the fact that subshifts look simple they have convenient properties
such as the formula for the measure theoretical entropy.
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Definition 2.38. Let (X,σ) be a full shift. For a probability distribution

p = (p1, . . . , pd), where 0 ≤ pi ≤ 1 for i = 1, . . . , d and
∑d

i=1 pi = 1, the
product measure µp is given by the probabilities on cylinders

µ(Ck[a1, . . . , ak]) =

k∏
i=1

pai ,

and is called Bernoulli measure.

For a d-full-shift the measure theoretical entropy of a Bernoulli measure
µ given by the probability vector (p1, . . . , pd) is simply given by

hµ(σ) = −
d∑
i=1

pi log pi. (23)

There is even more that holds true for full shifts. We state a lemma observed
by Rams, [15], which will play a crucial role in the main theorems on localized
entropy. Here Ci denotes the i-th cylinder of length 1.

Lemma 2.39. Let (X,σ) be a full shift. The measure theoretic entropy of
µ ∈ME(σ) is not greater than the metric entropy of the Bernoulli measure
defined by the probabilistic vector (µ(C1), . . . , µ(Cd)), with equality if and
only if µ is Bernoulli.

Definition 2.40. Let (X,σ) be a subshift of finite type. A Markov measure

is defined by a tuple (π, P ), where π = (πi)i with πi ≥ 0 and
∑d

i=1 πi = 1
is the initial distribution and P = (pij)ij is a d × d transition matrix such

that
∑d

j=1 pij = 1. The Markov measure ν is given by the probabilities on
cylinders,

µ(Ck[a1, . . . , ak]) = πa1pa1a2 · · · pak−1ak .

For a Markov measure ν given by (π, P ) the measure theoretical entropy
is given by

hν(σ) = −
d∑

i,j=1

πipij log pij . (24)

This formula is more general and can also be applied for subshifts of finite
type. We refer to [7], [16] for more details. Furthermore topological entropy
coincides with the logarithm of the spectral radius of the transition matrix
A, which can also be found in [7]. As the concept of subshifts is a well-known
standard tool we skipped details and proofs.

2.7. Cohomology. Coming back to rotation sets we consider a potential
Φ : X → Rm. To make not only vacuous statements we want Rot(Φ) to be a
non-empty subset of Rm with interior. By that we mean Rot(Φ) has interior
in Rm, i.e. int(Rot(Φ)) 6= ∅. For the definition of interior and relative
interior please see Appendix, section A.2. To ensure this we introduce the
terminology of cohomology in the set-up of a subshift of finite type (XA, f).
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We say two real-valued functions ϕ,ψ : X → R are essentially cohomologous
if there exists a bounded Borel measurable function u : X → R and some
constant c ∈ R such that

ϕ− ψ = u ◦ f − u+ c. (25)

The equation in (25) is called cohomological equation. If c = 0 we say ϕ
and ψ are cohomologous. We say that ϕ is an essential coboundary if it is
cohomologous to a constant. A vector valued function Φ : X → Rm is called
cohomologically full if its coordinate functions φ1, . . . , φm are cohomologi-
cally independent, i.e. if all non-trivial linear combinations of φ1, . . . , φm
are not essential coboundaries. We will often assume that the function Φ is
cohomologically full to ensure that Rot(Φ) has interior as a subset of Rm.
This statement is neither trivial nor obvious and therefore we have to do
some work in order to establish it. But first of all we mention that the
assumption of Φ being cohomologically full is not a restriction, since we can
always take a maximal cohomologically independent subset and consider the
potential Φ̃ : X → Rm′ for some m′ ≤ m.
We use Proposition 4.5 in Bowen’s book [1] for the case of Hölder-continuous
functions. For the following proposition µϕ denotes the Gibbs measure with
respect to ϕ, see [1] for more information. Although we only need part of
the proposition we state all points of the equivalence for completeness.

Proposition 2.41. Let ϕ,ψ : XA → R be two Hölder-continuous functions.
Then the following are equivalent:

1. µϕ = µψ.
2. There is a Hölder function u : XA → R and a constant C so that
ϕ− ψ = C + u ◦ f − u.

3. There are constants C and L so that |Snϕ(x)−Snψ(x)−Cn| ≤ L for
all x ∈ XA and all n ≥ 0.

4. There is a constant C so that Snϕ(x) − Snψ(x) = Cn when x ∈ XA

with fn(x) = x.

To explain the connection of being cohomologically full and having interior
as a subset of Rm for Φ : XA → Rm we assume for simplicity that m = 2,
i.e. Φ = (φ1, φ2). Higher dimensions follow immediately by using similar
arguments. If ϕ = λ1φ1 and ψ = λ2φ2 for λi ∈ R, condition 2. is equivalent
to cohomological dependence of φ1 and φ2, i.e. Φ is not cohomologically full.
By the foregoing proposition this is equivalent to condition 4., namely there
is a constant such that Snϕ(x) − Snψ(x) = Cn for all points x of period n
and all n ∈ N. For the following corollary we refer to [8].

Corollary 2.42. For a transitive subshift of finite type periodic points mea-
sures are dense and all periodic point measures are in particular ergodic.

Dividing the equation from 4. by n and gives

λ1

∫
φ1 dµ− λ2

∫
φ2 dµ = C, (26)
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for all ergodic measures µ. This shows us that the two integrals lie on one
line segment for all ergodic measures. Since the ergodic measures are dense
this means dim(Rot(Φ)) = 1 and has therefore no interior in R2.
For the converse we assume Φ is cohomologically full which is equivalent to
condition 2. does not hold and by the proposition it is also equivalent to
condition 4. does not hold. So no matter which λ′s we choose, we can never
find just one constant C. This implies that there are ergodic measures lying
on different lines and hence Rot(Φ) has an interior as subset of R2.
So far Proposition 2.41 holds only for Hölder-continuous functions but in
fact it holds in a little more general set-up, see [6].

2.8. Example of maximal entropy. We will construct a subshift with
two measures of maximal entropy. We follow Haydn, [5] Therefore let n ≥ 2
be an integer and define the alphabet A = {0, 1, . . . , 2n}. Furthermore we
define the sets of symbols S1 = {1, . . . , n} and S2 = {n + 1, . . . , 2n}, such
that we have A = {0} ∪ S1 ∪ S2. For simplicity we refer to S1 as green
symbols and to S2 as yellow symbols. We denote by X the whole sequence
space, i.e. X = AZ and X1 = SZ

1 , respectively X2 = SZ
2 the subshift with

alphabet S1, respectively S2. We will construct our subshift X(τ) ⊂ X. We
let X(τ) be the union of the two spaces S1 and S2, i.e. all monochromatic
sequences. Furthermore we add colored sequences in a specific way, namely
a word α in one color is separated by a string of zeros γ to a word β of the
other color. The length |γ| of that string has to be at least τ(|α|+|β|), where
τ > 0. If α or β is infinitely long then there must be a infinite sequence of
zeros and so there is only one color. To make this more precise we state a
formal definition of X(τ).

Definition 2.43. Let τ > 0. An element x is in the shift space X(τ) ⊂ X
if it satisfies one of the following conditions

1. x ∈ X1 ∪X2, i.e. x is a monochromatic point.
2. If bi-colored blocks of x are of the form:

. . . 0g1g2 . . . ga0
λy1y2 . . . yb0 . . .

or

0y1y2 . . . ya0
λg1g2 . . . gb0 . . .

where λ ≥ τ(a + b), gi ∈ S1, yi ∈ S2, and 0λ is a string of zeros of
length λ.

For an allowed word ω = ωmωm+1 . . . ωm+k−1 of some length k in X(τ) we
denote by C(ω) the cylinder set {x ∈ X(τ) : xi = ωi, m ≤ i < m+ k}. The
shift transformation f = σ|X(τ) on X(τ) is defined by (f(x))i = xi+1, i ∈ Z
and x ∈ X(τ). Having defined the set-up we go step by step to obtain two
ergodic measures of maximal entropy.

Lemma 2.44. The shift (X(τ), f) is topologically mixing for every τ > 0.
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Proof. We have to show that for any two words ω and η there exists a
number N0 such that C(ω) ∩ fN (C(η)) is non-empty for all N ≥ N0. It is
enough to show this property on cylinders as they are a generator on the
shift space. Tautologically this is true if ω and η are both monochromatic
of the same color. If the last symbol of η and the first symbol of ω are of
different color then consider the word π = η0λω. Obviously π is allowed
for every λ > τ(|η|+ |ω|), and the cylinder set C(π) ⊂ C(ω) ∩ fN (C(η)) is
non-empty for all N ≥ N0, where we choose N0 to be (1 + τ)(|η|+ |ω|).
If the last symbol of η and the first symbol of ω are of the same color,
then we consider the word π = η0κε0λω, where ε is a symbol of the other
color. Here we have κ ≥ τ(|η| + |ε|) and λ ≥ τ(|ω| + |ε|). Clearly C(π)
is non-empty for these choices of λ and κ. Thus C(ω) ∩ fN (C(η)) 6= ∅ if
N ≥ N0 = (τ + 1)(|η|+ 2|ε|+ |ω|). �

Lemma 2.45. If τ > log 3
logn then the topological entropy h(f) of the shift

(X(τ), f) is equal to log n.

Proof. First we find a lower bound of the topological entropy h(f) of X(τ).
For that we observe that since X(τ) contains two full n-shifts, X1 and X2,
the topological entropy of X(τ) must be at least log n.
We now estimate the number of the remaining words of length N from above
by combinatorical methods. We have to consider two cases:

1. Monochromatic words that might also contain zeros. According to our
rules such words begin or end with strings of zeros. Thus we obtain
purely yellow or green words of lengths k = 0, . . . , N which at least
one side are framed by strings of zeros. By combinatorical arguments
their number turn out to be 2

∑N
k=0(N − k)nk ≤ 2NnN

∑N
k=0 n

−k

which has exponential growth rate log n.
2. To estimate the number of words of length N that genuinely contain

symbols of both colors, we observe that since any such word has at
least one transition from yellow to green or vice versa. Therefore it
must also contain at least N τ

τ+1 zeros, that is at most N ′ = b N
τ+1c,

where b·c : R → N gives the closest lower integer of a real number,
colored symbols, i.e. symbols from S1 and S2. The colored symbols
come in monochromatic blocks of alternating color. Denote by Pk,l the
number of possibilities in which we can arrange l symbols in k blocks
(separated by the appropriate number of zeros), where k = 1, . . . , l.
One can show that

Pk,l =

(
l − 1

k − 1

)
, (27)

which is the number of possibilities of picking the first element of
every block but the very first one. The number of N -words in X(τ)
which contain l colored symbols arranged in k ≤ l monochromatic
blocks of alternating colors is 2Pk,ln

l.
Distributing l colored symbols out of N ′ in k blocks can be done in
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Pk,l many ways, where 1 ≤ k ≤ l ≤ N ′. This leaves m = N − (τ + 1)l
zeros to be distributed on k + 1 intervals, namely the k − 1 gaps
between the blocks of colored symbols plus the two ends of the entire
words. There are

Qk,m =

(
m+ k

k

)
many possibilities. By Stirling’s formula we have

Qk,m =

(
N − (τ + 1)l + k

k

)
≤
(

N − (τ + 1)l + k
1
2(N − (τ + 1)l + k)

)
≤ c12N−(τ+1)l+k

√
N − (τ + 1)l + k ≤ c12N−(τ+1)l+k

√
N.

We can thus estimate the total number of bi-colored strings of length
N by

Q(N) ≤ 2

N ′∑
l=2

nl
l∑

k=2

(
l − 1

k − 1

)(
N − (τ + 1)l + k

k

)

≤ 2c1

√
N

N ′∑
l=2

nl2N−(τ+1)l
l∑

k=2

(
l − 1

k − 1

)
2k

≤ 2c1

√
N

N ′∑
l=2

nl2N−(τ+1)l3l

≤ c2

√
N

{
2N if 3n2−1−τ < 1

2N (3n2−1−τ )
N
τ+1 if 3n2−1−τ ≥ 1.

Thus

lim
N→∞

1

N
logQ(N) ≤ max

(
log 2,

log 3n

τ + 1

)
,

which is smaller or equal log n if τ ≥ log 3
logn .

�

Lemma 2.46. If τ ≥ log 3
logn , then there are two mutually singular measures

of maximal entropy on X(τ).

Proof. For a full n-shift {1, . . . , n} the Bernoulli measure with probability
vector ( 1

n , . . . ,
1
n) is an ergodic measure of maximal entropy, [16]. Its metric

entropy is log n. On X(τ) we define the Bernoulli measures µ1 with probabil-
ities (0, 1

n , . . . ,
1
n , 0, . . . , 0) and the µ2 with probabilities (0, 0, . . . , 0, 1

n , . . . ,
1
n).

Obviously both measures are shift invariant and have metric entropies log n
which by Lemma 2.45 is the topological entropy of X(τ). Hence µ1 and µ2

are distinct ergodic measures of maximal entropy for the subshift X(τ). �

We will now construct an example of a potential Φ : X(τ) → Rm which
is continuous and such that the two mutually singular measures of maximal
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entropy from Lemma 2.46 have the same rotation vector but Rot(Φ) is non-
empty. The construction is inspired by [10].

Example 1. We give the example for m = 1 but it can naturally be extended
to higher dimensions. Let Y (k) + {x ∈ X(τ) : xl ∈ Si ∀|l| ≤ k, i = 1, 2},
for k ≥ 3 and Y0 = X(τ)\

⋃
k≥3

Y (k). Then Φ : X(τ)→ R defined by

Φ(x) =


0 if x ∈ Y0,

1− 1
2

k
if x ∈ Y (k),

1 if x ∈ Y (k), ∀k ∈ N.

It is obvious by symmetry that both measures from Lemma 2.46 have the
same rotation vector. We can also observe that the rotation set is not just
one point. Also continuity can be easily observed.

3. Equilibrium states and subgradients

The goal in this section is to work out details of a proof in Jenkinsons’
paper [6]. We work again in the set-up of a dynamical system (X, f), not
necessarily a subshift of finite type. First we have to introduce some termi-
nology, starting with pressure. Similar to entropy there is a topological and
measure theoretic way to define pressure and analogously the variational
principle holds true. For ϕ : X → R we define

Snϕ(x) =

n−1∑
i=0

ϕ(f i(x)). (28)

The topological pressure (with respect to f) is a map Ptop(ϕ) : C(X) →
R ∪ {∞} defined by

Ptop(ϕ) = lim
ε→0

lim sup
n→∞

1

n
logNϕ(n, ε), (29)

where

Nϕ(n, ε) = sup

{∑
x∈F

eSnϕ(x) : F is (n, ε)-separated set

}
.

As already mentioned the pressure satisfies the variational principle, namely,

Ptop(ϕ) = sup
µ∈M(f)

(
hµ(f) +

∫
X
ϕ dµ

)
, (30)

which brings us to the definition of pressure we will use.

Definition 3.1. For a continuous function ϕ : X → R we define its pressure
P (ϕ) with respect to f to be

P (ϕ) = sup
µ∈M(f)

(
hµ(f) +

∫
X
ϕ dµ

)
. (31)
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If µ ∈ M(f) attains the supremum it is called an equilibrium state for ϕ.
We denote the set of all equilibrium states with respect to ϕ by ESϕ.

Note that in general the set of equilibrium states of ϕ may be empty.
To avoid this we frequently restrict our attention to systems with an upper
semi-continuous entropy map. Since the entropy map is affine, the set of all
equilibrium states is a convex and compact subset of M(f).

Definition 3.2. A signed measure µ is called tangent functional of pressure
at ϕ ∈ C(X) if the following inequality holds for all ψ ∈ C(X)

P (ϕ+ ψ)− P (ϕ) ≥
∫
ψ dµ. (32)

The set of all tangent functionals of pressure at ϕ is denoted by tϕ

Similar to standard calculus we define directional derivatives for the pres-
sure.

Definition 3.3. For ϕ,ψ ∈ C(X) we define the (one-sided) directional
derivative of P at ϕ in direction ψ by

d+P (ϕ;ψ) = lim
t↓0+

P (ϕ+ tψ)− P (ϕ)

t
.

By convexity of P the map

t→ t−1(P (ϕ+ tψ)− P (ϕ)) (33)

is increasing in t for all ϕ,ψ ∈ C(X), see Theorem A.5. This ensures
that the directional derivative of P exists at every point. Let us now fix
a potential Φ : X → Rm and consider the function p : Rm → R defined
by p(α) = P (α.Φ), where α.Φ denotes the Euclidean inner product. It is
understood in a pointwise way for every x ∈ X. For p we can define the
(one-sided) directional derivative in direction β ∈ Rm in the classical sense,
namely,

d+(α;β) = lim
t↓0+

p(α+ tβ)− p(α)

t
. (34)

Moreover γ ∈ Rm is called subgradient of p at the point α if

p(α+ β)− p(α) ≥ γ.β, (35)

holds for all β ∈ Rm. The set of all subgradients of p at α is called subdif-
ferential of p at α and is denoted by ∂p(α). It is also well-known that p is
differentiable at α if and only if the set of subdifferentials at α is a singleton,
see Theorem A.6.
Jenkinson [6] proved that in the case of an upper semi-continuous entropy
function the subdifferential of p at α coincides with rv(ESα.Φ). His proof
was published in 2001. Recently T. Kucherenko and C. Wolf [9] used this
result to prove that under certain conditions the map w → h(w) is real
analytic in the interior of Rot(Φ). Jenkinson bases his proof on three lem-
mata, which we will provide and prove here. The first lemma is pure convex
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analysis, giving a characterization for subdifferentials and can be found in
[18].

Lemma 3.4. Let p : Rm → R be a convex function which is finite at α ∈ Rm.
Then β ∈ Rm is a subgradient at α if and only if d+p(α;β) ≥ γ.β, for all
β ∈ Rm.

Proof. For the proof we recall that by convexity of p the mapping t →
t−1(p(α+ β)− p(α)) is increasing for all α, β ∈ Rm.
For the first direction we assume γ ∈ Rm is a subgradient of p at α. Define
β̃ = tβ for t > 0 and β ∈ Rm. Since γ is a subgradient by assumption the
following inequality holds for all β̃ ∈ Rm,

p(α+ β̃)− p(α) ≥ γ.β̃.

Dividing by t leads to the equivalent inequality

p(α+ tβ)− p(α)

t
≥ γ.β, ∀β ∈ Rm, ∀t > 0.

Since this inequality holds for all t > 0 and the left hand side is monotone
in t we let t go to zero from above, i.e. t ↓ 0+, we obtain

d+p(α;β) ≥ γ.β ∀β ∈ Rm. (36)

For the converse we assume inequality (36) holds true. Again we use mono-
tonicity in t, and thus we obtain for all β ∈ Rm,

γ.β ≤ d+p(α;β) = lim
t↓0+

p(α+ tβ)− p(α)

t
≤ p(α+ tβ)− p(α)

t
, ∀t > 0,

where the first inequality holds by assumption, the second one by definition
and the last one by monotonicity in t. If we now define β̃ = β/t we get the

result for all β̃ ∈ Rm. �

The next lemma can be found in [17] and gives a relation between subd-
ifferentials and tangent functionals of pressure.

Lemma 3.5. For ϕ,ψ ∈ C(X) we have d+P (ϕ,ψ) = sup{
∫
ψ dµ : µ ∈ tϕ}.

Proof. ” ≥ ”: Let µ ∈ tϕ, and define ψ̃ = tψ, for t > 0. Thus we have for all
ψ ∈ C(X) ∫

ψ dµ ≤ t−1(P (ϕ+ tψ)− P (ϕ)), ∀t > 0.

Again we use the fact that (33) is monotone in t, so we let t ↓ 0+, and obtain∫
ψ dµ ≤ d+P (ϕ;ψ), ∀ψ ∈ C(X).

As µ ∈ tϕ was arbitrary we can take the supremum and get the first direction.
” ≤ ”: Let a = d+P (ϕ;ψ) and define the linear functional L on {tψ : t ∈ R}
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by L(tψ) = ta. By convexity of P and monotonicity of the function in (33)
we obtain

L(tψ) ≤ P (ϕ+ tψ)− P (ϕ),

so that L is bounded on {tψ : t ∈ R} by the convex function y → P (ϕ+y)−
P (ϕ), in particular L is sublinear. Therefore we can apply the Hahn-Banach
Theorem and hence L can be extended to a linear functional on C(X),
which is also bounded from above by y → P (ϕ + y) − P (ϕ). Applying the
Riesz representation provides the existence of some signed measure µ with∫
ψ dµ = L(ψ) = a. Since L is bounded we obtain that µ ∈ tϕ. �

This lemma gives a characterization of d+ with respect to the tangent
functionals of pressure but actually we would like to have a connection be-
tween ESϕ and d+. For that we need the next lemma from [16].

Lemma 3.6. Let (X, f) be a dynamical system, i.e. f is a continuous map
on a compact metrizable space X. Let hµ(f) < ∞, let µ0 ∈ M(f) and
ϕ ∈ C(X). Then the following holds true:

1. ESϕ ⊂ tϕ ⊂M(f).
2. hµ0(f) = inf{P (ψ) −

∫
ψ dµ0 : ψ ∈ C(X)} if and only if µ → hµ(f)

is upper semi-continuous.
3. If µ→ hµ(f) is upper semi-continuous, then tϕ = ESϕ.

Proof. 1. Let µ ∈ ESϕ and ψ ∈ C(X). It is easy to see that

P (ϕ+ ψ)− P (ϕ) ≥ hµ(f) +

∫
(ϕ+ ψ) dµ− hµ(f)−

∫
ϕ dµ =

∫
ψ dµ,

where we only used µ ∈ ESϕ. And hence ESϕ ⊂ tϕ.
For the second inclusion let µ ∈ tϕ and suppose ψ ≥ 0. We need to show
that µ is a f -invariant probability measure. For ε > 0 we obtain∫

(ψ + ε) dµ = −
∫
−(ψ + ε) dµ ≥ −P (ϕ− (ψ + ε)) + P (ϕ)

≥ −(P (ϕ)− inf
x∈X

(ψ + ε)) + P (ϕ) = inf
x∈X

(ψ + ε) > 0.

This implies
∫
ψ dµ ≥ 0 so that µ is a positive functional. In the next step

we show that it is a probability measure, i.e. µ(X) = 1. Let k ∈ Z, then∫
k dµ ≤ P (ϕ+ k) + P (ϕ) = k,

where the first inequality holds since µ ∈ tϕ by assumption and the right
equality since we are taking the supremum only overM(f) to get P . Taking
k = ±1 gives µ(X) = 1. It remains to show that µ is f -invariant. Let k ∈ Z
and ψ ∈ C(X), then

k

∫
(ψ ◦ f − ψ) dµ ≤ P (ϕ+ k(ψ ◦ f − ψ))− P (ϕ) = 0.

Taking again k = ±1 proves that µ is f -invariant and so tϕ ⊂M(f).
2. We only prove ” ⇐ ”, for the other direction we refer to [16, Theorem
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9.12]. Let µ → hµ(f) be upper semi-continuous at µ0 ∈ M(f). By the
variational principle we have

hµ0(f) ≤ inf

{
P (ϕ)−

∫
ϕ dµ0 : ϕ ∈ C(X)

}
,

which gives the first inequality. For equality we will prove the opposite
inequality. Let b > hµ0 and C = {(µ, t) ∈ M(f) × R : 0 ≤ t ≤ hµ(f)}.
By [16, Theorem 8.1] the entropy map is affine, i.e. for µ, ν ∈ M(f) and
λ ∈ [0, 1] we have hλµ+(1−λ)ν(f) = λhµ(f) + (1 − λ)hν(f). Using this it is
easy to see that C is convex. Let us consider C as a subset of C∗(X) × R,
where C∗(X) denotes the dual space of C(X). As usual C∗(X) is equipped
with the weak∗-topology and so by upper semi-continuity of hµ(f) at µ0,

(µ0, b) /∈ C. The crucial step in this proof is based on Theorem B.1 in
the appendix. By this theorem there exists a continuous linear functional
L : C(X)∗ × R → R, such that L(µ, t) < L(µ0, b) holds for all (µ, t) ∈ C.
Since we use the weak∗-topology on C∗(X) we know that L is of the form

L(µ, t) =

∫
ϕ dµ+ kt,

for some ϕ ∈ C(X) and some k ∈ R. Therefore we have∫
ϕ dµ+ kt <

∫
ϕ dµ0 + kb, ∀(µ, t) ∈ C.

If we set t = hµ(f) the inequality still holds true for all µ ∈ M(f), so we
put µ = µ0, which implies khµ0(f) < kb, and hence k > 0. Thus we can
divide by k to obtain,

hµ(f) +

∫
ϕ

k
dµ < b+

∫
ϕ

k
dµ0, ∀µ ∈M(f).

By the variational principle we get

b ≥ P
(ϕ
k

)
−
∫
ϕ

k
dµ0 ≥ inf

{
P (ψ)−

∫
ψ dµ0 : ψ ∈ C(X)

}
.

And so finally

hµ0(f) ≥ inf

{
P (ψ)−

∫
ψ dµ0 : ψ ∈ C(X)

}
.

3. Referring to 1. it only remains to show tϕ ⊂ ESϕ if µ→ hµ(f) is upper
semi-continuous. Let µ ∈ tϕ. We have for all ψ ∈ C(X)

P (ϕ+ ψ)−
∫

(ϕ+ ψ) dµ ≥ P (ϕ)−
∫
ϕ dµ.

As latter inequality holds for all ψ ∈ C(X) we can substitute ϕ + ψ by an
arbitrary ρ ∈ C(X). Since hµ(f) is upper semi-continuous, we can apply 2
and take the infimum on the left hand side. Thus we obtain

inf
ρ∈C(X)

(
P (ρ)−

∫
ρ dµ

)
= hµ(f) ≥ P (ϕ)−

∫
ϕ dµ.



30

Rearranging this inequality yields P (ϕ) ≤ hµ(f) +
∫
ϕ dµ, and hence µ ∈

ESϕ. �

Finally we can prove Theorem 1.4 and establish a connection between
the subdifferential of p and the set of rotation vectors with respect to the
equilibrium states.

Proof of Theorem 1.4. We apply Lemma 3.5 to ϕ = α.Φ and ψ = β.Φ to
obtain for all β ∈ Rm

d+p(α;β) = sup

{∫
β.Φ dµ : µ ∈ ESα.Φ

}
, (37)

where we also used 3 of Lemma 3.6 and the upper semi-continuity of hµ(f)
such that tα.Φ = ESα.Φ.
We first show that the right hand side is included in the left hand side. By
Lemma 3.4, (37), for every µ ∈ ESα.Φ rv(µ) is a subgradient of p at α.
For the converse inclusion note that ESα.Φ is compact combined with (37)
implies that for each point γ0 at the boundary of the convex set ∂p(α) there
is a µ0 ∈ ESα.Φ such that rv(µ0) = γ0. But convexity of the two sets ∂p(α)
and ESα.Φ means that in fact for every point γ in ∂p(α) there is a µ ∈ ESα.Φ
with rv(µ) = γ. �

Despite Theorem 2.20, the assumption that hµ(f) is upper semi-continuous
is still a restriction. Therefore it would be nice to have the same result
without this assumption. At the end of this section we try to generalize the
proposition and it turns out that at least for one inclusion we do not need
upper semi-continuity. It is an interesting open problem whether the con-
verse inclusion holds. But this leads beyond the scope of this thesis. First
we discuss consequences from this theorem to get more information about
rotation sets which will shed some light on the role of equilibrium measures.
To simplify notation let us consider the set of equilibrium measures of the
form ESα.Φ for a fixed m-dimensional potential Φ as a function, namely
ESΦ : Rm →M(f), defined by ESΦ(α) = ESα.Φ.

Corollary 3.7. Let (X, f) be a dynamical system for which the entropy
map µ → hµ(f) is upper semi-continuous, and suppose Φ : X → Rm is
continuous. Then p is differentiable at the point α ∈ Rm if and only if
rv(ESα.Φ) being a singleton.

Proof. We recall the fact that p is differentiable at the point α ∈ Rm if and
only if the set of subdifferentials at the point α is a singleton, Theorem A.6.
By Theorem 1.4 this is equivalent to rv(ESα.Φ) is a singleton. �

We note rv(ESα.Φ) being a singleton does not imply that ESα.Φ is a
singleton. Obviously, ESα.Φ being a singleton implies that rv(ESα.Φ) is also
a singleton and thus is p differentiable at α. The converse may be wrong
in particular cases. We refer to Section 2.8 where we followed Haydn’s idea
in [5] and constructed an example of a subshift f : X(τ) → X(τ) with two
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mutually singular ergodic measures of maximal entropy. We denote these
measures here by µ and ν. Since ES0.Φ = sup{hµ(f) : µ ∈M(f)} = {µ, ν},
we only need to recall Example 1, where the measures µ and ν have the same
rotation vector because of symmetry, i.e. rv(µ) = rv(ν). Thus rv(ES0.Φ) is
a singleton and so p is differentiable at 0 but ES0.Φ is no singleton.

Proposition 3.8. Let (X, f) be a dynamical system for which the entropy
map µ → hµ(f) is upper semi-continuous, and suppose Φ : X → Rm is

continuous. Then rv(M(f)) ⊂ ∂p(Rm).

Proof. Let µ ∈M(f), and define the affine map Fµ(α.Φ) : Rm → R by,

Fµ(α.Φ) := hµ(f) +

∫
α.Φ dµ. (38)

hµ(f) +
∫
ϕ dµ is called the free energy of µ with respect to the poten-

tial ϕ. We can easily observe that Fµ(α) ≤ P (α.Φ) = p(α) holds. The
Graph(Fµ) is a hyperplane in Rm+1, and the latter inequality between Fµ
and p implies that the Graph(p) lies above this hyperplane (possibly touch-
ing it tangentially if p is differentiable). But this implies that the gradient
of the Graph(Fµ) is contained in the closure (regarding asymptotic behavior
of p and Fµ) of all subdifferentials of p, since otherwise this graph would in-
tersect transversely. We showed that rv(µ) belongs to the closure of ∂p(Rm)

and since µ was arbitrary we conclude rv(M(f)) ⊂ ∂p(Rm). �

Theorem 3.9. Let (X, f) be a dynamical system for which the entropy
map µ → hµ(f) is upper semi-continuous, and suppose Φ : X → Rm is
continuous. Then

rv(M(f)) = rv(ESΦ(Rm)) = ∂p(Rm).

Proof. Obviously we have rv(ESΦ(Rm)) ⊂ rv(M(f)), since ESΦ(Rm) ⊂
M(f). Compactness of rv(M(f)) implies rv(ESΦ(Rm)) ⊂ rv(M(f)). By
Theorem 1.4 ∂p(Rm) = rv(ESΦ(Rm)) and therefore Proposition 3.8 com-
pletes the proof. �

Definition 3.10. For a convex set C we define its relative interior by

ri(C) = {C ∈ aff(C) : ∃ε > 0 : B(x, ε) ∩ aff(C) ⊂ C},
where aff(C) denote the affine hull of C.

For further information see Section A.2 in the appendix.

Corollary 3.11. Let (X, f) be a dynamical system for which the entropy
map µ → hµ(f) is upper semi-continuous, and suppose Φ : X → Rm is
continuous. Then ri(rv(M(f))) ⊂ rv(ESΦ(Rm)) = ∂p(Rm).

Proof. By Theorem 1.4 we know rv(ESΦ(Rm)) = ∂p(Rm). Observe that
the set ∂p(Rm) is in general not convex. Let p̂ : Rm → [−∞,∞] denote the
convex conjugate of p, defined by p̂(α̂) = sup{β.α̂ − p(β) : β ∈ Rm}, and
dom(p̂) = {α̂ ∈ Rm : p̂(α̂) <∞} is its effective domain. Further information
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on p̂ can be found in [18, §12] or in the Section A.3 in the appendix. By
Theorem A.7 we have almost convexity in the sense that

ri(dom(p̂)) ⊂ ∂p(Rm) ⊂ dom(p̂). (39)

Taking the closure followed by the relative interior of all sets in (39) gives

the equality ri(∂p(Rm) = ri(dom(p̂)), note that here we used again Section
A.2. Combining this equality with (39) gives

ri(∂p(Rm)) ⊂ ∂p(Rm).

To end this proof we apply Theorem 3.9 to this inclusion and obtain

ri(rv(M(f))) ⊂ rv(ESΦ(Rm)) = ∂p(Rm).

�

Corollary 3.12. Let (X, f) be a dynamical system for which the entropy
map µ → hµ(f) is upper semi-continuous, and suppose Φ : X → Rm is
continuous. If p is strictly convex then int(rv(M(f))) = rv(ESΦ(Rm)) =
∂p(Rm).

Proof. Strict convexity of p implies ∂p(Rm) is both open in Rm and convex
[18, p. 227], so by Theorem 1.4, rv(ESΦ(Rm)) is open and convex. Thus we

have int(rv(ESΦ(Rm))) = rv(ESΦ(Rm)), and the result follows by Theorem
3.9. �

As mentioned before we would like to have the same result as in Theorem
1.4 but without asking for upper semi-continuity of hµ(f). In this case the
set ESϕ might be empty but still we might be able to approximate it and
see if this suffices.
We fix a continuous potential Φ : X → Rm and define the set of asymptotic
rotation vectors (ARVα.Φ) with respect to α ∈ Rm and Φ as{
w ∈ Rm : ∃(µn)n∈N ⊂M(f) : hµn(f) +

∫
α.Φ dµn → p(α), rv(µn)→ w

}
.

If hµ(f) is upper semi-continuous this set coincides with rv(ESα.Φ), hence
we have the right candidate to generalize the proposition. The question
arises if we still have ARVα = ∂p(α) without upper semi-continuity.
We will prove ARVα.Φ ⊂ ∂p(α). Note that for w ∈ ARVα.Φ, β ∈ Rm and
given ε > 0 there is N ∈ N such that

|β.rv(µn)− β.w| < ε, and

(
p(α)− hµn(f)−

∫
α.Φ dµn

)
< ε, ∀n ≥ N.

(40)

We approximate w and the pressure p and take N ∈ N such that both
approximations have at least ε-precision. Note also that for the second
approximation we do not need the absolute value since we know that the
pressure is always greater or equal.
Let w ∈ ARVα.Φ, we will show that for an arbitrary β ∈ Rm the inequality
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β.w ≤ p(α+ β)− p(α) holds. By the approximation in (40) we can directly
conclude that

β.w ≤ β.rv(µn) + ε =

∫
β.Φ dµn ± hµn(f)±

∫
α.Φ dµn+ε

≤ p(α+ β)−
(
hµn(f) +

∫
α.Φ dµn

)
+ ε ≤ p(α+ β)− p(α) + 2ε,

which means ARVα.Φ ⊂ ∂p(α).

4. Hölder continuous potentials

In the introduction we raised the question under which assumptions a
measure of the maximal entropy exists and is unique. You can ask the same
question for equilibrium states. Bowen answered this question for a family
of potentials, namely Hölder continuous potentials and Axiom A systems.
But also the dynamical system must satisfy particular properties. We follow
[7], where a similar statement for a more specific class of dynamical systems
is given.

Definition 4.1. Let (X, f) be a dynamical system. A specification S =
(τ, P ) consists of a finite collection τ = {I1, . . . , Im} of finite intervals Ii =
[ai, bi] ⊂ Z and a map P : T (τ) :=

⋃m
i=1 Ii → X such that for t1, t2 ∈ I ∈ τ

we have f t2−t1(P (t1)) = P (t2). S is said to be n-spaced if ai+1 > bi + n for
all i ∈ {1, . . . ,m} and the minimal such n is called the spacing of S. We
say that S parameterizes the collection {PI : I ∈ τ} of orbit segments of f .
We let T (S) := T (τ) and L(S) := L(τ) := bm − a1. Let d be a metric
on X, we say that S is ε-shadowed by x ∈ X if d(fn(x), P (n)) < ε for all
n ∈ T (S). Thus a specification is a parametrized union of orbit segments
P|Ii of f .
If f is a homeomorphism then f is said to have the specification property if
for any ε > 0 there exists M = Mε ∈ N such that any M -spaced specification
S is ε-shadowed by a point of X and such that moreover for any q ≥ M +
L(S) there is a period-q orbit ε-shadowing S.

Roughly speaking this means that (X, f) satisfies the specification prop-
erty if one can approximate distinct pieces of orbits by single periodic orbits
with an certain uniformity.

Definition 4.2. By Cf (X) we denote the set of functions

{ϕ ∈ C(X) : ∃K, ε > 0 s.t. dn(x, y) ≤ ε⇒ |Snϕ(x)− Snϕ(y)| < K,∀n ∈ N},

where Snϕ(x) is defined as in equation (28) in Section 3.

By this definition we have good control of the Snϕ uniformly for n ∈ N
for functions ϕ ∈ Cf (X). It is well-known that in the case of a hyperbolic
set all Hölder-continuous functions are in Cf (X), [7, Proposition 20.2.6.].
We provide a proof for shifts.
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Proposition 4.3. Let (X, f) be a shift. Then every Hölder-continuous func-
tion on X is in Cf (X).

Proof. Let (X, f) be the one-sided shift. The proof works similarly for the
two-sided shift. We recall the definition of the metric d on X,

d(x, y) =

(
1

2

)min{i:xi 6=yi}
. (41)

Let ϕ : X → R be Hölder-continuous and define Varn(ϕ, f, ε) = sup{|ϕ(x)−
ϕ(y)| : d(f i(x), f i(y)) < ε for i = 0, . . . , n}. For the shift space with the
metric d from (41) we can choose ε = 1

2 . If for x, y ∈ X, d(f i(x), f i(y)) < 1
2

for i = 0, . . . , n we conclude that d(x, y) < (1
2)n. Since ϕ is Hölder-

continuous we have |ϕ(x) − ϕ(y)| ≤ cd(x, y)α and thus Varn(ϕ, f, 1
2) ≤

c(1
2)αn. If d(f i(x), f i(y)) < 1

2 for i = 0, . . . , k we obtain

|ϕ(fk(x))− ϕ(fk(y))| ≤ Vark

(
ϕ, f,

1

2

)
. (42)

Thus we have

|Snϕ(x)− Snϕ(y)| ≤
n∑
k=0

Vark

(
ϕ, f,

1

2

)
≤

n∑
k=0

c

(
1

2

)αk
≤
∑
k≥0

c

(
1

2

)αk
=

c

1− (1
2)α

=: K. (43)

Thus ϕ ∈ Cf (X). �

For the following results we do not provide proofs, but we indicate where
they are.

Lemma 4.4 (7, Lemma 4.5.1). Let X be a compact metric space, µ ∈MX .

1. For all x ∈ X, δ > 0 there exists δ′ ∈ (0, δ) such that µ(∂B(x, δ′)) = 0.
2. For all δ > 0 there exists a finite measurable partition ξ = {C1, . . . , Ck}

with diam(Ci) < δ for all i and µ(∂ξ) = 0.

Lemma 4.5 (7, Lemma 20.3.4.). Let (X, d) be a compact metric space,
f : X → X an expansive homeomorphism with the specification property
and ϕ ∈ Cf (X). Let µ be a accumulation point of the sequence µn, defined
by

µn =
1

PX(ϕ, n)

∑
x∈Fix(fn)

eSnϕ(x)δx ∈M,

where PX(ϕ, n) is the normalization factor and ε > 0 as in Definition 4.2
of Cf (X). Then there exists Aε, Bε > 0 such that for x ∈ X and n ∈ N we
have

Aεe
Snϕ(x)−nP (ϕ) ≤ µ(Bf (x, ε, n)) ≤ BεeSnϕ(x)−nP (ϕ).
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Lemma 4.6 (7, Equation (20.3.5)). If xi, ai ≥ 0, g(x) = x log x, then for
bi = log ai

n∑
i=1

xi(bi − log(xi)) ≤
n∑
i=1

xi log

( n∑
j=1

ebj
)

+
1

e
,

where we used g(x) ≥ −1/e.

Definition 4.7. A measure preserving transformation (X, f, µ) is called
mixing if for any two measurable sets A,B

µ(f−n(A) ∩B)→ µ(A)µ(B) as n→∞.

Lemma 4.8 (7, Proposition 20.3.6.). Let f be a homeomorphism of a com-
pact metric space X and µ an f -invariant Borel probability measure such
that for any Borel Sets P , Q the inequality

cµ(P )µ(Q) ≤ lim
n→∞

µ(P ∩ f−n(Q)) ≤ lim
n→∞

µ(P ∩ f−n(Q)) ≤ Cµ(P )µ(Q)

holds for some c, C > 0. Then is µ mixing.

Theorem 4.9. Let (X, d) be a compact metric space, f : X → X an expan-
sive homeomorphism satisfying the specification property, and ϕ ∈ Cf (X).
Then there is exactly one µϕ = µ ∈ M(f) with Pµ(ϕ) := hµ(f) +

∫
ϕ dµ =

P (ϕ). It is mixing and

µϕ = lim
n→∞

1

PX(ϕ, n)

∑
x∈Fix(fn)

eSnϕ(x)δx,

where PX(ϕ, n) is the normalizing factor.

Proof. Let us fix a weak∗-accumulation point

µ = lim
k→∞

µnk

of the sequence

µn =
1

PX(ϕ, n)

∑
x∈Fix(fn)

eSnϕ(x)δx ∈M(f).

We will show that if Pν(ϕ) = P (ϕ) then ν = µ, so Pµ(ϕ) = P (ϕ) and
there is only one accumulation point. Since ν ∈M(f) we can find a convex
combination ν = λν ′ + (1− λ)µ′ for λ ∈ [0, 1], and ν ′, µ′ ∈ M(f) such that
µ′ � µ ⊥ ν ′. As µ is ergodic the density function of µ′ w.r.t µ is constant
µ a.e. and so µ′ = µ. Since we assumed Pν(ϕ) = P (ϕ) we have two cases
such that Pν(ϕ) = λPν′(ϕ) + (1− λ)Pµ(ϕ) holds.

1. λ = 0, and so ν = µ.
2. Pν′(ϕ) = P (ϕ).

In the first case we are done and therefore we prove that Pν′(ϕ) < P (ϕ) as
ν ′ ⊥ µ.
For n ∈ N and a maximal with respect to the inclusion (n, 2ε)-separated
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set En = {x1, . . . , xk} we take Borel sets βx such that B(x, ε, n) ⊂ βx ⊂
B(x, 2ε, n), and Bn := {βx : x ∈ En} is a partition. Where B(x, ε, n) is the
ε ball around x with respect to the metric dn. For instance one could define
βx by

βx1 = B(x1, 2ε, n)
∖ k⋃
i=2

B(xi, ε, n)

βxj+1 = B(xj+1, 2ε, n)
∖ k⋃
i=j+2

B(xi, ε, n)
∖ j⋃
i=1

βxj .

Note that by Lemma 4.4 we can choose ε > 0 such that (µ + ν)(∂Bn) = 0.

Since f is expansive diamf−(n/2)(Bn) → 0 as n → ∞ so if f(B) = B ⊂ X
such that µ(B) = 0 and ν(B) = 1 then there exist finite unions Cn of
elements of Bn such that

(µ+ ν)(Cn∆B) = (µ+ ν)(f−(n/2)(Cn)∆B)
n→∞−−−−→ 0.

Furthermore if ε < δ0/2 then Bn is generating for fn, and so by Lemma 2.18
and Corollary 2.17 nhν(f) = hν(fn) = hν(fn,Bn) ≤ Hν(Bn), where Hν(Bn)
is defined in equation (11) in Section 2.2. Applying the latter inequality
for the entropy and rearrange the integral part of the pressure by using the
invariance leads to

nPν(ϕ) = nhν(f) + n

∫
ϕ dν ≤ Hν(Bn) +

∑
βx∈Bn

(∫
βx

n−1∑
i=0

ϕ dν

)

=
∑
βx∈Bn

(
− ν(βx) log ν(βx) +

∫
βx

Snϕ dν

)
. (44)

Note that, since ϕ ∈ Cf (X) we get Snϕ ≤ K + Snϕ(x) on all βx ∈ Bn. So
we get the upper bound for (44)∑

x∈En;βx∈Bn

(
− ν(βx) log ν(βx) + ν(βx)(K + Snϕ(x))

)
=K +

∑
x∈En;βx∈Bn

ν(βx)
(
Snϕ(x)− log ν(βx)

)
. (45)

In (45) we can now apply Lemma 4.6 and separate the sum into two parts
depending on Cn, and obtain the upper bound for (45)

K + ν(Cn) log
∑

x∈Ex;βx⊂Cn

eSnϕ(x)

+ν(X\Cn) log
∑

x∈Ex;βx∩Cn=∅

eSnϕ(x) +
2

e
. (46)
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Finally we apply Lemma 4.5 to (46) to obtain

n(Pν(ϕ)− P (ϕ))−K − 2

e
≤ ν(Cn) log

∑
x∈Ex;βx∩Cn=∅

eSnϕ(x)−nP (ϕ)

+ν(X\Cn) log
∑

x∈Ex;βx∩Cn=∅

eSnϕ(x)−nP (ϕ)

≤ ν(Cn) log(A−1
ε µ(Cn)) + ν(X\Cn) log(A−1

ε µ(X\Cn)).

For n→∞ the right-hand side goes to−∞, since ν(Cn)→ 1 and µ(Cn)→ 0.
And therefore Pν(ϕ) < P (ϕ). �

5. Localized entropy

In the Introduction we mentioned that rotation sets can be used to get
a partition of the set of invariant measures. This approach is reasonable as
the set of invariant measures might be rather big and therefore the question
arises which measure reflects most appropriately the relevant information.
This may depend on the information one is looking for. Frequently when
complexity is measured one considers maximal entropy as criteria. But
it turns out that it is hard to tell which measure is the best. Therefore
we want to learn more about the behavior of different classes of measures.
For instance we want to know how the entropy varies on these classes of
measures. Depending on the potential Φ = (φ1, . . . , φm) : X → Rm we
can obtain different information from the rotation set. As in Section 2.3
we obtain a filtration of the set of invariant probability measures. We fix
m and obtain the partition

⋃
w∈Rot(Φ) rv−1(w) = M(f). On each element

of the partition we consider the localized entropy (Definition 2.23). Our
goal is to find an explicit formula to calculate the localized entropy. In
the first step we consider a subshift of finite type and a potential which is
constant on cylinders of lenght K and show that in this case the rotation
set is a polyhedron, i.e. the convex hull of finitely many points. The proof
is inspired by Ziemian [19]. For this polyhedron we calculate the localized
entropy using elementary loops. The set of elementary loops is finite. The
question arises if the set of elementary loops is enough to calculate the
actual localized entropy rather than computing upper and lower bounds.
It turns out that for extreme points we can calculate the localized entropy
by calculating the topological entropy for a certain subshift and apply the
variational principle for entropy. For w on a face of Rot(Φ) we only get a
lower bound. To calculate the localized entropy we will need another the
result from Lemma 2.39.
Let us define the one-sided subshift of finite type. It turns out everything
works exactly the same way for the two-sided shift. The subshift is given by
an alphabet A = {1, . . . , d} and the sequence space XA which is determined
by a d × d matrix composed of 1’s and 0’s where the step from xn to xn+1

is allowed if A(xn, xn+1) is 1 . Therefore we get the space XA = {x =
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(xn)n∈N : xn ∈ A, A(xn, xn+1) = 1}. Furthermore we have the shift map
f : XA → XA given by (f(x))n = xn+1 and a potential Φ : XA → Rm
constant on cylinders of length K, i.e. for all y ∈ CK(x) = {z ∈ XA : z1 =
x1, . . . , zK = xK}, Φ(y) = Φ(x). We assume that the dynamical system
(XA, f) is transitive. By combinatorical arguments this implies dK different
cylinders in case of a full shift. We order these cylinders in a lexicographical
way, and define associated symbols for the new alphabet. Here we denote a
cylinder of length K by [x1, . . . , xK ]K , where xi ∈ A. This gives

1′ := [1, 1, . . . , 1]K

2′ := [1, . . . , 1, 2]K

... (47)

dK := [d, d, . . . , d]K

Thus we obtain the alphabet AC = {1, . . . , dK} where each symbol is
uniquely identified with one cylinder, and also equipped with the shift map
σ in such a way that each sequence in XA can be uniquely identified with a
sequence of cylinders respectively sequences build of symbols of AC so that
both systems are topologically conjugate (Definition 2.36) to each other.
Therefore we have to construct the sequence space ΣAC on the alphabet
AC appropriately. To make this precise define the map ψ : XA → AN

C and

define ΣAC = ψ(XA). Let x = (x1, x2, . . . ) ∈ XA, ξ = (ξ1, ξ2, . . . ) ∈ AN
C and

denote by [x1, x2, . . . , xK ]K a cylinder of length K.

ψ((x1, x2, x3, x4, . . . , xK , xK+1, xK+2, . . . )) =

([x1, x2, . . . , xK ]K︸ ︷︷ ︸
ξ1

, [x2, x3, . . . , xK+1]K︸ ︷︷ ︸
ξ2

, [x3, x4, . . . , xK+2]K︸ ︷︷ ︸
ξ3

, . . . ). (48)

With this map and the lexicographical order from equation (47) we can
simply define the associated subshift of finite type, namely

ΣAC = {ξ = (ξn)n∈N : ∃x ∈ XA : ψ(x) = ξ, ξn ∈ AC}. (49)

From this definition we could also define the subshift in the usual way,
namely defining a dK × dK matrix AC which defines the valid sequences.
Some symbols may be redundant as we consider the general case that (XA, f)
is a subshift and not a full shift. However, in the case where (XA, f) is a full
shift we can observe that from any symbol ξi we only have d possibilities for
ξi+1, since the cylinder ξi+1 is determined by ξi up to the last symbol. If
(XA, f) is also a subshift we have even more restrictions. In the next step we
will show that ψ is a homeomorphism and the maps f and σ are topological
conjugates, i.e. f = ψ−1 ◦ σ ◦ ψ.

Proposition 5.1. The dynamical systems (XA, f) and (ΣAC , σ) are conju-

gates with conjugacy ψ : XA → ΣAC . In particular, for Φ̃ = Φ(ψ−1(ξ)) the
rotation sets and the localized entropy coincide.
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Proof. We have to show that ψ−1 exists, i.e. ψ is bijective. Surjectivity
follows easily by the definition of ΣAC . For injectivity let x, y ∈ XA and
assume ψ(x) = ψ(y). That is

([x1, . . . , xK ], [x2, . . . , xK+1], . . . ) = ([y1, . . . , yK ], [y2, . . . , yK+1], . . . )

⇔ (ξ1, ξ2, . . . ) = (ξ′1, ξ
′, . . . ).

Since the association of symbols from AC and A is unique we get x = y.
So we know that ψ−1 exists. Continuity of both ψ and ψ−1 is trivial. It
remains to show f = ψ−1 ◦σ ◦ψ. For x ∈ XA we obtain (f(x))n = xn+1 and

(ψ−1σψ(x))n = (ψ−1ψ(x))n+1 = xn+1. (50)

So we have that f and σ are topological conjugate with respect to the
homeomorphism ψ. Furthermore we note that for each periodic point x ∈
XA we have that ψ(x) is also a periodic point in ΣC and vice versa. Let
x ∈ XA be of period p, i.e. fp(x) = x. Then

ψ(x) = ψ(fp(x)) = ψ(ψ−1σpψ(x)) = σp(ψ(x)). (51)

The map ψ also preserves measures, namely let µ be a f -invariant probability
measure on XA and define µ̃ = µ ◦ ψ−1. Then for B ∈ BXA and B̃ = ψ(B)
we obtain

µ̃(σ−1B̃) = µ(ψ−1σ−1ψ(B)) = µ(f−1B) = µ(B). (52)

Next we discuss how to adjust the potential for the new system. We define
Φ̃ : ΣC → Rm by

Φ̃(ξ) = Φ(ψ−1(ξ)). (53)

Since Φ is constant on cylinders of length K, Φ̃ is constant on cylinders of
length 1. Note also that Φ̃ is well defined since ψ is a homeomorphism. In
the last step we will show that not only the systems are equivalent but also
their rotation sets. For that we consider the statistical averages from both
systems and show that they coincide. Let x ∈ XA and ψ(x) = ξ ∈ ΣC .
Then

1

n

n−1∑
i=0

Φ̃(σi(ξ)) =
1

n

n−1∑
i=0

Φ(ψ−1σiψ(x)) =
1

n

n−1∑
i=0

Φ(f i(x)). (54)

All of these pointwise limits give RotPt(Φ) (resp. RotPt(Φ̃)). As the convex
hull of the pointwise rotation set is exactly the general rotation set, the
rotation sets of Φ and Φ̃ coincide. In the last step we prove that also the
localized entropy coincides. Let w ∈ Rot(Φ) = Rot(Φ̃). By definition we
have to prove h(w) = sup{hµ(f) : µ ∈ M(f), rv(µ) = w} = sup{hµ̃(σ) :

µ̃ ∈ M(σ), rv(µ̃) = w} = h̃(w). Let Θ = {Z1, . . . , ZN} be a finite partition
of XA. The entropy of (XA, f) of µ ∈M(f) with respect to Θ is defined by

hµ(f,Θ) = lim
n→∞

1

n
Hµ

( n−1∨
i=0

f−iΘ

)
,
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see also Definition 2.13. So we get

Hµ

( n−1∨
i=0

f−iΘ

)
= Hµ

( n−1∨
i=0

((ψ−1σψ)−i(Θ)

)

=
n−1∑
ı=0

N∑
j=1

µ(ψ−1σ−iψ(Zj)) logµ(ψ−1σ−iψ(Zj)) = Hµ̃

( n−1∨
i=0

σ−iΘ̃

)
,

where µ̃ = µ ◦ ψ−1 and Θ̃ = ψ(Θ). By equation (52) we know that

Hµ

( n−1∨
i=1

f−iΘ

)
= Hµ̃

( n−1∨
i=0

σ−iΘ̃

)
.

Since ψ is a homeomorphism we know for µ̃ = µ ◦ ψ−1 that hµ(f) = hµ̃(σ).
It remains to show that rv(µ) = rv(µ̃).

rv(µ) =

∫
Φ dµ =

∫
Φ ◦ (ψ−1ψ) dµ =

∫
Φ̃ ◦ ψ dµ =

∫
Ψ̃ dµ̃ = rv(µ̃).

And therefore we have h(w) = h̃(w). �

We obtain the commutative diagram

XA
f //

ψ

��

XA

ψ

��
ΣAC σ

// ΣAC .

(55)

Theorem 5.2. Let (X, f) be a subshift of finite type and suppose Φ : X →
Rm is a potential, which is constant on cylinders of length K. Then Rot(Φ)
is a polyhedron, i.e. the convex hull of finitely many points.

Proof. By Proposition 5.1 (X, f) has the same rotation set as subshift of

finite type (ΣAC , σ) with the potential Φ̃. Since potentials which are constant
on cylinders of length 1 are in particular constant on cylinders of length 2
we know by Ziemian [19] that Rot(Φ) is a polyhedron. �

Ziemian proved by induction that the rotation set is a polyhedron if the
potential is constant on cylinders of length 2. However, for our approach
it is reasonable to work out another proof which gives us more information
about the representation of the rotation set by the convex hull. From now on
we consider the subshift of finite type (ΣAC , σ) with potential Φ̃. We follow
Ziemian’s idea and work with so called loops. We call a word ξ1, . . . , ξl, ξl+1 a
loop of length l if ξ1 = ξl+1 and identify it with the periodic point generated
by (ξ1, . . . , ξl). We call a loop of length l elementary if for all |i − j| < l,
ξi 6= ξj . This means the longest elementary loop is of length dK . Also
note that we basically consider loops independent from their initial point,
i.e. ξ1, ξ2, . . . , ξl and ξ2, ξ3, . . . , ξl, ξ1 and so on are considered as the same
loop. Due to this construction there are only finitely many elementary loops.
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By combinatorics the number of elementary loops, disregarding the initial
point, in case of a full shift is

dK∑
i=1

(
dK

i

)
(i− 1)!.

Hence for a subshift like in our case there are even less elementary loops.
The set of all elementary loops is denoted by Ξ. We will cover an arbitrary
loop ξ1, . . . , ξp by elementary loops. This may happen on different levels.
The idea is to go to the first symbol which is used more than once and
consider the part from the first to the last position with the same symbol.
The part in between is considered as a new loop on the next level. Let
us bring this in a proper form. The first elementary loop which builds the
highest level will look like

ξ1, . . . , ξi1−1, ξl1 , . . . , ξiN−1, ξlN , . . . , ξp, (56)

where we inductively define

in = min{ln−1 ≤ i < p : ∃j > i : ξi = ξj}, (57)

ln = min{in < l ≤ p : ξl = ξin}, (58)

and l0 = 0. For the next level we consider the new loops

(ξi1 , . . . , ξl1−1), (ξi2 . . . , ξl2−1), . . . , (ξiN , . . . , ξlN−1)

and repeat the procedure iteratively on these loops until we only obtain
elementary loops. As in the end it does not make a difference on which level
an elementary loop is we keep things easier do not indicate the level. To
illustrate this idea please see Figure 1 and Figure 2 on the next page.

Having covered an arbitrary periodic point/loop ξ of length p by (finitely
many) elementary loops {χ1, . . . , χL} ⊂ Ξ we can express the rotation vector
of the periodic point measure by a convex combination of the rotation vectors
of periodic point measures of the elementary loops as follows:

rv(µξ) =
L∑
i=1

pi
p

rv(µi).

Note that this representation does not give the same measure, however,
for a potential of length 1 the rotation vectors coincide. In the following
we discuss this construction. We recall the definition of a periodic point
measure,

µξ =
1

p

p−1∑
i=0

δσi(ξ), (59)

where the point measures of the elementary loops are defined analogously.
Let µ1, . . . , µL denote these measures. We denote the set of all periodic
point measures with respect to an elementary loop byM(Ξ). Let pn be the
length of the corresponding elementary loop of µn. Then we weight rv(µn)
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Figure 1. Loop on first level

ξ1 = ξp+1

ξi1 = ξl1

ξi2 = ξl2

ξi3 = ξl3

ξi4 = ξl4

ξi5 = ξl5

Figure 2. First loop on second level

ξi1 = ξl1

ξi6 = ξl6

ξi7 = ξl7

ξi8 = ξl8
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with pn
p . As by construction

∑L
i=1 pi = p this is a convex combination. To

make this more precise let ξ be a periodic point generated by (ξ1, . . . , ξp) and
χ1, . . . , χL, L ≤ p elementary loops such that they cover ξ, i.e. (ξ1, . . . , ξp) =
(χ1, . . . , χL). Note that on the left hand side of the latter equation we have
symbols from AC and on the right hand side we have elementary loops
respectively periodic points. The rotation vector for µξ is given by

rv(µξ) =

∫
Φ̃ dµξ =

dK∑
i=1

µξ(Ci)Φ̃(Ci) =

dK∑
i=1

Φ̃(Ci)
1

p

p∑
j=1

δσj(ξ)(Ci). (60)

But on cylinders of length 1 we also have

p∑
j=1

δσj(ξ)(Ci) =

L∑
k=1

pk∑
j=1

δσj(χk)(Ci).

Thus for (60) we obtain

rv(µξ) =

dk∑
i=1

Φ̃(Ci)
1

p

L∑
k=1

pk∑
j=1

δσj(χk)(Ci) =

dk∑
i=1

Φ̃(Ci)

L∑
k=1

pk
p
µk(Ci)

=
L∑
k=1

pk
p

∫
Φ̃ dµk =

L∑
k=1

pk
p

rv(µk).

Therefore we can represent any rotation vector of a periodic point measure
by a finite convex combination of elementary loops, as the periodic point
measures are dense we have Rot(Φ̃) ⊂ conv{rv(µξ) : ξ ∈ Ξ}. The converse
inclusion is also satisfied as each elementary loop generates a periodic point
measure. Since the periodic point measures are dense for transitive subshifts
of finite type this is enough to conclude that under our assumptions the
rotation set of the new system is a polyhedron. As the two systems have
the same rotation set this holds true for the original system. From this
construction it may happen that two or more elementary loops have the
same rotation vector or that the rotation vector of an elementary loop is
not an extreme point. For the shape of the rotation set these loops are
redundant but for the localized entropy they do in general matter. For
example, if there exists π ∈ Sl, where Sl denotes the symmetric group with
respect to l elements, such that (ξπ(1), . . . , ξπ(l)) = (ξ̃1, . . . , ξ̃l), then they
have the same rotation vector. Note that there might be other situations
where two elementary loops have the same rotation vector.
The first theorem gives a formula for the localized entropy of an extreme
point of the rotation set. The second theorem provides the lower bound for
a point on a face and the last one shows how we can calculate the localized
entropy in the interior of the rotation set. For all of these theorems we
assume the foregoing set-up, namely, (Σ, σ) is a subshift of finite type with

alphabet AC , defined by the map ψ : (X, f)→ (Σ, σ), and Φ̃ : Σ→ Rm is a
potential constant on cylinders of length 1. Also let |Ξ| = L. Let χ1, . . . , χl



44

be elementary loops such that rv(χ1) = · · · = rv(χl). These elementary
loops define a transition matrix Q of a subshift of finite type in the following
way: For two symbols ai, aj ∈ Ac we have Q(ai, aj) = 1 if and only if there
exists k ∈ {1, . . . , l} such that χk has the form a1, . . . , ai, aj , . . . , apk .

Theorem 5.3. Let w ∈ Rot(Φ̃) be an extreme point, and suppose {µ1, . . . , µl}
= M(Ξ) ∩ rv−1(w) with corresponding elementary loops χ1, . . . , χl. Then
h(w) is determined by the topological entropy of the subshift defined by
χ1, . . . , χl, namely the logarithm of the spectral radius of the transition ma-
trix.

Proof. Let {µ1, . . . , µl} = M(Ξ) ∩ rv−1(w) with corresponding elementary
loops χ1, . . . , χl. These elementary loops define a subshift of finite type.
We denote the subshift by (Σ̃, σ̃). For this subshift the topological entropy
is given by the logarithm of the spectral radius of its transition matrix.
Assume there is another measure µ ∈ M(σ) which is not supported on the
subshift but rv(µ) = w with hµ(σ) > h(σ̃). By the ergodic decomposition
theorem we have a measure τ on ME(σ) such that∫

E

∫
Φ dνdτ(ν) =

∫
Φ dµ, and

∫
E

hν(σ) dτ = hµ(σ). (61)

Thus there is at least one ergodic measure, let us say ν ′ with the same
entropy as µ. Note that τ{ν ∈ ME : rv(ν) 6= w} = 0 since w is an extreme
point. Therefore rv(ν ′) = w and hence ν ′ is supported on the subshift which
completes the proof. �

Theorem 5.4. Let w ∈ Rot(Φ̃) be a point on a face F ⊂ Rot(Φ̃) and suppose

there is no µ ∈ M(Ξ) with rv(µ) = w. Then h(w) ≥ sup{
∑b

i=1 λihµi(σ) :

µi ∈M(σ), w̃i is extreme point of F, rv(µi) = w̃i,
∑b

i=1 λiw̃i = w}.

Proof. Let w ∈ F be as in the Theorem 5.4. Then there exists (λ1, . . . , λb)

non-negative, where dimF = b, with
∑b

i=1 λi = 1 and extreme points of F

w̃1, . . . , w̃b such that
∑b

i=1 λiw̃i = w. Obviously we have{
µ =

b∑
i=1

λiµi : µi ∈M(σ), w̃i is extr. pt. of F, rv(µi) = w̃i,

b∑
i=1

λiw̃i = w
}

⊂ {µ : µ ∈M(σ), rv(µ) = w}.

As the measure theoretic entropy is affine we have h(w) = sup{hµ(σ) : µ ∈
M(σ), rv(µ) = w} ≥ sup{

∑b
i=1 λihµi(f) : µi ∈M(σ), w̃i is extr. pt. of F,

rv(µi) = w̃i,
∑b

i=1 λiw̃i = w}. �

We will write a paper where we give a formula to calculate the localized
entropy explicitly. There will be a similar theorem for the interior of the
rotation set. The goal is to approximate general potentials and their rotation
sets by potentials which are constant on cylinders of length K. We are
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optimistic that in this way we can calculate the localized entropy for general
rotation sets.

Appendix A. Convex Analysis

We will give an overview of convex analysis. For most of the theorems we
will not provide proofs but refer to [18].

A.1. Convex sets and functions. First we define affine sets. A set A ⊂
Rm is said to be affine if for all x, y ∈ A and for all λ ∈ R also λx+ (1−λ)y
is in A. Further the affine hull of A ⊂ Rm is the smallest affine set which
contains A and is denoted by aff(A).
We call C ⊂ Rm convex if for any x, y ∈ C and for all λ ∈ [0, 1] λx + (1 −
λ)y ∈ C. The set C is said to be strictly convex if it is convex and every
boundary point is an extreme point (Section A.4). We define the convex
hull analogously to the affine hull, i.e. the convex hull of C is the smallest
convex set which contains C and is denoted by convC. For any non-zero
b ∈ Rm and β ∈ R

{x ∈ Rm : x.b ≤ β}, {x ∈ Rm : x.b ≥ β}
are called closed half-spaces. For a function p : S → [−∞,∞], where S is a
subset of Rm we define the epigraph of p by the set

{(x, µ) : x ∈ S, µ ∈ R, µ ≥ p(x)},
and denote it by epi(p). The function p is convex if its epigraph is convex
as subset of Rm+1. The effective domain of p is defined by

dom(p) = {x ∈ Rm : ∃µ : (x, µ) ∈ epi(p)} = {x ∈ Rm : p(x) <∞}.
We note that this set is again convex, since it is the image of the convex set
epi(p) under a linear transformation. We call p to be proper if its epigraph
is non-empty and contains no vertical lines, i.e. p(x) < ∞ for at least one
x, and p(x) > −∞ for all x ∈ S.

Theorem A.1. Let p : S → (−∞,∞]. Then p is convex if and only if

p(λ1x1 + · · ·+ λnxn) ≤ λ1p(x1) + · · ·+ λnp(xn),

whenever λi ≥ 0 for all i with
∑n

i=1 λi = 1.

Some books use this characterization to define convex function.

A.2. Relative interior. We equip Rm with the Euclidean metric and define
B = {x ∈ Rm : d(x, 0) ≤ 1} to be the closed unit ball. The closure and
interior of C ⊂ Rm are defined by

cl(C) =
⋂
{C + εB : ε > 0},

int(C) = {x ∈ Rm : ∃ε > 0 : x+ εB ⊂ C}.

If we consider a triangle or line segment as subset of R3, its mathematical
interior is empty, although there is a natural interior. In order to fix this issue
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we define the relative interior, which is the classical interior of C regarded
as a subset of its affine hull, i.e.

ri(C) = {x ∈ aff(C) : ∃ε > 0 : (x+ εB) ∩ aff(C) ⊂ C}.
We have ri(C) ⊂ C ⊂ cl(C), cl(ri(C)) = cl(C), and ri(cl(C)) = ri(C).

A.3. Conjugates. A proper closed convex set can be written as an intersec-
tion of half-spaces, and in particular the epigraph of a proper closed convex
function p can be written by such an intersection. Transferring this idea to
functions we get the following theorem.

Theorem A.2. A proper closed convex function p is the pointwise supre-
mum of the collection of all affine functions h that are majorized by p, i.e.
h ≤ p.

Motivated by this theorem we define the conjugate p∗ of p by

p∗(x∗) = sup{x.x∗ − p(x) : x ∈ Rm}.
As p∗ is the pointwise supremum of affine functions, it is a convex function.
Furthermore p∗ is a proper closed convex function if and only if p is a proper
convex function.

A.4. Extreme points and faces. For a convex set C ⊂ Rm a convex
subset C ′ of C is called face if every (closed) line segment in C with a relative
interior point in C ′ has both end points in C ′. Zero dimensional faces are
called extreme points, i.e. x is an extreme point if for all y, z ∈ C and all
λ ∈ (0, 1), λy + (1− λ)z = x implies that x = y = z. A point in C is called
exposed point if there exists a supporting hyperplane through it containing
no other point in C. We note that all exposed points are extreme points.
The converse is in general not true. For a counterexample consider the set
{(x, y) ∈ R2 : y ≥ 0, x2 + y2 ≤ 1} ∪ {(x, y) ∈ R2 : y ≤ 0, max(x2, y2) ≤ 1}.
The points (1, 0) and (−1, 0) are extreme points but not exposed points.

Theorem A.3. For a closed convex set C the exposed points are dense in the
extreme points, i.e. every extreme point can be approximated by a sequence
of exposed points.

In the context of extreme points we also introduce polyhedral convex sets.
A polyhedral convex set or polyhedron in Rm is defined as a set which can
be expressed as intersection of a finite collection of closed half-spaces, i.e.
the set of solutions to a finite system of inequalities of the form

x.bi ≤ βi, i = 1, . . . , n, βi ∈ R, x, bi ∈ Rm.
To give a characterization of polyhedral sets, we state the following theorem.

Theorem A.4. For a convex set C the following are equivalent:

1. C is a polyhedron.
2. C is closed and has only finitely many faces.
3. C is finitely generated, i.e. it is the convex hull of a finite set of points

and directions.
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A.5. Directional derivatives and subgradients. We recall the defini-
tion of (one-sided) directional derivatives for p : Rm → R in direction
y ∈ Rm,

d+p(x; y) = lim
t↓0+

p(x+ ty)− p(x)

t
,

d−p(x,−y) = lim
t↑0−

p(x+ ty)− p(x)

t
.

The two sided directional derivative, denoted by dp(x; y), exists if and only
if

d+p(x;−y) = d−p(x; y).

Theorem A.5. Let p : Rm → R be a convex function finite at the point
x. For each y ∈ Rm the difference quotient in the definition of d+p is a
non-decreasing function of t > 0, in particular d+p exists and

d+p(x; y) = inf
t>0

p(x+ ty)− p(x)

t
.

Proof. We define the function g(t) = 1
t p(x + ty) − p(x) and let λ ∈ (0, 1).

By convexity of p we obtain

p(x+ λty) = p((1− λ)x+ λ(x+ ty)) ≤ (1− λ)p(x) + λp(x+ ty).

Applying this inequality to g brings

g(λt) =
p(x+ ty)− p(x)

λt
≤ λ(p(x+ ty)− p(x))

λt
= g(t).

Therefore g is non-decreasing in t, and thus the limit t → 0 exists and
coincides with the infimum. �

We will now establish a connection between subdifferentials and the dif-
ferentiability of a function. We recall the definitions of subdifferntials and
subgradients. A vector x∗ ∈ Rm is called subgradient for a convex function
p at x, if

x∗.(z − x) + p(x) ≤ p(z), ∀z ∈ Rm.

The set of all subgradients of p at x is called subdifferential of p at x and
denoted by ∂p(x). Furthermore, a function p from Rm to [−∞,∞], finite
at x, is said to be differentiable at x if and only if there exists a vector x∗

(unique) such that

lim
z→x

p(z)− p(x)− 〈x∗, z − x〉
|z − x|

= 0.

If such an x∗ exists, it is called gradient of p at x and is denoted by 5p(x).
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Theorem A.6. Let p : Rm → R be a convex function, and let x be a point
where p is finite. If p is differentiable at x, then 5p is the unique subgradient
of p at x, so that in particular

p(z) ≥ p(x) + 〈5p(x), z − x〉, ∀z ∈ Rm.

Conversely, if p has a unique subgradient at x, then p is differentiable at x.

Proof. First we assume that p is differentiable at x. Then dp(x; ·) is the
linear function 〈5p(x), ·〉. By Lemma 3.4, the subgradients at x are the
vectors x∗ such that

〈5p(x), y〉 ≥ 〈x∗, y〉, ∀y ∈ Rm.

This inequality is only satisfied if and only if x∗ = 5p(x). Thus 5p(x) is
the unique subgradient of p at x.
For the other direction we assume that p has a unique subgradient x∗ at x.
We define the convex function g by

g(y) = p(x+ y)− p(x)− 〈x∗, y〉.

Therefore g has 0 as its unique subgradient in the origin. For differentiablity
we must show that this implies

lim
y→0

g(y)

|y|
= 0. (62)

By Lemma 3.4 the closure of d+g(0; ·) is the support function of ∂g(0), which
in this particular case is the constant function 0. Furthermore d+g(0; ·)
cannot differ from its closure other than at boundary points of its effective
domain. Thus d+g(0; ·) = 0, and we have

0 = d+g(0;α) = lim
λ↓0

g(λα)− g(0)

λ
, ∀α ∈ Rm.

But we know g(0) = 0 and by Theorem A.5 the difference quotient is a
non-decreasing function of λ. We define the convex functions hλ by

hλ(α) =
g(λα)

λ
, λ > 0.

Thus hλ decrease pointwise to the constant function 0 as λ decreases to
0. Let B denote the Euclidean unit ball, and let {a1. . . . , an} be any finite
collection of points whose convex hull includes B. Therefore each α ∈ B can
be expressed as a convex combination

α = θ1a1 + · · ·+ θnan,

and so we obtain

0 ≤ hλ(α) ≤
n∑
i=1

θihλ(ai)

≤ max{hλ(ai) : i = 1, . . . , n}.
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Since we know that hλ(ai) decreases to 0 pointwise for each ai as λ ↓ 0, we
can conclude that hλ(α) decreases to 0 uniformly in α ∈ B as λ ↓ 0. That
is, for given ε > 0, there exists a δ > 0 such that

g(λα)

λ
≤ ε, ∀λ ∈ (0, δ], ∀α ∈ B.

Going back to our actual goal from equation (62), each vector y with 0 <
|y| ≤ δ can be expressed as λα with λ = |y| and α ∈ B. So we have

g(y)

|y|
< ε,

whenever 0 < |y| ≤ δ. This proves that the limit we asked for is 0, and thus
the function p is differentiable. �

Theorem A.7. For any proper convex function p and any vector x ∈ Rm,
the following are equivalent:

1. x∗ ∈ ∂p(x).
2. z.x∗ − p(x) achieves its supremum in z at z = x.
3. p(x) + p∗(x∗) ≤ x.x∗.
4. p(x) + p∗(x∗) = x.x∗.

Corollary A.8. For a closed proper convex function p : Rm → R, ∂p∗ is
the inverse of ∂p in the sense of multivalued mappings, i.e. x ∈ ∂p∗(x∗) if
and only if x∗ ∈ ∂p(x).

Appendix B. Further theorems

Theorem B.1 ([4], p. 417, Theorem 10). If K1,K2 are two disjoint closed
convex subsets of a locally convex linear topological space X and if K1 is
compact, then there exists c and ε > 0, and a continuous linear functional
F : X → C such that,

Re(F (K2)) ≤ c− ε < c < Re(F (K1)),

where Re(F (K)) denotes the real part of F (K).

Abstract German

Für ein stetiges dynamisches System (X, f) auf einem kompakten metrischen
Raum und ein stetiges Potential Φ : X → Rm ist die verallgemeinerte Rota-
tionsmenge definiert als die Teilmenge von Rm, die aus allen Integralen von
Φ bezüglich aller f -invarianten Wahrscheinlichkeitsmaße besteht. Wir geben
eine Einleitung zu Konzepten und Ergebnisse aus der Rotationstheorie. Für
α ∈ Rm und dem Potential α.Φ, stellen wir, in Anlehnung an [6], eine
Verbindung zwischen den Rotationsvektoren von Gleichgewichtsmaßen und
den Richtungsableitungen des Drucks her. Die localized Entropie an einem
Punkt in der Rotationsmenge is definiert als das Supremum der Maßthe-
oretischen Entropie über alle f -invarianten Wahrscheinlichkeitsmaßdessen
Integrale diesen Punkt ergeben. Wir betrachten einen Subshift of finite type
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und ein Potential, welches konstant auf Zylindern der Länge K ist. In-
spiriert durch [19] zeigen wir, dass in diesem Fall die Rotationsmenge ein
Polyeder ist und geben eine Formel für die localized entropy an Extrempunk-
ten und Oberflächen der Rotationsmenge.
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