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ABSTRACT. A long-standing open problem in Continuum Theory closely related with
the fixed point problem reads as follows. Does there exist a planar continuum which
admits a simple dense canal in every of its planar embeddings? In this document we
propose a continuum which could answer the question in the affirmative.
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2. INTRODUCTION

All the spaces considered in this document are going to be metric spaces. A con-
tinuum is a compact connected metric space. A continuum has a fixed point, if every
continuous function of the continuum to itself (later in the document such function is
called a self-map) has a fixed point. Continua with the property that every self-map has
a fixed point are called to have the fixed point property. As an example, it follows directly
from the intermediate-value theorem that the unit interval [0,1] ⊂R has the fixed point
property. A homeomorphism of a space onto a subspace of the plane is called a planar
embedding of the space. A continuum that admits a planar embedding is called a pla-
nar continuum. We say that a planar continuum is non-separating if the complement of
the continuum in the plane is connected. One of the oldest outstanding open questions
in Continuum Theory is the following:

(The Scottish Book, Problem 107, Sternbach, see [15]): Does every non-
separating planar continuum have the fixed point property?

Brouwer’s fixed point theorem states that a compact convex set has the fixed point
property. The question quoted above has been one of the central topics of research in
Continuum Theory ever since it was stated, since the positive answer on it would give a
natural generalization of the Brouwer fixed point theorem in dimension two (for a sur-
vey on the fixed point property problem see [4, 11]). There have been a series of involved
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examples of continua without the fixed point property with variety of additional topo-
logical properties given in the literature [3, 8, 10, 16, 17, 18, 19, 20, 24, 25]. However, no
proof that the mentioned examples are planar was given and thus the fixed point prop-
erty question remains unanswered.
A continuum is called indecomposable, if it cannot be written as a union of two of its
proper subcontinua. A topological disk is a homeomorphic image of a closed unit pla-
nar ball. A technique to construct interesting indecomposable planar continua is to
take a topological disk and dig in the disk an infinite canal with boundaries of the canal
asymptotically approaching each other as the digged canal gets longer. If the closure of
the boundaries of the canal within the disk is an indecomposable continuum, the canal
is called a simple dense canal (in the literature also sometimes called a Lakes-of-Wada
channel). A working definition of a simple dense canal is going to be given later. It was
observed independently by Bell, Sieklucki and Iliadis [2, 12, 26] from 1967 until 1970
that an example of a continuum without the fixed point property (if such exists) needs
to have an indecomposable continuum in its boundary. Furthermore, the results of the
mentioned papers imply that an example of a non-separating planar continuum with-
out the fixed point property (if such exists) would need to have a simple dense canal in
every planar embedding of that continuum. Therefore it is natural to ask the following
question which was posed in the paper [6] by Brechner and Mayer and restated in the
Continuum Theory Problems paper [14] written by Lewis:

(Problem 143 from [14], Brechner and Mayer): Does there exist a non-
separating planar continuum such that every planar embedding of it
has a simple dense canal?

To our knowledge no answer on the question by Brechner and Mayer has been given in
the literature yet.

In this document we give a construction of a possible example of a continuum with
a simple dense canal in every of its embeddings, which would provide a positive an-
swer to the quoted question given by Brechner and Mayer. In the paragraphs to follow
we describe the outline of the construction of the given example and we formalize this
construction for the rest of the document.

An arc is a homeomorphic image of the closed unit interval. A ray is a homeomorphic
image of [0,1) ⊂ R2. A ray contained in an planar embedding of an indecomposable
continuum is said to have a free side, if for every subarc of the ray there exists an ε> 0 so
that exactly one side of the subarc in the ε-neighborhood of it contains no other points
of the continuum. A tree is an acyclic graph.

Let Xn be continua and let fn : Xn+1 → Xn be continuous functions for every non-
negative integer n. The inverse limit space is defined by

lim←−−
{

Xn , fn
}∞

n=0 =
{
(x0, x1, . . . ) : xn = fn+1 (xn+1) , xn ∈ Xn for every nonnegative integer n

}
and we call spaces Xn factor spaces and functions fn bonding maps. For brevity we de-
note X = lim←−−

{
Xn , fn

}
. It is not difficult to see that the space X under given conditions is

a continuum. We will use inverse limit construction as the main tool in the description
of our example and we will refer to the example from now onwards by X . Our con-
structed continuum X is going to be a tree-like continuum, i.e. inverse limit space on
trees as factor spaces. The continuum X is going to contain four distinct mutually dis-
joint rays Rν for ν ∈ {0,1,2,3} and each of the rays is going to be dense in X . All the rays
Rν are going to have a free side in every planar embedding of X . The construction of the
example will furthermore assure that the non-free sides of two pairs of rays R0,R1 and
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R2,R3 respectively are going to face each other in every planar embedding of X . There-
fore, our aim is to construct a simple dense canal between two free sides of rays Rν. A
simple triod is a union of three arcs intersecting in a common endpoint and the three
arcs are mutually disjoint otherwise. The continuum X is going to contain five distinct
mutually disjoint simple triods; four of them are going to be attached to exactly one of
the four rays Rν and one of the triods is going to be disjoint from all the rays Rν. The
most important ingredient for the construction of a simple dense canal is going to be
wrapping of all “long arcs” from X around the five mentioned simple triods. Intuitively,
when some “long arc” from X will wrap on a simple triod we will be able to estimate
the length of a subarc of this “long arc” that will stay close to the triod regardless of the
planar embedding of X . Thus the subarcs of “long arcs” not staying close to any of the
mentioned triods will not have sufficient length to prevent the existence of the simple
dense canal in any planar embedding of X . Therefore, since we in such a way control
all “long arcs” from X we will (hopefully) be able to build a simple dense canal between
two free sides of rays Rν inductively on the lengths of the rays. At the end of the file we
comment in Remark 11.1 what still needs to be done to complete the paper.

3. PRELIMINARIES

In this section we define a language to describe bonding maps on the factor spaces
for the inverse limit representation of our example.

Throughout this document let Ùc ′c ′′ denote an arc oriented from c ′ to c ′′. We denote

by int
( Ùc ′c ′′)= Ùc ′c ′′ \

{
c ′,c ′′

}
.

Definition 3.1. Define a walk on a tree D as a finite sequence W = (w0, w1, . . . , wn)
of points of D . When W = (w) we omit brackets for brevity. Let ªW denote the se-
quence W listed in the opposite order, i.e. ªW = (wn , wn−1, . . . , w0). For two walks
W ′ = (

w ′
0, w ′

1, . . . , w ′
n

)
and W ′′ = (

w ′′
0 , w ′′

1 , . . . , w ′′
n′

)
, where n and n′ are nonnegative in-

tegers, define W ′⊕W ′′ = (
w ′

0, w ′
1, . . . , w ′

n , w ′′
0 , w ′′

1 , . . . , w ′′
n′

)
. For walks W1, . . . ,Wi , define⊕i

j=1 W j = W1 ⊕·· ·⊕Wi . If i = 0 we understand that
⊕i

j=1 W j =;. For any positive in-

teger k, let W k denote W ⊕W ⊕·· ·⊕W (the concatenation of k walks W ). The walk W ∗
is the abbreviation of the walk W if all identical consecutive points from W are replaced
by one such point.

Definition 3.2. Suppose W is a walk on a tree D . Let W ∗ = (w0, w1, . . . , wn) and Ùc ′c ′′
be an oriented arc. Denote by c0 = c ′,c1, . . . ,cn−1,cn = c ′′ strictly increasing sequence of

points from Ùc ′c ′′. Define the map α〈W, Ùc ′c ′′,D〉 : Ùc ′c ′′ → D by setting α〈W, Ùc ′c ′′,D〉 (c j ) =
w j and letting α〈W, Ùc ′c ′′,D〉 |Üc j−1c j

be an arbitrary homeomorphism onto Üw j−1w j such

that α〈W, Ùc ′c ′′,D〉 (c j−1) = w j−1 and α〈W, Ùc ′c ′′,D〉 (c j ) = w j for each j ∈ {1, . . . ,n}.

4. CONSTRUCTION OF FACTOR SPACES AND BONDING MAPS

In this section we first give geometric description of the factor spaces used in the
construction of inverse limit and then in the following subsections define and explain
the action of bonding maps on the factor spaces.

Suppose that T is a simple triod with endpoints t0, t1 and t2. Let Y be another simple
triod disjoint from T . Denote the endpoints of Y by y0, y1 and y2. Let Úy0a0 be an arc in-
tersecting T ∪Y only at y0. Let Ùt0a be an arc containing a0 in its interior and intersecting
Y ∪ Úy0a0 ∪T only at t0 and a0. Denote Y ∪ Úy0a0 ∪Ùt0a ∪T by A0.
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FIGURE 2. A2 and Ã2

Let s be a point in the interior of Úa0 y0 and let s0, s1, s2, . . . be a strictly increasing se-

quence of points in the interior of Úa0 y0 so that limi→∞ si = s. Suppose Ús1b1,Ús2b2,Ús3b3, . . .

is a sequence of mutually disjoint arcs such that A0∩ Ùsi bi = {si } for each positive integer

i . Set Ai = A0 ∪⋃i
j=1

Ús j b j .

Observation 4.1. Ai ⊂ Ai+1 for each nonnegative integer i .

Let a1, a2, . . . be a strictly increasing sequence of points in the interior of Úa0t0. Addi-
tionally, we assume that limn→∞ an = t0. For each nonnegative integer n, let mn be a
point in the interior of Üan an+1. Set βn = α〈(an , t0) , Ûanmn , A0〉. Also, let Gn denote the
set Ùaan ∪Úa0s0.

In the product Ai ×{0,1,2,3} consider the relation ∼ defined by
(
x,µ

)∼ (z,ν) for x, z ∈
Ai and µ,ν ∈ {0,1,2,3} if and only if x = z and either µ = ν, or x = z ∈ T . Let Ãi denote
the quotient space Ai ×{0,1,2,3}/ ∼ and let qi : Ai ×{0,1,2,3} → Ãi be the quotient map.
We use the following notation for brevity. If z ∈ Ai and µ ∈ {0,1,2,3} we denote qi

((
z,µ

))
by zµ. If Z ⊂ Ai we denote qi

(
Z ×{

µ
})

by Zµ. If t ∈ T we denote qi
((

t ,µ
))

by t∗. In the
same convention, we use T ∗ for qi

(
T ×{

µ
})

.

Observation 4.2. Ãi ⊂ Ãi+1 for each nonnegative integer i .

We define an involution τ : {0,1,2,3} → {0,1,2,3} by τ(0) = 1, τ(1) = 0, τ(2) = 3 and
τ(3) = 2.
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Let us comment on the important parts of the factor spaces Ãi and establish a lan-
guage so that we can address them. The space Ãi consists of four trees Aν

i called ν-
legs for ν ∈ {0,1,2,3}, where points t ∈ T ⊂ Aν

i are identified, see Figure 2. For every

ν ∈ {0,1,2,3} a ν-leg consists of an arc Úaνt∗0 and a tree Úaν0 yν0
⋃i

j=0
Úsνi bνi ∪Y ν. A subarcÜaνaνn+1 of Úaνt∗0 is called the ν-precursor of a ray. The arc Úsνi bνi is called the i -sticker of

the ν-leg.
In the next two subsections we will separately define the maps ϕn,k : Ãi → Ãi for n

odd and i = n+1
2 and ϕn,k : Ãi+1 → Ãi for n even and i = n

2 and any positive integer
k. From now onwards k will always denote the number of wrappings of stretched ν-
precursors of rays around a triod from Ãi and is going to be refereed to as wrapping
number. The maps ϕn,k are going to be used as bonding maps in the definition of our
inverse limit space X . We will prove later that for a careful inductive choice of wrapping
numbers k, any planar embedding of X has a simple dense canal. Before we give a
formal definition of maps ϕn,k we first intuitively describe what we require from the
bonding maps.

With ϕn,k for odd n we will assure that X is having four distinct mutually disjoint
rays Rν which will correspond to the union of extensions of ν-precursors of rays for
every ν ∈ {0,1,2,3} (we will define rays Rν precisely later in the document). The rays Rν

are going to be dense in X , which is going to be achieved by stretching the precursors
of rays along every ν-leg for ν ∈ {0,1,2,3}. Furthermore, we want that the maps ϕn,k

for both even and odd n assure the existence of a free side for every of four rays Rν in

every planar embedding of X . We will achieve that with fixing the triods Úaνaν1 ∪ Úaν0 sν0
for every ν ∈ {0,1,2,3} with every map ϕn,k and extending ν-precursors of rays along

the side of the arc Úaνaν1 which contains a subarc of Úaν0 sν0 . The map ϕn,k for even n is
going to extend the i -sticker of the µ-leg on the part of the τ

(
µ
)
-leg and wrap it k times

around triod Y τ(µ) and vice versa for the i -sticker of the τ
(
µ
)
-leg for µ ∈ {0,2}. Extended

stickers are going to be introduced to assure that the non-free sides of Rµ and Rτ(µ)

face each other in every planar embedding of X for µ ∈ {0,2}. Intuitively, the extended
stickers will tie together pairs of rays Rµ and Rτ(µ) for µ ∈ {0,2}. Thus we will be able
to start the construction of a simple dense canal of a planar embedding of X between
free sides of two rays. Moreover, ϕn,k for n odd will introduce wrapping of extensions
of ν-precursors of rays k times around triods Y ν for every ν ∈ {0,1,2,3} and the map
ϕn,k for n even wrapping of extensions of ν-precursors of rays k times around triod
T ∗. A careful inductive choice of wrapping numbers around all the triods is going to
be of main importance in the construction of simple dense canal in an arbitrary planar
embedding of X , as explained in the introduction.

4.1. Construction of the map ϕn,k for odd n. Throughout this subsection k is a posi-
tive integer, n ≥ 0 is an odd integer, i = n+1

2 , µ = mod
( n−1

2 ,4
)

(i.e. n−1
2 = 4l +µ for the

nonnegative integer l so that µ ∈ {0,1,2,3}), and ν is an arbitrary element of {0,1,2,3}.

Let P = (
t∗0 , aµ0

)⊕⊕i
j=1

(
sµj ,bµj , sµj

)
⊕ (

yµ1 , yµ2 , yµ0
)k ⊕ (

yµ2 , yµ1 , yµ0
)k−1 ⊕aµ. Let γo denote

α〈P ªP, Ümn an+1, Ãi 〉.
We define a mapping ϕn,k : Ãi → Ãi in the following way.

(O-1) Let ϕn,k (xν) = xν if x ∈ Y ∪Ùsa0 ∪⋃i
j=1

Ús j b j ∪ Ùaan ∪T .

(O-2) Let ϕn,k (xν) = xν if ν 6=µ and x ∈ Ùs y0.

(O-3) Let ϕn,k
∣∣Úsµy

µ
0

=α〈W, Úsµyµ0 , Ãi 〉, where W = sµ⊕ (
yµ1 , yµ2 , yµ0

)k−1
.
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with a 1-gap. An extended ν-precursor of a ray is
approaching the µ-leg (µ= 1 in case (i) and µ= 0 in case (ii)).

(O-4) Let ϕn,k (xν) = q
(
βn(x),ν

)
if x ∈ Ûanmn .

(O-5) Let ϕn,k (xν) = γo(x) if x ∈ Ümn an+1.
(O-6) Let ϕn,k (xν) = t∗0 for each x ∈ Üan+1t0.

Observation 4.3. ϕn,k is continuous for odd n.

Let Γϕn,k denote the graph of ϕn,k : Ãi → Ãi . In the following paragraphs we explain
in detail the construction of the mapϕn,k for odd n and any positive integer k. We argue
that the graph Γϕn,k can be drawn in the plane arbitrarily close to Ãi for every odd n and
any positive integer k.

First, note that the points xν ∈ Ãi \
(⋃3

ν=0
Úaνn t∗0 ∪ Úsµyµ0

)
can be drawn arbitrary close

toϕn,k (xν) = xν by (O-1), (O-2) for every positive integer k and odd n. By (O-3) we draw
Γϕn,k |Úsµy

µ
0

to wrap k − 1 times around Y µ and thus creating a (k − 1)-gap between the

points sµ and yµ0 around the triod Y µ (see the dashed line on the Figure 3). The (k −1)-
gap is formed to allow the stretched all ν-precursors of rays to wrap around Y µ. Arcs
which enter this (k − 1)-gap can be drawn to wrap at most k − 1 times around Y µ for
µ= 0,2 in the clockwise direction and at most k−1 times around Y µ for µ= 1,3 in coun-

terclockwise direction. The ν-precursors of rays are by (O-4) first extended from Ûaνmν
n

to the entire arc Úaνtν0 for every ν ∈ {0,1,2,3}. After observations made this paragraph the
graph Γϕn,k after applying (O-1)-(O-4) looks as on Figure 3, case (i).

The arcs Ümν
n aνn+1 are by (O-5) stretched by ϕn,k along the whole leg Aµ

i , starting from

t∗0 , continuing to aµ0 and passing around the j -stickers of µ-leg for every j = 1, . . . , i , see
Figure 3. Still by (0-5) we draw Γϕn,k | Ümνaνn+1

to enter the (k −1)-gap and wrap inside it

k −1 times around Y µ, unwrap inside it k −1 times and exit the (k −1)-gap under the
arc Γϕn,k |Úsµy

µ
0

. Note that in such a way a subarc of Γϕn,k | Ümν
n aνn+1

indeed wraps around

Y µ exactly k times, since it wraps once around Y µ before entering the (k −1)-gap, see

Figure 3. After unwrapping, a subarc of Γϕn,k | Ümν
n aνn+1

stretches under the arc Úaµ0 sµ to the

point aµ and then does all of the movement described in this paragraph in the reverse
order and finally stretches to the point t∗0 , see Figure 3, case (ii).

Since ϕn,k stretches ν-precursors of rays for every ν ∈ {0,1,2,3} to a µ-leg in the way
described above, we need to show that the arcs Γϕn,k | Ümν

n aνn+1
can indeed be drawn si-

multaneously in the plane so that ϕn,k
(
aνn+1

)= t∗0 for every ν ∈ {0,1,2,3} as required by
(O-6).
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(i) (ii)
FIGURE 4. Part of the graph Γϕn,k for µ = 0 in case (i) and for µ = 1 in
case (ii).

Observation 4.4. By the (O-5) there exists a unique point uν
n ∈ int

( Ümν
n aνn+1

)
such that

ϕn,k
(
uν

n

)= aµ for every ν ∈ {0,1,2,3}.

We impose an ordering on the planar arcsΓϕn,k | Ümν
n aνn+1

. Denote by ↓ν= Γϕn,k |Ümν
n uνn

and

by ↑ν= Γϕn,k | Üuνn aνn+1
for every ν ∈ {0,1,2,3} and let P µ = {lν: ν ∈ {0,1,2,3} and l∈ {↑,↓}

}
for every µ ∈ {0,1,2,3}. We write lν≺lλ, if arc lν is drawn in the plane closer to µ-leg
than to lλ among two different arcs lν,lλ∈P µ. We study different cases depending on
the choice of µ ∈ {0,1,2,3}.

Let µ= 0. Since the graph Γϕn,k should be drawn in the plane, it follows that ↓0 needs
to be drawn the closest to the 0-leg and that ↓3≺↓2≺↓1 and no other arc from P 0 is
between arcs ↓ν for ν ∈ {1,2,3} since ϕn,k

(
aνn+1

) = t∗0 by (O-6), see Figure 4, case (i).
Furthermore the arc ↓1 obviously needs to be drawn the furthest away from A0

i among
all the elements from P 0. Thus we only need to determine the ordering among the arcs
↓0≺↑0,↑1,↑2,↑3≺↓3.

Observation 4.5. Let l be a positive integer. Suppose that (0, z0) , (0, z1) , . . . , (0, zl ) ∈ [0,1]×
[0,1] ⊂R2 is a sequence of points so that 0 = z0 < z1 < ·· · < zl = 1 and

(
1, z ′

0

)
, . . . ,

(
1, z ′

l

) ∈
[0,1]× [0,1] and let Z0, Z1, . . . , Zl be arcs in [0,1]× [0,1] such that the endpoints of Z j are(
0, z j

)
and

(
1, z ′

j

)
for every j ∈ {0,1, . . . , l }. If arcs Z j are mutually disjoint, then z ′

0 < z ′
1 <

·· · < z ′
l .

Applying Observation 4.5 for Zν being proper subarcs of ↓ν ∪ ↑ν for everyν ∈ {0,1,2,3}
with a planar homeomorphism on [0,1] × [0,1] we obtain that ↓0≺↑0≺↑1≺↑2≺↑3≺↓3,
which completely determines the ordering on arcs from P 0.

Let µ = 1. Since the graph Γϕn,k should be drawn in the plane, it follows that ↓1

needs to be drawn the closest to the 1-leg and furthermore we have the order ↓3Â↓2Â↓1

on these arcs. Moreover, no other arc from P 1 is between arcs ↓3, ↓2 and ↓1, since
ϕn,k (an+1) = t∗0 by (O-6), see Figure 4, case (ii). Furthermore, again by (O-6) the arc
↓0 needs to be drawn the furthest away from the 1-leg among all the elements of P 1.
Thus we only need to determine the ordering on ↓0Â↑0,↑1,↑2,↑3Â↓3. Applying Obser-
vation 4.5 again for Zν being subarcs of ↓ν ∪ ↑ν for every ν ∈ {0,1,2,3} with a planar
homeomorphism on [0,1]× [0,1] we obtain that ↓0≺↑0≺↑1≺↑2≺↑3≺↓3, see Figure 4, case
(ii).

If we interchange in Ãi the 0-leg with the 3-leg and the 1-leg with the 2-leg (i.e. reflect
Ãi over the vertical line of symmetry of Ãi ) the graph Γϕn,k for n odd and for either µ= 3
or µ = 2 respectively can be drawn analogously as discussed above for either µ = 0 or
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µ = 1 respectively. We have studied all the elements of the definition of map ϕn,k for
odd n and positive integer k. We conclude that the graph Γϕn,k can be drawn arbitrarily

close in the plane to Ãi .
We continue with some observations that are going to be important later in the doc-

ument.

Observation 4.6. ϕn,k restricted to Gν
n is the identity on Gν

n . Additionally, Gν
n is a com-

ponent of ϕn,k
−1

(
Gν

n

)
.

Observation 4.7. Let L be an arc contained either in int
( Úaν0 aνn

)
or in int

(Úsνj bνj

)
for some

j = 1, . . . , i and let K be a component of ϕn,k
−1 (L). Then K is either L or an arc con-

tained in int
( Ümλ

n aλn+1

)
for some λ ∈ {0,1,2,3}. In both cases ϕn,k restricted to K is a

homeomorphism of K onto L. (Notice that the case K 6= L may occur only when ν=µ.)

Observation 4.8. Let cν ∈Gν
n \

{
sν0

}
. Then the conclusion of the above observation is also

true if L = Úcνsν0 and K is a component of ϕn,k
−1 (L) such that cν ∈ϕn,k (K ).

4.2. Construction of the mapϕn,k for even n. Throughout this subsection ν is an arbi-
trary element of {0,1,2,3}, k is a positive integer, n is an even nonnegative integer and
i = n

2 . In the case of even n, ϕn,k : Ãi+1 → Ãi . Before we define this mapping, we need
to introduce the following notation:

• Set, γe =α〈t∗0 ⊕ (
t∗1 , t∗2 , t∗0

)k , Ümn an+1, Ãi 〉.
• Let bνi+1 be a point in the interior of Üsνi+1bνi+1.

• If ν ∈ {1,3}, let sνi+1 be a point in the interior of Üsνi+1bνi+1.

In the remaining part of this subsection µ stands for an arbitrary element of {0,2}.
(Thus, τ(µ) ∈ {1,3}.) We define a mapping ϕn,k : Ãi+1 → Ãi in the following way.

(E-1) Let ϕn,k (xν) = xν for each x ∈ Ai+1
∖(Ùs y0 ∪Úan t0 ∪ Üsi+1bi+1

)
. (Since x ∈ Ai+1 \Üsi+1bi+1, it follows x ∈ Ai and ϕn,k (xν) = xν ∈ Ãi .)

(E-2) Let ϕn,k (xν) = q
(
βn(x),ν

)
if x ∈ Ûanmn .

(E-3) Let ϕn,k (xν) = γe(x) if x ∈ Ümn an+1.
(E-4) Let ϕn,k (xν) = t∗0 for each x ∈ Üan+1t0.

(E-5) Let ϕn,k
∣∣Úsνyν0

=α〈sν⊕ (
yν1 , yν2 , yν0

)k−1 , Úsνyν0 , Ãi 〉.
(E-6) Let ϕn,k

∣∣ Üs
µ

i+1b
µ

i+1

=α〈Q1, Üsµi+1bµi+1, Ãi 〉, where Q1 = sµi+1 ⊕
⊕1

j=i

(
sµj+1, sµj ,bµj , sµj

)
⊕(

aµ0 , t∗0 , aτ(µ)
0 , sτ(µ)

1

)
⊕⊕i

j=1

(
sτ(µ)

j ,bτ(µ)
j , sτ(µ)

j , sτ(µ)
j+1

)
⊕ yτ(µ)

0 .

(E-7) Let ϕn,k
∣∣ Üb

µ

i+1b
µ

i+1

=α〈Q2, Übµi+1bµi+1, Ãi 〉, where Q2 = yτ(µ)
0 ⊕

(
yτ(µ)

1 , yτ(µ)
2 , yτ(µ)

0

)k
.

(E-8) Let ϕn,k
∣∣ Ü

s
τ(µ)
i+1 s

τ(µ)
i+1

=α〈V1,
Ü

sτ(µ)
i+1 sτ(µ)

i+1 , Ãi 〉, where V1 = sτ(µ)
i+1 ⊕

(
yτ(µ)

1 , yτ(µ)
2 , yτ(µ)

0

)k

⊕
(

yτ(µ)
2 , yτ(µ)

1 , yτ(µ)
0

)k
.

(E-9) Let ϕn,k
∣∣ Ü

s
τ(µ)
i+1 b

τ(µ)
i+1

=α〈V2,
Ü

sτ(µ)
i+1 bτ(µ)

i+1 , Ãi 〉, where V2 = yτ(µ)
0 ⊕⊕1

j=i

(
sτ(µ)

j+1 , sτ(µ)
j ,bτ(µ)

j , sτ(µ)
j

)
⊕

(
aτ(µ)

0 , t∗0 , aµ0 , sµ1

)
⊕⊕i

j=1

(
sµj ,bµj , sµj , sµj+1

)
⊕ yµ0 .

(E-10) Let ϕn,k
∣∣ Ü
b
τ(µ)
i+1 b

τ(µ)
i+1

=α〈V3,
Ü

bτ(µ)
i+1 bτ(µ)

i+1 , Ãi 〉, where V3 = yµ0 ⊕ (
yµ1 , yµ2 , yµ0

)k
.

Observation 4.9. ϕn,k is continuous also for even n.
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s0y0
0 y1

0s1 s2y2
0

y3
0s3

t∗0
t∗0

(i) (ii)

FIGURE 5. Case (i): graph Γϕ4,2 (and thus i = 3) for (E-1)-(E-5). Case
(ii): graph Γϕn,k for µ= 0 (dashed lines) and τ

(
µ
)= 0 around the triod

T ∗.

In this subsection Γϕn,k refers to the graph of ϕn,k : Ãi+1 → Ãi . In the paragraphs to
follow we explain the construction of the map ϕn,k for even n and any positive inte-
ger k. We argue that the graph Γϕn,k can be drawn in the plane arbitrarily close to Ãi

independently of k and n.

By (E-1), if x ∈ Ai+1
∖(Ùs y0 ∪Úan t0 ∪ Üsi+1bi+1

)
, then ϕn,k (xν) = xν ∈ Ãi and thus graph

Γϕn,k can be drawn arbitrarily close to Ãi in this case. By (E-2) arcs Ûaνnmν
n are with ϕn,k

stretched homeomorphically to Úaνn t∗ and thus the wrapping of arcs Γϕn,k | Ümν
n aνn+1

around

T ∗ by (E-3) can start close to the point t∗0 . By (E-3) we draw arcs Γϕn,k | Ümν
n aνn+1

wrapping

counterclockwise k times around the triod T ∗ (see the dashed line on Figure 5, case
(i) which represent simultaneous parallel wrapping of all four arcs Γϕn,k | Ümν

n aνn+1
around

T ∗). Furthermore, by (E-5) we draw arcs Γϕn,k |Úsνyν0
wrapping around Y ν which creates a

(k−1)-gap in the clockwise direction around Y ν forν ∈ {0,2} and in the counterclockwise
direction around Y ν for ν ∈ {1,3} for any positive integer k. By the observations made in
this paragraph, the graph Γϕn,k after applying (E-1)-(E-5) looks as on Figure 5, case (i).

Observation 4.10. If x ∈ Ai+1 \ Üsi+1bi+1, it holds that xν ∈ Ãi .

By 4.10, what remains to be discussed is the action of ϕn,k on the (i +1)-stickers of

ν-legs Üsνi+1bνi+1 for ν ∈ {0,1,2,3}. Note that for every xν ∈ Üsνi+1bνi+1 point ϕn,k (xν) ∈ Aν
i

or ϕn,k (xν) ∈ Aτ(ν)
i . Therefore, for discussing (E-6)-(E-10) it is sufficient to restrict on

the case µ = 0 and τ
(
µ
) = 1 since the case for µ = 2 and τ

(
µ
) = 3 follows analogously.

We refer to Γϕn,k | Üs0
i+1b0

i+1

by a simple bridge and to Γϕn,k | Üs1
i+1b1

i+1

by a complicated bridge.

The simple bridge starts in the point s0
i+1, stretches close to a0

0, and passes around the
j -stickers of 0-leg, for j = i , . . . ,1 consecutively (see Figure 6, case (i)). Then the bridge
stretches to t∗0 (see Figure 5, case (ii)) and stretches down the 1-leg close to the point a1

0
and then passes around j -stickers of the 0-leg, for j = 1, . . . , i consecutively, see Figure 6,
case (ii). We have already observed that there exists a (k − 1)-gap around Y 1. Up to
now we were describing the definition of the simple bridge by (E-6). Then, by (E-7) the
simple bridge starts to wrap in the counterclockwise direction around Y 1 above the arc
Γϕn,k |Ús1 y1

0
and is drawn to wrap k times around Y 1 and ends approaching the point y1

0 ,

which is possible since there is a (k −1)-gap around Y 1, see Figure 6, case (ii).
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s0
2s0

1
s1

1s1
2s1

3s1s0
3 s0

a0
0

a1
0y0

0
y1

0

(i) (ii)

FIGURE 6. The graph Γϕ4,2 around triods Y 0 and Y 1. The dashed lines
are parts of Γϕ4,2 |A0

2
.

Note that once the simple bridge is drawn in the plane as we described, we can
not symmetrically reflect the construction of the simple bridge on the bridge starting
from the point s1

i+1, since such bridge would enter the dead end bounded by the simple

bridge and the arc Γϕn,k | Üs0
i+1s1

i+1

, where Üs0
i+1s1

i+1 ⊂ Ãi+1. Thus, such bridge could not be

drawn in the plane to wrap around Y 0 as the definition (E-10) requires.
Now we explain the construction of the complicated bridge. By (E-8) the complicated
bridge starting from s1

i+1 first wraps in the counterclockwise direction around Y 1 above
the arc Γϕn,k |Ús1 y1

0
. Since there is a (k −1)-gap around Y 1 the complicated bridge can be

drawn to wrap all together k times around Y 1 and ends wrapping close to the point y1
0

(as required by (E-8), see Figure 6, case (ii)). Then (still by (E-8)), the complicated bridge
unwraps around Y 1 in the clockwise direction k-times and exits the (k −1)-gap on the
opposite side of the simple bridge as it started, again see Figure 6, case (ii). By (E-9) the
bridge passes around j -stickers of 1-leg, for j = i , . . . ,1 consecutively, approaches first
a1

0, then t∗0 and stretches down the 0-leg where it passes around all the j -stickers of 0-
leg, for j = 1, . . . , i consecutively. Since there is a (k −1)-gap around Y 0 the complicated
bridge can be drawn to wrap k times around Y 0 as given in the definition (E-10) and
ends approaching the point y0

0 , see Figure 6, case (i).
We have commented all the elements of the map ϕn,k for an even n and positive

integer k and we conclude that graph Γϕn,k can be drawn in the plane arbitrarily close

to Ãi .
We continue with some observations that are going to be important later in this doc-

ument.
Recall that Gn ⊂ Ai denotes the set Ùaan ∪Úa0s0.

Observation 4.11. The map ϕn,k restricted to Gν
n is the identity on Gν

n . Additionally, Gν
n

is a component of ϕn,k
−1

(
Gν

n

)
.

Observation 4.12. Let L be an arc contained either in int
( Úaν0 aνn

)
or in int

(Úsνj bνj

)
for some

j = 1. . . , i , and let K be a component of ϕn,k
−1 (L). Then K is either L or an arc con-

tained in int
( Üsλi+1bλi+1

)
where λ is either ν or τ (ν). In both cases ϕn,k restricted to K is a

homeomorphism of K onto L.
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Observation 4.13. Let cν ∈ Gν
n \

{
sν0

}
. Then the conclusion of the above observation is

also true if L = Úcνsν0 and K is a component of ϕn,k
−1 (L) such that cν ∈ϕn,k (K ).

Observation 4.14. ϕn,k
−1

( Úaνaν0 \
{

aν0
})= Úaνaν0 \

{
aν0

}
.

Observation 4.15. If µ ∈ {0,2} then the following properties are true.

(1) ϕn,k
∣∣ Üs
µ

i+1b
µ

i+1

does not depend on the value of k.

(2) ϕn,k

( Übµi+1bµi+1

)
= Y τ(µ).

(3) ϕn,k

( Ü
sτ(µ)

i+1 sτ(µ)
i+1

)
= Y τ(µ) ∪ Ü

y
τ(µ)
0 s

τ(µ)
i+1 .

(4) ϕn,k
∣∣ Ü

s
τ(µ)
i+1 b

τ(µ)
i+1

does not depend on the value of k.

(5) ϕn,k

( Ü
bτ(µ)

i+1 bτ(µ)
i+1

)
= Y µ.

4.3. Preliminary definition of X . In this section we give a preliminary definition of our
example X in terms of an arbitrary sequence of positive integers Σ = (k0,k1, . . . ). We
use this definition to prove basic properties of X . For instance, we show that X can be
embedded into the plane for all choices of Σ. Later, we will select by induction a specific
sequenceΣ that will allow us to prove that X admits a simple canal for every embedding
into R2.

For each nonnegative integer n, set i = dn/2e, Xn = Ãi and fn =ϕn,kn . Define X to be
lim←−−

{
Xn , fn

}∞
n=0.

(∗) X0 X1
f0oo X2

f1oo X3
f2oo X4

f3oo X5
f4oo X6

f5oo · · ·f6oo

Ã0 Ã1

ϕ0,k0oo Ã1

ϕ1,k1oo Ã2

ϕ2,k2oo Ã2

ϕ3,k3oo Ã3

ϕ4,k4oo Ã3

ϕ5,k5oo · · ·
ϕ6,k6oo

For all integers j and l such that l > j ≥ 0 define f j l : Xl → X j as f j l = f j ◦ f j+1 ◦ · · · ◦
fl−1. Additionally, define f j j to be the identity on X j . Let π j denote the projection of X
onto X j .

Observation 4.16. Xn ⊂ Xn+1 for each nonnegative integer n.

We may assume that
⋃∞

n=0 Xn is contained in the plane such that the diameter of⋃∞
n=0 Xn is ≤ 1. Let d denote the standard Euclidean metric in the plane. Let ρn denote

d restricted to Xn . Let ρ denote the standard product metric on X defined by ρ
(
x ′, x ′′)=∑∞

n=0
1

2n+1 ρ
(
x ′

n , x ′′
n

)
where x ′ = (

x ′
0, x ′

1, . . .
)

and x ′′ = (
x ′′

0 , x ′′
1 , . . .

)
are arbitrary points in X .

Proposition 4.17. Xn is a tree for each nonnegative integer n. Thus, X is a tree-like con-
tinuum.

In the rest of this section we argue that continuum X can be embedded in the plane.
For a planar set Z we from now onwards denote by cl(Z ) the closure, by bd(Z ) the

boundary and by int(Z ) the interior of Z in the plane. If we write int
( Ùc ′c ′′) for Ùc ′c ′′

being an arc, recall that we mean the open arc Ùc ′c ′′ \
{
c ′,c ′′

}
, since we do not specify in

which space the arc Ùc ′c ′′ lies. It is going to be clear from the context which topology
we mean when we use the notation for interior. Now say that Z is a planar tree and
ε> 0. The thickened tree Z ε is the closure of the ε-neighbourhood of the tree Z . A map
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is a near homeomorphism, if it is a uniform limit of homeomorphisms. Recall that we
observed in Subsection 4.1 and 4.2 that for every nonnegative integer n the graph Γ fn

of the map fn : Xn+1 → Xn can be drawn in the plane arbitrarily close to Xn . That is
equivalent to saying that Γ fn can be drawn in X ε

n (and thus also in Γεfn−1
) for an arbi-

trarily small ε > 0. Therefore, for every ε > 0 there exists ε′ > 0 such that Γε
′

fn
⊂ Γεfn−1

for every positive n. Let ζε
ε′ : Γε

′
fn

→ Γεfn−1
be an embedding of Γε

′
fn

into Γεfn−1
. Fix a se-

quence εn → 0 so that Γεn
fn

⊂ Γ
εn−1
fn−1

as n →∞. Let us observe the inverse limit sequence

lim←−−
{
Γ
εn
fn

,ζε
n−1

εn

}∞
n=0

. SinceΓ fn is drawn (point-wise) arbitrarily close to Xn and εn → 0, the

conditions of the Anderson-Choquet embedding theorem (Theorem 1 from [1]) are sat-

isfied and thus lim←−−
{
Γ
εn
fn

,ζε
n−1

εn

}∞
n=0

is homeomorphic to
⋂∞

n=0 cl
(⋃

j>n Γ
ε j

j

)
. Furthermore,⋂∞

n=0 cl
(⋃

j>n Γ
ε j

j

)
= ⋂∞

n=0 ζ
εn−1

εn ◦Γεn
n which is a nested intersection of planar continua

and thus a planar continuum. Moreover, since there exists a near homeomorphism

from space ζε
n−1

εn

(
Γ
εn
fn

)
to the space fn (Xn) for every positive n, it follows by Theorem

3 from [7], that lim←−−
{
Γ
εn
fn

,ζε
n−1

εn

}∞
n=0

is homeomorphic to lim←−−
{

Xn , fn
}∞

n=0 and thus planar.

5. AUXILIARY OBSERVATIONS

In this section we state some propositions and observations which are going to be
important later in the document when we prove that the rays Rν are dense in X and
have a free side.

The following observation is a simple consequence of 4.6 and 4.11.

Observation 5.1. Suppose that n is a nonnegative integer and ν ∈ {0,1,2,3}. Then fn

restricted to Gν
n is the identity on Gν

n . Additionally, Gν
n is a component of fn

−1
(
Gν

n

)
.

Using the above observation and the inclusion Gν
j ⊂ Gν

j+1 repeatedly, we infer the

following observation.

Observation 5.2. Suppose ν ∈ {0,1,2,3}, and n and l are integers such that 0 ≤ n ≤ l .
Then fnl restricted to Gν

n is the identity on Gν
n . Additionally, Gν

n is a component of
fnl

−1
(
Gν

n

)
.

For each nonnegative integer n and each ν ∈ {0,1,2,3}, let Sνn ⊂ Xn be defined by

Sν0 = Úaν0 yν0 ∪Y ν and Sνn = Sν0 ∪Y ν∪⋃dn/2e
j=1

Úsνj bνj if n > 0. Set Mν
n = Úaνt∗0 ∪Sνn .

Observation 5.3. Xl = T ∗∪⋃3
ν=0 Mν

l for all integers l ≥ 0.

Observation 5.4. Mν
l ⊂ fl

(
Mν

l+1

)
for all integers l ≥ 0 and ν ∈ {0,1,2,3}.

Observation 5.5. T ∗ ⊂ fl (T ∗) for all integers l ≥ 0.

Observation 5.6. T ∗ ⊂ fl

( Ümν
l aνl+1

)
for all even integers l ≥ 0 and ν ∈ {0,1,2,3}.

Observation 5.7. Mµ

l ⊂ fl

( Ümν
l aνl+1

)
where l > 0 is odd, µ = mod ((l −1)/2,4) and ν ∈

{0,1,2,3}.

Proposition 5.8. Suppose n is a nonnegative integer, j ≥ n + 7 is an even integer and

ν ∈ {0,1,2,3}. Then fn j

( Ümν
j−1aνj

)
= Xn .
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Proof. Let µ0 = mod ((l −2)/2,4), µ1 = mod ((l −4)/2,4), µ2 = mod ((l −6)/2,4)
and µ3 = mod ((l −8)/2,4) for some l ≥ 8. Observe that

{
µ0,µ1,µ2,µ3

} = {0,1,2,3}.

It follows from 5.7 that Mµ0
j−1 ⊂ f j−1

( Ümν
j−1aνj

)
. Using 5.4 we infer

(µ0) Mµ0

l ⊂ fl j

( Ümν
j−1aνj

)
for l ≤ j −1.

Since T ∗ ⊂ f j−2
(
Mµ0

l

)
by 5.6, it follows from 5.5 that

(T ) T ∗ ⊂ fl j

( Ümν
j−1aνj

)
for l ≤ j −2.

It follows from 5.7 that Mµ1
j−3 ⊂ f j−3

(
Mµ0

j−2

)
. Using again 5.4 we infer

(µ1) Mµ1

l ⊂ fl j

( Ümν
j−1aνj

)
for l ≤ j −3.

We infer the following two properties in a similar way.

(µ2) Mµ2

l ⊂ fl j

( Ümν
j−1aνj

)
for l ≤ j −5, and

(µ3) Mµ3

l ⊂ fl j

( Ümν
j−1aνj

)
for l ≤ j −7.

We now complete the proof of the proposition by combining (µ0), (T ), (µ1), (µ2), (µ3),
and 5.3. �

Proposition 5.9. Let n be a nonnegative integer, ν ∈ {0,1,2,3} and let x ∈ X be such that

πn (x) ∈ Gν
n \

{
sν0

}
. For each l ≥ n let Kl be the component of fnl

−1
( Üπn (x) sν0

)
containing

πl (x). Then,

(1) Kl is either Üπn (x) sν0 , or an arc contained in int
(Ûaλ0 aλl

)
for some λ ∈ {0,1,2,3}, or

an arc contained in int
(Úsλj bλj

)
for some λ ∈ {0,1,2,3} and j ≤ d l

2 e.

(2) fl−1|Kl is a homeomorphism onto Kl−1 for each l > n.

Proof. Observe that the proposition is trivial for l = n. Assume that the proposition is
true for some l ≥ n. To complete the proof it is enough to show that the proposition will
be also true if l is replaced by l +1.

Since fl ◦πl+1 (x) =πl (x) ∈ Kl , it follows thatπl+1 (x) ∈ fl
−1 (Kl ). Denote by J the com-

ponent of fl
−1 (Kl ) containing πl+1 (x). We will prove that J = Kl+1. Since fn,l+1 (J ) =

fnl ◦ fl (J ) ⊂ fnl (Kl ) ⊂ Üπn (x) sν0 , it follows that J ⊂ Kl+1. On the other hand, πl (x) ∈
fl (Kl+1) ⊂ Kl and πl+1 (x) ∈ Kl+1, then Kl+1 ⊂ J . Consequently J = Kl+1.

Using the inductive assumption, we may consider the following three cases.

(a) Kl = Üπn (x) sν0 ,

(b) Kl is an arc contained contained either in int
(Ûaλ0 aλl

)
or in int

(Úsλj bλj

)
for some λ ∈

{0,1,2,3} and j ≤ d l
2 e.

To complete the proof, it is enough to show conditions (1) and (2) from the statement of
proposition with l replaced by l +1. Namely, we need to show:

(1′) Kl+1 = J is either Üπn (x) sν0 , or an arc contained in int
( Üaλ′0 aλ

′
l+1

)
for someλ′ ∈ {0,1,2,3},

or an arc contained in int
(Úsλj bλj

)
for some λ ∈ {0,1,2,3} and j ≤ d l+1

2 e.

(2′) fl |Kl+1 is a homeomorphism of Kl+1 = J onto Kl .
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Recall that fl =ϕl ,k where k = kl and ϕl ,k is described either in Subsection 4.1 if l is
odd, or in Subsection 4.2 if l is even.

Case (a): Kl = Üπn (x) sν0 . In this case (1′) and (2′) follow from Observations 4.8 and 4.13

used with n = l , cν =πn (x), L = Üπn (x) sν0 and K = Kl+1 = J .

Case (b): Kl is an arc contained contained either in int
(Ûaλ0 aλl

)
or in int

(Úsλj bλj

)
. In this

case (1′) and (2′) follow from Observations 4.7 and 4.12 used with n = l , ν = λ, L = Kl

and K = Kl+1 = J . �

Corollary 5.10. Let n be a nonnegative integer, ν ∈ {0,1,2,3} and let x ∈ X be such that
πn (x) ∈Gν

n \
{

sν0
}
. Then there exists an arc K ⊂ X such that x is an endpoint of K and πn |K

is a homeomorphism onto Üπn(x)sν0 .

Proof. Let Kn ,Kn+1,Kn+2, . . . be as in Proposition 5.9. Set K j = f j n (Kn) for j = 0, . . . ,n−1.
Let K = lim←−−

{
Kl , fl |Kl

}∞
l=0. Observe that K is an arc with the required properties. �

6. SETS Fn AND THE OPERATION [·]
This section will provide us with a set-up to work with specific subsets of the contin-

uum X . Moreover, we will get some insight into the topological structure of X .
For all nonnegative integers n, let Fn denote the set of all points z ∈ Xn with the

property that fl (z) = z for all integers l ≥ n.
The following observation is a simple consequence of (O-1) and (E-1).

Observation 6.1. Let ν ∈ {0,1,2,3} and let n be a positive integer. Then

(1) Úaνaν0 , T ∗, Y ν, Úaν0 sν and Gν
0 are contained in F0,

(2) Úaνaνn , Gν
n and

⋃dn/2e
j=1

Úsνj bνj are contained in Fn .

For each z ∈ Fn , let [z]n denote the point
(

f0n (z) , f1n (z) , . . . , fn−1n (z) , z, z, . . .
) ∈ X .

Observation 6.2. If n and l are integers such that l ≥ n, and z ∈ Fn , then z ∈ Fl and
[z]n = [z]l .

For any z ∈⋃∞
j=0 F j , set [z] = [z]n where n is any nonnegative integer such that z ∈ Fn .

By the above observation, this definition does not depend on the choice on n.

Observation 6.3. For each z ∈ Fn , the definition of [z] may depend on the choice of
k0, . . . ,kn−1, but it does not depend of any choice of kn ,kn+1, . . . . Moreover, [z] ∈ X re-
gardless of how kn ,kn+1, . . . are defined as long as the sequence Σ used in the definition
of X (see Subsection 4.3) has the beginning k0, . . . ,kn−1.

Observation 6.4. If z ∈ Fn , then πl ([z]) = z for all integers l ≥ n.

For each set Z ⊂ Fn , let [Z ] denote the set {[z] ∈ X | z ∈ Z }.

Observation 6.5. If Z ⊂ Fn then πl |[Z ] is a homeomorphism onto Z ⊂ Xn ⊂ Xl for all
l ≥ n. Hence, [Z ] ⊂ X homeomorphic to Z . In particular, [Z ] is an arc if Z is an arc. Also,
[Z ] is a simple triod if Z is is a simple triod.

Corollary 6.6. [T ∗] is a simple triod. Also, [Y ν] is a simple triod for each ν ∈ {0,1,2,3}.

The following proposition is a simple consequence of Observations 6.1, 6.3 and 6.5.

Proposition 6.7. Let ν ∈ {0,1,2,3} and let n be a nonnegative integer. Then the arc Úaνaνn ⊂
Fn and the arc

[ Úaνaνn
]
⊂ X does not depend on kl for any l ≥ n.
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Proposition 6.8. Let n be an even nonnegative integer and let i = n/2. Then Üsνi+1bνi+1 ⊂
Fn+1 for each ν ∈ {0,1,2,3}. Moreover, if µ ∈ {0,2} then

(1)
[ Üsµi+1bµi+1

]
=

[ Üsµi+1bµi+1

]
∪

[ Übµi+1bµi+1

]
,

(2) πn

([ Übµi+1bµi+1

])
= Y τ(µ),

(3)

[ Ü
s
τ(µ)
i+1 b

τ(µ)
i+1

]
=

[ Ü
s
τ(µ)
i+1 s

τ(µ)
i+1

]
∪

[ Ü
s
τ(µ)
i+1 b

τ(µ)
i+1

]
∪

[ Ü
b
τ(µ)
i+1 b

τ(µ)
i+1

]
,

(4) πn

([ Ü
s
τ(µ)
i+1 s

τ(µ)
i+1

])
= Y τ(µ) ∪ Ü

y
τ(µ)
0 s

τ(µ)
i+1 ,

(5) πn

([ Ü
b
τ(µ)
i+1 b

τ(µ)
i+1

])
= Y µ, and

(6) the arcs
[ Üsµi+1bµi+1

]
and

[ Ü
s
τ(µ)
i+1 b

τ(µ)
i+1

]
do not depend on kl for any l ≥ n.

Proof. Üsνi+1bνi+1 ⊂ Fn+1 by Observation 6.1, so the arcs
[ Üsµi+1bµi+1

]
and

[ Ü
s
τ(µ)
i+1 b

τ(µ)
i+1

]
are

well defined. Claims (1) and (3) follow from the choice of bµi+1, b
τ(µ)
i+1 and s

τ(µ)
i+1 presented

in the beginning of Subsection 4.2.

To prove Claim (2) notice thatπn+1

([ Übµi+1bµi+1

])
= Übµi+1bµi+1 the Observation 6.4. Since

πn = fn ◦πn+1 and fn =ϕn,k , Claim (2) follows now from Observation 4.15(2). Proofs of
Claims (4) and (5) are essentially the same except that we use Observation 4.15 parts (3)
and (5).

To complete the proof of the proposition notice that Claim (6) follows from Observa-
tion 6.3 and parts (1) and (4) of Observation 4.15. �

Set

Li+1 =
{[ Üs0

i+1b0
i+1

]
,
[ Üs1

i+1b1
i+1

]
,
[ Üs2

i+1b2
i+1

]
,
[ Üs3

i+1b3
i+1

]}
.

The following corollary is a restatement of part (6) of Proposition 6.8.

Corollary 6.9. All elements of Li+1 do not depend on kl for any l ≥ n.

7. BASIC PROPERTIES OF RAYS Rν AND SPURS Sν

In this section we will first show that X contains four dense rays, each of which must
have a free fully accessible side under every embedding intoR2. At the end of the section
we will observe that there are four spurs attached on a non-free side of four dense rays.
The spurs are going to be important later in the document when we construct a simple
dense canal in every planar embedding of X .

Since
[ Úaνaν0

]
⊂

[ Úaνaν1

]
⊂

[ Úaνaν2

]
⊂ . . . and each

[ Úaνaνl

]
is an arc, it follows that

Rν = ⋃
l≥0

[ Úaνaνl

]
is a ray in X .

Proposition 7.1. Rν is dense in X for each ν ∈ {0,1,2,3}.

Proof. To prove the proposition it is enough to show that πn (Rν) = Xn for each nonneg-

ative integer n. Take an even integer j ≥ n +7. Since Ümν
j−1aνj ⊂ F j by 6.1(2), it follows

from 6.5 that π j

([ Ümν
j−1aνj

])
= Ümν

j−1aνj . Since fn j

( Ümν
j−1aνj

)
= Xn by 5.8, fn j ◦π j = πn

and
[ Ümν

j−1aνj

]
⊂ Rν, we get that πn (Rν) = Xn . �
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Proposition 7.2. Suppose n is a positive integer, z ∈ Üan an+1 and λ,ν ∈ {0,1,2,3}. Then
fn−1 ◦ fn

(
zλ

)= fn−1 ◦ fn (zν).

Proof. We will consider the following two cases: z ∈ Ûanmn and z ∈ Ümn an+1.
Case z ∈ Ûanmn . By using either (O-4) if n is odd, or (E-2) if n is even, we get the same re-
sult that fn(zλ) = wλ and fn(zν) = wν where w =βn(z). Sinceβn =α〈(an , t0) , Ûanmn , A0〉,
the point w belongs to Úan t0. Now, by using either (O-6) for n −1 if n −1 is odd, or (E-4)
for n −1 if n −1 is even, we get the same result that fn−1(wλ) = t∗0 = fn−1(zν). So, the
proposition is true in this case.
Case z ∈ Ümn an+1. If n is odd then fn

(
zλ

) = γo(z) = fn (zν) by (O-5). If n is even then
fn

(
zλ

) = γe(z) = fn (zν) by (E-3). So, fn
(
zλ

) = fn (zν) regardless whether n is odd or
even. Consequently, the proposition is true. �

Corollary 7.3. For each ν ∈ {0,1,2,3}, let ψν : Ùat0 \ {t0} → Rν be the function defined by
ψν (z) = [zν]. Then ψν is a continuous injection of Ùat0 \ {t0} onto Rν. Furthermore, if
λ,ν ∈ {0,1,2,3} then limρ

(
[zν] ,

[
zλ

])= 0 as z ∈Ùat0 \ {t0} converges to t0.

Proposition 7.4. Let n be a nonnegative integer and let ν ∈ {0,1,2,3}. Suppose C ⊂ X is a
connected set such that C ∩ [

Gν
n

] 6= ; and πn (C ) ⊂Gν
n . Then C ⊂ [

Gν
n

]
.

Proof. Let c ∈Gν
n be such that [c] ∈C . Let l be an arbitrary integer greater than n. The set

πl (C ) is connected since C is connected. Observe that Gν
n is a component of fnl

−1
(
Gν

n

)
by 5.1. Since πn (C ) ⊂ Gν

n and πn = fnl ◦πl , the connected set πl (C ) is contained in the
component of fnl

−1
(
Gν

n

)
containing πl ([c]) = c. Thus, πl (C ) ⊂Gν

n for all integers l ≥ n.
It follows that C ⊂ [

Gν
n

]
. �

Proposition 7.5. Let n be a nonnegative integer and let ν ∈ {0,1,2,3}. Suppose L is an

arc contained in X such that L ∩
[ Úaνaνn \

{
aνn

}]
consists of a single point e which is an

endpoint of L. Then e = [
aν0

]
and one of the arcs L and

[Úaν0 sν0

]
must contain the other.

Proof. Let e ′ denote the other endpoint of L. Suppose that (L \ {e})∩ [
Gν

n

] = ;. In that
case, since πn (e) belongs to the interior of Gν

n in Xn , there is an arc C such that e ∈
C ⊂ L such that πn (C ) ⊂ Gν

n . Since e ∈ [
Gν

n

]
it follows by 7.4 that C ⊂ [

Gν
n

]
, which is

a contradiction. So, L ∩ [
Gν

n

]
is nondegenerate. Since X is tree-like, L ∩ [

Gν
n

]
is an arc

contained in
[Úaν0 sν0

]
. It follows that e = [

aν0
]
. Denote by u the other end of the arc

L ∩ [
Gν

n

]
. If u = e ′, then L ⊂

[Úaν0 sν0

]
and the proposition would be true. So, we may

assume that u 6= e ′. If u = [
sν0

]
, then

[Úaν0 sν0

]
⊂ L and again the proposition would be true.

So, we may assume that u ∈ int
([Úaν0 sν0

])
. Since πn (u) ∈ int

(Úaν0 sν0

)
and int

(Úaν0 sν0

)
is open

in Xn , there is a point z ∈ int
(Ùue ′

)
such that πi

(Øuz
)⊂ Úaν0 sν0 ⊂Gν

n . Since u ∈ [
Gν

n

]∩ Øuz, it

follows from 7.4 that Øuz ⊂ [
Gν

n

]
. This last contradiction completes the proof of 7.5. �

Proposition 7.6. Suppose B is an open covering of the open interval (−1,1) and let v ∈
(−1,1). Then there are sequences u1,u2,u3, . . . and v1, v2, v3, . . . such that

(1) v1 = v > v2 > u1 > v3 > u2 > v4 > u3 > v5 > u4 > . . . ,
(2) limi→∞ ui = limi→∞ vi =−1, and
(3) for each positive integer i there is Bi ∈B such that (ui , vi ) ⊂ Bi .

Lemma 7.7. Let h : X → R2 be an embedding and let ν ∈ {0,1,2,3}. Then, for each z ∈
Rν \ [aν] there is a topological disk D ⊂R2 such that D ∩h (X ) = h

(Û[aν] z
)
.
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Proof. Let z ∈ Rν \ [aν]. There is a positive integer l such that z ∈
[ Úaνaνl \

{
aνl

}]
. Let I1

denote the straight linear segment in R2 joining (−1,0) and (1,0). For each real number
r such that 0 ≤ r ≤ 1, let

H (r ) = {
(x1, x2) ∈R2 | −1+ r ≤ x1 ≤ 1− r

}
.

Let g be a homeomorphism of R2 onto itself such that

• g ◦h ([aν]) = (−1,0), g ◦h
([

aν0
])= (0,0), g ◦h

([
aνl

])= (1,0), and

• g ◦h
([ Úaνaνl

])
= I1.

Let h̃ denote the composition g ◦h. We may assume without loss of generality that there

exists c ∈ int
(Úaν0 sν0

)
such that h̃

([Ùaν0 c
])

⊂ H(1/3) and h̃
([Ùaν0 c \

{[
aν0

]}])
lies below I1.

For each number r such that −1 ≤ r ≤ 1 and each positive ε, let B (ε,r ) denote the set
of all points (x1, x2) ∈R2 such that r −ε≤ x1 ≤ r +ε and 0 ≤ x2 ≤ ε.

Claim 7.8. For each r such that −1 < r < 1 there exists a positive number ε such that

(B (ε,r ) \ I1)∩ h̃ (X ) =;.

Proof of 7.8. Take an arbitrary r such that −1 < r < 1. Let η be the minimum of r + 1,
1−r and the distance between h̃ ([c]) and I1. Clearly 0 < η≤ 1 and (r,0) ∈ H

(
η
)
. There is

a positive number δ such that for all x ′, x ′′ ∈ X the following implication holds:

(1) %
(
x ′, x ′′)< δ ⇒ d

(
h̃

(
x ′) , h̃

(
x ′′))< η/3

Let n > l be such that for all x ′, x ′′ ∈ X the following implication is true:

(2) πn
(
x ′)=πn

(
x ′′) ⇒ %

(
x ′, x ′′)< δ

Let U = Úaνaνl ∪Ùaν0 c \
{

aν, aνl ,c
}
. Since n > l , U is contained in Xn . Observe that U is open

in Xn . Since h̃−1 ((r,0)) ∈ int
([ Úaνaνl

])
, it follows that

(3) πn ◦ h̃−1 ((r,0)) ∈ int
( Úaνaνl

)
⊂U

Since (r,0) ∈ B (ε,r ), U is open in Xn and πn ◦ h̃−1 is continuous on h̃ (X ), it follows from
(3) that there is a positive number ε< η/3 such that

(4) πn ◦ h̃−1 (
B (ε,r )∩ h̃ (X )

)⊂U

Observe that B (ε,r ) ⊂ H
(
2η/3

)
because (r,0) ∈ H

(
η
)

and ε< η/3.
We will now prove that ε satisfies the claim. Suppose to the contrary that there is a

point x ∈ X such that h̃ (x) ∈ B (ε,r ) \ I1. It follows from (4) that πn (x) ∈ U . Corollary
5.10 implies that there exists an arc K ⊂ X such that x is an endpoint of K and πn |K is
a homeomorphism onto Üπn(x)sν1 . There is a point ĉ ∈ K such that πn (ĉ) = c. Let K̂ be
the subarc of K with endpoints in x and ĉ. Observe that πn |K̂ is a homeomorphism ontoÜπn(x)c.

Since πn (x) ∈ U ⊂ cl(U ) = Úaνaνl ∪ Ùaν0 c, the arc Üπn(x)c is contained in Úaνaνl ∪ Ùaν0 c.

It follows that Üπn(x)c ⊂ Fn . Observe that Üπn(x)c ⊂ Ùaν0 c if πn(x) ∈ Ùaν0 c, and Üπn(x)c =Üπn(x)aν0 ∪ Ùaν0 c if πn(x) ∈ Úaνaνl \
{

aν0
}
. Consequently, we have the following two cases.

(C-1) Either πn(x) ∈ Ùaν0 c and h̃
([Üπn(x)c

])
⊂ h̃

([Ùaν0 c
])

, or

(C-2) πn(x) ∈ Úaνaνl \
{

aν0
}

and h̃
([Üπn(x)c

])
= h̃

([ Üπn(x)aν0

])
∪ h̃

([Ùaν0 c
])

.
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Let w be an arbitrary point in K̂ . Observe that πn (w) = πn ([πn (w)]). Using (2) we
infer that % (w, [πn (w)]) < δ. Now, using (1), we get the following result.

(5) d
(
h̃ (w) , h̃ ([πn (w)])

)< η/3 for all w ∈ K̂ .

In particular, d
(
h̃ (x) , h̃ ([πn (x)])

) < η/3. Since h̃ (x) ∈ B (ε,r ) ⊂ H
(
2η/3

)
, h̃ ([πn (x)])

must belong to H
(
η/3

)
. In the case (C-2) the arc h̃

([ Üπn(x)aν0

])
is contained in I1 and its

endpoints h̃ ([πn (x)]) and h̃
([

aν0
])= (0,0) are both contained in H(η/3). So, it that case,

the arc h̃
([ Üπn(x)aν0

])
⊂ H(η/3).

Observe that h̃
([Ùaν0 c

])
⊂ H(η/3) because h̃

([Ùaν0 c
])

⊂ H(1/3) and η ≤ 1. Therefore,

h̃
([Üπn(x)c

])
⊂ H(η/3) in both cases (C-1) and (C-2). Now, (5) implies that

(6) h̃
(
K̂

)⊂ H (0)

Since πn (ĉ) = c, we may infer from (5) that d
(
h̃ (ĉ) , h̃ ([c])

)< η/3. Since h̃ ([c]) lies below
I1 and the distance between h̃ ([c]) is at least η, the point h̃ (ĉ) also lies below I1. Since

h̃ (x) ∈ B (ε,r ) \ I1 lies above I1, (6) implies that h̃
(
K̂

)∩ I1 6= ;. Hence, K̂ ∩
[ Úaνaνl

]
6= ;.

Let e be the first point in the arc K̂ oriented from x to ĉ such that e ∈
[ Úaνaνl

]
and let L be

the subarc of K̂ with endpoints x and e. This choice of L and e contradicts Proposition

7.5 since neither of L and
[Úaν0 sν0

]
contains the other. So, Claim 7.8 is true. �

Let v be the first coordinate of h̃ (z). So, h̃ (z) = (v,0). Let B be the collection of
all open intervals in the form (r −ε,r +ε) where r and ε are real numbers such that
−1 < r < 1 and ε > 0 and (B (ε,r ) \ I1)∩ h̃ (X ) = ;. It follows from the claim that B is
a covering of the interval (−1,1). Now, use Proposition 7.6 to get sequences u1,u2,u3, . . .
and v1, v2, v3, . . . satisfying conditions (1)-(3) of the proposition, where condition (3) can
be rephrased in the following way: for each nonnegative integer i there is ri ∈ (−1,1) and
εi such that ri −εi ≤ ui < vi ≤ ri +εi and (B (εi ,ri ) \ I1)∩h̃ (X ) =;. Denote byσi the min-
imum of 2−i ,ε1,ε2, . . . ,εi . Let P be the union of straight linear arcs joining the following
sequence of consecutive points in R2:

(v,0) = (v1,0) , (v1,σ1) , (v2,σ1) , (v2,σ2) , (v3,σ2) , (v3,σ3) , (v4,σ3) , . . .

Observe that cl(P ) is an arc intersecting h̃
([Ùaνz

])
⊂ I1 only at the common endpoints

h̃ ([aν]) and h̃ (z). Thus, cl (P )∪h̃
([Ùaνz

])
is a simple closed curve bounding a disk which

we denote by D̃ . By our construction,
(
D̃ \ I1

)∩ h̃ (X ) = ;. Finally, set D = g−1
(
D̃

)
and

observe that so defined D satisfies the conclusion of the lemma. �

Recall that a point p in a subset K of the plane is accessible from the complement of
K provided there is an arc L ⊂R2 such that K ∩L = {

p
}
.

Proposition 7.9. Let h : X →R2 be an embedding and ν ∈ {0,1,2,3}. Then for every z ∈ Rν

the point h (z) ∈ h (Rν) is accessible from the complement of h (X ).

Proof. Let z ∈ Rν \ [aν]. By Lemma 7.7 there exists a topological disk D ⊂ R2 such that

D ∩h (X ) = h
(Û[aν] z

)
. Denote the arc A = bd(D) \ int

(
h

(Û[aν] z
))

⊂ R2. Let u ∈ int(A).

Let L0 be the subarc of A with endpoints u and h ([aν]). Clearly, L0 ∩h (X ) = {
h ([aν])

}
.

Similarly, if L1 denotes the subarc of A with endpoints u and h (z) then L0 ∩h (X ) =
{h (z)}. It follows that both points h ([aν]) and h (z) are accessible from the complement
of h (X ). �



PRELIMINARY REPORT ON THE RESEARCH CONDUCTED UNDER MARSHALL PLAN SCHOLARSHIP 19

e0

e1

e2

I0 J0

I1

J1

I2

J2

e

K0

K1

K2

FIGURE 7. E

Recall that Sν0 = Úaν0 yν0 ∪Y ν. Since Sν0 ⊂ A0 and A0 ⊂ Ai for all nonnegative integers
i , Sν0 ⊂ Ãi for all ν ∈ {0,1,2,3} and all nonnegative integers i . Consequently, Sν0 ⊂ Xn for
each nonnegative integer n. Using conditions (O-1) and (O-3) in case of odd n, and (E-
1) and (E-5) in case of n even, we observe that fn maps Sν0 onto itself. By the spur Sν we
understand the subcontinuum of X defined by

Sν = {
x ∈ X |πn (x) ∈ Sν0 for all nonnegative integer n

}
.

Observation 7.10. The following properties are true.

(1) Sν is a continuum containing the simple triod [Y ν].
(2) Sν \ [Y ν] is a ray converging to [Y ν].
(3) Sν∩Rν = [

aν0
]

(4) Sν∩ [T ∗] =;.
(5) The four spurs are mutually disjoint.

8. ARCS WINDING AROUND A SIMPLE TRIOD

In this section we establish a language to describe winding of arcs from X around
four simple triods [Y ν] and [T ∗]. This language will be used in the crux of proving of the
existence of a simple dense canal in every planar embedding of X .

Throughout this section we use the following notation. If j is an integer then by j(=3),
j(+3) and j(−3) we understand mod

(
j ,3

)
, mod

(
j +1,3

)
and mod

(
j −1,3

)
, respec-

tively.
Let e be an arbitrary point in R2. Set e0 = e + (1,0), e1 = e + (cos(2π/3) ,sin(2π/3))

and e2 = e + (cos(4π/3) ,sin(4π/3)). For each i ∈ {0,1,2}, let Ii denote the straight linear
segment in the plane joining e with ei . Let Hi denote the half line with the endpoint e
such that Ii ⊂ Hi . Set Ji = Hi \ Ii , E = I0 ∪ I1 ∪ I2 and K =R2 \ E . Observe that J0 ∪ J1 ∪ J2

separates K into three components whose closures in K can be enumerated K0, K1 and
K2 so that K0 ∩K1 = J1, K1 ∩K2 = J2 and K2 ∩K0 = J0, see Figure 7.

Observation 8.1. d (ei , z) > 1 for every i ∈ {0,1,2} and z ∈ Ki(+3) .

Observation 8.2. For every i ∈ {0,1,2}, the boundary of Ki(+3) in K is equal to Ji(−3)∪Ji(+3) =
J0 ∪ J1 ∪ J2 \ Ji .

Observation 8.3. Let i , j ∈ {0,1,2} be such that i 6= j . Then d (w, z) > 1 for all w ∈ Ii and
z ∈ J j .
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Observation 8.4. Let i , j ∈ {0,1,2} be such that i 6= j . Then d (w, z) > 1 for all w ∈ Ji and
z ∈ J j .

Lemma 8.5. Let k be a positive integer, let Ùc ′c ′′ be an oriented arc, and let c0 = c ′,c1, . . . ,
c3k−1,c3k = c ′′ be a strictly increasing sequence of points from Ùc ′c ′′. Suppose that α :Ùc ′c ′′ → E is such that

(a) α
(
c j

)= e j(=3) for each j = 0, . . . ,3k, and

(b) α
∣∣Üc j c j+1

is a homeomorphism onto Üα
(
c j

)
α

(
c j+1

)⊂ E for each j = 0, . . . ,3k −1.

Denote by u j the only point in Üc j c j+1 such that α
(
u j

) = e. Finally, suppose g : Ùc ′c ′′ → K

is a mapping such that d
(
g (z) ,α (z)

)≤ 1 for each z ∈ Ùc ′c ′′. Then for each j = 0, . . . ,3k −1

(1) j g
(
u j

) ∈ int
(
K j(=3)

)
,

(2) j g (z) ∉ K j(+3) for all z ∈ Úc j u j , and
(3) j g (z) ∉ K j(−3) for all z ∈ Üu j c j+1.

Remark 8.6. Observe that α defined by conditions (a) and (b) in the above lemma has

the same properties as α〈W, Ùc ′c ′′,E〉 defined in Definition 3.2 for W = (e0,e1,e2)k ⊕e0.

Proof of 8.5. Let j be an arbitrary integer such that 0 ≤ j < 3k. Since α
(
c j

) = e j(=3) and
mod

(
j(=3) +1,3

)= j(+3), it follows from Observation 8.1 used with i = j(=3), that g
(
c j

) ∉
K j(+3) . Since α

(Úc j u j
) = I j(=3) , it follows from observations 8.2 and 8.3, both used with

i = j(=3), that g (z) ∉ K j(+3) for all z ∈ Úc j u j . So, the condition (2) j is true.
Since α

(
c j+1

) = e j(+3) and mod
(

j(+3) +1,3
) = j(−3), it follows from Observation 8.1

used with i = j(+3), that g
(
c j+1

) ∉ K j(−3) . Since α
(Üc j+1u j

) = I j(+3) , it follows from obser-
vations 8.2 and 8.3, both used with i = j(+3), that g (z) ∉ K j(−3) for all z ∈ Üc j+1u j . So, the
condition (3) j is true.

Since u j belongs to both Úc j u j and Üc j+1u j , the condition (1) j is a simple consequence
of (2) j and (3) j . Hence, the lemma is true. �

Let S1 denote the unit circle in R2. For any two not antipodal points e ′,e ′′ ∈ S1, letÙe ′e ′′ denote the shorter of the two arcs contained in S1 with their endpoints e ′and e ′′.
Let D denote the round disk in the plane with center e and radius 2. Observe that
K = R2 \ E is homeomorphic to S1 × (0,∞). Moreover, there exists a homeomorphism
ω mapping S1 × (0,∞) onto K such that ω

(
S1 × (0,1]

) = D \ E , ω
(Úe0e1 × (0,∞)

) = K0,
ω

(Úe1e2 × (0,∞)
)= K1, ω

(Úe2e0 × (0,∞)
)= K2 and, for each i = {0,1,2} and each sequence

s = (
z j

)∞
j=1 of points in Ki , s converges in R2 if and only if the sequence

(
ω−1

(
z j

))∞
j=1

converges in S1 × [0,∞). Observe that ω ({ei }× (0,∞)) = Ji for each i = {0,1,2}.
Let θ :R→ S1 be defined by (cos(2πz) ,sin(2πz)) where z ∈R. Set K̃ =R× (0,∞), and

let r1 and r2 denote the projections of K̃ onto R and (0,∞), respectively. Let p : K̃ → K
be the mapping defined by the formula p (z̃) =ω (θ ◦ r1 (z̃) ,r2 (z̃)) where z̃ ∈ K̃ .

Observation 8.7. p is a covering projection. p is periodic (with period 1) in the following
sense p (x1 +1, x2) = p (x1, x2) for all x1 ∈R and x2 ∈ (0,∞).

Observation 8.8. ω restricted to S1 × {1} is a homeomorphism onto bd(D). p restricted
to R× {1} is a covering projection onto the simple closed curve bd(D).

Observation 8.9. Let n ∈ Z and let ξn : K̃ → K̃ be defined by ξn (z̃) = (r1 (z̃)+n,r2 (z̃))
where z̃ ∈ K̃ . Then ξn is a well-defined homeomorphism of K̃ onto itself such that p ◦
ξn = p. Moreover, for all z̃0, z̃1 ∈ K̃ such that p (z̃0) = p (z̃1) there exists exactly one n ∈Z
such that ξn (z̃0) = z̃1.
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Recall that, for each g which is a continuous mapping of a space Z into K , a contin-
uous mapping g̃ : Z → K̃ is called a lifting of g if p ◦ g̃ = g . If Z is connected then any
two liftings of g are the same if they agree on one point; see [9, 1.34]. Also recall that if
Z is simply connected and locally path connected, g : Z → K is continuous, z0 ∈ Z and
z̃0 ∈ K̃ are such that p (z̃0) = g (z0), then there is a lifting g̃ : Z → K̃ such that g̃ (z0) = z̃0;
see [9, 1.33]. If Z ⊂ K then by a lifting of Z we understand a lifting of the identity on Z .

The following observation is a simple consequence of Observation 8.9.

Observation 8.10. Suppose Z is path connected, g : Z → K is continuous, and g̃0 and g̃1

are lifting of g . Then there exists exactly one n ∈Z such that ξn ◦ g̃0 = g̃1.

Observation 8.11. Let g̃ be a lifting of an arc L ⊂ K . Then p restricted to g̃ (L) is a home-
omorphism onto L. If n 6= 0 is an integer, then ξn ◦ g̃ (L)∩ g̃ (L) =;.

For each j ∈Z set K̃ j =
[

j /3,( j +1)/3
]× (0,∞).

Observation 8.12.
{
K̃ j | j ∈Z}

has the following properties:

(1) K̃ =⋃
j∈Z K̃ j ,

(2) K̃ j ′ ∩ K̃ j ′′ 6= ; if and only if
∣∣ j ′− j ′′

∣∣≤ 1, and
(3) p restricted to K̃ j is a homeomorphism of K̃ j onto K j(=3) .

Proposition 8.13. Let k, Ùc ′c ′′, c0, . . . ,c3k , α, u0, . . . ,u3k−1 and g be as in Lemma 8.5. Let

g̃ : Ùc ′c ′′ → K̃ be a lifting of g , and let l be an integer such that g̃ (u0) ∈ K̃l . Then l(=3) = 0,
and the following conditions are satisfied

(1) j g̃
(
u j

) ∈ int
(
K̃l+ j

)
for each j = 0, . . . ,3k −1, and

(2) j g̃
( Üu j−1u j

)⊂ (
K̃l+ j−1 ∪ K̃l+ j

)
\
(
K̃l+ j−2 ∪ K̃l+ j+1

)
for each j = 1, . . . ,3k −1.

Additionally, g̃
(Úc0u0

)⊂ (
K̃l−1 ∪ K̃l

)
\
(
K̃l−2 ∪ K̃l+1

)
and g̃

( Üu3k−1c3k
)⊂ (

K̃l+3k−1 ∪ K̃l+3k
)

\(
K̃l+3k−2 ∪ K̃l+3k+1

)
.

Proof. It follows from 8.5(1)0 that l(=3) = 0 and g̃ (u0) ∈ int
(
K̃l

)
. So, the condition (1)0 of

the proposition is true. We will prove that the implication (1) j−1 ⇒ (2) j and (1) j is true
for each j = 1, . . . ,3k−1. For this purpose, suppose (1) j−1 is true for some j = 1, . . . ,3k−1.
Since

(
j −1

)
(−3) = j(+3), by combining 8.5(3) j−1 with 8.5(2) j we infer that g

( Üu j−1u j
) ⊂(

K j(−3) ∪ K j(=3)

)
\ K j(+3) . Since l(=3) = 0, p restricted to each of the sets K̃l+ j−2, K̃l+ j−1,

K̃l+ j and K̃l+ j+1 is a homeomorphism of onto K j(+3) , K j(−3) , K j(=3) and K j(+3) , respectively.
Consequently, p restricted to

(
K̃l+ j−1 ∪ K̃l+ j

)
\
(
K̃l+ j−2 ∪ K̃l+ j+1

)
is a homeomorphism

of onto
(
K j(−3) ∪ K j(=3)

)
\ K j(+3) . Hence, (2) j is true because g̃

(
u j−1

) ∈ int
(
K̃l+ j−1

)
by the

assumed (1) j−1. That implies g̃
(
u j

) ∈ (
K̃l+ j−1 ∪ K̃l+ j

)
\
(
K̃l+ j−2 ∪ K̃l+ j+1

)
. Since g

(
u j

) ∈
int

(
K j(=3)

)
by 8.5(1) j , we infer that g̃

(
u j

) ∈ int
(
K̃l+ j

)
. So, the proof of the implication

(1) j−1 ⇒ (2) j and (1) j is complete, and conditions (2) j and (1) j are true by induction.
The proof of the remaining two additional conditions is similar to the above argument
and it will be omitted. �

Suppose g is a continuous mapping of an arc L into K , and g̃ is a lifting of g . Set µ=⌈
min

(
r1 ◦ g̃ (L)

)⌉
and ν= ⌊

max
(
r1 ◦ g̃ (L)

)⌋
. By Observation 8.10, the difference ν−µ de-

pends only on g and not on the choice of lifting g̃ . So, we may set `
(
g
)= max

(
ν−µ,0

)
.

If L ⊂ K , by ` (L) we understand ` (idL).
The following proposition is a simple consequence of Observation 8.4.

Proposition 8.14. Let g be a mapping of an arc L into K . Then L contains a collection C

of 3` (L) mutually disjoint arcs such that diam
(
g (C )

) > 1 for each C ∈ C . In particular,
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if L ⊂ K , then L contains a collection of 3` (L) mutually disjoint arcs each of which has
diameter greater than 1.

Suppose again g is a continuous mapping of an arc L = Ùc ′c ′′ into K , g̃ is a lifting of g ,
and µ = ⌈

min
(
r1 ◦ g̃ (L)

)⌉ < ν = ⌊
max

(
r1 ◦ g̃ (L)

)⌋
. We say that g wraps L counterclock-

wise around E if there is a collection Cµ,Cµ+1, . . . ,Cν of mutually disjoint subarcs of L
such that c ′ ∈Cµ, c ′′ ∈Cν, and

(
r1 ◦ g̃

)−1
(

j
)⊂C j for all j = µ, . . . ,ν. We say that g wrapsÙc ′c ′′ clockwise around E if it wraps Ùc ′′c ′ counterclockwise. We say that g wraps L around

E if it wraps either counterclockwise or clockwise. It follows from Observation 8.10 that
the above properties depend only on g and not on the choice of lifting g̃ . If L ⊂ K and
the identity wraps L around E (counterclockwise or clockwise), we simply say that L
wraps itself around E (counterclockwise or clockwise).

Proposition 8.15. Suppose g is a continuous mapping of an arc L = Ùc ′c ′′ into K wrapping
L counterclockwise around E. Let g̃ ,µ, ν and Cµ,Cµ+1, . . . ,Cν be as in the above definition.
For each j = µ, . . . ,ν, let c ′j and c ′′j denote the endpoints of C j listed in such order that

c ′j < c ′′j where the inequality reflects the order on L oriented from c ′ to c ′′. Then

c ′ = c ′µ < c ′′µ < c ′µ+1 < c ′′µ+1 < ·· · < c ′ν−1 < c ′′ν−1 < c ′ν < c ′′ν = c ′′

Proof. Clearly, c ′ = c ′µ and c ′′ν = c ′′. For each i =µ, . . . ,ν−1, consider the following state-
ment:

(Si ) c ′µ < c ′′µ < ·· · < c ′i < c ′′i < c ′j for all j = i +1, . . . ,ν.

Since the arc Cµ contains c ′ which is the least point in L oriented from c ′ to c ′′, we infer

that c ′ = c ′µ, Cν = Ùc ′c ′′µ and c ′′µ < c ′j for all j =µ+1, . . . ,ν. So, Sµ is true. On the other hand,

since c ′′ν ∈ Cν, it follows that c ′′ν = c ′′ and Sν−1 implies the proposition. To complete the
proof it is enough to prove the implication Si ⇒ Si+1 for all i = µ, . . . ,ν− 2. For that
purpose, suppose that Si is true, but Si+1 is false. Then there is an integer j = i +2, . . . ,ν

such that c ′i < c ′′i < c ′j < c ′′j < c ′i+1. Observe that the arc Ùc ′i c ′′j contains both Ci and C j , but

it does not intersect Ci+1. Consequently, r1 ◦ g̃
( Ùc ′i c ′′j

)
contains i and j , but it does not

contain i +1. This contradiction completes the proof of the proposition. �

Corollary 8.16. Suppose g is a continuous mapping of an arc L into K such that it
wraps L around E. Let g̃ be a lifting of g and let j ∈ Z. Then at most one component
of

(
r1 ◦ g̃

)−1
([

j , j +1
])

is mapped by r1 ◦ g̃ onto
[

j , j +1
]
.

Corollary 8.17. Suppose g is a continuous mapping of an arc L = Ùc ′c ′′ into K such that

it wraps L counterclockwise (or clockwise) around E. Let Úu′u′′ ⊂ Ùc ′c ′′ be an arc such that

`
(Úu′u′′

)
≥ 1. Then g restricted to Úu′u′′ wraps this arc counterclockwise (or clockwise,

respectively) around E.

The following corollary is a summary of Proposition 8.13.

Corollary 8.18. Let k > 2, Ùc ′c ′′, and g be as in Proposition 8.13. Then g wraps Ùc ′c ′′ coun-
terclockwise around E, and k −2 ≤ `(

g
)≤ k.

Proposition 8.19. Let L = Ùc ′c ′′ ⊂ K be an arc and let c be a point in the interior of L
such that Ùcc ′′ wraps itself counterclockwise around E. Let g̃ be a lifting of L, let l1 =⌊

max
(
r1 ◦ g̃

(Ùcc ′′
))⌋

and let l0 = l1 −
(
`

(Ùcc ′′
)
−`

(Øc ′c)
−2

)
. Then

r1 ◦ g̃
(Øc ′c)

∩ [l0,∞) =;.
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Proof. Since
⌈

min
(
r1 ◦ g̃

(Øc ′c))⌉
− 1 < r1 ◦ g̃ (c) and Ùcc ′′ wraps itself counterclockwise

around E , it follows that
⌈

min
(
r1 ◦ g̃

(Øc ′c))⌉
−1 ≤

⌈
min

(
r1 ◦ g̃

(Ùcc ′′
))⌉

. Now, we complete

the proof of the proposition by the following sequence of equalities and inequalities.

max
(
r1 ◦ g̃

(Øc ′c))
<

⌊
max

(
r1 ◦ g̃

(Øc ′c))⌋
+1 =

⌈
min

(
r1 ◦ g̃

(Øc ′c))⌉
+`

(Øc ′c)
+1 ≤

≤
⌈

min
(
r1 ◦ g̃

(Ùcc ′′
))⌉

+`
(Øc ′c)

+2 =
⌊

max
(
r1 ◦ g̃

(Ùcc ′′
))⌋

−`
(Ùcc ′′

)
+`

(Øc ′c)
+2 = l0

�

The next proposition is a dual version of 8.19. We omit its proof since it is essentially
the same as that of 8.19.

Proposition 8.20. Let L = Ùc ′c ′′ ⊂ K be an arc and let c be a point in the interior of L
such that Øc ′c wraps itself counterclockwise around E. Let g̃ be a lifting of L, let l ′1 =⌈

min
(
r1 ◦ g̃

(Øc ′c))⌉
and let l ′0 = l ′1 +

(
`

(Øc ′c)
−`

(Ùcc ′′
)
−2

)
. Then

r1 ◦ g̃
(Ùcc ′′

)
∩ (−∞, l ′0] =;.

Lemma 8.21. Let L = Ùc ′c ′′ be an arc contained in D\E such that L∩bd(D) = {
c ′

}
. Suppose

c, g̃ , l0 and l1 are as in Proposition 8.19, except that here we require `
(Øc ′c)

+4 ≤ `
(Ùcc ′′

)
.

Let v denote the point in the set L∩ J0 which is the closest to e0. Finally, let lv be an integer
such that g̃ (v) ∈ {lv }× (0,∞). Then lv is either l1 or l1 −1.

Proof. Notice that r2◦g̃
(
c ′

)= 1 since p−1 (D) =R×(0,1] and c ′ ∈ bd(D). Denote r1◦g̃
(
c ′

)
by u. So, g

(
c ′

)= (u,1). By Proposition 8.19, u < l0 = l1 −
(
`

(Ùcc ′′
)
−`

(Øc ′c)
−2

)
≤ l1 −2.

Let V denote the component of J0 \ {v} whose closure contains e0. Clearly, V ∩L =;.
Set Ṽ = p−1 (V )∩({lv }× (0,1]). Observe that p restricted to Ṽ is a homeomorphism onto
V since ω ({e0}× (0,∞)) = J0. So, Ṽ is an open arc contained in {lv }× (0,1] ⊂ {lv }× [0,1]

such that one of its ends is g̃ (v) and the other is (lv ,0). It follows that W̃ = g̃
( Øc ′v)

∪ Ṽ

is an arc (closed in one side and open on the other) that separates p−1 (D) into two
components. We denote them by C− and C+ such that (−∞,u)× {1} ⊂ C− and (u,∞)×
{1} ⊂C+. By Observation 8.11, the arc ξ−1◦ g̃ (L) does not intersect W̃ . Since ξ−1◦ g̃

(
c ′

)=
(u −1,1), the arc ξ−1 ◦ g̃ (L) is contained in C−. Since l1 ∈ r1 ◦ g̃ (L), it follows that l1 −1 ∈
r1 ◦ξ−1 ◦ g̃ (L). Consequently, l1 −1 ∈ r1 (C−). Thus, there exists a point z in the interior

of the arc Øc ′v such that r1 ◦ g̃ (z) > l1 −1. Since u < l0 ≤ l1 −2, there is a point w in the

interior of Øc ′z such that r1 ◦ g̃ (w) = l1−2. It follows from Proposition 8.19 that Ùw v ⊂ Ùcc ′′
and, consequently, Ùw v wraps itself counterclockwise around E . Since r1 ◦ g̃ (w) = l1 −2,
r1 ◦ g̃ (z) > l1 −1, z ∈ Ùw v and r1 ◦ g̃ (v) = lv , it follows from Corollary 8.16 that lv ≥ l1 −1.
Hence, the lemma is true. �

Proposition 8.22. Suppose L ⊂ D \ E is an arc with endpoints c ′ and c ′′ such that L ∩
bd(D) = {

c ′,c ′′
}
. Let g̃ : L → K̃ be a lifting of L. Then

∣∣r1 ◦ g̃
(
c ′

)− r1 ◦ g̃
(
c ′′

)∣∣< 1.

Proof. Let C1 and C2 denote the two subarcs of bd(D) with endpoints c ′ and c ′′. Observe
that exactly one of the simple closed curves L ∪C1 and L ∪C2, say L ∪C1, bounds a
disk in the plane that does not intersect E . Let g̃1 be the lifting of C1 to K̃ such that
g̃1

(
c ′

)= g̃
(
c ′

)
. Then g̃1

(
c ′′

)= g̃
(
c ′′

)
by [22, Th. 54.3]. Now, the proposition follows from

Observations 8.7 and 8.8. �
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Proposition 8.23. Let L ⊂ D \E be an arc with endpoints c ′ and c ′′ such that L∩bd(D) ={
c ′,c ′′

}
. Suppose u, v ∈ L are such that c ′ ≤ u < v ≤ c ′′ and Øuv wraps itself around E. Then

`
(Øuv

)≤ `(Ùc ′u)
+`

(Ùvc ′′
)
+4.

Proof. We may assume without loss of generality that Øuv wraps itself counterclockwise
around E . (In the other case we could just reverse the orientation on L.) Let g̃ : L → K̃
be a lifting. Setting l1 =

⌊
max

(
r1 ◦ g̃

(Øuv
))⌋

and using Proposition 8.19 with c ′ = c ′, c = u
and c ′′ = v we infer that

r1 ◦ g̃
(
c ′

)< l1 −`
(Øuv

)+`(Ùc ′u)
+2

Setting l ′1 =
⌈

min
(
r1 ◦ g̃

(Øuv
))⌉

and using Proposition 8.20 with c ′ = u, c = v and c ′′ = c ′′
we infer that

l ′1 +`
(Øuv

)−`(Ùvc ′′
)
−2 < r1 ◦ g̃

(
c ′′

)
By adding the above inequalities, and then moving l1, l ′1 and `

(Øuv
)

to the left side of the
resulting inequality, and all the remaining terms to the right side we infer that

l ′1 − l1 +2`
(Øuv

)< `(Ùvc ′′
)
+`

(Ùc ′u)
+4+ r1 ◦ g̃

(
c ′′

)− r1 ◦ g̃
(
c ′

)
Since l ′1 − l1 =−`(Øuv

)
, the left side of the last inequality equals `

(Øuv
)
. Thus

(?) `
(Øuv

)< `(Ùvc ′′
)
+`

(Ùc ′u)
+4+ r1 ◦ g̃

(
c ′′

)− r1 ◦ g̃
(
c ′

)
Observe that `

(Øuv
)

and `
(Ùvc ′′

)
+`

(Ùc ′u)
+4 are integers. Since r1◦g̃

(
c ′′

)−r1◦g̃
(
c ′

)< 1 (by

Proposition 8.22) we may remove the difference r1◦ g̃
(
c ′′

)−r1◦ g̃
(
c ′

)
from the inequality

(?) while replacing “<” by “≤”. So, the proposition is true. �

Lemma 8.24. Suppose N is a positive integer. Let Øc ′c be an arc contained in D \ E such

that Øc ′c ∩bd(D) = {
c ′

}
. Suppose u is a point in the interior of L such that `

(Ùc ′u)
≤ N ,

`
(Øuc

) ≥ 2N + 6 and Øuc wraps itself counterclockwise around E. Finally, suppose Z ⊂
D \ (L∪E) is a set with the property that for each z ∈ Z there is an arc Lz ⊂ Z such that
z ∈ Lz , Lz ∩bd(D) 6= ; and ` (Lz ) ≤ N . Then Z does not separate D between L and E.

Proof. Let v denote the point in the set Øc ′c ∩ J0 which is the closest to e0. It follows from
Proposition 8.19 and Lemma 8.21 that u is in the interior of Øc ′v and `

(Øuv
)

is either `
(Øuc

)
or `

(Øuc
)−1. Consequently,

(≥) `
(Øuv

)≥ 2N +5

Let V denote the component of J0 \ {v} whose closure contains e0. Clearly, V ∩L =;
and Øuv ∪V ∪ {e0} is an arc. If Z ∩V =; then the lemma is true. So, we may assume that
Z ∩V contains a point z. Then there is an arc Lz ⊂ Z such that z ∈ Lz , Lz ∩bd(D) 6= ;
and ` (Lz ) ≤ N . Let Úz0c ′′ be a subarc of Lz minimal with respect to the property: z0 ∈ V
and c ′′ ∈ bd(D). Let Ùv z0 denote the subarc of J0 with endpoints v and z0. Consider the

arc Ùvc ′′ = Ùv z0 ∪Úz0c ′′. Since Ùv z0 ⊂ J0, it follows that `
(Ùvc ′′

)
= `

(Úz0c ′′
)
≤ ` (Lz ) ≤ N . Now,

we consider the arc L = Ùc ′c ′′ =Ùc ′u∪ Øuv ∪Ùvc ′′ and apply Proposition 8.23 to get the result
that

(≤) `
(Øuv

)≤ `(Ùc ′u)
+`

(Ùvc ′′
)
+4 ≤ 2N +4

It follows that Z ∩V = ; since the the inequalities (≥) and (≥) contradict each other.
Hence, the lemma is true. �
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9. PART 2 OF THE DEFINITION OF X

In this section we specify the winding numbers in the definition of X and therefore
fully define continuum X .

Proposition 9.1 (see [21, Proposition 2.1]). Suppose L is an arc and ε > 0. Then there
is a positive integer N (L,ε) such that, for each collection C of N (L,ε) subarcs of L whose
interiors are mutually disjoint, at least one element of C has diameter less than ε.

In the preliminary definition of X given in Subsection 4.3, we used a generic se-
quence of positive integers Σ = (k0,k1, . . . ) without any other restrictions. This was
enough to prove the basic properties of X . However, we need to impose some condi-
tions on Σ to be able to prove that X admits a simple dense canal for every embedding
into R2. We will define the terms of Σ one by one starting from k0. For each nonnegative
integer n, we will define kn basing on properties of some arcs contained in X ⊂∏n

j=0 X j

in such a way that their complete definitions do not depend on kl for any l ≥ n. How-
ever, the arcs used to define k1 may depend on k0, the arcs used to define k2 may depend
on k0 and k1, and so on. Having in mind the inductive character of the the construction,
we will define kn in two cases depending whether n is odd or even.

Let ν ∈ {0,1,2,3} and let n be a nonnegative integer. Recall that Úaνaνn ⊂ Fn the arc[ Úaνaνn
]

does not depend on kl for any l ≥ n; see Observation 6.7. Set

Nn = max
{

N
([ Úaνaνn

]
,2−n

)
| ν ∈ {0,1,2,3}

}
where N (·, ·) is the number defined in Proposition 9.1. We will use Nn in the definition
of kn in both cases of odd and even n. Set

kn = 2max(Nn ,n) , if n is odd.

Now, suppose n is even and set i = n/2. Recall that fn : Xn+1 → Xn where Xn = Ãi ,
Xn+1 = Ãi+1 and fn = ϕn,kn . Also recall that τ is an involution of {0,1,2,3} such that

τ(0) = 1, τ(1) = 0, τ(2) = 3 and τ(3) = 2. It follows from Proposition 6.8 that Üsνi+1bνi+1 ⊂
Fn+1. Recall that bνi+1 is a point in the interior of Üsνi+1bνi+1, and, if ν ∈ {1,3} then sνi+1 is

a point in the interior of Üsνi+1bνi+1. Also, recall that Li+1 is a collection of arcs defined
before Corollary 6.9. By the corollary, each of the four arcs from Li+1 does not depend
on kl for any l ≥ n. Let N e

n = max
{

N (L,2−n) | L ∈Li+1
}
. Set

kn = 2max
(
Nn , N e

n ,n
)

, if n is even.

This completes the construction of the sequence Σ = (k0,k1, . . . ). Therefore, X is now
fully defined.

10. DEFINITION OF THE SIMPLE DENSE CANAL

We first recall parts of the Prime End Theory needed for the setup. We refer to the
paper by Brechner [5] for more detailed description. Let S2 ⊂ R3 denote a unit sphere.
We denote by B 1 ⊂ S2 the unit disk.

Definition 10.1. Let U ⊂ S2 be a simply connected open set with a nondegenerate
boundary. A crosscut Q of U is an open arc in U such that cl(Q) intersects bd(U ) in
exactly two endpoints of cl (Q). A C-map ψ : U → int

(
B 1

)
is a homeomorphism such

that:

(1) ψ (U ) is a crosscut of int
(
B 1

)
.
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(2)
{
ψ (bd(Q)) |Q is a crosscut of U

}
is dense in bd

(
B 1

)
.

A sequence of crosscuts Q1,Q2, . . . of U is a chain of crosscuts if and only if all three of
the following conditions hold:

(1’) cl (Q1) ,cl (Q2) , . . . are pairwise disjoint.
(2’) Qn separates Qn−1 from Qn+1 in U .
(3’) diam(Qi ) → 0 and lim(Qi ) is a point as i →∞.

Let Un be a simply connected open set that contains Qn+1. We refer to Un by inner
domains. Thus U1 ⊂ U2 ⊂ U3 ⊂ . . . . Let Q1,Q2, . . . and R1,R2, . . . be chains of crosscuts
of U and U1,U2, . . . and V1,V2, . . . their respective corresponding inner domains. Then
Q1,Q2, . . . and R1,R2, . . . are equivalent chains of crosscuts of U if and only if for every
positive integer i there exist a positive integer j so that V j ⊂Ui and U j ⊂Vi . A prime end
E of S2 \U is an equivalence class of chains of crosscuts of U .

Theorem 10.2. Let U ⊂ S2 be a simply connected open set with a nondegenerate bound-
ary. Then there exists a C-mapψ : U → int

(
B 1

)
. If E is a prime end determined by a chain

of crosscuts Q1,Q2, . . . with corresponding inner domains U1,U2, . . . and p ∈ bd
(
B 1

)
is the

point corresponding to E , then a sequence of points z1, z2, . . . in U has the property that
zi ∈Ui for every positive integer i if and only if ψ (zi ) converges to p as i →∞.

Definition 10.3. Let U ⊂ R2 be a simply connected open set with a nondegenerate
boundary and R ⊂ U be a ray. Let r ∈ R be a point. A crosscut Q is called a trans-
verse crosscut to R at r , if there exists a topological disk D ⊂U such that r ∈ int(D) and
(R ∩D) \ {r } consists of two components, each of which is contained in exactly one sim-
ply connected component of D \ Q. A continuum K ⊂ R2 has a simple dense canal, if
there exists a ray R ⊂R2 \ K such that the following three conditions hold:

(1) cl (R) \ R = K .
(2) for every point r ∈ R there exists a sequence of transverse crosscuts to R at r .
(3) diameter of transverse crosscuts from (2) converges to 0.

11. ANY EMBEDDING OF X INTO THE PLANE HAS A DENSE SIMPLE CANAL

Let h be an arbitrary embedding of X into the plane. Since [T ∗] and the four spurs Sν

are mutually disjoint tree-like continua, there are five mutually disjoint closed topologi-
cal disks D∗, D0, D1, D2 and D3 contained in the plane such that h ([T ∗]) ⊂ int(D∗) and
h ([Sν]) ⊂ int(Dν) for all ν ∈ {0,1,2,3}. Using Remark (i) after the proof of [13, Theorem
6,§61,IV] we can find a homeomorphism g of the plane onto itself such that

• g maps each of the disks D∗, D0, D1, D2 and D3 onto a circular disk with radius
2,

• g ◦h ([T ∗]) is the standard unit triod with ordered set of endpoints g ◦h
([

t∗0
])

,
g ◦h

([
t∗1

])
and g ◦h

([
t∗2

])
and its center is at the center of g (D∗), and

• for each ν ∈ {0,1,2,3}, g ◦h ([Y ν]) is the standard unit triod with ordered set of
endpoints g ◦h

([
yν0

])
, g ◦h

([
yν1

])
and g ◦h

([
yν2

])
and its center at the center of

g (Dν).

Since h (X ) has a dense simple canal if and only if g ◦h (X ) has a dense simple canal, we
may assume that

(1) D∗, D0, D1, D2 and D3 are mutually disjoint closed circular disks, each with ra-
dius 2 and such that h ([T ∗]) ⊂ int(D∗) and h ([Sν]) ⊂ int(Dν) for all ν ∈ {0,1,2,3}.

(2) h ([T ∗]) is the standard unit triod with ordered set of endpoints h
([

t∗0
])

, h
([

t∗1
])

and h
([

t∗2
])

and its center is at the center of D∗, and
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(3) for each ν ∈ {0,1,2,3}, h ([Y ν]) is the standard unit triod with ordered set of end-
points h

([
yν0

])
, h

([
yν1

])
and h

([
yν2

])
and its center at the center of Dν.

Let D∞ be a big circular disk in the plane such that D∗, D0, D1, D2 and D3 are con-
tained in its interior. Let a∞ be a point in the boundary of D∞. Recall that, for each
ν ∈ {0,1,2,3}, h (aν) is accessible from the complement of h (X ); see Proposition 7.9. It
follows that, for each ν ∈ {0,1,2,3}, there is Ûa∞aν ⊂ D∞ such that Ûa∞aν∩h (X ) = {

aν
}
,

and Ûa∞aν∩ Ûa∞aµ = {a∞} for µ ∈ {0,1,2,3} \ {ν}.

Remark 11.1. What remains to be done to complete the proof is an explicit construction
of a simple dense canal in an embedding h (X ). In the construction we will use Section 8
as the main tool and heavily rely on the specific inductive choice of the sequence of
wrapping numbers Σ. Since the construction is not complete yet, it is omitted in the
current version of the file.
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