
MASTER’S DEGREE PROGRAMME

Automation Engineering

Graph traversal-based fault
management for medium voltage

DC shipboard power systems

SUBMITTED AS A MASTER THESIS

to obtain the academic degree of

Master of Science in Engineering (MSc)

by

Christoph Diendorfer B.Sc.

Juli 2016

Supervised by

FH-Prof. Jean D. Hallewell Haslwanter MSc BS

Dr. Karl Schoder

Mark Stanovich PhD

ACKNOWLEDGMENTS

First of all, I would like to thank my research advisor FH-Prof. Jean D. Hallewell

Haslwanter MSc BS for guiding me through the various challenges I faced in the

course of my thesis. I also would like to thank Dr. Michal Steurer for allowing

me a chance to work on the project and being a part of the research team at

Center for Advance Power System (CAPS) at Florida State University and for

his guidance and encouragement.

I would like to thanks Michael Sloderbeck, Harsha Ravindra, Mark Stanovich

and Karl Schoder for their support, advice and suggestions that helped me in my

thesis and also patiently discussion about my work.

Last and the most important, I would like to thank my family for believing in

me.

I

Wels campus

I hereby declare that I prepared this

work independently and without help

from third parties, that I did not use

sources other than the ones referenced

and that I have in-dicated passages ta-

ken from those sources. This thesis was

not previously submitted in identical or

similar form to any other examination

board, nor was it published.

...

Diendorfer Christoph B.Sc.

Wels, 31.08.2016

II

board, nor was it published.

...

Diendorfer Christoph B.Sc.

Abstract

The Electric Ship Research and Development Consortium (ESRDC) and U.S.

Navy are interest of developing the next generation of “all-electric” ships. Part

of the goal is to develop a Medium Voltage Direct Current (MVDC) shipboard

power system architecture that meets the increasing power and energy demands

and have advantages over traditional AC power systems with respect to power

density and power distribution efficiency. The MVDC shipboard power systems

are designed for fault situations. If a fault occurs in a MVDC shipboard power

system it is possible to isolate the faults. With the development of new power

electronics the goal is to isolate a fault in less than 8 ms. Therefore, the Fault

Management (FM) system is proposed.

To achieve the 8 ms the FM has to perform automatically the isolation in a

MVDC shipboard power system. This research presents the steps of the isolation

and the transformation of the MVDC shipboard power system to a graph. Using

the graph approach the automated rule generation for the identification and de-

tection is described. After a fault was identified the automated isolation sequence

is performed by computing an isolation set.

The interaction between the fault detection and location (CFL) system, the elec-

trical network and the FM is also described in this research. Therefore, two

communication architecture for the FM were developed and tested. A controller-

hardware-in-the-loop (CHIL) testbed demonstrates the two communication ar-

chitectures.

The results of CHIL demonstrate two FM architectures to perform the isolation of

a fault in a medium voltage direct current shipboard power system. The models

and analysis in this thesis are validated by experimental results.

III

Contents

1. INTRODUCTION 1

1.1. Motivation . 1

1.2. Scope of the work . 2

1.3. Literature survey . 2

1.4. Thesis Statement and Contribution 3

1.5. Thesis Outline . 3

2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM 5

2.1. MVDC Fault Management . 7

2.2. Protection scheme . 9

2.2.1. Percentage Differential Protection 9

2.2.2. Adapted Percentage Differential Protection 12

2.3. Conclusion . 13

3. GRAPH NOTATION AND DEFINTION 14

3.1. Big O Notation . 14

3.2. Graph . 17

3.3. Graph Data Structure . 18

3.3.1. Edge list . 18

3.3.2. Adjacency matrices . 18

3.3.3. Adjacency list . 19

3.4. Graph Search . 20

3.4.1. Depth-first search . 21

3.4.2. Breadth-first search . 21

3.5. Conclusion . 21

4. GRAPH BASED IDENTIFICATION AND ISOLATION ALGORITHMS 23

4.1. Transformation . 23

4.2. Generating Detection and Identification rules 25

IV

Contents

4.3. Fault Isolation Rules . 28

4.4. Conclusion . 29

5. FAULT MANAGEMENT ARCHITECTURE 31

5.1. Fault Recovery Sequence performed with FM based on graph ap-

proach . 31

5.2. Data Communication patterns . 32

5.2.1. Publisher/Subscriber pattern 33

5.2.2. Request/ Reply pattern 34

5.3. Central vs Distributed Fault Management 35

5.3.1. Central Fault Management 35

5.3.2. Distributed Fault Management 35

5.4. Conclusion . 38

6. METHODS 40

7. FAULT MANAGEMENT IMPLEMENTATION 42

7.1. Simulated Electrical network Description 43

7.2. Centralized Fault Location and Identification System 44

7.2.1. Hardware Specification 44

7.3. CHIL Testbed . 46

7.4. Communication for Distributed Fault Management 47

7.5. Communication for Central Fault Management 48

7.6. CHIL setup . 49

7.6.1. Transformation . 49

7.6.2. Compute the involved components 50

7.6.3. Central Computation . 50

7.6.4. Distributed Computation 53

8. RESULTS 56

8.1. Computation of the offline rule 56

8.2. Computation of the Recovery Sequence 57

8.3. Physical constraints . 58

8.4. CFM Recovery Results . 59

8.5. DFM Recovery Results . 61

9. DISCUSSION 64

V

Contents

10.FURTHER WORK 66

10.1. Real Electrical Devices . 66

10.2. Re-configuration and Re-energization 66

10.3. Integrating Multiple FMs . 67

10.4. Human Machine Interface . 67

10.5. Testing the Distributed Architecture 67

10.6. Analytical Model of Distributed Architecture 67

10.7. Efficiency . 68

11.CONCLUSION 69

Bibliography 69

List of abbreviations 74

List of Figures 75

List of Tables 77

List of Algorithms 78

VI

1. INTRODUCTION

1.1. Motivation

The Energy and Power management (P&E) systems are envisioned to automate

the processes involved, support higher-efficient use of resources, and aid in fault-

handling capabilities. The Center for Advanced Power System (CAPS) is a mul-

tidisciplinary research center to perform basic and applied research to advance

the field of power systems technology. CAPS has the computational hardware

infrastructure to perform real-time simulation of both electric power systems and

communication networks. In addition to the dedicated digital real-time simulator

(DRTS), embedded controls and computers are available to support Controller

Hardware-in-the-Loop (CHIL) testbeds. Several shipboard power system (SPS)

architectures are available and have been implemented on the Real Time Digital

Simulator (RTDS, [1]), and can serve as a baseline for implementing test cases.

The Electric Ship Research and Development Consortium (ESRDC) and U.S.

Navy are interest in these shipboard power systems for developing the next gen-

eration of “all-electric” ships. Part of the goal is to develop a Medium Voltage

Direct Current (MVDC) shipboard power system architecture that meets the in-

creasing power and energy demands [2] and have advantages over traditional AC

power systems [3] with respect to power density and power distribution efficiency.

MVDC shipboard power systems have been explored for the benefits of flexibility

and controlability but not in terms of automated fault management and fault

recovery.

The automated fault management and fault recovery question leads to a multi-

disciplinary research to merge the electrical world and the computer science

world to solve this problem. This work deals with a first step solution for this

problem.

1

Chapter 1. INTRODUCTION

1.2. Scope of the work

This section describes the objectives and scope of this work. The objectives of

this work are:

• Recovery of a Medium Voltage DC (MVDC) system in less than 8 ms

• Recovery process is fully automated

A Medium Voltage DC (MVDC) shipboard power system (SPS) is designed that

faulted sections can be isolated, which considers that no current can flow to the

fault anymore. The steps to isolate the fault is loosely defined as the recovery

sequence. To achieve the objectives a new automation layer is developed that

is called Fault Management (FM). The FM has to communicate with the ship-

board power system components and the Centralized Fault Location (CFL) and

identification system [4, 5] to perform the recovery sequence. To achieve the 8

ms goal, the communication architecture between the FM, CFL and SPS is dis-

cussed in this work. The CFL is a system to monitor the SPS if a fault occurs

and after a fault occurs the CFL sends the information to the FM. After receiving

the fault information the FM performs the recovery sequence. To automate the

recovery steps the electrical grid will be represented as a graph. With the graph

representation, adapted graph traversal algorithm can be used to perform the

recovery sequence. Also the automatic code generation for the CFL, based on

Xing’s dissertation [4] and Tamaskar’s thesis [5] is possible. The FM layer was

demonstrated in a Controller Hardware in the Loop (CHIL) environment. The

demonstrator combines real time and power system simulation with external, em-

bedded controls and network platforms. The developed approach and implemen-

ted solutions will support demonstrating alternate fault management concepts

and be adaptable to future developments.

1.3. Literature survey

A Fault Management (FM) system, based on coordinated interaction between

the SPS, a centralized fault identification and location (CFL) system[5] and com-

munication system was developed for an efficient recovery for a SPS after a fault

occurs.

Tamaskars and Xing’s [4, 5] works are dealing with the fault identification and

2

Chapter 1. INTRODUCTION

location of faults in a MVDC system.

Based on the their works the steps for a fully automated recovery was developed,

which is described in this work.

The charakteristics of the simulated electrical components of an SPS with the

RTDS are described in [6, 7, 8][6, 7, 8].

A representation of an electrical network in a graph was described in [9, 10, 11, 12].

1.4. Thesis Statement and Contribution

The thesis supports the follow thesis statement:

Graph based traversal is useful for automating the detection and isol-

ation of faults in a MVDC shipboard power system.

The thesis should answer the questions:

• How a graph traversal can automate the fault detection in a MVDC SPS

• Is there a way to automate the recovery sequence

With the restriction to recover the MVDC SPS in less than 8 ms a communication

architecture between the SPS components and a FM layer is discussed in this

work. The design of the communication architecture is also discussed in this

work and will answer the computation of the recovery sequence takes place

• Where the computation of the recovery sequence takes place

• Which messages have to be sent between different components

• How the messages can be sentä

1.5. Thesis Outline

This thesis is divided into nine chapters. Chapter 2 describes the notional MVDC

SPS and theory about protection schemes. It also describes the fault recovery

steps for a MVDC SPS. The next chapter, Chapter 3, outlines the basic definition

and notation of the graph theory. It also describes search algorithm based on the

graph notation. Based on Chapter 2 and 3, Chapter 4 shows the combination

of the electrical world with the graph world and the algorithms for the fault

identification and isolation are described. Chapter 5 deals where the computation

3

Chapter 1. INTRODUCTION

of the algorithms from Chapter 4 takes place and the communication architecture

between MVDC SPS and external controller. Chapter 6 presents the result of

selected case studies. Chapters 7, 8 and 9 are discussing the work, describes the

future work and draw conclusions from the research.

4

2. NOTIONAL ELECTRIC

SHIPBOARD POWER

SYSTEM

This chapter gives an overview of the electrical components in a medium voltage

direct current (MVDC) shipboard power system (SPS). The MVDC architecture

as proposed by Norbert Doerry [13] provides an underlying concept for possible

implementations of the SPS. A notional version of Doerry’s architecture is de-

picted in Figure 2.1. The goal is to convey the background information of a fault

recovery sequence and how to identify faults in the SPS. Doerry’s SPS is desigend

that if a fault occurs the faulted section can be isolated. The recovery sequence

depends on the MVDC SPS and the used components.

Figure 2.1.: Example: Typical MVDC system configuration

Doerry’s proposed architecture is based on a zonal concept [14]. A zone is loosely

defined as a subsection of the SPS that is supplied from the MVDC buses. In

5

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

Doerry’s proposed architecture the model is divided into six zones, which are

connected via star-board and port buses. Though the topology would facilitate

ring bus operation, it is not a valid option because a single fault would bring

down the whole system.

The notional system as despicted in Figure 2.1 has two main Power Generation

Modules (PGM-M1 and PGM-M2) and two Auxiliary Power Generation Modules

(PGM-A1 and PGM-A2). A PGM contains a Alternating current(AC) power

generator (ACPG) and a converter. The converter rectifies the AC current and

feeds the MVDC zonal system. The converter of the PGM module is capable

of controlling the DC voltage and able to ramp down to zero, if it is necessary.

In the example, as shown in Figure 2.1, PGM-M1 and PGM-A2 supply the port

Figure 2.2.: Example: A simplified notional PGM

bus and PGM-M2 and PGM-A1 supply the power for the starboard bus. All

electrical components can be connected to either bus, but are getting power from

only one side at any given time. The electrical components can be physically

disconnected via disconnected switches (DS). The DS are represented in Figure

2.1 with black and orange boxes. A black box means that the DS is closed and

an orange box means that the status of the DS is open. The DS can only operate

if no current is flowing, otherwise an arc can occur and destroy the DS. There are

two ways to isolate faults in a DC network: using circuit breakers or using DS.

A circuit breaker can be opened and closed under current. The disadvantages of

circuit breakers are, that circuit breaker are heavy, slow and normally not used

for frequent operations. Because of these disadvantages DS are used, even with

the disadvantage that operating is only able if no current is flowing.

The other components are, but they are not explained in more details in this

6

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

work:

• Power Conversion Module (PCM-1A, PCM-1B, PCM-SP);

• Propulsion Motor Module (PMM) ;

• Integrated Power Node Center (IPNC);

• Non-linear load and

• 60 Hz AC distribution system (red line).

The two-bus design has been chosen to support reconfiguration and continued

operation in case of faults within zones or on one of the buses. Zonal loads can

in these conditions be supplied from the alternate side.

2.1. MVDC Fault Management

In this section the function of a Fault Management system (FM) are explained.

In the USA a 60 Hz AC network is used and a cycle needs approximately 16 ms.

CAPS set as a goal to achieve a fault recovery in less than a half cycle time.

In this work, the electrical system is working with a DC network, which has no

cycle. The 8 ms for recovery is a target value that both challenges technologies

lines and limits the impacts of fault on the AC generator. Figure 2.3 illustrates

the recovery sequence if a fault occurs in a MVDC network.[15]

The fault recovery sequence consists of four steps:

1. Detect and locate fault

A fault identification system monitors currents of the electrical system and

if a fault occurs and identifies fault locations

2. De-energize system

All generator sources, which supply power to fault section, must stop ener-

gize the SPS.

3. Isolate fault

After the FM has de-energized the system, it can start to isolating the faulty

subsystem. Because all major sections components connect via a DS, it is

possible to isolate fault sections by opening DS.

7

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

Figure 2.3.: Recovery sequence in MVDC network

4. Re-configurate

With the information of the fault location, the system topology and com-

ponent characteristics, it is possible to re-configure system power to the

remaining operating system. The reconfiguration may consider prioirites

and vital function aspects to make best use of resources.

5. Re-energize system

Soureces can be restored and controllable feeds activated.

How to re-configure a system after a fault and to re-energize will not be discussed

in this work. But for for the implementation a hardcoded solution was done.

Figure 2.3 shows typical voltage and current traces observed during a fault recov-

ery sequence. The moment a fault occurs, current increases rapidly. The controls

of the PGM tries to bring back the system to the current limited mode [16] to

protect components. After the fault is identified, the system must be de-energized

in order to open the DS. After the faulted system is isolated, the remaining sys-

8

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

tem can be re-energized. For example, Figure 2.4 illustrates a fault in Zone 2. A

fault at one of the cables causes PGM-M2 to lose the capability to supply energy

through the starboard bus. The system can be reconfigured to allow PGM-M2 to

supply loads through the port bus by opening DS3/ DS4 and closing DS1/ DS2.

Figure 2.4.: Example: section failure before isolation and reconfiguration

2.2. Protection scheme

In this section, a protection scheme and a slightly adapted version of it [17, 18,

19, 5] will be explained. The protection scheme is based on Kirchhoff’s Current

Law (KCL) and satisfied the requirements of high adaptability and speed for the

location identification approach [4].

2.2.1. Percentage Differential Protection

The Percentage Differential Protection PDP scheme is based on the idea of dif-

ferential current relay [17]. PDP defines two types of currents:

• Operating current IOP and

• Restraint current IR

Figure 2.5 illustrates and example cable section with assigned current measured

to illustrate the PDP Principle.

9

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

Figure 2.5.: A cable section with two current measurments

IOP for the shown setion is calculated as follows:

IOP = |IDSA − IDSB| (2.1)

Without loss of generality, currents going into the protection section are assumed

to be positive and all leaving currents are negative. IOP can be compute as follows:

IOP = |
∑n

i=1
Ii| (2.2)

In case of a fault IOP will be greater than zero. An example is shown in Figure

2.6. Both currents in the supervised section, IDSB and IDSA will flow to the fault

location, which may be a short circuit in the bus.

The literature and relay manufacture typically calculate restraint current IR as

follows[19]:

IR = k |I1 + I2 + ...+ In| (2.3)

IR = k (|I1|+ |I2|+ ...+ |In|) (2.4)

IR = max(|I1|, |I2|, ..., |In|) (2.5)

10

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

Figure 2.6.: Example: Current flow during a fault

• k is a scaling factor

• I1, ... ,In: instantaneous currents at monitored section

In this research the restraint current is calculated as follows:

IR = |IDSA|+ |IDSB| (2.6)

In the following conditional equation, the PDP identifies a fault if the condition1

is true.

fault =

true, if : IOP

IR
> Slope

false, otherwise
(2.7)

with:

• Slope, which is a property chosen constant value

The slope signifies the sensitivity of the PDP to the current. The slope character-

istic in Figure 2.7 provides high sensitivity when low levels of current are flowing

in the zone of protection but has less sensitivity when high levels of current are

flowing [19].

1

indicator =

{

true, if : condition

false, otherwise

11

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

2.2.2. Adapted Percentage Differential Protection

A slightly adapted version of the PDP is called Adapted Percentage Differential

Protection (APDP). In the literature on APDP different equations are used [19].

In this section, the conditional equations are shown but not explained in more

detail. The conditional equation defines, if there is a fault or not.

The first one is from Xing’s dissertation[4] and the equation is as follows:

fault =

true, if : |
∑n

i=1
Ii| −K

∑n

i=1
|Ii| ≥ IMin

false, otherwise
(2.8)

with n is the total number of currents in the section:

• Ii: instantaneous current values

• K: restraint coefficient

• Imin: minimum operating current value

Miao, Liu, and Lin’s paper[18] describes APDP with the following equations:

fault =

true, if : |I1 + I2| > IMin and |I1 + I2| > K|I1 − I2|

false, otherwise
(2.9)

with:

• K: restraint coefficient

• I1, I2 are current values on protected line

Miao, Liu, and Lin’s paper[18] following Figure 2.7 was created

Another relationship is mentioned in Tamaskar’s master thesis[5]., with the APDP

condition was described as:

fault =

true, if :
|
∑

n

i=1
Ii|∑

n

i=1
|Ii|+IMin

≥ Slope

false, otherwise
(2.10)

with n is the total number of currents in the section:

• Imin: minimum operating current value

12

Chapter 2. NOTIONAL ELECTRIC SHIPBOARD POWER SYSTEM

Figure 2.7.: The adapted percentage differential protection diagram

• Ii: instantaneous current values

• S: the slope coefficient

2.3. Conclusion

This chapter described a novel medium voltage DC shipboard power system and

its components. The SPS components have different tasks during a fault sequence.

The fault sequence consits of 5 steps; Detect and locate fault, De-energize sys-

tem, Isolate fault, Re-configurate and Re-energize system. To detect a fault in

the medium voltage DC system differential protection schemes are explained.

With the knowledge of the steps for the fault sequence and the electrical compo-

nents, an automtic fault recovery was realized..

13

3. GRAPH NOTATION AND

DEFINTION

“A graph consists of a finite set of vertices, a finite set of edges, and

a rule which tells us which edges join which pairs of vertices.” Biggs

[20]

The purpose of this chapter is twofold: introduce (1) the basic definitions of graph

theory and (2) the associated representation of graphs. These fundamental blocks

provide the basics for achieving the goal of this work which is to automate the

detection and isolation process in an MVDC system.

Therefore, the chapter starts with the explanation of the Big O Notation. The Big

O notation gives an idea about the computational effort of algorithms, which will

be used for to evaluate the further developed algorithms for the recovery. After

the Big O section was described, the graph notation and definition are described.

3.1. Big O Notation

To understand computational effort of an algorithm and compare algorithms, the

big O (O, pronounced “big-oh”) notation is used. This notation shows the worst-

case runing time of an algorithm on inputs of size n. With the information of

n and the running time it is possible to calculate a function f(n). This function

becomes the upper bound of the running time of the algorithm.

The O-notation is defined as follows: [21]

O(g(n)) = {f(n) : there exists positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0} (3.1)

with a given function g(n) and :

14

Chapter 3. GRAPH NOTATION AND DEFINTION

• n: integer value

• c: constant value

• n0: minimum possible value

To calculate the complexity of an algorithm, the easiest way is to look at the

pseudocode. Pseudocode of an Insertion-Sort algorithm is shown in Algorithm

3.1. Each line of the pseudocode needs an execution time Δi. With the assump-

tion that comments are not executable statements, they will have no computation

time. The number tj is the count time of the while-statement in line number 4

for the value i. The execution times and execution frequency, are in Table 3.1.

Algorithm 3.1 Insertion_Sort(A)

Input: A: Array with random integers
1: foreach j = 2 to length [A] do

2: insert_key = A[j]
⊲ Insert A[j] into the sorted sequence [1 . . j - 1].

3: i = j - 1
4: while i > 0 and A[i] > insert_key: do

5: A[i + 1] = A[i]
6: i = i - 1
7: end while

8: A[i + 1] = insert_key
9: end foreach

Table 3.1.: Execution count and time for the Insertion-Sort algorithm

PSEUDOCODE Count EXECUTION
TIME

for j <- 2 to length[A] n Δ1

do insert_key <- A[j] n-1 Δ2

i <- j - 1 n-1 Δ3

while i > 0 and A[i] > insert_key
∑n

j=2
tj Δ4

do A[i + 1] <- A[i]
∑n

j=2
(tj − 1) Δ5

i <- i - 1
∑n

j=2
(tj − 1) Δ6

A[i + 1] <- insert_key n-1 Δ7

With the information of Table 3.1 it is possible to calculate the runtime. The

runtime for the Insertion-Sort algorithm is:

15

Chapter 3. GRAPH NOTATION AND DEFINTION

T (n) = ∆1n+∆2(n− 1) + ∆3(n− 1) + ∆4

n
∑

j=2

tj +

∆5

n
∑

j=2

(tj − 1) + ∆6

n
∑

j=2

(tj − 1) + ∆7(n− 1) (3.2)

To calculate the function g(n) the worst-case has to be determined. If the input

array is reverse sorted, the worst case has happened. In this case, each element

in the entire subarray has to be compared and the while loop execution count

can be calculated as follows:
n

∑

j=2

(tj) =
n(n+ 1)

2
− 1 (3.3)

n
∑

j=2

(tj − 1) =
n(n− 1)

2
(3.4)

With (3.3) and (3.4) the worst-case runtime can be calculated as follows:1

T (n) = (
∆4 +∆5 +∆6

2
) ∗ n2 + (∆1 +∆2 +∆3 +

∆4 −∆5 −∆6

2
+ ∆7) ∗ n

−(∆2 +∆3 +∆4 +∆7) (3.5)

A notional version of (3.5) is given in (3.6).

T (n) = un2 + vn+ w (3.6)

With the assumption that T(n) only takes nonnegative values and T(n) is the

worst-case runtime function the following equation can be used:

T (n) ≤ cg(n) (3.7)

g(n) is the highest power of T (n) and c is a constant value.

Equation (3.7) indicates the connection between the runtime function T(n) and

the Big O notation. The big O expresses the upper bound of the growth rate and

not the exact growth rate of the function[22]. For the example (Algorithm 3.1)

the bound is given by O(n2).

1see Cormans [21] Appendix A for a review of how to solve these summations

16

Chapter 3. GRAPH NOTATION AND DEFINTION

3.2. Graph

This sections describes the defintion of a graph G and the different types of

graphs. A graph G was defined by Lovász and Vesztergombi [23]as:

G = (V,E) (3.8)

where:

• V : Set of verticies

• E: Set of edges

Where an edge e is a pair of vertices and can be described as follows:

e = (v1, v2) (3.9)

where:

• v1 ε V and

• v2 ε V

Graphs can be directed or undirected and Figure 3.1 illustrates an example for

each type. In a directed graph, each edges is an ordered pair of vertices (set),

which means the edge has an orientation. In an undirected graph, an edge is an

unordered pair (set) of vertices and the edge has no orientation.

�� ��

��

����	
�������

��

����

�������

�������
��

�� ��

��

������	
�������

��

����

�������

�������
��

Figure 3.1.: Example for comparing directed and undirected graphs.

17

Chapter 3. GRAPH NOTATION AND DEFINTION

3.3. Graph Data Structure

Data structures are used to store a graph for use by a computer program. The

different types of data structures will be described in this section. In this thesis

an undirected graphs are most relevant and therefore, the data structures will be

explained for them.

In the literature different data structures are mentioned, these are edge list, ad-

jacency lists and adjacency matrices. These data structures differ in memory

requirements and how long it takes to do certain opterations on the graph. These

differences will be explained with the example as shown in Figure 3.1. Two criteria

will be used to compare the different representations:

1. Case: memory or space requirements to store edges

2. Case: determination time whether a given edge is in the graph

With the big O notation the two mentioned criteria will be compared. At first

the edge list will be explained.

3.3.1. Edge list

A simple way to represent a graph is a list, or array, of edges (E), which is called

edge list. For an edge list, the total space is O(|E|) 1 because each edge contains

two vertices. To determine if an edge is in the edge list, an algorithm has to

search through the edge list. The time will increase linearly with the length of

the edge list and so the big O notation is O(|E|)2. The example from Figure 3.1,

the graph G can be represented as edge list in a computer program as is shown

below.

G = { (v1, v2), (v2, v3), (v1, v3) }

3.3.2. Adjacency matrices

A graph with |V| vertices has an adjacency matrix with the size of |V| x |V|.

This matrix contains only 0 and 1. The entries (i, j) (row i and column j) of the

matrix are 1 if the edge (i, j) is in the graph. The adjacency matrix is called A.

To find out if an edge a(i,j) is in the graph, the entry for g[i][j] must be 1. If the

entry is one, the edge exists.

18

Chapter 3. GRAPH NOTATION AND DEFINTION

ai,j =

1 if : (i, j) ǫ E,

0 otherwise.
(3.10)

The memory usage of an adjacency matrix is O(V 2) for saving the full matrix.

To determine if a edge e(x,y) exists only the entry (x,y) has to be checked and

the computational effort is O(1)

For an undirected graph, the adjacency matrix is symmetric: the row j, column

j entry is 1 if the row j, column j entry is 1. For a directed graph, the adjacency

matrix need not be symmetric.

Graph G, for the example from Figure 3.1, can be represented as a adjacency

matrix in a computer program as it is shown below.

A =

0 1 1

1 0 1

1 1 0

3.3.3. Adjacency list

This type of representation is a combination of the edge list and the adjacency

matrix. For each vertex, the adjacency list will be stored with the neighbors. To

determine if an edge e(i,j) is in the list, an algorithm goes to i’s adjacency list

and checks if it contains j. This computation is O(d), d is the degree of vertex i,

because each element in the list must be compared. The degree of vertix i can be

|V |-1 if i is adjacent to all other |V |-1, or it can be 0 if it is an isolated vertex.|

If an edge e = (u, v) is an undirected edge then u appears in v’s adjacency list

and vice versa. Because of that, the sum of the lengths of all adjacency lists

is O(2|E|), and represented the memory usage of O(|E|) [21]. An example to

represent graph G as an adjacency list is shown above.

G = [v1 = [v2, v3],

v2 = [v1, v3],

v3 = [v1, v2]]

19

Chapter 3. GRAPH NOTATION AND DEFINTION

3.4. Graph Search

This section describes an application of using graph representation. In computer

science, graph search or graph traversal is a process of checking/ visiting or up-

dating each vertex in a graph. These traversals are classified by the order in

which the verticies are visited. During a graph traversal it may require that some

vertices be visited more than once and therefore, these verticies getting marked

as vistited. To mark the vertices should prevent from trasveral the graph indefi-

nitely. If a vertex was already visited, it is ignored, otherwise the vertex will be

checked and updated as visited.

Different versions of graph traversal are described in literature: Pre-Order traver-

sal, In-Order traveral and Post-order traversal[24]. Figure 3.2 ilustrates an ex-

ample for a graph and the solution for the mentioned traversal operations.

Figure 3.2.: Solution for travseral operation

20

Chapter 3. GRAPH NOTATION AND DEFINTION

Two common applications based on the graph traversal are Depth-first search

(DFS), Breadth-first search (BFS).

3.4.1. Depth-first search

The first version of a DFS was investigated in the 19th century by a French

mathematician Charles Pierre Trémaux. Charles Pierre Trémaux tried to find a

strategy for maze problems.[25] . A recursive implementation of DFS is shown

in Algorithm 3.2[21]. The Algorithm 3.2 begins the graph traversal with a given

vertex and explores along a single path into the depth, before backtracking.

Algorithm 3.2 DFS(G, v)

Input: Graph G and v as start vertex
1: mark v as visited
2: foreach unvisited n in neighbors(v) do

3: DFS(G,n)
4: end foreach

In computer science the DFS is mostly used to traversal the whole graph. To

traversal the entire graph, it can happend that vertices are visited more than

once and consequently the traversal takes time O(|V |+ |E|)[21].

3.4.2. Breadth-first search

The BFS was first developed by E.F.Moore in the late 1950s to find the shortest

path out of a maze [26] and discovered independently as a wire routing algo-

rithm by C.Y.Lee [27, 28]. The BFS algorithm takes an arbitrary vertex of the

graph and explores the neighbors first, before moving into the depth. A recur-

siv implementation of BFS is shown in Algorithm 3.3. The time complexity is

O(|V |+ |E|)[21], because in the worst case every vertex and edge will be visited.

3.5. Conclusion

This chapter described the graph notation and definition. At first the big O

notation is described for the comparison of the different graph representations and

the computational effort of graph traversal algorithm. The graph representations

21

Chapter 3. GRAPH NOTATION AND DEFINTION

Algorithm 3.3 BFS(G,v)

Input: Graph G and start vertex
1: foreach n of neighbors(v) do

2: if (vertex n is not visited) then

3: mark n as visited
4: end if

5: foreach n in neighbors(x) do

6: BFS(G,x)
7: end foreach

8: end foreach

are compared in fact of their usage of memory space and the computational power

for finding an edge e. Table 3.2 shows the summary of the computational effort

of the different graph representations.

Table 3.2.: Summarization of the computational effort of the different graph rep-
resentations

1. Case 2. Case
Edge list O(|E|) O(|E|)
Adjacency matrices O(|V 2|) O(1)
Adjacency list O(|E|) O(d)

Based on the fact of the computational effort each graph representation has its

benefits. The computational effort for the DFS and BFS is the same. Depending

on the task either DFS or BFS has to be chosen.

22

4. GRAPH BASED

IDENTIFICATION AND

ISOLATION ALGORITHMS

This chapter describes a way to automate two steps of the recovery sequence, the

fault identification and the fault isolation, based on a graph approach. Therefore,

an electrical topology is stored as a graph G. The transformation of an electrical

shipboard power system into a graph is described in this chapter. The graph

abstraction is used for autotmatic rule generation for the fault identifcation and

performing the fault isolation.

4.1. Transformation

A given connectivity matrix of an electrical grid [29] is used to generate a graph.

Connectivity matrix indicates whether pairs of electrical devices are connected

or not in the electrical network. With the information of the given connectivity

matrix Mc the graph G is created. Therefore, at first an arbitrary device di

is picked and added as a vertex to the graph. The next step is to look for all

connected devices which are electrically coupled in the connectivity matrix. If

devices di and dc are connected an edge e(di ,dc) is added to the graph. Eacch

device has electrical charakterisitcs which are added to the new created graph

vertex x. These characteristics are:

• Is a source: True, False

• Can isolate : True, False

• Can conduct current: True, False

• Actual Status: True, False

23

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

These information are used to automate the fault isolation. Refered to Chapter

2 the steps for isolation a fault are described. To isolate the fault each device

which can isolate the fault has to be found. Also the sources which are suppling

power to the fault has to found. Therefore, these attributes have to be saved with

the new generated vertex x. Algorithm 4.2 shows the pseudo-code for adding the

attributes to the vertex.

For example, a PGM is a source, which can change the current value in the system,

can isolate a fault and conduct current. If the second and third attributes are

True the device will be a DS for example. Other information can maybe use for

the re-configuration, but is not discussed in this work.

Algorithm 4.1 add_attribute(device)

Input: device
Output: device with attribute
1: if (device is Source:) then

2: device.Source = True
3: end if

4: if (device is Isolate:) then

5: device.Isolate = True
6: end if

7: if (device is Can_Conducte_Current:) then

8: device.Can_Conducte_Current = True
9: end if

10: if (device Status:) then

11: device.Status = True
12: end if

13: return vertex

From a given connectivity matrix Mc all devices are extracted and saved in a

device list. This list will be used for Algorithm 4.2 to generate the graph G .

An example connectivity matrix Mc is shown in Table 4.1.

Table 4.1.: A given connectivity matrix 4.3

Source1 Source2 Load DS1 DS2 DS3 Bus
Source1 0 0 0 1 0 0 0
Source2 0 0 0 0 1 0 0
Load 0 0 0 0 0 1 0
DS1 1 0 0 0 0 0 1
DS2 0 1 0 0 0 0 1
DS3 0 0 1 0 0 0 1
Bus 0 0 0 1 1 1 0

24

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

Algorithm 4.2 transformation(device_list)

Input: device_list: contains all devices from electrical topolgy
Output: graph G
1: Graph G = Null
2: foreach d in device_list do

3: G.add_vertex(d)
4: remove d from device_list
5: foreach neighbor x of d do

6: G.add_vertex(x)
7: G.add_attributes(x)
8: G.add_edge(d,x)
9: end foreach

10: end foreach

11: return G

An example is shown in Figure 4.1. At first a device list is created with the

devices: Source 1, Source 2, Load, DS1, DS2, DS3 and Bus. As example Source

1 is taken and will be represent as a vertex. The attributes Source, Isolate and

Can_Conduct_Current are added as shown in Algorithm 4.1. The connected

device dc is DS1, therefore an edge e(Source, DS1) (represented as dotted line) is

added to the new generating graph G.

With the given connectivity matrix Mc (from Table 4.1) the corresponding graph

G looks like as shown in Figure 4.2.

4.2. Generating Detection and Identification

rules

A SPS is designed that if a fault occurs it should be possible to isolate the fault

and use the rest of the electrical topology. Power-systems protection is a branch

of electrical power engineering which deals with the protection of electrical power

systems. The goal of the protection is to keep the power system operationel

stable by isolating only components that are under fault and leaving as much

of the power system as possible in functional operation. Therefore, the SPS

can be partioned by Cable Section (CS) to isolate faults if necessary. These CS

are monitored by the CFL [4, 5] to identifies a fault if one occurs. The system

calculates, one of the previous mentioned protection scheme for every CS.

If a fault occurs and is detected, the fault location is added to the graph G as a

25

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

Figure 4.1.: Electrical device represented as vertex in Graph

new vertex. This new vertex is called fault vertex and is defined as:

Definition 1. A fault vertex, is a vertex representing the fault location of the

electrical grid in the graph and has the attribute to conduct current.

To generate all possibilities, where fault can occur the graph G can be splited

into subgraphs. If a fault vertex is added to the graph G, it is possible to find the

subgraph containing the fault vertex. These subgraphs are called sections and

defined as:

Definition 2. An isolationable section S are connected vertices (subgraph) of G.

A isolation section S can be electrically isolated from other components of the

electrical network.

S ⊆G (4.1)

The graph based fault identification partitions the graph so that each vertices is

monitored. If a fault occurs in one of the sections the CFL should identify. The

computation of the section can be done offline and is called identification rule

and is defined as:

26

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

Figure 4.2.: Given connectivity Matrix represented as graph G

Definition 3. An identification rule rule is a sequence of instructions to detect

a fault by using the PDP scheme.

To each fault an unique identification number (ID) is added. This ID contains

the information of the location and the time. Therefore, the Universally Unique

Identifier (UUID) can be used. This step is not discussed in further details in

this work.

Algorithm 4.3 gives a pseudocode for detecting a fault in the electrical network.

Algorithm 4.3 fault_exits(R)

Input: Graph G
1: S = min_subgraph(R)
2: foreach s in S do

3: if (Calculation of PDP in s) then

4: s contains fault_vertex
5: else

6: continue
7: end if

8: end foreach

9: create unique ID
10: return fault_vertex and unique ID

27

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

4.3. Fault Isolation Rules

Here is described the process of isolating a fault in an electrical network based

on graph traversal algorithm. The status attribute as mentioned before contains

the information of the actual status of the electrical device. For example, if a DS

is open, which means no current is flowing at this DS, the status attribute will

be True. This information is needed to get the feedback of the electrical devices,

during the fault sequence.

Definition 4. An fault isolation rule is a sequence of instructions to isolate a

fault vertex, depending on the online configuration of the electrical topology

Figure 2.3 shows the recovery sequence.

When a fault occurs in the electrical network the recovery sequence should be

perfomed automatically. At first the involved components for the isolation have

to be computed. The involved components for the recovery are:

• all electrical connected devices to the fault location, which can change the

current level in the system

– for example: all kind of sources (power generator with converter, bat-

tery, ...)

• isolation devices

Figure 4.3 illustrates the extende recovery sequence. It shows, that after a fault

occurs the involved components are calculated and these devices are used for the

recovery sequence.

After a fault vertex is added to the graph G the involved components can be

found by graph traversal. Therefore, algorithms were developed which are based

on the previous basic graph traversal algorithms. An isolation set is defined as:

Definition 5. An isolation set, is a subset of devices from the isolation section

S with the attribute to isolate a fault..

To evaluate all isolation sets ι, Algorithm 4.4 is used. It uses the actual and entire

graph and starts with the fault vertex to traversal the graph. If an isolation device

is found, it is added to the isolation set ι.

After the isolation set ι from the isolation section S is found all paths from the

vertices to the vertices with the attribute “is a source” have to be found. Thus a

28

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

d

Figure 4.3.: New recovery sequence

DFS can be used for this goal, and will compute for every vertex in the isolation

set ι the path to a vertex which has the mentioned attribute. Algorithm 4.5 shows

a pseudocode to use DFS for this purpose.

4.4. Conclusion

In this chapter the union between the electrical world and the graph theory was

described. The goal was to take the information of the connectivity matrix of a

Shipboard Power System (SPS) and represent it with a graph and add attributes

to the vertices. Each vertex represents an electrical device of the SPS and an

edge the cable between the electrical devices.

After the transformation of the SPS to the graph G, rules for the identification

and isolation of faults are developed. These rules are based on graph traversal

algorthim and allows automated fault identifcation and isolation of faults.

29

Chapter 4. GRAPH BASED IDENTIFICATION AND ISOLATION
ALGORITHMS

Algorithm 4.4 isolation_devices(G,v)

Input: Graph G and vertex v
Output: a set of devices needed for isolation
1: isolation_set =
2: mark v as visited
3: if (v can conduct current) then

4: if (v can isolate) then

5: add v to isolation_set
6: return isolation_set
7: end if

8: foreach unvisited n in neighbors(v) do

9: rec_value = isolation_devices(G,n)
10: add rec_value to isolation_set
11: end foreach

12: end if

13: return isolation_set

Algorithm 4.5 find_reachable_sources(G,v)

Input: Graph G and v is an isolating device
Output: set of devices
1: isolation_set =[]
2: if (v can conduct current) then

3: if (v can isolate) then

4: add v to isolation_set
5: return isolation_set
6: end if

7: foreach unvisited n of neighbors(v) do

8: rec_value = find_reachable_sources(G,n)
9: add rec_value to isolation_set

10: end foreach

11: end if

12: return isolation_set

30

5. FAULT MANAGEMENT

ARCHITECTURE

In this chapter a new developed Fault Management (FM) system will be intro-

duced. The goal with the new FM system is, to automate the recovery sequence

in less than 8ms. Therefore, the algorithms from Chapter 4 are used. The new

FM layer takes place between the Power and Energy Management (P&E) and the

Centralized Fault Location and identification system (CFL) . A shipboad power

system design contains following layer: Power & Energy Management (P&E), the

new FM, CFL and the electrical network. Figure 5.1 illustrates the layers and

communication between the layers. The FM layer communicates with the CFL,

the electrical components, P&E and issues the commands for automated recovery

process. The communication between P&E and FM is not discussed in this work.

The FM implementation is based on the previous discusssed graph recovery al-

gorithms. The FM handles also the communication with the different layers.

5.1. Fault Recovery Sequence performed with

FM based on graph approach

In this section the Fault Recovery Sequence (FRS) is described. After a fault is

identified the FM performs the Algorithm 7.1 and computes all involved compon-

ents. The invlolved components are the isolation set ι and now the shipoard power

system has to be de-energized. Therefore, the FM sends the propiate commandos

to the certain devices as shown in Algorithm 5.1.

After the system is de-energized the isolation device, which only can isolate if no

current is flowing, can change their status as it is shown in Algorithm5.2

31

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

Figure 5.1.: Illustration of the communication between the layers

Algorithm 5.1 de_energize(Isolation_set)

Input: Isolation_set: pre computed with previous mentioned algorithm
Output: system is de-energized
1: foreach d in Isolation_set do

2: if (d is source) then

3: send_message(d,ramp_down)
4: end if

5: end foreach

6: return True

As already mentioned, re-configuration and re-energize is out of the scope of this

work.

5.2. Data Communication patterns

This section describes two data communication pattern. These pattern are used

for the implementation of the communication between the electrical network,

CFL and FM (Figure 5.1).

The goal of data communication is to prepare rules and regulation that computers

with different operating systems, languages and location can share information.

The rules and regulations are called protocols and standards. Three fundamental

32

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

Algorithm 5.2 isolate(Isolation_set)

Input: Isolation_set: pre-computed with mentioned algorithms
Output: fault is isolated
1: foreach d in Isolation_set do

2: if (d can isolate and d not source) then

3: send_message(d,open)
4: end if

5: end foreach

6: return True

characteristics are important to describe the efficiency of a data communication

network:

• Delivery: In the telecommunication shared data have to receive to the

correct destination.

• Accuracy: The delivered data must be exact in context of information

• Timeliness: Late delivered data

There are different ways, in which the communication can take place. In this

work two communication established patterns will be used and these are called

Publisher/ Subscriber (Pub/Sub) and Request/ Reply(Req/Rep) pattern.

5.2.1. Publisher/Subscriber pattern

The Publisher/ Subscriber (Pub/Sub) system was described the first time 1987

[30]. This pattern is used in architectures [31], where senders of messages, called

publishers, are not sending messages to a specific receiver, called subscribers.

They publish the messages into the world1 and subscribers chooses the receive

messages as needed.

Message filtering In a Pub/Sub model, subscribers receive a subset of all mes-

sages. The mechanism of selecting the messages for processing is called filtering.

Two common ways are mentioned in literature for filtering the messages; topic-

based and content based.

In topic-based system, messages contain a specific topic. All subscribers will

receive all publishes messages and check after that if the topic is interesting for

1Here it means a network topology with a number of subscribers.

33

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

them or not. The publisher has to define the topic of the message frame. A

simplified message frame contains the topic and the information. All subscribers

will receive the message, but only the subscribers, which are listen to the specific

topic will use this information.

In a content-based system, publisher delivers messages only to a subscriber if

the attributes or content of those messages match with the constraints defined

by the subscriber. The subscriber is classifying the messages.

5.2.2. Request/ Reply pattern

The Request/ Reply(Req/Rep) pattern is a very common communication method.

For example, it is used browsing on th world wide web. Someone, who opens a

web page and starts the request to get information is called requester. The web

page which replies is called replier. This pattern is also valid applied for a com-

puter to computer communication and is very often the basis of client-server

architecture[32].

In Req/Rep pattern the requester sends a message to a specific replier in a sys-

tem. This replier sends a message back with an information. This simple pattern

allows a two-way conversation with one another. The conversation can be hold

synchronously over a channel and asynchronously and is often refereed to “synch

over asynch” or “synch/async”. Figure 5.2 illustrates an example of a Rep/Req

pattern for a server-client architecture. The client sends the request: “What is

your actual status?”. After the server receives the message, it sends back it actual

status. In the illustrated example, the server sends back the information: “I am

busy”.

���������

�	�
�������

������

�������

�	�
�������

������

���������	
�����������������

���������	�

Figure 5.2.: Server Client example using the Rep/Req pattern

34

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

5.3. Central vs Distributed Fault Management

This sections describes different possibilities where the computation of the auto-

mated fault recovery algorithm can take place and how the communication between

the different layers will happen and compare them. Depending on the number of

hardware where the computation takes place the FM will be called as Central-

ized Fault Management (CFM) or a Distributed Fault Management (DFM). To

compare these two architectures, an architecture in this work is defined as:

Definition 6. An architecture is a communication design between fault manage-

ment, centralized fault and location identifier and electrical components.

To compare architectures the following assumption are made:

• Each FM knows the whole topology of the electrical grid, which is repres-

ented as graph

• All electrical devices have own controller with main logic and send their

status back and react on commands from the FM

5.3.1. Central Fault Management

One way to perform the recovery sequence is to use only one FM instance. With

the example as it is shown in Figure 2.1, a CFM can be used as it is demonstrated

in Figure 5.3.

The CFM communicates with multiple CFLs and can communicate with each

electrical device in the electrical topology. For each zone a CFL is used to monitor

the zone. With the assumption that the CFM communicates directly with each

electrical device for the communication, the number of messages which can be

sent in parallel depends on the number of available ports.

5.3.2. Distributed Fault Management

“A distributed system is a model in which components located on

networked controllers communicate and coordinate their actions by

passing messages.” Coulouris, et al. [33]

35

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

Figure 5.3.: Example of a centralized fault management architecture

This subsection describes the developed distributed architecture for FM system.

Figure 5.4 illustrates the developed DFM architecture. In there multiple DFM

are used to perform the recovery sequence. To use this architecture, the following

assumptions are made:

• Each electrical device has a controller with main control and replies with

its status

• Each DFM knows the overall system topology which is stored as graph

• CFLs publish fault location and unique ID

According to the assumptions the developed architecture grants to share com-

putational power and communication ports. In fact, that each control of the

distributed architecture computes the same recovery sequence, the tasks can be

performed parallel. For example, the one control in the system sends the com-

mands to de-energize the system and another control will send the commands to

the isolation devices of the isolation set ι. If a controller fails to compute the

isolation set ι or sending the commands, another controller is able to take over

36

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

and the recovery will still be performed.

In addition to Figure 5.4, each DFM is capable to communicate with each elec-

trical device directly. This communication line is not shown in the Figur1e 5.4.

Figure 5.4.: An example for a distributed fault management system

With the distributed architecture it is possible that multiple controllers perform

the recovery sequence for a fault. With the assumptions made, it is possible

to parallelize the fault recovery sequence. Therefore, Figure 5.5 shows a time

sequence diagram for a fault recovery sequence using two DFM. The CFL com-

municates directly with the components of the electrical network. After a fault

occurs, which was identified by the CFL, the CFL publishes the message with the

location and a unique identifier. DFM receives the message and start immedi-

ately with the fault recovery. Both of them identify the involved components to

isolate the fault. FM1 sends the command for ramping down all conducted PGMs

and parallel FM2 sends the open commanding for the isolation devices, which can

only change their status without current flow. After sending the commands, both

FM start to compute the re-configuration and the first FM, which finishes will

send the commandos to ramp up the sources. The solution for this step was done

37

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

hardcoded and will not explained in this work. Both DFMs will compute the

same re-configuration, because they use the same algorithm and have the same

knowledge about the electrical topology.

Figure 5.5.: Simplified time sequence diagram fo fault supervision and recovery
process

After the fault occurs the DFMs have less than 8ms to perform the recovery

steps. With the made assumption it is possible to work in parallel and share

communications ports.

5.4. Conclusion

This chapter describes two fault management architectures. At first two common

communication patterns are explained, which are used for the FM to communi-

cate with the CFL and the electrical devices of the shipboard power system. For

the communication between the FM and the electrical devices the request/reply

pattern was used. Between the CFL and FM the publisher/subscriber pattern is

used.

After the communication was explained, the computation of the recovery se-

quence is explained. Therefore, two architectures are developed: the Centralized

38

Chapter 5. FAULT MANAGEMENT ARCHITECTURE

Fault Management (CFM) with using one instance of the FM approach or the

Distributed Fault Management (DFM) with using multiple instances of the FM

approach.

The goal of this chapter was to describe the different architectures and the work-

ing principle.

39

6. METHODS

This chapter describes the used methods for generating data and later to analyze

them. The goal of the work is automated fault identification and performing

automatically the fault isolation. The fault isolation should be done in less than

8 ms.

Xing [4] developed a Centralized Fault Location and identification system (CFL),

which was the basis for Tamaskars thesis [5].. Both of them dealt with the fault

identification in a MVDC system. To automate the fault identification the graph

approach is used. Based on Algorithm 4.3 a fault can be identified and therefore,

a Percentage Differential Protection (PDP) scheme has to be chosen. Equation

2.10 was used for the PDP calculation. In Tamaskars thesis [5] is shown, that a

fault in the MVDC shipboard power system can be identified in less than 1 ms.

The Equation 2.10 is also used in Tamaskars thesis and was proved by measure-

ments that the Equation 2.10 can identify different kinds of faults in the MVDC

shipboard power system.

After the fault is identified the next steps of the recovery sequence are performed

by the Fault Management system. The automatic performance of these steps,

De-energize, Isolation, Re-configuration and Re-energize was not discussed in lit-

erature until now. I choose the graph approach to use well-known graph traversal

algorithm to automate the recovery steps.

At first the involved components are computed with the Algorithms 4.4 and 4.5.

After the involved components are computed the Algorithms 5.1 and 5.2 are per-

formed by the FM. The computation of the recovery sequence was done with one

FM instance to perform the CFM approach and also with 2 FM instances to show

the DFM architecture.

With the CFM and DFM approach, communication architectures were developed

to perform the recovery steps. These architectures are based on well-known ar-

chitectures and adapted to achieve the goal of 8 ms. Also the communication

pattern between CFL, FM and electrical network was chosen.

40

Chapter 6. METHODS

To demonstrate the working principle the same electrical network based on Tamas-

kars [5] was used to simulate different fault locations. The generated rules for the

fault identification should be able to identify the faults in the electrical network

and later the FM performs the fault recovery sequence. To compare the CFM

and DFM approach, for each fault location the current and voltage curves in the

electrical network were measured. The goal with these measurements is to show

that it is possible to identify and recover the MVDC system in less than 8 ms.

In the next chapter the implementation is described in more detail.

41

7. FAULT MANAGEMENT

IMPLEMENTATION

To demonstrate the automated fault recovery sequence in a MVDC network, a

test setup was implemented to mimic the approach. This chapter presents the

controller hardware in the loop (CHIL) testbed implementation of the FM ar-

chitectures and the recovery sequence for various fault locations. All recovery

sequences tested with the shown electrical network in Figure 7.1, which was de-

veloped by Andrus, et.al [8]. The electrical grid is described in this chapter in

more details. The chapter also describes the a centralized fault location and iden-

tification system, which is a system based on the percentage differential protection

scheme.

����

���� ���	�

���	�

�������������

�������������

�������������
�������������

�������������

Figure 7.1.: Electrical testbed, which is simulated in real-time with RTDS

42

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

7.1. Simulated Electrical network Description

This section describes the configuration of the MVDC network from Figure 7.1.

The schematic representation of the MVDC network from Figure 7.1 has the

following components:

• 9 Disconnect Swichtes (DS): all of them are closed

• 2 Ppwer Generator Module (PGM)

• 5 fault locations

• 2 loads

As mentioned a PGM contains a power generator and an AC/DC converter. In

this experimental setup, Modular Multilevel converters (MMC) are used. The op-

eration principles and MMC topology were originally proposed in [34, 6, 35]. The

operation principle of MMC can be categorized as DC/AC converter or AC/DC

converter. The typical AC/DC MMC is used for High Voltage DC (HVDC) ap-

plication, but in this work it is used for a medium voltage DC application. In

this work the MMC performs as Voltage Source Converter (VSC) or as Current

Source Converter (CSC). The MMC control is aimed at driving the output DC

voltage to a previous defined voltage and limiting the current in a fault situation.

Previous research work was focused to use DC/AC MMC on using MMC as a mo-

tor drive [36, 37, 38, 39, 40]. The electrical shipboard power system is configured

as follows:

• PGM1 with MMC operates as VSC

• PGM2 with MMC operates as CSC

• Load1 and Load2 are MMC

The electrical network has five CS which can be isolated if a fault occurs. The

CSs and the respective DS are shown in Table 7.1 and in Figure 7.2.

Table 7.1.: Sections and the respective disconnect switches

Section ID DISCONNECT SWITCH
1 DSA DSB -
2 DSB DSC DSJ
3 DSC DSD DSQ
4 DSD DSF DSL
5 DSF DSN DSA

43

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

In this work DS are used to isolate the CS where the fault occurs. An new ultra

fast disconnect switch was tested at CAPS [15], which is able to open in less then

1 ms.

7.2. Centralized Fault Location and

Identification System

The centralized fault location and identification system [4] (CFL) calculates the

PDP scheme for each CS to identify the faults in the CS. To calculate the PDP

for the CS the current value of the isolation devices is needed. In Tamaskars

thesis[5] an approach for a communication architecture for the CFL approach is

shown.

The CFL is monitoring multiple sections as shown in Figure 7.2.

Figure 7.2.: Example: CFL monitored sections

7.2.1. Hardware Specification

In [5, 4] a system with distributed measurements units was discussed. The sys-

tem collects the current measurements and communicate with a controller which

performs a percentage differential protection scheme.

CAPS has demonstrated this control system with equipment from Beckhoff. This

44

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

industrial-grade automation platform consists of a master and multiple slaves.

The master performs the calculations for the protection scheme and the slaves

are the distributed measurement units. To communicate between master and

slaves, EtherCAT [41] is used.

Figure 7.3.: Distributed embedded control: master and slave control units of the
Beckhoff platform

The benefits of this system are the support of computation times of a 100 µs and

the EtherCAT real-time communication capabilities. Figure 7.4 shows an example

of using the CFL with the Beckhoff system. The green boxes are representing the

slave components and the orange box is the master.

Figure 7.4.: Example MVDC system with supervision by CFL

45

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

7.3. CHIL Testbed

The hardware for testing the FM approach is described in this section. The elec-

trical network from Figure 7.1 is simulated with a Real-Time Digital Simulator

(RTDS). Real-time simulation means that the computation of the simulated elec-

trical network or system advances one moment in each period of wall-clock time

[42].

To communicate with RTDS it is possible to use fibre optic. To evaluate the sig-

nal values of the fibre optic connection a GTFPGA Xilinx ML507 board, which

has a fibre protocol capability (2Gbps), is used. The GTFPGA is mounted in a

DELL OPTIPLEX760 desktop computer with a Intel(R) Core(TM)2 Duo CPU

E7600 @ 3.06GHz processor and runs the Ubuntu 14.04 X86 as operating system.

Via the PCI-express slot it is possible to exchange data between the GTFPGA

and the desktop computer.

Because the communication with the RTDS is done via the GTFPGA board a

server-client architecture was developed. The desktop computer is running as a

server and provides all necessary function for the clients to exchange data between

clients and RTDS. The clients are the FM and CFLs of the system. The server

program is based on the python multithreading example [43] and allows mul-

tiple requests. The server-client behaves similar to the Beckhoff system, which

was mentioned in 7.2.1. The benefit of using this hardware instead of using the

Beckhoff was, not to deal with the Beckhoff environment. This saved time for

developing the algorithms and the GTFPGA board with the server-client archi-

tecture has a similar behaviour like the Beckhoff system.

For the distributed architecture, the FM program was implemented on the Versalo-

gic Mamba (Mamba) boards. The Mamba boards use a 2nd generation Intel

Core 2 Duo processor, which is designed for specifically embedded applications

and runs up to 2.26 GHz[44]. Debian 8 was used as operation system on the

Mamba boards. Figure 7.5 shows the hardware and the communication paths of

the CHIL testbed.

46

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

3

FM2FM1
GTFPGA-Board

Dell OPTIPLEX760:

� CFL

� Server
TCP/IP communication

Fiber optic communication

Real-Time Digital Simulator

Figure 7.5.: CHIL testbed

7.4. Communication for Distributed Fault

Management

This section describes the communication between the CFL, FM and the electrical

network. Figure 7.6 illustrates the communication between the different controller

based on the CHIL testbed. (Figure 7.5). A layer called boards and the GTFPGA

board.

The communication between FM and the server was realized with the request

reply pattern. To send a message from the FM to the Server via Ethernet cable

the messages is packed into a protocol. In this work the messages was packed

into the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol.

The TCP/IP protocol specifies how data are packeted, addressed, transmitted

routed and received. The TCP/IP protocol guarantee that the messages arrives

at the specified address. The conversation between the FM and server were hold

synchronously. This grants to send a feedback immediatlly to the FM from server

with the information of the request. The disadvantage of this implementation is,

if the server is not responding, the FM will not continuing working, until it gets

the feedback. Because if the FM sends a request, it will be in a waiting state

untill it receives a message.

For the communication between CFLs and Mamba boards the Pub/Sub pattern

was used. Therefore, the ZeroMQ library is used, which is a high-performance

asynchronous messaging library for distributed systems [45].

47

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

Figure 7.6.: Schematic hardware set up for DFM

The data exchange between the server and the RTDS was done via the PCI-

express card to the GTFPGA board and fibre optic.

7.5. Communication for Central Fault

Management

To evaluate the CFM approach the same hardware was used. The FM algorithm

and CFL algorithm were running on the desktop machine. Because both were

running on the same machine, the server was not necessary and therefore, the FM

and CFL communicates directly with the GTFPGA board. Figure 7.7 illustrates

the CFM communication.

48

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

Figure 7.7.: Schematic hardware set up for CFM

7.6. CHIL setup

In this section the CHIL process is described. At first the transformation of the

given electrical network (Figure 7.1) into a graph is shown and its representation

in the computer program. After that the implementation of the communication

between the different hardware is described.

7.6.1. Transformation

As described in Section 4.1 an electrical network can be represented as graph.

Therefore, the given connectivity matrix Mc will be used as adjacency matrix.

Figure 7.8 shows the connectivity matrix of the proposed electrical grid.

With the given connectivity Matrix MC the generated graph is shown in Figure

7.9.

For saving memory space the electrical grid in this work was stored as an ad-

jacency list rather than the adjacency matrix. Figure 7.10 shows the python

re-presentation of an adjacency list for the given connectivity matrix MC .

49

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

Figure 7.8.: The connectivity matrix Mc for the proposed electrical network

DA DB B1 DJ P1 DC B2 DQ L1 DD B3 DL L2 DF B4 DN P2

DA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

DB 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

DJ 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

P1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

DC 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

B2 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0

DQ 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

L1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

DD 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

B3 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0

DL 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

L2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

DF 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

B4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

DN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

7.6.2. Compute the involved components

In this subsection the pseudocode for the computation of the involved components

during a fault sequence is shown. Based on the Algorithms 4.4 and 4.5 a merged

algorithm was developed. Algorithm 7.1 shows the merged version. For the

merging version a copy for the visiting list must be created. This will effect the

computation power of the algorithm, which is not explained in this work.

7.6.3. Central Computation

For the CFM approach, the computation for the recovery sequence is performed

with one controller. In this work, the recovery sequence program was computed

on the desktop machine. Figure 7.11 shows the sequence diagram for the CFM

approach, after a fault occurs. For this sequence it was assumed that only one

50

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

PG

M1

Load

2

Load

1

PG

M2

DA DB

DJ

DC

DQ

DD

DL

DF

DN

BUS1 BUS2

BUS3BUS4

Figure 7.9.: Electrical grid is represented as graph

CFL was used to monitor the whole system.

51

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

�����������������	
	��
�

�	�������
	�
�

	�����	
��
���

�������	
��
�

��������
�

�������	
	��

	�������
��
���

�������	�
����
�

��������
�

�������	�
�	��

	�������
��
���
�

�������	�
���
�

�������
�

�������	�
�	��

	�������
��
���
�

�������	�
����
�

��������
�

Figure 7.10.: Connectivity matrix represented as adjacency list

Figure 7.11.: Sequence diagram for CFM approach

During normal operation the CFL monitors the sections. After a faults occurs

52

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

Algorithm 7.1 min_dis_isolation_devices(G, visiting, found, visited)

Input: Graph G: contains information of the electrical grid + fault_vertex
Input: visiting: contains the the fault_vertex at the beginning
Input: found: used for recursiv function: Init value is False
Input: visited: Init value is a empty list
Output: contains all necessary devices for isolation
1: involved_isolation_components =
2: visited = visited + visiting
3: if (visiting can isolate with current flowing) then

4: involved_isolation_components += visiting
5: else if (visiting can conduct current) then

6: if (visiting can isolate with no current flowing) then

7: found = TRUE
8: involved_isolation_components += visiting
9: end if

10: foreach unvisited n of neighbors(visiting) do

11: rec_deviceList = min_dis_isolation_devices(G, n, found, visited)
12: involved_isolation_components += rec_deviceList
13: end foreach

14: end if

15: return involved_isolation_components

it publish the information to the CFM,which immediately starts to perform the

recovery sequence. After adding the fault vertex to the graph it starts to compute

the involved components and de-energize the system. After the system is de-

energized, the CFM sends the command to open the switches. It sends the

command until it receives the feedback, that all DS are open. Afterwards the

command to re-energize the system is sent.

7.6.4. Distributed Computation

For the distributed architecture the described hardware was used as described in

Section 7.3. Also the electrical network was parted in two regions R, as shown in

Figure 7.12 and two CFLs were monitoring them.

For each region a CFL system is used to monitor the electrical system. After

a fault occurs in one of the CFL regions, the CFL publishes the information to

all DFM systems. The DFMs know the entire graph, compute and perform the

recovery sequence.

In the corresponding time sequence diagram (Figure 7.13) it is shown that two

53

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

FM 2

+CFL

FM 1

+ CFL

PGM1

PGM2 Load1

Load2

Figure 7.12.: A possible example to split the electrical grid in regions

CFLs are communicating with the server to get the current value and calculate

the PDP. If a fault occurs in the monitored region of CFL 2 for example, CFL2

publishes the fault location with a unique ID. FM1 and FM2 starts with the

computation of the involved devices, which are the time ∆1 and ∆2 and FM1

send the commands to ramp down the PGMs. In the same time FM2 sends the

commands to open the particular DS. After the commands are sent, both FM

start to calculate the best way to re-configure the system and the first one will

send the ramp up commandos, after the fault is isolated. Because both FM are

calculating the re-configuration, both systems know the new online topology. The

time ∆3 represents the computation time for the re-configuration and sending the

messages and ∆4 indicates the time for the computation of the re-configuration.

54

Chapter 7. FAULT MANAGEMENT IMPLEMENTATION

RTDS FPGA Server CFL1 FM1 FM2

Get_current_value()
Read_value_

from FPGA map

Send()

Loop, till

fault occurs

Differential

protection

Wait for

recv()

CFL2

Get_current_value()
Read_value_

from FPGA map

Send()

Loop, till fault

occurs

Differential

protection

Wait for

recv()

!1 !2

!3 !4

Figure 7.13.: Sequence diagram for DFM approach

55

8. RESULTS

This chapter presents the results of the performacnes and measurements of the

proposed architectures. The goal was to recovery the proposed electrical grid in

less then 8 ms. At first the computation of the offline rules are shown. After the

sections S are computed a fault is simulated with RTDS in the electrical grid.

The FM controller performs the recovery sequence and isolate the fault.

8.1. Computation of the offline rule

With the given connectivity matrix Mc the graph G was created as it is shown

in Figure 7.9. Based on the Definition 2 all section can be computed, therefore

all subgraphs are calculated, which contain a set of vertices to isolate the fault.

The computed subgraphs are:

s1 = [DA,DB]

s2 = [DB,DC,DJ,B1]

s3 = [DC,DD,DQ,B2]

s4 = [DD,DF,DL,B3]

s5 = [DF,DN,DA,B4]

Accordingly to Algorithm 4.3, a section is taken and the percentage differential

protection scheme is computed. If a fault occurs the fault vertex is sent to the

FM. Figure 8.1 shows the voltage and current waveforms of the section s1after a

fault is simulated in this section with RTDS.

56

Chapter 8. RESULTS

0 0.005 0.01 0.015

time t [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

C
u
rr

e
n
t

[k
A

]

Current value from Section 1 during fault

current DSA

current DSB

Figure 8.1.: Current in section s1 after fault is initialized

8.2. Computation of the Recovery Sequence

After a fault has been identified with the CFL program publishes the fault vertex

to the FM. The FM adds the fault vertex to the graph. For example, a fault in

s1occurs, a fault vertex will be added between DA and DB. This case is illustrated

in Figure 8.2.

Now the FM computes the involved components to isolate the fault. Based on Al-

gorithm 7.1 the minimum isolation set is computed. The first time the algorithm

is computed, the input values are the graph G, which contains the fault vertex

and the fault_vertex. Based on the online configuration the computed isolation

set contains following devices:

• PGM1

• PGM2

• DA and DB

With the isolation set the Algorithm 5.1 and 5.2 can be performed to isolate the

faults. Because of physical limitation the computation and communication can

only take a certain mount of time. This is described in the next section.

57

Chapter 8. RESULTS

Figure 8.2.: Fault vertex (FV) is added in Section s1 between disconnect switch
DSA and DSB

8.3. Physical constraints

Figure 8.3 illustrates the timeline with the constraints imposed by the electrical

devices during a fault recovery sequence.

Figure 8.3.: Timebudget for recovery sequence

The physical limitation can be calculated with the assumption that every device

receive the message at the same time as:

∆1 = ramp_down() + open() + ramp_up() (8.1)

• ∆1 : physical limitation of used devices

58

Chapter 8. RESULTS

• cmd_ramp_down(): Message from FM to PGM to ramp down → De− energize

De-energize

• cmd_open(): Message from FM to each DS to open for isolation → Isolation

• cmd_ramp_up(): Message from FM to PGM to ramp up → Re− energize

With Equation 8.1, the computation time and communication time can be cal-

culated as:

∆2 = 8ms−∆1 (8.2)

• ∆2 : Time for computation of involved components and sending messages

• 8ms: goal to isolate fault

• ∆1 : from Equation 8.1

According to Winkelnkemper et.al papers [7, 46] an MMC is able to ramp down

and up in 2 ms and to Sloderbecks paper [15] a ultra fast DS is able to open and

close in 1 ms. Therefore, the physical_limitation accordingly to Equation 8.1

is:

∆1 = 2ms+ 1ms+ 2ms = 5ms (8.3)

With the physical limitation the time for the FM can be calculated as:

∆2 = 8ms−∆1 = 3ms (8.4)

In the next sections the recovery sequence based on the CFM architecture and

DFM architecture is shown.

8.4. CFM Recovery Results

In this section the results with the CFM approach is shown. As in Equation

8.4 the CFM controller has 3ms time to communicate via the GTFPGA to the

simulated electrical devices and compute the involved components for the differ-

ent fault locations. Depending of the fault location, different isolation sets are

computed.

59

Chapter 8. RESULTS

Figure 8.4 shows the voltage and current waveforms of the system during the

fault recovery sequence. After the fault is detected and the FM is informed, the

FM sends the commands to de-energize as it is shown in Algorithm 5.1. The first

chart shows the voltage during a fault recovery for the fault location one, three,

four and five. After 1.3 ms the commands to ramp down the voltage source and

current source are sent.

0 0.005 0.01 0.015

time t [s]

-1

0

1

2

3

4

5

6

V
o

lt
a

g
e

 [
k
v
]

Voltage Value from VSC

actual value_AB

referenz value_AB

actual value_BCJ

referenz value_BCJ

actual value_CDQ

referenz value_CDQ

actual value_DFL

referenz value_DFL

0 0.005 0.01 0.015

time t [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
u

rr
e

n
t

[k
A

]

Current value from CSC

actual value_AB

referenz value_AB

actual value_CDQ

referenz value_CDQ

actual value_DFL

referenz value_DFL

actual value_FAN

referenz value_FAN

Figure 8.4.: Current and Voltage from CSC and VSC for the fault location 1,3,4
and 5

After the commands for the de-energization part was sent, the commands for

opening the disconnect switches are sent. Figure 8.5 shows, that after 1.45 ms

the command for opening the particular DS was sent. Until the system is fully

de-energized, the DS is not able open. Each DS has its own main control and

measures the current and decides to open, if the current value is under a specific

60

Chapter 8. RESULTS

value, which is defined by the manufacturer of the DS. The status of DS changes

after 9.5 ms.

Figure 8.5.: Opening commands for each DS for particular section

Because the re-configuration and re-energize part was not part of this work, a

special case happens for the fault section two. After a fault occurs in section

2 the FM isolated the fault with the switches DSB, DSC and DSJ according

to Table 7.1. With opening the DSJ the PGM1 was isolated from the system.

In Figure 8.6 the FM tried to ramp up the PGM1 and the voltage waveform is

showed.

8.5. DFM Recovery Results

In this section the recovery sequence based on the DFM architecture is described.

As described in subsection 5.3.2 multiple controller handle the fault recovery

sequence. Therefore, the electrical grid was divided into two regions as it is

shown in 7.12. A fault was initialized in section s4and isolated with two FM.

Because only PGM2 is conducted to the fault, only the current waveform from

PGM2 is shown in Figure 8.7. Also the signals for opening the DS is shown.

61

Chapter 8. RESULTS

0 0.005 0.01 0.015

time t [s]

-2

0

2

4

6

V
o

lt
a

g
e

 [
k
v
]

Voltage Value from voltage source

actual value_AB

referenz value_AB

0 0.005 0.01 0.015

time t [s]

-0.5

0

0.5

1

1.5

C
u

rr
e

n
t

[k
A

]

Current value from Current source

actual value_BCJ

referenz value_BCJ

Figure 8.6.: Current and Voltage from CSC and VSC for fault location 2

With the DFM approach it was possible to send the re-energize command after

6.2 ms.

In the next chapter the FM approach is discussed.

62

Chapter 8. RESULTS

0 0.005 0.01 0.015

time t [s]

-0.5

0

0.5

1

1.5

C
u
rr

e
n
t
[k

A
]

Current value from CSC

actual value_CSC

referenz value_CSC

0 0.005 0.01 0.015

time t [s]

0

0.2

0.4

0.6

0.8

1

O
p
e
n
/C

lo
s
e

actual value DN

Open command

0 0.005 0.01 0.015

time t [s]

0

0.2

0.4

0.6

0.8

1

O
p
e
n
/C

lo
s
e

actual value DF

Open command

Figure 8.7.: Current waveform from CSC for fault location 4

63

9. DISCUSSION

In this study, the question under discussion is, if a graph based traversal can

automate the detection and isolation of a fault in a Medium Voltage DC (MVDC)

Shipboard Power System.

Based on the Xing’s dissertation the steps for a fault recovery is shown. At first

a fault has to be identified and located in a MVDC system. In Tamaskars thesis

an ultra-fast fault location identification approach using a real-time equipment

is discussed. These two researches are dealing with the fault identification, but

none of them investigate the next step of an automated fault recovery. At first

an applicable representation for a MVDC system was necessary to automate the

fault identification and recovery. Therefore, I decide to represent the MVDC SPS

as a graph to pull from the knowledge of the graph theory. Using the graph ap-

proach, rules were defined to transform the electrical network into a graph. The

challenge is to transform the electrical network without losing the information

of the current flow and the electrical attributes as it is shown in Algorithm 4.2.

Therefore, I tried to abstract the electrical devices in a way to be able to trans-

form every device from a MVDC SPS.

After the transformation it was possible to generate rules for the detection of

faults and for the isolation.

The generation of the fault detection rules guarantees that each section will be

monitored. In previous works, the code for the sections S were hardcoded and

for each change in the electrical network the CFL also changed. With the graph

approach only the connectivity matrix is used to generate the CFL rule. This

provides a less error prone system for customers and facillites during the develop-

ment of new shipboard power system. It is also better scalable than the previous

solution based on the number on lines of codes. Accordingly, to Algorithm 4.3

the number of lines is not increasing even if the number of sections will increase.

In summary with the graph representation it is possible to generate the code for

the CFL, which is better scaleable than in previous works. It also reduces the

64

Chapter 9. DISCUSSION

human inputs and prevents for coding faults. Also it facilities, that if the SPS

model change, only the update connectivity matrix is needed for fault identific-

ation and location. The next step was to develop the automated fault isolation

algorithm. The challenge in this step is to find the isolation set and all sources,

which supply power to the fault. As the result shows with the DFM architecture

the recovery sequence can be done in less than 8 ms. The challenge to develop

an communication architecture was, that nothing was defined by previous works.

Therefore, the definitions were made to create the interface between the CFL and

FM.

65

10. FURTHER WORK

The experience and results achieved through the approach of recovery a SPS in

less then 8 ms suggests future research including: testing approach on real elec-

trical devices 10.1, re-configuration and re-energization 10.2, integrating multiple

FMs 10.3, Human Machine Interface (HMI) 10.4, testing the distributed archi-

tecture 10.5, analytical model of distributed architecture 10.6 and increasing the

efficiency of the developed algorithms 10.7.

10.1. Real Electrical Devices

In this work the shipboard power system was simulated with the Real-Time Di-

gital Simulator. All the devices are based on a average model of the real world

device. All the commands for ramping down and ramping up were sent to the

RTDS. Therefore, the interface between the electrical devices of a SPS and the

FM has to be evaluated.

10.2. Re-configuration and Re-energization

After a fault is isolated the system should be re-energized to operate as well as

possible. Therefore, the re-configuration should plan how the disconnect switch

should be closed or opened to use as much power as possible. For doing this, the

P&E system contains necessary information, which system in the SPS are import-

ant to get re-energized and which system maybe can be switched off. For example

on the SPS, the drive of the ship is necessary and must be re-energized, but the

entertainment system on the ship can be switched off. The re-configuration needs

therefore, more information about the electrical network. During the graph trans-

formation, these information should be added to the vertices and therefore, the

electrical network have to be analysed.

66

Chapter 10. FURTHER WORK

10.3. Integrating Multiple FMs

The FM was tested for a centralized version and a distributed architecture. For

the distributed architecture only 2 controls were used. A lager electrical network

which can be divided into more regions and more controls of the FM can provide

redundancy for the recovery functionality and also increase the performance.

10.4. Human Machine Interface

After a fault is isolated in the system, there is no current flowing to this section.

If it is possible to repair the faulted section it should be possible to add this

section again to the electrical network. This can be done with a HMI. If adding

the recovered section to the electrical grid again, the system should re-configure

the system again, based on the re-configuration work from section 10.2.

10.5. Testing the Distributed Architecture

In this work it was shown that the proposed distributed architecture works and

increase the performance. The distributed architecture was tested with the same

hardware, but has it the ability to interact with different versions of hardware.

Thus, it is necessary to test of resilience to failures of network.

Another thing is the saftey of sending messages between the electrical devices, the

CFL and FM which should be add that the FM can not be hacked by someone.

10.6. Analytical Model of Distributed

Architecture

A distributed architecture was developed, which is able to share computational

power and perform the recovery sequence parallel. An analytical model for the

reasoning of the redundancy of the approached distributed system should help to

find the influence off losing one control to finish the performance of the recovery

.

67

Chapter 10. FURTHER WORK

10.7. Efficiency

The Depth-First Search graph traversal needs a lot of computational resources

based on [21]. Pre- computing all possible recovery sequences based on the online

configuration of the shipboard power system and saving them into a look-up

table would decrease the computational rescources during a fault sequence. After

a fault occurs, the program only have to find the entry in the table and perform

the recovery sequence. This would decrease the computational power enormously

compared to the graph traversal, because to find an entry in a list needs the

computational rescources of O(1). After the fault is isolated, it would be necessary

to pre-compute the new table again based on the graph traversal algorithms.

68

11. CONCLUSION

This work addressed automated recovery process of a MVDC shipboard power

system. As a set objective, MVDC shipboard power systems are designed that

fault sections can be isolated and the system can continuing work with normal

or limited performance again. The fault sections were isolated in less then 8 ms.

The recovery was performed automatically. To perform the recovery automat-

ically the electrical network needed to be stored in a data format to use it to

computer program. The chosen solution for this problem was the transformation

of the electrical network into a graph. The benefit of the graph representation is

to pull from the wealth of knowledge and techniques. With the graph represent-

ation it was possible to decrease rapidly the number of inputs from humans for

fault identification and fault recovery. Only the connectivity matrix was needed

for reaching the goal of automated recovery. Therefore, a fault has to be identified

in the system. In the literature [4, 5] a centralized fault location and identification

(CFL) system was developed. With the graph approach the code for the CFL

was generated automatically and the input by human was decreased to one.

After a fault is occurred the FM performed automatically the recovery sequence.

With the proposed distributed architecture it was possible to share the computa-

tional power and have a redundant system. Based on the graph approach and the

assumption, that each controller knew the entire graph, the tasks for the recovery

sequence could be done in parallel.

Summing up, a fault management was developed which is able to isolate a fault

in less than 8 ms. With the transformation of the electrical network to a graph,

it was possible to use the knowledge of the graph theory and use them for the

recovery. Finally algorithms were developed, which are scalable and less error

prone that in previous works.

69

Bibliography

[1] . R. Technologies, “Rtds technologies inc. | real time digital power system

simulation,” https://www.rtds.com/, (Accessed on 08/15/2016).

[2] H. Mirzaee, S. Bhattacharya, and S. Bala, “A high power medium-voltage

dc amplifier system,” in 2011 IEEE Energy Conversion Congress and Expo-

sition, Sept 2011, pp. 4043–4050.

[3] A. Ghaderi, H. A. Mohammadpour, and H. Ginn, “Active fault location

in distribution network using time-frequency reflectometry,” in Power and

Energy Conference at Illinois (PECI), 2015 IEEE, Feb 2015, pp. 1–7.

[4] X. Liu, “A centralized fault management approach for the protection of smart

grids,” Ph.D. dissertation, THE FLORIDA STATE UNIVERSITY, 2015.

[5] S. Tamaskar, “Performance analysis of a network based, ultrafast, centralized

fault location and identification system,” 2016.

[6] A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter

topology suitable for a wide power range,” in Power Tech Conference Pro-

ceedings, 2003 IEEE Bologna, vol. 3, June 2003, pp. 6 pp. Vol.3–.

[7] M. Steurer, F. Bogdan, M. Bosworth, O. Faruque, J. Hauer, K. Schoder,

M. Sloderbeck, D. Soto, K. Sun, M. Winkelnkemper, L. Schwager, and

P. Blaszczyk, “Multifunctional megawatt scale medium voltage dc test bed

based on modular multilevel converter (mmc) technology,” in 2015 Interna-

tional Conference on Electrical Systems for Aircraft, Railway, Ship Propul-

sion and Road Vehicles (ESARS), March 2015, pp. 1–6.

[8] M. Andrus, H. Ravindra, J. Hauer, M. Steurer, M. Bosworth, and R. Soman,

“Phil implementation of a mvdc fault management test bed for ship power

systems based on megawatt-scale modular multilevel converters,” in Electric

Ship Technologies Symposium (ESTS), 2015 IEEE, June 2015, pp. 337–342.

70

Bibliography

[9] J. Langston, M. Andrus, M. Steurer, D. Alexander, J. Buck, G. Robinson,

and D. Wieczenski, “System studies for a bi-directional advanced hybrid drive

system (AHDS) for application on a future surface combatant,” in Electric

Ship Technologies Symposium (ESTS), 2013 IEEE. IEEE, 2013, pp. 509–

513.

[10] R. Chan, S. Sudhoff, and E. Zivi, “An approach to optimally allocate energy

storage in naval electric ships,” in Electric Ship Technologies Symposium

(ESTS), 2011 IEEE, April 2011, pp. 402–405.

[11] R. Chan, S. Sudhoff, Y. Lee, and E. Zivi, “A linear programming approach

to shipboard electrical system modeling,” in Electric Ship Technologies Sym-

posium, 2009. ESTS 2009. IEEE, April 2009, pp. 261–269.

[12] A. Cramer, H. Chen, and E. Zivi, “Shipboard electrical system modeling for

early-stage design space exploration,” in Electric Ship Technologies Sympo-

sium (ESTS), 2013 IEEE, April 2013, pp. 128–134.

[13] N. Doerry and J. Amy Jr, “Mvdc shipboard power system considerations for

electromagnetic railguns.”

[14] Y. Khersonsky, “New ieee power electronics standards for ships,” in Electric

Machines Tech. Symp.(EMTS), 2012.

[15] M. Sloderbeck, H. R. Dionne Soto, M. Steurer, and A. Challita, “Megawatt

scale demonstration of high speed fault clearing and power restoration for

mvdc systems utilizing fast disconnect switch.”

[16] B. Diaz, T. H. Ortmeyer, B. Pilvelait, M. Izenson, W. Chen, and N. Spivey,

“System study of fault current limiter for shipboard power system,” in 2009

IEEE Electric Ship Technologies Symposium, 2009.

[17] “Ieee guide for protecting power transformers,” IEEE Std C37.91-2008 (Re-

vision of IEEE Std C37.91-2000), pp. 1–139, May 2008.

[18] S. Miao, P. Liu, and X. Lin, “An adaptive operating characteristic to improve

the operation stability of percentage differential protection,” IEEE Transac-

tions on Power Delivery, vol. 25, no. 3, pp. 1410–1417, July 2010.

[19] M. J. Thompson, “Percentage restrained differential, percentage of what?”

in Protective Relay Engineers, 2011 64th Annual Conference for, April 2011,

pp. 278–289.

[20] N. Biggs, Algebraic graph theory. Cambridge university press, 1993.

71

Bibliography

[21] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to

Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[22] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2005.

[23] L. Lovász and K. Vesztergombi, Discrete Mathematics: Lecture

Notes, Yale University, Spring 1999, 2000. [Online]. Available: https:

//books.google.com/books?id=OXObjwEACAAJ

[24] Wikibooks, “A-level computing/aqa/paper 1/fundamentals of algo-

rithms/tree traversal — wikibooks, the free textbook project,”

2016, [Online; accessed 1-August-2016]. [Online]. Available:

https://en.wikibooks.org/w/index.php?title=A-level_Computing/AQA/

Paper_1/Fundamentals_of_algorithms/Tree_traversal&oldid=3092536

[25] S. Even and G. Even, Graph Algorithms. Cambridge University Press, 2011.

[Online]. Available: https://books.google.com/books?id=m3QTSMYm5rkC

[26] S. Skiena, The Algorithm Design Manual: Text, ser. Computer Science:

Algorithm Design. TELOS–the Electronic Library of Science, 1998.

[Online]. Available: https://books.google.com/books?id=TrXd-gxPhVYC

[27] C. Y. Lee, “An algorithm for path connections and its applications,” IRE

Transactions on Electronic Computers, vol. EC-10, no. 3, pp. 346–365, Sept

1961.

[28] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-

first search algorithm (or how to cope with the nondeterminism

of reducers),” in Proceedings of the Twenty-second Annual ACM

Symposium on Parallelism in Algorithms and Architectures, ser. SPAA

’10. New York, NY, USA: ACM, 2010, pp. 303–314. [Online]. Available:

http://doi.acm.org/10.1145/1810479.1810534

[29] S. Abdullahi, “An application of graph theory to the electrical circuit using

matrix method,” IOSR Journal of Mathematics (IOSR-JM), vol. Volume 10,

no. Issue 2 Ver. II, apr 2014.

[30] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed

systems,” in Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles, ser. SOSP ’87. New York, NY, USA: ACM, 1987, pp.

123–138. [Online]. Available: http://doi.acm.org/10.1145/41457.37515

72

Bibliography

[31] D. E. Perry and A. L. Wolf, “Foundations for the study of software architec-

ture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52,

1992.

[32] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building,

and deploying messaging solutions. Addison-Wesley Professional, 2004.

[33] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:

Concepts and Design, 5th ed. USA: Addison-Wesley Publishing Company,

2011.

[34] M. Glinka, “Prototype of multiphase modular-multilevel-converter with 2 mw

power rating and 17-level-output-voltage,” in Power Electronics Specialists

Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 4, 2004, pp. 2572–

2576 Vol.4.

[35] M. Glinka and R. Marquardt, “A new ac/ac multilevel converter family,”

IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 662–669,

2005.

[36] M. Hagiwara and H. Akagi, “Control and experiment of pulsewidth-

modulated modular multilevel converters,” IEEE Transactions on Power

Electronics, vol. 24, no. 7, pp. 1737–1746, July 2009.

[37] M. Hagiwara, K. Nishimura, and H. Akagi, “A medium-voltage motor drive

with a modular multilevel pwm inverter,” IEEE Transactions on Power Elec-

tronics, vol. 25, no. 7, pp. 1786–1799, July 2010.

[38] J. Kolb, F. Kammerer, M. Gommeringer, and M. Braun, “Cascaded control

system of the modular multilevel converter for feeding variable-speed drives,”

IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 349–357, Jan

2015.

[39] X. Shang, G. Wang, F. Li, Q. Wu, and J. Feng, “Low output frequency

operation of modular multilevel matrix converter,” in 2015 5th International

Conference on Electric Utility Deregulation and Restructuring and Power

Technologies (DRPT), Nov 2015, pp. 2259–2264.

[40] M. Winkelnkemper, A. Korn, and P. Steimer, “A modular direct converter

for transformerless rail interties,” in 2010 IEEE International Symposium on

Industrial Electronics, July 2010, pp. 562–567.

[41] D. Jansen and H. Buttner, “Real-time ethernet the ethercat solution,” Com-

puting Control Engineering Journal, vol. 15, no. 1, pp. 16–21, Feb 2004.

73

Bibliography

[42] F. S. Univeristy, “Tour the center for advanced power systems,” http://www.

caps.fsu.edu/tour.html, August 2016, (Accessed on 08/10/2016).

[43] P. S. Foundation, “Socketserver - a framework for network servers - python

3.5.2 documentation,” https://docs.python.org/3.5/library/socketserver.

html, July 2016, (Accessed on 08/12/2016).

[44] V. Corp, “Versalogic - mamba (vl-ebx-37) - ebx sbc with intel core 2 duo,”

http://www.versalogic.com/mam, 2016, (Accessed on 08/10/2016).

[45] iMatix Corporation, “Distributed messaging - zeromq,” http://zeromq.org/,

2014, (Accessed on 08/15/2016).

[46] P. Blaszczyk, M. Winkelnkemper, and L. Schwager, “Converter energy bal-

ancing in mmc system energy sharing using master controller,” in Electrical

Drives and Power Electronics (EDPE), 2015 International Conference on,

Sept 2015, pp. 30–37.

74

List of abbreviations

MMC Modular Multilevel Converter

FM Fault Management

SPS Shipboard Power System

CFL Centralized Fault Location and Identification system

ι Isolation Set

Req/Rep Request/ Reply

Pub/Sub Publisher Subscriber

CFM Centralized Fault Management

DFM Distributed Fault Management

PGM Power Generation Module

DS Disconnect Switch

B Bus

75

List of Figures

2.1. Example: Typical MVDC system configuration 5

2.2. Example: A simplified notional PGM 6

2.3. Recovery sequence in MVDC network 8

2.4. Example: section failure before isolation and reconfiguration . . . 9

2.5. A cable section with two current measurments 10

2.6. Example: Current flow during a fault 11

2.7. The adapted percentage differential protection diagram 13

3.1. Example for comparing directed and undirected graphs. 17

3.2. Solution for travseral operation 20

4.1. Electrical device represented as vertex in Graph 26

4.2. Given connectivity Matrix represented as graph G 27

4.3. New recovery sequence . 29

5.1. Illustration of the communication between the layers 32

5.2. Server Client example using the Rep/Req pattern 34

5.3. Example of a centralized fault management architecture 36

5.4. An example for a distributed fault management system 37

5.5. Simplified time sequence diagram fo fault supervision and recovery

process . 38

7.1. Electrical testbed, which is simulated in real-time with RTDS . . 42

7.2. Example: CFL monitored sections 44

7.3. Distributed embedded control: master and slave control units of

the Beckhoff platform . 45

7.4. Example MVDC system with supervision by CFL 45

7.5. CHIL testbed . 47

7.6. Schematic hardware set up for DFM 48

7.7. Schematic hardware set up for CFM 49

76

List of Figures

7.8. The connectivity matrix Mc for the proposed electrical network . 50

7.9. Electrical grid is represented as graph 51

7.10. Connectivity matrix represented as adjacency list 52

7.11. Sequence diagram for CFM approach 52

7.12. A possible example to split the electrical grid in regions 54

7.13. Sequence diagram for DFM approach 55

8.1. Current in section s1 after fault is initialized 57

8.2. Fault vertex (FV) is added in Section s1 between disconnect switch

DSA and DSB . 58

8.3. Timebudget for recovery sequence 58

8.4. Current and Voltage from CSC and VSC for the fault location 1,3,4

and 5 . 60

8.5. Opening commands for each DS for particular section 61

8.6. Current and Voltage from CSC and VSC for fault location 2 . . . 62

8.7. Current waveform from CSC for fault location 4 63

77

List of Tables

3.1. Execution count and time for the Insertion-Sort algorithm 15

3.2. Summarization of the computational effort of the different graph

representations . 22

4.1. A given connectivity matrix 4.3 24

7.1. Sections and the respective disconnect switches 43

78

List of Algorithms

3.1. Insertion_Sort(A) . 15

3.2. DFS(G, v) . 21

3.3. BFS(G,v) . 22

4.1. add_attribute(device) . 24

4.2. transformation(device_list) . 25

4.3. fault_exits(R) . 27

4.4. isolation_devices(G,v) . 30

4.5. find_reachable_sources(G,v) . 30

5.1. de_energize(Isolation_set) . 32

5.2. isolate(Isolation_set) . 33

7.1. min_dis_isolation_devices(G, visiting, found, visited) 53

79

