

Control and Instrumentation of a
Super-Maneuverable Unmanned Underwater Vehicle

MASTER THESIS

In partial fulfillment of the requirements for the degree

„Master of Science in Engineering“

Master program:

„Mechatronics & Smart Technologies”

Management Center Innsbruck

Supervisor:

University of California, Berkeley

Mohammad-Reza Alam, PhD

Internal supervisor:

Bernhard Hollaus, MSc

Author:

Stefan Messner, BSc

1410620030

Declaration in Lieu of Oath

II

Declaration in Lieu of Oath

I hereby declare, under oath, that this master thesis has been my independent work and

has not been aided with any prohibited means. I declare, to the best of my knowledge

and belief, that all passages taken from published and unpublished sources or

documents have been reproduced whether as original, slightly changed or in thought,

have been mentioned as such at the corresponding places of the thesis, by citation,

where the extent of the original quotes is indicated.

The paper has not been submitted for evaluation to another examination authority or has

been published in this form or another.

_______________________________ _______________________________

Place, Date Signature

Innsbruck, 30.09.2016

Acknowledgement

III

Acknowledgement

A special thank you goes to the Marshall Plan Scholarship Foundation, which financially

supported me during my stay at the University of California, Berkeley. Additional, I want

to thank Professor Mohammad-Reza Alam, Mohsen Saadat and Mir Abbas Jalali, my

supervisor at Cal, for their support and the hours spent contributing to the project.

Moreover, my family and friends for their support and patience.

Abstract

IV

Abstract

The Super-Maneuverable Unmanned Underwater Vehicle (SUUV) project is developed

in cooperation with the University of California, Berkeley under the supervision of Prof.

Mohammad-Reza Alam. The work deals with the development of a super-agile

autonomous swimmer which is capable of performing full 3D reorientation and

translational maneuvers.

The reorientation of the swimmer is realized without using thrusters, wings, rudders,

stabilizers or fins and, thus is much more energy efficient and super-agile in comparison

to conventional swimmer. Therefore, the swimmer enables a better exploration of the

physics, chemistry, and biology of the ocean environment. Another field lies in the

inspection of offshore platforms or ship hulls. A Double Gimbal Control Moment Gyro

(DGCMG) is used to orientate the swimmer in three-dimensional space (3D). The double

gimbal system consists of a high-speed wheel which rotates with up to 12,000 𝑅𝑃𝑀. The

center wheel creates an inertia platform whereby the double gimbal system enables to

rotate the swimmer around it in 3D space. Two counter-rotating thrusters generate

enough thrust to propel the robot to perform translational movement. The problem is to

develop a novel control method for the orientation control of the Autonomous Undersea

Vehicles (AUVs). Fundamental is the deployment of the electronics, the embedded

system and the implementation of the computational-expensive control algorithms. The

final goal of the project is to develop the instrumentation of the swimming robot, to

implement different control methods and to evaluate them regarding stability and

controllability. The best controller has to be found and applied. This results in the best

maneuverability of the swimmer. In the field of control theory, several methods for

stabilizing non-linear dynamic systems are used as Backstepping and Lyapunov control.

The expected outcome is to discover findings concerning the best solution for non-linear

dynamic control problems and to adapt them on an innovative method for the

reorientation of AUVs which can be pioneering for future tasks of the same kind.

The paper shows that the novel developed method using a DGCMG system for the

reorientation of underwater vehicles yields excellent increases in the AUVs agility.

Further improvements regarding implementation of the final non-linear control algorithms

have to be done and the final underwater test has to be performed.

Keywords: Underwater Vehicle, Super-Agile Swimmer, Instrumentation, Non-Linear

Control;

Contents

V

Contents

1. Introduction ... 1

1.1 State of the Art ... 3

1.2 Applications .. 4

2. Design and Modeling .. 5

2.1 Swimmers Design... 5

2.2 Dynamic Model ... 7

2.2.1 Reference Frames ... 7

2.2.2 Fundamental Equations ... 8

2.2.3 Coordinate System Rotations .. 10

2.2.4 Assumptions .. 11

2.2.5 Governing Equations ... 12

3. Non-Linear Controller Design ... 13

3.1 Control Theory .. 13

3.1.1 Lyapunov Control .. 13

3.1.2 Backstepping ... 14

3.2 Adaptive Controller Design ... 15

4. Electro-Mechanical Construction ... 18

4.1 Embedded System ... 18

4.1.1 Arduino Genuino Uno Board .. 18

4.1.2 Arduino Mega 2560 Board ... 19

4.1.3 Arduino Due Board .. 19

4.2 Arduino Open-Source Software (IDE) ... 21

4.2.1 Object-Oriented Programming ... 21

4.2.2 Interrupt Service Routines ... 22

4.3 Stepper Motors ... 23

4.3.1 Adafruit Motor Shield 2 .. 23

4.3.2 Stepper Motor Driver ... 24

4.3.3 Driver Input Signal Generation ... 28

4.4 Optical Encoders .. 31

4.4.1 Interrupt Encoder Read ... 31

4.4.2 Robogaia Encoder Counter Shield... 33

4.5 Brushless DC Motor – Gyro .. 35

4.6 Brushless DC Motor – Thrusters ... 37

4.7 Inertial Measurement Unit... 38

4.8 Arduino / Arduino – Communication ... 40

4.8.1 Arduino Task Distribution ... 41

4.8.2 Software Implementation ... 41

Contents

VI

4.9 MATLAB / Arduino – Communication ... 44

4.9.1 Serial Communication.. 44

4.9.2 Ethernet Communication ... 45

4.10 Software Task Distribution .. 51

4.11 Electrical Circuits .. 53

4.11.1 Electrical Power Supply ... 54

4.11.2 Logic Signals Connections .. 54

5. Manufacturing ... 56

5.1 Fabrication and Design ... 56

5.2 Final Assembly ... 56

5.3 Waterproofness .. 59

6. Swimmer Agility Tests .. 60

6.1 One Axis Agility Results.. 60

6.1.1 Hanging Method for One DOF ... 60

6.1.2 Open-Loop Control .. 61

6.1.3 Close-Loop Control – Yaw Angle ... 62

6.2 Two Axis Agility Results.. 64

6.2.1 Hanging Method for Two DOF ... 64

6.2.2 Close-Loop Result – Pitch Angle ... 64

6.3 Results Evaluation .. 65

7. Conclusions ... 66

7.1 Closure ... 66

7.2 Future Work.. 66

Bibliography ... VII

List of Figures .. X

List of Listings .. XII

List of Abbreviations ... XIII

List of Symbols .. XIV

A. Appendix A ... XV

B. Appendix B .. XIX

C. Appendix C ... XXII

1. Introduction

1

1. Introduction

Autonomous Undersea Vehicles (AUVs) mostly are orientated in space by thruster,

wings, rudders, stabilizer or fins. Such actuation methods are energy consuming and

limit the operation range of AUVs. Additionally, orientation methods like these are slow

or limited in maneuverability. That means not all maneuvers can be performed with each

method. Furthermore, external thrusters for the reorientation generate additional flows in

the surrounding fluid. Imagine a method, which allows to perform full 3D on-point

reorientation, fast translational maneuvers, and which is much more energy efficient as

conventional methods. Let us introducing the Super-Maneuverable Unmanned

Underwater Vehicle (SUUV) [1], a project of the University of California, Berkeley.

Figure 1-1: Super-Maneuverable Unmanned Underwater Vehicle (SUUV)

A team around Prof. Mohammad-Reza Alam at the Theoretical & Applied Fluid Dynamics

Laboratory (TAF Lab) [2] develops a super-agile swimmer. The swimmer has no external

wings, fins, rudders or stabilizer which are used for reorientation maneuvers. Therefore,

the swimmer is not generating external flows during reorientation. The swimmer is

reoriented by using a Double Gimbal Control Moment Gyro (DGCMG). Two counter

1. Introduction

2

rotating thrusters are used to generate a force for the forward and backward propulsion.

The DGCMG consists of two gimbals and a high-speed wheel. The wheel spins with up

to 12,000 𝑅𝑃𝑀 and generates an inertia platform which is used to rotate the swimmer.

The two gimbals allow to rotate the robot around the gyro in 3D space. Therefore, no

external flows are generated during reorientation maneuvers by the SUUV and the

swimmer is super agile. Because of its natural buoyancy the swimmer can hold its heave

position naturally.

The DGCMG system is first introduced in [3] where it is used to reorientate a satellite in

space. Obviously, the dynamics of the system is very different regarding the missing

gravity and because no external torques are acting to the body in space. The goal of this

thesis is to adapt the dynamics introduced in the previous work, the assembly, the

development of the electronics for the swimmer and most importantly prove that the

system is working for an undersea robot.

1. Introduction

3

1.1 State of the Art

Control moment gyro systems are nowadays used to reorientate satellites in space [4].

Different systems therefore are developed. Mostly, three spinning wheels are used,

whereby the spinning speed of the wheels create a reaction force which reorientate the

satellite in space. Such systems can also be used to reorientate objects on earth,

whereby the dynamics is completely different because of earth’s gravity. Such a system

is shown with the “Cubli”-project [5] where three spinning wheels are used to balance a

cube. The cube balancing on its edge can be seen in the figure below.

Figure 1-2: “Cubli” – ETH Zurich Project

The cube is able to flip, move and balance on its edge and the corners just by using the

reaction forces generated by the three spinning wheels. The marine applications of

control moment gyros are given for the stabilization of the ships [6]. Such systems can

either be actively or passively controlled, for example in order to reduce vessel motions.

The main goal of these systems is to increase the comfort for passengers or to enable a

stable working platform.

1. Introduction

4

1.2 Applications

The applications of super-agile swimmers lie in the exploration of sensitive underwater

regions. The low additional flows produced by the swimmer and the high maneuverability

enable a better exploration of the physics, chemistry, and biology of the environment. [7]

Another field lies in the inspection of offshore platforms or ship hulls. The SUUV profits

from the high maneuverability at high and low velocities and therefore opens new fields

of applications for AUVs. Further, the robot can be build much more compact then

conventional robots. As a result of the energy efficacy of the robot, the underwater time

for the robot can be increased significantly. This is an essential key for the usability and

a long observation time of the underwater environment. The high movability further

enables new possibilities regarding swimming in formations of AUVs. [8] Such swimming

in formations can enable the creation of an optical communication, as seen below.

Figure 1-3: Super-Agile Swimmer – Optical Communication Network with Submarine

A group of super-agile swimmers can swim in formation with sight contact and enable

the creation of an optical communication network from a submarine deep in the ocean

to a mother ship. Such networks are minimally invasive to the environment and highly

flexible.

2. Design and Modeling

5

2. Design and Modeling

This chapter deals with the design of the SUUV, the different parts and the construction

of it. Further, the kinematic model of the robot is introduced, whereby several

assumptions are made which simplify the kinematic model of the swimmer. The design

and modeling introduced in this chapter is based on [1] and the DGCMG firstly is

published in the work of Mohsen Saadat in [3].

2.1 Swimmers Design

The design of the swimmer is developed by Mohsen Saadat, a PhD students at the

Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA. It is

composed of a symmetric shaped body, two external thrusters (T1 and T2) and a double

gimbal system with a high speed wheel located in the center of the swimmer. Both

external thruster are responsible for the translational movements of the swimmer. The

high-speed wheel of the double gimbal system creates an inertia platform which enables

the rotation of the swimmer in 3D space. Figure 2-1 below shows the design of the

swimmer.

Figure 2-1: Super-Maneuverable Unmanned Underwater Vehicle Design

The external thrusters are counter rotating; this generates an additional degree of

freedom for the control of the swimmer’s orientation. The center of the robot is a Double

2. Design and Modeling

6

Gimbal Control Moment Gyro (DGCMG). It consists of a high-speed wheel in the center.

This wheel rotate with up to 12,000 rotations per minute (RPM) and creates an inertia

platform. Two gimbals enable to reorientate the gyro in 3D space and therefore rotate

the fuselage of the swimmer. The DGCMG can be seen in Figure 2-2.

Figure 2-2: Double Gimbal Control Moment Gyro (DGCMG)

The center wheel 𝑊 is proposed by a high-speed brushless DC motor 𝐵. The inner

gimbal (IG) 𝐺2 provides the housing for the center wheel, whereby the gyro is fixed to

the inner gimbal. This gimbal is driven by the stepper motor 𝑀2 and can be fully rotated.

A slice ring 𝑆2 passes through the motor signals from the center to the outer gimbal (OG)

𝐺1. An optical encoder 𝐻2 with its high resolution encoder disk 𝐷2 is used to measure the

position of the inner gimbal. A second slide ring 𝑆1 connects the inner gimbal through the

outer gimbal 𝐺1 with the swimmers fuselage, where the electronic is located. The second

stepper motor 𝑀1 enables the rotation of the outer gimbal and the second optical encoder

𝐻1 with its encoder disk 𝐷1 measures the position of the outer gimbal respectively.

As mentioned previous, the center wheel rotates with up to 12,000 RPM. The rotation

axis of the outer and inner gimbals are always perpendicular to each other. The inner

gimbal has two rotational degrees of freedom and the outer gimbal one degree of

freedom with respect to the swimmer’s body. The center wheel has three rotation

2. Design and Modeling

7

degrees of freedom with respect to the SUUV’s body. With respect to the inertial frame,

the body itself has six degrees of freedom, three translational and three rotational. This

leads to the assumption that the SUUV is underactuated in case of reorienting the

swimmers body. Three independent degrees of freedom would be needed to control the

orientation of the Unmanned Underwater Vehicle (UUV). The double gimbal system can

just provide two degrees of freedom whereby both degrees of freedom are non-linear

dependent of each other. Therefore, the external thrusters are needed to deliver an

additional degree of freedom and to make the system fully controllable.

2.2 Dynamic Model

The gyro center wheel rotates with a constant velocity of up to 12,000𝑅𝑃𝑀. When one of

the two gimbals rotate and change the position of the center wheel, the change of the

wheels angular momentum vector introduce a reaction force and a gyro force to the

swimmers body. This force is transferred to the body where the double gimbal system is

mounted to the fuselage, yielding a rotation of the body. Let us assume that the wheel

spins with an infinite angular velocity, then the angular momentum vector will be invariant

in space. In reality, the max. angular velocity of the wheel is limited and the wheel will

rotate depending on the power applied by the two stepper motors 𝑀1 and 𝑀2. In the case

of an infinite angular speed the wheel can be seen as a inertia platform for the

reorientation of the swimmer. However, in reality the change of the angular momentum

vector will be smaller because of its high angular momentum. Finally, the SUUV shall be

reoriented by tilting the spin axis of the center wheel without changing its angular velocity.

2.2.1 Reference Frames

The coordinate reference frames are introduced in Figure 2-1. Three coordinate systems

are needed to represent the dynamic of the UUV. The dynamic of the swimmer is a

combination of four connected ridged bodies, whereby the center wheel is always

attached to the inner gimbal. Therefore, three coordinate frames are needed to represent

the dynamics of the swimmer. These frames are shown in Figure 2-3 below specifically.

2. Design and Modeling

8

Figure 2-3: Double Gimbal Control Moment Gyro – Coordinate Systems

The body coordinate frame (𝑋𝐵, 𝑌𝐵 𝑎𝑛𝑑 𝑍𝐵) is attached to the body of the swimmer,

whereby the 𝑍𝐵-axis is aligned with the force vector of the two thrusters 𝑇1 and 𝑇2. The

outer gimbal is attached to the body coordinate frame with the outer gimbal coordinate

system (𝑋𝑂𝐺 , 𝑌𝑂𝐺 and ZOG). It is aligned with the 𝑋𝐵-axis of the body frame. The rotation

of the outer gimbal with respect to the body frame is defined by the angle 𝛼. To the outer

gimbal the inner gimbal coordinate frame (𝑋𝐼𝐺 , 𝑌𝐼𝐺 𝑎𝑛𝑑 𝑍𝐼𝐺) is attached. The 𝑌𝐼𝐺-axis of

the inner gimbal is aligned with the 𝑌𝑂𝐺-axis of the outer gimbal coordinate frame. The

rotation from the inner gimbal with respect to the outer gimbal is described by the angle

𝛽. No further coordinate frame is needed for the center wheel because its rotation is

already aligned with the inner coordinate frame. Using these three coordinate systems

the dynamics of the swimmer can be described.

2.2.2 Fundamental Equations

This chapter deals with the derivation of the fundamental equations of the dynamic model.

In a first step, the inertias of the four connected ridged bodies are defined. In a further

step, the angular velocities and the angular momentums are defined. Thirdly, Newton’s

formulism is used to derive the body torques. Finally, using unit quaternions and several

assumptions, the final dynamic model can be derived.

2.2.2.1 Body Angular Momentums

The body of the swimmer consists of four connected ridged bodies. The inertias of the

individual bodies are defined by

2. Design and Modeling

9

 [𝐵𝑰𝐵] = [𝑑𝑖𝑎𝑔]3𝑥3

[𝑂𝐺𝑰𝑂𝐺] = [𝑑𝑖𝑎𝑔]3𝑥3

[𝐼𝐺𝑰𝐼𝐺] = [𝑑𝑖𝑎𝑔]3𝑥3

[𝐼𝐺 𝑰𝑊] = [𝑑𝑖𝑎𝑔]3𝑥3

 (2.1)

Whereby 𝑎𝑰𝑏 is the moment of inertia of the body 𝑏 in the body coordinate frame 𝑎.

These moments of inertia for 𝐵, 𝑂𝐺, 𝐼𝐺 and 𝑊 are defined for the body, the outer gimbal,

the inner gimbal and the center wheel respectively. The moment of inertia of the center

wheel 𝐼𝐺𝑰𝑊 is defined in the inner gimbal coordinate frame. The angular momentum of

each body is defined by

𝑯𝐵
𝐵 = [𝐵𝑰𝐵] ⋅ 𝐵𝝎𝐵

 𝑯𝑂𝐺
𝑂𝐺 = [𝑂𝐺 𝑰𝑂𝐺] ⋅ 𝑂𝐺 𝝎𝑂𝐺

 𝑯𝐼𝐺
𝐼𝐺 = [𝐼𝐺 𝑰𝐼𝐺] ⋅ 𝐼𝐺𝝎𝐼𝐺

 𝑯𝐼𝐺
𝑊 = [𝐼𝐺𝑰𝑊] ⋅ 𝐼𝐺 𝝎𝑊

 (2.2)

Whereby 𝑯
𝑎

𝑏 is the angular momentum of body 𝑏 in the coordinate system 𝑎. 𝑰 is the

moment of inertia defined in (2.1). 𝝎
𝑎

𝑏 is the angular velocity of body 𝑏 in the 𝑎

coordinate frame. By definition of the coordinate systems in chapter 2.2.1, the angular

velocities are defined by

𝝎𝑂𝐺
𝑂𝐺 = [𝛼̇ 0 0]𝑇

𝝎𝐼𝐺
𝐼𝐺 = [0 𝛽̇ 0]𝑇

𝝎𝐼𝐺
𝑊 = [0 0 Ω]𝑇

 (2.3)

𝛼̇ is the angular velocity of the outer gimbal in the outer gimbal coordinate system. 𝛽̇ is

defined as the angular velocity of the inner gimbal in the inner gimbal coordinate frame

and Ω is the angular velocity of the center wheel with respect to the inner gimbal.

The total angular momentum of the body is the sum of the individual angular momentums

of the four connected ridged bodies, defined in the body coordinate frames.

 𝑯𝐵
𝐺 = 𝑯𝐵

𝐵 + 𝑯𝐵
𝑂𝐺 + 𝑯𝐵

𝐼𝐺 + 𝑯𝐵
𝑊 (2.4)

The total angular momentum 𝑯
𝐵

𝐺 is defined in the body coordinate frame around the

center of mass 𝐺.

2.2.2.2 Body Torques

Using Newton’s formulism, to calculate the torque from the depending angular

momentums, the rigid-body dynamic of the swimmer is governed by the following

equation. Whereby, external drag forces and torques are neglected and just the torque

of the two external counter rotating thrusters are taken into account, yielding:

 𝐓ext =
𝑑𝑯𝐺

𝑑𝑡
 (2.5)

2. Design and Modeling

10

Where 𝑻𝑒𝑥𝑡 is the external torque about the swimmers central mass and defined by

𝑻𝑒𝑥𝑡 = [0 0 𝑀]𝑇 . Further, 𝑀 is the torque generated by the thrusters. As defined

above 𝑯𝐺 is the total angular momentum around the center of mass 𝐺. Deriving the

equation (2.5) with respect to the time, yields to:

 𝐓ext = 𝑯̇𝐺 + ωx ⋅ 𝑯𝐺, (2.6)

whereby 𝜔𝑥 is a skew-symmetric angular velocity matrix and defined as following:

 ωx = [
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔3 𝜔2 0
]. (2.7)

The indices 𝜔𝑖 (𝑖 = 1, 2, 3) of equation (2.7) correspond to the axis (𝑥, 𝑦, 𝑧) of the angular

velocity vector of the swimmer respectively.

2.2.3 Coordinate System Rotations

The total angular momentum around the center of mass 𝑯
𝐵

𝐺 introduced in equation (2.4)

is based on the body coordinate frame. Further, all other bodies have to be in the same

coordinate system. Euler angles are used to rotate the coordinate frames from their origin

to the destination coordinate frame. The Euler rotation for the inner gimbal 𝐼𝐺 into the

outer gimbal 𝑂𝐺 coordinate frame is defined by the angle 𝛽, yielding:

 [𝑹𝐼𝐺
𝑂𝐺] = [

𝑐𝑜𝑠 𝛽 0 sin 𝛽
 0 1 0

− sin 𝛽 0 cos 𝛽
] (2.8)

and the rotation matrix from the outer gimbal 𝑂𝐺 to the boy frame 𝐵 is defined by the

angle 𝛼, yielding:

 [𝑹𝑂𝐺
𝐵] = [

1 0 0
 0 𝑐𝑜𝑠 𝛼 − sin 𝛼
 0 sin 𝛼 cos 𝛼

] . (2.9)

Regarding the definitions made in chapter 2.2.1 the inner gimbal 𝐼𝐺 rotates around the

𝑦-axis of the outer gimbal 𝐼𝐺 with the angle 𝛽 and the outer gimbal 𝐼𝐺 rotates around the

𝑥-axis of the body 𝐵 with the angle 𝛼. The rotation matrixes are define with [𝑹𝑎
𝑏], which

gives the rotation from coordinate frame 𝑎 to coordinate frame 𝑏.This leads to the new

form for the individual angular momentums defined in the body coordinate frame:

𝑯𝐵
𝑂𝐺 = [𝑹𝑂𝐺

𝐵] ⋅ 𝑯𝑂𝐺
𝑂𝐺

𝑯𝐵
𝐼𝐺 = [𝑹𝑂𝐺

𝐵] ⋅ [𝑹𝐼𝐺
𝑂𝐺] ⋅ 𝑯𝐼𝐺

𝐼𝐺

𝑯𝐵
𝑊 = [𝑹𝑂𝐺

𝐵] ⋅ [𝑹𝐼𝐺
𝑂𝐺] ⋅ 𝑯𝐼𝐺

𝑊

 (2.10)

Inserting these equations into (2.4) yields to:

 𝑯𝐵
𝐺 = 𝑯𝐵

𝐵 + [𝑹𝑂𝐺
𝐵] ⋅ 𝑯𝑂𝐺

𝑂𝐺 + [𝑹𝑂𝐺
𝐵] ⋅ [𝑹𝐼𝐺

𝑂𝐺] ⋅ 𝑯𝐼𝐺
𝐼𝐺 + [𝑹𝑂𝐺

𝐵] ⋅ [𝑹𝐼𝐺
𝑂𝐺] ⋅ 𝑯𝐼𝐺

𝑊 (2.11)

2. Design and Modeling

11

The total angular momentum therefore is defined as the sum of the individual angular

momentums and its rotations to the body coordinate frame. To rotate the outer gimbal to

the body frame, one rotation is needed. From the inner gimbal to the body frame, two

rotations are needed.

2.2.4 Assumptions

The dynamic of the swimmer is too complex to implement it in a real-time agility controller.

Therefore, several assumptions are made to simplify the dynamic model of the UUV.

This chapter contains these assumptions.

(I) The angular momentum of the gimbals are much smaller than the angular

momentum created by the center wheel. Thus, equation (2.4) can be reduced to:

 𝑯𝐵
𝐺 ≅ 𝑯𝐵

𝐹 + 𝑯𝐵
𝑊, (2.12)

whereby the angular momentums 𝑯 are represented in the body frame (…)
𝐵 . The

total angular momentum 𝑯
𝐵

𝐺 is a combination of the angular momentum of the

wheel 𝑯
𝐵

𝑊 and the angular momentum of the fuselage 𝑯
𝐵

𝐹 with respect to the

swimmers center of mass.

(II) The high-speed center wheel rotates much faster as the gimbals and therefore has

a much higher angular momentum. Thus, the angular momentum components of

the gimbals in direction of the wheel are neglected, expressed by:

 𝑯𝐵
𝐺 ≅ [𝑹𝐼𝐺

𝐵] ⋅ 𝑯𝐼𝐺
𝐺 = [𝑹𝐼𝐺

𝐵] ⋅ [𝑰𝐼𝐺
𝑊] ⋅ 𝝎𝐼𝐺

𝑊 (2.13)

The rotation matrix from the inner gimbal to the body frame 𝐵 is defined by

[𝑹𝐼𝐺
𝐵]. The wheels inertia tensor [𝑰

𝐼𝐺
𝑊] and the angular velocity vector 𝝎

𝐼𝐺
𝑊 are

defined in the inner gimbal frame 𝐼𝐺. The angular velocity vector 𝝎
𝐼𝐺

𝑊 is defined in

equation (2.3) and given by 𝜔
𝐼𝐺

𝑊 = [0 0 Ω]𝑇, where Ω is the spinning frequency

of the center wheel.

(III) Regarding the axisymmetric shape of the fuselage of the swimmer and because its

angular velocity components are smaller than the angular velocity Ω of the wheel

during reorientation maneuvers, it can be assumed that terms regarding the product

of the body’s angular components can be neglected,

 𝜔𝑥 ⋅ 𝑯𝐵
𝐹 = 𝜔𝑥 ⋅ [𝑰𝐵

𝐵] ⋅ 𝜔 ≈ 0 (2.14)

with the moment of inertia tensor [𝑰
𝐵

𝐵] of the swimmer defined in the body frame

and 𝜔𝑥 is the skew-symmetric angular velocity matrix of the body.

2. Design and Modeling

12

2.2.5 Governing Equations

The governing equations of the swimmer can be derived by applying the equations from

chapter 2.2.2 and the three assumptions made before. The unit quaternions (𝑞0, 𝒒) ∈

ℝ × ℝ3 are used to describe the orientation of the swimmer. For a more detailed

explanation of the quaternions, definition and operations see [9]. This helps to avoid

singularities and gimbal locking in the dynamics and is needed in a further step for the

proper control of the model. This yields the final equations of the full dynamic model:

 𝒒̇ =
1

2
(𝑞𝑥 ⋅ 𝜔 + 𝑞0𝜔) (2.15)

 𝑞̇0 = −
1

2
𝒒𝑇 ⋅ 𝜔 (2.16)

 𝜔̇ = 𝑭(𝛼,𝛽) ⋅ 𝜔 + 𝑮(𝛼,𝛽) ⋅ 𝑼 (2.17)

Three matrixes are contained in equation (2.17), whereby 𝑼 = (𝛼̇ 𝛽̇ 𝑀)𝑇 is the control

vector containing the angular velocity 𝛼̇ of the outer gimbal, the angular velocity 𝛽̇ of the

inner gimbal and the resultant torque 𝑀 generated by the thrusters. The angular velocity

𝜔 is defined in the body-fixed reference frame. The skew-symmetric matrix 𝑞𝑥 is formed

by the elements of 𝒒 = (𝑞1, 𝑞2, 𝑞3)𝑇. The matrixes 𝑭 and 𝑮 are defined by:

 𝑭(𝛼,𝛽) = 𝐽𝑊Ω[𝑰𝐵
𝐵]

−1
[

0 −𝑐𝛼𝑐𝛽 −𝑠𝛼𝑐𝛽

𝑐𝛼𝑐𝛽 0 −𝑠𝛽

𝑠𝛼𝑐𝛽 𝑠𝛽 0
] (2.18)

 𝑮(𝛼,𝛽) = 𝐽𝑊Ω[𝑰𝐵
𝐵]

−1
[

0 −𝑐𝛽 0

𝑐𝛼𝑐𝛽 −𝑠𝛼𝑠𝛽 0

𝑠𝛼𝑐𝛽 𝑐𝛼𝑠𝛽
1

𝐽𝑊Ω

] (2.19)

The moment of inertia tensor of the wheel 𝐽𝑊 is defined around its spin axis, with its

angular velocity Ω . The functions 𝑠𝜃 and 𝑐𝜃 (𝜃 = 𝛼, 𝛽) correspond to sin 𝜃 and cos 𝜃

respectively.

3. Non-Linear Controller Design

13

3. Non-Linear Controller Design

As mentioned in chapter 2, the dynamic model of the swimmer is far too complex to use

a linear controller for the attitude control. Therefore, a non-linear controller design is used

to deal with the dynamics of the robot. A Lyapunov function is feasible to deal with high

dynamic system behaviors. Further, the dynamics of the systems is coupled, which

means that the rotation of one gimbal influences the rotation of the body in two axis,

depending on the position of the other gimbal. An appropriate robust Lyapunov function

with a Backstepping approach can deal even with such behaviors. The following chapter

explains the theory behind both approaches and finally the controller design for the

system dynamics is introduced.

3.1 Control Theory

This chapter deals with the theory behind the adaptive controller [10] [11]. The principle

of the Lyapunov function is used to find a controller which is feasible to deal with the non-

linearity of the system. This controller can stabilize the system and generate a robust

and smooth state feedback control. Further, the adaptive Backstepping controller

method is introduced.

3.1.1 Lyapunov Control

The Lyapunov stability criteria is a way to determine the stability of a system. In control

theory, it can be used to determine if a controller is stabilizing a given system. This will

be shown in the next chapter for the given dynamics.

3.1.1.1 Lyapunov Theory

Let us review the Lyapunov stability criteria on the example of a time-invariant system 𝑥

and the dynamics

 𝑥̇ = 𝑓(𝑥). (3.1)

The Lyapunov theorem allows to prove that the system is stable. Therefore, a Lyapunov

function 𝑉(𝑥) is needed. This function has to be defined positively in the region Γ near

𝑥 = 0. Imagine the Lyapunov function 𝑉 as an energy function which can never be

negative and is just zero in the zero state. Rewriting this statement in equation form:

 𝑉̇(𝑥) =
𝜕𝑉(𝑥)

𝜕𝑡
=

𝜕𝑉(𝑥)

𝜕𝑥

𝜕𝑥

𝜕𝑡
=

𝜕𝑉(𝑥)

𝜕𝑥
𝑓(𝑥) (3.2)

The Lyapunov theory defines that the solution is:

 stable, if 𝑉̇(𝑥) is negative semi-definite in the region Γ

3. Non-Linear Controller Design

14

 asymptotically stable, if 𝑉̇(𝑥) is negative defined in the region Γ

 globally asymptotically stable, if 𝑉(𝑥)is positive defined radially unbounded for all

𝑥, and if 𝑉̇(𝑥) is negative defined for all 𝑥

In other words, this means that if the function is always decreasing it has to reach zero

eventually, therefore there is no possibility that the system diverges. The system is stable.

3.1.1.2 Control Lyapunov Function

The definition of Lyapunov theorem can be used to determine a controller for a given

system. The given system is extended with a Lyapunov function candidate and has to

fulfill the Lyapunov theory for stability. One of the difficulties is to find the right Lyapunov

function. Different procedures exists to evolve these kind of functions, which are

explained in [10] and [11]. However, one of the most common ones is to take the error

control function and use a power of it. Another one is to take the total energy function of

the system. Let us explain the basic definition of the control Lyapunov function on the

defined function (3.1) with the control input 𝑢:

 𝑥̇ = 𝑓(𝑥, 𝑢) (3.3)

The goal is to ensure the stability of the system, whereby a control law 𝑢 = 𝛼(𝑥) is used,

which yields to:

 𝑥̇ = 𝑓(𝑥, 𝛼(𝑥)) (3.4)

Further, a Lyapunov function 𝑉(𝑥) is chosen, which has to fulfill 𝑉̇(𝑥) < 0 . A

straightforward approach to find the control law 𝛼(𝑥) is to define a smooth positive

definite and radially unbounded function 𝑉(𝑥) and then select 𝛼(𝑥), which fulfills the

following criteria:

 𝑉̇(𝑥) = 𝑉𝑥(𝑥)𝑓(𝑥, 𝛼(𝑥)) < 0 (3.5)

A Lyapunov function which satisfies these criteria, is called Control Lyapunov Function

(CLF). An important fact is that a failure of the Lyapunov stability theorem does not mean

that the equilibrium is stable or not. It just means that this Lyapunov function candidate

does not fulfill the requirements for the Lyapunov stability. Further investigations

regarding stability of the equilibrium or an enhancement of the Lyapunov function

candidate, to satisfy the stability requirements, have to be done.

3.1.2 Backstepping

Another approach to find the Lyapunov function is the Backstepping method. This

chapter will explain the fundamental theory behind. Further examples and explanations

can be found in [10] and [11]. The Backstepping approach enables the control of a class

3. Non-Linear Controller Design

15

of non-linear functions with a lower triangular structure. This structure is solved in a

recursive manner. Given is a second-order system with the form:

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝜉

ξ̇ = 𝑢
 (3.6)

With the two state variables 𝑥 and 𝜉 as well as the control input 𝑢. The variable 𝜉 is

referred as a virtual control. The goal is to design a state feedback control law to stabilize

the origin (𝑥 = 0, 𝜉 = 0). The system in (3.6) is a combination of two systems and can be

seen as a cascade connection of a system and an additional integrator. Let us suppose

that the system can be stabilized by a smooth state feedback control law 𝜉 = 𝜙(𝑥), with

𝜙(0) = 0, which yields to:

 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝜙(𝑥) (3.7)

Applying a smooth and positive defined Lyapunov function 𝑉(𝑥) yields to the Lyapunov

stability criteria:

𝜕𝑉

𝜕𝑥
[𝑓(𝑥) + 𝑔(𝑥)𝜙(𝑥)] < 0 (3.8)

In a next step, the difference between the virtual control 𝜉 and the desired value 𝜙(𝑥) is

defined with:

 𝑧 = 𝜉 − 𝜙(𝑥) (3.9)

Finally, this results in:

𝑥̇ = [𝑓(𝑥) + 𝑔(𝑥)𝜙(𝑥)] + 𝑔(𝑥)𝑧

𝑧̇ = 𝑢 − 𝜙̇
 (3.10)

This approach can be extended to higher order systems and follows always the basic

three steps:

1. A virtual state and virtual control are introduced and the current state equation is

rewritten in terms of these

2. The CLF is chosen for the new system and treated as the final stage

3. An equation for the virtual control is defined which finally stabilizes the CLF.

This procedure of moving the virtual states through the chain of integrators is called

Backstepping.

3.2 Adaptive Controller Design

The criteria for the CLF and the Backstepping method is used for the final controller

design for the dynamics of the swimmer. The dynamics is non-linear, which the Lyapunov

theorem can deal with. The control inputs of the systems are defined with the velocities

of the stepper motors and the two thrusters. Finally, the orientation of the system shall

be controlled. This system is very similar to the system described in 3.1.2 and suitable

3. Non-Linear Controller Design

16

for a Backstepping approach. The goal is to control the orientation error to a small

neighborhood around zero. The system is under-actuated without the additional input of

the thruster; therefore, a continuous state feedback control is not feasible.

The non-linear Lyapunov control approach is introduced by the work of the authors of [1]

and the software implementation is part of this thesis. To avoid singularities in the control

algorithm the controller is implemented in unit quaternions. The definition of the error

quaternion [12] (𝑒0, 𝒆)𝑇 ∈ ℝ × ℝ3 , with the desired orientation (𝑞0
∗, 𝒒∗)𝑇 ∈ ℝ × ℝ3 and

with the actual orientation (𝑞0, 𝒒)𝑇 ∈ ℝ × ℝ3 is defined with:

 𝒆 = 𝑞0
∗𝒒 − 𝑞0𝒒∗ + 𝑞𝑥 ⋅ 𝒒∗ (3.11)

 𝑒0 = 𝑞0𝑞𝑜
∗ − 𝒒𝑇 ⋅ 𝒒∗ (3.12)

Whereby, 𝑞𝑥 is a skew-symmetric matrix and defined as follows:

 qx = [
0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞3 𝑞2 0
]. (3.13)

The error dynamics of the attitude controller is defined in unit quaternion with:

 𝒆̇ =
1

2
(𝑒𝑥 + 𝑒0𝐼3×3) ⋅ 𝜔 (3.14)

 𝑒0̇ = −
1

2
𝒆𝑇 ⋅ 𝜔 (3.15)

With 𝐼3𝑥3 is a 3 × 3 identity matrix and 𝑒𝑥 is a skew-symmetric matrix and defined as

follows:

 ex = [
0 −𝑒3 𝑒2

𝑒3 0 −𝑒1

−𝑒3 𝑒2 0
]. (3.16)

The error quaternion is subject of the following constrain:

 𝒆𝑇 ⋅ 𝒆 + 𝑒0
2 = 1 (3.17)

Finally, it can be seen from (3.17) that if 𝑒(𝑡) = 0 then |𝑒0(𝑡)| = 1. Thus, the control

objective is to drive 𝑒(𝑡) to zero. Shown in [1] the Lyapunov function candidate is chosen

as the square of the error quaternion:

 𝑉 =
1

2
𝒆𝑇 ⋅ 𝒆 (3.18)

Substituting (3.14) and taking the timer derivative of (3.18) yields to:

 𝑉̇ =
1

2
𝑒0𝒆𝑇 ⋅ 𝜔 (3.19)

Using a smooth state feedback control 𝜔 = 𝜙(𝑒,𝑒0) with 𝜙 = −𝑘1𝑒0𝑒 the terms in (3.11)

can be stabilized. Defining 𝑘1 > 0 and the Lyapunov stability criteria yields to:

3. Non-Linear Controller Design

17

 𝑉̇ = −
1

2
𝑒0

2𝒆𝑇 ⋅ 𝒆 < 0 (3.20)

This shows that the time derivate is smaller than zero in every time step which proves

that the Lyapunov function candidate is valid. Defining the Lyapunov function with the

control error:

 𝑉𝑎 = 𝑉(𝑒) +
1

2
(𝜔 − Φ(𝑒,𝑒0))

𝑇
⋅ (𝜔 − Φ(𝑒,𝑒0)) (3.21)

Using equation (2.17) with its matrix definitions in (2.18) and (2.19) as well as taking the

timer derivate of the equation above, yields to:

 𝑉̇𝑎 =
𝜕𝑉

𝜕𝑒
𝐿Φ + (𝜔 − Φ)𝑇 ⋅ (𝑭(𝛼,𝛽) ⋅ 𝜔 + 𝑮(𝛼,𝛽)𝑼 − Φ̇ + 𝐿𝑇 ⋅ 𝒆) (3.22)

The matrix 𝐿 is defined with 𝐿 =
1

2
(𝑒𝑥 + 𝑒0𝐼(3×3)). It can be seen that if 𝑒 ≠ 0 the right

hand side of the equation above is always negative. Finally, the control signal 𝑈 is

defined with:

 𝑼 = 𝑮−1 ⋅ [−𝑘2(𝜔 − Φ) + Φ̇ − 𝐿𝑇 ⋅ 𝒆 − 𝑭 ⋅ 𝜔] (3.23)

Which, leads to the final form of the Lyapunov function:

 𝑉̇𝑎 = −𝑘1𝑒0
2𝒆𝑇 ⋅ 𝒆 − 𝑘2(𝜔 − Φ)𝑇 ⋅ (𝜔 − Φ) (3.24)

The control Lyapunov function shows that the origin (𝒆 = 0 and 𝝎 = 0) is asymptotically

stable.

4. Electro-Mechanical Construction

18

4. Electro-Mechanical Construction

The electro-mechanical construction of the SUUV contains the control of the

Inputs/Outputs (I/O) as the communication with a higher control tool. This chapter

describes the chosen Center Processing Unit (CPU), the used embedded system and

the control of the I/Os of the system.

4.1 Embedded System

The embedded system is the center computing unit of the SUUV. Manly responsible for

the communication with the I/O-Devices and MATLAB Simulink. Several requirements

have to be fulfilled. The system has to be capable of the handling with several I/O devices

such as motors, sensors or encoder. An easy way should be found to communicate with

other systems as like a personal computer.

Because of these requirements, an Arduino embedded system [13] is chosen. Arduino

provides different extensions as motor driver shields, Ethernet shields or fitting sensors.

Additionally, a user-friendly development environment is provided. Different boards with

different properties can be chosen, which is explained in the next subchapters.

4.1.1 Arduino Genuino Uno Board

The Arduino Genuino Uno board [14] is one of the first developed Arduino boards and

based on the ATmega328P. The Uno was the first developed Arduino board and is used

as a reference model for further Arduino generations. The ATmega328P has a 16𝑀𝐻𝑧

clock and the board operates at a 5𝑉 logic level. In total, 16 digital in- and outputs are

provided, whereby six of them can be used as Pulse-Width Modulation (PWM) outputs.

The layout of the board can be seen below.

Figure 4-1: Arduino Genuino Uno

4. Electro-Mechanical Construction

19

The Arduino Uno is one of the cheapest Arduinos and it is feasible because of its

standard layout to operate with various Arduino extension boards.

4.1.2 Arduino Mega 2560 Board

The Arduino Mega 2560 Board [15] is powered by a processor with a 16𝑀𝐻𝑧 clock

speed, has 54 digital I/O pins of which 15 provide PWM output. The operator voltage of

the board is defined by 5𝑉. Basically, the Mega can be seen as a bigger Arduino Uno. It

is still capable to operate with most of the Arduino extension boards but provides more

I/O possibilities. The layout of the Arduino Mega Board can be seen in Figure 4-2 below.

Figure 4-2: Arduino Mega 2560 Board

The Arduino Mega Board fulfills most of the requirements, but one of its limitations is the

low clock speed. The project requires many different I/O devices, shields and other

utilities. Because of this limitation, it has been decided to upgrade the Arduino Mega

Board, which is described in the next chapter.

4.1.3 Arduino Due Board

The Arduino Due Board [16] operates at a voltage level of 3.3𝑉, which includes all digital

and analog I/O pins. An input signal of 5𝑉 at any pin could damage the board. Therefore,

voltage level converter shall be used. The board is based on a 32-bit ARM core

microcontroller with a clock speed of 84𝑀𝐻𝑧. The schematic of the Arduino Due can be

seen below.

4. Electro-Mechanical Construction

20

Figure 4-3: Arduino Due Board

The higher performance of the board allows the usage of multiple devices and other

additional shields as like the Ethernet shield. Such components can require high

performance and slow down the whole program if the clock speed is too low. The due

board also allows applying interrupts at any pin and the usage of any pin as an analog

output. This increases the flexibility of the board and allows a better applicability.

4. Electro-Mechanical Construction

21

4.2 Arduino Open-Source Software (IDE)

Several developer tools can be used to program the Arduino boards. The Arduino open-

source Software (IDE) [17] is the standard developer tool, which is provided by Arduino

itself. The tool stands out by the simplicity of the layout and high usability. It is easy to

learn and provides all necessary tools to develop your Arduino project. Figure 4-4 below

shows the layout of the Arduino IDE.

Figure 4-4: Arduino Open–Source Software (IDE) Layout

4.2.1 Object-Oriented Programming

The used programming language is C resp. C++. The coding of the project is done in

object-oriented programming. That means, classes and structures are generated to

make the code more readable and compact. Further, this enables the possibility to use

methods and parameters for multiple devices. For example if two similar motors need

both the same functions and the same variables. The code below shows this case for

two stepper motors, which need the same function and variables.

4. Electro-Mechanical Construction

22

// ---------- Class - Stepper Motors ---------- 1
class stepper { 2
 3
 private: 4
 const float MicroSteps = 32.0; 5
 const float StpsPerRev = 200.0; 6
 7
 public: 8
 float RPM_set; 9
 10
 unsigned long RpmToMicros() 11
 { 12
 // Conversion from Stepper RPM to Cycle Duration [ns] -> 13
 // (((stepper1.RPM_set * 32.0 * 200.0) / 60.0) * 1000000.0) 14
 return (1 / (abs(RPM_set) * MicroSteps * StpsPerRev / 60.0)) * 1000000; 15
 } 16
}; 17
 18
stepper stepper1; 19
stepper stepper2; 20

Listing 4-1: Arduino Object-Oriented Programming

The class consists of private variables, which are just accessible class-internally. Public

variables can be changed from the main loop or other functions. The class further

contains a public function, which converts the stepper RPM into a microsecond time.

Finally, two objects of the stepper class are generated, for each stepper motor a separate

one. With the “this->”-command a class internal variable can be accessed; notice that

this command is not always necessary. The class can be accessed in the setup and the

main loop.

4.2.2 Interrupt Service Routines

Interrupt Service Routines (ISR) are needed if multiple tasks have to be handled

simultaneously. Such ISR literally interrupt the main loop and process the interrupt

handler. These functions are like other functions and are mainly used to do fast and time

sensitive tasks such as the position read of a rotatory encoder. There are several ways

to call ISR, for example internally by the Arduino intern timers or externally by a state

change of an external pin.

Important thereby is that if the ISR interrupts the main loop, no other ISR can be called.

Further, the serial communication is not reliable and functions such as the “delay()”-

function is not working. This is because they are using the same internal timer. Thus, the

interrupt handler functions should be as short and fast as possible. If the ISR and the

main program manipulate global variables, they should be declared as “volatile” to

ensure that they are updated correctly.

In the further chapters, interrupts are used to handle different tasks as like the position

read of the optical encoder, the pulse generation for the stepper driver or for the PMW.

4. Electro-Mechanical Construction

23

4.3 Stepper Motors

The two stepper motors build the core of the double gimbal system which is responsible

for the reorientation of the robot. Therefore, special requirements on the stepper motors

are given such as high precision, small design and high accuracy. The Sanyo Pancake

Stepper Motor [18] fulfils all these requirements. The stepper motor can be seen below.

Figure 4-5: Sanyo Pancake Stepper Motor

The 1.8° step size and the possibility to drive the motor in microstepping mode enables

a high accuracy for the positioning of the motor. The next chapters describe several

methods which are used to control the stepper motor. Such methods are motor shields

or different stepper motor driver.

4.3.1 Adafruit Motor Shield 2

The Adafruit Motor Shield 2 [19] for Arduino allows controlling the stepper motors directly

with the Arduino extension shield. The easy handling of the shield and the provided

libraries enable an easy setup of the shield and the stepper. The extension shield can

be seen below.

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview

4. Electro-Mechanical Construction

24

Figure 4-6: Adafruit Motor Shield 2

The shield contains the complete electronic for the pulse generation and the stepper

motors control. Up to two steeper motors can be controlled simultaneously. However,

after several experiments and the usage of different libraries it has been shown that the

shield does not fulfill the requirements in prospective to accuracy and rotational speed.

4.3.2 Stepper Motor Driver

Stepper motor driver are developer boards based on a microchips, which includes the

necessary control electronic and the H-bridges for the current control for the stepper

motors. There exist different boards based on different chips. The inputs for the board is

for one a pulse signal, whereby the stepper motor perform for each pulse one-step. The

second input is the direction for the stepper driver. The driver generates the

corresponding input signals for the stepper motor. The next chapters describes two of

the most common used drivers, including their advantages and disadvantages.

4.3.2.1 Polulu A4988 - Stepper Motor Driver

The Polulu Stepper Motor Driver A4988 [20] is one of the most common drivers available

on the market. This stepper motor driver generates the output pulses for the two coils of

the stepper motor. The layout is shown in Figure 4-7 below.

4. Electro-Mechanical Construction

25

Figure 4-7: Polulu A4988 – Stepper Motor Driver

The board has to be fed by a pulse signal whereby one-pulse at the input results in one-

step of the motor. The stepper motors can be driven in microstepping mode that means

that each step is divided into 16 sub steps. This results to 3,200 steps per rotation at a

1.8° stepper motor. The microstepping mode increases the smoothness and the

precession of the stepper motor. The driver can provide a Root Mean Square (RMS)

current of 1𝐴 per coil. The standard wiring diagram of the stepper driver with the pancake

stepper motor can be found in Figure 4-8.

Figure 4-8: Sanyo Pancake Stepper Motor with Polulu A4988 Driver – Wiring Diagram

The control inputs MS1, MS2 and MS3 define the step mode of the motor. Whereby a

high level at all three control inputs (MS1, MS2 and MS3) results in microstepping mode.

A detailed description can be found in the datasheet [20]. Different approaches are used

to generate the input step signal for the stepper driver, as described in the next chapter.

The driver is fed with a 24𝑉 motor power supply signal and a 5𝑉 logic power supply. The

4. Electro-Mechanical Construction

26

two coils of the driver are connected with the four outputs of the driver. The Arduino

control signals consists of the direction and the step signal.

Several tests showed that the Polulu A4988 driver cannot deliver the required torque to

hold the gimbals at full gyro speed. Additional, the precision of the driver is not sufficient

and the movements are not that smooth because of the relatively low maximal

microstepping step size. Therefore, other drivers where tested.

4.3.2.2 Trinamic TMC2100 - SilentStepStick Stepper Motor Driver

The Trinamic TMC2100 SilentStepStick stepper motor driver [21] stick out with the high

microstepping resolution. The driver itself is fed with a micro stepping signal with 16

micro-steps, the same as the Polulu A4988 driver. Figure 4-9 shows the new Trinamic

driver.

Figure 4-9: Trinamic TMC2100 – Stepper Motor Driver

The difference is that the Trinamic driver interpolate between the steps and therefore

generate a virtual microstepping resolution of 256 micro-steps. This increases the

smoothness and the torque at the stepper motor. Additionally, the driver can provide a

higher RMS current of 1,2𝐴 per coil, in comparison to the Polulu A4988 driver, which

delivers 1,0𝐴 per coil. Both driver have the same board layout . The wiring diagram for

the driver can be found below.

4. Electro-Mechanical Construction

27

Figure 4-10: Sanyo Pancake Stepper Motor with Trinamic TMC2100 Driver – Wiring Diagram

Important is that the driver is mounted upside-down. Therefore, the pins are flipped and

this enables to mount heat sinks, to cool the microchip. To enable the microstepping

mode, with the virtual microstepping resolution of 256-sub steps, the CFG1 pin is

connected to the ground and the CFG2 pins is not connected to any signal. The two coils

of the pancake stepper motor are connected with the four outputs of the driver. As like

as the Polulu A4988 driver, the Trinamic TMC2100 driver is fed with a motor power

supply and a logic power supply signal. Experiment shows that the driver generates a

high amount of heat. Therefore, it is recommended to mount reasonable heat sinks.

Otherwise, the driver stops working at a max. temperature of 150°𝐶.

Several experiments show that the driver delivers a higher torque and better motion

smoothness because of the virtual microstepping. Therefore, this driver is used for the

final assembly. Further, the electrical circuits for both stepper driver introduced in the

previous chapters can be found in appendix A in a better resolution.

4.3.2.3 Active Current Control

In the datasheet of the stepper motors can be seen that the operation voltage is about

5.9𝑉 at a maximum current of 1𝐴 per coil. The active current control of the stepper drivers

enables to drive the stepper with 24𝑉 but the current is still limited to 1𝐴 per coil. This

results too much smoother steps and a higher possible rotational speed. The active

current control can be set by a potentiometer mounted on the steeper driver. For example,

the active current control for the Trinamic TMC2100 [21] used in the project, can be set

by the resistor seen in the picture below.

4. Electro-Mechanical Construction

28

Figure 4-11: Trinamic TMC2100 – Stepper Motor Driver – Active Current Control

Because the Trinamic driver is mounted upside-down, the resistor can be adjusted

through a hole in the board. The reference voltage for the regarding coil current can be

found on the manufacturer homepage.

The implemented solutions allows driving the stepper motor with a maximal rotational

velocity up to 200𝑅𝑃𝑀 and an extremely smooth acceleration.

4.3.3 Driver Input Signal Generation

As mentioned in the previous chapters, the stepper driver needs two input signals which

are the signal for the direction of the motor and a pulse signal. For each pulse the stepper

motor performs one step. The generation of the pulse signal is challenging, because in

micro stepping mode with 16 micro-steps, a stepper motor with 200 𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

and a max. needed rotational speed of 60 𝑅𝑃𝑀 for the stepper motor; at least

3,200 𝑝𝑢𝑙𝑠𝑒𝑠/𝑠 are needed. Several methods exist to generate such a high amount of

pulses which are described in the chapters below.

4.3.3.1 SparkFun MiniGen - Signal Generator Shield

The SparFun MiniGen Shield [22] (Figure 4-12) can generate sine, square, or triangle

waves at up to 3𝑀𝐻𝑧 and communicate with Arduino via the Serial Peripheral Interface

(SPI). This allows an extremely fast changing of the output state. The Arduino library

provided by SparkFun allows an easy usage of the shield.

4. Electro-Mechanical Construction

29

s

Figure 4-12: SparkFun MiniGen – Signal Generator Shield

However, after several attempts and consultation of the SparkFun support it was not

possible to run the provided Arduino library at the Arduino Due board. Regarding of the

consultation of the support team of SparkFun it was found that the Arduino library is not

supported by the 32bit-processor architecture of the Arduino Due board.

4.3.3.2 Direct Output Register Toggling

The final approach is to toggle a digital output of the Arduino Due board and generate a

square wave form. The Arduino Due has a clock speed of 84 𝑀𝐻𝑧 and should be able to

toggle the output fast enough. However, the standard “digitalWrite”-command is not fast

enough to switch the output at the needed frequency. Embedded systems allow the user

to switch an output state by changing directly the output register which is extremely fast.

The function to switch directly the output register can be found below:

// ----------- Write Direct to the Arduino Due OUTPUT Register --------------- 1
// Write Direct to the Output Register of the Arduino -> Much Faster!! 2
// Needed for extremely fast Toggle Operations at the Stepper Pulse Generator 3
inline void digitalWriteDirect(int pin, bool val) { 4
 if (val) g_APinDescription[pin].pPort -> PIO_SODR = 5
 g_APinDescription[pin].ulPin; 6
 else g_APinDescription[pin].pPort -> PIO_CODR = 7
 g_APinDescription[pin].ulPin; 8
} 9

Listing 4-2: Arduino Function – Direct Digital Write

This function can be used in a further step to change the output state in a timer interrupt.

The timer interrupt is realized by the DueTimer library [23] which can handle all the

internal timer of the Arduino Due. Further, two Arduino classes are generated which

contain all the necessary variables and functions for the pulse generation. The ISR is

linked in the setup with the “stepperClock”-function and updated with a frequency of

5,000𝐻𝑧, as seen in the code below.

// -------------- Stepper Motors Pulse Generator ----------------------------- 1
// Attach Stepper Pulse Generators to Timer 6 & 7 2
Timer6.attachInterrupt(stepperClock1).setFrequency(5000); 3
Timer7.attachInterrupt(stepperClock2).setFrequency(5000); 4

4. Electro-Mechanical Construction

30

delay(250); 5
clockTimer1.Start = micros(); 6
Timer6.start(); 7
clockTimer2.Start = micros(); 8
Timer7.start(); 9

Listing 4-3: Stepper Driver – Attach stepperClock functions

In the timer interrupt a counter is implemented which measures the actual time and

compares it with the calculated cycle duration (called interval time) of the desired

rotational speed of the motor. The start time is the previous time from the last time step

which is needed to calculate the time difference. A time trigger is set, which indicates

that the cycle time is bigger than the interval time. Further, a toggle variable is used to

save the previous output state and the output pin is toggled, which generates a rising or

a falling signal, depending on the previous output state. The whole function can be found

below.

// -------------- Stepper Motors Pulse Generators ---------------------------- 1
void stepperClock1() { 2
 3
 // Read Actual Time in Micros 4
 clockTimer1.Actual = micros(); 5
 6
 // Calculate if Next Timer Trigger is Set 7
 clockTimer1.TimeTrigger = (clockTimer1.Actual - clockTimer1.Start) >= 8
 clockTimer1.Interval; 9
 10
 // Block Motor if RPM = 0 11
 if (clockTimer1.Interval != 0) { 12
 // Check if Motor is ON and deltaTime is Larger than Time Interval 13
 if (clockTimer1.ToggleStepper && clockTimer1.TimeTrigger) { 14
 // Write Direct to Output Register of Arduino Due 15
 digitalWriteDirect(stepper1_CLK_Pin, LOW); 16
 17
 // Save New Motor State 18
 clockTimer1.ToggleStepper = 0; 19
 20
 // Turn Off Time Trigger 21
 clockTimer1.TimeTrigger = 0; 22
 23
 // Save Actual Time -> Substract Time Correction of Processing Time 24
 clockTimer1.Start = micros(); 25
 } 26
 27
 // Check if Motor is OFF and deltaTime is Larger than Time Interval 28
 if (~clockTimer1.ToggleStepper && clockTimer1.TimeTrigger) { 29
 digitalWriteDirect(stepper1_CLK_Pin, HIGH); 30
 31
 clockTimer1.ToggleStepper = 1; 32
 33
 clockTimer1.Start = micros(); 34
 } 35
 } 36
} 37

Listing 4-4: Stepper Driver – Direct Pulse Generation

It is important that all variables are defined as “volatile” because the compiler need to

know that the variable state might be changed outside the main loop. Tests shows that

this method can generate enough pulses to rotate both stepper motors with up to

200𝑅𝑃𝑀.

4. Electro-Mechanical Construction

31

4.4 Optical Encoders

Two US Digital EM1 Transmissive Optical Encoder Modules - EM1-2-1800-I [24] are

used to measure the position and in a further step to calculate the angle of the inner and

the outer gimbal. The encoders operate at a voltage level of 5𝑉 . The US Digital

HUBDISK-2 2" Transmissive Rotary Disk [25] is used, which has a resolution of

7,200 𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 which yields in a total resolution of 0.05 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. The figure

below shows the optical encoder with its rotatory disk.

Figure 4-13: US Digital EM1 Transmissive Optical Encoder

Different methods are used to measure the ticks of the encoder. The encoder provides

two channels (A and B) which are shifted to each other. By comparing both channels

with each other, an upward or downward count can be calculated. The encoder is able

to read the index position of the disk. Thus, the absolute position of the gimbals can be

found. The following chapters show the different methods used to measure the gimbal

positions.

4.4.1 Interrupt Encoder Read

As mentioned in chapter 4.2.2, Arduino provides the possibility to interrupt the main task

when state changes on digital input pins appear. The fast rotation of the encoder disk

generates high frequency pulses which the Arduino board has to measure. Thus, three

interrupts, which detect a changing edge on the input pins, are used. Channel A and B

give the change of the position of the encoder disk. The index channel is used to find the

reference position of the referring gimbal. The setup of the interrupts for all three

channels are implemented as follows:

4. Electro-Mechanical Construction

32

// --------------- Generate Interrupts for Encoder -------------------------- 1
// Encoder Pin on Interrupt 0 - Pin encoder1_PinA (22) 2
attachInterrupt(digitalPinToInterrupt(encoder1_PinA), 3
 readEncoder1_PinA, CHANGE); 4
 5
// Encoder Pin on Interrupt 1 - Pin encoder1_PinA (23) 6
attachInterrupt(digitalPinToInterrupt(encoder1_PinB), 7
 readEncoder1_PinB, CHANGE); 8
 9
// Encoder Pin on Interrupt 2 - Pin encoder1_Index (24) 10
attachInterrupt(digitalPinToInterrupt(encoder1_PinIndex), 11
 readEncoder1_Index, CHANGE); 12

Listing 4-5: Arduino Encoder Direct – Attach Interrupt

The source code for the reading of the position is adapted from Arduino Playgrounds [26]

and speed optimized. The high resolution of the encoder needs a fast processing of the

ISR to make sure that each pulse is counted. The following sketch illustrates the

interaction of channel A and B.

Figure 4-14: Rotatory Encoder Channel Pulse Diagram

It can be seen that by checking a change state at channel A and the additional check of

the high or low level of channel B the rotation direction can be predicted. The ISR detects

a change on channel A or B and then directly reads the state of the regarding channel.

To know if a rising or falling edge is detected. This state is saved and then compared

with the saved state of the second channel. By saving the encoder state of both channels,

just a single “read” command is needed per interrupt. This reduces the computational

effort dramatically. Finally, both channels are compared and the upward or downward

count is determined. This perception leads to the following source coder for channel A,

B and the index of encoder 1:

// ---------------- Read Values from Encoder 1 ------------------------------- 1
// Interrupt on A changing state 2
void readEncoder1_PinA() 3
{ 4
 // Check Actual Pin State 5
 encoder1.A_set = digitalReadDirect(encoder1_PinA) == HIGH; 6
 // and Adjust Counter + if A Leads B 7

4. Electro-Mechanical Construction

33

 encoder1.Count += (encoder1.A_set == encoder1.B_set) ? +1 : -1; 8
 9
} 10
 11
// Interrupt on B changing state 12
void readEncoder1_PinB() { 13
 14
 // Check Actual Pin State 15
 encoder1.B_set = digitalReadDirect(encoder1_PinB) == HIGH; 16
 // and Adjust Counter - if B Leads A 17
 encoder1.Count -= (encoder1.A_set == encoder1.B_set) ? +1 : -1; 18
 19
} 20

Listing 4-6: Arduino Encoder Direct – Position Read

The interrupt on the index pin resets the counter value, as shown below.

void readEncoder1_Index() 1
{ 2
 // Reset Counter by Index Pin 3
 encoder1.Count = 0; 4
} 5

Listing 4-7: Arduino Encoder Direct – Position Reset

It is important that the pin states are read directly from the output register because the

normal read command is not fast enough to enable such high read cycles. Therefore,

the “digitaReadDirect”-functions is implemented and can be seen below.

// ----------- Write Direct to the Arduino Due INPUT Register ---------------- 1
inline int digitalReadDirect(int pin) 2
{ 3
 return !!(g_APinDescription[pin].pPort -> 4
 PIO_PDSR & g_APinDescription[pin].ulPin); 5
} 6

Listing 4-8: Arduino Function – Direct Digital Read

The source code is tested and fast enough to count the 7,200 𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 of

the encoder disk. First tests of the code showed that due to high vibrations of the gimbals

at spinning gyro the encoder values leads to drift. This drift can be avoided by checking

rising and falling changes of both channels. Further, a high performance code is needed

as provided above. It is important that just on state is read per ISR, otherwise the Arduino

is to slow and ISR calls get missed.

However, the final test of the system shows that the source code is fast enough to count

the encoder value accurate. However, with all the other tasks such as the generation of

the pulse signal for two stepper drivers, which is also done with ISR, the Arduino Due is

on its computational limit. Thus, the Arduino is starting to miss ISR. Thus, it is decided

to give this task to a special made encoder shield, as shown in the next chapter.

4.4.2 Robogaia Encoder Counter Shield

The Robogaia Encoder Counter Shield [27] is based on the LS7366R chip which is a

counter chip and keeps track of the pulses delivered by channel A and B. The board can

operate with up to three encoder simultaneous and provides various counter modes. It

can be operated at a 5𝑉 or a 3.3𝑉 logic level. Because a lower logic level would reduce

4. Electro-Mechanical Construction

34

the sample rate of the chip, which is at 5V logic level up to 40𝑘𝐻𝑧, it is decided to work

with a 5𝑉 logic level. The encoder shield is seen in Figure 4-15.

Figure 4-15: Robogaia Encoder Counter Shield

The communication of the encoder shield with the Arduino is realized via the SPI socket.

The source code is based on the example code provided by the supplier of the shield.

Basically, the operation mode of the LS7366R chip can be set by writing into the different

chip register, which can be found in the datasheet. An Arduino class is generated, which

combines all the functions of the encoder shield. The function for the initialization of the

chip can be seen below:

// --------------- Initialize RoboGaia Encoder Board ------------------------- 1
void LS7366_Init() 2
{ 3
 // Setup First Encoder Chip 4
 digitalWrite(this->chipSelectPin, LOW); 5
 SPI.transfer(0x88); // Write to MDR0 Register 6
 SPI.transfer(0x03); // x4 Quadrature Mode 7
 digitalWrite(this->chipSelectPin, HIGH); 8
} 9

Listing 4-9: Arduino Encoder Shield – Initialization

Setting the chip select pin to low enables the SPI communication at the regarding chip

select pin. The operation modes is set and finally the SPI communication is disabled by

writing the chip select pin to high. The “chipSelectPin”-variable is a public class variable

and is set after generation of the encoder class. The source code to read the actual

encoder value can be found below:

// --------------- Read Encoder Values from Board ---------------------------- 1
void readEncoderValues() 2
{ 3
 // Read Encoder Value 4
 digitalWrite(this->chipSelectPin, LOW); // Enable SPI Communication on Pin 5
 SPI.transfer(0x60); // Request Encoder Count 6
 this->count1Value = SPI.transfer(0x00); // Read Highest Order Byte 7
 this->count2Value = SPI.transfer(0x00); 8
 this->count3Value = SPI.transfer(0x00); 9
 this->count4Value = SPI.transfer(0x00); // Read Lowest Order Byte 10

4. Electro-Mechanical Construction

35

 digitalWrite(this->chipSelectPin, HIGH); // Disable SPI Communication on Pin 11
 12
 this->Count = ((long)this->count1Value << 24) + ((long)this->count2Value << 13
 16) + ((long)this->count3Value << 8) + (long)this->count4Value; 14
 15
 16
 // Calculate Angle from Actual Counter Value 17
 this->Angle = (float)this->Count / this->encoderStpsPerRot * 360; 18
 19
 // Invert Negative Encoder Angles 20
 if (this->Angle < 0) { 21
 this->Angle = 360 + this->Angle; 22
 } 23
} 24

Listing 4-10: Arduino Encoder Shield – Read Encoder Value

Writing a value request command to the regarding counter chip forces the chip to send

the actual encoder value in four-byte format via SPI. These bytes can be read and

combined by byte shift to the final encoder value. Afterwards the angle can be calculated

and some value limitations are adjusted.

The reset of the encoder value is done by a “reset”-variable, which is a class external

flag triggered by an ISR. In every main loop iteration the flag is checked and if the case

the encoder counter is reset. The code can be found below.

// --------------------- Reset Encoder Values -------------------------------- 1
void clearEncoderCount() 2
{ 3
 if (this->Reset) { 4
 // Set Encoder1s Data Register to Zero 5
 digitalWrite(this->chipSelectPin, LOW); // Begin SPI Conversation 6
 SPI.transfer(0x20); // Reset Counter 7
 digitalWrite(this->chipSelectPin, HIGH); // Terminate SPI Conversation 8
 9
 // Reset Clear Trigger 10
 this->Reset = false; 11
 } 12
} 13

Listing 4-11: Arduino Encoder Shield – Reset Counter

The final test shows that there is a drift of the encoder value even if vibrations at the

gimbals occur because of the high speed gyro. Further, the computational effort of the

Arduino is decreased.

4.5 Brushless DC Motor – Gyro

The center wheel of the double gimbal gyro system is actuated by the Anaheim

Automation Brushless DC (BLDC) Motor [28]. The motor is capable to rotate with a

velocity up to 12,000 𝑅𝑃𝑀. The speed control of the motor is done by the Anaheim

Automation Brushless Speed Controller Board [29]. The speed controller and the

brushless DC motor can be seen in the figure below.

http://www.anaheimautomation.com/index.php
http://www.anaheimautomation.com/index.php

4. Electro-Mechanical Construction

36

Figure 4-16: Speed Controller (a) and Brushless DC Motor (b)

The speed controller operates at a max. control voltage of 5𝑉 and a power supply of 24𝑉

for the brushless DC motor. The figure below shows the wiring of the BLDC motor with

the speed controller. The output pins of the controller W1, W2 and W3 are connected

with the Phase A, B and C of the motor respectively. The hall A, B and C wires of the

motor are connected with the hall sensor 1, 2 and 3 of the controller respectively. Hall

power and hall ground is connected with the hall power supply of the driver. However,

the standard color of the motor wires can be seen in the figure below. Further, the electric

circuit can be found in a higher resolution in appendix A.

Figure 4-17: Brushless DC Motor with Speed Controller – Gyro – Wiring Diagram

By changing the analog voltage level at pin #17 (Set Speed Value) the velocity of the

motor can be controlled. A voltage between 2.4𝑉 − 28𝑉 at the enable pin starts the

brushless motor. Digital Input 1 and 2 at pin #11 and pin #12 respectively adjust the

maximal motor velocity.

To enable a smooth acceleration of the motor, which is necessary because of the high

inertia of the gyro and the high rotational velocity, a start-up procedure is programmed.

The equation below, allows the conversion from the expected rotational speed to the

needed input voltage at the controller board:

 𝑈𝑜𝑢𝑡 = (
(𝑛− 𝑛𝑚𝑖𝑛)

(𝑛𝑚𝑎𝑥−𝑛min)
⋅ 4.9𝑉) + 0.1𝑉 (4.1)

4. Electro-Mechanical Construction

37

The 𝑛𝑚𝑖𝑛 𝑎𝑛𝑑 𝑛𝑚𝑎𝑥 values are depending on the control configuration, set by the two

digital inputs. As mentioned, the motor velocity is controlled by a voltage between 0𝑉 to

5𝑉 at pin #17 of the driver. This signal is generated by an analog output of the Arduino

Due board, which has a max. output voltage of 3.3𝑉. Therefore, pin #11 and pin #12 are

connected to 5𝑉 to enable a max. velocity of 20,000𝑅𝑃𝑀 at a analog voltage of 5𝑉 and

motor velocity around 12,000𝑅𝑃𝑀 at a max. Arduino Due output voltage of 3.3𝑉.

4.6 Brushless DC Motor – Thrusters

Two thrusters are used for the translational maneuvers of the swimmer. Further, these

thrusters act as an additional control input for the system. Two BlueRobotics T100

Thruster [30] provide enough thrust to propose the swimmer, Figure 4-18.

Figure 4-18: BlueRobotics T100 Thruster (a) and ESC Motor Controller (b)

The thrusters are actuated by waterproof brushless DC motors. The control of the two

motors is done by the BlueRobotics ESC Controller [31]. The controllers are capable to

provide up to 30𝐴. The output velocity of the thrusters depend on the input PWM signal.

The wiring of the thruster and the controller can be found below. Further, the electric

circuit for the BlueRobotic ESC can be found in a higher resolution in appendix A.

4. Electro-Mechanical Construction

38

Figure 4-19: BlueRobotics T100 Thruster with ESC Motor Controller – Wiring Diagram

The input signal of the controller is a PWM signal with a max. update frequency of 400𝐻𝑧,

whereby the duty cycle of 1,100µ𝑠 means full thrust backward, 1,500µ𝑠 means stop and

1,900µ𝑠 means full thrust forward. Further, the ESC need a 5𝑉 logic power supply and a

GND, which both have to be connected with the Arduino board. The power supply is a

12𝑉 voltage. The ESC motor connections are connected with the T100 thruster.

The PWM signal generation in Arduino is realized by the Servo library [32]. The library

is able to generate PWM signals on 12 output pins simultaneously with an update

frequency of 50𝐻𝑧. To increase the update rate of the thruster the Servos library is

modified, as shown below.

// Minimum Time to Refresh Servos in Microseconds 1
#define REFRESH_INTERVAL 5000 2

Listing 4-12: Arduino Library – Servo.h Modification

The refresh interval in the library is changed to 500µ𝑠, which corresponds to a update

frequency of 200𝐻𝑧.

Because the Arduino DueTimer library is used in a previous step and both libraries are

using the same timer, it is important to uncomment following line in the header of the

DueTimer library. This enables the compatibility with the Arduino Servo library.

#define USING_SERVO_LIB true 1
Listing 4-13: Arduino DueTimer Library – Servo Library Compatibility

Finally, both libraries can be used simultaneously.

4.7 Inertial Measurement Unit

The Adafruit BNO055 Absolute Orientation Sensor [33] is a 9-DOF IMU used to calculate

the orientation of the SUUV. The Inertial Measurement Unit (IMU) uses the Bosch

BNO055 chip with a MEMS accelerometer, magnetometer and gyroscope. The chips

has an integrated ARM Cortex-M0 based processor, which performs the sensor fusion

4. Electro-Mechanical Construction

39

and filtering on its own. The maximal update frequency is 100𝐻𝑧 for the absolute

orientation. The IMU delivers either the calculated absolute orientation or the raw data

in quaternions, Euler angles or vector form, Figure 4-20.

Figure 4-20: Adafruit BNO055 Absolute Orientation Sensor

The IMU communicates with the Arduino board via the I2C communication protocol. 𝑉𝑖𝑛

and 𝐺𝑁𝐷 have to be connected with a voltage level between 3 − 5𝑉. The 𝑆𝐶𝐿 pin has to

be connected with the I2C clock at the Arduino board, which is Pin 21 at the Arduino

Due. The I2C data wire 𝑆𝐷𝐴 has to be connected with the I2C data pin, which is Pin 20

on the Arduino Due.

Adafruit provides the driver and the libraries for the absolute orientation sensor, which

can be found in the documentation of [33]. However, the following code includes the

needed libraries for the Adafruit IMU. The library is integrated in an internal Arduino class

and can be seen below.

// Adafruit BNOO055 Sensor Libraries 1
#include <Adafruit_Sensor.h> 2
#include <Adafruit_BNO055.h> 3
#include <utility/imumaths.h> 4

Listing 4-14: Adafruit IMU – Include Libraries

The bno-object enables the communication with the Adafruit IMU. The initializations and

the creation of the “Adafruit_BNO055” object have to be done in the setup of the Arduino,

which can be seen below.

Adafruit_BNO055 AdafruitBNO = Adafruit_BNO055(55); 1
 2

void setup() 3
{ 4
 // --------------------- Initialize Adafruit BNO055 IMU -------------------- 5
 if (!IMU.AdafruitBNO.begin()) { 6
 IMU.noBNO055 = true; 7
 Serial.println("No BNO055 detected ... Check your wiring! \t"); 8
 } 9
 else { 10
 IMU.AdafruitBNO.setExtCrystalUse(true); 11
 Serial.println("IMU Initialized! \t"); 12
 } 13
} 14

4. Electro-Mechanical Construction

40

Listing 4-15: Adafruit IMU – Setup Procedure

To get the absolute orientation of the IMU the sensor event has to be called, which

returns the actual orientation of the IMU. Because the maximal update frequency of the

sensor is 100𝐻𝑧, a timer is implemented to update the IMU values frequently. This timer

toggles a variable, which is checked in the main loop and by the “readBNO055”-function

of the internal class. The code for the class function can be found below.

// ------------------ Read BNO055 IMU Values --------------------------------- 1
void readBNO055 () 2
{ 3
 // ------------------------ Read IMU BNO055 Data ----------------------- 4
 // Check if Sensor is Active and IMU Toggle is True 5
 if (!noBNO055 && this->toggleIMU) { 6
 // ---------- Read EULER Angles Adafruit BNO055 IMU Data ------------- 7
 this->AdafruitBNO.getEvent(&this->event); 8
 9
 phi = event.orientation.y; 10
 theta = event.orientation.z; 11
 psi = event.orientation.x; 12
 13
 // -------------- Read RAW Adafruit BNO055 IMU Data ------------------ 14
 quat = this->AdafruitBNO.getQuat(); 15
 16
 Quat_W = quat.w(); 17
 Quat_X = quat.x(); 18
 Quat_Y = quat.y(); 19
 Quat_Z = quat.z(); 20
 21
 // Toggle IMU Read Trigger False Until Next Call 22
 this->toggleIMU = false; 23
 } 24
} 25

Listing 4-16: Adafruit IMU – Read Absolute and Raw Orientation

The raw data of the sensor in vector format can be calculated by the “getVector” or the

quartanians by the “getQuat” statement. A more detailed description can be found on the

Adafruit webpage.

4.8 Arduino / Arduino – Communication

Several task were introduced in the previous chapter, which are all handled by one

Arduino board. A total of eight ISRs have to be handled, two pulse generators for the

stepper driver, two encoder counter, one I2C communication for the IMU and one SPI

communication for the SPI communication with the Ethernet board. All this tasks together

bring the Arduino Due board on its limit, whereby it cannot be proven anymore that all

task are handled in a time sufficient way. Therefore, as already mentioned in chapter

4.4.2, tasks were outsourced. For example, the count of the encoder ticks to a special

encoder shield. In a further step, different tasks shall be distributed to two separate

Arduino boards, which decreases the amount of work per Arduino.

4. Electro-Mechanical Construction

41

4.8.1 Arduino Task Distribution

As already mentioned, a second Arduino shall be introduced to the project. Therefore, a

smaller and less powerful Arduino Uno can be used. The main Arduino Due shall act as

a master Arduino and handle all the important tasks as the Ethernet communication,

generation of the stepper driver signal or the reading of the IMU. The handling of the

encoder shield is shifted to the Arduino Uno. The Arduino Uno is based on a 5𝑉 logic

level, as the encoder shield. Which means the tasks are distributed to two Arduinos

based on the task logic level. Figure 4-21 below shows the distribution of the tasks and

the communication between both boards.

Figure 4-21: Schematic – Arduino/Arduino Communication

The communication between both Arduinos is realized via the I2C communication, which

is a serial bus. The bus communicates via two wires; the data line (SDA) and the clock

line (SCL). As a result of the usage of the Arduino Due Board, which operates at a voltage

level of 3.3𝑉 , a voltage level converter board is needed. Therefore, the Adafruit 4-

channel I2C-safe Bi-directional Logic Level Converter Board [34] is used. It can shift

voltage levels bi-directional and it is used to shift clock and the data line of the I2C

communication. It is important to use a I2C safe level shifter, because not every device

provides this ability.

4.8.2 Software Implementation

This chapter describes the software implementation of the Arduino code. The Arduino

Wire library [35] is used to handle the I2C communication. It provides several commands

4. Electro-Mechanical Construction

42

for the read, write and an event handler, which reacts on incoming data bytes. Such an

event handler is implemented in the following chapter on the master and slave side.

4.8.2.1 Master Arduino

The Arduino Due has two hardware based I2C communication sockets. One is

standardly used by the IMU library to exchange data. The Arduino joins the I2C bus as

a master device on the second socket by the “wire1”-command, which is on pin SCL1

and SDA1. It is important to note that the SCL1 and SDA1 pins have no internal pull-up

resistors. Therefore, external resistors are needed with a recommended value between

4.7𝑘𝛺 and 10𝑘𝛺 . In this case, 4.7𝑘𝛺 resistors are used. The pull-up resistors are

connected as shown in Figure 4-21. The second communication socked can be used by

the following command in the setup.

// ------------------------ Setup I2C Connection ----------------------------- 1
Wire1.begin(); //Join the bus as master on SCL1 and SDA1 Pins 2

Listing 4-17: Master Arduino – Wire1 Initialization

As mentioned, an event handler is implemented. Means, the master requests from the

slave data and the slave is providing the requested data. This has the advantage that

the I2C communication is just busy when actual data are needed. The code is created

in an Arduino class, which contains the function for the request command. The values

sent by the slave contain the two gimbal angles separated by a semicolon. On master

side, this request is implemented as following:

void readData() 1
{ 2
 // Empty Char Array Buffers 3
 this->I2C_Buffer1[0] = '0'; 4
 this->I2C_Buffer2[0] = '0'; 5
 seperatorTrigger = false; 6
 7
 // Stop Active Wire Communication 8
 Wire1.endTransmission(); 9
 10
 // Request Data from the I2C Slave 11
 Wire1.requestFrom(Slave_Address, BufferSize); 12
 13
 // Receive Data from I2C Slave 14
 // Slave may Send Less than Requested 15
 if (Wire1.available() == BufferSize) { 16
 17
 // Loop through Buffer Size 18
 for (int i = 0; i < BufferSize; i++) { 19
 // Read each Char from I2C 20
 recChar = Wire1.read(); // receive a byte as character 21
 22
 // Check for Char Seperator -> Set trigger 23
 if (recChar == ';') { 24
 seperatorTrigger = true; 25
 seperatorPos = i + 1; 26
 } 27
 else { 28
 // Write Data to the Dependent Buffer 29
 if (!seperatorTrigger) { 30
 // Write I2C Value to Buffer 1 31

4. Electro-Mechanical Construction

43

 this->I2C_Buffer1[i] = recChar; 32
 } 33
 else { 34
 // Write I2C Value to Buffer 2 35
 this->I2C_Buffer2[i - seperatorPos] = recChar; 36
 } 37
 } 38
 } 39
 40
 // Convert Char Array to Float if Value is Not Out of Range 41
 if (atof(this->I2C_Buffer1) <= 360 && atof(this->I2C_Buffer1) > 0.05) { 42
 encoder1.Angle = atof(this->I2C_Buffer1); 43
 } 44
 45
 if (atof(this->I2C_Buffer2) <= 360 && atof(this->I2C_Buffer2) > 0.05) { 46
 encoder2.Angle = atof(this->I2C_Buffer2); 47
 } 48
 } 49
} 50

Listing 4-18: Master Arduino – Request Data from Slave

The slave address is the I2C address chosen by the slave. The buffer size depends on

the amount of requested data. When wire1 is available with the right buffer size, means

no data got lost during transfer or other error accurse, the function starts to read the data

byte by byte. Each byte is checked if it is the semicolon separator and dependent of that,

the byte is written in the buffer one or buffer two. At the end, both buffers are checked if

they are in a reasonable range as expected, meaning from 0° 𝑡𝑜 360°. This is also a final

check if a transfer error was made. Finally, the byte arrays are converted to a float by

the “atof”-command.

4.8.2.2 Slave Arduino

On slave side the Arduino Uno is used, which has just one hardware based I2C socket.

Therefore, the bus is joined with the “wire”-command and the code for the setup looks

like.

// Startup I2C Communication 1
Wire.begin(Slave_Address); // Join I2C Bus with Address #42 2
Wire.onRequest(requestEvent_I2C); // Register Event 3

Listing 4-19: Slave Arduino – Wire Initialization

The bus is joined as slave with the slave address defined before. Further, an

“onRequest”-event is generated with a specific function name. This function contains the

write to I2C command, which expects a byte buffer. This buffer can be generated by the

following code.

// ----------------- Generate I2C Buffer String ------------------------------ 1
// Conversion from Float to Char-String (Not Supported for Uno in sprintf) 2
dtostrf(encoder1.Angle, 5, 2, strEncoder1_Angle); 3
dtostrf(encoder2.Angle, 5, 2, strEncoder2_Angle); 4
sprintf(I2C_Buffer, "%s;%s", strEncoder1_Angle, strEncoder2_Angle); 5

Listing 4-20: Slave Arduino – Buffer Generation

The “onRequest”-function finally writes the buffer to the I2C bus if data are requested by

the master. This is an extreme efficient way to communicate between two devices

4. Electro-Mechanical Construction

44

because no unnecessary data are transferred. The “onRequest”-function can be seen

below.

// --------------- I2C Communication Event Handler --------------------------- 1
void requestEvent_I2C() 2
{ 3
 // Write I2C Buffer to Connection 4
 Wire.write(I2C_Buffer); // Respond with Message of 6 Bytes 5
} 6

Listing 4-21: Slave Arduino – onRequest Function

The communication between both devices is very stable. It is important that certain safety

checks are implemented in case the bytes are not transferred in a right matter.

4.9 MATLAB / Arduino – Communication

As a final step, the orientation of the SUUV shall be controlled. Because of the non-

linearity of the dynamics of the system, such control algorithms are very expensive and

need a high computational effort. However, regarding the systems flexibility it is easier

to program such control algorithms in MATLAB Simulink than coding them directly on

the Arduino. Therefore, a proper way to communicate between the Arduino board and

MATLAB Simulink has to be found.

4.9.1 Serial Communication

One of the easiest solutions is the Serial interface of the Arduino board. It can

communicate via USB directly with MATLAB Simulink. Additionally, the system is very

cheap because no additional devices are needed. One possibility to code the Serial

communicate between Arduino and MATLAB Simulink is the MATLAB Simulink Support

Package for Arduino [36]. The package is provided by MATLAB and enables to read and

write directly I/Os of the Arduino board. However, the strict programming and the low

flexibility of the package is not sufficient for the project. Therefore, a direct

implementation of the Serial communication as a Simulink function is done. A Level-2

MATLAB S-Functions is programmed, which allows to create an individual block in

Simulink. The whole implementation of the function is shown in the chapter below.

After implementing the code, several drawbacks have been found: The Serial port is

always occupied and cannot used by the Serial Monitor of Arduino; The Serial

communication is pretty slow for huge data amounts, which makes it necessary to

increase the baud rate to the upper limit. This leads to the problem that the maximal

cable length is limited to 1𝑚, which is not acceptable for further water tests of the SUUV.

Therefore, it is decided to replace the Serial communication with an Ethernet

communication.

4. Electro-Mechanical Construction

45

4.9.2 Ethernet Communication

The Sparkfun Arduino Ethernet Shield 2 [37] (Figure 4-22) provides the possibility to

connect the Arduino board with any Ethernet capable device or the internet and

communicate via either TCP or UDP.

Figure 4-22: Sparkfun Arduino Ethernet Shield 2

The Ethernet shield communicates with the Arduino via the SPI interface, through the

ICSP header. Additionally, the shield provides a standard RJ45 Ethernet jack for the

communication with any Ethernet device. The figure below shows a schematic of the

connections between the devices.

Figure 4-23: Schematic – Arduino MATLAB Communication

The Simulink function created for the Serial communication is adapted for the Ethernet

communication. The basic algorithm behind is explained in the chapter below.

4. Electro-Mechanical Construction

46

4.9.2.1 Basic Algorithm

The algorithm for the communication is based on a cycling read and write loop. This

means, at every moment one device is sending and the other one is reading data. The

MATLAB code sends a string with all data for Arduino. The Arduino board is listening

and as soon as Arduino receives the data, Arduino is sending the own data string. The

MATLAB is waiting until it receives the Arduino data string. After that, the cycle is

repeated. This avoids that each device hears itself. The MATLAB command string looks

like:

['M:' BLDC_Enable ';' BLDC_RPM ';' stepper1_RPM ';' stepper2_RPM ';' 1
BLDC_Thruster1_Throttle ';' BLDC_Thruster2_Throttle ';'] 2

Listing 4-22: MATLAB Ethernet Communication – Command String

The ‘M:’ is an additional indicator for Arduino that the string is coming from MATLAB.

Each value is separated by a semicolon. On the other hand, the Arduino command string

looks like:

[‘A:’ encoder1.Angle ';' encoder2.Angle ';' IMU.phi ';' IMU.theta ';' IMU.psi 1
';' IMU.Quat_W ';' IMU.Quat_X ';' IMU.Quat_Y ';' IMU.Quat_Z ';'] 2

Listing 4-23: Arduino Ethernet Communication – Command String

The ‘A:’ indicates that the string is coming from Arduino.

4.9.2.2 MATLAB Implementation

As mentioned before, a Level-2 MATLAB S-Functions is used for the serial

communication. This chapter explains the adaption and the schematic of the code for

the Ethernet communication in MATLAB Simulink. A Level-2 MATLAB S-Functions

consists of several smaller functions.

function Arduino_Board_Ethernet(block) 1
 2
setup(block); 3

Listing 4-24: MATLAB Ethernet Communication – Block Generation

function setup(block) 1
 2
 %% Register Number of Input and Output Ports 3
 block.NumInputPorts = 1; 4
 block.NumOutputPorts = 1; 5
 6
 %% Setup Functional Port Properties to Dynamically Inherited 7
 block.SetPreCompOutPortInfoToDynamic; 8
 9
 %% Setup Functional Port to Default 10
 block.SetPreCompPortInfoToDefaults; 11
 12
 %% Setup Input Ports 13
 block.InputPort(1).Dimensions = 1; 14
 block.InputPort(1).DirectFeedthrough = false; 15
 block.InputPort(1).DatatypeID = 8; % boolean 16
 block.InputPort(1).Complexity = 'Real'; 17
 block.InputPort(1).SamplingMode = 'Sample'; 18
 19

4. Electro-Mechanical Construction

47

 %% Setup Output Ports 20
 block.OutputPort(1).Dimensions = 2; 21
 block.OutputPort(1).DatatypeID = 0; % double 22
 block.OutputPort(1).Complexity = 'Real'; 23
 24
 %% Set Block Sample Time to 100Hz 25
 block.SampleTimes = [0.01 0]; 26
 27
 %% Set the Block simStateCompliance to Default 28
 block.SimStateCompliance = 'DefaultSimState'; 29
 30
 %% Register Methods 31
 block.RegBlockMethod('InitializeConditions', @InitArduinoEthernet); 32
 block.RegBlockMethod('Terminate', @TerminateArduino); 33
 block.RegBlockMethod('Update', @Output); 34

Listing 4-25: MATLAB Ethernet Communication – Setup

The register block method allows attaching certain other function to the block with

specific properties. The first function calls the “setup”-function for the block. The number

of the in- and outputs have to be defined and the certain properties for the I/Os have to

be set. Line 38 in the code above calls the “InitArduinoEthernet”-function, which is called

just once during the initialization of the block. The code below shows the initialization of

the Ethernet communication.

function InitArduinoEthernet(block) 1
 2
 % Global variable 3
 global myArduinoUDP; 4
 5
 %% Create Arduino Ethernet Connection Object 6
 myArduinoUDP = udp('192.168.1.110','RemotePort',8888,'LocalPort',8080); 7
 myArduinoUDP.Timeout = 0.01; 8
 9
 %% Open Arduino Serial Connection 10
 fopen(myArduinoUDP) 11

Listing 4-26: MATLAB Ethernet Communication – Initialization

The “myArduinoUDP”-object has to be set to global, because it is used in other functions

too. Afterwards the object is created. The IP-address has to be set in the space of the

network card of your computer. In this case to '192.168.1.xxx’. The last digits can be

chosen anyhow. For the remote port and the local port, a port number without any special

purpose should be chosen. Afterwards the connection can be opened. It is important to

do these steps in the initialization block, otherwise the communication would be opened

at each time step. The timeout has to be set to the sampling time, otherwise the

communication freezes when communication problems appear.

A block with the ‘update’ property is created. Therefore, the function is called at each

time step. The code can be seen below.

function Output(block) 1
 % Global variable 2
 global myArduinoUDP; 3
 4
 try 5
 %% Send to Arduino 6
 % Read Input Values from Block 7
 stepper1_RPM = num2str(block.InputPort(1).Data(1), '%3.2f'); 8
 stepper2_RPM = num2str(block.InputPort(1).Data(2), '%3.2f'); 9

4. Electro-Mechanical Construction

48

 10
 % Create Send Command 11
 arduinoSendData = ['M:' stepper1_RPM ';' stepper2_RPM ';] 12
 13
 % Send Command-String to Arduion 14
 fwrite(myArduinoUDP,arduinoSendData) 15
 16
 17
 %% Read from Arduino 18
 % Read response from Arduino 19
 arduinoReceivedData = fgetl(myArduinoUDP) 20
 21
 % Check if Received Command-String is Valid 22
 % String Not Empty && Identification is Existing 23
 if ~isempty(arduinoReceivedData) && strcmp(arduinoReceivedData(1:2), ... 24
 'A:') 25
 26
 % Split String into Substrings 27
 tmpArduinoReceivedData = strsplit(arduinoReceivedData(3:length ... 28
 (arduinoReceivedData)),';'); 29
 30
 % Save Data to Local Variables 31
 encoder1_RPM = str2double(tmpArduinoReceivedData(1)); 32
 encoder2_RPM = str2double(tmpArduinoReceivedData(2)); 33
 34
 % Write Data do Outputs 35
 block.OutputPort(1).Data = [encoder1_RPM encoder2_RPM]; 36
 37
 end 38
 catch exception 39
 40
 getReport(exception,'extended','hyperlinks','ON') 41
 42
 end 43

Listing 4-27: MATLAB Ethernet Communication – Update

The “fwrite”-command allows to write a string to the Ethernet object, which writes the

string to the open port. The “fgetl”-command reads from the Ethernet port. The string,

which is sent do Arduino is prepared in the steps before, as described in chapter 4.9.2.1.

The Arduino command string is split in the separate values afterwards. Finally, the

terminate block writes zero values to all Arduino variables to stop all motors, closes the

connection and delete all Ethernet objects, which can be seen below.

function TerminateArduino(block) 1
 2
 global myArduinoUDP; 3
 4
 arduinoSendData = ['M:' '0' ';' '0' ';' '0' ';' '0' ';' '0' ';' '0']; 5
 6
 % Send Command String to Arduino 7
 fwrite(myArduinoUDP,arduinoSendData) 8
 9
 % Release all Communication Objects 10
 delete(instrfindall) 11

Listing 4-28: MATLAB Ethernet Communication – Terminate

4.9.2.3 Arduino Implementation

On Arduino side, several parameters and libraries are needed. The Sparkfun Arduino

Ethernet Shield 2 [37] has the Wiznet W5500 Ethernet chip, which needs the

<Ethernet2.h> and the <EthernetUdp2.h> libraries. The needed parameters are: the

4. Electro-Mechanical Construction

49

MAC address of the Ethernet shield, which is given on the backside of the shield; the IP

address, which is defined by the network space of the network card, but do not use the

same address as used on MATLAB side; and the local port used by MATLAB. The

parameters can be seen below:

#include <SPI.h> // SPI Library 1
#include <Ethernet2.h> // Ethernet Library 2
#include <EthernetUdp2.h> // Ethernet UDP Library 3
 4

byte mac[] = {0x90, 0xA2, 0xDA, 0x10, 0x6E, 0x8F}; // Mac Adresse 5
 6
IPAddress ip(192, 168, 1, 110); 7
const unsigned int localPort = 8888; // Local Port to Listen On 8

Listing 4-29: Arduino Ethernet Connection – Ethernet Objects

Additional parameters for the puffer size are needed. It is important here that the puffer

size should be selected static, because a dynamic puffer size slows down the CPU at

high UDP read and write cycles. The size of the puffer is dependent of the amount of

data, which is transferred. The code can be found below:

// EthernetUdp Instance Enables to Send and Receive Packets via UDP 1
EthernetUDP Udp; 2
 3
// Buffer to Hold Incoming Packet 4
char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; 5
 6
// Define MATLAB Command Strings 7
String MatlabRawData_Received; 8
char MatlabRawData_Send[64] = ""; 9
String tmpMatlabData = ""; 10
int packetSize = 0; 11

Listing 4-30: Arduino Ethernet Connection – Ethernet Variables

In the Arduino setup, the Ethernet communication is created. The UDP timeout time

should be set to the same vale as the chosen sample time, in this case 100𝐻𝑧 and

therefore a timeout of 10𝑚𝑠, which can be seen below:

void setup() { 1
 2
// ------------------- Setup Ethernet UDP Connection ------------------- 3
Ethernet.begin(mac, ip); 4
Udp.begin(localPort); 5
Udp.setTimeout(10); 6
} 7

Listing 4-31: Arduino Ethernet Connection – Setup Ethernet Communication

As described in chapter 4.9.2.1, the Arduino board waits until a MATLAB command string

is received and then returns the Arduino command string. Therefore, a function is created

which is called in the main loop of the program. The Arduino program check with the

command “Udp.parsePacket();” if a package is received. Afterwards in line 5 the package

is read from the UDP connection. If in line 7 the MATLAB command string is detected,

the string is split by the function “getStringPartByNr”, which is explained later. Afterwards

the Arduino command string is returned to the remote IP address and the remote port.

The whole code can be found below:

// ---------------- Ethernet MATLAB Communication ---------------------------- 1

4. Electro-Mechanical Construction

50

void udpMATLABCommunication () 2
{ 3
 // Check if a Ethernet Command is Available 4
 packetSize = Udp.parsePacket(); 5
 6
 if (packetSize) { 7
 // Read Data from Ethernet Connection 8
 Udp.read(packetBuffer, packetSize); 9
 10
 MatlabRawData_Received = packetBuffer; 11
 12
 if (MatlabRawData_Received.substring(0, 2) == "M:") { 13
 // ---------- Read Data from MATLAB ---------- 14
 // Read Motor Values from Raw Data String 15
 tmpMatlabData = MatlabRawData_Received.substring(2, 16
 MatlabRawData_Received.length()); 17
 18
 // Read Particular Values from Raw Data 19
 BLDC_Gyro.Enable = getStringPartByNr(tmpMatlabData, ';', 20
 0).toFloat(); 21
 BLDC_Gyro.RPM_set = getStringPartByNr(tmpMatlabData, ';', 22
 1).toFloat(); 23
 stepper1.RPM_set = getStringPartByNr(tmpMatlabData, ';', 24
 2).toFloat(); 25
 stepper2.RPM_set = getStringPartByNr(tmpMatlabData, ';', 26
 3).toFloat(); 27
 BLDC_Thruster1_Set = getStringPartByNr(tmpMatlabData, ';', 28
 4).toFloat(); 29
 BLDC_Thruster2_Set = getStringPartByNr(tmpMatlabData, ';', 30
 5).toFloat(); 31
 32
 33
 // ---------- Write Data to MATLAB ---------- 34
 sprintf(MatlabRawData_Send, 35
 "A:%.2f;%.2f;%.3f;%.3f;%.3f;%.3f;%.3f;%.3f;%.3f", encoder1.Angle, 36
 encoder2.Angle, IMU.phi, IMU.theta, IMU.psi, IMU.Quat_W, IMU.Quat_X, 37
 IMU.Quat_Y, IMU.Quat_Z); 38
 39
 // Reply to the Remote IP Address and Port 40
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); 41
 Udp.write(MatlabRawData_Send); 42
 Udp.endPacket(); 43
 } 44
 } 45
} 46

Listing 4-32: Arduino Ethernet Connection – Update Ethernet

The “getStringPartByNr”-function returns a string part detected in the command string at

a certain index position and separated by a certain separator. The whole code for the

function can be found below:

// ----------------- Split String by Seperator ------------------------------- 1
String getStringPartByNr(String data, char separator, int index) 2
{ 3
 // Return the Part Nr Index 4
 int stringData = 0; // Count Data Part Nr 5
 String dataPart = ""; // Hold the Returned Text 6
 7
 // Go Through the Whole String to Find Separator Positions 8
 for (int i = 0; i < data.length() - 1; i++) { 9
 10
 if (data[i] == separator) { 11
 // Count the Number of Times Separator Character Appears 12
 stringData++; 13
 } 14
 else if (stringData == index) { 15
 dataPart.concat(data[i]); 16

4. Electro-Mechanical Construction

51

 } 17
 else if (stringData > index) { 18
 // Return Text and Stop if the Next Separator Appears 19
 return dataPart; 20
 break; 21
 } 22
 } 23
 24
 // Return Text if this is the Last Part 25
 return dataPart; 26
} 27

Listing 4-33: Arduino Ethernet Connection – Split Command String

The sample time of the Ethernet communication is defined with 100𝐻𝑧, which fulfils all

given requirements. Finally, the implementation of the Level-2 MATLAB S-Functions in

MATLAB Simulink looks like:

Figure 4-24: Arduino Ethernet Connection – MATLAB Function in Simulink

On the left side the different inputs can be seen. Whereby, the gyro speed is limited

during startup for a smooth acceleration. On the right side, the actual encoder values

and the orientation of the swimmer can be measured. The in- and outputs of the block

are defined as multidimensional, thus multiplexer and demultiplexer are needed.

4.9.2.4 Setup the Windows Firewall

To admit the Ethernet communication on your Windows operating system, it is important

to setup the Windows firewall. Both the remote and the local port have to be added to

the input and output rules of your Windows system. It is important to enable to

communication for the selected ports to allow the proper communication of the devices.

4.10 Software Task Distribution

This chapter deals with the interaction of the different software tasks. Several functions

are distributed into software tasks on different Arduino Boards. The following Figure 4-25

4. Electro-Mechanical Construction

52

shows the two used Arduino boards and the Simulink control system. On the left side the

MATLAB Simulink routine can be seen. In the middle, the Arduino Due tasks and on the

right side the Arduino Uno are shown. Both containing the setup, the loop as the Interrupt

Service Routines (ISR1 and ISR2), timer functions (timer1) and the event handler

(event1). A more detailed picture of the software tasks distribution can be found in the

appendix C.

Figure 4-25: Flow Chart – Software Task Distribution

The MATLAB routine consists of firstly the write cycle, secondly the waiting for the

Arduino answer and finally the processing of the received data cycle. The cycle runs with

a sample frequency of 100𝐻𝑧.

The Arduino Due is processing after the successful startup, the two ISRs, which are

dealing with the generation of the pulses for the stepper driver. The ISRs get the new

stepper speeds from the main loop. The timer function toggles the IMU read cycle in the

main loop with a sample frequency of 100𝐻𝑧. The “readI2C”-function is requesting data

from the Arduino Uno event and waiting until it receives it. Finally, the data is processed.

The “readEthernet”-function is checking for data from Simulink. If data is provided, it is

processed and the actual Arduino values returned to Simulink. Finally, the Arduino Due

is updating the motor velocities.

The Arduino Uno is initializing all the ISR and the event handler during startup.

Afterwards, in each cycle the encoder values are read and if an interrupt appear on the

encoder index pin, the encoder is reset. The event handler for the I2C communication

works independent from the main loop and sends on request the encoder values to the

Arduino Due board.

The interaction between the different devices can be seen by the dashed lines. The arrow

indicates in which direction the command is going. The solid arrows between the ISR,

timer functions or the event handler shows the interaction with the referring task.

4. Electro-Mechanical Construction

53

4.11 Electrical Circuits

Finally, all the needed components to control the SUUV are combined. Two stepper

motors rotate the DGCMG, whereby the pulses needed for the stepper driver are

generated by the master Arduino Due board. The high speed center wheel is proposed

by a BLDC motor, which is controlled by a speed controller. This speed controller gets

the input signals from the master Arduino Due, too. For the linear motion of the swimmer,

two brushless T100 thrusters are used. This thruster are controlled by BlueRobotics

ESC, which get a PMW signal generated by the Arduino Due. An Adafruit BNO055

absolute orientation sensor is used to measure the position in global coordinates of the

SUUV. Finally, the IMU communicates via I2C communication with the Arduino Due.

Figure 4-26: Electrical Circuit and Logic Connections of the SUUV Electronics

The orientation of both gimbals are measured by two optical encoders. This encoders

work with a 5𝑉 logic level and the pulses generated by the encoder are counted by an

Arduino encoder shield. This shield is moved to distribute the workload to a second slave

Arduino Uno. The communication of both Arduinos is realized via I2C communication.

Important is that a level shifter is needed because both Arduinos work on different logic

levels. Finally, a system is needed to control the orientation of the robot. Because of the

computational expensive non-linear control algorithms used, this work is done my

MATLAB Simulink. The communication between Simulink an the Arduino is realized via

the Arduino Ethernet Shield 2 which provides a RJ45 Ethernet jack for the

communication with the computer and on the other hand side communicates via SPI

interface with the Arduino.

4. Electro-Mechanical Construction

54

4.11.1 Electrical Power Supply

The electrical circuit consists of several logic levels and devices. Different devices also

need different power supply levels. The SUUV is supplied by 12𝑉 and 24𝑉, as shown in

the figure below.

Figure 4-27: Power Supply of the SUUV Electronics

The 12𝑉 power supply is used for the Arduinos, the stepper motors and the thrusters.

The stepper driver, the brushless DC motor and the driver of the center wheel is powered

by 24𝑉. The logic levels of 3,3𝑉 and 5𝑉 are generated by the Arduinos whereby both are

connected with the logic level shifter and a common ground. The IMU, the stepper driver

and the Ethernet shield are powered by 3.3𝑉 power level; the optical encoders, the

encoder shield and the ESC for the thruster are powered by 5𝑉 power level. Each device

is additionally connected to the common ground.

4.11.2 Logic Signals Connections

This chapter contains an overlook of the devices with its logic level and the signal

connections to the regarding Arduino. From Figure 4-28 below it can be seen, that two

logic levels of 3.3𝑉 and 5𝑉 are used.

4. Electro-Mechanical Construction

55

Figure 4-28: Logic Signal Connections of the SUUV Ectronics

The SPI connections consists of four wires, the Serial Clock (SCK), the Master In Slave

Out (MISO), the Master Out Slave In (MOSI) and the Slave Select (SS). The SS line is

used to select the device for the communication. For example, the Ethernet Shield used

Pin 10. The I2C communication just needs two wires, the data line (SDA) and the clock

line (SCL).

Both optical encoders have a Pin A and Pin B for the pulses, which are counted by

encoder shield. Additional, both devices have an index pin. All the pins are connected

with the encoder shield. Each stepper driver need a pulse signal (CLK) and a direction

signal (DIR) for the control of the motion of the stepper motor. The brushless DC motor

driver for the gyro needs an enable signal and the analog speed command. The

BlueRobotics T100 thruster are controlled with a PMW signal for each thruster ESC. The

IMU communicates via I2C with the Arduino on the first I2C port of the Arduino Due.

MATLAB Simulink and the Ethernet Shield are connected via an Ethernet cable.

This chapter described all the electrical circuits. Whereby, the electric circuit for the logic

connections, the signal flow and the power supply for the devices are shown. All the

electrical circuits can be found in a higher resolution in the appendix B.

5. Manufacturing

56

5. Manufacturing

This chapter gives an overview about the different steps of the manufacturing process.

As mentioned in chapter 2 the SUUV has been designed by Mohsen Saadat. The

fabrication took place at the different machine shops at the University of California,

Berkeley. Several students worked on the manufacturing of the parts. The final assembly

and testing is part of a this project.

5.1 Fabrication and Design

The swimmer consists of three main part. The fuselage, which contains the double

gimbal system and two end caps, where the thruster are mounted. The design introduced

in chapter 2 is developed in a way that the body of the swimmer is natural buoyant.

Means, the materials of the different parts varies that the robot is heavy enough to hold

naturally its heave position and to be balanced in water. The size of the body shall be

small, so that no additional dead mass is needed. The fuselage of the body consists of

acrylic parts. The Double Gimbal Control Moment Gyro consists of aluminum and steel

parts. The Fabrication of the parts is done by students which work in the laboratory. The

parts are fabricated by a laser cutter and some of the acrylic parts are 3D printed. As

mentioned, it is important that the swimmer is naturally balanced, which makes the

fabrication process much more complex. The high speed center wheel is turned and

might get balanced in a further step to avoid vibrations at high rotational speed.

5.2 Final Assembly

The final assembly and the wiring of the electrical components took place as a part of

this project. The wiring is done based on the electrical design created in chapter 4.11.

The front view of the assembled swimmer can be seen in the figure below.

5. Manufacturing

57

Figure 5-1: Front View of the Assembled Swimmer

The assembled double gimbal system can be seen in the center of the swimmer. The

high speed gyro wheel is hold at its position by two bearings. The center wheel can rotate

around two axis and spin at high speed. Because of the space limitation, the electronic

is distributed over the whole body. The following picture shows the rear view of the

assembled swimmer.

5. Manufacturing

58

Figure 5-2: Rear View of the Assembled Swimmer

At the back, the Ethernet shield and the IMU can be seen. In the front the stepper driver

and the level shifter is located. Note, that in this view because of a better overlook the

Arduino Due, the Arduino Uno and the Encoder shield cannot be seen. They are located

in the front of the swimmer. The ESC for the thruster are located in the back of the

swimmer and cannot be seen at this picture neither. The power supply and the Ethernet

cable are carry through two special underwater screws which are sealed with epoxy. The

picture below shows the side view of the whole SUUV at its old design with the two

thruster in the front and the back.

5. Manufacturing

59

Figure 5-3: Side View of the Assembled Swimmer

The two thruster are counter rotating and enable an additional DOF for the position

control of the swimmer. At the top, the power supply cable and the Ethernet cable can

be seen. Both cables carry all necessary signals for the robot. The design shown in this

picture varies to the design introduced in the previous chapter because several design

changes were made during the final assembly.

5.3 Waterproofness

An important part when building an undersea robot is the waterproofness of itself. This

is given by the usage of acrylic parts for the fuselage of the swimmer. As mentioned

before, the robot consists of three main parts, two end caps and the fuselage. The end

caps are mounted to the body with 16 screws. O-rings are located between the end caps

and the body. This seals the body against leakage. The power supply cable and the

Ethernet cape are carried through special underwater screws, which are sealed with

epoxy. For a final leakage test, the fuselage has been put for more than 24 hours in a

water tank to proof its waterproofness.

6. Swimmer Agility Tests

60

6. Swimmer Agility Tests

After submerging the swimmer, it is observed that regarding practical issues and the

instability of the swimmer in water an evaluation of the first agility results is very difficult.

Therefore, it is decided to hang the robot in air. Different hanging methods can be used

to eliminate the DOF of the swimmer in air. With these methods the performance of the

DGCMG in the individual axis with the regarding gimbals can be evaluated. The following

chapters show the different used hanging methods and the implementation of the one

and two axis agility tests.

6.1 One Axis Agility Results

A one-axis agility test shall be performed with the swimmer in air. Therefore, two DOF of

the swimmer have to be eliminated. Finally, the performance of the DGCMG for the yaw

rotation shall be evaluated. For this test, the outer gimbal is fixed in vertical position and

the inner gimbal rotates around the vertical 𝑦-axis. The following chapter shows the used

hanging method and the performance of the DGCMG.

6.1.1 Hanging Method for One DOF

As mentioned, for the first performance tests of the swimmer two DOFs have to be

eliminated. Therefore, the swimmer is hanged with a rope to the top of the room, shown

in Figure 6-1.

Figure 6-1: One DOF Hanging Method in Air

The body is hanged with two ropes connected to one single one on the top. The rope is

fixed at the top of the room to minimize the influences of the hanging method on the

dynamics of the body. The swimmer is hanged horizontal and the only DOF of the body

6. Swimmer Agility Tests

61

is the rotation around the vertical 𝑌𝐵 axis with the angle 𝜃1; whereby, the actual position

of the swimmer is measured by the IMU.

6.1.2 Open-Loop Control

For an evaluation of the created forces by the center wheel, open-loop test have been

done. Additional tests to show the agility of the two gimbals are performed. The tests are

done with the hanging method shown before. Both, the reaction force and the gyro force

of the center wheel shall be shown in this chapter.

6.1.2.1 Reaction Force

To measure the influence of the reaction force from the gyro to the body the outer gimbal

is hold in vertical position and the inner gimbal rotates around the vertical 𝑌𝐵 axis. The

center wheel rotates with 11,400 𝑅𝑃𝑀 in each case. As described in chapter 2, when the

inner gimbal rotates in one direction the body shall rotate in the other direction. The

following figure shows the results regarding the open-loop test.

Figure 6-2: Results Hanged Open-Loop Test – Reaction Force

The first plot in the figure above shows a minus one zero plus one signal form, with an

amplitude of 20 𝑅𝑃𝑀 and a frequency of 0.2 𝐻𝑧. The second plot shows a rectangle input

signal, with an amplitude of 10 𝑅𝑃𝑀 and a frequency of 0.25 𝐻𝑧. The third plot shows a

triangle input signal, with a maximal amplitude of 10 𝑅𝑃𝑀 and a frequency of 0.25 𝐻𝑧.

Each experiment is done with locked outer gimbal and rotating inner gimbal. It can be

seen that the body movement 𝜃1 is because of the reaction torque of the high speed

wheel in opposite direction of the gimbal rotation 𝛽. However, the input signal of the inner

gimbal, with respect to the fuselage is bigger, then the effective body rotation, with

respect to the ground.

6. Swimmer Agility Tests

62

6.1.2.2 Gyro Force

The second force, which is provided by the center wheel, is the gyro force. It acts

perpendicular to the reactions force. It follows that for this case the inner gimbals is

locked and the outer gimbal rotates. Expecting from physics, the gyro force is much

bigger than the reaction force. Therefore, the amplitude of the input signal for the outer

gimbal and the velocity of the gyro is reduced, Figure 6-3.

Figure 6-3: Results Hanged Open-Loop Test – Gyro Force

A sine wave with an amplitude of 1 𝑅𝑃𝑀 and a frequency of 0.15 𝐻𝑧 is chosen. As

expected, even with a smaller input signal to the outer gimbal the movement of the body

itself is much bigger. The body angle 𝜃1 moves for around 60 𝑑𝑒𝑔 and the outer gimbal

𝛽 moves just by 6 𝑑𝑒𝑔. It is important to note that the gyro speed in this case is just

500 𝑅𝑃𝑀, which is the lowest possible velocity and about 4.5% of the speed used for the

experiment in chapter 6.1.2.1.

6.1.3 Close-Loop Control – Yaw Angle

In a further step, a simple close-loop feedback control model with a proportional

controller (𝐾𝑃 = 0.5) and with an input saturation (−10𝑅𝑃𝑀 to 10RPM) is introduced. The

same hanging method as in the previous chapter is used. The aim of the feedback control

loop is to control the hanged body to a desired body by the usage of the reaction force.

Therefore, the feedback control loop consists of the desired angle 𝜃1
∗, the measured

actual body angel Θ1 and for the control variable the stepper input 𝛽̇. Additionally, the

gimbal angle 𝛽̇ is measured. Figure 6-4 shows the result for a simple repeating step

signal. In the upper chart, the desired body angle 𝜃1
∗ and actual body angle 𝜃1 can be

6. Swimmer Agility Tests

63

seen. Further, in the lower chart the gimbal position 𝛽 and the control input 𝛽̇ for the

stepper driver are shown.

Figure 6-4: Results Hanged Close-Loop Test – Yaw Angle – Step Signal

It can be seen that the body follows the desired trajectory extremely fast without

overshoot, which is a consequence of the 𝐼-behavior of the system and the used P-

Controller. Regarding the torque applied by the handing method, the gimbal always

corrects the body position while holding a certain body angle Θ1
∗ . The limits of the

DGCMG can be pushed even further by superposing a step function by a sine wave

(after 18 sec.), Figure 6-5.

Figure 6-5: Results Hanged Close-Loop Test – Yaw Angle – Step Signal with Superposed Sine Wave

Even a complex signal such as the repeating step signal with the superposed sine wave

can be followed accurate by the simple close-loop feedback controller. The velocity of

the swimmer could be even pushed further by decreasing the saturation value.

6. Swimmer Agility Tests

64

Furthermore, note that by using the non-linear Backstepping controller introduced in

chapter 3 the agility of the swimmer can be increased further.

6.2 Two Axis Agility Results

The next step, before submerging the swimmer, is to test the DGCMG with two DOF

enabled. Therefore, a new hanging method has to be elaborated. To control the attitude

of the body in air with two DOF the full dynamics non-linear controller is needed. For a

first step, the performance of the outer gimbal has to be evaluated. Therefore, the new

hanging method is used to perform a close loop test to control the pitch position of the

swimmer. This chapter shows the new hanging method and the results of the one DOF

test for the pitch angle.

6.2.1 Hanging Method for Two DOF

A new hanging method has to be elaborated to enable two DOF hanging tests. A metal

ring is mounted around the body of the swimmer, whereby two fixings in direction of the

𝑋𝐵 axis are mounted. At these fixings the wire is hocked and enables the rotation around

the body 𝑋𝐵 axis, for pitch rotations, and rotations around the 𝑌𝐵 axis to enable yaw

rotations. The hanging method can be seen in the picture below.

Figure 6-6: Two DOF Hanging Method in Air

It can be seen that the body rotates around the horizontal 𝑋𝐵 axis with the angle 𝜃2. The

rotation around the vertical 𝑌𝐵 axis with the angle 𝜃1 can be seen in Figure 6-1. The new

hanging method enables the possibility to test the DGCMG in two DOF.

6.2.2 Close-Loop Result – Pitch Angle

To control the pitch angle of the swimmer the inner gimbal is fixed in the 𝑥 − 𝑦 plane and

the outer gimbal rotates around the 𝑥-axis. This allows to control the swimmers pitch

6. Swimmer Agility Tests

65

angle and to evaluate the performance of the gimbal. Therefore, the pitch angle 𝜃2 is

measured by the IMU and the desired body angle 𝜃2
∗ is fed into the simple P-feedback

controller, which calculates the control signal for the outer gimbal velocity 𝛼̇. Figure 6-7,

shows the results of the test run.

Figure 6-7: Results Hanged Close-Loop Test – Pitch Angle – Step Signal with Superposed Sine Wave

It can be seen that the torque generated by the DGCMG is high enough to rotate the

swimmer and hold its position. Even by superposing the step signal with a small-

amplitude sine wave the swimmer is following the desired position. In air, the maximal

angle is limited because on a certain point the torque provided by the gyro is not strong

enough to rotate the body.

6.3 Results Evaluation

It is shown that the DGCMG is strong enough to rotate the swimmer in air. The outer and

the inner gimbal are working accurate and are able to rotate fast enough to control the

yaw-position and the pitch-position. By using a simple feedback control-loop with a P-

controller, the position can be controlled easily. This control method has one

disadvantage. It is only possible to control one DOF simultaneously, because the

reaction and gyro force vector is strongly dependent from both gimbal position. However,

to control the multiple DOF of the swimmer the non-linear controller, introduced in

chapter 3.2, has to be used.

7. Conclusions

66

7. Conclusions

7.1 Closure

The new design, elaboration of the dynamics, the control and the instrumentation of a

super-maneuverable unmanned underwater vehicle is shown in this work. The

orientation of the swimmer is controlled without taking benefit of thrusters, wings, rudders,

stabilizers or fins. A Double Gimbal Control Moment Gyro (DGCMG) generates an inertia

platform, which is used to rotate the swimmer in water. Therefore, two individually

controllable gimbals are used to rotate the swimmer around the inertia platform. Two

counter-rotating thrusters generate the thrust for the forward and backward propulsion.

Further, the dynamic model has been introduced. This model is based on four connected

ridged bodies. By the usage of Newton-Euler methods and a few assumptions made, the

dynamics was derived. Finally, a non-linear controller based on a Lyapunov function with

Backstepping approach has been introduced for the attitude regulation and reorientation

control of the swimmer. Whereby, a combination of the reaction and gyro force generated

by the control moment gyro and the torques produced by the thrusters are used. Next,

the instrumentation of the swimmer is shown, which includes the control of the sensors

and actuators by the embedded system and the implementation of the control algorithms.

These control algorithms are processed in MATLAB Simulink, which just exchanges the

control signals with the embedded system. Finally, different open-loop and close-loop

test have been performed. The open-loop tests showed that depending on which gimbal

is rotated either a reaction force or a gyro force acts on the body of the swimmer.

Whereby, the gyro force is much bigger than the reaction force at the same gyro speed.

Close-loop tests are performed to control the yaw-angle and the pitch-angle of the

swimmer in one dimension and to show the performance of the individual gimbals of the

double gimbal control moment gyro system. These tests proof that the DGCMG is

powerful enough to perform these reorientation maneuvers and the high maneuverability

of the system.

7.2 Future Work

Future tasks should deal with the performance testing of the robot in water, and the full

dynamic non-linear controller for full 3D orientation maneuvers shall be implemented.

The final aim is to use both the thrusters and the gyros system to reorientate the swimmer

in water. After proofing the functionality of the developed system in water, the final control

algorithms shall be implemented on the embedded system and a battery power supply

shall enable full autonomy.

Bibliography

VII

Bibliography

[1] R. Alam, S. Mohsen, P. W. Grenfell, S. Messner und M. A. Jalali,

„Supermaneuverable Autonomous Swimmer,“ in 31st Symposium on Naval

Hydrodynamics, Monterey, CA, USA, 2016.

[2] „Berkeley - TAF Lab,“ [Online]. Available: http://taflab.berkeley.edu/. [Zugriff am

13. 06. 2016].

[3] M. Saadat und M. A. Jalali, Design and Prototyping of an Attitude Control, Sharif

University of Technology, 2009.

[4] R. Votel und D. Sinclair, „A new active gyrostabiliser system for ride control of,“ in

26th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA.

[5] „Cubli,“ ETH Zurich, [Online]. Available: http://www.idsc.ethz.ch/research-

dandrea/research-projects/cubli.html. [Zugriff am 14. 07. 201].

[6] N. Townsend, A. Murphy und R. S. Shenoi, „A new active gyrostabiliser system

for ride control of,“ Ocean Engineering, 2006.

[7] J. G. Bellingham, „Platforms: Autonomous Underwater Vehicles,“ in

Encyclopedia of Ocean Sciences (Second Edition), Oxford, 2009.

[8] M. Barisic, N. Miskovic und Z. Vukic, „A Measure of Quality of Control for 2D

AUV Formations,“ IFAC Proceedings Volumes, Nr. 45, pp. 299-306, 2012.

[9] J. Diebel, „Representing Attitude: Euler Angles, Unit Quaternions, and

Rotation,“ Stanford University, CA, USA, 2006.

[10] M. Krstic , I. Kanellakopoulos und P. V. Kokotovic, Nonlinear and Adaptive

Control Design, Wiley-Interscience, 1995.

[11] H. K. Khalil, Nonlinear Systems, Pearson, 2001.

[12] A. Behal, D. Dawson, E. Zergeroglu und Y. Fang, „Nonlinear Tracking Control of

an Underactuated,“ in Proceedings of the American Control Conference,

Anchorage, AK, USA, 2002.

[13] „Arduino Genuino,“ [Online]. Available: https://www.arduino.cc/. [Zugriff am 06.

04. 2016].

[14] „Arduino Genuino Uno Board,“ [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardUno. [Zugriff am 10. 07. 2016].

[15] „Arduino Mega 2560 Board,“ [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardMega2560. [Zugriff am 06. 04.

2016].

Bibliography

VIII

[16]

„Arduino Due Board,“ [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardDue. [Zugriff am 06. 04. 2016].

[17] „Arduino - Open-source Software (IDE),“ [Online]. Available:

https://www.arduino.cc/en/Main/Software. [Zugriff am 10. 07. 2016].

[18] „Sanyo Pancake Stepper Motor,“ [Online]. Available:

https://www.pololu.com/product/2299. [Zugriff am 18. 03. 2016].

[19] „Adafruit Motor Shield V2 for Arduino,“ [Online]. Available:

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview. [Zugriff

am 16. 03. 2016].

[20] „Polulu Stepper Motor Driver A4988,“ [Online]. Available:

https://www.pololu.com/product/1182. [Zugriff am 18. 03. 2016].

[21] „Trinamic TMC2100 - SilentStepStick Stepper Motor Driver,“ [Online]. Available:

http://www.watterott.com/index.php?page=product&info=4107. [Zugriff am 26.

05. 2016].

[22] „SparkFun MiniGen - Signal Generator Shield,“ [Online]. Available:

https://learn.sparkfun.com/tutorials/minigen-hookup-guide. [Zugriff am 18. 03.

2016].

[23] „Arduino Library - DueTimer,“ [Online]. Available:

https://github.com/ivanseidel/DueTimer. [Zugriff am 18. 03. 2016].

[24] „US Digital EM1 Transmissive Optical Encoder Module - EM1-2-1800-I,“ [Online].

Available:

http://www.usdigital.com/products/encoders/incremental/modules/EM1. [Zugriff

am 06. 04. 2016].

[25] „US Digital HUBDISK-2 2" Transmissive Rotary Disk,“ [Online]. Available:

http://www.usdigital.com/products/encoders/incremental/rotary/disks/HUBDISK-

2. [Zugriff am 06. 04. 2016].

[26] „Arduino Playground - Reading Rotary Encoders,“ [Online]. Available:

http://playground.arduino.cc/Main/RotaryEncoders.

[27] „Robogaia 3 Axis Encoder Counter Shield,“ [Online]. Available:

http://www.robogaia.com/3-axis-encoder-conter-arduino-shield.html. [Zugriff am

08. 07. 2016].

[28] „Anaheim Automation - Brushless DC Motor BLU09,“ [Online]. Available:

http://www.anaheimautomation.com/products/brushless/brushless-motor-

item.php?sID=296&pt=i&tID=96&cID=22. [Zugriff am 10. 03. 2016].

Bibliography

IX

[29]

„Anaheim Automation - Brushless Speed Controller MDC010-024031,“ [Online].

Available: http://www.anaheimautomation.com/products/brushless/brushless-

driver-controller-item.php?sID=350&serID=15&pt=i&tID=999&cID=23. [Zugriff am

10. 03. 2016].

[30] „BlueRobotics Thruster T100,“ [Online]. Available:

https://www.bluerobotics.com/store/thrusters/t100-thruster/. [Zugriff am 10. 03.

2016].

[31] „BlueRobotics Controller ESC 30A,“ [Online]. Available:

https://www.bluerobotics.com/store/electronics/besc-30-r1/. [Zugriff am 10. 03.

2016].

[32] „Arduino Library - Servo.h,“ [Online]. Available:

https://www.arduino.cc/en/Reference/Servo. [Zugriff am 10. 07. 2016].

[33] „Adafruit IMU - BNO055,“ [Online]. Available: https://learn.adafruit.com/adafruit-

bno055-absolute-orientation-sensor/overview. [Zugriff am 12. 04. 2016].

[34] „Adafruit 4-channel I2C-safe Bi-directional Logic Level Converter,“ [Online].

Available: https://www.adafruit.com/product/757. [Zugriff am 06. 04. 2016].

[35] „Arduino Library - Wire,“ [Online]. Available:

https://www.arduino.cc/en/Reference/Wire. [Zugriff am 08. 07. 2016].

[36] „Arduino Playground - Interfacing MATLAB Simulink,“ [Online]. Available:

http://playground.arduino.cc/Interfacing/Matlab. [Zugriff am 12. 04. 2016].

[37] „Sparkfun Arduino Ethernet Shield 2,“ [Online]. Available:

https://www.sparkfun.com/products/11166. [Zugriff am 12. 04. 2016].

List of Figures

X

List of Figures

Figure 1-1: Super-Maneuverable Unmanned Underwater Vehicle (SUUV) 1

Figure 1-2: “Cubli” – ETH Zurich Project ... 3

Figure 1-3: Super-Agile Swimmer – Optical Communication Network with
Submarine .. 4

Figure 2-1: Super-Maneuverable Unmanned Underwater Vehicle Design 5

Figure 2-2: Double Gimbal Control Moment Gyro (DGCMG) 6

Figure 2-3: Double Gimbal Control Moment Gyro – Coordinate Systems 8

Figure 4-1: Arduino Genuino Uno ... 18

Figure 4-2: Arduino Mega 2560 Board.. 19

Figure 4-3: Arduino Due Board ... 20

Figure 4-4: Arduino Open–Source Software (IDE) Layout 21

Figure 4-5: Sanyo Pancake Stepper Motor ... 23

Figure 4-6: Adafruit Motor Shield 2 ... 24

Figure 4-7: Polulu A4988 – Stepper Motor Driver ... 25

Figure 4-8: Sanyo Pancake Stepper Motor with Polulu A4988 Driver – Wiring
Diagram .. 25

Figure 4-9: Trinamic TMC2100 – Stepper Motor Driver .. 26

Figure 4-10: Sanyo Pancake Stepper Motor with Trinamic TMC2100 Driver –
Wiring Diagram ... 27

Figure 4-11: Trinamic TMC2100 – Stepper Motor Driver – Active Current Control 28

Figure 4-12: SparkFun MiniGen – Signal Generator Shield 29

Figure 4-13: US Digital EM1 Transmissive Optical Encoder 31

Figure 4-14: Rotatory Encoder Channel Pulse Diagram 32

Figure 4-15: Robogaia Encoder Counter Shield ... 34

Figure 4-16: Speed Controller (a) and Brushless DC Motor (b) 36

Figure 4-17: Brushless DC Motor with Speed Controller – Gyro – Wiring Diagram36

Figure 4-18: BlueRobotics T100 Thruster (a) and ESC Motor Controller (b) 37

Figure 4-19: BlueRobotics T100 Thruster with ESC Motor Controller – Wiring
Diagram .. 38

Figure 4-20: Adafruit BNO055 Absolute Orientation Sensor 39

Figure 4-21: Schematic – Arduino/Arduino Communication 41

Figure 4-22: Sparkfun Arduino Ethernet Shield 2 ... 45

Figure 4-23: Schematic – Arduino MATLAB Communication 45

Figure 4-24: Arduino Ethernet Connection – MATLAB Function in Simulink 51

Figure 4-25: Flow Chart – Software Task Distribution ... 52

Figure 4-26: Electrical Circuit and Logic Connections of the SUUV Electronics 53

Figure 4-27: Power Supply of the SUUV Electronics .. 54

Figure 4-28: Logic Signal Connections of the SUUV Ectronics 55

Figure 5-1: Front View of the Assembled Swimmer .. 57

Figure 5-2: Rear View of the Assembled Swimmer... 58

Figure 5-3: Side View of the Assembled Swimmer ... 59

Figure 6-1: One DOF Hanging Method in Air .. 60

Figure 6-2: Results Hanged Open-Loop Test – Reaction Force 61

List of Figures

XI

Figure 6-3: Results Hanged Open-Loop Test – Gyro Force.................................. 62

Figure 6-4: Results Hanged Close-Loop Test – Yaw Angle – Step Signal 63

Figure 6-5: Results Hanged Close-Loop Test – Yaw Angle – Step Signal with
Superposed Sine Wave .. 63

Figure 6-6: Two DOF Hanging Method in Air .. 64

Figure 6-7: Results Hanged Close-Loop Test – Pitch Angle – Step Signal with
Superposed Sine Wave .. 65

Figure A-1: Motor Driver Circuit – Polulu A4988 .. XV

Figure A-2: Motor Driver Circuit – Trinamic TMC2100 .. XVI

Figure A-3: Motor Driver Circuit – BlueRobotics ESC .. XVII

Figure A-4: Motor Driver Circuit – BLDC Motor Speed Controller XVIII

Figure B-1: Electric Circuit – Signal Connections ... XIX

Figure B-2: Electric Circuit – Logic Signal Connections XX

Figure B-3: Electric Circuit – Power Supply .. XXI

Figure C-1: Software Tasks – Flowchart .. XXII

List of Listings

XII

List of Listings

Listing 4-1: Arduino Object-Oriented Programming .. 22

Listing 4-2: Arduino Function – Direct Digital Write ... 29

Listing 4-3: Stepper Driver – Attach stepperClock functions 30

Listing 4-4: Stepper Driver – Direct Pulse Generation ... 30

Listing 4-5: Arduino Encoder Direct – Attach Interrupt .. 32

Listing 4-6: Arduino Encoder Direct – Position Read .. 33

Listing 4-7: Arduino Encoder Direct – Position Reset ... 33

Listing 4-8: Arduino Function – Direct Digital Read... 33

Listing 4-9: Arduino Encoder Shield – Initialization ... 34

Listing 4-10: Arduino Encoder Shield – Read Encoder Value 35

Listing 4-11: Arduino Encoder Shield – Reset Counter ... 35

Listing 4-12: Arduino Library – Servo.h Modification ... 38

Listing 4-13: Arduino DueTimer Library – Servo Library Compatibility 38

Listing 4-14: Adafruit IMU – Include Libraries ... 39

Listing 4-15: Adafruit IMU – Setup Procedure... 40

Listing 4-16: Adafruit IMU – Read Absolute and Raw Orientation 40

Listing 4-17: Master Arduino – Wire1 Initialization .. 42

Listing 4-18: Master Arduino – Request Data from Slave 43

Listing 4-19: Slave Arduino – Wire Initialization .. 43

Listing 4-20: Slave Arduino – Buffer Generation ... 43

Listing 4-21: Slave Arduino – onRequest Function ... 44

Listing 4-22: MATLAB Ethernet Communication – Command String 46

Listing 4-23: Arduino Ethernet Communication – Command String 46

Listing 4-24: MATLAB Ethernet Communication – Block Generation 46

Listing 4-25: MATLAB Ethernet Communication – Setup 47

Listing 4-26: MATLAB Ethernet Communication – Initialization 47

Listing 4-27: MATLAB Ethernet Communication – Update 48

Listing 4-28: MATLAB Ethernet Communication – Terminate 48

Listing 4-29: Arduino Ethernet Connection – Ethernet Objects 49

Listing 4-30: Arduino Ethernet Connection – Ethernet Variables 49

Listing 4-31: Arduino Ethernet Connection – Setup Ethernet Communication 49

Listing 4-32: Arduino Ethernet Connection – Update Ethernet 50

Listing 4-33: Arduino Ethernet Connection – Split Command String 51

List of Abbreviations

XIII

List of Abbreviations

Cal University of California, Berkeley

SUUV Super-Maneuverable Unmanned Underwater Vehicle

TAF Lab Theoretical & Applied Fluid Dynamics Laboratory

ROV Remotely Operated Vehicle

AUV Autonomous Undersea Vehicle

UUV Unmanned Underwater Vehicle

DGCMG Double Gimbal Control Moment Gyro

CLF Control Lyapunov Function

OG Outer Gimbal

IG Inner Gimbal

CPU Center Processing Unit

BLDC Brushless Direct Current

RMS Root Mean Square

SPI Serial Peripheral Interface

I2C Inter-Integrated Circuit

DOF Degree of Freedom

I/O Input/output

1D One Dimensional

3D Three Dimensional

List of Symbols

XIV

List of Symbols

Symbol Name Unit

 𝑎𝑰𝑏 Moment of Inertia of body 𝑏 in coordinate system 𝑎 𝑘𝑔 ⋅ 𝑚2

𝝎
𝑎

𝑏 Angular Velocity of body 𝑏 in coordinate system 𝑎 𝑟𝑎𝑑 ⋅ 𝑠−1

𝑯
𝑎

𝑏 Angular Momentum of body 𝑏 in the coordinate system 𝑎 𝑘𝑔 ⋅ 𝑚2

𝑠⁄

𝑻 Torque 𝑁 ⋅ 𝑚

[𝑹𝑎
𝑏] Euler Rotation Matrix from coordinate system 𝑎 to 𝑏 −

𝐽𝑊
Moment of Inertia of the center wheel with respect to the

inner gimbal coordinate system
𝑘𝑔 ⋅ 𝑚2

𝛼̇
Angular Velocity of the outer gimbal in the outer gimbal

coordinate system
𝑟𝑎𝑑 ⋅ 𝑠−1

𝛽̇
Angular Velocity of the inner gimbal in the inner gimbal

coordinate system
𝑟𝑎𝑑 ⋅ 𝑠−1

Ω
Angular Velocity of the center wheel with respect to the

inner gimbal coordinate system
𝑟𝑎𝑑 ⋅ 𝑠−1

𝑀 Torque generated by the thrusters 𝑁 ⋅ 𝑚

Motor Driver Circuits

XV

A. Motor Driver Circuits

Figure A-1: Motor Driver Circuit – Polulu A4988

Motor Driver Circuits

XVI

Figure A-2: Motor Driver Circuit – Trinamic TMC2100

Motor Driver Circuits

XVII

Figure A-3: Motor Driver Circuit – BlueRobotics ESC

Motor Driver Circuits

XVIII

Figure A-4: Motor Driver Circuit – BLDC Motor Speed Controller

Electric Circuits

XIX

B. Electric Circuits

Figure B-1: Electric Circuit – Signal Connections

Electric Circuits

XX

Figure B-2: Electric Circuit – Logic Signal Connections

Electric Circuits

XXI

Figure B-3: Electric Circuit – Power Supply

Software Tasks

XXII

C. Software Tasks

Figure C-1: Software Tasks – Flowchart

