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THE DA VINCI RESEARCH KIT 
 

Overview of the da Vinci Surgical System 

The da Vinci Surgical System is an FDA-approved surgical robot that has been used 

since 2000 for procedures ranging from prostatectomies to cardiac valve repair.1,2,3 It was used in 

an estimated two-hundred thousand operations in 2012 alone and, as of 2014, there were over 

three thousand units installed in operating rooms worldwide.4  

 

Figure 1. The first-generation da Vinci Surgical System patient-side cart features two robotic arms for manipulating surgical 
instruments and one robotic arm for controlling an endoscope camera. 

The system enables a minimally invasive approach to traditional laparoscopic surgeries 

by allowing entire operations to be performed through relatively small incisions. In traditional 

laparoscopic surgeries, a larger incision is made in the patient’s body and the surgeon performs 

the operation while standing using long-shafted instruments and viewing their movements on a 

nearby video screen. These surgeries typically last many hours and can be quite exhausting for 

the surgeon.  
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In contrast, the da Vinci Surgical System allows the surgeon to perform the entire 

operation while seated at an ergonomic console. The surgeon rests their head on a soft pad in a 

downward-facing position, as it would be if they were performing the surgery directly, and views 

their movements through a high-resolution, stereoscopic display of the video feed from the 

endoscopic camera inserted in the patient. The camera can be controlled with the Endoscopic 

Camera Manipulator (ECM). The surgical instruments are mounted on robotic arms known as 

patient-side manipulators (PSMs), and the surgeon controls these instruments using the master-

tool manipulators (MTMs) on the console. The MTMs are placed where the surgeon’s hands 

would be if they were performing the surgery directly. The motion of the MTMs is translated to 

scaled motion of the PSMs with seven degrees of freedom, and the PSMs also feature tremor 

cancellation to reduce potential shakiness of the surgeon’s hands.  

Though an incredible technological achievement, the da Vinci Surgical System is not 

perfect, so the project described in this paper was undertaken to implement a potential 

improvement to the system: seamless and natural control of the surgeon’s viewing field using an 

Oculus Rift headset. The surgeon already controls the surgical instruments as they would if they 

were handling them directly, but controlling the endoscope camera is not done so intuitively. By 

instead mapping the orientation of an Oculus Rift headset to the endoscope camera, the surgeon 

would be able to look around the area of surgery in an entirely natural manner. The da Vinci 

Research Kit was used to facilitate the implementation, and mapping of the orientation of the 

Oculus Rift headset to a PSM was successful. 

Overview of the da Vinci Research Kit 

The da Vinci Research Kit (dVRK) began as an attempt to create an open-source 

telerobotics research platform from an existing complete telesurgical system. Because the da 
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Vinci Surgical System is a proprietary product, however, it was initially closed off to 

researchers, meaning that entirely new controller hardware had to be designed and fabricated to 

allow complete access to all levels of control.  

The hardware was based on an approach known as centralized computation and 

distributed I/O, by which a real-time communication network allows all control computations to 

be implemented on a high-performance computer while keeping the I/O distributed, thereby 

preserving the advantages of reduced cabling.5 This approach was implemented by using a Field-

Programmable Gate Array (FPGA) to provide a low-latency interface between the high-speed 

IEEE-1394a serial network and the I/O hardware. IEEE-1394a, also known as FireWire, was 

chosen as the communication protocol because “it is widely available, has high performance (up 

to 400 Mbits/sec), supports daisy-chaining at the physical layer, and there is ample 

documentation to enable implementation of the link-layer protocol on an FPGA.”5 Commands 

from dVRK software are issued via the IEEE-1394a bus to an FPGA which contains firmware 

that is responsible for converting these high-level commands into low-level hardware control. 

The hardware is controlled by a Quad Linear Amplifier (QLA) board which contains the 

necessary power electronics for driving the joint motors.  

Though the newest model of the da Vinci Surgical System includes two MTMs, three 

PSMs, and one ECM, the actual dVRK includes only two MTMs and two PSMs. Nevertheless, it 

was straightforward to integrate the dVRK electronics and software with a full da Vinci Surgical 

System. To control a single manipulator, two FPGA1394-QLA controller boards were necessary 

and each of these boards required a unique ID to be properly addressed by IEEE-1394a. Because 

there are sixteen possible addresses on the onboard rotary switch, however, there were enough 

addresses for all the non-dVRK manipulators to be included in the controller chain.  
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The dVRK Hardware 

IEEE-1394a 

IEEE-1394a is a high-speed serial bus that supports both isochronous and asynchronous 

data transfer modes. For the dVRK, the asynchronous mode was chosen because of the relative 

ease of FPGA implementation and its sufficiency for a 1kHz servo control rate. Only a subset of 

the IEEE-1394a link-layer protocol was included in the firmware to conserve FPGA resources. 

Unlike USB, IEEE-1394a allows multiple devices to be connected serially on the same 

bus. For this reason, each device must have a unique identification number. In the case of the 

dVRK, this unique ID is specified by an onboard rotary switch with a hexadecimal range of 0 to 

F. The recommended board IDs for the dVRK are given in Table 1. 

Table 1.6 

 MTML MTMR ECM PSM1 PSM2 PSM3 Setup 
Joints 

Board 1 ID 0 2 4 6 8 A C 

Board 2 ID 1 3 5 7 9 B  

 

FPGA Controller 

The FPGA controller board is the interface between the QLA board and the control 

computer. Its main components are:  

➢ One Xilinx Spartan-6 XC6SLX45-2 FPGA 
➢ One configuration PROM 
➢ IEEE-1394a physical layer  
➢ Two IEEE-1394a 6-pin connectors 
➢ Low-speed USB interface 
➢ JTAG interface 

The FPGA board also contains two 44-pin connectors for providing power and I/O to the QLA 

board. The FPGA is loaded with firmware which has three main responsibilities: 

1. Communication with the computer via the IEEE-1394 bus 
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2. Control of I/O devices 
3. Hardware-level safety checking 

Figure 2 is a diagrammatic representation of how the FPGA firmware handles received IEEE-

1394a packets. Upon reception of a packet, the firmware performs a cyclic redundancy check to 

ensure that there were no errors in transmission. If the packet is not valid, it is ignored. The 

header of a valid packet is checked to determine whether it is a read or write request. For write 

requests, an acknowledgement bit is sent, the desired data is written to a register via the Serial 

Peripheral Interface (SPI) protocol, and the digital-to-analog converter (DAC) is triggered. A 

common example of a write request would be setting the desired motor current. For a read 

request, the data at the specified address is read and sent back to the IEEE-1394a master via the 

SPI protocol along with an acknowledgement bit. This data is mainly the output of the analog-to-

digital converters (ADC). Because one ADC conversion cycle takes approximately 0.7µs, the 

FPGA firmware continuously requests conversions and stores them in local registers to reduce 

latency. 

 

Figure 2. The algorithm for handling received IEEE-1394a data packets.5  



6 
 

Quad Linear Amplifier 

The QLA board contains all the electronics necessary for controlling up to four joints of a 

da Vinci manipulator. Because the manipulators have seven degrees of freedom, two QLA 

boards and two FPGA boards are used for each one, with one channel left unused. The main 

components of each QLA channel are: 

➢ One 16-bit digital-to-analog converter (DAC) for setting the desired motor current 
➢ Two 16-bit analog-to-digital converters (ADC) to digitize the measured motor 

current and the voltage across a potentiometer used for absolute feedback of the 
motor position 

➢ Differential receivers for a quadrature encoder (for incremental feedback of the 
motor position) with A, B, and Z channels 

➢ Two power operational amplifiers to provide bidirectional control of a motor for a 
single DC power supply 

➢ Digital inputs for one home and two limit switches 
➢ One open-collector digital output with a high current drive 

By providing two types of positional feedback from the motors, hardware issues related to the 

potentiometer and quadrature encoder can be easily detected. The potentiometer also allows an 

absolute reference for the motor position.  

 

Figure 3. A high-level QLA circuit diagram.5 
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For each QLA channel, the FPGA sets a desired motor current and writes it to the DAC 

via SPI. The actual current through the motor flows through a sense resistor, resulting in a 

differentially amplified voltage which is used for current feedback. This feedback and the 

potentiometer voltage is converted to a digital signal with the ADC and written to an FPGA 

buffer via SPI. The quadrature encoder signal from the motor is level-shifted before being 

decoded by the FPGA. 

The dVRK Software 

Computer-Integrated Surgical Systems and Technology 

The Computer-Integrated Surgical Systems and Technology (cisst) software package is a 

collection of C++ libraries designed to facilitate the development of computer-integrated surgical 

systems. The libraries contained in the cisst package are listed with a brief description of their 

purpose in the Table 2 below. 

Table 2.7 

Library Purpose 

cisstCommon Logging, class/object 
registries, 

serialization/deserialization 
cisstVector Linear algebra and spatial 

transformation in 2D/3D 
cisstNumerical Thread-safe numerical 

methods 
cisstInteractive Scripts for Interactive 

Research Environment (IRE) 
cisstOSAbstraction Operating system services 

cisstMultiTask Defining 
tasks/devices/interfaces/objects 

cisstStereoVision Mono/stereo video 
acquisition/processing/display 

cisstParameterTypes Data types for objects in 
component-based framework 

cisstRobot Robot control elements e.g. 
trajectory control 

cisst3DUserInterface Support for 3D input/display 
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These libraries are central to the operation of the da Vinci Surgical System, as the rest of the 

dVRK software depends heavily on them. All cisst libraries except cisstStereoVision and 

cisst3DUserInterface were relevant to this project, though cisstStereoVision will likely be useful 

for future improvements, such as streaming the endoscope camera video to the Oculus Rift 

headset.  

Surgical Assistant Workstation 

Together with cisst, on which it is based, the Surgical Assistant Workstation (saw) 

package was used to facilitate control of the da Vinci Surgical System manipulators. For this 

project, the relevant saw components were sawRobotIO1394 and sawIntuitiveResearchKit. The 

sawRobotIO1394 component contains code for interfacing with the QLA board via IEEE-1394a, 

and it was used for calibration of the manipulators and to verify that the FPGA1394-QLA 

controller boards were working properly by allowing direct control of the manipulator joint 

positions through sawRobotIO1394QtConsole. Cisst and saw are bundled together as the single 

package cisst-saw for the dVRK.  

Robot Operating System 

The Robot Operating System (ROS) is a framework of libraries and drivers for the 

development of robotics systems. The ROS interfaces of the dVRK allow the da Vinci 

manipulators to be controlled by any conceivable means. 

ROS is based on a modular architecture in which the primary constituents are nodes and 

topics. A topic is simply an efficient channel for data, known as messages in ROS, to be passed 

between nodes. Nodes are programs, usually with only one or two responsibilities, that can both 

publish messages to topics and subscribe to topics. Publishing and subscribing is ROS 

terminology for writing and reading, respectively. This publisher-subscriber model is ideal for 
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robotic systems, where there are often many sensors to be read and many components to be 

controlled. By compartmentalizing simple tasks into nodes, ROS allows users to develop highly 

efficient systems. 

Using topics, ROS allows dVRK users to control the manipulators in any way possible 

using publisher nodes. For this project, a node was written which subscribed to the Oculus Rift 

orientation data and converted it to the appropriate message type before publishing it to a topic 

that controlled the desired manipulator. The ROS interface for the dVRK is dvrk-ros. 

INTEGRATING THE DVRK WITH A FULL DA VINCI SURGICAL 
SYSTEM 

 
Assembling the FPGA1394-QLA Controller Boards 

To save on the overall cost of this project, it was decided that the controller boards would 

be assembled onsite, rather than ordered prebuilt from the dVRK supply chain; this decision 

saved MCI approximately €34,000. The printed-circuit board (PCB) layouts were downloaded 

from the JHU-CISST GitHub repository and sent to Multi-CB for manufacturing.  

 

Figure 4. A completed FPGA1394-QLA controller board. The FPGA1394 board is mounted by two 44-pin connectors on the 
top-left section of the QLA board. 
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A single FPGA1394-QLA controller board contains 628 components with 156 different 

component types. These components were ordered from Digi-Key, Mouser, Linear Technology, 

and McMaster-Carr using the Bill Of Materials (BOM) from the JHU-CISST GitHub repository. 

Using a stencil, solder paste was applied to the PCBs and components were then placed using an 

LPKF ProtoPlace S. To melt the paste and form an electrical and mechanical connection between 

the components and the PCB, the board was baked in an LPKF ProtoFlow S with a preheat 

temperature and time of 160oC and 170 seconds, respectively; a reflow temperature and time of 

260oC and 140 seconds, respectively; and a cooling time of 100 seconds. This was initially only 

done with two FPGAs and two QLAs so that they could be tested with a manipulator and any 

hardware issues could be solved before assembling the remaining boards.  

Setting up the Software 

Ubuntu 

Ubuntu 14.04 was chosen for the operating system of the control computer, as it is well-

supported by ROS Indigo, the recommended ROS distribution for the dVRK.  An ISO image of 

Ubuntu 14.04.5 LTS AMD64 was downloaded and burned to a flash drive using Startup Disk 

Creator. The advantage to burning the image with Startup Disk Creator was that it automatically 

made the flash drive bootable, which simply allowed the computer to be booted from the flash 

drive rather than a preinstalled operating system. The flash drive was inserted into the computer 

and selected from the BIOS on boot to install Ubuntu. The computer contained 16GB of DDR3 

1600MHz RAM and a 3.6GHz Intel i7-4790 CPU, so it was well-suited for the task of the dvrk-

ros master, though it would later be necessary to use a computer with a better graphics card for 

interfacing to the Oculus Rift. 
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IEEE-1394a Library 

The library for IEEE-1394a communication, libraw1394-dev, was installed using the 

Ubuntu command line interface. 

$ sudo apt-get install libraw1394-dev 

This library is an interface to the kernel side of the Linux IEEE-1394a subsystem, which allows 

direct access to connected IEEE-1394a buses. To avoid having to access the library as root, 

which could cause problems with the dVRK software, permissions were set for the library to 

allow the current user to access it. 

$ sudo mkdir /etc/udev/rules.d 
$ cd 
$ echo ‘KERNEL==“fw*”,GROUP=“fpgaqla”,MODE=“0660”’ > ~/80-firewire-fpgaqla.rules 
$ sudo mv ~/80-firewire-fpgaqla.rules /etc/udev/rules.d/80-firewire-fpgaqla.rules 
$ sudo addgroup fpgaqla 
$ sudo adduser ‘whoami’ fpgaqla 

To ensure that the IEEE-1394a library was successfully installed, the output of  

$ lsmod | grep ‘firewire\|1394’ 

was verified to be 

 firewire_ohci 40551 0 
 firewire_core 68769 1 firewire_ohci 

crc_itu_t 12707 1 firewire_core 

Several additional tools for testing and troubleshooting IEEE-1394a devices were also installed.  

$ cd ~ 
$ git clone https://github.com/jhu-cisst/mechatronics-software.git 
$ cd mechatronics-software/util 
$ make 

This repository included the command-line tools info1394, block1394, quad1394, and time1394, 

all of which provided some function for testing IEEE-1394a devices. These tools were used 

primarily to verify that the IEEE-1394a physical layer of the controller boards had been 

assembled correctly.  
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ROS Indigo 

To install ROS, the control computer first had to be setup to receive packages from 

packages.ros.org. 

$ sudo sh -c ‘echo “deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main” > 
/etc/apt/sources.list.d/ros-latest.list 

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-key 0xB01FA116 
$ sudo apt-get update  

The full desktop install of ROS indigo was then initiated. 

$ sudo apt-get install ros-indigo-desktop-full 

Once ROS Indigo was installed, rosdep was used to install system dependencies that are required 

by ROS components. Normally, this process can be quite difficult, but rosdep is a command-line 

tool that automates the process. 

$ sudo rosdep init 
$ rosdep update 

The final step performed in the installation of ROS was the sourcing of the ROS Indigo 

setup.bash file. By sourcing this file, ROS environment variables and tools were available via the 

command line. The source command was added to the ~/.bashrc file so that setup.bash would be 

sourced in all future terminal sessions.  

$ echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc 
$ source ~/.bashrc 

Catkin Workspace 

Catkin is the official build system for ROS. Build systems are responsible for generating 

usable targets from raw source code and, as such, one is necessary for building ROS packages. 

The dVRK packages are intended to be built with the command catkin build rather than the more 

widely used catkin_make, so the Python package python-catkin-tools had to be installed. 

$ sudo apt-get install python-catkin-tools 
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Following this, a catkin workspace was created and initialized. The workspace is simply a 

directory for creating, modifying, building, and installing ROS packages. 

$ mkdir -p ~/catkin_ws/src 
$ cd ~/catkin_ws 
$ catkin init 

Because it was recommended by the dVRK community to significantly improve the performance 

of cisst-saw and dvrk-ros, the build type for the catkin workspace was set to Release. Once this 

was done, the workspace was built with the catkin build command to initialize the build and 

development directories. Finally, the setup.bash file in the development directory was sourced so 

that packages in this workspace would be recognized by the ROS command line tools.  

$ catkin config –profile release -x_release 
$ catkin profile set release 
$ catkin config –cmake-args -DCMAKE_BUILD_TYPE=Release 
$ catkin build 
$ echo “source devel_release/setup.bash” >> ~/.bashrc 
$ source ~/.bashrc 

Cisst-saw 

Because the dvrk-ros package depends on both cisst and saw, the cisst-saw package had 

to be downloaded and built first. Cisst-saw has many dependencies that were installed before 

proceeding with the build.  

＄ sudo apt-get install libxml2-dev libncurses5-dev qtcreator swig libopenigtlink-dev flite cmake-curses-gui 
cmake-qt-gui libopencv-dev subversion gfortran libcppunit-dev fluid 

＄ cd ~/catkin_ws/src 
＄ git clone https://github.com/jhu-cisst/cisst-saw --recursive 

To successfully build cisst-saw with catkin, however, a few more steps were necessary. First, a 

separate CMake file had to be downloaded and run with cmake. After running make on the 

results of cmake, one of the generated shell files had to be sourced. Finally, the paths to several 

CMake files had to be explicitly defined and exported. After doing these steps in that order, cisst-

saw was built with catkin.  
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$ mkdir build 
$ cd build 
$ wget https://raw.githubusercontent.com/jhudvrk/sawIntuitiveResearchKit/share/dvrk.cisst.initial.cmake 
$ cmake ../ 
$ cd .. 
$ make 
$ echo “source ~/catkin_ws/src/cisst-saw/build/cisstvars.sh” >> ~/.bashrc 
$ source ~/.bashrc  
$ export sawRobotIO1394_DIR = “~/catkin_ws/src/cisst-saw/sawRobotIO1394/” 
$ export sawIntuitiveResearchKit_DIR = “~/catkin_ws/src/cisst-saw/sawIntuitiveResearchKit/” 
$ export sawTextToSpeech_DIR = “~/catkin_ws/src/cisst-saw/sawTextToSpeech/” 
$ export sawControllers_DIR = “~/catkin_ws/src/cisst-saw/sawControllers/” 
$ catkin build 

 
Dvrk-ros 

The process to build dvrk-ros was much simpler than that of cisst-saw, as it simply 

needed to be cloned and built. The reason for this is that much of dvrk-ros depends on cisst-saw, 

so as long as cisst-saw is built correctly, dvrk-ros will have no problems being built.   

$ cd ~/catkin_ws/src 
$ git clone https://github.com/jhu-dvrk/dvrk-ros 
$ catkin build 

Dvrk-ros is not yet part of the cisst-saw package as it contains approximately 30MB of CAD 

files that are irrelevant to users of cisst-saw. 

Installing FPGA Firmware 

Though the FPGA firmware contains a module that allows itself to be updated via the 

IEEE-1394a interface, it had to initially be uploaded via the onboard JTAG interface. The JTAG 

interface is much slower and unfortunately requires a more expensive cable. However, it was 

necessary for the initial upload of the FPGA firmware to the onboard PROM.  

To upload firmware via the JTAG interface, a Xilinx Integrated Synthesis Environment 

(ISE) was used. Because the newest Xilinx ISE, Vivado, does not support the Spartan-6 FPGA 

family, for which the firmware was written, the older Xilinx ISE 14.7 had to be used instead. The 

software package was downloaded from the Xilinx website using the segmented download 
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option, which downloads the package as four smaller zipped files rather than a single large 

zipped file. Doing this allowed the installer to check the integrity of each package before 

attempting to install its constituents. Once the install was complete, the JTAG cable drivers and 

libraries were installed. 

＄ sudo apt-get install libusb-dev 
＄ sudo apt-get install git-core gitk git-gui libusb-dev build-essential libc6-dev-i386 fxload 
＄ cd ~ 
＄ git clone git://git.zerfleddert.de/usb-driver 
＄ cd usb-driver/ 
＄ make 
＄ sudo ./setup_pcusb ~/14.7/ISE_DS/ISE/  

The following lines were added to ~/.bashrc. 

LM32_TOOLS=/opt/gcc-lm32/bin  
XILINX=~/14.7/ISE_DS  
export XILINX  
HOST_PLATFORM=lin64  
export HOST_PLATFORM  
XILINX_BIN=${XILINX}/ISE/bin/${HOST_PLATFORM}  
export XILINX_BIN  
PATH=${PATH}:${XILINX_BIN}:${LM32_TOOLS} #XILINX_EDK=${XILINX}/ISE/EDK  
XILINX_CSE_TCL=${XILINX}/ISE/cse/tcl  
export XILINX_CSE_TCL  
export XKEYSYMDB=/usr/share/X11/XKeysymDB export DISPLAY=:0 
 
function loadXilinx() {   

     # use settings32.sh if your system is 32-bit                                                     
     if [ -f ~/14.7/ISE_DS/settings64.sh ]; then                     
          . ~/14.7/ISE_DS/settings64.sh                               
     fi                                                                        
 } 

 
The ~/.bashrc file was then sourced to apply these changes. The repository containing the 

necessary firmware files was cloned.  

＄ git clone https://github.com/jhu-cisst/mechatronics-firmware.git 

The most important file in the repository is FPGA1394-QLA.mcs, as this was the hex file that 

was uploaded to the PROM. The cable drivers had to be preloaded before opening Xilinx 

iMPACT, which was used to upload the firmware.  



16 
 

＄ export LD_PRELOAD=~/usb-driver/libusb-driver.so 
＄ cd ~/14.7/ISE_DS/ISE/bin/lin64 
＄ ./impact 

The FPGA1394-QLA.ipf iMPACT programming file, which contains information about how to 

program the PROM, was opened. The Boundary Scan screen, which opens by default, contains a 

high-level schematic of the FPGA controller architecture. On this screen, FPGA1394-QLA.mcs 

was assigned as the configuration file for the M25P16 SPI PROM device. The firmware was then 

uploaded. With the firmware now installed, it could be updated in the future via the IEEE-1394a 

interface, which is a much simpler process. The cisst-saw package contains a command line tool, 

pgm1394, which condenses the entire firmware upload process to one line. 

＄ pgm1394 <board-id> <path to FPGA1394-QLA.mcs> 

Because the IEEE-1394a interface is used for this method, the board ID must be specified, 

whereas it did not have to be for the JTAG method. Cisst-saw contains another command line 

tool, qladisp, for verifying the boards are working correctly. Qladisp is also invaluable for 

troubleshooting, as it provides hardware feedback and FPGA status information. 

 
Figure 5. Screenshot of the output of qladisp. 
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Connecting the Controller Boards to the da Vinci Surgical System 

The FPGA1394-QLA controller boards do not connect directly to the da Vinci Surgical 

System manipulators; instead, the controller board must be connected to a da Vinci Manipulator 

Interface Board (dMIB), which itself is connected to a manipulator. Because the design for the 

dMIB is not open-source, however, the dMIBs could not be fabricated onsite, so they were 

ordered from the dVRK supply chain. 

For this project, the relevant components of each dMIB were two VHDC168-F, two 

DB9-M, and one DL1-156R-F connector. One dMIB was used per manipulator, and it was 

connected to the manipulator’s DL1-156R-M cable. Each dMIB was connected to two 

FPGA1394-QLA controller boards through the VHDC168-F and DB9-M connectors for motor 

signals and motor power, respectively.  

Calibration 

I/O Configuration File Generation 

The programs in the cisst-saw and dvrk-ros packages depend on an I/O configuration file, 

which contains information about the individual joints of the da Vinci Surgical System 

manipulators. The MATLAB program configGUI was used to generate these files. ConfigGUI 

requires the calibration file for a manipulator before its I/O configuration file can be generated. 

The calibration files for PSM1, PSM2, ECM, MTML, and MTMR were obtained through a 

contact at Intuitive Surgical, Inc. After selecting the appropriate calibration file from within 

configGUI, the manipulator name was specified and the I/O configuration file was then 

generated. The board IDs and digital input settings were left as their default values.  
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Current Calibration 

To ensure that the motor current requested by the FPGA would be the current that 

actually drove the motors, a current calibration was performed. The command line program 

sawRobotIO1394CurrentCalibration was used to complete the calibration. The syntax for this 

program is 

$ sawRobotIO1394CurrentCalibration -c <path to I/O configuration file> 

The path to the I/O configuration file had to be provided so that the current offset values could be 

updated following the calibration. The current calibration was done by requesting a null current 

on each manipulator joint, reading the current feedback, and setting the feedback as the offset. 

Performing this current calibration ensured that the requested current would be the actual current 

in the future.  

Testing with sawRobotIO1394QtConsole 

After updating the I/O configuration file with the correct current offsets, the FPGA1394-

QLA controller board set was tested on a da Vinci Surgical System manipulator to ensure proper 

operation using the program sawRobotIO1394QtConsole. The syntax for this program is 

$ sawRobotIO1394QtConsole -c <path to I/O configuration file> 

This program opened a GUI from which the individual joints of the specified manipulator could 

be controlled with sliders. The GUI also provided the same feedback as the qladisp tool in a 

more aesthetic format. Qladisp and sawRobotIO1394QtConsole were both used extensively 

throughout the troubleshooting process.  

PID Tuning 

Each type of manipulator (MTM, PSM, ECM) has an associated PID configuration file 

which was downloaded from the jhu-dvrk Github repository. However, because the PID 
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parameters in this file were specifically for the system at JHU, some tuning was necessary. The 

program sawIntuitiveResearchKitQtPID facilitated this, and it was used with the syntax 

$ sawIntuitiveResearchKitQtPID -i <path to I/O configuration file> -p <path to PID configuration file> -a 
<arm name> 

 
Because sawIntuitiveResearchKitQtPID does not offer I/O access, sawRobotIO1394QtConsole 

opens alongside it. The PID parameters for individual joints can be tuned within the 

sawIntuitiveResearchKitQtPID GUI. The GUI also provides an option for setting the current 

manipulator position as a target position. So, a target position for the manipulator was set and the 

manipulator was moved to various different positions. The option for the manipulator to attempt 

to reach the target position as quickly and stably as possible was then selected. This process was 

repeated several times with slightly altered PID parameter values until an optimal set with little 

overshoot was found.  

ROS Control 

With the FPGA1394-QLA controller boards and the cisst-saw package working correctly 

and the manipulators properly calibrated, the da Vinci Surgical System could now be controlled 

through ROS as facilitated by the dvrk-ros package. However, whereas the cisst-saw programs 

required an XML configuration file, dvrk-ros required a JavaScript Object Notation (JSON) file, 

which had to be written. The JSON file specified the file paths for the I/O and PID configuration 

files, as well as other parameters needed by the dvrk-ros software, such as the period of the ROS 

control loop. 

  Because dvrk-ros is based on ROS, roscore had to be running in the background for its 

programs to run. This was accomplished by simply opening another terminal, typing roscore, 

and pressing enter. Roscore essentially allows ROS nodes to communicate. After starting 

roscore, the program dvrk_console_json was started with the syntax  
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$ rosrun dvrk_robot dvrk_console_json -j <path to JSON file> 

Dvrk_console_json started a GUI which contains all the functionality of the cisst-saw programs 

as well as some features specific to dvrk-ros. Dvrk_console_json also creates many ROS topics 

that can be used to control the manipulator or get feedback about its state by publishing or 

subscribing to them, respectively. 

Upon opening dvrk_console_json, the software state was DVRK_UNINITIALIZED. 

Homing a manipulator was the only possible action in this state, so homing had to be performed 

before the manipulator could be controlled through the ROS interface. After homing, the 

software state was DVRK_READY. From this state, a number of other states could be set which 

made the manipulator controllable. To change the state, a new terminal was opened and a 

message specifying the desired state was published to the set_robot_state topic. The syntax for 

this was  

$ rostopic pub /dvrk/<manipulator name>/set_robot_state std_msgs/String “data: ‘<desired state>’” 

One topic that was used for testing was the DVRK_POSITION_JOINT state. When in this state, 

the manipulator was controlled by a dVRK node subscribed to the set_position_joint topic. So, 

by publishing to this topic, the manipulator could be controlled.  

CONTROLLING THE ENDOSCOPE WITH OCULUS RIFT 

Proof-of-Concept by Simulation 

Throughout the process of building the dVRK controller boards and integrating them 

with the full da Vinci Surgical System, there was downtime while waiting for parts to arrive. It 

was during this downtime that a simulation was developed in which real-world motion was used 

to control a virtual da Vinci Surgical System. Lacking at the time an Oculus Rift headset with 
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which to control the virtual da Vinci Surgical System, an Inertial Measurement Unit (IMU) had 

to be made.  

An IMU is a device which provides the orientation of an object in space. The Oculus Rift 

contains a highly optimized IMU which utilizes an accelerometer, magnetometer, and gyroscope 

for its orientation measurement. However, for the sake of time and because it was only being 

used for a simulation, the simple IMU utilized only an accelerometer and gyroscope and was far 

less optimized than that of the Oculus Rift headset. To make the IMU, an MPU9255 – an IC 

containing both an accelerometer and a gyroscope – was interfaced to an Arduino Nano on 

which ran a program to read measurements from the sensors and combine them into a stable, 

accurate measurement of the MPU9255 orientation. As there was not yet a reliable, open-source 

library for reading the MPU9255, code had to be written to accomplish this. The code was 

written in the Arduino language, which is simply a set of C and C++ functions.  

The Arduino communicated with the MPU9255 via Inter Integrated Circuit (I2C): a 

serial, half-duplex communication protocol. The Arduino library Wire.h was used for the code as 

it simplifies I2C communication by providing functions for issuing requests to and reading the 

responses from a slave device. The MPU9255 was the slave device in this case, while the 

Arduino played the role of master. The accelerometer and gyroscope measurements were stored 

in the registers of the MPU9255 as the high and low bytes of 16-bit signed integers at the 

following addresses: 

3B:  ACCEL_XOUT_H 
3C:  ACCEL_XOUT_L 
3D:  ACCEL_YOUT_H 
3E:  ACCEL_YOUT_L 
3F:  ACCEL_ZOUT_H 
40:  ACCEL_ZOUT_L 
43: GYRO_XOUT_H 
44: GYRO_XOUT_L 
45: GYRO_YOUT_H 
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46: GYRO_YOUT_L 
47: GYRO_ZOUT_H 
48: GYRO_ZOUT_L 
 

Due to limitations of I2C, the bytes had to be read one at a time and the high and low bytes were 

combined into a single value after they were acquired. This was done by bit-shifting the high 

byte eight bits to the left and adding it to the low byte.  

Some orientation information can be acquired using only the accelerometer or the 

gyroscope alone, but a more reliable measurement is given by using both sensors simultaneously. 

The simplest sensor fusion method is known as a complementary filter, which was implemented 

for the simulation. There are better methods, such as Kalman filtering, but they are more 

complex and unnecessary for a proof-of-concept. The Oculus Rift headset, for example, uses 

well-optimized Savitzky-Golay filtering to achieve a smooth and accurate measurement of its 

orientation.8 A complementary filter combines the accelerometer and gyroscope data in a way 

that cancels their respective weakness while taking advantage of their strengths. The 

accelerometer on the MPU9255 outputs the acceleration relative to free-fall in each of the three 

Cartesian directions. It is therefore straightforward to calculate from the accelerations the tilt of 

the accelerometer relative to the direction of the force of gravity. So, accelerometers provide a 

direct measurement of the angular position of an object. However, translational acceleration of 

the accelerometer will affect the angular position calculation. Fortunately, a gyroscope is 

completely unaffected by translational motion and outputs only the rate of change in its yaw, 

pitch, and roll. The problem with using a gyroscope to find the angular position is that its output 

must be numerically integrated to do so, which introduces drift. Because the sampling time is by 

necessity discrete, small errors in the integration will accumulate over time. The complementary 

filter utilizes both sensors in the following way 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛼𝛼(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝜃𝜃𝑑𝑑𝑑𝑑) + (1 − 𝛼𝛼)𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 
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where θold and θnew are the previous and current calculations of the angle, respectively, gyroθ is 

the angular rate as outputted by the gyroscope, accθ is the angle as calculated from the 

accelerometer outputs, dt is time between measurements, and α is a parameter that can be tuned 

to improve the stability of the output. The complementary filter, if correctly tuned, combines the 

short-term stability of the gyroscope with the long-term stability of the accelerometer to provide 

a calculation of the angle that is accurate and fairly stable over time.  

The program to read the raw sensor data and convert it into a useful orientation 

measurement was implemented on an Arduino Nano, which sent the orientation information to 

the control computer via the serial port at 115200 baud. A node, imu_serial_data_reader, was 

written in Python to read this information from the serial port and publish it in the appropriate 

form as a JointState message to the joint_states_robot topic. This topic was used in conjunction 

with a Unified Robot Description File (URDF) by the robot_state_publisher package to 

manipulate a virtual da Vinci Surgical System in rviz, a tool for ROS visualization. The virtual 

da Vinci Surgical System was created in SolidWorks, and this CAD model was exported with the 

sw_urdf_exporter plugin to obtain the URDF. Finally, a launch file was written to 

simultaneously start the imu_serial_data_reader, robot_state_publisher, and rviz. The 

orientation of the simple IMU could then be used to control the outer pitch and yaw of a virtual 

manipulator. In this way, a proof-of-concept was achieved by means of a simulation. 

Accessing the Oculus Rift Inertial Measurement Unit 

While the complementary filtered IMU was sufficient for a proof-of-concept, a more 

complex IMU was necessary for smooth translation of sensor orientation to the joints of the da 

Vinci Surgical System. The Oculus Rift headset has such an IMU, so an Oculus Rift DK2 was 
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acquired for the project. A number of open source programs were investigated as a means for 

reading the IMU data.  

Before proceeding with these investigations, however, a graphics card capable of 

interfacing with the Oculus Rift had to be acquired. Though it was not necessary to do any 

rendering to the Oculus display, there was a minimum requirement on the graphics card for the 

headset to even be detected by the computer. The Department of Computer Science at the 

University of Innsbruck had a high-end computer with a graphics card that exceeded the 

minimum requirement, and it was lent to MCI for this project. Now, with two computers, there 

were two options: 1) Run nodes across both computers – one for reading the Oculus Rift and one 

for controlling the da Vinci Surgical System, or 2) run all nodes on the Oculus-capable 

computer. Because it was of interest to verify the repeatability of the software setup, the second 

option was chosen. Therefore, Ubuntu was installed on the Oculus-capable computer along with 

ROS, cisst-saw, and dvrk-ros.  

It was determined that the open source ROS packages ros_ovr_sdk and 

oculus_rviz_plugins from Oregon State University would work best for the project. These 

packages were downloaded from the OSUrobotics GitHub repository and built with catkin. 

$ cd ~/catkin_ws/src 
$ git clone https://github.com/OSUrobotics/ros_ovr_sdk.git 
$ git clone https://github.com/OSUrobotics/oculus_rviz_plugins.git 
$ catkin build 

The ros_ovr_sdk package contains a node, ovrd, which allows access to the internal sensors of 

the Oculus Rift headset. Running this node, followed by opening rviz and adding the 

OculusDisplay plugin, granted access via ROS to the Oculus Rift headset orientation 

information.  
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Manipulator Control with Oculus Rift 

To control a da Vinci Surgical System manipulator with the Oculus Rift headset, the 

Python node used for the proof-of-concept simulation was modified. The node was renamed to 

oculus_dvrk for this portion of the project. The principle was the same: subscribe to one topic, 

convert to the appropriate message type, and publish to another topic. In this case, the topic 

subscribed to was /tf, which is where the OculusDisplay plugin in rviz published the Oculus Rift 

IMU data. The topic published to was set_position_joint, and the dVRK state was changed to 

DVRK_POSITION_JOINT prior to running the Python node. The message type of the Oculus 

Rift IMU data was TFMessage, which was converted into a JointState message for the 

set_position_joint topic.  

 

Figure 6. Five separate terminals were necessary for controlling a manipulator with Oculus Rift. The other two terminals in this 
screenshot were for echoing the /tf and set_position_joint states. 
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The steps to achieve control of a manipulator with the Oculus Rift were: 

1. Start roscore. 
2. In a new terminal, run dvrk_console_json with the appropriate JSON file. 
3. Home the manipulator. 
4. Set the state to DVRK_POSITION_JOINT. 
5. In a new terminal, run ovrd. 
6. In a new terminal, run rviz and add the OculusDisplay plugin.  
7. In a new terminal, run oculus_dvrk.  

 
Future Improvements 

Though the project was a success, the current system is a prototype at best and there is 

much room for improvement. Three possible improvements will be briefly discussed in this final 

section. ASU and MCI will continue to collaborate on this project, and the proposed 

improvements will be implemented in the future. 

The first and most obvious improvement would be to control the ECM itself with the 

Oculus Rift headset. In the interest of time and for the sake of achieving motion control of a 

manipulator, a PSM was controlled instead. The mechanics and everything about the system for 

the ECM would be the same, except a larger power supply would be necessary and there would 

be an extra step in the current calibration. The ECM brakes current would have to be calibrated, 

which is done by running sawRobotIO1394CurrentCalibration with the -b option. So, for the 

ECM, the current calibration would have to be performed twice: once for the joints and once for 

the brakes. The ECM I/O configuration file is special as it contains information about the brakes 

in addition to the normal information.  

The second improvement would be to stream the endoscope camera video output to the 

Oculus Rift headset display. As both the da Vinci Surgical System master console and the 

Oculus Rift headset use a stereoscopic video display, streaming to the Oculus Rift would not be 
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unlike how the system was intended to work. The cisstStereoVision library would likely be of 

use for this feature.  

The final proposed improvement would be to write a launch file to automate the 

initialization process for controlling the ECM with the Oculus Rift. In its present state, the 

system requires five separate terminals to be opened and there are seven steps that have to be 

performed in exactly the right order. However, if a launch file was written, as with the proof-of-

concept simulation, the entire process would be condensed to a single line.  

$ roslaunch oculus_dvrk oculus_dvrk.launch 
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CODE APPENDIX 

Simple IMU Arduino Code (.ino) 

#include "Wire.h" 
 
#define MPU9255_ADDRESS   0x68 
#define WHO_AM_I          0x75 
#define ACCEL_XOUT        0x3B 
#define ACCEL_YOUT        0x3D 
#define ACCEL_ZOUT        0x3F 
#define GYRO_XOUT         0x43 
#define GYRO_YOUT         0x45 
#define GYRO_ZOUT         0x47 
 
const double pi = 3.14159265358979; 
 
int i, j; 
int16_t a[3]; 
int16_t g[3]; 
int16_t m[3]; 
byte device_id; 
byte error; 
byte acc_address[] = {ACCEL_XOUT, ACCEL_YOUT, ACCEL_ZOUT}; 
byte gyro_address[] = {GYRO_XOUT, GYRO_YOUT, GYRO_ZOUT}; 
double roll, pitch, rollRate, pitchRate, rollAngle, pitchAngle, dt; 
 
void setup() { 
  Wire.begin(); 
  Serial.begin(115200); 
 
  Serial.println("Initializing I2C communication with MPU9255..."); 
  //Check that the device ID stored in the WHO_AM_I register matches the 
known ID of 0x73 for the MPU9255 
  //This is to ensure that the device is properly connected 
  device_id = read(WHO_AM_I, 1); 
  Serial.println(device_id == 0x73 ? "Communication with MPU9255 successful" 
: "MPU9255 not found"); 
   
  while(!(device_id == 0x73)); //Don't continue to loop() if ID check fails 
 
  dt = micros(); 
  rollAngle = 0; 
  pitchAngle = 0; 
} 
 
void loop() { 
  for(i = 0;i < 3;i++){ 
    a[i] = read(acc_address[i], 2); 
    g[i] = read(gyro_address[i], 2); 
  } 
 
  //Convert accelerometer data to degrees and gyroscope data to 
degrees/second 
  pitch = atan2(-a[1], a[2]) * 180.0 / pi;  



31 
 

  roll = atan2(-a[0], a[2]) * 180.0 / pi;   
  pitchRate = g[0] * 500.0 / 32768.0; 
  rollRate = g[1] * 500.0 / 32768.0; 
   
  //Complementary filter 
  rollAngle = 0.98 * (rollAngle + rollRate * (micros() - dt) / 1000000.0) + 
0.02 * roll; 
  pitchAngle = 0.98 * (pitchAngle + pitchRate * (micros() - dt) / 1000000.0) 
+ 0.02 * pitch; 
  dt = micros(); 
  Serial.print(pitchAngle); Serial.print(" "); Serial.println(rollAngle); 
} 
 
int16_t read(byte valueAddress, int bytesToRead){ 
  //Specify the register address from which to read 
  Wire.beginTransmission(MPU9255_ADDRESS); 
  Wire.write(valueAddress); 
  error = Wire.endTransmission(); 
 
  //Read value from specified register 
  //When reading the device ID, only one read needs to be performed as the ID   
is one byte 
  //The acc and gyro values are two bytes with the high and low bytes 
alternating e.g. ACC_XOUT_H, ACC_XOUT_L, ACC_YOUT_H, etc 
  //Since the high byte is read first, the value is bit shifted right 8 times     
before being added to the low byte 
  Wire.beginTransmission(MPU9255_ADDRESS); 
  Wire.requestFrom(MPU9255_ADDRESS, bytesToRead); 
  if(bytesToRead == 1){ 
    return Wire.read(); 
  } 
  else{ 
    return (Wire.read() << 8) + Wire.read(); 
  } 
  error = Wire.endTransmission(); 
} 
 

imu_serial_data_reader.py 

#!/usr/bin/env python 
 
import roslib 
import rospy 
import sys 
import serial 
from math import pi 
from sensor_msgs.msg import JointState 
 
jnt_msg = JointState() 
 
arduino = serial.Serial('/dev/ttyUSB0',115200) 
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def control_simulation(): 
 jnt_pub = rospy.Publisher('/joint_states_robot', JointState, 
queue_size = 10) 
 rospy.init_node(‘imu_serial_data_reader', anonymous = True) 
 
 roll = 0 
 pitch = 0 
 deg_to_rad = pi / 180 
 
 jnt_msg.position = [0,0,0,0,0,0,0,0,0,0,0,0,0] 
        jnt_msg.name = ['linear_box_left_joint', 
                        'PJ_1_left_joint', 
                        'PJ_2_left_joint', 
                        'PJ_3_left_joint', 
                        'PJ_4_left_joint', 
                        'PJ_5_left_joint', 
 
                        'AJ_1_left_joint', 
                        'AJ_2_left_joint', 
 
                        'left_linear_tool_joint', 
                        'left_outer_roll_joint', 
                        'left_outer_wrist_pitch_joint', 
                        'left_outer_wrist_yaw_joint', 
                        'left_outer_wrist_open_angle_joint'] 
 
 while not rospy.is_shutdown(): 
  angles = arduino.readline().split() 
 
  try: 
   float(angles[0]) 
   float(angles[1]) 
 
   roll = float(angles[0]) 
   pitch = float(angles[1]) 
  except ValueError: 
   pass   
  except IndexError: 
   pass 
 
         jnt_msg.position[0] = roll * deg_to_rad 
         jnt_msg.position[1] = pitch * deg_to_rad 
 
  jnt_msg.header.stamp = rospy.Time.now() 
  jnt_pub.publish(jnt_msg) 
  
 
if __name__ == '__main__': 
 control_simulation() 
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Simulation Launch File (.launch) 

<?xml version="1.0"?> 
 
 
<launch> 
 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find 
ingramds_davinci)/launch/urdf.rviz" required="true" /> 
 
  <group ns="ingramds_davinci"> 
    <param name="robot_description" textfile="$(find 
ingramds_davinci)/robots/MCI_davinci.URDF" /> 
    <param name="rate" value="100"/> 
    <rosparam param="source_list" subst_value="True"> 
      [joint_states_robot] 
    </rosparam> 
    <node name="joint_state_publisher" pkg="joint_state_publisher"                                                           
type="joint_state_publisher" /> 
    <node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher" /> 
  </group> 
 
      <node name="joint_publisher" 
            pkg="ingramds_davinci" 
            type="imu_serial_data_reader.py" 
 output="screen"/> 
 
</launch> 
   
 

oculus_dvrk.py  

#!/usr/bin/env python 
 
import roslib 
import rospy 
import sys 
import serial 
from math import pi 
from sensor_msgs.msg import JointState 
from tf2_msgs.msg import TFMessage 
 
jnt_msg = JointState() 
 
def callback(data): 
 global roll, pitch 
 roll = data.transforms[0].transform.rotation.x 
 pitch = data.transforms[0].transform.rotation.z 
 
def control_daVinci(): 



34 
 

 jnt_pub = rospy.Publisher('/joint_states_robot', JointState, 
queue_size = 10) 
 imu_sub = rospy.Subscriber('/tf', TFMessage, callback) 
 rospy.init_node('oculus_dvrk', anonymous = True) 
 
 roll = 0 
 pitch = 0 
 deg_to_rad = pi / 180) 
 
 jnt_msg.position = [0,0,0,0,0,0,0] 
 
 while not rospy.is_shutdown(): 
         jnt_msg.position[0] = roll * deg_to_rad 
         jnt_msg.position[1] = pitch * deg_to_rad 
 
  jnt_msg.header.stamp = rospy.Time.now() 
  jnt_pub.publish(jnt_msg) 
  
 
if __name__ == '__main__': 
 control_daVinci() 
 

PSM1 JSON File 
/* -*- Mode: Javascript; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ 
{ 
    "io": { 
        "period": 0.0005, // in seconds 
        "port": 0 // default is 0 
    } 
    , 
    "arms": 
    [ 
        { 
            "name": "PSM1", 
            "type": "PSM", 
            "io": "sawRobotIO1394-PSM1-30084.xml", 
            "pid": "sawControllersPID-PSM.xml", 
     "kinematic":"psm-large-needle-driver.json" 
        } 
    ] 
} 

 


