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Abstract 

Surveying methods for monitoring rivers traditionally rely on tedious field work. Such point or 

line sampling however does not fully illustrate these dynamic environments in their temporal 

and spatial heterogeneity. Data representing the “riverscape” at high resolution is in 

increasing demand to assess geomorphic dynamics, flow hydraulics, in-stream habitat and 

other process-oriented investigations. Parallel advancements in light-weight, small-scale 

unmanned aerial systems (UAS) and photogrammetry using Structure from Motion (SfM) 

algorithms have resulted in an explosion of uses for inexpensive and easily obtained remotely 

sensed data. Here point clouds, the primary output of a SfM approach, are evaluated for their 

potential to provide data towards holistic monitoring of rivers. Point clouds utilized in this 

study stem from the Remotely Piloted Aircraft multi Sensor System (RPAmSS), a small-scale 

UAS equipped with a consumer grade camera for 2D and 3D mapping. For two different river 

systems, both subject to the EU-LIFE restauration project, multispectral imagery was acquired 

at hyperspatial resolutions (<0.1m) and point clouds were photogrammetrically derived. First, 

the point clouds were referenced to address observed shifts in their absolute location. Further 

preprocessing steps include subsampling and noise filtering. Five classification and ground 

filtering methods were applied and assessed for their performance on SfM point clouds. 

Results show that the proprietary software LAStools offered the overall best functionality. The 

open-source Cloth Simulation Filter was identified as fast and reliable bare-earth extraction 

tool. Further results are the workflow for the calculation of ratio based indices on point clouds 

using merged RGB and NIR data. Finally the submerged bathymetry was estimated considering 

the refraction of water. Compared to sonar cross sections underwater topography was 

derived at RMSE = 0.33m before and RMSE = 0.19m after refraction correction. 
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1 Introduction 

1.1 Motivation 

Traditionally river ecosystem management relies on tedious field sampling methods for 

monitoring purposes. Such approach inevitably forces river scientists to look at these 

ecosystems with a narrow field of view that doesn’t illustrate the three-dimensionality and 

dynamics of these complex systems (Carbonneau and Piégay 2012). The modern fluvial 

geomorphology and ecology domain recognizes that natural processes of biotic and abiotic 

nature are to be seen as part of a holistic river system, which can only be represented by non-

localized and continuous data capture (Fausch et al. 2002, Wiens 2002, Carbonneau and 

Piégay 2012, Dietrich 2016). A flexible multidisciplinary approach operating at broad spatial 

and temporal scales is hence needed to perform monitoring that is truly representative to the 

matter. Only remote sensing techniques hold the potential to objectively capture river 

environments in such a way. Solely spatially inclusive and comprehensive data facilitates a 

better understanding of their dynamics. 
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Fluvial landscapes are unique in a way that in order to study these environments they require 

a blend of multiple disciplines: hydrology, ecology and geomorphology (Pool 2002). Logically 

the remotely sensed data needs to reflect the information valuable for these fields of study. 

An arrangement of sensors is needed to obtain data on the heterogenic characteristics of the 

lotic ecosystem at high-resolution. The recent advances in remote sensing technologies, 

especially in the unmanned aerial system (UAS) sector, allow for the desired time and cost 

efficient data collection, facilitating broad scale surveys at frequent time scales (Javernick et 

al. 2014).  The ongoing research and development project RPAmSS at Carinthia University of 

Applied Sciences evaluates the potential of a “Remotely Piloted Aircraft multi Sensor System” 

for the fast and high-resolution capture of multidimensional environmental data. With two 

test sites in scope flights are carried out at the rivers Gail and Drau, near Villach, Austria. Both 

test sites are subject to the LIFE-Project, a river revitalization program within the framework 

of the EU LIFE-Nature conservation. Within the LIFE-Project valuable habitats for flora and 

fauna are better protected and flood protection is being improved. As a progressive approach 

to capture data to monitor these environments the fixed-wing RPAmSS is currently equipped 

with an APS-C size sensor camera offering high-resolution multispectral imagery. RGB and NIR 

imagery has been acquired throughout different seasons since the start of the project. The 

low altitude flights enable capturing imagery with very small ground sampling distance (GSD), 

making for a well suited basis for studying the complex environments present on these sites 

(Zander 2015). Not only can this imagery be used for common raster based analyses but dense 

point clouds representing the terrain and features may be derived photogrammetrically. 

Although light detection and ranging (LiDAR) based systems are nowadays commonly used for 

topographic analyses of the environment they are laborious and costly to implement for river 

assessments. For terrestrial laser scans the sensor has to be set up at numerous points 

throughout the river system, in order to capture entire fluvial landscapes, making it a labor-

intensive procedure (Smith and Vericat 2014). Airborne LiDAR on the other hand is expensive 

because of the numerous turns the plane has to perform to achieve straight parallel survey 

lines over the area of interest. This is due to the curvilinear nature of rivers (Pool 2002). To 

acquire information within the submerged part of the channel so called bathymetric LiDAR 

systems are required (Kinzel et al. 2013). Fully quantifying topography of river environments 

by LiDAR depends on two separate systems with different wavelengths dry and water covered 

areas. Here a photogrammetric approach for point cloud creation, based on a flexibly 
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deployed UAS, can potentially deliver information of dry bed topography and submerged 

bathymetry with one technology (Woodget et al. 2015). Although the combined use of UAS 

and so called Structure from Motion photogrammetry offers relatively inexpensive acquisition 

three dimensional data such approach has seen little evaluation for applications in riverine 

science and management (Fonstad et al. 2013b). Yet, with the objective to monitor river 

systems holistically, point cloud data holds certain advantages over two-dimensional data. 

Analyzing point clouds aims directly at gaining insights in the three dimensional structures of 

river environments (Pool 2002, Fonstad et al. 2013a). Point cloud methods help to preserve 

the accuracy of the original data while comprising of more information in regard to 

topographic change, than a typical raster analysis. Relevant not only to geomorphological 

features of the fluvial system point clouds can also facilitate studies on the riparian vegetation 

in steep features of river banks (Brasington et al. 2012, Brodu and Lague 2012, Lague 2014). 

However investigations on the heterogeneous surfaces of vegetation and ground require 

separation into relevant classes. Distinguishing between the diverse morphological properties 

of features in fluvial environments yields a wide range of applications in the field of river 

sciences and management including geomorphic change detection (Legleiter 2014b, 2014a) 

analyses on dune fields and vegetation hydraulic roughness (Barnea et al. 2007), channel bed 

dynamics (Milan et al. 2007), cliff erosion and rockfall characteristics (Rosser et al. 2005, 

Abellán et al. 2006) and grain size distribution (Hodge et al. 2009a, 2009b). 

 

1.2  Goals and Problem Definition 

The main goal of the current study lies in the evaluation of using photogrammetric point cloud 

data in for river monitoring applications. Central to this study is the classification and bare-

earth extraction of Structure from Motion point clouds. Further areas of application addressed 

here are the calculation of spectrally derived indices and the quantification of submerged 

bathymetry. 

It will be examined whether photogrammetric point clouds, obtained from the RPAmSS, offer 

sufficient geometrical and positional accuracy towards remotely sensed fluvial studies. 

Necessary preprocessing steps will be determined and the collected data will be assessed for 

its’ representation of the channel.  

Furthermore the study evaluates how well various available classification and ground filtering 

algorithms can differentiate riverine features based on their geometric properties. Hereby 



   8 
 

indices derived from the identified ground surface, such as soil surface roughness, are the 

basis for erosion models and other applications crucial to river management (Marzahn et al. 

2010, Grims et al. 2014). Current classification approaches are primarily designed for LiDAR 

data. However it is known that photogrammetric approaches based on low-altitude platforms 

can produce point clouds with point densities comparable or higher than airborne LiDAR, with 

horizontal and vertical precision in the centimeter range (Fonstad et al. 2013b). Although a 

more detailed representation of a scene is achievable with a SfM approach the passive 

acquisition method does not allow for penetration of vegetation resulting in different 

geometrical properties compared LiDAR point clouds. With these differences in mind the 

algorithms will be tested for their performance on SfM point clouds representing river scenes. 

 

The RPAmSS acquired point cloud data depicts of spectral information in RGB and NIR. 

Exploiting this information to derive ratio based indices, such as the common Normalized 

Difference Vegetation Index, can be an important reference for fluvial scientist.  Currently for 

spectrally based analyses predominantly raster data are utilized. As part of this study a 

method to create multispectral point clouds will be established to assess the benefit of three 

dimensional vegetation and water indices for river monitoring. 

 

Topography is the most basic descriptor of geomorphology and holds potential for a range of 

applications such as geomorphic change detection (Legleiter 2014a, 2014b), analyses channel 

bed dynamics (Milan et al. 2007) and the prediction of velocity conditions which are critical to 

riverine habitats (Carbonneau and Piégay 2012). Of specific interest to fluvial science is the 

submerged part of the channel. The remotely sensed estimation of submerged bathymetry 

however still heavily relies spectral depth approaches based on raster data (Carbonneau and 

Piégay 2012). Currently there is only one published example of using a UAS-SfM method for 

the quantification of submerged topography (Woodget et al. 2015). A SfM approach however 

holds the advantage over spectral depth or bathymetric LiDAR acquisition of channel bed 

information that it can be used as a singular technique for dry and wet topography. While 

previous work solely used 2D grid data the current study seeks to utilize point clouds for the 

quantification of submerged bathymetry. 
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1.3 Expected Results  

The major aim of the study lies in evaluating the potential of photogrammetric point clouds 

for spatially inclusive monitoring of river environments. The following intermediate results are 

expected: 

 Pre-processed multi-temporal point cloud datasets containing multispectral 

information 

 Classified point clouds taking geometry in consideration as well as an objective 

comparison of results by the different methods used 

 A method for the derivation of ratio based indices from multispectral point clouds 

 A workflow to quantify submerged topography with SfM point clouds and spatial 

comparison of results to sonar reference 

 Validation of results concerning the achieved accuracy and precision, taking expert 

knowledge into account 

1.4 Thesis Overview 

The thesis is organized as follows: In the “State-of-the-Art” chapter previous work is reviewed 

and analyzed. The background for remotely sensing river environments is given with special 

focus on the fluvial vegetation and geomorphology. Furthermore a technical overview is given 

for unmanned aerial systems and the specifics of the platform used for data capture in the 

current study. The basis of gathering and working with point cloud data is explained with 

particular focus on Structure from Motion photogrammetry. Furthermore a thorough review 

of up to date point cloud classification and ground filtering methods is given. The background 

for the calculation of spectral indices is introduced and the quantification of fluvial topography 

is outlined in its theory. The chapter “Comparison of point clouds” lays the basis of validation 

techniques applied to results which forms the knowledge base needed in order to draw 

meaningful conclusions towards the potential of point clouds remotely monitoring river 

ecosystems. The conceptual model to carry out the study is presented in the “Methods”. The 

study area and the data acquisition approach is described to get a full understanding of the 

basic conditions. All main steps that are undertaken, point cloud pre-processing, classification, 

calculation of spectral indices and estimation of underwater topography are elaborated on in 

detail. Respective results are presented in the “Results” chapter and are subsequently 
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discussed based on qualitative assessment and expert opinion. Conclusions are drawn and 

ideas on future work on point cloud analyses of natural environments are indicated. 

2 State-of-the-Art 

2.1 River Vegetation 

The characteristics and distribution of riparian vegetation and plant communities in the 

vicinity of rivers are defined by climate, topography, water availability and the chemical and 

physical properties of the soil. Not only does the quantity and properties of the vegetation 

give insight in the ecosystem function but they can directly affect stream channel 

characteristics (Wang et al. 2014). Erosion processes are moderated by root systems in the 

river banks as they are able to bind deposited sediment. Woody debris on the other hand can 

initiate bank erosion as well as sediment deposition by deflecting the stream flow (Gippel 

1995). Freshly generated bare earth surface, induced either by such process can be 

repopulated by well adapted pioneer species which at later successional stages are replaced 

by species that can grow in more shaded and protected conditions. These dynamic changes in 

plant communities have to be recognized when observing fluvial systems with a holistic view. 

Knowledge about the abundant river vegetation also presents key information for 

hydrodynamic modelling as used for analyzing flood hazards. It is of particular importance to 

understand the hydraulic resistance of fluvial vegetation in order to draw conclusions of how 

the flow is affected by the surface roughness of the flora (Darby 1999). 

2.2 Geomorphology of Rivers 

The morphology of fluvial systems is subject to many factors. Generally rivers are influenced 

by the discharge and slope of the stream as well as the sediment load and the respective 

sediment size (Wang et al. 2014). It is known that rivers adjust their profile and pattern to 

minimize stream power as present in flowing water to ideally reach equilibrium where the 

influencing factors are balanced (Lane 1954). However due to changes in seasonal flow and 

other manipulating biotic and abiotic factors true equilibrium is never reached. Lane 1954 

states that “fluvial morphology is therefore the science of the form as produced by the action 

of flowing water”. The geomorphology of natural dynamic riverine systems is hence a 

constantly changing environment. 
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Analyzing the characteristics of the fluvial geomorphology in terms of grain size distribution, 

sediment deposition and eroded surface is thus crucial to gain better understanding of the 

river characteristics and dynamics.  

2.3 Unmanned Aerial Systems / RPAmSS 

The use of Unmanned Aerial Systems (UAS) for environmental monitoring and remote sensing 

purposes has increased dramatically in the past decade (Watts et al. 2012). When compared 

to manned airborne surveying methods UAS have advantages in terms of their ability of low 

altitude flights and the resulting higher resolution imagery captured. Furthermore UAS offer 

higher flexibility due to their operational readiness and higher weather independence. 

Unmanned Aerial Vehicles (UAVs) as a platform can host a multitude of sensors, ranging from 

multispectral sensors, small scale LiDAR units, meteorological sensors, thermal sensors to 

recently developed hyperspectral sensors (Zhou et al. 2009). The rapidly developing 

technology in UAS has great potential for revolutionizing natural science observations similar 

to those transformations that GIS and GPS brought to the community two decades ago (Watts 

et al. 2012). 

The current research and development project RPAmSS at the Carinthia University of Applied 

Sciences evaluates the potential of a “Remotely Piloted Aircraft multi Sensor System” for the 

fast and high-resolution capture of multidimensional environmental data 

(rpamss.cuas.at/rpamss). The project focuses on assessing dynamic river environments and 

quantitative studies of meteorological and air quality data based on a multi sensor UAV 

platform. The “BRAMOR”, a fixed wing UAV (as seen in Fig. 1) by C-ASTRAL Aerospace Ltd. 

currently hosts a high resolution digital sensor for capturing RGB and NIR imagery and an array 

of meteorological sensors. Furthermore the RPAmSS can be equipped with “the world’s 

smallest and most lightweight hyperspectral camera for UAVs” (www.rikola.fi). In the course 

of the project multi-temporal imagery has been captured and point clouds were derived 

photogrammetrically containing multi-spectral (RGB-NIR) point coloring. These datasets are 

in the main focus of the current study. 
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Fig. 1 The C-ASTRAL Bramor UAV taking off at the Feistritz study site. The fixed wing platform is launched by catapult and auto 
piloted during the entire flight by communication to the ground station, which is visible on the right. 

2.4 Point Clouds 

In general a point cloud is defined as a set of points in a three dimensional coordinate system, 

where every point is defined by X Y Z coordinates (Otepka et al. 2013). The entity of points in 

a cloud is most often intended to function as model for physical world surfaces and three 

dimensional shapes. The point cloud data exhibits the characteristics of the applied 

measurement method. Point clouds are mostly generated by scanning an existing scene 

whereby the sensor determines whether features can be penetrated, resulting in volumetric 

point data or only the surface information is obtained. There are multiple approaches 

common in geodata acquisition, such as laser scanning, sonar, radar and photogrammetry. 

While every point in an acquired point cloud is a vector with the first three components fixed 

as the points coordinates it may have additional attributes stored, e.g. the intensity of a 

returned signal, the return pulse number or assigned color. Often point clouds are obtained 

primarily to derive digital surface models (DSM) or terrain models (DTM) from them. In GIS 

and remote sensing these are well-established formats for topographic data and benefit from 

a large library of fast algorithms dedicated to their analysis. However these common raster 

data are limited by their ability to store only on Z value for every X Y location. The derivation 
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of such two dimensional products hence also leads to a reduction of the original information 

contained in the point cloud. By interpolation of the raw point cloud data on a 2D grid position 

accuracy spatial resolution is lost (Lague 2014). Thus in the course of the current study the 

focus lies on utilizing “raw” point clouds and exploiting their three dimensional properties in 

regard to riverine monitoring purposes. 

 

2.5 Point Cloud Acquisition Approaches 

Point cloud data used in physical geography have a variety of sources with active sensor 

systems, emitting light, radar or sound pulses to measure distances as well as passive sensor 

systems where distance information is generated in processing. To capture the morphology 

of fluvial systems remotely two main techniques are common practice: LiDAR and 

photogrammetry. The following chapter reviews these two well established approaches. 

2.5.1 LiDAR 

Light Detection and Ranging (LiDAR) for precise acquisition of surfaces in digital form has seen 

rapid growth since the early 2000s and is go-to standard for accurate elevation data. LiDAR is 

based on an active sensor emitting light pulses (often laser). The time between the emission 

and the reception of a reflected light pulse signal is precisely measured and the distance to 

the object is calculated. Every returned pulse signal generates a point in three dimensional 

space generating a dense point cloud as the scan result. LiDAR point clouds are captured either 

from airborne platforms or from ground stations, also called terrestrial laser scanning (TLS). In 

airborne laser scanning mainly small air planes and helicopters are made use of to carry the 

sensor, with some recent approaches also utilizing unmanned aerial vehicles (UAV) as a 

platform (Wallace et al. 2012, Wallace et al. 2014). Today multiple return or full-waveform 

systems are commonly used, which can capture up to five return signals or a continuous return 

signal wave per emitted light pulse. Since the laser pulse penetrates vegetation it enables 

retrieval of the last pulse revealing terrain underneath it. With a multiple-return system the 

vegetation is mapped as true three dimensional model, useful for metric calculations such as 

canopy height and volume estimations. The full waveform analysis of LiDAR data hence gives 

us the ability to evaluate the three dimensional structure of features above ground, given that 

the signal penetrates the feature. Due to the high cost involved in LiDAR sensors and 

acquisition methods it is seldom used for frequent mappings, especially in respect to fluvial 

studies. 
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2.5.2 Photogrammetry 

Point clouds, however may also stem from passive sensors using photogrammetric 

approaches with overlapping nadir-looking or oblique imagery. The underlying principle for 

retrieval of three-dimensional information from imagery is triangulation, similar to the way 

humans estimate the distance to an object based on stereo vision. Photogrammetry 

reconstructs 3D scenes by matching conjugate points between images taken from different 

viewpoints. With developments in advanced computer vision photogrammetry has been 

undergoing a methodological revolution over the last decade. While traditionally the exact 

camera position and ground control points were essential to generate 3D models from 

imagery todays image matching algorithms eliminate the need for that. This fairly new 

approach is commonly called Structure from Motion photogrammetry (SfM). It differs from 

traditional photogrammetry mainly in two aspects. Points can be identified and matched in 

imagery at differing scales, viewing angles and orientations, which is of particular benefit 

when small unstable UAV platforms are considered. Secondly, the collinearity equations used 

in the algorithm are solved without information of camera positions or ground control. The 

data produced with the SfM-photogrammetry approach are dense, arbitrarily scaled point 

clouds. To transform the point cloud to map coordinates and correctly scaled elevations, 

desirable for use in earth sciences, two methods can be applied. The SfM algorithm not only 

computes the 3D coordinates of the surface but also the camera location and orientation. If 

high accuracy geographic coordinates and orientation of the camera are known from a real 

time kinematic GPS (RTK) and inertia measurement unit (IMU) they can then be assigned to 

the tie points created during the initial image alignment stage. Likewise surveyed ground 

control points (GCPs) that are identifiable in the imagery can be used to georeference and 

scale the reconstructed scene. 

Multiple software packages integrate SfM-photogrammetry algorithms for fully automatic 

creation of point clouds. At the forefront of proprietary Structure from Motion solutions are 

Agisoft PhotoScan (www.agisoft.com) and Pix4D (www.pix4d.com). Established open-source 

software packages are VisualSFM (ccwu.me/vsfm), Bundler (http://www.cs.cornell.edu/ 

~snavely/bundler) with lesser known alternatives like Apero/MicMac (logiciels.ign.fr/ 

?Micmac) and SURE (http://www.ifp.uni-stuttgart.de/publications/software/sure). The rapid 

and largely automated processing of imagery with such software package allows the 

reconstruction of 3D scenes for non-experts and with relatively inexpensive equipment. 
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However deeper knowledge about the sensors, parameters and general SfM workflow is 

useful to identify and minimize sources of error in the reconstructed surface. 

Imagery for a SfM approach to generate 3D models can be obtained from almost any camera 

system. Sensors can range from consumer-grade digital cameras to professional multi- and 

even hyperspectral sensors. The availability of high-resolution off the shelf compact cameras 

with low weight makes the SfM-photogrammetry approach particularly suited for UAS 

applications. The low cost and flexibility of such a system makes it attractive alternative to 

LiDAR in particular when frequent surveys are needed. In contrast to a LiDAR approach 

photogrammetry does however not penetrate features, due to the passive nature of the 

sensor. A SfM derived point cloud therefore only represents the “seen” surface, and has 

limitations when ground elevation point need to be extracted, e.g. under dense canopy forest. 

However SfM-photogrammetry holds the advantage over LiDAR that all spectral information 

of the original imagery is attached to points. Since the spectral information and the point 

geometry both have the same imagery origin a temporal mismatch is avoided. 

For the SfM algorithm to work best the identification of tie points the image acquisition should 

be carried out with at least 60% overlap (Kraus 2007). Depending on the focal length of the 

sensor head the amount of images needed to be taken in order to achieve the wanted over- 

and sidelap varies. A shorter focal length and hence a more wide angle lens requires less 

images to be taken if flight height and speed are constant. The base to height ratio defines the 

percentage of overlap, where the height is the distance of the sensor to the surface and the 

base is the distance on the surface from one image to the next. Base height ratios for a UAV 

SfM approach are between 1:2 and 1:5, which in turn equivalates to 60% and 80% overlap 

considering a 28mm focal length on a 35mm sensor camera at 100m AGL. 

The imagery obtained of a scene is processed with the first step of the SfM algorithm being 

the identification of features, also referred to as keypoints. Such features are points that have 

a high probability of recognition in different images and are most likely where the texture of 

scene has apparent changes, e.g. corners, intersecting edges (see Fig. 2) 
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Fig. 2 Example UAV imagery (Bramor mission 02.10.2015 RGB Gail) with matched keypoints highlighted. The keypoints were 
identified by the A-KAZE algorithm (Alcantarilla et al. 2013)  implemented in the open-source SfM photogrammetry software 
Regard3D (www.regard3d.org).  

Common algorithms used for the identification of keypoints mainly stem from the computer 

vision domain. The Scale Invariant Feature Transform (SIFT) object recognition system 

currently is the most popular open-source algorithm used in SfM and is integrated in several 

software packages (Lowe 2014). Proprietary SfM solutions do not publically share the 

information about underlying feature detection algorithms, although PhotoScan is said to 

utilize a “SIFT-like” algorithm (Dandois and Ellis 2013). For every keypoint a complex descriptor 

is then computed in order to find correspondence of them across multiple images. Typically a 

filtering step follows the recognition of corresponding keypoints to discard geometrically 

inconsistent matches. At this stage the common keypoints of any image pair are tested for 

their so called collinearity, where all point that lie on a single line remain aligned in this way. 

The relationship between the two images is hereby specified in the fundamental matrix (F-

matrix) calculated by the Eight-point algorithm (Longuet-Higgins 1981). While other methods 

are applicable a common approach for the evaluation of the F-matrices, hence the collinearity 

validation, is the RANdom SAmple Concensus (RANSAC) method (Fischler and Bolles 1981). 

The sampling step is the iterated until there is a 95% chance only inlier keypoints remain. The 

actual Structure from Motion stage starts after the keypoint filtering using only the 
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geometrically correct feature correspondences. Here the 3D geometry (structure) of a scene, 

the camera position and orientation (extrinsic parameters) and the cameras intrinsic 

parameters are simultaneously estimated employing bundle adjustment algorithms (Ullman 

1979). Hereby bundle refers to bundles of rays connecting the camera centers to point in 3D 

space and adjustment refers to the minimization of a cost function that reflects measurement 

errors in the localization of image features in the object space, also known as reprojection 

errors. The minimization of the cost function concurrently optimizes the 3D structure of the 

scene as well as the camera parameters. Traditional photogrammetry, in contrast, requires 

known ex- and intrinsic camera parameters. The SfM phase outputs the camera models and 

poses along an arbitrarily scaled 3D point cloud, referred to as sparse cloud. In order to 

georeference and scale this cloud either ground control points (GCPs) with known XYZ 

coordinates can be used or the camera location and orientation can be exploited in case high 

accuracy RTK-GPS and IMU measurements are available (Smith et al. 2016). For high precision 

typically the two georeferencing methods are used in junction, where the camera locations 

are used to initialize the bundle adjustment and GCPs to further improve the solution. The 

incorporation of GCPs is also known to mitigate systematic errors in the reconstructed model 

such as the often observed so called “bowl” effect (James and Robson 2014). Once a sparse 

georeferenced point cloud along with the camera parameters is obtained a typical last step in 

the workflow is to densify the cloud by the means of a multi-view stereo (MVS) algorithm. 

Hereby a densification of at least two orders is achieved. While there are many different 

algorithms for multi-view stereo image matching available today they all heavily rely on 

texture information of the original imagery. The final 3D will exhibit gaps where texture is not 

reliably displayed due to low resolution imagery, motion blur, over- and underexposed images 

or scenes with smooth or glossy surfaces. Insufficiently textured areas and patches where 

visibility is constrained by occlusion are filtered out during the MVS phase and result in gaps 

in the model. Such “holes” in a reconstructed scene, where data is essentially missing due to 

a lack of clear texture in the imagery, is a key restriction of a SfM-MVS approach. Provision of 

quality input imagery by careful consideration of texture limiting factors is hence essential for 

the creation of a point cloud without gaps. Hereby a well and evenly illuminated scene is 

critical to capture texture - analog to contrast alterations in the imagery, especially when UAS 

with consumer grade cameras are considered. 
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A LiDAR based acquisition of point clouds in comparison is also restricted in the ability to scan 

reflective or light absorbent surfaces (water bodies, windows of buildings etc.) though being 

an active sensor the illumination of a scene is irrelevant. On the contrary a SfM approach with 

fine texture present in high resolution imagery is capable of producing higher density point 

clouds when compared to sophisticated LiDAR systems (Gehrke et al. 2010). This applies in 

particular to the horizontal point density considering airborne capture of surfaces.  

For any kind of point cloud based analyses and related processing methods an awareness of 

the differences in the acquisition of the data is crucial. Methods for point cloud classification 

and change detection, as presented in the following chapters, were often first and foremost 

developed for data originating from laser scanners. This fact will hence be taken into careful 

consideration when assessing results from the SfM generated point clouds in scope of this 

study. 

2.6 Point Cloud Classification 

Point cloud data is increasingly used for monitoring purposes in many sectors, from 

commercial surveying to scientific purposes. Applications of 3D point data range from 

infrastructure surveying and planning (Uddin 2002) to environmental monitoring purposes 

including precision forestry and agriculture (Arnó et al., Moskal et al. 2009, Wallace et al. 

2012). Classification of the points is relevant to the majority of the application fields. The most 

common example is the identification of ground points and separating them from vegetation 

or buildings in urban scenes. Classification of river scenes is also an important step to enable 

further analyses specific to field of study, such as the ground class relevant to 

geomorphologists. Hereby surfaces are most commonly classified based on their surface 

characteristics, e.g. to distinguish between fresh rock surface and rockfall (Brodu and Lague 

2012). Further scientific interests, where classification of point clouds is advantageous, include 

grain size distribution (Heritage and Milan 2009, Hodge et al. 2009b, 2009a), identification of 

sand dunes (Nagihara et al. 2004) and hydraulic roughness indices of vegetation (Antonarakis 

et al. 2010). The automated classification of point clouds, however still imposes difficulties, 

especially when natural surfaces are considered: 1) The large amount of data representing a 

scene, typically with several millions of points in a set and datasets with billions of points likely 

to become more common as technology evolves. Such large clouds make manual classification 

infeasible as well as the visualization and processing of the data is challenging even for modern 

PCs. 2) The heterogeneity and complexity in the geometry of natural surfaces, as present in 
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river environments. Artificial structures such as buildings or other infrastructure typically 

depict of much simpler geometric characteristics than natural surfaces (e.g. sharp corners or 

planar surfaces) and classification of such scenes is often carried out by applying geometrical 

models to the surfaces, as possible with the RANSAC method (Schnabel et al. 2007, Huang and 

You 2013, Serna and Marcotegui 2014). Natural environments on the other hand exhibit vastly 

non-uniform characteristics at a large range of spatial scales (e.g. type and age of vegetation, 

variable grain size, seasonal morphological changes etc.) (Brodu and Lague 2012).  3) The 

variable degree of resolution (point density) and shadowing effects introduced by the 

acquisition method. With both LiDAR and photogrammetric point cloud generation the 

roughness and geometrical complexity of natural surfaces leads to some extent of 

overshadowed areas and possibly missing data albeit a changing sensor location. A 

classification method should therefore be insensitive to these areas or factoring in that data 

is locally missing (Brodu and Lague 2012). Furthermore spatially sub-sampling the original 

point cloud helps mitigate classification errors induces by variable point density. 

Currently most readily available algorithms for point cloud classification label (or segment) 

points based on a small set of predefined characteristics, often separating only ground from 

non-ground points. The identification of these predefined classes is typically based on a 

filtering technique where few parameter thresholds define the affiliation of a point with a 

specific class. Common approaches can be categorized as surface-based, slope-based, 

morphological and multi-scale. The surface based methods (also called interpolation-based) 

identify ground points by assigning a weight based on the distance of each point in the cloud 

to an assumed (interpolated) surface. On the basis of the weights ground is separated from 

non-ground features (Kraus and Pfeifer 2001). Slope-based filters operate based on the local 

relationship between point elevation and distance between points. Often a triangulated 

irregular network is utilized to investigate in the local slope (Axelsson 2000). This is based on 

the assumption that high local slopes indicate points that do not belong to the actual terrain. 

A user defined threshold for the maximum local slope identifies the non-ground points. 

Morphological filters use dilatation and erosion based on set theory to generate opening and 

closing operators. Applied to a greyscale image such as a DSM, where the input is assessed in 

terms of spatial structure rather than numerical values (variability in grey tones), local minima 

can be used to refer to ground points (Zhang et al. 2003). Another form of filter uses a multi-

scale approach where surfaces properties are classified at variable scales. Such technique is 
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typically applied in an iterative manner to separate feature heights from terrain elevations. 

Evans and Hudak 2007 introduced the Multiscale Curvature Classification (MCC) algorithm to 

classify discrete return LiDAR data as ground and non-ground supported by a maximum 

positive surface curvature threshold. The CANUPO algorithm (Brodu and Lague 2012) is also 

based on the multi-scale principle but can handle more complex class separation, given that 

multi-scale descriptors for features are created by the user by prior segmentation of the 

original cloud. 

Results are typically stored as unsigned character in a scalar field with the header 

“Classification” as the standard for LiDAR data suggests (ASPRS 2011) where every is assigned 

a value linked to the classification value as presented in the table below.  

Table 1 ASPRS Standard LiDAR Point Classes (ASPRS 2011) 

0 Created, never classified 

1 Unclassified 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Low Point (noise) 

8 Model Key-point (mass point) 

9 Water 

10 Reserved for ASPRS Definition 

11 Reserved for ASPRS Definition 

12 Overlap Points 

13-31 Reserved for ASPRS Definition 

 

All classification techniques for point clouds are predominately developed for their application 

on LiDAR data. It is hence important to keep the differences of LiDAR generated and SfM 

derived point clouds in mind. A key difference is the lasers ability to penetrate (active sensor) 

vegetation and the resulting true 3D structure in vegetated scenes opposed to the 

reconstruction of visible features with a SfM approach (passive sensor). To be noted is also 

the fact that available software capable of classifying point clouds is first and foremost 

developed for LiDAR data also means that spectral information is not exploited although SfM 

point clouds naturally feature RGB values. Furthermore slightly moving vegetation and scenes 

with little texture in the imagery pose challenges for SfM based 3D modelling and can result 

in missing data or noise in the point cloud. Holes in the cloud can cause edge effects where 

misclassification occurs. Noise often present as randomly distributed points above and below 
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ground is identified as vegetation (if not filtered prior to classification) by most algorithms due 

to the similarity in 3D structure.  

 

2.7 Ratio-based Spectral Indices 

Ratio-based spectral indices are widely-used in remote sensing and GIS application that use 

raster images. The most known example being the Normalized Difference Vegetation Index 

(NDVI) which delivers evidence of the amount of chlorophyll in living plant foliage  (Rouse et 

al. 1974) using spectral reflectance measurements acquired in the visible red and near-

infrared regions. In the case of vegetation such index hence can be related to the plants status 

and health. However a raster based approach neglects the morphology of features although 

considering morphology and changes therein holds great potential for analyses and 

understanding the dynamics of nature.  Calculating ratio-based indices directly on point clouds 

is a rarely discussed topic but has definite advantages over a 2D grid approach. The 

separability between features is increased and with spectral information natively being 

available in an image matching based point cloud acquisition approach the interpolation and 

reduction of the data to grid format can be omitted (also see 2.4 Point Clouds). The NDVI has 

been used to identify and remove vegetation from an urban environment (Maltezos and 

Ioannidis 2015) and in a small scale rape plant experiment to evaluate potential for estimating 

the NDVIs spatial distribution (Zhang et al. 2015). In riverine monitoring the NDVI is an 

important reference for identifying and analysis changes in riparian vegetation (Arneson 

2015). Whereas the NDVI is commonly used to detect and inspect vegetation the Normalized 

Difference Water Index was originally proposed by Mc Feeters 1996 to delineate open water 

bodies. Both these indices may be used as tools to explore and investigate the status of rivers 

in-depth and to understand their dynamics better. It is hence set out to calculate the NDVI 

and the NDWI directly on the multispectral point clouds subject to this study. The NDVI is 

defined as the normalized difference between the red and near-infrared values and calculated 

as follows: 

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

 𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 

The NDWI also uses principles similar to those that are used to derive the NDVI however 

utilizes the reflected green values from the visible spectrum instead of red: 
 

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁 −  𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 +  𝑁𝐼𝑅
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2.8 Fluvial Topography 

In line with the “riverscape” concept described by Carbonneau and Piégay 2012, that is 

viewing and understanding rivers as continuous elements as part of a wider landscape with 

high spatial and temporal dynamics, the quantification of river topography and their 

associated bedforms is of fundamental interest to fluvial geomorphologists. Data reflecting 

the spatial and temporal heterogeneity of fluvial topography is hence in high demand though 

presently river science still heavily relies on field data acquisition based on simple point or line 

sampling. Spatially continuous high-resolution three dimensional data to quantify exposed 

and submerged fluvial topography offers valuable information to river science as well as 

management. Application areas range from hydraulic and investigations in sediment dynamics 

to in-stream habitat assessments and geomorphic change detection particularly of interest for 

river restorations (Woodget et al. 2015).  

Apart from traditional field sampling methods there are a few common remote sensing 

approaches to investigate fluvial topography. Hereby quantifying submerged areas remains 

the most challenging part especially at fine scale. Two well-established approaches are briefly 

discussed here. The spectral-depth approach as passive technique and bathymetric LiDAR as 

active approach. 

A spectral-depth approach utilizes raster imagery often obtained by aerial surveying and is the 

most widely used technique for remotely sensed flow depth and topography estimations in 

the submerged part of the channel. The method is based on an empirical correlation between 

the spectral properties of the imagery and water depth data acquired in the field by point 

sampling. Obtained correlation measures are applied to the entity of image to derive water 

depth estimations that can then be converted to topographic data. The maximum water depth 

achieved with this method is reported to be 1m (Lejot et al. 2007, Carbonneau and Piégay 

2012). Though the method can be applied to imagery without great computational effort it 

requires the collection of field data near time of imagery collection. Data gathered for a 

spectral-depth approach are hence study site and image specific due to changing illumination 

of the scene and water conditions affected by turbidity and surface roughness (Legleiter et al. 

2009, Legleiter 2012, Dietrich 2016). 

LiDAR is known to deliver accurate representations of topography for exposed terrain. 

However, the active laser signal of typical LiDAR systems for topographic surveys is in the 

infrared range (1064 or 1550 nm) and absorbed by water. Quantification of the submerged 
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topography is hence not feasible due to lacking return signals. Though recent developments 

in LiDAR technology suggest great potential for obtaining underwater surface information by 

using blue/green signals (Kinzel et al. 2013), also known as bathymetric LiDAR. By using an 

active signal for scanning results are less influenced by turbidity and surface roughness and 

are hence able to obtain information at greater water depths than passive approaches. 

Maximum water depths of ~4m are reported for such systems (Kinzel et al. 2013) although 

shallow waters, e.g. close to the bank are known to cause bias (Bailly et al. 2010). Currently 

bathymetric LiDAR solutions to obtain data for river monitoring purposes are also still limited 

by availability and high cost of such systems as well as the ability to scan only submerged parts 

of the channel. However a recent proposal of Lague 2016 (unpublished work) introduces the 

use of an airborne LiDAR system that combines two separate wavelengths, 532 nm for 

submerged topography and  1064 nm for exposed topography of river systems (see Fig. 3).  

 

Fig. 3 Schematic representation of modern airborne LiDAR systems combining two scanners at different wavelengths. Topo-
bathymetric LiDAR to quantify exposed as well as submerged riverine topography is a recent proposal by Lague 2016. 

 

Woodget et al. 2015 suggest an alternative method for the quantification of fluvial topography 

by using SfM-Photogrammetry on high-resolution UAV imagery. They show that submerged 

channel parts can be accurately reconstructed provided that the water is not affected by 

turbidity and / or surface roughness. For clear water their study revealed maximum errors of 
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0.05m down to a water depth of 0.7m. These results however cannot be obtained directly 

from the data since the refractive properties of water need to be accounted for. Submerged 

data points are affected by refraction which leads to an overestimation of true bed elevation. 

In their 2015 study Woodget et al. correct for this effect by multiplying the apparent water 

depth with 1.34, the refractive index for clear water which reportedly varies less than 1% with 

altered temperature and salinity conditions (Westaway et al. 2001). The apparent water depth 

was identified by manual delineation of the river boundary manually and introduction of an 

assumed water surface. They based their work on SfM-photogrammetry derived DEMs of 

0.02m spatial resolution and proved that fluvial topography of both exposed and submerged 

may be derived from the data. A SfM approach hence has an advantage over previously 

discussed remote sensing techniques that typically require an additional data source when 

both wet and dry parts of the channel are intended to be surveyed. 

2.9 Comparison of Point Clouds 

The comparison and identification of differences between point clouds is an essential part of 

their use in analysis. An evaluation of discrepancies in three dimensional properties is required 

for spatial error evaluation as well as for the detection of changes. Common examples of point 

cloud change detection in the context of river monitoring are analyses of river bank erosion 

(O'Neal and Pizzuto 2011), landslide and rockfall dynamics (Jaboyedoff et al., Teza et al. 2008, 

Abellán et al. 2009), the evolution of braided river systems (Milan et al. 2007) or the evaluation 

of debris impacts on surface (Schürch et al. 2011).  

Existing methods to compare point clouds however often require gridding or meshing. A 

technique as such, common to earth sciences is the DEM of difference (DoD) method. This 

method compares two DEMs on a pixel-by-pixel basis resulting in the measured vertical 

distance between them. While being a well-known and fast technique it holds disadvantages 

when rough natural surfaces are to be compared. Gridding a point cloud representing a 

complex natural scene can be a difficult task (Hodge 2010, Schürch et al. 2011) and it is 

important to realize that the information density of a derived grid decreases proportionally to 

surface steepness (Lague et al. 2013). The level of surface detail is very much limited by the 

DEM resolution with surfaces that exhibit different characteristics at different scales. 

A method that does not require gridding or meshing of the point clouds is the cloud-to-cloud 

comparison (C2C). It presents a fast direct 3D comparison and is also suited for point clouds 

that exhibit 3D features such as overhanging parts, and hence overcomes the limitation of the 
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DoD technique. For each point in the source cloud the closest point in the reference cloud is 

obtained, the surface change is represented by the distance between the two points. The 

technique while being a fast way of detecting differences between clouds has limitations by 

being sensitive to outliers and point spacing as well as roughness.  

The cloud-to-mesh (C2M) approach compares a point cloud to a meshed surface as reference 

(Olsen et al. 2010). This method is known to work well on flat surfaces however when rough 

natural surfaces are considered meshing the reference point cloud can be complex and 

introduce error (Lague et al. 2013). Yet, the method could be applied when comparing a point 

cloud to a meshed reference DSM converted to a TIN, to obtain large scale surface changes. 

A method that allows for identification of differences in complex natural topographies is the 

Multiscale Model to Model Cloud Comparison (M3C2), recently introduced by Lague et al. 

2013. The approach does not require gridding or meshing of the point clouds that are intended 

to be compared. It is robust to rough natural surfaces by computing the distance between 

clouds along the normal surface direction and a confidence interval is computed for every 

measured distance taking surface roughness and registration errors in consideration (Lague et 

al. 2013). A local measure of cloud roughness and point density is used at every step of the 

calculation, making the method well suited for natural environments, such as river 

environments. In a case study by Lague et al. 2013 M3C2 was successfully used on TLS acquired 

point clouds of the Rangitikei canyon, New-Zealand, where geomorphological changes were 

obtained down to 6mm at 95% confidence. 

 

3 Methods 

3.1  Study areas 

The RPAmSS project currently has two study sites in scope. Both study areas are located in 

Carinthia, Austria and depict a river scene (see Fig. 4). Flights are carried out at a particular 

section of the rivers Gail and Drau respectively. The sections have been subject to the LIFE-

Project, a river revitalization program within the framework of the EU LIFE-Nature 

conservation. The LIFE-project aims at protecting valuable riverine flora and fauna better 

while improving flood protection. The plan of combining nature conservation and sustainable 

flood protection has been realized with the LIFE Upper-Drau project officially ending in 2011 

and the LIFE Gail project in 2014. To monitor the development of the study sites in all aspects 
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the RPAmSS project approaches the matter with high-resolution multi-dimensional data 

capture. Following the characteristics of the two study sites are described in more detail with 

smaller scale maps given for visual reference in Fig. 5. 

 

Fig. 4 General overview of the study site location 

The project site at the Upper-Drau is located in the area of Obergottesfeld, Austria (560m ASL). 

Apart from being addressed by the LIFE project Upper Drau it is also defined as NATURA 2000 

nature protection site. The area features the oldest Grey Alder forest in Austria and is host to 

endangered plant species such as the German Tamarisk or Dwarf Bulrush. Furthermore over 

140 species of birds, including 51 red-listed species and 19 native fish species were located 

(BMLFUW 2011). In the course of the LIFE project the river bed of the Drau in Obergottesfeld 

was widened and standing bodies of water were created. These measures are aiming at 

creating new habitats for flora and fauna while at the same time stabilizing the river bed and 

reducing the hazard of floods. In order to quantify the improvements over time the area is 

remotely monitored with the RPAmSS, covering approximately 3.5km². 

The second study area is located close to Feistritz at the river Gail (550m ASL). As mentioned 

before the site is also part of the LIFE conservation project and also received NATURA 2000 

status. Previously the section of the Drau was lacking ecological diversity and due to the high 

sediment transportation and deposition high costs for flood protection had to be covered. 
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With the remodeling of the Drau river bed and the construction of groynes as well as 

construction of still water bodies during the LIFE project habitats were improved 

quantitatively and qualitatively. Furthermore flood protection was enhanced by directing the 

river environment back to a more natural morphology (BMLFUW 2014). The study site 

currently is covered by RPAmSS flights over an area of approx. 0.9km². 

        

Fig. 5 Orthophoto overview maps of the two study sites based on Bramor missions flown in summer 2015. 

  

3.2  Geodata Sources 

For both of the previously described study sites multiple RPAmSS flights have been carried out 

and are still being carried out. Relevant to this thesis are the flights where imagery is acquired 

from which point clouds are then photogrammetrically derived. The system is currently able 

to capture high-resolution images with RGB as well as NIR information. To do so the BRAMOR 

is doing two consecutive flights, first equipped with a regular digital camera and then with the 

same camera model though modified for capturing NIR wavelength reflection. The camera 

used as sensor head is a consumer compact camera, a Sony a6000 with a 30mm lens, capable 

of taking images at 24.4 MP with its APS-C sized sensor. With a typical flight height of 100m 

above ground level the imagery depict of ground sample distances below 2cm. Typically 
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captured at 70% overlap and 70% sidelap the images are then processed in the Structure from 

Motion photogrammetry software PhotoScan by Agisoft to create high density point clouds 

and geometrically corrected orthophotos. PhotoScan aligns the imagery based on an image 

matching algorithm to create a sparse point cloud of tie points. The point cloud is then 

densified in a subsequent process. Computational results are influenced by the quality of the 

input imagery as well as the user defined settings for PhotoScan, an example for different 

depth filtering options is given in Fig. 6.  

 

Fig. 6 Subset of the Obergottesfeld study site processed in PhotoScan at high accuracy dense cloud creation with different 
depth filtering modes. A) Agressive depth filtering [114 mio points], B) Mild depth filtering [111 mio points]. Aggressive depth 
filtering yielded more points than the mild setting yet there is visibly more information in vegetatated areas. 

The current study seeks to utilize the georeferenced point cloud products from the RPAmSS, 

high density multi-temporal point clouds of both study sites with RGB and NIR information 

mapped to the points, in order to evaluate their potential for classification and change 

detection. Additional reference data depicts of DEM and DSM datasets of the study sites, 

which were obtained by airborne laser scanning in 2006 with a spatial resolution of 1m. The 

point cloud derived orthophotos will also be used to gain better understanding of the 

morphology represented in the point clouds as well as for specifying training areas for the 

classifier. Furthermore the orthophotos from the RPAmSS will aid as guidance for visual 

interpretation of respective results. 
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3.3 Concept 

This chapter will give an overview of the general methodology of how the study is performed. 

The main objectives undertaken are the preprocessing of the point clouds, followed by an 

evaluation of the classification and ground filtering methods. Subsequently the calculation of 

spectrally derived indices on SfM is tested and fluvial topography is estimated with particular 

respect to submerged part of the channel. All applied methods and retrieved results are 

discussed and validated using methods like the M3C2 algorithm presented in 2.9 Comparison 

of Point Clouds. 

Prior to the preprocessing step point clouds are derived from the RPAmSS imagery, which is 

not subject of this study. Currently available readily georeferenced point clouds with RGB and 

NIR information serve as the main input. Preprocessing of the point clouds includes the 

transformation to projected coordinate system as well as a check for alignment. Further 

preprocessing steps are the subsampling, referencing and the filtering of noise. Preprocessed 

point clouds are then in used to examine various classification and ground filtering algorithms.  

The multispectral properties of the data are exploited by the calculation of spectrally derived 

indices such as the Normalized Differenced Vegetation Index, a popular measurement in 

remote sensing. The point clouds are also examined for their ability to represent fluvial 

topography which is the most basic descriptor of geomorphology. The underwater topography 

is hereby quantified with specific focus on the refractive properties of water. 

For all obtained results visual interpretation including expert opinion is conducted. Output 

point clouds are validated by comparison to reference data and calculation of respective 

spatial errors. Hereby findings are discussed with regard to their suitability for river monitoring 

purposes. 
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3.4 Preprocessing 

Preprocessing of the SfM derived point clouds makes for a substantial part of the study. Data 

is hereby prepared for use as input in the analysis of the two study sites. Firstly the point 

clouds were transformed to a projected coordinate system to enable the calculation of 

neighborhood based measures which are often utilized in algorithms for point cloud 

processing. 

To reduce file sizes and to normalize point densities a suitable sub-sampling approach was 

determined and applied to all available datasets from the RPAmSS project. The horizontal as 

well as vertical point densities of SfM generated point clouds can be far higher than 

conventional LiDAR data, especially when low-flying UAS are concerned. The large data 

volumes, with clouds often reaching 108 points and sub-centimeter point densities, not only 

imposes computational challenges but induces uncertainty due to difficult validation at such 

fine scale. Sampling of point clouds in general can have a number of advantages, with most 

prevailing ones being: less processing time, normalization of point densities and the removal 

of duplicate points. Latter being a common effect of overlapping and uneven scan patterns in 

Fig. 7 Overview of the methodology. Input data given as rectangular boxes and processing steps as rounded boxes.  
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airborne laser acquisition. A sampling approach, while advantageous for stated reasons has to 

be chosen with care towards planned processing steps and derivative products as well as to 

preserve fundamental features in the cloud. The ideal sampling method can be also scene 

dependent, where different methods should be chosen for urban environments with many 

planar shapes (e.g. building walls and rooftops) and natural scenes with dispersed points 

representing forms of vegetation (e.g. branches of trees). 

Reducing the point densities of the SfM derived point clouds of the two study sites enables 

creating workflows, exploring methods for point cloud classification and topography 

estimation while still using the full spatial extent. The reduced file sizes simplify those 

processes in particular that require the user to define multiple parameters manually and 

algorithms have to be repeated many times to find an ideal solution. This is especially true for 

those point cloud processing tools designed to work with LiDAR data which are applied to the 

SfM point clouds subject to this study.   

The sub-sampled versions of the clouds were used as basis for fine alignment to the location 

of surveyed ground control points and hence referenced to their absolute position. Between 

acquisition dates systematical shifts in horizontal as well as in vertical direction are present 

amongst all given point clouds. These errors lead to a misalignment between the SfM point 

clouds and the actual surface when considering the available DTM as reference. As an example 

an error of 4m horizontal and 2.2m was identified when comparing the Feistritz 02.10.2015 

NIR data set against the LiDAR derived DTM (considering only areas not affected by 

geomorphic changes introduced in the river restoration project). It is not entirely clear where 

the origin of these geometric errors lies. However it is assumed that relying solely on the RTK 

determined positon and IMU derived orientation of the UAV (coordinates attached to 

imagery) in the generation of the point clouds caused the existing shifts. The inclusion of 

ground control point information during the bundle adjustment phase of the SfM algorithm is 

known to mitigate such errors (James and Robson 2014). A hybrid method where camera 

locations along with the three rotation angles are used to initialize the alignment of imagery 

and external GCP locations then further refine the model is commonly used and 

recommended (Fonstad et al. 2013b, Dietrich 2016, Smith et al. 2016) although not applied in 

for the RPAmSS data used for the current study. Manual referencing was hence required to 

allow for quantitative comparison of the point clouds to reference data. 
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As a last step in the preprocessing stage noise points were filtered to exclude false points from 

subsequent processing.  The ability to reconstruct a scene with a Structure from Motion 

approach is very dependent on the quality of input imagery. Distinct texture, equivalent to 

contrast differences in the imagery is essential for the identification of tie points (see also Fig. 

2), the creation of a geometrically correct dense point cloud and hence any further derivatives 

such as a TIN or DSM. However some natural surfaces have properties that display little 

texture. Particularly critical are smooth, reflecting or shadowed areas in the scene where 

multi-view stereo algorithms often fail to produce accurate detail. As mentioned before such 

patches are filtered in the MVS phase, however points that represent noise can remain. These 

false points are often present as low noise below the actual ground surface but can occur 

above and around features also. Further factors that can evoke geometrical noise in the model 

are motion blur, rolling shutter, shallow depth of field and image noise. While some SfM 

software packages, like the utilized PhotoScan can filter such noise by assuming the scene is 

of mainly planar, connected features (“Depth Filtering”). When reconstructing natural scenes 

this method will however remove valid points that belong to the finely structured surface of 

vegetation. The point clouds subject to this study are generated with moderate depth filtering 

applied in PhotoScan and do show some level of noise, in particular in the area of water 

bodies. Some noise is represented as sparse clouds of points and easily filtered by application 

of a statistical outlier filter by computing the mean distance from each point to all its neighbors 

and removing those with few neighbors based on the mean distance plus a number of times 

the standard deviation (multiplier typically defined by the user). However most scenes also 

suffer from noise below the ground surface where points are clustered at high density. These 

often isolated clusters are not identified as noise by the previously described statistical outlier 

filter. As a part of this study a noise filtering workflow consisting of three stages was developed 

and applied to the point clouds. The approach labels noise points with the class value 7 (ASPRS 

2011) which enables the exclusion of them for further processing and analysis. 

3.5 Classification 

In the current study four different classification techniques shall be evaluated for their 

potential to classify the SfM derived point clouds of the river scenes. The following paragraph 

is intended to give an overview of the general principles that underlie the classification 

methods applied here. A summary of the algorithms is given in Table 2 whereby the choice 

reflects some of the most common approaches as well as the availability through software 
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packages at hand. Photoscan and LAStools are proprietary and keep the exact functionality of 

their classification algorithms secret. CANUPO, the Progressive Morphological Filter and the 

Cloth Simulation Filter are available through open-source software CloudCompare and PDAL 

(PCL pipeline). 

Table 2 Overview of the point cloud classification algorithms applied in this study. 

Algorithm/Software Developer Filter description Parameters 

PhotoScan Agisoft Slope-based Slope 
Distance to ground threshold 
Cell size 

lasground,  lasheight, 
lasclassify of LAStools 

Martin Isenburg 
adapted from 
Axelsson 

Slope-based 
Progressive TIN 
densification 
 

Cell size 
Planarity for buildings 
Ruggedness for vegetation 
Distance to ground threshold 

CANUPO 
(CloudCompare plugin) 

Brodu and Lague 2012 Multi-scale 
dimensionality 

Dimensionality based class 
descriptor for range of scales 

Progressive 
Morphological Filter 
(PCL function) 

Zhang et al. 2003 Morphology-based Max window size 
Slope 
Distance threshold 
Initial distance 
Cell size 

Cloth Simulation Filter 
(CloudCompare plugin) 

Zhang et al. 2016 Surface-based 
Cloth simulation 

Cloth resolution 
Number of iterations 
Distance to cloth threshold 

 

 The developers of Photoscan do not share explicit information on the algorithms used 

in their ground classification module. The parameters required as input do however 

suggest a slope-based filter. 

 LAStools features a workflow that allows for classification of ground, vegetation, 

buildings and unclassified features and is the only software tested that can separate 

more than ground and non-ground in a semi-automatic way. The software requires a 

three phases to reach final classification results. Ground points have to be identified 

with lasground, a tool which the developer (Martin Isenburg) claims is a variation of 

the Axelsson 2000 TIN refinement algorithm and operates on multiple scales in its 

latest version lasground_new. The underlying principle is hence a slope-based filter 

where mainly depending on two parameters: a search window and a maximum slope 

angle criteria. Low points are decided as ground and a TIN is interpolated among them. 

The TIN is simplified by the criteria at each iteration. Once ground points are labeled 

as such the height of objects relative to the ground surface is calculated with the 

lasheight tool. In a last step the lasclassify function classifies above ground objects 
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based on a user defined distance to ground threshold. Natural features such as 

vegetation are separated from buildings by ruggedness and planarity criteria. 

 The CANUPO classifier segments point clouds based on a multi-scale dimensionality 

criterion and was originally developed specifically for natural environments (Brodu and 

Lague 2012). The concept behind this is that local dimensionality of features changes 

depending on the scale a location in the cloud is looked at. The classifier defines 

whether an object is more like a line (1D), a plane (2D) or whether points are 

distributed in volume of the considered location (3D). For a specific class this 

information is stored as a descriptor at multiple scales. A visual representation of how 

descriptors are composed is given in Fig. 8. These geometric signatures for feature 

categories are built in the training phase of the classification where parameter files are 

created by manual selection of points that represent a class. The classifier uses these 

parameter files to separate in a binary fashion, “one against one” (e.g. riparian 

vegetation and ground). A classification into multiple classes is currently not available 

with CANUPO and is hence to be carried out step by step which requires rigorous user 

input. 

 

Fig. 8 Dimensionality diagrams for four classes of a river environment at different scales. The degree of clustering 
around a dimensionality at a given scale is colored from blue to red (Brodu and Lague 2012). 

 The Progressive Morphological Filter (PMF) proposed by Zhang et al. 2003 uses a 

combination of erosion and dilatation to generate opening and closing operations to 

detect ground points. The filter operates in an iterative way where the user defines 

the initial window size that is moved through the data set and with each iteration the 

window size is gradually increased. Furthermore an elevation difference threshold is 

required as user input to determine how far away from the assumed ground surface 

points may be to still be counted as ground. The maximum slope angle parameter 
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ensures that in steep or hilly terrain ground won’t be mistakenly removed. The PMF is 

not a classifier per se since it does not label points but rather discards all non-ground 

points. 

 Very recently a new algorithm was suggested by Zhang et al. 2016 that falls into the 

surface-based filter category. The Cloth Simulation Filter (CSF) requires only “few easy-

to-set integer and Boolean parameters” to separate between ground and non-ground 

features. The identification of ground points is enabled by inverting the original point 

cloud, turning it upside down, and draping a simulated rigid cloth over it. The user 

defined cell size (cloth resolution) can be interpreted as the rigidity parameter of the 

cloth and hence the ability to nestle in depressions of the inverted surface. Assuming 

the simulated cloth is the closest possible to the actual ground surface a distance 

threshold will classify nearby points as ground and further points as non-ground. 

 

Fig. 9 Schematic illustration of the Cloth Simulation Algorithm (Zhang et al. 2016). 

3.6 Spectrally Derived Indices on Point Clouds 

To calculate two spectral indices relevant to riverine monitoring directly on the SfM derived 

point clouds from the RPAmSS project the data has to be prepared first. The RGB information 

and NIR information are gathered with separate cameras in consecutive flights. Processing the 

imagery in PhotoScan hence results in two point clouds, one RGB and one NIR colored. In order 

to obtain a ratio-based value the color information from both these datasets needs to be 

present on every point. To achieve a multispectral point cloud the shortest distance of every 

point in the NIR point cloud is calculated to the points in the RGB cloud. The NIR value is then 
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assigned in addition to the existing RGB values. This process inevitably requires correct 

absolute positioning and hence alignment of the two point clouds in three dimensional space. 

3.7 Bathymetry Estimation 

The quantification of the topography in submerged parts of the channel is a key interest of 

river science and management. The general scope of the current study lies in evaluating the 

potential of SfM derived point cloud data to monitor rivers in a holistic way.  While it was 

shown by Woodget et al. that a SfM approach is well suited given clear water conditions their 

analysis was purely based on 2D grid data. Here it was tested whether a similar method they 

applied is suitable using the 3D point clouds from the RPAmSS project and whether the 

topography of the river bed can be sufficiently represented for fluvial monitoring purposes. 

Hereby the workflow was laid out as follows: Firstly vegetation is removed from the point 

cloud using a ground filtering algorithm. From the bare-earth point cloud the river boundary 

was extracted by spectral threshold filtering. The obtained water edge was improved by 

iterative thresholding of point density. Extracted elevation points at the water boundary were 

used to generate a 2.5D mesh across the channel, which acts as the simulated water surface. 

For every submerged point the distance to the assumed water surface was calculated to derive 

the water depth. The refraction factor of 1.34 was then applied to the apparent water depth 

as it was suggested by Westaway et al. 2001 and Woodget et al. 2015 (see also 2.8 Fluvial 

Topography and Fig. 10). The difference between the original water depth and the corrected 

depth was added to the elevation value of every point within the submerged part of the 

 ℎ 

 ℎ𝐴 

Camera 

Actual point 

Initial point 

Water surface 

Channel bed 

Simple refraction correction 

  ℎ = 𝑛1 ×  ℎ𝐴 

Fig. 10 Simple scheme of how data points in the submerged part of the channel are affected by the refraction of water. 
Applying the refractive index of water (n1) to the apparent water depth (hA) corrects to the actual water depth (h). Figure 
adapted from Woodget et al. 2015, not to scale. 
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channel. The underwater topography corrected for refraction was then merged with the 

exposed topography in order to generate a point cloud that may be used as basis for analysis.  

To examine the representational capabilities of the SfM approach based on the RPAmSS 

acquired imagery with regards to submerged topography the data was held against reference 

point samples – sonar based measurements along cross sections with approx. 20m intervals. 

The sonar data was gathered on the 09.12.2014 and also serves as validation for the applied 

refraction correction. 

4 Implementation 

Dense point clouds produced in PhotoScan were provided in LAZ file format, a lossless 

compression of the LAS format originally used for LiDAR point clouds. For every point the X,Y,Z 

coordinates and the corresponding R,G,B information is stored. The following table gives an 

overview on all software used for processing the clouds and comparison between methods. 

 

Table 3 Overview of software used to process the SfM derived point clouds. 

Software CloudCompare LAStools by 
rapidlasso GmbH 

PDAL (Point Data 
Abstraction Library) 

PCL (Point Cloud 
Library) 

 

    
 cloudcompare.org rapidlasso.com pdal.io pointclouds.org 

License open-source BSD Some tools open-
source BSD others 
closed source. Full 
educational license 
through LASmoons 
sponsoring 

open-source BSD open-source BSD 

Version used 2.6.3 160710 1.1.0 through 
OSGeo4W 
distribution 

1.7.2 through 
OSGeo4W 
distribution 

User interface GUI, command-line command-line, 
rudimentary  GUI 

command-line command-line 

In-/Output formats 
used in this study 

BIN, ASCII, LAZ, SHP LAZ, SHP, BIL, TIFF LAZ LAZ 

Used for Visualization, 
Filtering, 
Classification, 
Change Detection 

Projection, 
Sampling, Noise 
Filtering, Ground 
Extraction, 
Classification, 
Boundary 
Identification 

Sampling, PCL 
based pipeline 
processing 

Sampling, Ground 
Extraction 

 

http://www.cloudcompare.org/
http://www.rapidlasso.com/
http://www.pdal.io/
http://www.pointclouds.org/
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4.1 Preprocessing 

4.1.1 Projection 

RTK correction data is provided in the European Terrestrial Reference System 1989 (ETRS89) 

by the Austrian Positioning Service (APOS). Point clouds received for the current study use 

ETRS89 with latitude/longitude for horizontal and meters for vertical referencing. However 

some further processing steps require projected coordinates since the algorithms applied rely 

on neighborhood functions. All clouds were hence projected into UTM coordinates (Zone 33N) 

using the las2las function of LAStools. 

4.1.2 Sub-sampling 

To find a well suited sampling approach four different methods available through the software 

PDAL, PCL and LAStools were tested. 1) PDALs decimation function is a straight forward 

random sampling method where every N-th point of the original data set is retained. 2) PDALs 

dartsample function identifies and discards points within a specified radius. It is initiated at a 

random point of the input cloud and only points that are further apart from each other than 

the user defined distance (radius) remain in the sub-sampled version of the cloud. It was found 

that CloudCompare uses the same algorithm in its spatial sub-sampling tool and was hence 

not explicitly included in this comparison. 3) The Point Cloud Library offers a so called voxel 

grid filter to sample a point cloud. The input cloud is hereby divided in voxels with a user 

defined edge length and for every voxel the centroid is added to the output cloud, therefore 

down-sampling as opposed to sub-sampling the data. 4) LAStools does not offer an explicit 

sampling function, however it can be achieved by combining tools. The lassplit tool is used to 

generate slices of the point cloud at defined Z intervals. The lasthin function is then used to 

place a uniform grid (edge length assigned by the user) over these slices and returns the point 

closest to the cell center. The thinned slices are then stacked to form the sub-sampled version 

of the cloud with the lasmerge function. This method allows for the definition of separate 

vertical and horizontal point densities. 

To determine an adequate sampling approach for the point clouds of this study an area of the 

Obergottesfeld site was clipped from the original cloud (Bramor mission 03.12.2015 RGB). The 

sub-set shows varying degrees of surface roughness (vegetation, agricultural land, gravel road 

and car roof) to interpret the applicability of a specific sampling method. To ensure 

comparability between the results all tested sampling methods were set up to return 

approximately the same number of points. PDALs decimate function hereby was used as a 
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baseline since it naturally only accept integers. The step size 5 was chosen which reduces the 

original point cloud to 1/5th of points. To achieve the same amount of thinning PDALs dart 

sampling function was run with a radius of 6.1cm, the edge length of a voxel in the 

corresponding PCL tool 9.4cm. LAStools was executed with approximately twice the step size 

for horizontal thinning than for vertical thinning with points being discarded when closer than 

10.5cm in X,Y direction and 5.5cm in Z direction. 

Results of the different sampling methods were visually compared in regard to representing 

the scene and judged by their respective point densities (Fig. 11). PDALs decimate function 

noticeably degraded the structure of scene, does not normalize the point density of the cloud 

and was discarded as suitable sub-sampling approach. The other approaches all take the 

distribution of the data in consideration during the subsampling process and hence preserve 

structure. The voxel grid method as such however down-samples the original cloud and does 

not retain of the original point locations. This may be advantageous to even out variability in 

scanned planar surfaces, especially with larger voxel sizes, but not wanted in the context of 

the natural scenes subject to the current study. Furthermore attached RGB information was 

removed from the cloud when it was run through the PCL filter. The voxel grid sampling 

approach was thus not used for this study. The dart sampling method was found to be suitable 

for the purpose of sub-sampling the SfM point clouds. The LAStools based approach however, 

while also sampling the cloud on a point to point distance improves the concept since 

horizontal and vertical surfaces are must not be treated the same way. Sub-sampling with 

finer vertical than horizontal resolution allows for preserving detail in steep features while 

planar are also accurately represented. In other words point density increases proportional to 

surface variability, which results in the preservation of detail where it is most beneficial for 

analyses. On account of this the procedure was adopted for all original point clouds using a 

step size of 5cm for vertical and 10cm for horizontal filtering. 
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Fig. 11 Comparison of sampling methods. Point density mapped as number of neighbors in 
sphere with r=20cm.  A: Number of points in cloud. B: Mean number of neighbors for r=20cm 

 

Original 
 
A: 617,408 
B: 91.8 

PDAL decimate 
every  5th point 
 
A: 123,482 
B: 19.0 

PDAL dartsample 
radius = 6.1cm 
 
A: 123,926 
B: 17.3 

PCL voxel grid 
leaf size = 9.4cm 
 
A: 123,162 
B: 17.0 

LAStools 
X,Y step = 10.5cm 
Z =  5.5cm 
 
A: 123,735 
B: 17.8 

 

4.1.3 Referencing 

To enable quantitative comparison amongst the SfM point clouds as well as validation utilizing 

other data sources (e.g. sonar transects) the registration of the clouds to their absolute 

position is crucial. Since GCP targets were not laid out during every flight mission the repeated 
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processing of the data including GCP information in the bundle adjustment was not feasible. 

For analyses planned that require absolute positioning clouds were registered using the 

Helmert transformation (Watson 2006) which consist of seven parameters, three translation 

vectors (X,Y,Z), the rotation matrix (rx,ry,rz) and the scale factor.  To do so a point cloud from 

an acquisition date where GCP targets were laid out and clearly visible was chosen to be 

referenced to the GCP coordinates surveyed with a Leica Zeno GG03 (RTK mode with 1cm 

horizontal and 2cm vertical accuracy). For the Bramor mission in Feistritz on the 02.10.2015 

ground targets are placed on top of the surveyed GCP locations. Four of the targets and the 

corner of a landmark (rock) fall within the extent of the point cloud and are identifiable and 

visibly stand out in the NIR data. To align these locations with the coordinates of the GCPs the 

reference points were imported to CloudCompare as 3D shapefile. Ideally the highest density 

point cloud is utilized to recognize and match the GCP locations displayed in the cloud with 

the reference points. Loading the original density point cloud (02.10.2015 NIR) in 

CloudCompare is however not feasible since the software decompresses the LAZ format and 

reads all points into the main memory. The file size herby increases from the compressed 

8.7GB to 23.9GB, exceeding the available RAM (16GB). To bypass the issue clipping regions 

were defined around the surveyed GCP locations where visible targets likely to fall within (5m 

radius). These regions were extracted with LAStools which offers point streaming and is hence 

able to process without having to read the whole file first. Within these buffers the center of 

the targets were then aligned with the corresponding surveyed GCP. Hereby the point closest 

to the center of the target was chosen by visual inspection using the raw imagery of the 

mission as aid (see Fig. 12). A root mean square deviation (RMSD) of 0.24m was obtained 

following the registration based on the seven parameter Helmert transformation. 
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Fig. 12 Registration of the dense point cloud (Bramor mission 02.10.2015 NIR) to the surveyed GCPs. Four ground targets and 
one landmark corner were identified and aligned to the corresponding GCP coordinates. A root mean square deviation of 0.24 
was achieved. 

 

As a comparison the raw imagery of the same mission was reprocessed in PhotoScan with 

manually placed GCP markers and will be referred to as GCP point cloud. The point cloud 

derived with camera locations but without GCP information will be referred to as RTK point 

cloud. Both of the clouds were held against the DTM surface (2006 ALS) using the M3C2 

method (surface normals calculated based on r=15m), with all vegetation and buildings 

removed by LAStools as described in 4.2 Classification. The manually registered RTK point 

cloud depicts of a RMSD = 0.76m and the GCP point cloud shows a RMSD = 1.32m (Fig. 13). 

Spatially presenting these errors reveals a deviation pattern towards the up- and downstream 

end of the GCP point cloud. A similar pattern was reported by Javernick et al. 2014 and 

referable to the lens distortion as well as the absence of GCP information towards the edges 

of the data. Extracting the points within the convex hull of the GCPs used for manually aligning 

the RTK cloud results in very similar RMSDs of 1.18m for the RTK cloud and 1.17m for the GCP 

cloud. The deviation of >1m is due to the fact that the DTM used for reference is obtained 

before the river restauration began. The geomorphology has changed significantly with 
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anthropogenic earth displacement between the acquisition years 2006 and 2015. A 

comparison of the manually referenced RTK cloud and the GCP cloud yields a RMSD of 0.11m 

within the same convex hull (see Fig. 29). 

 

Fig. 13 Comparison of the RTK cloud (aligned to GCPs by Helmert transformation) on the left the point cloud produced in 
PhotoScan inlcuding the GCP information in the bundle adjustment on the right. For both clouds the difference to the DTM 
(2006) is shown based on the M3C2 method (surface normals calculated on r=15m). On the bottom the clouds are segmented 
by the convex hull of the used GCPs and therein depict of similar RMSD values.  

The seven transformation parameters obtained from the manual alignment carried out in 

CloudCompare were applied to the sub-sampled version of the 02.10.2015 data set. Other 

clouds without visible GCP targets laid out were manually aligned to the sampled 02.10.2015 

NIR cloud which thereby acts as reference. These registrations were carried out by manually 

picking corner points of unmovable features that are present in both sets.  

4.1.4  Noise Filtering 

The developed noise filtering workflow consists of three stages and utilizes multiple LAStools 

functions in a batch, enabling automatic detection of noise in multiple datasets without user 

input. As first step the DTM (ALS from 2006) is used to label points as noise when they are far 

below the terrain models surface. This operation is achieved with the LASheight function 

which is able to read in ground points and classify any point of the input data set below a user 

defined threshold as a certain class number. The ALS derived DTM was converted to a point 
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cloud by the extraction of elevation values at the centroid of each raster cell and every point 

was given the classification label 2 for ground. It was defined that every point 4.5m below the 

LiDAR acquired surface is noise (class 7). A “closer” threshold will, in the case of the two study 

sites, result in the removal of valid points within the river channel and still water bodies. This 

is due to the fact that a SfM approach can retrieve information of the submerged topography 

(provided that the water is clear) while the DTM presents an assumed water surface as well 

as the altered geomorphology at the river banks in the course of the restauration that has 

taken place between the acquisition dates of the data. 

For a finer detection of low noise the SfM datasets were gridded and a statistical assumption 

of the actual surface was performed. For the Gail as well as the Drau scene calculating the 10th 

percentile of elevation values within 0.6m x 0.6m grid cells and labeling points 0.5m lower 

than this surface model was found to give best results to identify the present low noise. The 

LAScanopy function, a tool developed to compute forest metrics, was used to calculate the 

10th percentile raster that was subsequently used as “ground” surface in the LASheight 

function to label sub-surface noise as 7. 

With larger artifacts below the surface classified as noise some scattered false points remain 

above the surface. The LASnoise function was used to flag those points as noise that have few 

other points in their neighborhood. A point was counted “isolated” when <10 other points are 

found in a 3 x 3 x 3 cell neighborhood where every cell has an edge length of 0.2 and the point 

in question is placed in the center of the 27 cells. These parameters were chosen specifically 

for the point density chosen for sub-sampling (see 4.1.2 Sub-sampling) and were found to 

determine most noise judging by visual interpretation. However the criteria was set in a 

conservative manner to avoid any removal of valid points and to make the final noise filtering 

script applicable to multiple datasets without the need for time costly parameter tweaking. 

An example of the three step noise identification and labeling is given in Fig. 14 where noise 

is predominant in the still water pond area. All three types of noise filtering were set up to 

classify noise as 7 to enable excluding the class in further processing steps. 
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Fig. 14  Sub-set of the Gail study site (Bramor mission 02.10.2015 RGB) with still water body affected by noise. View from top 
and side in RGB (A), shaded (B) and identified noise (C). Noise is visualized in different colors to highlight the points labeled by 
the individual noise filtering steps undertaken. Blue points are 4.5m below the DTM surface, green points are 0.5m below the 
assumed surface (10th percentile raster) and red points are defined as isolated with less than 10 points in their 0.008m³ 
neighborhood. 

4.2 Classification 

In this chapter five point cloud classification algorithms are held against each other to evaluate 

suitability for SfM based river monitoring. All tested filters were applied to a sub-set of the 

point cloud of 02.10.2015 NIR Bramor mission in Feistritz. This specific scene was chosen for 
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its variety in natural and man-made features – the river, still water bodies, forest, low 

vegetation, dams, buildings and parked cars. The point cloud was generated in Photoscan 

using a high accuracy setting for the alignment process and low accuracy with moderate depth 

filtering in the densification. Noise points were identified and labelled as such and were 

suppressed for classification. Misclassification of coarse noise clusters as vegetation is thus 

avoided to a large extent. After noise removal the sample cloud features 14,860,798 points. 

Sub-sampling was not carried out for the classification experiment to find out how the various 

techniques deal with the variable point densities generated in SfM processing.  

The previously described classification algorithms (see 2.6) were applied through the software 

Photoscan, LAStools, CloudCompare and PDAL. Parameters were manually set and results 

were visually evaluated for their classification performance. Typically 5-20 iterations with 

different parameters we carried out per algorithm to gain optimal results. An overview of the 

parameter values chosen for each respective classification method is given in Table 4. All 

processing was undertaken on a PC with medium specifications, an i7 3.4Ghz processor and 

8Gb main memory. Where possible the point cloud was processed parallel on all 8 cores. 

Processing times were recorded to investigate the computational efficiency of the applied 

classification methods. 

 PhotoScan allows for the classification of ground versus non-ground points once the 

dense point cloud is generated. It also classifies low noise points though they were 

disregarded and instead identified in a successive step with the workflow described in 

4.1.4 Noise Filtering to make results comparable. The classification tool of PhotoScan 

was set up with a 1m cell size and maximum slope angle of 15°. The classification 

threshold distance to the generated ground surface was chosen at 0.5m. With the 

chosen setup the computation took just over 3 minutes. 

 The classification with LAStools is broken into three parts / functions, lasground to 

identify ground points, lasheight to assign the above-ground height to every point and 

lasclassify to label non-ground features with vegetation and building classes. Prior to 

the execution of these functions the point cloud was split into tiles with 100m edge 

length with a 10m buffer using the lastile function. This tiling approach allowed for 

multithreaded processing on 8 cores, hence 8 tiles simultaneously and significantly 

decreases processing time. Hereby a buffer surrounding every tile causing them to 

overlap is essential since the lasground function utilizes a TIN surface which in would 
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cause edge artifacts in ground point identification between tiles.  The buffer is 

removed and the tiles are merged once the classification was performed. The initial 

determination of ground points was undertaken at a step size of 25m and distance to 

ground threshold of 0.3m.  With the above-ground height assigned to points lasclassify 

parameters of 0.2 ruggedness and 0.025 planarity were assigned. A larger planarity 

value, which essentially corresponds to the value of deviation neighboring points can 

have, led to misclassification as building in the forest canopy. The whole classification 

process including the tiling and reverse tiling of the point cloud ran in under 2min. 

 The CANUPO plugin of CloudCompare does not allow for direct classification of a point 

cloud using for example default parameters. Contrary to the other filtering algorithms 

CANUPO requires the manual segmentation of training areas for two opposing classes. 

Hereby any two user defined classes can in principle chosen, however features that 

differ significantly in their dimensionality naturally work best (e.g. 2D rooftop vs. 3D 

forest canopy). In this case 5 training areas were segmented to represent the ground 

class and 5 forested areas were chosen as vegetation class. These two classes were 

used to train the CANUPO classifier at 8 scales, from 1m to 8m at 1m increments. 

100,000 randomly sampled points from either class serve as so called “core points” 

and are used as basis to train the classifier. CANUPO separates the two classes by the 

means of a Linear Discrimination Analysis and generates a plot where the classification 

boundary may be manually adjusted (see Fig. 15). However the training sub-sets for 

the ground and vegetation class yielded a balanced classification accuracy of 99% 

which offers sufficient discrimination between the two classes at the chosen scales 

with no further modification of the boundary. The trained classifier comprising of 

binary class descriptors at multiple scales was saved as a parameter file. The classifier 

was applied to core points of the test point cloud. Core points were established by 

spatially sub-sampling at 0.2m point spacing which decreases calculation time and 

mitigates the influence of SfM owing variable point density. The classification label 

assigned to the 2,721,291 core points is then propagated to neighboring points in the 

original cloud based on the shortest distance. The classification confidence output by 

CANUPO was used to create a second version of the cloud at 99% confidence interval. 
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Fig. 15  LDA results of chosen training points for ground and vegetation class using the CANUPO plugin to create a 
classifier. Each class feature 100 000 training points and the LDA resulted in a separation with 99% balanced 
accuracy based on the 8 chosen scales on which the  dimensionality of features is identified. 

 The Progressive Morphological Filter was applied through a PDAL pipeline 

which allowed the LAZ input format rather than the PCD format required by 

PCL. The iterative algorithm was executed with 1.2m cell size, a maximum 

window size of 30m, 15° max slope angle, an initial height above ground of 

0.3m and a maximum distance of 3.5m. The window size is grown exponentially 

with every iteration. The filter does not classify ground points as such but rather 

discards all non-ground points. Color values assigned to points in the LAZ file 

are erased in the PMF computation currently making the method more suited 

for DTM generation only. Using the PMF through the PDAL software does not 

allow for processing on multiple cores. The extraction of ground points hence 

took 32h and 21min. 

 As a new development by Zhang et al. 2016 the Cloth Simulation Filter was 

included in the comparison. Ground and non-ground points of the test cloud 

were separated by applying the “relief” scene mode which affects the rigidity 

of the cloth. Furthermore a 1m cloth resolution with a distance threshold of 

0.2m at 500 iterations was chosen. Executed in CloudCompare the filter uses 

all 8 available cores for processing and results were computed in 5sec. 
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Table 4 Applied classification techniques with respective chosen parameters, number of identified ground points and 
processing time. All processing was carried out on a PC with i7 3.4Ghz processor and 8Gb RAM. The input cloud 
features 14,860,798 points. 

Algorithm/Software Parameters chosen Ground points Processing time 

PhotoScan 15° max angle  
0.5m max distance  
1m cell size 

13,909,140 3min 11sec 
8 cores 

lasground 
lasheight 
lasclassify  
of LAStools 

25m step size 
0.3m ground offset 
0.025 planarity 
0.2 ruggedness 

13,634,296 1min 58sec 
8 cores 

CANUPO 
(CloudCompare 
plugin) 

1-8m scales 
1m increments 
Dimensionality descriptor 
99% CI cut-off 

13,707,674 
 
 
12,983,245 

11min 32sec 
8 cores 

Progressive 
Morphological Filter 
(PCL function) 

1.2m cell size 
30m max window size 
15° slope 
0.3m initial distance 
3.5m max distance 
exponential increments 

13,502,797 32h 21min 
1 core 

Cloth Simulation 
Filter 
(CloudCompare 
plugin) 

“relief” scene 
1m cloth resolution 
500 iterations 
0.2m classification threshold 

13,617,808 5sec 
8 cores 

 

4.3 Spectrally Derived Indices on Point Clouds 

To calculate spectral indices on the point clouds of the RPAmSS project multispectral 

information needs to be assigned to every point in the dataset. In order to do so the RGB and 

NIR point cloud were combined using a shortest point to point distance approach. Prior to this 

process a RGB and NIR point cloud from the same mission were finely aligned using five 

manually chosen tie points. As an exemplary data sub-sampled versions (0.5m min. distance 

between points) of the point clouds from the Bramor mission 12.10.2015 at the Drau study 

site were used and aligned in CloudCompare with a RMS of 0.08m. Following common areas 

of present points in the data were determined for both point clouds. This avoids the 

assignment of values from far points in those areas where the RGB cloud has points but the 

NIR cloud exhibits missing data due to insufficient matching information in the SfM process 

(see also 2.5.2 Photogrammetry). The LASboundary function of LAStools was used to create 

polygons of the area that both the RGB and the NIR point cloud cover. The intersection of 

these polygons was calculated in ArcGIS and both point clouds were reduced to the remaining 

points that fall within this area by using LASclip. Although this process only operates on two 

dimensions it removes most problematic areas sufficiently. Once the “common denominator” 
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of points in the two clouds is found the RGB values of each band are written to scalar fields 

and NIR values are transferred based on the shortest distance. Hereby the NIR information is 

written to a scalar field of the RGB point cloud using the “Interpolate from other identity” 

function of CloudCompare. Storing the RGB and NIR values in scalar fields allows for 

undertaking the arithmetic operations between them to calculate the NDVI and NDWI. The 

indices are presented for the Drau study site in the Results chapter.  

4.4 Bathymetry Estimation 

The process to gain topography information of the submerged channel with correct elevations 

consists of two stages. The 1) water boundary identification and extraction and the 2) 

refraction correction which requires prior calculation of water depth based on a simulated 

water surface. The method was tested on the RGB colored point cloud from the 22.04.2015 

Bramor mission at the Gail study site. Water conditions were clear on the acquisition date 

providing enough data points within the submerged part of the channel. The point cloud was 

finely aligned to the GCP based referenced data set 02.10.2015 NIR with RMS = 0.2m (see 4.1.3 

Referencing) and treated with the noise filtering method described in 4.1.4 Noise Filtering. 

Vegetation was suppressed by a LAStools based classification of the cloud, retaining only the 

ground and the unclassified class (see Fig. 16). Finally the main part of the channel was 

extracted by coarse manual segmentation along the banks in order to focus on the relevant 

submerged riverbed and to reduce file size. This prepared point cloud was subsequently used 

for extraction of the water boundary and refraction correction procedure. 

 

Fig. 16  Preparation of the 22.04.2015 RGB point cloud of the Gail study site for bottom topography estimation. A) Oblique 
overview in RGB, B) Filtered ground (orange) and unclassified (blue) class and C) manually segmented main part of the channel. 

4.4.1 Water Boundary Extraction 

In order to obtain water depth values for all submerged points in the cloud a simulated water 

surface needed to be introduced. Woodget et al. obtained a water surface by manual selection 

of elevation points along the waters edge followed by interpolation between these points. In 

the current study the edge of the water was extracted by threshold filtering of the RGB 
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information stored on the points. In the case of the 22.04.2015 data only the blue band was 

used to filter a rough river boundary that was then further refined by point density threshold 

filtering. The 0-255 scale of the blue band was cut off at 100 to drop most points in the river 

bank that do not contain as much blue information as the water (Fig. 17).  Points in the river 

bank that remained due to some level of blue color were then filtered based on the volumetric 

point density in these areas. Since the threshold for the blue band removed at least some 

points in their neighborhood the areas outside the water boundary depict of lower point 

densities. To further refine the edge of the water the volume density was calculated on all 

points using an iterative approach based on descending search radii. Volume density is hereby 

defined as number of neighbors divided by the neighborhood volume: 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁

4
3

𝜋𝑟3
 

  

 

Fig. 17 Threshold filtering of the blue channel information to eliminate most non-water points at the boundary. A) The 
unfiltered blue band and B) the filtered point cloud with cut-off value 100 at the bottom. 

The exemplary dataset was treated with volume density based filtering using 2m, 1m and 0.5m 

neighborhood radii, delivering an estimation of the water boundary (Fig. 18) that required 

minimal manual cleaning (1min). The extracted submerged area of the channel was 

segmented to discard the upstream section of the Gail where imagery was heavily affected by 

tree shadows (see Fig. 17).  
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Fig. 18 Volume density based threshold filtering to refine the water boundary. A) Final filtering step with 0.5m search radius 
and lower cut-off value of 100 applied and B) the manually segmented section of the channel that is not affected by shadow. 

Finally the water boundary is generated as shapefile using the LASboundary function of 

LAStools with the concavity parameter set to 1m (Fig. 19). 

 

Fig. 19 Extracted water boundary for 22.04.2015 dataset of the Gail study site. 

4.4.2 Refraction Correction 

In order to correct for refraction the water depth was calculated for every point in the 

submerged part of the channel. To do so a water surface was introduced by interpolating 

between elevation values at the edge of the water. The elevation values were extracted within 

a +5cm buffer of the water outline polygon from the original point cloud by LASclip. A 2.5D 

Delaunay triangulation served as interpolation method across the channel. 
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Fig. 20 Oblique view on simulated water surface mesh. 

The distance of submerged points to the mesh were calculated with the C2M method and 

stored on the points as estimated water depth values. Water depth was then multiplied by 

1.34, the refractive index of water. The difference between the un-corrected water depth and 

the refraction corrected water depth was added to the elevation values of submerged points. 

An overview of the channel section with corrected water depth values is given in the results 

(Fig. 25). 
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5 Results 

5.1  Classification 

Classification results of the methods applied are visually presented in Fig. 23. Specific focus 

was laid on the ability to detect ground points since it is the most sought-after information 

that can be derived from point clouds typically used to generate DTMs. The results of the 

tested algorithms will be discussed here based on the visual interpretation of the bare-earth 

point cloud and meshed points (2.5D Delaunay Triangulation at max 60m edge length). 

Meshing the ground points shows a sensitive reaction to remaining above-ground points 

which were not identified or misclassified by the respective algorithm. 

Firstly the identification of the building present in the study area will be addressed. Out of the 

5 methods only 3 successfully removed the rooftop in the ground class, Photoscan, LAStools 

and CSF. Hereby LAStools is the only software that classified the house as building  (class value 

6 - ASPRS 2011). CANUPO and the PMF left larger remainders of the rooftop in the bare-earth 

model (compare Fig. 21). 

 

Fig. 21  Oblique close-up view of the building and parked cars of the Gail test site. 

The class descriptor purely based on the dimensionality criterion as used by CANUPO hereby 

detects a rather 2D surface for both actual ground surface and the roof of the house. The 

rooftop cannot be filtered since sudden jumps in elevation are not considered by the classifier 

opposed to the 3 methods that effectively removed the building. In the case of the PMF a 

larger cell size did remove the roof of the building completely though leaving smaller 

vegetation such as the hedges close to the house and the planted young trees along the river 

bank.  

All cars parked besides the building and on the larger gravel parking lot were only fully 

removed by CANUPO at 99% classification confidence, the PMF and the CSF. Photoscan 

misclassified all cars as ground while LAStools removed the car rooftops though leaving the 

sides which are clearly visible in the meshed cloud. The same applies to hedges and smaller 



   55 
 

vegetation (see Fig. 21). Though classifying the tops as non-ground both LAStools and 

Photoscan fail remove these object entirely when only ground points are extracted. In both 

cases a smaller distance to ground threshold (ground offset) with for example 0.05m does 

avoid retaining the base of non-ground features in the bare-earth model. However this also 

causes a low confidence in the classification of points close to the ground and a class label 1 

(unclassified) with LAStools and non-ground in Photoscan. If the extraction of ground points 

rather than the utilization of the fully classified cloud is the main purpose of the classification 

a small ground distance threshold is advisable. This should especially be considered with SfM 

derived point clouds based on UAS imagery where small surface variations potentially caused 

by very small herbivorous vegetation shall be removed. 

The forested patches were removed identified and removed in the ground model by all 

algorithms but CANUPO. Again owing to a classifier being based purely on dimensionality of 

features portions of the forest canopy that appear rather planar are mistakenly as ground. 

Though increasing the classification confidence to 99% some of these patches are eliminated. 

Further filtering with by for example volume density thresholding or a statistical outlier filter 

can remove the remaining forest points from the bare-earth model though this was not the 

intention of the comparison. 

The meshed ground surface displays the performance of the algorithms well and by close 

inspection it was determined that the overall most reliable bare-earth identification was 

achieved by the Cloth Simulation Filter. With its simple parameter setup and the overall 

shortest runtime the method can be applied to other scenes with minimal time spent on 

parameter tweaking giving it a definite advantage over the other methods that do often 

require lengthy setting adjustments. 

In general it was shown that the tested algorithms can be applied to SfM derived point clouds 

though designed for use with LiDAR data. For classification into multiple classes LAStools offers 

functionality accurately determining between buildings and high vegetation in addition to 

ground detection. Applying CANUPO with several binary classifiers the cloud can be broken 

into finer classes also though the extensive manual work for training a classifier needs to be 

considered. Furthermore SfM point clouds do have limitations when using solely 

dimensionality as class descriptor. Recording only the surface without penetrating features 

results in two dimensional shapes for vegetation such as trees. Utilizing a true 3D cloud with 

points below the forest canopy as acquired by a LiDAR sensor has definite benefits to separate 
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various classes using CANUPO, especially with classifiers designed to distinguish between two 

vegetation types (e.g. trees and bushes). 

For a rapid ground-only detection a SfM derived point cloud can also be classified in PhotoScan 

internally. The few parameters to be chosen and the short computational time offer the ability 

to find the most suitable setup for a scene rather quickly and the identification of low-noise is 

also beneficial.  

Although parameters were chosen carefully for the PMF it did not result in optimal ground 

extraction keeping portions of some above-ground features. The inability to be applied to the 

point cloud by parallel computation on multiple cores resulted in a runtime far above other 

tested methods. 

For the use in riverine monitoring and especially for studying riverine geomorphology LAStools 

provides the best performance in classification out of the proprietary software tested. 

Multiple class identification and the ability to fine-tune parameters to match a specific scene 

and scale is beneficial for monitoring river systems by point clouds in both the commercial and 

the scientific sector (see Fig. 22).  

 

Fig. 22 View of the LAStools classification results in oblique perspective looking NE. Ground in brown, unclassified in blue, 
vegetation in green and buildings in yellow. 

The recently developed CSF delivered the best performance out of the open-source algorithms 

though is limited when further classification of above ground features is required. When the 

division into finer classes by surface properties is required (e.g. grain sizes) CANUPO offers 

functionality particularly interesting for scientific work on smaller scale study areas. 
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Fig. 23 Visual comparison of applied classification methods in oblique viewing angle. Scene computed from 02.10.2015 NIR 
Bramor mission flown in the Feistritz study area. The left column shows the classified point cloud with colorization for following 
classification labels: brown=ground, blue=unclassified, green=vegetation and yellow=buildings. The column in the center 
shows the extracted bare-earth points identified by respective algorithms. The right column depicts of a meshed version of the 
bare-earth clouds to better visualize remainders of non-ground points. 
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5.2 NDVI and NDWI Point Cloud 

Having calculated the NDVI and the NDWI for the exemplary point cloud of the 12.10.2015 

Bramor mission at the Drau study site results are presented in Fig. 24. Both indices are ranging 

from -1 to 1 with high positive values suggesting vegetation cover with high chlorophyll 

content for the NDVI and surfaces with high water content for the NDWI. Negative values on 

the other hand suggest an absence of vegetation and water. The river is clearly delineated by 

visual inspection by both NDVI and NDWI. While the NDVI shows the actual water surface of 

the Drau in its negative values the NDWI reveals water content on the sand banks within the 

channel too. Riparian vegetation such as the trees growing on the banks is shown as high 

positive values in the NDVI values. Clearly visible is also the stark contrast between the various 

agricultural fields surrounding the study area showing the reflective response of different 

crops and vegetational statuses. Areas affected by shadow at the edge of the forest deliver 

falsified NDVI and NDWI values as it is to be expected. 

Generally these results may be viewed as proof-of-concept and conclusions about the actual 

status of features on ground based on these indices need to be drawn with great care. This is 

especially so since the reflectance information in the imagery is uncalibrated and affected by 

fast changing light situations due to the UAVs close proximity to the ground (Daniel McKinnon 

2014). However with the possibility laid out to combine spectral indices and morphology 

information by directly calculating them on point clouds holds potential for future 

implications, also in direct relation to fluvial scientist striving to gain a holistic perspective on 

these dynamic systems.  
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Fig. 24 NDVI and NDWI calculated on the 12.10.2015 Bramor mission in Obergottesfeld. Oblique view with color scale based 
on +/- 1 SD around the mean. NDVI = mean 0.16 (SD 0.31),  NDWI = mean -0.39 (SD 0.26). 

5.3 Quantified Submerged Topography 

For the exemplary dataset of the Gail study site (22.04.2015 RGB) the bottom topography and 

water depth was successfully derived with refraction correction applied. This was done for a 

section of the channel that is not influenced by shadows of trees and where the surface 

roughness of the water is relatively low (near to no white water). Results are visualized in Fig. 

25 and show the continuous representation of the river bed in this section. 

However noise points are observed where around the groynes at the northern bank of the 

river. Here the man-made structure has seemingly created altered hydraulic conditions that 

led to scour holes similar to sediment erosion behind bridge pillars. The water is much deeper 

in these parts and the texture of the river bed is clearly visible in the UAV imagery leading to 

noise points when the scene was reconstructed by the SfM approach. Since the reconstruction 

heavily relies on information within the image in the form of texture in the scene and contrast 

in the imagery the success of an SfM method for submerged topography estimations is water 

depth dependent (Woodget et al. 2015, Smith et al. 2016). 

To further evaluate the representation of the submerged topography and the success of the 

refraction correction the SfM point cloud was held against the reference data acquired by 

echo sounding at cross sections in 2014. The location of the respective cross sections is shown 

in Fig. 28. Comparing the SfM obtained data to the sonar sampled points the general shape of 

the riverbed is well presented. Though some discrepancies can be observed, e.g. cross section 

#17 closest to the left river bank (Fig. 26) in which case it is not clear whether the SfM method 
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failed to reconstruct the steep gradient or the bed form has changed in the period between 

the data acquisition dates (4 months). 

 

 

Fig. 25 Water depth with applied refraction factor mapped onto subset of the point cloud (04.22.2015 Bramor mission). Color 
scale based on 2SD around the mean. Water depth mean = -0.86m (SD 0.35m). Details given in oblique view with point shading. 

The vertical root mean square error between the reference sonar data and SfM points 

extracted at the along these cross sections is 0.33m when not corrected for refraction and 

0.19m with refraction correction applied. Although Woodget et al. 2015 reported a maximum 

error of 0.05m following the application of refraction correction it has to be kept in mind that 

the SfM point cloud in this case was manually aligned to the reference data (RMS = 0.2m), 

which in turn was referenced to the surveyed GCP locations (RMS = 0.24m). Furthermore it is 

known that errors in observations increase proportional to survey range (Smith et al. 2016). 
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The flight altitude of the UAV for the 2015 study of Woodget et al. was 30m at maximum while 

the RPAmSS was acquiring imagery from 100m AGL. Considering these factors and given the 

error of registration for absolute location and hence imperfect alignment with the echo 

sounding cross sections the positive effect of the refraction correction, as in a reduction of the 

root mean square error value, was still observed. 

Further detailed examination of the cross sections supports this observation. Fig. 26 provides 

an example of three cross sections to visualize the influence of the refraction correction on 

the SfM point cloud. By applying the simple refractive factor of 1.34 the SfM data clearly 

matches the sonar measurements better which is reflected by the improvement in root mean 

square error as well. 

Cross sections with areas of deeper water depth, like #17 where a pool was formed around 

the groynes, generally depict of higher errors with and without refraction correction. This fact 

is owing to the previously mentioned noise points that exist as a consequence of lacking 

texture in these deeper parts of the channel. These points were not picked up by the noise 

filtering process applied in this study since a more aggressive filtering method also removed 

valid points. Results show that the point cloud the workflow was tested on start to reveal noise 

at a water depth of 1.4m and below.  

In general it was shown that a workflow similar to the method suggested by Woodget et al. 

was applicable to point cloud rather than raster data. Furthermore the extraction of the river 

boundary was extracted by a threshold filtering approach instead of simple manual point 

picking which decreases uncertainty and improves on replicability. The overall root mean 

square error observed for submerged topography was 0.19m following the correction of water 

refraction. The result for the 22.04.2015 dataset hence falls within the expected error range 

of 0.1-0.2m at a survey range of 100m (Smith et al. 2016). 
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Fig. 26  Comparison of 2014 acquired sonar cross section (white, the simulated water surface (blue)) and SfM derived 
river bottom (water depth mapped onto points as color scale). Examples given for three cross sections with #17 affected 
by water depth related noise. Each example shown without (top) and with (bottom) refraction correction applied and 
their corresponding root mean square deviation from the sonar  
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6 Discussion 

The assessment of UAS-SfM point clouds has demonstrated the ability to produce multi-

temporal, spatially continuous datasets that can be utilized for classification, spectral index 

calculation and estimation of exposed as well as submerged topography in respect to 

monitoring dynamic river environments. In addition to the applied methods towards riverine 

analysis special attention was laid on preprocessing of SfM point clouds hence presenting a 

substantial part of the executed work. It was found that datasets of the two study sites depict 

of shifts in their absolute position making comparison between the multi-temporal point 

clouds and to reference data infeasible. Fine alignment for absolute referencing was 

undertaken though introducing a lengthy manual registration procedure. Furthermore the 

high data volumes owing to the high point densities achieved by a SfM-MVS approach stated 

computational challenges. An appropriate sub-sampling method to reduce file size as well as 

to normalize point densities (min. distance horizontal = 10cm, vertical =5cm) was established 

and applied to all datasets. The developed procedure enabled further processing of the data 

at the full extent of the study sites on a standard PC (i7 3.4Ghz, 8Gb RAM) without 

compromising the representation of general feature geometry. In case more computational 

power is available and higher point densities are requested a spatial sub-sampling approach 

is still recommended when neighborhood dependent algorithms are to be applied at later 

processing stage. As a part of the preprocessing workflow the sub-sampled point clouds were 

filtered to identify noise which can cause false classification and introduce bias to analysis 

results. With the proposed three-stage filter observed noise was successfully filtered to a great 

extent, in particular sub-surface low noise.  However some noise remained, specifically in 

water covered areas where image matching was restricted due to low texture. While a more 

“aggressive” filter was considered the execution on all acquired point clouds led to the 

identification of valid points as noise. This is due to the variable degrees of noise present 

throughout acquisition dates owing to variation in illumination, water turbidity and foliage 

which affect the illustration of texture in the imagery – the key factor for successful 

reconstruction of scenes by SfM-MVS. The number of complicating factors in SfM-

photogrammetry that determine model quality and the linked compromised reproducibility 

in successive surveys in fact is perhaps the biggest weakness of such approach. 

The observed inconsistencies in absolute location, completeness (e.g. gaps in model due to 

forest cover, turbid water) and noise levels amongst the point clouds demonstrate that a large 



   64 
 

number of quality thresholds must be determined in order to implement SfM point clouds as 

monitoring tool. Hereby understanding the theory behind the SfM based reconstruction and 

associated influential factors is crucial to reduce data related uncertainty and extensive 

preprocessing. Carrivick et al. 2016 suggest to “get under the bonnet” of SfM-MVS to become 

a more critical end user. 

The planned classification was conducted on the preprocessed point clouds testing five 

different algorithms. Three of the examined methods are primarily developed to identify 

ground point to create bare-earth model, separating the cloud ground and non-ground 

features. The only exception is the commercial software LAStools allowing the automatic 

detection of buildings, vegetation and ground.  The CANUPO plugin of CloudCompare offers a 

different functionality than the other algorithms in a sense that the method is used to separate 

the cloud in user defined binary classes. An objective comparison between all algorithms 

revealed strengths and weaknesses of the methods for their use with SfM point clouds. The 

Progressive Morphological Filter did not show desirable results requiring tedious parameter 

setup, extracting only ground points, deleting their color information and by far exceeding the 

run-time of the other algorithms (32h versus several minutes). PhotoScans built in 

classification module can deliver fast classification of ground and non-ground features though 

did not reliably remove small non-ground features (e.g. hedges, see Fig. 21  Oblique close-up 

view of the building and parked cars of the Gail test site.  Although offering the creation and 

the classification of point clouds in a single software package it was found that the few 

available parameters limit fine tuning of the algorithm. Better adjustability and performance 

is offered by LAStools making it the overall most advanced classification method. Alternatively 

the recently released open-source Cloth Simulation Filter delivered accurate distinction 

between ground and non-ground points. With few comprehensible parameters and the 

shortest computational time out of the tested methods the CSF is a valuable new tool, 

especially for the fast generation of bare-earth models of large datasets. 

In contrast to LiDAR SfM point clouds describe the “visible” surface of features and cannot 

penetrate vegetation. The success of dimensionality reliant CANUPO classification method is 

hence limited due to the lack of points within the volume of vegetation. As it was expected 

forest canopy was hence classified as ground where relatively planar regions were detected. 

The general concept of allowing the user to define and train classifiers with CANUPO however 

is unique. It is believed that the method holds great potential for the classification of SfM point 
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clouds given further development such as the extension of criteria used as descriptor. Here 

the inclusion of color information would truly be beneficial to enable a hybrid geometrical-

spectral distinction of features given that a SfM-MVS approach produces colored point clouds 

in any case. 

The possibility of calculating spectral indices directly on point clouds was also evaluated as 

part of this study. On the basis of the RGB and NIR information acquired in consecutive 

RPAmSS flights it was tested whether the three dimensional derivation of the Normalized 

Differenced Vegetation Index and the Normalized Difference Water Index is feasible. It was 

shown that the spectral information of the RGB and NIR point cloud can successfully be 

merged into a single multispectral one by assigning color values based on shortest point-to-

point distance. The derived indices indicate possible application scenarios in riverine studies 

where point clouds provide more detailed information than typical 2D grid data, e.g. NDVI 

based identification of vegetation in steep river banks. However the initial results presented 

were not further investigated due to lacking calibration of the reflectance values and 

reference data for validation purposes. Further investigation in the concept and influencing 

factors such as the fast changing illumination constituent to UAV based data capture is 

needed. Still general feasibility of multispectral point clouds and derived spectral indices was 

demonstrated may give fluvial scientist a new tool to holistically assess river environments. 

Finally it was shown that bathymetric estimations can be undertaken on the basis of SfM point 

clouds. By applying the refractive index for clear water submerged topography was derived at 

a root mean square error of 0.19m for a test dataset of the Gail study site. Woodget et al. 

claim to be the first to have evaluated SfM derived data for quantification of submerged fluvial 

topography. Although their observed maximum error following refraction correction is lower 

there are some key differences between their and the current study. Their survey range was 

30m compared to our image acquisition at 100m AGL. Furthermore their study site presented 

a maximum water depth of 0.7m while the examined Gail channel depicts of water depths as 

low as 2m and noise present at 1.4 and below. While they used DSM raster for processing it 

was shown here that point clouds may act as data source also. In this respect point clouds are 

the preferable format as they are the primary output of the SfM method and gridding 

inevitably introduces uncertainty especially in steep terrain. 

The method to correct for refraction general relies a modelled water surface to calculate 

water depth. Here the manual extraction of elevations along the edge of the water as 
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undertaken by Woodget et al. was improved on by a RGB and density thresholding approach 

which delivered continuous data points along the water boundary. It is believed that the 

utilization of the Normalized Difference Water Index further improves and simplifies the 

extraction of the water boundary. However in the case of the test dataset used no NIR mission 

was flown. 

Albeit the described workflow performed well on the exemplary data further testing is 

required to evaluate the applicability of SfM based bathymetry estimations for riverine 

monitoring. While the Gail depicted of very clear water conditions with little to no surface 

roughness on the present acquisition date 22.04.2105 further studies investigating the 

replicability of the method at various turbidity levels and different study sites are needed to 

draw further conclusions. Though it is clear that impediment in deriving accurate three 

dimensional data by SfM will always exist when matching image features that contain turbid 

water, ripples, reflection and shadow. 

The overall results of the study illustrate the potential of the described workflows to extract 

valuable information for fluvial science and management. The capabilities of SfM point clouds 

to significantly increase topographic detail over traditional field sampling methods offers great 

research opportunities. Given adequate familiarization with influential factors in data 

acquisition by UAS as well as in data processing by SfM the approach facilitates an increase in 

extent and frequency of riverine surveys, enabling better understanding of these dynamic 

environments. Furthermore it was shown that SfM point clouds can be used for remote 

sensing techniques applied in fluvial studies where typically raster data are utilized as basis 

for calculation, e.g. NDWI derivation and bathymetric estimations. Although outputs of SfM-

photogrammetry and derived products can be visually stunning they are by no means error 

free. As users of this technology we need to understand potential sources of these errors. This 

is especially true considering the increasingly affordable UAS technology making the 

reconstruction of scenes with user-friendly SfM software available to almost anyone. As 

scientists however we need to comprehend all parameters that may affect results and 

avoiding to see SfM-photogrammetry as “black-box” approach. 

 

7 Future Work  

The study has outlined and evaluated several methods for the utilization of SfM point clouds 

to monitor river environments. Using UAS for SfM-photogrammetry as a tool to holistically 
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study dynamic fluvial systems and to cut down on tedious field work is still at an early stage 

of development although potential future applications are plentiful. A key area that would 

benefit from further research is concerning the acquisition of the data. Specifically aiming 

towards avoidance of geometric errors and improvement of positional accuracy further 

investigation is needed. Here the effects of convergent versus typical parallel flight lines 

(oblique imagery) as suggested by James and Robson 2014 and Smith et al. 2016 should be 

targeted to quantify differences in reconstructed detail and respective accuracy. Furthermore 

the number of essential GCPs and their layout for study areas with variable topography to 

achieve a certain desired accuracy should be targeted. These factors are especially important 

for repeated surveys when changes in morphology are to be addressed.  

In terms of the classification of SfM point clouds there is potential for development 

considering that current classification algorithms are primarily designed for LiDAR data hence 

only relying on geometric properties. Exploiting the color information stored on SfM point 

clouds in conjunction with existing geometric classification approaches could yield higher 

levels of class discrimination and corresponding accuracy. A proposal for such method is the 

combination of the open-source Cloth Simulation Filter for fast and reliable ground detection 

and multiple stage CANUPO classification of remaining non-ground features for finer class 

separation. Here the inclusion of color values as further descriptor would truly be beneficial. 

Such extension of the CANUPO classifier was already proposed by Daniel Girardeau-Montaut, 

the main developer of CloudCompare in 2015 (https://youtu.be/XF41Qj4zaVg), but has yet to 

be implemented. A hybrid classification approach with CSF and CANUPO offers great flexibility 

especially for specific analyses where detailed training of the classifier at user defined scales 

is needed. An example for riverine monitoring is the automatic detection of driftwood within 

the channel (Fig. 27) and future application areas could go as far as grainsize estimations 

Fig. 27 Deadwood identification on a sandbank of the Drau study site. Binary classification of deadwood (red) vs. everything 
else (blue) by CANUPO classifier (trained on two scales: 0,5m and 1m). 

https://youtu.be/XF41Qj4zaVg
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combining several binary classifiers in CANUPO. However such specific areas of application 

currently still involve a great deal of manual segmentation, testing and evaluation of results.  

Another scope of application that requires more research is the quantification of submerged 

topography by means of SfM point clouds. While the fundamental method for the extraction 

of the water boundary and the refraction correction was illustrated further improvement may 

stem from the utilization of multispectral information. Another area of investigation 

specifically towards bathymetric estimations is the use of a polarization filter in front of the 

camera lens. Such filter might be able to suppress glare and reflection by filtering scattered 

unorganized light (Matsuyama et al. 2004) and hence increasing the pictured underwater 

texture. 

Overall there are numerous research areas that indicate that the full capabilities of SfM-MVS 

point clouds have yet to be realized (Smith et al. 2016). However with further technological 

advances in sensor design and unmanned platforms for data capture as well as the ongoing 

progress in image matching algorithms SfM point cloud specific analyses have the potential to 

be a powerful, low-cost addition to the fluvial remote sensing toolkit (Dietrich 2016). 
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Annex  

 

Fig. 28 Location of echo sounding samples acquired at cross sections of the Gail on the 09.12.2015 at approx. 20m intervals. 
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Fig. 29 A) Bramor mission 02.10.2015 NIR processed with GCP marker information included in the bundle adjustment B) 
M3C2 comparison of point cloud processed with GCP information included in the PhotoScan workflow and the same scene 
referenced in post processing using a seven parameter Helmert transformation. The cloud with GCP information is hereby 
defined as reference. Outside of the identified ground targets the alignment of two clouds worsens resulting in an overall 
RMSE of 1.10. C) Within the convex hull of GCPs used for referencing the cloud in post processing the RMSE is 0.11. 


