PRELIMINARY REPORT ON THE RESEARCH CONDUCTED UNDER MARSHALL PLAN SCHOLARSHIP

JERNEJ ČINČ
(UNIVERSITÄT WIEN

Abstract

A long-standing open problem in Continuum Theory closely related with the fixed point problem reads as follows. Does there exist a planar continuum which admits a simple dense canal in every of its planar embeddings? In this document we propose a continuum which could answer the question in the affirmative.

1. AcKnowledgements

I am very grateful to Professor Dr. Piotr Minc from Auburn University for all the given help, support and especially for a series of interesting mathematical discussions during my stay at Auburn University in Auburn, Alabama. I appreciate all the given help by the host university. Next, I express my gratitude to my advisor at Universiät Wien Professor Dr. Henk Bruin for the help with applying for the Marshall Plan Scholarship. I also thankfully acknowledge the financial support by the Austrian Marshall Plan Foundation. The given report is based on the preliminary version of a paper in progress written with Professor Dr. Piotr Minc.

2. Introduction

All the spaces considered in this document are going to be metric spaces. A continuum is a compact connected metric space. A continuum has a fixed point, if every continuous function of the continuum to itself (later in the document such function is called a self-map) has a fixed point. Continua with the property that every self-map has a fixed point are called to have the fixed point property. As an example, it follows directly from the intermediate-value theorem that the unit interval $[0,1] \subset \mathbb{R}$ has the fixed point property. A homeomorphism of a space onto a subspace of the plane is called a planar embedding of the space. A continuum that admits a planar embedding is called a planar continuum. We say that a planar continuum is non-separating if the complement of the continuum in the plane is connected. One of the oldest outstanding open questions in Continuum Theory is the following:
(The Scottish Book, Problem 107, Sternbach, see [15]): Does every nonseparating planar continuum have the fixed point property?

Brouwer's fixed point theorem states that a compact convex set has the fixed point property. The question quoted above has been one of the central topics of research in Continuum Theory ever since it was stated, since the positive answer on it would give a natural generalization of the Brouwer fixed point theorem in dimension two (for a survey on the fixed point property problem see [4, 11]). There have been a series of involved

Date: July 3, 2017.
examples of continua without the fixed point property with variety of additional topological properties given in the literature [$3,8,10,16,17,18,19,20,24,25$]. However, no proof that the mentioned examples are planar was given and thus the fixed point property question remains unanswered.
A continuum is called indecomposable, if it cannot be written as a union of two of its proper subcontinua. A topological disk is a homeomorphic image of a closed unit planar ball. A technique to construct interesting indecomposable planar continua is to take a topological disk and dig in the disk an infinite canal with boundaries of the canal asymptotically approaching each other as the digged canal gets longer. If the closure of the boundaries of the canal within the disk is an indecomposable continuum, the canal is called a simple dense canal (in the literature also sometimes called a Lakes-of-Wada channel). A working definition of a simple dense canal is going to be given later. It was observed independently by Bell, Sieklucki and Iliadis [2, 12, 26] from 1967 until 1970 that an example of a continuum without the fixed point property (if such exists) needs to have an indecomposable continuum in its boundary. Furthermore, the results of the mentioned papers imply that an example of a non-separating planar continuum without the fixed point property (if such exists) would need to have a simple dense canal in every planar embedding of that continuum. Therefore it is natural to ask the following question which was posed in the paper [6] by Brechner and Mayer and restated in the Continuum Theory Problems paper [14] written by Lewis:
(Problem 143 from [14], Brechner and Mayer): Does there exist a nonseparating planar continuum such that every planar embedding of it has a simple dense canal?
To our knowledge no answer on the question by Brechner and Mayer has been given in the literature yet.

In this document we give a construction of a possible example of a continuum with a simple dense canal in every of its embeddings, which would provide a positive answer to the quoted question given by Brechner and Mayer. In the paragraphs to follow we describe the outline of the construction of the given example and we formalize this construction for the rest of the document.

An arc is a homeomorphic image of the closed unit interval. A ray is a homeomorphic image of $[0,1) \subset \mathbb{R}^{2}$. A ray contained in an planar embedding of an indecomposable continuum is said to have a free side, if for every subarc of the ray there exists an $\epsilon>0$ so that exactly one side of the subarc in the ϵ-neighborhood of it contains no other points of the continuum. A tree is an acyclic graph.

Let X_{n} be continua and let $f_{n}: X_{n+1} \rightarrow X_{n}$ be continuous functions for every nonnegative integer n. The inverse limit space is defined by
$\lim _{\leftrightarrows}\left\{X_{n}, f_{n}\right\}_{n=0}^{\infty}=\left\{\left(x_{0}, x_{1}, \ldots\right): x_{n}=f_{n+1}\left(x_{n+1}\right), x_{n} \in X_{n}\right.$ for every nonnegative integer $\left.n\right\}$
and we call spaces X_{n} factor spaces and functions f_{n} bonding maps. For brevity we denote $X=\underset{\rightleftarrows}{\lim }\left\{X_{n}, f_{n}\right\}$. It is not difficult to see that the space X under given conditions is a continuum. We will use inverse limit construction as the main tool in the description of our example and we will refer to the example from now onwards by X. Our constructed continuum X is going to be a tree-like continuum, i.e. inverse limit space on trees as factor spaces. The continuum X is going to contain four distinct mutually disjoint rays R^{v} for $v \in\{0,1,2,3\}$ and each of the rays is going to be dense in X. All the rays R^{v} are going to have a free side in every planar embedding of X. The construction of the example will furthermore assure that the non-free sides of two pairs of rays R^{0}, R^{1} and
R^{2}, R^{3} respectively are going to face each other in every planar embedding of X. Therefore, our aim is to construct a simple dense canal between two free sides of rays R^{v}. A simple triod is a union of three arcs intersecting in a common endpoint and the three arcs are mutually disjoint otherwise. The continuum X is going to contain five distinct mutually disjoint simple triods; four of them are going to be attached to exactly one of the four rays R^{v} and one of the triods is going to be disjoint from all the rays R^{v}. The most important ingredient for the construction of a simple dense canal is going to be wrapping of all "long arcs" from X around the five mentioned simple triods. Intuitively, when some "long arc" from X will wrap on a simple triod we will be able to estimate the length of a subarc of this "long arc" that will stay close to the triod regardless of the planar embedding of X. Thus the subarcs of "long arcs" not staying close to any of the mentioned triods will not have sufficient length to prevent the existence of the simple dense canal in any planar embedding of X. Therefore, since we in such a way control all "long arcs" from X we will (hopefully) be able to build a simple dense canal between two free sides of rays R^{v} inductively on the lengths of the rays. At the end of the file we comment in Remark 11.1 what still needs to be done to complete the paper.

3. Preliminaries

In this section we define a language to describe bonding maps on the factor spaces for the inverse limit representation of our example.

Throughout this document let $\widehat{c^{\prime} c^{\prime \prime}}$ denote an arc oriented from c^{\prime} to $c^{\prime \prime}$. We denote by int $\left(\widehat{c^{\prime} c^{\prime \prime}}\right)=\widehat{c^{\prime} c^{\prime \prime}} \backslash\left\{c^{\prime}, c^{\prime \prime}\right\}$.

Definition 3.1. Define a walk on a tree D as a finite sequence $W=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ of points of D. When $W=(w)$ we omit brackets for brevity. Let $\ominus W$ denote the sequence W listed in the opposite order, i.e. $\ominus W=\left(w_{n}, w_{n-1}, \ldots, w_{0}\right)$. For two walks $W^{\prime}=\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)$ and $W^{\prime \prime}=\left(w_{0}^{\prime \prime}, w_{1}^{\prime \prime}, \ldots, w_{n^{\prime}}^{\prime \prime}\right)$, where n and n^{\prime} are nonnegative integers, define $W^{\prime} \oplus W^{\prime \prime}=\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n}^{\prime}, w_{0}^{\prime \prime}, w_{1}^{\prime \prime}, \ldots, w_{n^{\prime}}^{\prime \prime}\right)$. For walks W_{1}, \ldots, W_{i}, define $\oplus_{j=1}^{i} W_{j}=W_{1} \oplus \cdots \oplus W_{i}$. If $i=0$ we understand that $\oplus_{j=1}^{i} W_{j}=\varnothing$. For any positive integer k, let W^{k} denote $W \oplus W \oplus \cdots \oplus W$ (the concatenation of k walks W). The walk W^{*} is the abbreviation of the walk W if all identical consecutive points from W are replaced by one such point.

Definition 3.2. Suppose W is a walk on a tree D. Let $W^{*}=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ and $\widehat{c^{\prime} c^{\prime \prime}}$ be an oriented arc. Denote by $c_{0}=c^{\prime}, c_{1}, \ldots, c_{n-1}, c_{n}=c^{\prime \prime}$ strictly increasing sequence of points from $\widehat{c^{\prime} c^{\prime \prime}}$. Define the map $\alpha\left\langle W, \widehat{c^{\prime} c^{\prime \prime}}, D\right\rangle: \widehat{c^{\prime} c^{\prime \prime}} \rightarrow D$ by setting $\alpha\left\langle W, \overline{c^{\prime} c^{\prime \prime}}, D\right\rangle\left(c_{j}\right)=$ w_{j} and letting $\left.\alpha\left\langle W, \widehat{c^{\prime} c^{\prime \prime}}, D\right\rangle\right|_{c_{j-1} c_{j}}$ be an arbitrary homeomorphism onto ${\widehat{w_{j-1} w_{j}}}_{j}$ such that $\alpha\left\langle W, \widehat{c^{\prime} c^{\prime \prime}}, D\right\rangle\left(c_{j-1}\right)=w_{j-1}$ and $\alpha\left\langle W, \widehat{c^{\prime} c^{\prime \prime}}, D\right\rangle\left(c_{j}\right)=w_{j}$ for each $j \in\{1, \ldots, n\}$.

4. Construction of factor spaces and bonding maps

In this section we first give geometric description of the factor spaces used in the construction of inverse limit and then in the following subsections define and explain the action of bonding maps on the factor spaces.

Suppose that T is a simple triod with endpoints t_{0}, t_{1} and t_{2}. Let Y be another simple triod disjoint from T. Denote the endpoints of Y by y_{0}, y_{1} and y_{2}. Let $\widehat{y_{0} a_{0}}$ be an arc intersecting $T \cup Y$ only at y_{0}. Let $\widehat{t_{0} a}$ be an arc containing a_{0} in its interior and intersecting $Y \cup \widehat{y_{0} a_{0}} \cup T$ only at t_{0} and a_{0}. Denote $Y \cup \widehat{y_{0} a_{0}} \cup \widehat{t_{0} a} \cup T$ by A_{0}.

Figure 1. A_{2}

Figure 2. A_{2} and \widetilde{A}_{2}

Let s be a point in the interior of $\widehat{a_{0} y_{0}}$ and let $s_{0}, s_{1}, s_{2}, \ldots$ be a strictly increasing sequence of points in the interior of $\widehat{a_{0} y_{0}}$ so that $\lim _{i \rightarrow \infty}, s s_{i}=s$ Suppose $\widehat{s_{1} b_{1}}, \widehat{s_{2} b_{2}}, \widehat{s_{3} b_{3}}, \ldots$ is a sequence of mutually disjoint arcs such that $A_{0} \cap \widehat{s_{i} b_{i}}=\left\{s_{i}\right\}$ for each positive integer i. Set $A_{i}=A_{0} \cup \bigcup_{j=1}^{i} \widehat{s_{j} b_{j}}$.

Observation 4.1. $A_{i} \subset A_{i+1}$ for each nonnegative integer i.
Let a_{1}, a_{2}, \ldots be a strictly increasing sequence of points in the interior of $\overline{a_{0} t_{0}}$. Additionally, we assume that $\lim _{n \rightarrow \infty} a_{n}=t_{0}$. For each nonnegative integer n, let m_{n} be a point in the interior of $\widehat{a_{n} a_{n+1}}$. Set $\beta_{n}=\alpha\left\langle\left(a_{n}, t_{0}\right), \widehat{a_{n} m_{n}}, A_{0}\right\rangle$. Also, let G_{n} denote the set $\widehat{a a_{n}} \cup \widehat{a_{0} s_{0}}$.

In the product $A_{i} \times\{0,1,2,3\}$ consider the relation \sim defined by $(x, \mu) \sim(z, v)$ for $x, z \in$ A_{i} and $\mu, v \in\{0,1,2,3\}$ if and only if $x=z$ and either $\mu=v$, or $x=z \in T$. Let \widetilde{A}_{i} denote the quotient space $A_{i} \times\{0,1,2,3\} / \sim$ and let $q_{i}: A_{i} \times\{0,1,2,3\} \rightarrow \widetilde{A}_{i}$ be the quotient map. We use the following notation for brevity. If $z \in A_{i}$ and $\mu \in\{0,1,2,3\}$ we denote $q_{i}((z, \mu))$ by z^{μ}. If $Z \subset A_{i}$ we denote $q_{i}(Z \times\{\mu\})$ by Z^{μ}. If $t \in T$ we denote $q_{i}((t, \mu))$ by t^{*}. In the same convention, we use T^{*} for $q_{i}(T \times\{\mu\})$.

Observation 4.2. $\widetilde{A}_{i} \subset \widetilde{A}_{i+1}$ for each nonnegative integer i.
We define an involution $\tau:\{0,1,2,3\} \rightarrow\{0,1,2,3\}$ by $\tau(0)=1, \tau(1)=0, \tau(2)=3$ and $\tau(3)=2$.

Let us comment on the important parts of the factor spaces \widetilde{A}_{i} and establish a language so that we can address them. The space \widetilde{A}_{i} consists of four trees A_{i}^{v} called v legs for $v \in\{0,1,2,3\}$, where points $t \in T \subset A_{i}^{v}$ are identified, see Figure 2. For every $v \in\{0,1,2,3\}$ a v-leg consists of an arc $\widehat{a^{v} t_{0}^{*}}$ and a tree $\widehat{a_{0}^{v} y_{0}^{v}} \cup_{j=0}^{i} \widehat{s_{i}^{v} b_{i}^{v}} \cup Y^{v}$. A subarc $\widehat{a^{v} a_{n+1}^{v}}$ of $\widehat{a^{v} t_{0}^{*}}$ is called the v-precursor of a ray. The $\operatorname{arc} \overline{s_{i}^{v} b_{i}^{v}}$ is called the i-sticker of the v-leg.

In the next two subsections we will separately define the maps $\varphi_{n, k}: \widetilde{A}_{i} \rightarrow \widetilde{A}_{i}$ for n odd and $i=\frac{n+1}{2}$ and $\varphi_{n, k}: \widetilde{A}_{i+1} \rightarrow \widetilde{A}_{i}$ for n even and $i=\frac{n}{2}$ and any positive integer k. From now onwards k will always denote the number of wrappings of stretched v precursors of rays around a triod from \widetilde{A}_{i} and is going to be refereed to as wrapping number. The maps $\varphi_{n, k}$ are going to be used as bonding maps in the definition of our inverse limit space X. We will prove later that for a careful inductive choice of wrapping numbers k, any planar embedding of X has a simple dense canal. Before we give a formal definition of maps $\varphi_{n, k}$ we first intuitively describe what we require from the bonding maps.

With $\varphi_{n, k}$ for odd n we will assure that X is having four distinct mutually disjoint rays R^{v} which will correspond to the union of extensions of v-precursors of rays for every $v \in\{0,1,2,3\}$ (we will define rays R^{v} precisely later in the document). The rays R^{v} are going to be dense in X, which is going to be achieved by stretching the precursors of rays along every v-leg for $v \in\{0,1,2,3\}$. Furthermore, we want that the maps $\varphi_{n, k}$ for both even and odd n assure the existence of a free side for every of four rays R^{v} in every planar embedding of X. We will achieve that with fixing the triods $\widehat{a^{v} a_{1}^{v}} \cup \widehat{a_{0}^{v} s_{0}^{v}}$ for every $v \in\{0,1,2,3\}$ with every map $\varphi_{n, k}$ and extending v-precursors of rays along the side of the arc $\widehat{a^{v} a_{1}^{v}}$ which contains a subarc of $\widehat{a_{0}^{v} s_{0}^{v}}$. The map $\varphi_{n, k}$ for even n is going to extend the i-sticker of the μ-leg on the part of the $\tau(\mu)$-leg and wrap it k times around triod $Y^{\tau(\mu)}$ and vice versa for the i-sticker of the $\tau(\mu)$-leg for $\mu \in\{0,2\}$. Extended stickers are going to be introduced to assure that the non-free sides of R^{μ} and $R^{\tau(\mu)}$ face each other in every planar embedding of X for $\mu \in\{0,2\}$. Intuitively, the extended stickers will tie together pairs of rays R^{μ} and $R^{\tau(\mu)}$ for $\mu \in\{0,2\}$. Thus we will be able to start the construction of a simple dense canal of a planar embedding of X between free sides of two rays. Moreover, $\varphi_{n, k}$ for n odd will introduce wrapping of extensions of v-precursors of rays k times around triods Y^{v} for every $v \in\{0,1,2,3\}$ and the map $\varphi_{n, k}$ for n even wrapping of extensions of v-precursors of rays k times around triod T^{*}. A careful inductive choice of wrapping numbers around all the triods is going to be of main importance in the construction of simple dense canal in an arbitrary planar embedding of X, as explained in the introduction.
4.1. Construction of the map $\varphi_{n, k}$ for odd n. Throughout this subsection k is a positive integer, $n \geq 0$ is an odd integer, $i=\frac{n+1}{2}, \mu=\bmod \left(\frac{n-1}{2}, 4\right)$ (i.e. $\frac{n-1}{2}=4 l+\mu$ for the nonnegative integer l so that $\mu \in\{0,1,2,3\}$), and v is an arbitrary element of $\{0,1,2,3\}$.

Let $P=\left(t_{0}^{*}, a_{0}^{\mu}\right) \oplus \oplus_{j=1}^{i}\left(s_{j}^{\mu}, b_{j}^{\mu}, s_{j}^{\mu}\right) \oplus\left(y_{1}^{\mu}, y_{2}^{\mu}, y_{0}^{\mu}\right)^{k} \oplus\left(y_{2}^{\mu}, y_{1}^{\mu}, y_{0}^{\mu}\right)^{k-1} \oplus a^{\mu}$. Let γ_{o} denote $\alpha\left\langle P \ominus P, \widehat{m_{n} a_{n+1}}, \widetilde{A}_{i}\right\rangle$.

We define a mapping $\varphi_{n, k}: \widetilde{A}_{i} \rightarrow \widetilde{A}_{i}$ in the following way.
(O-1) Let $\varphi_{n, k}\left(x^{v}\right)=x^{v}$ if $x \in Y \cup \widehat{s a_{0}} \cup \cup_{j=1}^{i} \widehat{s_{j} b_{j}} \cup \widehat{a a_{n}} \cup T$.
(O-2) Let $\varphi_{n, k}\left(x^{v}\right)=x^{v}$ if $v \neq \mu$ and $x \in \widehat{s y_{0}}$.
(O-3) Let $\left.\varphi_{n, k}\right|_{s^{\mu} y_{0}^{\mu}}=\alpha\left\langle W, \widehat{s^{\mu} y_{0}^{\mu}}, \widetilde{A}_{i}\right\rangle$, where $W=s^{\mu} \oplus\left(y_{1}^{\mu}, y_{2}^{\mu}, y_{0}^{\mu}\right)^{k-1}$.

Figure 3. $\varphi_{3,2}\left(\widetilde{A}_{2}\right)$ with a l-gap. An extended v-precursor of a ray is approaching the μ-leg ($\mu=1$ in case (i) and $\mu=0$ in case (ii)).
(O-4) Let $\varphi_{n, k}\left(x^{v}\right)=q\left(\beta_{n}(x), v\right)$ if $x \in \widehat{a_{n} m_{n}}$.
(O-5) Let $\varphi_{n, k}\left(x^{v}\right)=\gamma_{0}(x)$ if $x \in \widetilde{m_{n} a_{n+1}}$.
(O-6) Let $\varphi_{n, k}\left(x^{v}\right)=t_{0}^{*}$ for each $x \in \widehat{a_{n+1} t_{0}}$.
Observation 4.3. $\varphi_{n, k}$ is continuous for odd n.
Let $\Gamma_{\varphi_{n, k}}$ denote the graph of $\varphi_{n, k}: \widetilde{A}_{i} \rightarrow \widetilde{A}_{i}$. In the following paragraphs we explain in detail the construction of the map $\varphi_{n, k}$ for odd n and any positive integer k. We argue that the graph $\Gamma_{\varphi_{n, k}}$ can be drawn in the plane arbitrarily close to \widetilde{A}_{i} for every odd n and any positive integer k.

First, note that the points $x^{v} \in \widetilde{A}_{i} \backslash\left(\cup_{v=0}^{3} \widehat{a_{n}^{v} t_{0}^{*}} \cup \widehat{s^{\mu} y_{0}^{\mu}}\right)$ can be drawn arbitrary close to $\varphi_{n, k}\left(x^{v}\right)=x^{v}$ by (O-1), (O-2) for every positive integer k and odd n. By (O-3) we draw $\Gamma_{\varphi_{n, k}} \left\lvert\, \frac{s^{\mu} y_{0}^{\mu}}{}\right.$ to wrap $k-1$ times around Y^{μ} and thus creating a $(k-1)$-gap between the points s^{μ} and y_{0}^{μ} around the triod Y^{μ} (see the dashed line on the Figure 3). The ($k-1$)gap is formed to allow the stretched all v-precursors of rays to wrap around Y^{μ}. Arcs which enter this $(k-1)$-gap can be drawn to wrap at most $k-1$ times around Y^{μ} for $\mu=0,2$ in the clockwise direction and at most $k-1$ times around Y^{μ} for $\mu=1,3$ in counterclockwise direction. The v-precursors of rays are by (O-4) first extended from $\widehat{a^{v} m_{n}^{v}}$ to the entire arc $\widehat{a^{v} t_{0}^{v}}$ for every $v \in\{0,1,2,3\}$. After observations made this paragraph the graph $\Gamma_{\varphi_{n, k}}$ after applying (O-1)-(O-4) looks as on Figure 3, case (i).

The arcs $\widehat{m_{n}^{v} a_{n+1}^{v}}$ are by (O-5) stretched by $\varphi_{n, k}$ along the whole leg A_{i}^{μ}, starting from t_{0}^{*}, continuing to a_{0}^{μ} and passing around the j-stickers of μ-leg for every $j=1, \ldots, i$, see Figure 3. Still by ($0-5$) we draw $\Gamma_{\varphi_{n, k}} \mid \xlongequal[m^{v} a_{n+1}^{v}]{ }$ to enter the $(k-1)$-gap and wrap inside it $k-1$ times around Y^{μ}, unwrap inside it $k-1$ times and exit the ($k-1$)-gap under the $\left.\operatorname{arc} \Gamma_{\varphi_{n, k}}\right|_{\widehat{s^{\mu} y_{0}^{\mu}}}$. Note that in such a way a subarc of $\left.\Gamma_{\varphi_{n, k}}\right|_{\overline{m_{n}^{v} a_{n+1}^{v}}}$ indeed wraps around Y^{μ} exactly k times, since it wraps once around Y^{μ} before entering the ($k-1$)-gap, see Figure 3. After unwrapping, a subarc of $\Gamma_{\varphi_{n, k}} \mid \overline{m_{n}^{v} a_{n+1}^{v}}$ stretches under the arc $\widehat{a_{0}^{\mu} s^{\mu}}$ to the point a^{μ} and then does all of the movement described in this paragraph in the reverse order and finally stretches to the point t_{0}^{*}, see Figure 3, case (ii).

Since $\varphi_{n, k}$ stretches v-precursors of rays for every $v \in\{0,1,2,3\}$ to a μ-leg in the way described above, we need to show that the arcs $\left.\Gamma_{\varphi_{n, k}}\right|_{\overline{m_{n}^{v} a_{n+1}^{v}}}$ can indeed be drawn simultaneously in the plane so that $\varphi_{n, k}\left(a_{n+1}^{v}\right)=t_{0}^{*}$ for every $v \in\{0,1,2,3\}$ as required by (O-6).

Figure 4. Part of the graph $\Gamma_{\varphi_{n, k}}$ for $\mu=0$ in case (i) and for $\mu=1$ in case (ii).

Observation 4.4. By the (O-5) there exists a unique point $u_{n}^{v} \in \operatorname{int}\left(\overline{m_{n}^{v} a_{n+1}^{v}}\right)$ such that $\varphi_{n, k}\left(u_{n}^{v}\right)=a^{\mu}$ for every $v \in\{0,1,2,3\}$.

We impose an ordering on the planar $\operatorname{arcs} \Gamma_{\varphi_{n, k}} \mid \overline{m_{n}^{v} a_{n+1}^{v}}$. Denote by $\downarrow^{v}=\Gamma_{\varphi_{n, k}} \mid \overline{m_{n}^{v} u_{n}^{v}}$ and by $\uparrow^{v}=\Gamma_{\varphi_{n, k}} \mid \|_{u_{n}^{v} a_{n+1}^{v}}$ for every $v \in\{0,1,2,3\}$ and let $\mathscr{P}^{\mu}=\left\{\downarrow^{v}: v \in\{0,1,2,3\}\right.$ and $\left.\uparrow \in\{\uparrow, \downarrow\}\right\}$ for every $\mu \in\{0,1,2,3\}$. We write $\downarrow^{\nu}<\downarrow^{\lambda}$, if arc \downarrow^{v} is drawn in the plane closer to μ-leg than to \downarrow^{λ} among two different arcs $\downarrow^{\nu}, \downarrow^{\lambda} \in \mathscr{P}^{\mu}$. We study different cases depending on the choice of $\mu \in\{0,1,2,3\}$.

Let $\mu=0$. Since the graph $\Gamma_{\varphi_{n, k}}$ should be drawn in the plane, it follows that \downarrow^{0} needs to be drawn the closest to the 0 -leg and that $\downarrow^{3}<\downarrow^{2}<\downarrow^{1}$ and no other arc from \mathscr{P}^{0} is between arcs \downarrow^{v} for $v \in\{1,2,3\}$ since $\varphi_{n, k}\left(a_{n+1}^{v}\right)=t_{0}^{*}$ by (O-6), see Figure 4, case (i). Furthermore the arc \downarrow^{1} obviously needs to be drawn the furthest away from A_{i}^{0} among all the elements from \mathscr{P}^{0}. Thus we only need to determine the ordering among the arcs $\downarrow^{0}<\uparrow^{0}, \uparrow^{1}, \uparrow^{2}, \uparrow^{3}<\downarrow^{3}$.

Observation 4.5. Let l be a positive integer. Suppose that $\left(0, z_{0}\right),\left(0, z_{1}\right), \ldots,\left(0, z_{l}\right) \in[0,1] \times$ $[0,1] \subset \mathbb{R}^{2}$ is a sequence of points so that $0=z_{0}<z_{1}<\cdots<z_{l}=1$ and $\left(1, z_{0}^{\prime}\right), \ldots,\left(1, z_{l}^{\prime}\right) \in$ $[0,1] \times[0,1]$ and let $Z_{0}, Z_{1}, \ldots, Z_{l}$ be arcs in $[0,1] \times[0,1]$ such that the endpoints of Z_{j} are $\left(0, z_{j}\right)$ and $\left(1, z_{j}^{\prime}\right)$ for every $j \in\{0,1, \ldots, l\}$. If arcs Z_{j} are mutually disjoint, then $z_{0}^{\prime}<z_{1}^{\prime}<$ $\cdots<z_{l}^{\prime}$.

Applying Observation 4.5 for Z_{v} being proper subarcs of $\downarrow^{v} \cup \uparrow^{v}$ for every $v \in\{0,1,2,3\}$ with a planar homeomorphism on $[0,1] \times[0,1]$ we obtain that $\downarrow^{0}<\uparrow^{0}<\uparrow^{1}<\uparrow^{2}<\uparrow^{3}<\downarrow^{3}$, which completely determines the ordering on arcs from \mathscr{P}^{0}.

Let $\mu=1$. Since the graph $\Gamma_{\varphi_{n, k}}$ should be drawn in the plane, it follows that \downarrow^{1} needs to be drawn the closest to the 1-leg and furthermore we have the order $\downarrow^{3}>\downarrow^{2}>\downarrow^{1}$ on these arcs. Moreover, no other arc from \mathscr{P}^{1} is between arcs $\downarrow^{3}, \downarrow^{2}$ and \downarrow^{1}, since $\varphi_{n, k}\left(a_{n+1}\right)=t_{0}^{*}$ by (O-6), see Figure 4, case (ii). Furthermore, again by (O-6) the arc \downarrow^{0} needs to be drawn the furthest away from the 1-leg among all the elements of \mathscr{P}^{1}. Thus we only need to determine the ordering on $\downarrow^{0}>\uparrow^{0}, \uparrow^{1}, \uparrow^{2}, \uparrow^{3}>\downarrow^{3}$. Applying Observation 4.5 again for Z_{v} being subarcs of $\downarrow^{v} \cup \uparrow^{v}$ for every $v \in\{0,1,2,3\}$ with a planar homeomorphism on $[0,1] \times[0,1]$ we obtain that $\downarrow^{0}<\uparrow^{0}<\uparrow^{1}<\uparrow^{2}<\uparrow^{3}<\downarrow^{3}$, see Figure 4, case (ii).

If we interchange in \widetilde{A}_{i} the 0-leg with the 3-leg and the 1-leg with the 2-leg (i.e. reflect \widetilde{A}_{i} over the vertical line of symmetry of $\left.\widetilde{A}_{i}\right)$ the graph $\Gamma_{\varphi_{n, k}}$ for n odd and for either $\mu=3$ or $\mu=2$ respectively can be drawn analogously as discussed above for either $\mu=0$ or
$\mu=1$ respectively. We have studied all the elements of the definition of map $\varphi_{n, k}$ for odd n and positive integer k. We conclude that the graph $\Gamma_{\varphi_{n, k}}$ can be drawn arbitrarily close in the plane to \widetilde{A}_{i}.

We continue with some observations that are going to be important later in the document.

Observation 4.6. $\varphi_{n, k}$ restricted to G_{n}^{v} is the identity on G_{n}^{v}. Additionally, G_{n}^{v} is a component of $\varphi_{n, k}{ }^{-1}\left(G_{n}^{v}\right)$.
Observation 4.7. Let L be an arc contained either in int $\left(\widehat{a_{0}^{v} a_{n}^{v}}\right)$ or in int $\left(\widehat{s_{j}^{v} b_{j}^{v}}\right)$ for some $j=1, \ldots, i$ and let K be a component of $\varphi_{n, k}{ }^{-1}(L)$. Then K is either L or an arc contained in int $\left(\widehat{m_{n}^{\lambda} a_{n+1}^{\lambda}}\right)$ for some $\lambda \in\{0,1,2,3\}$. In both cases $\varphi_{n, k}$ restricted to K is a homeomorphism of K onto L. (Notice that the case $K \neq L$ may occur only when $v=\mu$.)
Observation 4.8. Let $c^{v} \in G_{n}^{v} \backslash\left\{s_{0}^{v}\right\}$. Then the conclusion of the above observation is also true if $L=\widehat{c^{v} s_{0}^{v}}$ and K is a component of $\varphi_{n, k}^{-1}(L)$ such that $c^{v} \in \varphi_{n, k}(K)$.
4.2. Construction of the $\operatorname{map} \varphi_{n, k}$ for even n. Throughout this subsection v is an arbitrary element of $\{0,1,2,3\}, k$ is a positive integer, n is an even nonnegative integer and $i=\frac{n}{2}$. In the case of even $n, \varphi_{n, k}: \widetilde{A}_{i+1} \rightarrow \widetilde{A}_{i}$. Before we define this mapping, we need to introduce the following notation:

- Set, $\gamma_{\mathrm{e}}=\alpha\left\langle t_{0}^{*} \oplus\left(t_{1}^{*}, t_{2}^{*}, t_{0}^{*}\right)^{k}, \widehat{m_{n} a_{n+1}}, \widetilde{A}_{i}\right\rangle$.
- Let \underline{b}_{i+1}^{v} be a point in the interior of $\overline{s_{i+1}^{v} b_{i+1}^{v}}$.
- If $v \in\{1,3\}$, let \underline{s}_{i+1}^{v} be a point in the interior of $\overline{s_{i+1}^{v} \underline{b}_{i+1}^{v}}$.

In the remaining part of this subsection μ stands for an arbitrary element of $\{0,2\}$. (Thus, $\tau(\mu) \in\{1,3\}$.) We define a mapping $\varphi_{n, k}: \widetilde{A}_{i+1} \rightarrow \widetilde{A}_{i}$ in the following way.
(E-1) Let $\varphi_{n, k}\left(x^{v}\right)=x^{v}$ for each $x \in A_{i+1} \backslash\left(\widehat{s y_{0}} \cup \widehat{a_{n} t_{0}} \cup \widehat{s_{i+1} b_{i+1}}\right)$. (Since $x \in A_{i+1} \backslash$ $\widehat{s_{i+1} b_{i+1}}$, it follows $x \in A_{i}$ and $\varphi_{n, k}\left(x^{v}\right)=x^{v} \in \widetilde{A}_{i}$.)
(E-2) Let $\varphi_{n, k}\left(x^{v}\right)=q\left(\beta_{n}(x), v\right)$ if $x \in \widehat{a_{n} m_{n}}$.
(E-3) Let $\varphi_{n, k}\left(x^{v}\right)=\gamma_{\mathrm{e}}(x)$ if $x \in \widetilde{m_{n} a_{n+1}}$.
(E-4) Let $\varphi_{n, k}\left(x^{v}\right)=t_{0}^{*}$ for each $x \in \widehat{a_{n+1} t_{0}}$.
(E-5) Let $\left.\varphi_{n, k}\right|_{\overline{s^{v} y_{0}^{v}}}=\alpha\left\langle s^{v} \oplus\left(y_{1}^{v}, y_{2}^{v}, y_{0}^{v}\right)^{k-1}, \widehat{s^{v} y_{0}^{v}}, \widetilde{A}_{i}\right\rangle$.
(E-6) Let $\left.\varphi_{n, k}\right|_{s_{i+1}^{\mu} \underline{b}_{i+1}^{\mu}}=\alpha\left\langle Q_{1}, \overline{s_{i+1}^{\mu} \underline{b}_{i+1}^{\mu}}, \widetilde{A}_{i}\right\rangle$, where $Q_{1}=s_{i+1}^{\mu} \oplus \oplus_{j=i}^{1}\left(s_{j+1}^{\mu}, s_{j}^{\mu}, b_{j}^{\mu}, s_{j}^{\mu}\right) \oplus$ $\left(a_{0}^{\mu}, t_{0}^{*}, a_{0}^{\tau(\mu)}, s_{1}^{\tau(\mu)}\right) \oplus \oplus_{j=1}^{i}\left(s_{j}^{\tau(\mu)}, b_{j}^{\tau(\mu)}, s_{j}^{\tau(\mu)}, s_{j+1}^{\tau(\mu)}\right) \oplus y_{0}^{\tau(\mu)}$.
(E-7) Let $\left.\varphi_{n, k}\right|_{b_{i+1}^{\mu} b_{i+1}^{\mu}}=\alpha\left\langle Q_{2}, \underline{b_{i+1} b_{i+1}^{\mu}}, \widetilde{A}_{i}\right\rangle$, where $Q_{2}=y_{0}^{\tau(\mu)} \oplus\left(y_{1}^{\tau(\mu)}, y_{2}^{\tau(\mu)}, y_{0}^{\tau(\mu)}\right)^{k}$.
(E-8) Let $\left.\varphi_{n, k}\right|_{s_{i+1}^{\tau(\mu)} s_{i+1}^{\tau(\mu)}}=\alpha\left\langle V_{1}, \overline{s_{i+1}^{\tau(\mu)} s_{i+1}^{\tau(\mu)}}, \widetilde{A}_{i}\right\rangle$, where $V_{1}=s_{i+1}^{\tau(\mu)} \oplus\left(y_{1}^{\tau(\mu)}, y_{2}^{\tau(\mu)}, y_{0}^{\tau(\mu)}\right)^{k}$

$$
\oplus\left(y_{2}^{\tau(\mu)}, y_{1}^{\tau(\mu)}, y_{0}^{\tau(\mu)}\right)^{k}
$$

(E-9) Let $\left.\varphi_{n, k}\right|_{\underline{s}_{i+1}^{\tau(\mu)} \underline{b}_{i+1}^{\tau(\mu)}}=\alpha\left\langle V_{2}, \underline{s}_{i+1}^{\tau(\mu)} \underline{b}_{i+1}^{\tau(\mu)}, \widetilde{A}_{i}\right\rangle$, where $V_{2}=y_{0}^{\tau(\mu)} \oplus$ $\oplus_{j=i}^{1}\left(s_{j+1}^{\tau(\mu)}, s_{j}^{\tau(\mu)}, b_{j}^{\tau(\mu)}, s_{j}^{\tau(\mu)}\right) \oplus\left(a_{0}^{\tau(\mu)}, t_{0}^{*}, a_{0}^{\mu}, s_{1}^{\mu}\right) \oplus \oplus_{j=1}^{i}\left(s_{j}^{\mu}, b_{j}^{\mu}, s_{j}^{\mu}, s_{j+1}^{\mu}\right) \oplus y_{0}^{\mu}$.
(E-10) Let $\left.\varphi_{n, k}\right|_{\underline{b}_{i+1}^{\tau(\mu)} b_{i+1}^{\tau(\mu)}}=\alpha\left\langle V_{3}, \underline{b}_{i+1}^{\tau(\mu)} b_{i+1}^{\tau(\mu)}, \widetilde{A}_{i}\right\rangle$, where $V_{3}=y_{0}^{\mu} \oplus\left(y_{1}^{\mu}, y_{2}^{\mu}, y_{0}^{\mu}\right)^{k}$.
Observation 4.9. $\varphi_{n, k}$ is continuous also for even n.

Figure 5. Case (i): graph $\Gamma_{\varphi_{4,2}}$ (and thus $i=3$) for (E-1)-(E-5). Case (ii): graph $\Gamma_{\varphi_{n, k}}$ for $\mu=0$ (dashed lines) and $\tau(\mu)=0$ around the triod T^{*}.

In this subsection $\Gamma_{\varphi_{n, k}}$ refers to the graph of $\varphi_{n, k}: \widetilde{A}_{i+1} \rightarrow \widetilde{A}_{i}$. In the paragraphs to follow we explain the construction of the map $\varphi_{n, k}$ for even n and any positive integer k. We argue that the graph $\Gamma_{\varphi_{n, k}}$ can be drawn in the plane arbitrarily close to \widetilde{A}_{i} independently of k and n.

By (E-1), if $x \in A_{i+1} \backslash\left(\widehat{s y_{0}} \cup \widehat{a_{n} t_{0}} \cup \widetilde{s_{i+1} b_{i+1}}\right)$, then $\varphi_{n, k}\left(x^{v}\right)=x^{v} \in \widetilde{A}_{i}$ and thus graph $\Gamma_{\varphi_{n, k}}$ can be drawn arbitrarily close to \widetilde{A}_{i} in this case. By (E-2) arcs $\overline{a_{n}^{v} m_{n}^{v}}$ are with $\varphi_{n, k}$ stretched homeomorphically to $\widehat{a_{n}^{v} t^{*}}$ and thus the wrapping of $\left.\operatorname{arcs} \Gamma_{\varphi_{n, k}}\right|_{\overline{m_{n}^{v} a_{n+1}^{v}}}$ around T^{*} by (E-3) can start close to the point t_{0}^{*}. By (E-3) we draw $\operatorname{arcs} \Gamma_{\varphi_{n, k}} \mid \underset{m_{n}^{v} a_{n+1}^{v}}{ }$ wrapping counterclockwise k times around the triod T^{*} (see the dashed line on Figure 5, case (i) which represent simultaneous parallel wrapping of all four arcs $\left.\Gamma_{\varphi_{n, k}}\right|_{\overline{m_{n}^{v} a_{n+1}^{v}}}$ around T^{*}). Furthermore, by (E-5) we draw $\operatorname{arcs} \Gamma_{\varphi_{n, k}} \mid \overline{s^{v} y_{0}^{v}}$ wrapping around Y^{v} which creates a $(k-1)$-gap in the clockwise direction around Y^{v} for $v \in\{0,2\}$ and in the counterclockwise direction around Y^{v} for $v \in\{1,3\}$ for any positive integer k. By the observations made in this paragraph, the graph $\Gamma_{\varphi_{n, k}}$ after applying (E-1)-(E-5) looks as on Figure 5, case (i).

Observation 4.10. If $x \in A_{i+1} \backslash \widetilde{s_{i+1} b_{i+1}}$, it holds that $x^{v} \in \widetilde{A}_{i}$.
By 4.10, what remains to be discussed is the action of $\varphi_{n, k}$ on the ($i+1$)-stickers of v-legs $\overline{s_{i+1}^{v} b_{i+1}^{v}}$ for $v \in\{0,1,2,3\}$. Note that for every $x^{v} \in s_{i+1}^{v} b_{i+1}^{v}$ point $\varphi_{n, k}\left(x^{v}\right) \in A_{i}^{v}$ or $\varphi_{n, k}\left(x^{v}\right) \in A_{i}^{\tau(v)}$. Therefore, for discussing (E-6)-(E-10) it is sufficient to restrict on the case $\mu=0$ and $\tau(\mu)=1$ since the case for $\mu=2$ and $\tau(\mu)=3$ follows analogously. We refer to $\Gamma_{\varphi_{n, k}}| |_{s_{i+1}^{0} b_{i+1}^{0}}$ by a simple bridge and to $\left.\Gamma_{\varphi_{n, k}}\right|_{s_{i+1}^{1} b_{i+1}^{1}}$ by a complicated bridge. The simple bridge starts in the point s_{i+1}^{0}, stretches close to a_{0}^{0}, and passes around the j-stickers of 0 -leg, for $j=i, \ldots, 1$ consecutively (see Figure 6, case (i)). Then the bridge stretches to t_{0}^{*} (see Figure 5, case (ii)) and stretches down the 1-leg close to the point a_{0}^{1} and then passes around j-stickers of the 0 -leg, for $j=1, \ldots, i$ consecutively, see Figure 6 , case (ii). We have already observed that there exists a $(k-1)$-gap around Y^{1}. Up to now we were describing the definition of the simple bridge by (E-6). Then, by (E-7) the simple bridge starts to wrap in the counterclockwise direction around Y^{1} above the arc $\left.\Gamma_{\varphi_{n, k}}\right|_{s^{1} y_{0}^{1}}$ and is drawn to wrap k times around Y^{1} and ends approaching the point y_{0}^{1}, which is possible since there is a $(k-1)$-gap around Y^{1}, see Figure 6, case (ii).

Figure 6. The graph $\Gamma_{\varphi_{4,2}}$ around triods Y^{0} and Y^{1}. The dashed lines are parts of $\left.\Gamma_{\varphi_{4,2}}\right|_{A_{2}^{0}}$.

Note that once the simple bridge is drawn in the plane as we described, we can not symmetrically reflect the construction of the simple bridge on the bridge starting from the point s_{i+1}^{1}, since such bridge would enter the dead end bounded by the simple bridge and the arc $\left.\Gamma_{\varphi_{n, k}}\right|_{s_{i+1}^{0} s_{i+1}^{1}}$, where $\overline{s_{i+1}^{0} s_{i+1}^{1} \subset \widetilde{A}_{i+1} \text {. Thus, such bridge could not be }{ }^{\text {. }} \text {. }}$ drawn in the plane to wrap around Y^{0} as the definition (E-10) requires.
Now we explain the construction of the complicated bridge. By (E-8) the complicated bridge starting from s_{i+1}^{1} first wraps in the counterclockwise direction around Y^{1} above the $\left.\operatorname{arc} \Gamma_{\varphi_{n, k}}\right|_{s^{1} y_{0}^{1}}$. Since there is a $(k-1)$-gap around Y^{1} the complicated bridge can be drawn to wrap all together k times around Y^{1} and ends wrapping close to the point y_{0}^{1} (as required by (E-8), see Figure 6, case (ii)). Then (still by (E-8)), the complicated bridge unwraps around Y^{1} in the clockwise direction k-times and exits the $(k-1)$-gap on the opposite side of the simple bridge as it started, again see Figure 6, case (ii). By (E-9) the bridge passes around j-stickers of 1-leg, for $j=i, \ldots, 1$ consecutively, approaches first a_{0}^{1}, then t_{0}^{*} and stretches down the $0-l e g$ where it passes around all the j-stickers of 0 leg, for $j=1, \ldots, i$ consecutively. Since there is a ($k-1$)-gap around Y^{0} the complicated bridge can be drawn to wrap k times around Y^{0} as given in the definition (E-10) and ends approaching the point y_{0}^{0}, see Figure 6, case (i).

We have commented all the elements of the map $\varphi_{n, k}$ for an even n and positive integer k and we conclude that graph $\Gamma_{\varphi_{n, k}}$ can be drawn in the plane arbitrarily close to \widetilde{A}_{i}.

We continue with some observations that are going to be important later in this document.

Recall that $G_{n} \subset A_{i}$ denotes the set $\widehat{a a_{n}} \cup \widehat{a_{0} s_{0}}$.
Observation 4.11. The map $\varphi_{n, k}$ restricted to G_{n}^{v} is the identity on G_{n}^{v}. Additionally, G_{n}^{v} is a component of $\varphi_{n, k}^{-1}\left(G_{n}^{v}\right)$.

Observation 4.12. Let L be an arc contained either in int $\left(\widehat{a_{0}^{v} a_{n}^{v}}\right)$ or in int $\left(\widehat{s_{j}^{v} b_{j}^{v}}\right)$ for some $j=1 \ldots, i$, and let K be a component of $\varphi_{n, k}^{-1}(L)$. Then K is either L or an arc contained in int $\left(\overline{s_{i+1}^{\lambda} b_{i+1}^{\lambda}}\right)$ where λ is either v or $\tau(v)$. In both cases $\varphi_{n, k}$ restricted to K is a homeomorphism of K onto L.

Observation 4.13. Let $c^{v} \in G_{n}^{v} \backslash\left\{s_{0}^{v}\right\}$. Then the conclusion of the above observation is also true if $L=\widehat{c^{v} s_{0}^{v}}$ and K is a component of $\varphi_{n, k^{-1}}(L)$ such that $c^{v} \in \varphi_{n, k}(K)$.
Observation 4.14. $\varphi_{n, k}^{-1}\left(\widehat{a^{v} a_{0}^{v}} \backslash\left\{a_{0}^{v}\right\}\right)=\widehat{a^{v} a_{0}^{v}} \backslash\left\{a_{0}^{v}\right\}$.
Observation 4.15. If $\mu \in\{0,2\}$ then the following properties are true.
(1) $\left.\varphi_{n, k}\right|_{s_{i+1}^{\mu} \underline{b_{i+1}^{\mu}}}$ does not depend on the value of k.
(2) $\varphi_{n, k}\left(\underline{b}_{i+1}^{\mu} b_{i+1}^{\mu}\right)=Y^{\tau(\mu)}$.
(3) $\varphi_{n, k}\left(\overline{s_{i+1}^{\tau(\mu)} \underline{s}_{i+1}^{\tau(\mu)}}\right)=Y^{\tau(\mu)} \cup \overline{\left.y_{0}^{\tau(\mu)} s_{i+1}^{\tau(} \mu\right)}$.
(4) $\left.\varphi_{n, k}\right|_{\underline{s}_{i+1}^{\tau(\mu)} b_{i+1}^{\tau(\mu)}}$ does not depend on the value of k.
(5) $\varphi_{n, k}\left(\underline{b}_{i+1}^{\tau(\mu)} b_{i+1}^{\tau(\mu)}\right)=Y^{\mu}$.
4.3. Preliminary definition of X. In this section we give a preliminary definition of our example X in terms of an arbitrary sequence of positive integers $\Sigma=\left(k_{0}, k_{1}, \ldots\right)$. We use this definition to prove basic properties of X. For instance, we show that X can be embedded into the plane for all choices of Σ. Later, we will select by induction a specific sequence Σ that will allow us to prove that X admits a simple canal for every embedding into \mathbb{R}^{2}.

For each nonnegative integer n, set $i=\lceil n / 2\rceil, X_{n}=\widetilde{A}_{i}$ and $f_{n}=\varphi_{n, k_{n}}$. Define X to be $\lim _{\leftrightarrows}\left\{X_{n}, f_{n}\right\}_{n=0}^{\infty}$.

$$
\begin{align*}
& X_{0} \stackrel{f_{0}}{\longleftarrow} X_{1} \stackrel{f_{1}}{\leftarrow} X_{2} \stackrel{f_{2}}{\longleftarrow} X_{3} \stackrel{f_{3}}{\leftrightarrows} X_{4} \stackrel{f_{4}}{\leftrightarrows} X_{5} \stackrel{f_{5}}{\leftrightarrows} X_{6} \stackrel{f_{6}}{\leftrightarrows} \cdots \tag{*}
\end{align*}
$$

For all integers j and l such that $l>j \geq 0$ define $f_{j l}: X_{l} \rightarrow X_{j}$ as $f_{j l}=f_{j} \circ f_{j+1} \circ \cdots \circ$ f_{l-1}. Additionally, define $f_{j j}$ to be the identity on X_{j}. Let π_{j} denote the projection of X onto X_{j}.

Observation 4.16. $X_{n} \subset X_{n+1}$ for each nonnegative integer n.
We may assume that $\bigcup_{n=0}^{\infty} X_{n}$ is contained in the plane such that the diameter of $\cup_{n=0}^{\infty} X_{n}$ is ≤ 1. Let d denote the standard Euclidean metric in the plane. Let ρ_{n} denote d restricted to X_{n}. Let ρ denote the standard product metric on X defined by $\rho\left(x^{\prime}, x^{\prime \prime}\right)=$ $\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \rho\left(x_{n}^{\prime}, x_{n}^{\prime \prime}\right)$ where $x^{\prime}=\left(x_{0}^{\prime}, x_{1}^{\prime}, \ldots\right)$ and $x^{\prime \prime}=\left(x_{0}^{\prime \prime}, x_{1}^{\prime \prime}, \ldots\right)$ are arbitrary points in X.

Proposition 4.17. X_{n} is a tree for each nonnegative integer n. Thus, X is a tree-like continuит.

In the rest of this section we argue that continuum X can be embedded in the plane. For a planar set Z we from now onwards denote by $\operatorname{cl}(Z)$ the closure, by $\operatorname{bd}(Z)$ the boundary and by $\operatorname{int}(Z)$ the interior of Z in the plane. If we write int $\left(\widetilde{c^{\prime} c^{\prime \prime}}\right)$ for $\widehat{c^{\prime} c^{\prime \prime}}$ being an arc, recall that we mean the open arc $\widehat{c^{\prime} c^{\prime \prime}} \backslash\left\{c^{\prime}, c^{\prime \prime}\right\}$, since we do not specify in which space the $\operatorname{arc} \widetilde{c^{\prime} c^{\prime \prime}}$ lies. It is going to be clear from the context which topology we mean when we use the notation for interior. Now say that Z is a planar tree and $\epsilon>0$. The thickened tree Z^{ϵ} is the closure of the ϵ-neighbourhood of the tree Z. A map
is a near homeomorphism, if it is a uniform limit of homeomorphisms. Recall that we observed in Subsection 4.1 and 4.2 that for every nonnegative integer n the graph $\Gamma_{f_{n}}$ of the map $f_{n}: X_{n+1} \rightarrow X_{n}$ can be drawn in the plane arbitrarily close to X_{n}. That is equivalent to saying that $\Gamma_{f_{n}}$ can be drawn in X_{n}^{ϵ} (and thus also in $\Gamma_{f_{n-1}}^{\epsilon}$) for an arbitrarily small $\epsilon>0$. Therefore, for every $\epsilon>0$ there exists $\epsilon^{\prime}>0$ such that $\Gamma_{f_{n}}^{\epsilon^{\prime}} \subset \Gamma_{f_{n-1}}^{\epsilon}$ for every positive n. Let $\zeta_{\epsilon^{\prime}}^{\epsilon}: \Gamma_{f_{n}}^{\epsilon^{\prime}} \rightarrow \Gamma_{f_{n-1}}^{\epsilon}$ be an embedding of $\Gamma_{f_{n}}^{\epsilon^{\prime}}$ into $\Gamma_{f_{n-1}}^{\epsilon}$. Fix a sequence $\epsilon_{n} \rightarrow 0$ so that $\Gamma_{f_{n}}^{\epsilon_{n}} \subset \Gamma_{f_{n-1}}^{\epsilon_{n-1}}$ as $n \rightarrow \infty$. Let us observe the inverse limit sequence $\lim _{\longleftarrow}\left\{\Gamma_{f_{n}}^{\epsilon_{n}}, \zeta_{\epsilon^{n}}^{n-1}\right\}_{n=0}^{\infty}$. Since $\Gamma_{f_{n}}$ is drawn (point-wise) arbitrarily close to X_{n} and $\epsilon_{n} \rightarrow 0$, the conditions of the Anderson-Choquet embedding theorem (Theorem 1 from [1]) are satisfied and thus $\lim _{\leftrightarrows}\left\{\Gamma_{f_{n}}^{\epsilon_{n}}, \zeta_{\epsilon^{n}}^{\epsilon^{n-1}}\right\}_{n=0}^{\infty}$ is homeomorphic to $\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\cup_{j>n} \Gamma_{j}^{\epsilon_{j}}\right)$. Furthermore, $\bigcap_{n=0}^{\infty} \mathrm{cl}\left(\cup_{j>n} \Gamma_{j}^{\epsilon_{j}}\right)=\bigcap_{n=0}^{\infty} \zeta_{\epsilon^{n}}^{\epsilon^{n-1}} \circ \Gamma_{n}^{\epsilon_{n}}$ which is a nested intersection of planar continua and thus a planar continuum. Moreover, since there exists a near homeomorphism from space $\zeta_{\epsilon^{n}}^{n-1}\left(\Gamma_{f_{n}}^{\epsilon_{n}}\right)$ to the space $f_{n}\left(X_{n}\right)$ for every positive n, it follows by Theorem 3 from [7], that $\lim _{\leftrightarrows}\left\{\Gamma_{f_{n}}^{\varepsilon_{n}}, \zeta_{\epsilon^{n}}^{\epsilon^{n-1}}\right\}_{n=0}^{\infty}$ is homeomorphic to $\lim _{\leftrightarrows}\left\{X_{n}, f_{n}\right\}_{n=0}^{\infty}$ and thus planar.

5. Auxiliary observations

In this section we state some propositions and observations which are going to be important later in the document when we prove that the rays R^{v} are dense in X and have a free side.

The following observation is a simple consequence of 4.6 and 4.11.
Observation 5.1. Suppose that n is a nonnegative integer and $v \in\{0,1,2,3\}$. Then f_{n} restricted to G_{n}^{v} is the identity on G_{n}^{v}. Additionally, G_{n}^{v} is a component of $f_{n}^{-1}\left(G_{n}^{v}\right)$.

Using the above observation and the inclusion $G_{j}^{v} \subset G_{j+1}^{v}$ repeatedly, we infer the following observation.

Observation 5.2. Suppose $v \in\{0,1,2,3\}$, and n and l are integers such that $0 \leq n \leq l$. Then $f_{n l}$ restricted to G_{n}^{v} is the identity on G_{n}^{v}. Additionally, G_{n}^{v} is a component of $f_{n l}{ }^{-1}\left(G_{n}^{v}\right)$.

For each nonnegative integer n and each $v \in\{0,1,2,3\}$, let $S_{n}^{v} \subset X_{n}$ be defined by $S_{0}^{v}=\widehat{a_{0}^{v} y_{0}^{v}} \cup Y^{v}$ and $S_{n}^{v}=S_{0}^{v} \cup Y^{v} \cup \bigcup_{j=1}^{\lceil n / 2\rceil} \widehat{s_{j}^{v} b_{j}^{v}}$ if $n>0$. Set $M_{n}^{v}=\widehat{a^{v} t_{0}^{*}} \cup S_{n}^{v}$.

Observation 5.3. $X_{l}=T^{*} \cup \bigcup_{v=0}^{3} M_{l}^{v}$ for all integers $l \geq 0$.
Observation 5.4. $M_{l}^{v} \subset f_{l}\left(M_{l+1}^{v}\right)$ for all integers $l \geq 0$ and $v \in\{0,1,2,3\}$.
Observation 5.5. $T^{*} \subset f_{l}\left(T^{*}\right)$ for all integers $l \geq 0$.
Observation 5.6. $T^{*} \subset f_{l}\left(\widehat{m_{l}^{v} a_{l+1}^{v}}\right)$ for all even integers $l \geq 0$ and $v \in\{0,1,2,3\}$.
Observation 5.7. $M_{l}^{\mu} \subset f_{l}\left(\widehat{m_{l}^{v} a_{l+1}^{v}}\right)$ where $l>0$ is odd, $\mu=\bmod ((l-1) / 2,4)$ and $v \in$ $\{0,1,2,3\}$.

Proposition 5.8. Suppose n is a nonnegative integer, $j \geq n+7$ is an even integer and $v \in\{0,1,2,3\}$. Then $f_{n j}\left(\widehat{m_{j-1}^{v} a_{j}^{v}}\right)=X_{n}$.

Proof. Let $\mu_{0}=\bmod ((l-2) / 2,4), \mu_{1}=\bmod ((l-4) / 2,4), \mu_{2}=\bmod ((l-6) / 2,4)$ and $\mu_{3}=\bmod ((l-8) / 2,4)$ for some $l \geq 8$. Observe that $\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}\right\}=\{0,1,2,3\}$. It follows from 5.7 that $M_{j-1}^{\mu_{0}} \subset f_{j-1}\left(\overline{m_{j-1}^{v} a_{j}^{v}}\right)$. Using 5.4 we infer

$$
\begin{equation*}
M_{l}^{\mu_{0}} \subset f_{l j}\left(\overline{m_{j-1}^{v} a_{j}^{v}}\right) \text { for } l \leq j-1 \tag{0}
\end{equation*}
$$

Since $T^{*} \subset f_{j-2}\left(M_{l}^{\mu_{0}}\right)$ by 5.6, it follows from 5.5 that

$$
\begin{equation*}
T^{*} \subset f_{l j}\left(\overline{m_{j-1}^{v} a_{j}^{v}}\right) \text { for } l \leq j-2 . \tag{T}
\end{equation*}
$$

It follows from 5.7 that $M_{j-3}^{\mu_{1}} \subset f_{j-3}\left(M_{j-2}^{\mu_{0}}\right)$. Using again 5.4 we infer

$$
\begin{equation*}
M_{l}^{\mu_{1}} \subset f_{l j}\left(\widehat{m_{j-1}^{v} a_{j}^{v}}\right) \text { for } l \leq j-3 \tag{1}
\end{equation*}
$$

We infer the following two properties in a similar way.

$$
\begin{equation*}
M_{l}^{\mu_{2}} \subset f_{l j}\left(\overline{m_{j-1}^{v} a_{j}^{v}}\right) \text { for } l \leq j-5, \text { and } \tag{2}
\end{equation*}
$$

$\left(\mu_{3}\right)$

$$
M_{l}^{\mu_{3}} \subset f_{l j}\left(\overline{m_{j-1}^{v} a_{j}^{v}}\right) \text { for } l \leq j-7
$$

We now complete the proof of the proposition by combining $\left(\mu_{0}\right),(T),\left(\mu_{1}\right),\left(\mu_{2}\right),\left(\mu_{3}\right)$, and 5.3.

Proposition 5.9. Let n be a nonnegative integer, $v \in\{0,1,2,3\}$ and let $x \in X$ be such that $\pi_{n}(x) \in G_{n}^{v} \backslash\left\{s_{0}^{v}\right\}$. For each $l \geq n$ let K_{l} be the component of $f_{n l}^{-1}\left(\widetilde{\pi_{n}(x) s_{0}^{v}}\right)$ containing $\pi_{l}(x)$. Then,
(1) K_{l} is either $\overline{\pi_{n}(x) s_{0}^{v}}$, or an arc contained in int $\left(\overline{a_{0}^{\lambda} a_{l}^{\lambda}}\right)$ for some $\lambda \in\{0,1,2,3\}$, or an arc contained in $\operatorname{int}\left(\widehat{s_{j}^{\lambda} b_{j}^{\lambda}}\right)$ for some $\lambda \in\{0,1,2,3\}$ and $j \leq\left\lceil\frac{l}{2}\right\rceil$.
(2) $\left.f_{l-1}\right|_{K_{l}}$ is a homeomorphism onto K_{l-1} for each $l>n$.

Proof. Observe that the proposition is trivial for $l=n$. Assume that the proposition is true for some $l \geq n$. To complete the proof it is enough to show that the proposition will be also true if l is replaced by $l+1$.

Since $f_{l} \circ \pi_{l+1}(x)=\pi_{l}(x) \in K_{l}$, it follows that $\pi_{l+1}(x) \in f_{l}^{-1}\left(K_{l}\right)$. Denote by J the component of $f_{l}^{-1}\left(K_{l}\right)$ containing $\pi_{l+1}(x)$. We will prove that $J=K_{l+1}$. Since $f_{n, l+1}(J)=$ $f_{n l} \circ f_{l}(J) \subset f_{n l}\left(K_{l}\right) \subset \overline{\pi_{n}(x) s_{0}^{v}}$, it follows that $J \subset K_{l+1}$. On the other hand, $\pi_{l}(x) \in$ $f_{l}\left(K_{l+1}\right) \subset K_{l}$ and $\pi_{l+1}(x) \in K_{l+1}$, then $K_{l+1} \subset J$. Consequently $J=K_{l+1}$.

Using the inductive assumption, we may consider the following three cases.
(a) $K_{l}=\overline{\pi_{n}(x) s_{0}^{v}}$,
(b) K_{l} is an arc contained contained either in int $\left(\overline{a_{0}^{\lambda} a_{l}^{\lambda}}\right)$ or in $\operatorname{int}\left(\widehat{s_{j}^{\lambda} b_{j}^{\lambda}}\right)$ for some $\lambda \in$ $\{0,1,2,3\}$ and $j \leq\left\lceil\frac{l}{2}\right\rceil$.
To complete the proof, it is enough to show conditions (1) and (2) from the statement of proposition with l replaced by $l+1$. Namely, we need to show:
(1') $K_{l+1}=J$ is either $\overline{\pi_{n}(x) s_{0}^{v}}$, or an arc contained in int $\left(\widehat{a_{0}^{\lambda^{\prime}} a_{l+1}^{\lambda^{\prime}}}\right)$ for some $\lambda^{\prime} \in\{0,1,2,3\}$, or an arc contained in int $\left(\overline{s_{j}^{\lambda} b_{j}^{\lambda}}\right)$ for some $\lambda \in\{0,1,2,3\}$ and $j \leq\left\lceil\frac{l+1}{2}\right\rceil$.
(2') $\left.f_{l}\right|_{K_{l+1}}$ is a homeomorphism of $K_{l+1}=J$ onto K_{l}.

Recall that $f_{l}=\varphi_{l, k}$ where $k=k_{l}$ and $\varphi_{l, k}$ is described either in Subsection 4.1 if l is odd, or in Subsection 4.2 if l is even.

Case (a): $K_{l}=\widehat{\pi_{n}(x) s_{0}^{v}}$. In this case ($\left.1^{\prime}\right)$ and (2^{\prime}) follow from Observations 4.8 and 4.13 used with $n=l, c^{v}=\pi_{n}(x), L=\overline{\pi_{n}(x) s_{0}^{v}}$ and $K=K_{l+1}=J$.

Case (b): K_{l} is an arc contained contained either in int $\left(\overline{a_{0}^{\lambda} a_{l}^{\lambda}}\right)$ or in int $\left(\widehat{s_{j}^{\lambda} b_{j}^{\lambda}}\right)$. In this case (1^{\prime}) and (2^{\prime}) follow from Observations 4.7 and 4.12 used with $n=l, v=\lambda, L=K_{l}$ and $K=K_{l+1}=J$.

Corollary 5.10. Let n be a nonnegative integer, $v \in\{0,1,2,3\}$ and let $x \in X$ be such that $\pi_{n}(x) \in G_{n}^{v} \backslash\left\{s_{0}^{v}\right\}$. Then there exists an arc $K \subset X$ such that x is an endpoint of K and $\left.\pi_{n}\right|_{K}$ is a homeomorphism onto $\overline{\pi_{n}(x) s_{0}^{v}}$.

Proof. Let $K_{n}, K_{n+1}, K_{n+2}, \ldots$ be as in Proposition 5.9. Set $K_{j}=f_{j n}\left(K_{n}\right)$ for $j=0, \ldots, n-1$. Let $K=\lim _{\longleftrightarrow}\left\{K_{l}, f_{l} \mid K_{l}\right\}_{l=0}^{\infty}$. Observe that K is an arc with the required properties.

6. SETS F_{n} AND THE OPERATION [•]

This section will provide us with a set-up to work with specific subsets of the continuum X. Moreover, we will get some insight into the topological structure of X.

For all nonnegative integers n, let F_{n} denote the set of all points $z \in X_{n}$ with the property that $f_{l}(z)=z$ for all integers $l \geq n$.

The following observation is a simple consequence of (O-1) and (E-1).
Observation 6.1. Let $v \in\{0,1,2,3\}$ and let n be a positive integer. Then
(1) $\widehat{a^{v} a_{0}^{v}}, T^{*}, Y^{v}, \widehat{a_{0}^{v} s^{v}}$ and G_{0}^{v} are contained in F_{0},
(2) $\widehat{a^{v} a_{n}^{v}}, G_{n}^{v}$ and $\cup_{j=1}^{[n / 2]} \widehat{s_{j}^{v} b_{j}^{v}}$ are contained in F_{n}.

For each $z \in F_{n}$, let $[z]_{n}$ denote the point $\left(f_{0 n}(z), f_{1 n}(z), \ldots, f_{n-1 n}(z), z, z, \ldots\right) \in X$.
Observation 6.2. If n and l are integers such that $l \geq n$, and $z \in F_{n}$, then $z \in F_{l}$ and $[z]_{n}=[z]_{l}$.

For any $z \in \bigcup_{j=0}^{\infty} F_{j}$, set $[z]=[z]_{n}$ where n is any nonnegative integer such that $z \in F_{n}$. By the above observation, this definition does not depend on the choice on n.
Observation 6.3. For each $z \in F_{n}$, the definition of $[z]$ may depend on the choice of k_{0}, \ldots, k_{n-1}, but it does not depend of any choice of k_{n}, k_{n+1}, \ldots. Moreover, $[z] \in X$ regardless of how k_{n}, k_{n+1}, \ldots are defined as long as the sequence Σ used in the definition of X (see Subsection 4.3) has the beginning k_{0}, \ldots, k_{n-1}.

Observation 6.4. If $z \in F_{n}$, then $\pi_{l}([z])=z$ for all integers $l \geq n$.
For each set $Z \subset F_{n}$, let $[Z]$ denote the set $\{[z] \in X \mid z \in Z\}$.
Observation 6.5. If $Z \subset F_{n}$ then $\left.\pi_{l}\right|_{[Z]}$ is a homeomorphism onto $Z \subset X_{n} \subset X_{l}$ for all $l \geq n$. Hence, $[Z] \subset X$ homeomorphic to Z. In particular, $[Z]$ is an arc if Z is an arc. Also, [Z] is a simple triod if Z is is a simple triod.

Corollary 6.6. $\left[T^{*}\right]$ is a simple triod. Also, $\left[Y^{v}\right]$ is a simple triod for each $v \in\{0,1,2,3\}$.
The following proposition is a simple consequence of Observations 6.1, 6.3 and 6.5.
Proposition 6.7. Let $v \in\{0,1,2,3\}$ and let n be a nonnegative integer. Then the arc $\widehat{a^{v} a_{n}^{v}} \subset$ F_{n} and the arc $\left[\widehat{a^{v} a_{n}^{v}}\right] \subset X$ does not depend on k_{l} for any $l \geq n$.

Proposition 6.8. Let n be an even nonnegative integer and let $i=n / 2$. Then $\overline{s_{i+1}^{v} b_{i+1}^{v}} \subset$ F_{n+1} for each $v \in\{0,1,2,3\}$. Moreover, if $\mu \in\{0,2\}$ then
(1) $\left[\begin{array}{c}\bar{\mu} b_{i+1}^{\mu} \\ b_{i+1}\end{array}\right]=\left[\overline{s_{i+1}^{\mu} \underline{b}_{i+1}^{\mu}}\right] \cup\left[\underline{b_{i+1}^{\mu} b_{i+1}^{\mu}}\right]$,
(2) $\pi_{n}\left(\left[\underline{b}_{i+1}^{\mu} b_{i+1}^{\mu}\right]\right)=Y^{\tau(\mu)}$,
(3) $\left[\begin{array}{l}s_{i+1}^{\tau(\mu)} b_{i+1}^{\tau(\mu)}\end{array}\right]=\left[\overline{s_{i+1}^{\tau(\mu)} \underline{s}_{i+1}^{\tau(\mu)}}\right] \cup\left[\widehat{\underline{s}_{i+1}^{\tau(\mu)} \underline{b}_{i+1}^{\tau(\mu)}}\right] \cup\left[\underline{b}_{i+1}^{\tau(\mu) b_{i+1}^{\tau}}\right]$,
(4) $\pi_{n}\left(\left[s_{i+1}^{\tau(\mu)} \underline{s}_{i+1}^{\tau(\mu)}\right]\right)=Y^{\tau(\mu)} \cup \overline{\left.y_{0}^{\tau(\mu)} s_{i+1}^{\tau(} \mu\right)}$,
(5) $\pi_{n}\left(\left[\underline{b_{i+1}^{\tau(\mu)} b_{i+1}^{\tau(} \mu}\right]\right)=Y^{\mu}$, and
(6) the arcs $\left[\overline{s_{i+1}^{\mu} \underline{b}_{i+1}^{\mu}}\right]$ and $\left[\begin{array}{|c}\left.\overline{s_{i+1}^{\tau(\mu)} \underline{b}_{i+1}^{\tau(\mu}}\right)\end{array}\right]$ do not depend on k_{l} for any $l \geq n$.

Proof. $\overline{s_{i+1}^{v} b_{i+1}^{v}} \subset F_{n+1}$ by Observation 6.1, so the $\operatorname{arcs}\left[\overline{s_{i+1}^{\mu} b_{i+1}^{\mu}}\right]$ and $\left[s_{i+1}^{\tau(\mu) b_{i+1}^{\tau(\mu)}}\right]$ are well defined. Claims (1) and (3) follow from the choice of $\underline{b}_{i+1}^{\mu}, \underline{b}_{i+1}^{\tau(\mu)}$ and $\underline{s}_{i+1}^{\tau(\mu)}$ presented in the beginning of Subsection 4.2.

To prove Claim (2) notice that $\pi_{n+1}\left(\left[\underline{b}_{i+1}^{\mu} b_{i+1}^{\mu}\right]\right)=\underline{b}_{i+1}^{\bar{\mu} b_{i+1}^{\mu}}$ the Observation 6.4. Since $\pi_{n}=f_{n} \circ \pi_{n+1}$ and $f_{n}=\varphi_{n, k}$, Claim (2) follows now from Observation 4.15(2). Proofs of Claims (4) and (5) are essentially the same except that we use Observation 4.15 parts (3) and (5).

To complete the proof of the proposition notice that Claim (6) follows from Observation 6.3 and parts (1) and (4) of Observation 4.15.

Set

$$
\mathscr{L}_{i+1}=\left\{\left[\widehat{s_{i+1}^{0} \underline{b}_{i+1}^{0}}\right],\left[\widehat{\underline{s}_{i+1}^{1} \underline{b}_{i+1}^{1}}\right],\left[\widehat{s_{i+1}^{2} \underline{b}_{i+1}^{2}}\right],\left[\widehat{\underline{s}_{i+1}^{3} \underline{b}_{i+1}^{3}}\right]\right\} .
$$

The following corollary is a restatement of part (6) of Proposition 6.8.
Corollary 6.9. All elements of \mathscr{L}_{i+1} do not depend on k_{l} for any $l \geq n$.

7. Basic properties of rays R^{v} and spurs S^{v}

In this section we will first show that X contains four dense rays, each of which must have a free fully accessible side under every embedding into \mathbb{R}^{2}. At the end of the section we will observe that there are four spurs attached on a non-free side of four dense rays. The spurs are going to be important later in the document when we construct a simple dense canal in every planar embedding of X.

Since $\left[\widehat{a^{v} a_{0}^{v}}\right] \subset\left[\widehat{a^{v} a_{1}^{v}}\right] \subset\left[\widehat{a^{v} a_{2}^{v}}\right] \subset \ldots$ and each $\left[\widehat{a^{v} a_{l}^{v}}\right]$ is an arc, it follows that

$$
R^{v}=\bigcup_{l \geq 0}\left[\widehat{a^{v} a_{l}^{v}}\right] \text { is a ray in } X
$$

Proposition 7.1. R^{v} is dense in X for each $v \in\{0,1,2,3\}$.
Proof. To prove the proposition it is enough to show that $\pi_{n}\left(R^{v}\right)=X_{n}$ for each nonnegative integer n. Take an even integer $j \geq n+7$. Since $\overline{m_{j-1}^{v} a_{j}^{v}} \subset F_{j}$ by 6.1(2), it follows from 6.5 that $\pi_{j}\left(\left[\widehat{m_{j-1}^{v} a_{j}^{v}}\right]\right)=\widehat{m_{j-1}^{v} a_{j}^{v}}$. Since $f_{n j}\left(\widehat{m_{j-1}^{v} a_{j}^{v}}\right)=X_{n}$ by 5.8, $f_{n j} \circ \pi_{j}=\pi_{n}$ and $\left[\widetilde{m_{j-1}^{v} a_{j}^{v}}\right] \subset R^{v}$, we get that $\pi_{n}\left(R^{v}\right)=X_{n}$.

Proposition 7.2. Suppose n is a positive integer, $z \in \widehat{a_{n} a_{n+1}}$ and $\lambda, v \in\{0,1,2,3\}$. Then $f_{n-1} \circ f_{n}\left(z^{\lambda}\right)=f_{n-1} \circ f_{n}\left(z^{v}\right)$.

Proof. We will consider the following two cases: $z \in \widehat{a_{n} m_{n}}$ and $z \in \widehat{m_{n} a_{n+1}}$.
Case $z \in \widehat{a_{n} m_{n}}$. By using either (O-4) if n is odd, or (E-2) if n is even, we get the same result that $f_{n}\left(z^{\lambda}\right)=w^{\lambda}$ and $f_{n}\left(z^{v}\right)=w^{v}$ where $w=\beta_{n}(z)$. Since $\beta_{n}=\alpha\left\langle\left(a_{n}, t_{0}\right), \widehat{a_{n} m_{n}}, A_{0}\right\rangle$, the point w belongs to $\overline{a_{n} t_{0}}$. Now, by using either (O-6) for $n-1$ if $n-1$ is odd, or (E-4) for $n-1$ if $n-1$ is even, we get the same result that $f_{n-1}\left(w^{\lambda}\right)=t_{0}^{*}=f_{n-1}\left(z^{v}\right)$. So, the proposition is true in this case.
Case $z \in \overline{m_{n} a_{n+1}}$. If n is odd then $f_{n}\left(z^{\lambda}\right)=\gamma_{0}(z)=f_{n}\left(z^{v}\right)$ by (O-5). If n is even then $f_{n}\left(z^{\lambda}\right)=\gamma_{\mathrm{e}}(z)=f_{n}\left(z^{v}\right)$ by (E-3). So, $f_{n}\left(z^{\lambda}\right)=f_{n}\left(z^{v}\right)$ regardless whether n is odd or even. Consequently, the proposition is true.

Corollary 7.3. For each $v \in\{0,1,2,3\}$, let $\psi^{v}: \widehat{a t_{0}} \backslash\left\{t_{0}\right\} \rightarrow R^{v}$ be the function defined by $\psi^{v}(z)=\left[z^{v}\right]$. Then ψ^{v} is a continuous injection of $\widehat{a t_{0}} \backslash\left\{t_{0}\right\}$ onto R^{v}. Furthermore, if $\lambda, v \in\{0,1,2,3\}$ then $\lim \rho\left(\left[z^{\nu}\right],\left[z^{\lambda}\right]\right)=0$ as $z \in \widehat{a t_{0}} \backslash\left\{t_{0}\right\}$ converges to t_{0}.

Proposition 7.4. Let n be a nonnegative integer and let $v \in\{0,1,2,3\}$. Suppose $C \subset X$ is a connected set such that $C \cap\left[G_{n}^{v}\right] \neq \varnothing$ and $\pi_{n}(C) \subset G_{n}^{v}$. Then $C \subset\left[G_{n}^{v}\right]$.
Proof. Let $c \in G_{n}^{v}$ be such that $[c] \in C$. Let l be an arbitrary integer greater than n. The set $\pi_{l}(C)$ is connected since C is connected. Observe that G_{n}^{v} is a component of $f_{n l}{ }^{-1}\left(G_{n}^{v}\right)$ by 5.1. Since $\pi_{n}(C) \subset G_{n}^{v}$ and $\pi_{n}=f_{n l} \circ \pi_{l}$, the connected set $\pi_{l}(C)$ is contained in the component of $f_{n l}^{-1}\left(G_{n}^{v}\right)$ containing $\pi_{l}([c])=c$. Thus, $\pi_{l}(C) \subset G_{n}^{v}$ for all integers $l \geq n$. It follows that $C \subset\left[G_{n}^{v}\right]$.

Proposition 7.5. Let n be a nonnegative integer and let $v \in\{0,1,2,3\}$. Suppose L is an arc contained in X such that $L \cap\left[\widehat{a^{v} a_{n}^{v}} \backslash\left\{a_{n}^{v}\right\}\right]$ consists of a single point e which is an endpoint of L. Then $e=\left[a_{0}^{v}\right]$ and one of the arcs L and $\left[\widehat{a_{0}^{v} s_{0}^{v}}\right]$ must contain the other.
Proof. Let e^{\prime} denote the other endpoint of L. Suppose that $(L \backslash\{e\}) \cap\left[G_{n}^{v}\right]=\varnothing$. In that case, since $\pi_{n}(e)$ belongs to the interior of G_{n}^{v} in X_{n}, there is an $\operatorname{arc} C$ such that $e \in$ $C \subset L$ such that $\pi_{n}(C) \subset G_{n}^{v}$. Since $e \in\left[G_{n}^{v}\right]$ it follows by 7.4 that $C \subset\left[G_{n}^{v}\right]$, which is a contradiction. So, $L \cap\left[G_{n}^{v}\right]$ is nondegenerate. Since X is tree-like, $L \cap\left[G_{n}^{v}\right]$ is an arc contained in $\left[\widehat{a_{0}^{v} s_{0}^{v}}\right]$. It follows that $e=\left[a_{0}^{v}\right]$. Denote by u the other end of the arc $L \cap\left[G_{n}^{v}\right]$. If $u=e^{\prime}$, then $L \subset\left[\widehat{a_{0}^{v} s_{0}^{v}}\right]$ and the proposition would be true. So, we may assume that $u \neq e^{\prime}$. If $u=\left[s_{0}^{v}\right]$, then $\left[\overline{a_{0}^{v} s_{0}^{v}}\right] \subset L$ and again the proposition would be true. So, we may assume that $u \in \operatorname{int}\left(\left[\overline{a_{0}^{v} s_{0}^{v}}\right]\right)$. Since $\pi_{n}(u) \in \operatorname{int}\left(\widehat{a_{0}^{v} s_{0}^{v}}\right)$ and $\operatorname{int}\left(\widehat{a_{0}^{v} s_{0}^{v}}\right)$ is open in X_{n}, there is a point $z \in \operatorname{int}\left(\widehat{u e^{\prime}}\right)$ such that $\pi_{i}(\widetilde{u z}) \subset \widehat{a_{0}^{v} s_{0}^{v}} \subset G_{n}^{v}$. Since $u \in\left[G_{n}^{v}\right] \cap \widetilde{u z}$, it follows from 7.4 that $\overparen{u z} \subset\left[G_{n}^{v}\right]$. This last contradiction completes the proof of 7.5.

Proposition 7.6. Suppose \mathscr{B} is an open covering of the open interval $(-1,1)$ and let $v \in$ $(-1,1)$. Then there are sequences $u_{1}, u_{2}, u_{3}, \ldots$ and $\nu_{1}, v_{2}, v_{3}, \ldots$ such that
(1) $v_{1}=v>v_{2}>u_{1}>v_{3}>u_{2}>v_{4}>u_{3}>v_{5}>u_{4}>\ldots$,
(2) $\lim _{i \rightarrow \infty} u_{i}=\lim _{i \rightarrow \infty} v_{i}=-1$, and
(3) for each positive integer i there is $B_{i} \in \mathscr{B}$ such that $\left(u_{i}, v_{i}\right) \subset B_{i}$.

Lemma 7.7. Let $h: X \rightarrow \mathbb{R}^{2}$ be an embedding and let $v \in\{0,1,2,3\}$. Then, for each $z \in$ $R^{v} \backslash\left[a^{v}\right]$ there is a topological disk $D \subset \mathbb{R}^{2}$ such that $D \cap h(X)=h\left(\widehat{\left[a^{v}\right] z}\right)$.

Proof. Let $z \in R^{v} \backslash\left[a^{v}\right]$. There is a positive integer l such that $z \in\left[\widehat{a^{v} a_{l}^{v}} \backslash\left\{a_{l}^{v}\right\}\right]$. Let I_{1} denote the straight linear segment in \mathbb{R}^{2} joining $(-1,0)$ and $(1,0)$. For each real number r such that $0 \leq r \leq 1$, let

$$
H(r)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid-1+r \leq x_{1} \leq 1-r\right\} .
$$

Let g be a homeomorphism of \mathbb{R}^{2} onto itself such that

- $g \circ h\left(\left[a^{v}\right]\right)=(-1,0), g \circ h\left(\left[a_{0}^{v}\right]\right)=(0,0), g \circ h\left(\left[a_{l}^{v}\right]\right)=(1,0)$, and
- $g \circ h\left(\left[\widehat{a^{v} a_{l}^{v}}\right]\right)=I_{1}$.

Let \tilde{h} denote the composition $g \circ h$. We may assume without loss of generality that there exists $c \in \operatorname{int}\left(\widehat{a_{0}^{v} s_{0}^{v}}\right)$ such that $\tilde{h}\left(\left[\widehat{a_{0}^{v} c}\right]\right) \subset H(1 / 3)$ and $\tilde{h}\left(\left[\widehat{a_{0}^{v} c} \backslash\left\{\left[a_{0}^{v}\right]\right\}\right]\right)$ lies below I_{1}.

For each number r such that $-1 \leq r \leq 1$ and each positive ϵ, let $B(\epsilon, r)$ denote the set of all points $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ such that $r-\epsilon \leq x_{1} \leq r+\epsilon$ and $0 \leq x_{2} \leq \epsilon$.

Claim 7.8. For each r such that $-1<r<1$ there exists a positive number ϵ such that

$$
\left(B(\epsilon, r) \backslash I_{1}\right) \cap \tilde{h}(X)=\varnothing .
$$

Proof of 7.8. Take an arbitrary r such that $-1<r<1$. Let η be the minimum of $r+1$, $1-r$ and the distance between $\tilde{h}([c])$ and I_{1}. Clearly $0<\eta \leq 1$ and $(r, 0) \in H(\eta)$. There is a positive number δ such that for all $x^{\prime}, x^{\prime \prime} \in X$ the following implication holds:

$$
\begin{equation*}
\varrho\left(x^{\prime}, x^{\prime \prime}\right)<\delta \quad \Rightarrow \quad d\left(\tilde{h}\left(x^{\prime}\right), \tilde{h}\left(x^{\prime \prime}\right)\right)<\eta / 3 \tag{1}
\end{equation*}
$$

Let $n>l$ be such that for all $x^{\prime}, x^{\prime \prime} \in X$ the following implication is true:

$$
\begin{equation*}
\pi_{n}\left(x^{\prime}\right)=\pi_{n}\left(x^{\prime \prime}\right) \quad \Rightarrow \quad \varrho\left(x^{\prime}, x^{\prime \prime}\right)<\delta \tag{2}
\end{equation*}
$$

Let $U=\widehat{a^{v} a_{l}^{v}} \cup \widehat{a_{0}^{v} c} \backslash\left\{a^{v}, a_{l}^{v}, c\right\}$. Since $n>l, U$ is contained in X_{n}. Observe that U is open in X_{n}. Since $\tilde{h}^{-1}((r, 0)) \in \operatorname{int}\left(\left[\widehat{a^{v} a_{l}^{v}}\right]\right)$, it follows that

$$
\begin{equation*}
\pi_{n} \circ \tilde{h}^{-1}((r, 0)) \in \operatorname{int}\left(\widehat{a^{v} a_{l}^{v}}\right) \subset U \tag{3}
\end{equation*}
$$

Since $(r, 0) \in B(\epsilon, r), U$ is open in X_{n} and $\pi_{n} \circ \tilde{h}^{-1}$ is continuous on $\tilde{h}(X)$, it follows from (3) that there is a positive number $\epsilon<\eta / 3$ such that

$$
\begin{equation*}
\pi_{n} \circ \tilde{h}^{-1}(B(\epsilon, r) \cap \tilde{h}(X)) \subset U \tag{4}
\end{equation*}
$$

Observe that $B(\epsilon, r) \subset H(2 \eta / 3)$ because $(r, 0) \in H(\eta)$ and $\epsilon<\eta / 3$.
We will now prove that ϵ satisfies the claim. Suppose to the contrary that there is a point $x \in X$ such that $\tilde{h}(x) \in B(\epsilon, r) \backslash I_{1}$. It follows from (4) that $\pi_{n}(x) \in U$. Corollary 5.10 implies that there exists an $\operatorname{arc} K \subset X$ such that x is an endpoint of K and $\left.\pi_{n}\right|_{K}$ is a homeomorphism onto $\overline{\pi_{n}(x) s_{1}^{v}}$. There is a point $\hat{c} \in K$ such that $\pi_{n}(\hat{c})=c$. Let \hat{K} be the subarc of K with endpoints in x and \hat{c}. Observe that $\left.\pi_{n}\right|_{\hat{K}}$ is a homeomorphism onto $\widehat{\pi_{n}(x) c}$.

Since $\pi_{n}(x) \in U \subset \operatorname{cl}(U)=\widehat{a^{v} a_{l}^{v}} \cup \widehat{a_{0}^{v} c}$, the arc $\widehat{\pi_{n}(x) c}$ is contained in $\widehat{a^{v} a_{l}^{v}} \cup \widehat{a_{0}^{v} c}$. It follows that $\overline{\pi_{n}(x) c} \subset F_{n}$. Observe that $\overline{\pi_{n}(x) c} \subset \widehat{a_{0}^{v} c}$ if $\pi_{n}(x) \in \widehat{a_{0}^{v} c}$, and $\overline{\pi_{n}(x) c}=$ $\widehat{\pi_{n}(x) a_{0}^{v}} \cup \widehat{a_{0}^{v} c}$ if $\pi_{n}(x) \in \widehat{a^{v} a_{l}^{v}} \backslash\left\{a_{0}^{v}\right\}$. Consequently, we have the following two cases.
(C-1) Either $\pi_{n}(x) \in \widehat{a_{0}^{v} c}$ and $\tilde{h}\left(\left[\widehat{\pi_{n}(x) c}\right]\right) \subset \tilde{h}\left(\left[\widehat{a_{0}^{v} c}\right]\right)$, or
$(\mathrm{C}-2) \pi_{n}(x) \in \widehat{a^{v} a_{l}^{v}} \backslash\left\{a_{0}^{v}\right\}$ and $\tilde{h}\left(\left[\widehat{\pi_{n}(x) c}\right]\right)=\tilde{h}\left(\left[\widehat{\pi_{n}(x) a_{0}^{v}}\right]\right) \cup \tilde{h}\left(\left[\widehat{a_{0}^{v} c}\right]\right)$.

Let w be an arbitrary point in \hat{K}. Observe that $\pi_{n}(w)=\pi_{n}\left(\left[\pi_{n}(w)\right]\right)$. Using (2) we infer that $\varrho\left(w,\left[\pi_{n}(w)\right]\right)<\delta$. Now, using (1), we get the following result.

$$
\begin{equation*}
d\left(\tilde{h}(w), \tilde{h}\left(\left[\pi_{n}(w)\right]\right)\right)<\eta / 3 \quad \text { for all } w \in \hat{K} . \tag{5}
\end{equation*}
$$

In particular, $d\left(\tilde{h}(x), \tilde{h}\left(\left[\pi_{n}(x)\right]\right)\right)<\eta / 3$. Since $\tilde{h}(x) \in B(\epsilon, r) \subset H(2 \eta / 3), \tilde{h}\left(\left[\pi_{n}(x)\right]\right)$ must belong to $H(\eta / 3)$. In the case (C-2) the $\operatorname{arc} \tilde{h}\left(\left[\widehat{\pi_{n}(x) a_{0}^{v}}\right]\right)$ is contained in I_{1} and its endpoints $\tilde{h}\left(\left[\pi_{n}(x)\right]\right)$ and $\tilde{h}\left(\left[a_{0}^{v}\right]\right)=(0,0)$ are both contained in $H(\eta / 3)$. So, it that case, the $\operatorname{arc} \tilde{h}\left(\left[\widehat{\pi_{n}(x) a_{0}^{v}}\right]\right) \subset H(\eta / 3)$.

Observe that $\tilde{h}\left(\left[\widehat{a_{0}^{v} c}\right]\right) \subset H(\eta / 3)$ because $\tilde{h}\left(\left[\widehat{a_{0}^{v} c}\right]\right) \subset H(1 / 3)$ and $\eta \leq 1$. Therefore, $\tilde{h}\left(\left[\widehat{\pi_{n}(x) c}\right]\right) \subset H(\eta / 3)$ in both cases (C-1) and (C-2). Now, (5) implies that

$$
\begin{equation*}
\tilde{h}(\hat{K}) \subset H(0) \tag{6}
\end{equation*}
$$

Since $\pi_{n}(\hat{c})=c$, we may infer from (5) that $d(\tilde{h}(\hat{c}), \tilde{h}([c]))<\eta / 3$. Since $\tilde{h}([c])$ lies below I_{1} and the distance between $\tilde{h}([c])$ is at least η, the point $\tilde{h}(\hat{c})$ also lies below I_{1}. Since $\tilde{h}(x) \in B(\epsilon, r) \backslash I_{1}$ lies above I_{1}, (6) implies that $\tilde{h}(\hat{K}) \cap I_{1} \neq \varnothing$. Hence, $\hat{K} \cap\left[\overline{a^{v} a_{l}^{v}}\right] \neq \varnothing$. Let e be the first point in the arc \hat{K} oriented from x to \hat{c} such that $e \in\left[\widehat{a^{v} a_{l}^{v}}\right]$ and let L be the subarc of \hat{K} with endpoints x and e. This choice of L and e contradicts Proposition 7.5 since neither of L and $\left[\overline{a_{0}^{v} s_{0}^{v}}\right]$ contains the other. So, Claim 7.8 is true.

Let v be the first coordinate of $\tilde{h}(z)$. So, $\tilde{h}(z)=(v, 0)$. Let \mathscr{B} be the collection of all open intervals in the form $(r-\epsilon, r+\epsilon)$ where r and ϵ are real numbers such that $-1<r<1$ and $\epsilon>0$ and $\left(B(\epsilon, r) \backslash I_{1}\right) \cap \tilde{h}(X)=\varnothing$. It follows from the claim that \mathscr{B} is a covering of the interval ($-1,1$). Now, use Proposition 7.6 to get sequences $u_{1}, u_{2}, u_{3}, \ldots$ and $\nu_{1}, v_{2}, v_{3}, \ldots$ satisfying conditions (1)-(3) of the proposition, where condition (3) can be rephrased in the following way: for each nonnegative integer i there is $r_{i} \in(-1,1)$ and ϵ_{i} such that $r_{i}-\epsilon_{i} \leq u_{i}<v_{i} \leq r_{i}+\epsilon_{i}$ and $\left(B\left(\epsilon_{i}, r_{i}\right) \backslash I_{1}\right) \cap \tilde{h}(X)=\varnothing$. Denote by σ_{i} the minimum of $2^{-i}, \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i}$. Let P be the union of straight linear arcs joining the following sequence of consecutive points in \mathbb{R}^{2} :

$$
(\nu, 0)=\left(\nu_{1}, 0\right),\left(\nu_{1}, \sigma_{1}\right),\left(\nu_{2}, \sigma_{1}\right),\left(\nu_{2}, \sigma_{2}\right),\left(\nu_{3}, \sigma_{2}\right),\left(\nu_{3}, \sigma_{3}\right),\left(\nu_{4}, \sigma_{3}\right), \ldots
$$

Observe that $\mathrm{cl}(P)$ is an arc intersecting $\tilde{h}\left(\left[\widehat{a^{v} z}\right]\right) \subset I_{1}$ only at the common endpoints $\tilde{h}\left(\left[a^{v}\right]\right)$ and $\tilde{h}(z)$. Thus, $\operatorname{cl}(P) \cup \tilde{h}\left(\left[\widehat{a^{v} z}\right]\right)$ is a simple closed curve bounding a disk which we denote by \tilde{D}. By our construction, $\left(\tilde{D} \backslash I_{1}\right) \cap \tilde{h}(X)=\varnothing$. Finally, set $D=g^{-1}(\tilde{D})$ and observe that so defined D satisfies the conclusion of the lemma.

Recall that a point p in a subset K of the plane is accessible from the complement of K provided there is an $\operatorname{arc} L \subset \mathbb{R}^{2}$ such that $K \cap L=\{p\}$.
Proposition 7.9. Let $h: X \rightarrow \mathbb{R}^{2}$ be an embedding and $v \in\{0,1,2,3\}$. Then for every $z \in R^{v}$ the point $h(z) \in h\left(R^{v}\right)$ is accessible from the complement of $h(X)$.

Proof. Let $z \in R^{v} \backslash\left[a^{v}\right]$. By Lemma 7.7 there exists a topological disk $D \subset \mathbb{R}^{2}$ such that $D \cap h(X)=h\left(\widehat{\left[a^{v}\right] z}\right)$. Denote the $\operatorname{arc} A=\operatorname{bd}(D) \backslash \operatorname{int}\left(h\left(\widehat{\left[a^{v}\right] z}\right)\right) \subset \mathbb{R}^{2}$. Let $u \in \operatorname{int}(A)$. Let L_{0} be the subarc of A with endpoints u and $h\left(\left[a^{v}\right]\right)$. Clearly, $L_{0} \cap h(X)=\left\{h\left(\left[a^{v}\right]\right)\right\}$. Similarly, if L_{1} denotes the subarc of A with endpoints u and $h(z)$ then $L_{0} \cap h(X)=$ $\{h(z)\}$. It follows that both points $h\left(\left[a^{v}\right]\right)$ and $h(z)$ are accessible from the complement of $h(X)$.

Figure 7. E

Recall that $S_{0}^{v}=\widehat{a_{0}^{v} y_{0}^{v}} \cup Y^{v}$. Since $S_{0}^{v} \subset A_{0}$ and $A_{0} \subset A_{i}$ for all nonnegative integers $i, S_{0}^{v} \subset \widetilde{A}_{i}$ for all $v \in\{0,1,2,3\}$ and all nonnegative integers i. Consequently, $S_{0}^{v} \subset X_{n}$ for each nonnegative integer n. Using conditions (O-1) and (O-3) in case of odd n, and (E1) and (E-5) in case of n even, we observe that f_{n} maps S_{0}^{v} onto itself. By the spur S^{v} we understand the subcontinuum of X defined by

$$
S^{v}=\left\{x \in X \mid \pi_{n}(x) \in S_{0}^{v} \quad \text { for all nonnegative integer } n\right\} .
$$

Observation 7.10. The following properties are true.
(1) S^{v} is a continuum containing the simple triod $\left[Y^{v}\right]$.
(2) $S^{v} \backslash\left[Y^{v}\right]$ is a ray converging to $\left[Y^{v}\right]$.
(3) $S^{v} \cap R^{v}=\left[a_{0}^{v}\right]$
(4) $S^{v} \cap\left[T^{*}\right]=\varnothing$.
(5) The four spurs are mutually disjoint.

8. Arcs Winding around a simple triod

In this section we establish a language to describe winding of arcs from X around four simple triods $\left[Y^{v}\right]$ and $\left[T^{*}\right]$. This language will be used in the crux of proving of the existence of a simple dense canal in every planar embedding of X.

Throughout this section we use the following notation. If j is an integer then by $j_{(=3)}$, $j_{(+3)}$ and $j_{(-3)}$ we understand $\bmod (j, 3), \bmod (j+1,3)$ and $\bmod (j-1,3)$, respectively.

Let e be an arbitrary point in \mathbb{R}^{2}. Set $e_{0}=e+(1,0), e_{1}=e+(\cos (2 \pi / 3), \sin (2 \pi / 3))$ and $e_{2}=e+(\cos (4 \pi / 3), \sin (4 \pi / 3))$. For each $i \in\{0,1,2\}$, let I_{i} denote the straight linear segment in the plane joining e with e_{i}. Let H_{i} denote the half line with the endpoint e such that $I_{i} \subset H_{i}$. Set $J_{i}=H_{i} \backslash I_{i}, E=I_{0} \cup I_{1} \cup I_{2}$ and $K=\mathbb{R}^{2} \backslash E$. Observe that $J_{0} \cup J_{1} \cup J_{2}$ separates K into three components whose closures in K can be enumerated K_{0}, K_{1} and K_{2} so that $K_{0} \cap K_{1}=J_{1}, K_{1} \cap K_{2}=J_{2}$ and $K_{2} \cap K_{0}=J_{0}$, see Figure 7 .

Observation 8.1. $d\left(e_{i}, z\right)>1$ for every $i \in\{0,1,2\}$ and $z \in K_{i_{(+3)}}$.
Observation 8.2. For every $i \in\{0,1,2\}$, the boundary of $K_{i_{(+3)}}$ in K is equal to $J_{i_{(-3)}} \cup J_{i_{(+3)}}=$ $J_{0} \cup J_{1} \cup J_{2} \backslash J_{i}$.

Observation 8.3. Let $i, j \in\{0,1,2\}$ be such that $i \neq j$. Then $d(w, z)>1$ for all $w \in I_{i}$ and $z \in J_{j}$.

Observation 8.4. Let $i, j \in\{0,1,2\}$ be such that $i \neq j$. Then $d(w, z)>1$ for all $w \in J_{i}$ and $z \in J_{j}$.
Lemma 8.5. Let k be a positive integer, let $\widehat{c^{\prime} c^{\prime \prime}}$ be an oriented arc, and let $c_{0}=c^{\prime}, c_{1}, \ldots$, $c_{3 k-1}, c_{3 k}=c^{\prime \prime}$ be a strictly increasing sequence of points from $\widehat{c^{\prime} c^{\prime \prime}}$. Suppose that α : $\stackrel{c^{\prime} c^{\prime \prime}}{\rightarrow E}$ is such that
(a) $\alpha\left(c_{j}\right)=e_{j_{(=3)}}$ for each $j=0, \ldots, 3 k$, and
(b) $\left.\alpha\right|_{\bar{c}_{j c_{j+1}}}$ is a homeomorphism onto $\alpha\left({\overline{\left.c_{j}\right) \alpha\left(c_{j+1}\right.}}_{j}\right) \subset E$ for each $j=0, \ldots, 3 k-1$.

Denote by u_{j} the only point in $\widehat{c_{j} c_{j+1}}$ such that $\alpha\left(u_{j}\right)=e$. Finally, suppose $g: \widehat{c^{\prime} c^{\prime \prime}} \rightarrow K$ is a mapping such that $d(g(z), \alpha(z)) \leq 1$ for each $z \in \widehat{c^{\prime} c^{\prime \prime}}$. Then for each $j=0, \ldots, 3 k-1$
(1) $)_{j} g\left(u_{j}\right) \in \operatorname{int}\left(K_{j_{(=3)}}\right)$,
(2) ${ }_{j} g(z) \notin K_{j_{(+3)}}$ for all $z \in \widehat{c_{j} u_{j}}$, and
(3) $)_{j} g(z) \notin K_{j_{(-3)}}$ for all $z \in \overline{u_{j} c_{j+1}}$.

Remark 8.6. Observe that α defined by conditions (a) and (b) in the above lemma has the same properties as $\alpha\left\langle W, \widehat{c^{\prime} c^{\prime \prime}}, E\right\rangle$ defined in Definition 3.2 for $W=\left(e_{0}, e_{1}, e_{2}\right)^{k} \oplus e_{0}$.

Proof of 8.5. Let j be an arbitrary integer such that $0 \leq j<3 k$. Since $\alpha\left(c_{j}\right)=e_{j_{(=3)}}$ and $\bmod \left(j_{(=3)}+1,3\right)=j_{(+3)}$, it follows from Observation 8.1 used with $i=j_{(=3)}$, that $g\left(c_{j}\right) \notin$ $K_{j_{(+3)}}$. Since $\alpha\left(\widehat{c_{j} u_{j}}\right)=I_{j_{(=3)}}$, it follows from observations 8.2 and 8.3, both used with $i=j_{(=3)}$, that $g(z) \notin K_{j_{(+3)}}$ for all $z \in \widehat{c_{j} u_{j}}$. So, the condition (2) ${ }_{j}$ is true.

Since $\alpha\left(c_{j+1}\right)=e_{j_{(+3)}}$ and $\bmod \left(j_{(+3)}+1,3\right)=j_{(-3)}$, it follows from Observation 8.1 used with $i=j_{(+3)}$, that $g\left(c_{j+1}\right) \notin K_{j_{(-3)}}$. Since $\alpha\left(\widehat{c_{j+1} u_{j}}\right)=I_{j_{(+3)}}$, it follows from observations 8.2 and 8.3 , both used with $i=j_{(+3)}$, that $g(z) \notin K_{j_{(-3)}}$ for all $z \in \widehat{c_{j+1} u_{j}}$. So, the condition (3) ${ }_{j}$ is true.

Since u_{j} belongs to both $\widehat{c_{j} u_{j}}$ and $\widehat{c_{j+1} u_{j}}$, the condition (1) $)_{j}$ is a simple consequence of (2) j_{j} and (3) ${ }_{j}$. Hence, the lemma is true.

Let S^{1} denote the unit circle in \mathbb{R}^{2}. For any two not antipodal points $e^{\prime}, e^{\prime \prime} \in S^{1}$, let $\widetilde{e^{\prime} e^{\prime \prime}}$ denote the shorter of the two arcs contained in S^{1} with their endpoints e^{\prime} and $e^{\prime \prime}$. Let D denote the round disk in the plane with center e and radius 2. Observe that $K=\mathbb{R}^{2} \backslash E$ is homeomorphic to $S^{1} \times(0, \infty)$. Moreover, there exists a homeomorphism ω mapping $S^{1} \times(0, \infty)$ onto K such that $\omega\left(S^{1} \times(0,1]\right)=D \backslash E, \omega\left(\widehat{e_{0} e_{1}} \times(0, \infty)\right)=K_{0}$, $\omega\left(\widehat{e_{1} e_{2}} \times(0, \infty)\right)=K_{1}, \omega\left(\widehat{e_{2} e_{0}} \times(0, \infty)\right)=K_{2}$ and, for each $i=\{0,1,2\}$ and each sequence $s=\left(z_{j}\right)_{j=1}^{\infty}$ of points in K_{i}, s converges in \mathbb{R}^{2} if and only if the sequence $\left(\omega^{-1}\left(z_{j}\right)\right)_{j=1}^{\infty}$ converges in $S^{1} \times[0, \infty)$. Observe that $\omega\left(\left\{e_{i}\right\} \times(0, \infty)\right)=J_{i}$ for each $i=\{0,1,2\}$.

Let $\theta: \mathbb{R} \rightarrow S^{1}$ be defined by $(\cos (2 \pi z), \sin (2 \pi z))$ where $z \in \mathbb{R}$. Set $\widetilde{K}=\mathbb{R} \times(0, \infty)$, and let r_{1} and r_{2} denote the projections of \widetilde{K} onto \mathbb{R} and $(0, \infty)$, respectively. Let $p: \widetilde{K} \rightarrow K$ be the mapping defined by the formula $p(\tilde{z})=\omega\left(\theta \circ r_{1}(\tilde{z}), r_{2}(\tilde{z})\right)$ where $\tilde{z} \in \widetilde{K}$.

Observation 8.7. p is a covering projection. p is periodic (with period 1) in the following sense $p\left(x_{1}+1, x_{2}\right)=p\left(x_{1}, x_{2}\right)$ for all $x_{1} \in \mathbb{R}$ and $x_{2} \in(0, \infty)$.

Observation 8.8. ω restricted to $S^{1} \times\{1\}$ is a homeomorphism onto bd (D). p restricted to $\mathbb{R} \times\{1\}$ is a covering projection onto the simple closed curve $\operatorname{bd}(D)$.
Observation 8.9. Let $n \in \mathbb{Z}$ and let $\xi_{n}: \widetilde{K} \rightarrow \widetilde{K}$ be defined by $\xi_{n}(\tilde{z})=\left(r_{1}(\tilde{z})+n, r_{2}(\tilde{z})\right)$ where $\tilde{z} \in \widetilde{K}$. Then ξ_{n} is a well-defined homeomorphism of \widetilde{K} onto itself such that $p \circ$ $\xi_{n}=p$. Moreover, for all $\tilde{z}_{0}, \tilde{z}_{1} \in \widetilde{K}$ such that $p\left(\tilde{z}_{0}\right)=p\left(\tilde{z}_{1}\right)$ there exists exactly one $n \in \mathbb{Z}$ such that $\xi_{n}\left(\tilde{z}_{0}\right)=\tilde{z}_{1}$.

Recall that, for each g which is a continuous mapping of a space Z into K, a continuous mapping $\tilde{g}: Z \rightarrow \widetilde{K}$ is called a lifting of g if $p \circ \tilde{g}=g$. If Z is connected then any two liftings of g are the same if they agree on one point; see [9, 1.34]. Also recall that if Z is simply connected and locally path connected, $g: Z \rightarrow K$ is continuous, $z_{0} \in Z$ and $\tilde{z}_{0} \in \widetilde{K}$ are such that $p\left(\tilde{z}_{0}\right)=g\left(z_{0}\right)$, then there is a lifting $\tilde{g}: Z \rightarrow \widetilde{K}$ such that $\tilde{g}\left(z_{0}\right)=\tilde{z}_{0}$; see [9, 1.33]. If $Z \subset K$ then by a lifting of Z we understand a lifting of the identity on Z.

The following observation is a simple consequence of Observation 8.9.
Observation 8.10. Suppose Z is path connected, $g: Z \rightarrow K$ is continuous, and \tilde{g}_{0} and \tilde{g}_{1} are lifting of g. Then there exists exactly one $n \in \mathbb{Z}$ such that $\xi_{n} \circ \tilde{g}_{0}=\tilde{g}_{1}$.

Observation 8.11. Let \tilde{g} be a lifting of an $\operatorname{arc} L \subset K$. Then p restricted to $\tilde{g}(L)$ is a homeomorphism onto L. If $n \neq 0$ is an integer, then $\xi_{n} \circ \tilde{g}(L) \cap \tilde{g}(L)=\varnothing$.

For each $j \in \mathbb{Z}$ set $\widetilde{K}_{j}=[j / 3,(j+1) / 3] \times(0, \infty)$.
Observation 8.12. $\left\{\widetilde{K}_{j} \mid j \in \mathbb{Z}\right\}$ has the following properties:
(1) $\widetilde{K}=\cup_{j \in \mathbb{Z}} \widetilde{K}_{j}$,
(2) $\widetilde{K}_{j^{\prime}} \cap \widetilde{K}_{j^{\prime \prime}} \neq \varnothing$ if and only if $\left|j^{\prime}-j^{\prime \prime}\right| \leq 1$, and
(3) p restricted to \widetilde{K}_{j} is a homeomorphism of \widetilde{K}_{j} onto $K_{j_{(=3)}}$.

Proposition 8.13. Let $k, \widehat{c^{\prime} c^{\prime \prime}}, c_{0}, \ldots, c_{3 k}, \alpha, u_{0}, \ldots, u_{3 k-1}$ and g be as in Lemma 8.5. Let $\tilde{g}: \overline{c^{\prime} c^{\prime \prime}} \rightarrow \tilde{K}$ be a lifting of g, and let l be an integer such that $\tilde{g}\left(u_{0}\right) \in \widetilde{K}_{l}$. Then $l_{(=3)}=0$, and the following conditions are satisfied
(1) $)_{j} \tilde{g}\left(u_{j}\right) \in \operatorname{int}\left(\widetilde{K}_{l+j}\right)$ for each $j=0, \ldots, 3 k-1$, and
(2) $)_{j} \tilde{g}\left(\widehat{u_{j-1} u_{j}}\right) \subset\left(\widetilde{K}_{l+j-1} \cup \widetilde{K}_{l+j}\right) \backslash\left(\widetilde{K}_{l+j-2} \cup \widetilde{K}_{l+j+1}\right)$ for each $j=1, \ldots, 3 k-1$.

Additionally, $\tilde{g}\left(\widehat{c_{0} u_{0}}\right) \subset\left(\widetilde{K}_{l-1} \cup \widetilde{K}_{l}\right) \backslash\left(\widetilde{K}_{l-2} \cup \widetilde{K}_{l+1}\right)$ and $\tilde{g}\left(\widehat{u_{3 k-1} c_{3 k}}\right) \subset\left(\widetilde{K}_{l+3 k-1} \cup \widetilde{K}_{l+3 k}\right) \backslash$ $\left(\widetilde{K}_{l+3 k-2} \cup \widetilde{K}_{l+3 k+1}\right)$.

Proof. It follows from $8.5(1)_{0}$ that $l_{(=3)}=0$ and $\tilde{g}\left(u_{0}\right) \in \operatorname{int}\left(\widetilde{K}_{l}\right)$. So, the condition $(1)_{0}$ of the proposition is true. We will prove that the implication (1) $j_{j-1} \Rightarrow(2)_{j}$ and (1) $)_{j}$ is true for each $j=1, \ldots, 3 k-1$. For this purpose, suppose (1$)_{j-1}$ is true for some $j=1, \ldots, 3 k-1$. Since $(j-1)_{(-3)}=j_{(+3)}$, by combining 8.5(3) j_{j-1} with $8.5(2)_{j}$ we infer that $g\left(\widehat{u_{j-1} u_{j}}\right) \subset$ $\left(K_{j_{(-3)}} \cup K_{j_{(=3)}}\right) \backslash K_{j_{(+3)}}$. Since $l_{(=3)}=0, p$ restricted to each of the sets $\widetilde{K}_{l+j-2}, \widetilde{K}_{l+j-1}$, \widetilde{K}_{l+j} and \widetilde{K}_{l+j+1} is a homeomorphism of onto $K_{j_{(+3)}}, K_{j_{(-3)}}, K_{j_{(=3)}}$ and $K_{j_{(+3)}}$, respectively. Consequently, p restricted to $\left(\widetilde{K}_{l+j-1} \cup \widetilde{K}_{l+j}\right) \backslash\left(\widetilde{K}_{l+j-2} \cup \widetilde{K}_{l+j+1}\right)$ is a homeomorphism of onto $\left(K_{j_{(-3)}} \cup K_{j_{(=3)}}\right) \backslash K_{j_{(+3)}}$. Hence, (2) j_{j} is true because $\tilde{g}\left(u_{j-1}\right) \in \operatorname{int}\left(\widetilde{K}_{l+j-1}\right)$ by the assumed (1) $)_{j-1}$. That implies $\tilde{g}\left(u_{j}\right) \in\left(\widetilde{K}_{l+j-1} \cup \widetilde{K}_{l+j}\right) \backslash\left(\widetilde{K}_{l+j-2} \cup \widetilde{K}_{l+j+1}\right)$. Since $g\left(u_{j}\right) \in$ $\operatorname{int}\left(K_{j_{(=3)}}\right)$ by $8.5(1)_{j}$, we infer that $\tilde{g}\left(u_{j}\right) \in \operatorname{int}\left(\widetilde{K}_{l+j}\right)$. So, the proof of the implication $(1)_{j-1} \Rightarrow(2)_{j}$ and $(1)_{j}$ is complete, and conditions (2) j_{j} and (1) $)_{j}$ are true by induction. The proof of the remaining two additional conditions is similar to the above argument and it will be omitted.

Suppose g is a continuous mapping of an $\operatorname{arc} L$ into K, and \tilde{g} is a lifting of g. Set $\mu=$ $\left\lceil\min \left(r_{1} \circ \tilde{g}(L)\right)\right\rceil$ and $v=\left\lfloor\max \left(r_{1} \circ \tilde{g}(L)\right)\right\rfloor$. By Observation 8.10, the difference $v-\mu$ depends only on g and not on the choice of lifting \tilde{g}. So, we may set $\ell(g)=\max (v-\mu, 0)$. If $L \subset K$, by $\ell(L)$ we understand $\ell\left(\operatorname{id}_{L}\right)$.

The following proposition is a simple consequence of Observation 8.4.
Proposition 8.14. Let g be a mapping of an arc L into K. Then L contains a collection \mathscr{C} of $3 \ell(L)$ mutually disjoint arcs such that $\operatorname{diam}(g(C))>1$ for each $C \in \mathscr{C}$. In particular,
if $L \subset K$, then L contains a collection of $3 \ell(L)$ mutually disjoint arcs each of which has diameter greater than 1 .

Suppose again g is a continuous mapping of an $\operatorname{arc} L=\widehat{c^{\prime} c^{\prime \prime}}$ into K, \tilde{g} is a lifting of g, and $\mu=\left\lceil\min \left(r_{1} \circ \tilde{g}(L)\right)\right\rceil<v=\left\lfloor\max \left(r_{1} \circ \tilde{g}(L)\right)\right\rfloor$. We say that g wraps L counterclockwise around E if there is a collection $C_{\mu}, C_{\mu+1}, \ldots, C_{v}$ of mutually disjoint subarcs of L such that $c^{\prime} \in C_{\mu}, c^{\prime \prime} \in C_{v}$, and $\left(r_{1} \circ \tilde{g}\right)^{-1}(j) \subset C_{j}$ for all $j=\mu, \ldots, v$. We say that g wraps $\widetilde{c^{\prime} c^{\prime \prime}}$ clockwise around E if it wraps $\widetilde{c^{\prime \prime} c^{\prime}}$ counterclockwise. We say that g wraps L around E if it wraps either counterclockwise or clockwise. It follows from Observation 8.10 that the above properties depend only on g and not on the choice of lifting \tilde{g}. If $L \subset K$ and the identity wraps L around E (counterclockwise or clockwise), we simply say that L wraps itself around E (counterclockwise or clockwise).
Proposition 8.15. Suppose g is a continuous mapping of an $\operatorname{arc} L=\widehat{c^{\prime} c^{\prime \prime}}$ into K wrapping L counterclockwise around E. Let \tilde{g}, μ, v and $C_{\mu}, C_{\mu+1}, \ldots, C_{v}$ be as in the above definition. For each $j=\mu, \ldots, v$, let c_{j}^{\prime} and $c_{j}^{\prime \prime}$ denote the endpoints of C_{j} listed in such order that $c_{j}^{\prime}<c_{j}^{\prime \prime}$ where the inequality reflects the order on L oriented from c^{\prime} to $c^{\prime \prime}$. Then

$$
c^{\prime}=c_{\mu}^{\prime}<c_{\mu}^{\prime \prime}<c_{\mu+1}^{\prime}<c_{\mu+1}^{\prime \prime}<\cdots<c_{v-1}^{\prime}<c_{v-1}^{\prime \prime}<c_{v}^{\prime}<c_{v}^{\prime \prime}=c^{\prime \prime}
$$

Proof. Clearly, $c^{\prime}=c_{\mu}^{\prime}$ and $c_{v}^{\prime \prime}=c^{\prime \prime}$. For each $i=\mu, \ldots, v-1$, consider the following statement:

$$
\begin{equation*}
c_{\mu}^{\prime}<c_{\mu}^{\prime \prime}<\cdots<c_{i}^{\prime}<c_{i}^{\prime \prime}<c_{j}^{\prime} \quad \text { for all } j=i+1, \ldots, v \tag{i}
\end{equation*}
$$

Since the arc C_{μ} contains c^{\prime} which is the least point in L oriented from c^{\prime} to $c^{\prime \prime}$, we infer that $c^{\prime}=c_{\mu}^{\prime}, C_{v}=\widehat{c^{\prime} c_{\mu}^{\prime \prime}}$ and $c_{\mu}^{\prime \prime}<c_{j}^{\prime}$ for all $j=\mu+1, \ldots, v$. So, S_{μ} is true. On the other hand, since $c_{v}^{\prime \prime} \in C_{v}$, it follows that $c_{v}^{\prime \prime}=c^{\prime \prime}$ and S_{v-1} implies the proposition. To complete the proof it is enough to prove the implication $S_{i} \Rightarrow S_{i+1}$ for all $i=\mu, \ldots, v-2$. For that purpose, suppose that S_{i} is true, but S_{i+1} is false. Then there is an integer $j=i+2, \ldots, v$ such that $c_{i}^{\prime}<c_{i}^{\prime \prime}<c_{j}^{\prime}<c_{j}^{\prime \prime}<c_{i+1}^{\prime}$. Observe that the $\operatorname{arc} \widetilde{c_{i}^{\prime} c_{j}^{\prime \prime}}$ contains both C_{i} and C_{j}, but it does not intersect C_{i+1}. Consequently, $r_{1} \circ \tilde{g}\left(\widetilde{c_{i}^{\prime} c_{j}^{\prime \prime}}\right)$ contains i and j, but it does not contain $i+1$. This contradiction completes the proof of the proposition.

Corollary 8.16. Suppose g is a continuous mapping of an arc L into K such that it wraps L around E. Let \tilde{g} be a lifting of g and let $j \in \mathbb{Z}$. Then at most one component of $\left(r_{1} \circ \tilde{g}\right)^{-1}([j, j+1])$ is mapped by $r_{1} \circ \tilde{g}$ onto $[j, j+1]$.
Corollary 8.17. Suppose g is a continuous mapping of an arc $L=\widehat{c^{\prime} c^{\prime \prime}}$ into K such that it wraps L counterclockwise (or clockwise) around E. Let $\overline{u^{\prime} u^{\prime \prime}} \subset \widehat{c^{\prime} c^{\prime \prime}}$ be an arc such that $\ell\left(\widehat{u^{\prime} u^{\prime \prime}}\right) \geq 1$. Then g restricted to $\widehat{u^{\prime} u^{\prime \prime}}$ wraps this arc counterclockwise (or clockwise, respectively) around E.

The following corollary is a summary of Proposition 8.13.
Corollary 8.18. Let $k>2, \widehat{c^{\prime} c^{\prime \prime}}$, and g be as in Proposition 8.13. Then g wraps $\widehat{c^{\prime} c^{\prime \prime}}$ counterclockwise around E, and $k-2 \leq \ell(g) \leq k$.
Proposition 8.19. Let $L=\widehat{c^{\prime} c^{\prime \prime}} \subset K$ be an arc and let c be a point in the interior of L such that $\widehat{c c^{\prime \prime}}$ wraps itself counterclockwise around E. Let \tilde{g} be a lifting of L, let $l_{1}=$ $\left\lfloor\max \left(r_{1} \circ \tilde{g}\left(\widehat{c c^{\prime \prime}}\right)\right)\right\rfloor$ and let $l_{0}=l_{1}-\left(\ell\left(\widehat{c c^{\prime \prime}}\right)-\ell\left(\widehat{c^{\prime} c}\right)-2\right)$. Then

$$
r_{1} \circ \tilde{g}\left(\widehat{c^{\prime} c}\right) \cap\left[l_{0}, \infty\right)=\varnothing
$$

Proof. Since $\left\lceil\min \left(r_{1} \circ \tilde{g}\left(\widehat{c^{\prime} c}\right)\right)\right]-1<r_{1} \circ \tilde{g}(c)$ and $\widehat{c c^{\prime \prime}}$ wraps itself counterclockwise around E, it follows that $\left[\min \left(r_{1} \circ \tilde{g}\left(\widehat{c^{\prime} c}\right)\right)\right]-1 \leq\left[\min \left(r_{1} \circ \tilde{g}\left(\widehat{c c^{\prime \prime}}\right)\right)\right]$. Now, we complete the proof of the proposition by the following sequence of equalities and inequalities.

$$
\begin{aligned}
& \max \left(r_{1} \circ \tilde{g}\left(\widehat{c^{\prime} c}\right)\right)<\left\lfloor\max \left(r_{1} \circ \tilde{g}\left(\widehat{c^{\prime} c}\right)\right)\right\rfloor+1=\left\lceil\min \left(r_{1} \circ \tilde{g}\left(\widehat{c^{\prime} c}\right)\right)\right\rceil+\ell\left(\widehat{c^{\prime} c}\right)+1 \leq \\
\leq & \left\lceil\min \left(r_{1} \circ \tilde{g}\left(\widehat{c c^{\prime \prime}}\right)\right)\right\rceil+\ell\left(\widehat{c^{\prime} c}\right)+2=\left\lfloor\max \left(r_{1} \circ \tilde{g}\left(\widehat{c c^{\prime \prime}}\right)\right)\right\rfloor-\ell\left(\widehat{c c^{\prime \prime}}\right)+\ell\left(\widehat{c^{\prime} c}\right)+2=l_{0}
\end{aligned}
$$

The next proposition is a dual version of 8.19. We omit its proof since it is essentially the same as that of 8.19.

Proposition 8.20. Let $L=\widehat{c^{\prime} c^{\prime \prime}} \subset K$ be an arc and let c be a point in the interior of L such that $\widetilde{c^{\prime} c}$ wraps itself counterclockwise around E. Let \tilde{g} be a lifting of L, let $l_{1}^{\prime}=$ $\left\lceil\min \left(r_{1} \circ \tilde{g}\left(\widetilde{c^{\prime} c}\right)\right)\right]$ and let $l_{0}^{\prime}=l_{1}^{\prime}+\left(\ell\left(\widetilde{c^{\prime} c}\right)-\ell\left(\widetilde{c c^{\prime \prime}}\right)-2\right)$. Then

$$
r_{1} \circ \tilde{g}\left(\widehat{c c^{\prime \prime}}\right) \cap\left(-\infty, l_{0}^{\prime}\right]=\varnothing
$$

Lemma 8.21. Let $L=\widehat{c^{\prime} c^{\prime \prime}}$ be an arc contained in $D \backslash E$ such that $L \cap \operatorname{bd}(D)=\left\{c^{\prime}\right\}$. Suppose c, \tilde{g}, l_{0} and l_{1} are as in Proposition 8.19, except that here we require $\ell\left(\widehat{c^{\prime} c}\right)+4 \leq \ell\left(\widehat{c c^{\prime \prime}}\right)$. Let v denote the point in the set $L \cap J_{0}$ which is the closest to e_{0}. Finally, let l_{v} be an integer such that $\tilde{g}(\nu) \in\left\{l_{\nu}\right\} \times(0, \infty)$. Then l_{ν} is either l_{1} or $l_{1}-1$.

Proof. Notice that $r_{2} \circ \tilde{g}\left(c^{\prime}\right)=1$ since $p^{-1}(D)=\mathbb{R} \times(0,1]$ and $c^{\prime} \in \operatorname{bd}(D)$. Denote $r_{1} \circ \tilde{g}\left(c^{\prime}\right)$ by u. So, $g\left(c^{\prime}\right)=(u, 1)$. By Proposition 8.19, $u<l_{0}=l_{1}-\left(\ell\left(\widetilde{c c^{\prime \prime}}\right)-\ell\left(\widetilde{c^{\prime} c}\right)-2\right) \leq l_{1}-2$.

Let V denote the component of $J_{0} \backslash\{\nu\}$ whose closure contains e_{0}. Clearly, $V \cap L=\varnothing$. Set $\widetilde{V}=p^{-1}(V) \cap\left(\left\{l_{v}\right\} \times(0,1]\right)$. Observe that p restricted to \widetilde{V} is a homeomorphism onto V since $\omega\left(\left\{e_{0}\right\} \times(0, \infty)\right)=J_{0}$. So, \widetilde{V} is an open arc contained in $\left\{l_{\nu}\right\} \times(0,1] \subset\left\{l_{v}\right\} \times[0,1]$ such that one of its ends is $\tilde{g}(\nu)$ and the other is $\left(l_{\nu}, 0\right)$. It follows that $\widetilde{W}=\tilde{g}\left(\widetilde{c^{\prime} v}\right) \cup \widetilde{V}$ is an arc (closed in one side and open on the other) that separates $p^{-1}(D)$ into two components. We denote them by C_{-}and C_{+}such that $(-\infty, u) \times\{1\} \subset C_{-}$and $(u, \infty) \times$ $\{1\} \subset C_{+}$. By Observation 8.11, the $\operatorname{arc} \xi_{-1} \circ \tilde{g}(L)$ does not intersect \widetilde{W}. Since $\xi_{-1} \circ \tilde{g}\left(c^{\prime}\right)=$ $(u-1,1)$, the $\operatorname{arc} \xi_{-1} \circ \tilde{g}(L)$ is contained in C_{-}. Since $l_{1} \in r_{1} \circ \tilde{g}(L)$, it follows that $l_{1}-1 \in$ $r_{1} \circ \xi_{-1} \circ \tilde{g}(L)$. Consequently, $l_{1}-1 \in r_{1}\left(C_{-}\right)$. Thus, there exists a point z in the interior of the arc $\widehat{c^{\prime} v}$ such that $r_{1} \circ \tilde{g}(z)>l_{1}-1$. Since $u<l_{0} \leq l_{1}-2$, there is a point w in the interior of $\overline{c^{\prime} z}$ such that $r_{1} \circ \tilde{g}(w)=l_{1}-2$. It follows from Proposition 8.19 that $\widehat{w v} \subset \widehat{c c^{\prime \prime}}$ and, consequently, $\widehat{w v}$ wraps itself counterclockwise around E. Since $r_{1} \circ \tilde{g}(w)=l_{1}-2$, $r_{1} \circ \tilde{g}(z)>l_{1}-1, z \in \widehat{w v}$ and $r_{1} \circ \tilde{g}(v)=l_{v}$, it follows from Corollary 8.16 that $l_{v} \geq l_{1}-1$. Hence, the lemma is true.

Proposition 8.22. Suppose $L \subset D \backslash E$ is an arc with endpoints c^{\prime} and $c^{\prime \prime}$ such that $L \cap$ $\operatorname{bd}(D)=\left\{c^{\prime}, c^{\prime \prime}\right\}$. Let $\tilde{g}: L \rightarrow \widetilde{K}$ be a lifting of L. Then $\left|r_{1} \circ \tilde{g}\left(c^{\prime}\right)-r_{1} \circ \tilde{g}\left(c^{\prime \prime}\right)\right|<1$.

Proof. Let C_{1} and C_{2} denote the two subarcs of $\operatorname{bd}(D)$ with endpoints c^{\prime} and $c^{\prime \prime}$. Observe that exactly one of the simple closed curves $L \cup C_{1}$ and $L \cup C_{2}$, say $L \cup C_{1}$, bounds a disk in the plane that does not intersect E. Let \tilde{g}_{1} be the lifting of C_{1} to \widetilde{K} such that $\tilde{g}_{1}\left(c^{\prime}\right)=\tilde{g}\left(c^{\prime}\right)$. Then $\tilde{g}_{1}\left(c^{\prime \prime}\right)=\tilde{g}\left(c^{\prime \prime}\right)$ by [22, Th. 54.3]. Now, the proposition follows from Observations 8.7 and 8.8.

Proposition 8.23. Let $L \subset D \backslash E$ be an arc with endpoints c^{\prime} and $c^{\prime \prime}$ such that $L \cap \mathrm{bd}(D)=$ $\left\{c^{\prime}, c^{\prime \prime}\right\}$. Suppose $u, v \in L$ are such that $c^{\prime} \leq u<v \leq c^{\prime \prime}$ and $\widetilde{u v}$ wraps itself around E. Then

$$
\ell(\widetilde{u v}) \leq \ell\left(\widehat{c^{\prime} u}\right)+\ell\left(\widetilde{v c^{\prime \prime}}\right)+4
$$

Proof. We may assume without loss of generality that $\overparen{u v}$ wraps itself counterclockwise around E. (In the other case we could just reverse the orientation on L.) Let $\tilde{g}: L \rightarrow \widetilde{K}$ be a lifting. Setting $l_{1}=\left\lfloor\max \left(r_{1} \circ \tilde{g}(\widetilde{u v})\right)\right\rfloor$ and using Proposition 8.19 with $c^{\prime}=c^{\prime}, c=u$ and $c^{\prime \prime}=v$ we infer that

$$
r_{1} \circ \tilde{g}\left(c^{\prime}\right)<l_{1}-\ell(\widehat{u v})+\ell\left(\widehat{c^{\prime} u}\right)+2
$$

Setting $l_{1}^{\prime}=\left\lceil\min \left(r_{1} \circ \tilde{g}(\widetilde{u v})\right)\right\rceil$ and using Proposition 8.20 with $c^{\prime}=u, c=v$ and $c^{\prime \prime}=c^{\prime \prime}$ we infer that

$$
l_{1}^{\prime}+\ell(\widetilde{u v})-\ell\left(\widehat{v c^{\prime \prime}}\right)-2<r_{1} \circ \tilde{g}\left(c^{\prime \prime}\right)
$$

By adding the above inequalities, and then moving l_{1}, l_{1}^{\prime} and $\ell(\widetilde{u v})$ to the left side of the resulting inequality, and all the remaining terms to the right side we infer that

$$
l_{1}^{\prime}-l_{1}+2 \ell(\widehat{u v})<\ell\left(\widehat{v c^{\prime \prime}}\right)+\ell\left(\widehat{c^{\prime} u}\right)+4+r_{1} \circ \tilde{g}\left(c^{\prime \prime}\right)-r_{1} \circ \tilde{g}\left(c^{\prime}\right)
$$

Since $l_{1}^{\prime}-l_{1}=-\ell(\widetilde{u v})$, the left side of the last inequality equals $\ell(\widetilde{u v})$. Thus

$$
\ell(\widehat{u v})<\ell\left(\widehat{v c^{\prime \prime}}\right)+\ell\left(\widehat{c^{\prime} u}\right)+4+r_{1} \circ \tilde{g}\left(c^{\prime \prime}\right)-r_{1} \circ \tilde{g}\left(c^{\prime}\right)
$$

Observe that $\ell(\widehat{u v})$ and $\ell\left(\widehat{v c^{\prime \prime}}\right)+\ell\left(\widehat{c^{\prime} u}\right)+4$ are integers. Since $r_{1} \circ \tilde{g}\left(c^{\prime \prime}\right)-r_{1} \circ \tilde{g}\left(c^{\prime}\right)<1$ (by Proposition 8.22) we may remove the difference $r_{1} \circ \tilde{g}\left(c^{\prime \prime}\right)-r_{1} \circ \tilde{g}\left(c^{\prime}\right)$ from the inequality (\star) while replacing " $<$ " by " \leq ". So, the proposition is true.

Lemma 8.24. Suppose N is a positive integer. Let $\widehat{c^{\prime} c}$ be an arc contained in $D \backslash E$ such that $\widehat{c^{\prime} c} \cap \operatorname{bd}(D)=\left\{c^{\prime}\right\}$. Suppose u is a point in the interior of L such that $\ell\left(\widehat{c^{\prime} u}\right) \leq N$, $\ell(\overparen{u c}) \geq 2 N+6$ and $\overparen{u c}$ wraps itself counterclockwise around E. Finally, suppose $Z \subset$ $D \backslash(L \cup E)$ is a set with the property that for each $z \in Z$ there is an arc $L_{z} \subset Z$ such that $z \in L_{z}, L_{z} \cap \operatorname{bd}(D) \neq \varnothing$ and $\ell\left(L_{z}\right) \leq N$. Then Z does not separate D between L and E.
Proof. Let v denote the point in the set $\widetilde{c^{\prime} c} \cap J_{0}$ which is the closest to e_{0}. It follows from Proposition 8.19 and Lemma 8.21 that u is in the interior of $\widetilde{c^{\prime} \nu}$ and $\ell(\overparen{u v})$ is either $\ell(\widetilde{u c})$ or $\ell(\widetilde{u c})-1$. Consequently,
(\geq)

$$
\ell(\widetilde{u v}) \geq 2 N+5
$$

Let V denote the component of $J_{0} \backslash\{\nu\}$ whose closure contains e_{0}. Clearly, $V \cap L=\varnothing$ and $\overparen{u v} \cup V \cup\left\{e_{0}\right\}$ is an arc. If $Z \cap V=\varnothing$ then the lemma is true. So, we may assume that $Z \cap V$ contains a point z. Then there is an arc $L_{z} \subset Z$ such that $z \in L_{z}, L_{z} \cap \operatorname{bd}(D) \neq \varnothing$ and $\ell\left(L_{z}\right) \leq N$. Let $\widehat{z_{0} c^{\prime \prime}}$ be a subarc of L_{z} minimal with respect to the property: $z_{0} \in V$ and $c^{\prime \prime} \in \operatorname{bd}(D)$. Let $\widehat{v z_{0}}$ denote the subarc of J_{0} with endpoints v and z_{0}. Consider the $\operatorname{arc} \widehat{\nu c^{\prime \prime}}=\widehat{\nu z_{0}} \cup \widehat{z_{0} c^{\prime \prime}}$. Since $\widehat{\nu z_{0}} \subset J_{0}$, it follows that $\ell\left(\widehat{v c^{\prime \prime}}\right)=\ell\left(\widehat{z_{0} c^{\prime \prime}}\right) \leq \ell\left(L_{z}\right) \leq N$. Now, we consider the $\operatorname{arc} L=\widehat{c^{\prime} c^{\prime \prime}}=\widehat{c^{\prime} u} \cup \widehat{u v} \cup \widehat{v c^{\prime \prime}}$ and apply Proposition 8.23 to get the result that
(\leq)

$$
\ell(\widehat{u v}) \leq \ell\left(\widehat{c^{\prime} u}\right)+\ell\left(\widehat{v c^{\prime \prime}}\right)+4 \leq 2 N+4
$$

It follows that $Z \cap V=\varnothing$ since the the inequalities (\geq) and (\geq) contradict each other. Hence, the lemma is true.

9. Part 2 of the definition of X

In this section we specify the winding numbers in the definition of X and therefore fully define continuum X.

Proposition 9.1 (see [21, Proposition 2.1]). Suppose L is an arc and $\epsilon>0$. Then there is a positive integer $N(L, \epsilon)$ such that, for each collection \mathscr{C} of $N(L, \epsilon)$ subarcs of L whose interiors are mutually disjoint, at least one element of \mathscr{C} has diameter less than ϵ.

In the preliminary definition of X given in Subsection 4.3, we used a generic sequence of positive integers $\Sigma=\left(k_{0}, k_{1}, \ldots\right)$ without any other restrictions. This was enough to prove the basic properties of X. However, we need to impose some conditions on Σ to be able to prove that X admits a simple dense canal for every embedding into \mathbb{R}^{2}. We will define the terms of Σ one by one starting from k_{0}. For each nonnegative integer n, we will define k_{n} basing on properties of some arcs contained in $X \subset \prod_{j=0}^{n} X_{j}$ in such a way that their complete definitions do not depend on k_{l} for any $l \geq n$. However, the arcs used to define k_{1} may depend on k_{0}, the arcs used to define k_{2} may depend on k_{0} and k_{1}, and so on. Having in mind the inductive character of the the construction, we will define k_{n} in two cases depending whether n is odd or even.
Let $v \in\{0,1,2,3\}$ and let n be a nonnegative integer. Recall that $\overline{a^{v} a_{n}^{v}} \subset F_{n}$ the arc $\left[\widehat{a^{v} a_{n}^{v}}\right]$ does not depend on k_{l} for any $l \geq n$; see Observation 6.7. Set

$$
N_{n}=\max \left\{N\left(\left[\widehat{a^{v} a_{n}^{v}}\right], 2^{-n}\right) \mid v \in\{0,1,2,3\}\right\}
$$

where $N(\cdot, \cdot)$ is the number defined in Proposition 9.1. We will use N_{n} in the definition of k_{n} in both cases of odd and even n. Set

$$
k_{n}=2 \max \left(N_{n}, n\right), \quad \text { if } n \text { is odd. }
$$

Now, suppose n is even and set $i=n / 2$. Recall that $f_{n}: X_{n+1} \rightarrow X_{n}$ where $X_{n}=\widetilde{A}_{i}$, $X_{n+1}=\widetilde{A}_{i+1}$ and $f_{n}=\varphi_{n, k_{n}}$. Also recall that τ is an involution of $\{0,1,2,3\}$ such that $\tau(0)=1, \tau(1)=0, \tau(2)=3$ and $\tau(3)=2$. It follows from Proposition 6.8 that $\overline{s_{i+1}^{v} b_{i+1}^{v}} \subset$ F_{n+1}. Recall that \underline{b}_{i+1}^{v} is a point in the interior of $\widehat{s_{i+1}^{v} b_{i+1}^{v}}$, and, if $v \in\{1,3\}$ then \underline{s}_{i+1}^{v} is a point in the interior of $\overline{s_{i+1}^{v} \underline{b}_{i+1}^{v}}$. Also, recall that \mathscr{L}_{i+1} is a collection of arcs defined before Corollary 6.9. By the corollary, each of the four arcs from \mathscr{L}_{i+1} does not depend on k_{l} for any $l \geq n$. Let $N_{n}^{e}=\max \left\{N\left(L, 2^{-n}\right) \mid L \in \mathscr{L}_{i+1}\right\}$. Set

$$
k_{n}=2 \max \left(N_{n}, N_{n}^{e}, n\right), \quad \text { if } n \text { is even. }
$$

This completes the construction of the sequence $\Sigma=\left(k_{0}, k_{1}, \ldots\right)$. Therefore, X is now fully defined.

10. Definition of the simple dense canal

We first recall parts of the Prime End Theory needed for the setup. We refer to the paper by Brechner [5] for more detailed description. Let $S^{2} \subset \mathbb{R}^{3}$ denote a unit sphere. We denote by $B^{1} \subset S^{2}$ the unit disk.

Definition 10.1. Let $U \subset S^{2}$ be a simply connected open set with a nondegenerate boundary. A crosscut Q of U is an open arc in U such that $\operatorname{cl}(Q)$ intersects $\operatorname{bd}(U)$ in exactly two endpoints of $\operatorname{cl}(Q)$. A C-map $\psi: U \rightarrow \operatorname{int}\left(B^{1}\right)$ is a homeomorphism such that:
(1) $\psi(U)$ is a crosscut of $\operatorname{int}\left(B^{1}\right)$.
(2) $\{\psi(\operatorname{bd}(Q)) \mid Q$ is a crosscut of $U\}$ is dense in $\operatorname{bd}\left(B^{1}\right)$.

A sequence of crosscuts Q_{1}, Q_{2}, \ldots of U is a chain of crosscuts if and only if all three of the following conditions hold:
(1') $\operatorname{cl}\left(Q_{1}\right), \operatorname{cl}\left(Q_{2}\right), \ldots$ are pairwise disjoint.
(2') Q_{n} separates Q_{n-1} from Q_{n+1} in U.
(3') $\operatorname{diam}\left(Q_{i}\right) \rightarrow 0$ and $\lim \left(Q_{i}\right)$ is a point as $i \rightarrow \infty$.
Let U_{n} be a simply connected open set that contains Q_{n+1}. We refer to U_{n} by inner domains. Thus $U_{1} \subset U_{2} \subset U_{3} \subset \ldots$. Let Q_{1}, Q_{2}, \ldots and R_{1}, R_{2}, \ldots be chains of crosscuts of U and U_{1}, U_{2}, \ldots and V_{1}, V_{2}, \ldots their respective corresponding inner domains. Then Q_{1}, Q_{2}, \ldots and R_{1}, R_{2}, \ldots are equivalent chains of crosscuts of U if and only if for every positive integer i there exist a positive integer j so that $V_{j} \subset U_{i}$ and $U_{j} \subset V_{i}$. A prime end \mathscr{E} of $S^{2} \backslash U$ is an equivalence class of chains of crosscuts of U.

Theorem 10.2. Let $U \subset S^{2}$ be a simply connected open set with a nondegenerate boundary. Then there exists a C-map $\psi: U \rightarrow \operatorname{int}\left(B^{1}\right)$. If \mathscr{E} is a prime end determined by a chain of crosscuts Q_{1}, Q_{2}, \ldots with corresponding inner domains U_{1}, U_{2}, \ldots and $p \in b d\left(B^{1}\right)$ is the point corresponding to \mathscr{E}, then a sequence of points z_{1}, z_{2}, \ldots in U has the property that $z_{i} \in U_{i}$ for every positive integer i if and only if $\psi\left(z_{i}\right)$ converges to p as $i \rightarrow \infty$.
Definition 10.3. Let $U \subset \mathbb{R}^{2}$ be a simply connected open set with a nondegenerate boundary and $R \subset U$ be a ray. Let $r \in R$ be a point. A crosscut Q is called a transverse crosscut to R at r, if there exists a topological disk $D \subset U$ such that $r \in \operatorname{int}(D)$ and $(R \cap D) \backslash\{r\}$ consists of two components, each of which is contained in exactly one simply connected component of $D \backslash Q$. A continuum $K \subset \mathbb{R}^{2}$ has a simple dense canal, if there exists a ray $R \subset \mathbb{R}^{2} \backslash K$ such that the following three conditions hold:
(1) $\operatorname{cl}(R) \backslash R=K$.
(2) for every point $r \in R$ there exists a sequence of transverse crosscuts to R at r.
(3) diameter of transverse crosscuts from (2) converges to 0 .

11. Any embedding of X into the plane has a dense simple canal

Let h be an arbitrary embedding of X into the plane. Since [T^{*}] and the four spurs S^{v} are mutually disjoint tree-like continua, there are five mutually disjoint closed topological disks $D^{*}, D^{0}, D^{1}, D^{2}$ and D^{3} contained in the plane such that $h\left(\left[T^{*}\right]\right) \subset \operatorname{int}\left(D^{*}\right)$ and $h\left(\left[S^{v}\right]\right) \subset \operatorname{int}\left(D^{v}\right)$ for all $v \in\{0,1,2,3\}$. Using Remark (i) after the proof of [13, Theorem $6, \S 61$, IV] we can find a homeomorphism g of the plane onto itself such that

- g maps each of the disks $D^{*}, D^{0}, D^{1}, D^{2}$ and D^{3} onto a circular disk with radius 2,
- $g \circ h\left(\left[T^{*}\right]\right)$ is the standard unit triod with ordered set of endpoints $g \circ h\left(\left[t_{0}^{*}\right]\right)$, $g \circ h\left(\left[t_{1}^{*}\right]\right)$ and $g \circ h\left(\left[t_{2}^{*}\right]\right)$ and its center is at the center of $g\left(D^{*}\right)$, and
- for each $v \in\{0,1,2,3\}$, $g \circ h\left(\left[Y^{v}\right]\right)$ is the standard unit triod with ordered set of endpoints $g \circ h\left(\left[y_{0}^{v}\right]\right), g \circ h\left(\left[y_{1}^{v}\right]\right)$ and $g \circ h\left(\left[y_{2}^{v}\right]\right)$ and its center at the center of $g\left(D^{v}\right)$.
Since $h(X)$ has a dense simple canal if and only if $g \circ h(X)$ has a dense simple canal, we may assume that
(1) $D^{*}, D^{0}, D^{1}, D^{2}$ and D^{3} are mutually disjoint closed circular disks, each with radius 2 and such that $h\left(\left[T^{*}\right]\right) \subset \operatorname{int}\left(D^{*}\right)$ and $h\left(\left[S^{v}\right]\right) \subset \operatorname{int}\left(D^{v}\right)$ for all $v \in\{0,1,2,3\}$.
(2) $h\left(\left[T^{*}\right]\right)$ is the standard unit triod with ordered set of endpoints $h\left(\left[t_{0}^{*}\right]\right), h\left(\left[t_{1}^{*}\right]\right)$ and $h\left(\left[t_{2}^{*}\right]\right)$ and its center is at the center of D^{*}, and
(3) for each $v \in\{0,1,2,3\}, h\left(\left[Y^{v}\right]\right)$ is the standard unit triod with ordered set of endpoints $h\left(\left[y_{0}^{v}\right]\right), h\left(\left[y_{1}^{v}\right]\right)$ and $h\left(\left[y_{2}^{v}\right]\right)$ and its center at the center of D^{v}.
Let D_{∞} be a big circular disk in the plane such that $D^{*}, D^{0}, D^{1}, D^{2}$ and D^{3} are contained in its interior. Let a_{∞} be a point in the boundary of D_{∞}. Recall that, for each $v \in\{0,1,2,3\}, h\left(a^{v}\right)$ is accessible from the complement of $h(X)$; see Proposition 7.9. It follows that, for each $v \in\{0,1,2,3\}$, there is $\widehat{a_{\infty} a^{v}} \subset D_{\infty}$ such that $\widehat{a_{\infty} a^{v}} \cap h(X)=\left\{a^{v}\right\}$, and $\widehat{a_{\infty} a^{v}} \cap \widehat{a_{\infty} a^{\mu}}=\left\{a_{\infty}\right\}$ for $\mu \in\{0,1,2,3\} \backslash\{v\}$.

Remark 11.1. What remains to be done to complete the proof is an explicit construction of a simple dense canal in an embedding $h(X)$. In the construction we will use Section 8 as the main tool and heavily rely on the specific inductive choice of the sequence of wrapping numbers Σ. Since the construction is not complete yet, it is omitted in the current version of the file.

References

1. Anderson, R. D. Choquet, G. A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Am. Math. Soc. 10, (1959), 347-353.
2. Bell, H. On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 539-548.
3. Bellamy, D. P. A tree-like continuum without the fixed-point property, Houston J. Math. 6 (1981), no. 1, 1-13.
4. Bing R. H. The elusive fixed point property, Amer. Math. Monthly 76 (1969), 119-132.
5. Brechner, B. On stable homeomorphisms and imbeddings of the pseudo arc, Illinois J. Math. 22, no. 4 (1978), 630-661.
6. Brechner, B. Mayer, J. C. The prime end structure of indecomposable continua and the fixed point property, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980), 151-168, Academic Press, New York-London, 1981.
7. Brown M. Some applications of an approximation theorem for inverse limits, Proc. Am. Math. Soc. 11 (1960), no. 3, 478-483.
8. Fearnley, L. Wright, D. G. Geometric realization of Bellamy continuum Bull. London Math. Soc. 25 (1993), no. 2, 177-183.
9. Hatcher, A. Algebraic Topology, Cambridge University Press, 2002.
10. Hernández-Gutiérrez R. Hoehn, L. A fixed-point-free map of a tree-like continuum induced by bounded valence maps on trees, arXiv:1608.08094.
11. Hagopian C. L. An update on the elusive fixed-point property, Open problems in topology II (Elliott Pearl, ed.), Elsevier B. V. Amsterdam, 2007, pp. 263-277.
12. Iliadis S. Positions of continua on the plane and fixed points, Vestnik Moskov. Univ. Ser. I Math. Mekh. (1970), 66-70.
13. K. Kuratowski, Topology, volume II Academic Press and PWN - Polish Scientific Publishers, 1968.
14. Lewis, W. Continuum Theory Problems, Topol. Proc. 8 (1983), 361-394.
15. Mauldin, R. D. The Scottish Book, Birkhäuser, Boston, 1981.
16. Minc P. A hereditarily indecomposable tree-like continuum without the fixed point property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 643-654.
17. Minc P. A periodic point free homeomorphism of a tree-like continuum, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1487-1519.
18. Minc P. A self-map of a tree-like continuum with no invariant indecomposable subcontinuum, Topology Appl. 98 (1999), no. 1-3, 235-240, II Iberoamerican Conference on Topology and its Applications (Morelia, 1997).
19. Minc P. A tree-like continuum admitting fixed point free maps with arbitrarily small trajectories, Topology Appl. 46, (1992), no. 2, 99-106.
20. Minc P. A weakly chainable tree-like continuum without the fixed point property, Trans. Amer. Math. Soc. 351 (1999), no. 3, 1109-1121.
21. Minc, P. Sturm, F. Homeomorphism killing rays, Houston J. Math. 41 (2015), 1341-1350.
22. Munkres J. R. Topology (Second Edition), Prentice Hall, Upper Saddle River, NJ, 2000.
23. Nadler, S. B. Jr., Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158. Marcel Dekker, Inc., New York, 1992.
24. Oversteegen L. G. Rogers, J. T. Jr., An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math. 6, (1980), no. 4, 549-564.
25. Oversteegen L. G. Rogers, J. T. Jr., Fixed-point-free maps on tree-like continua, Topology Appl. 13, (1982), no. 1, 85âĂŞ95.
26. Sieklucki, K. On a class of plane acyclic continua with the fixed point property, Fund. Math. 63, no. 3, (1968) 257-278.
(J. Činč) Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

E-mail address: jernej.cinc@univie.ac.at

