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ABSTRACT  

After significant river regulations, especially in the first half of the 20th century, in 

recent decades the field of river restoration and management has evolved 

enormously. As a response to increased recognition of river ecological values, 

river functions and ecosystem services, the European Union has integrated 

riverine environmental monitoring into legal obligations for all member states. 

Although the environmental policy framework is now clearly defined, one 

problem that persists still lies with the ability to reliably acquire environmental 

data in dynamic river environments. Whereas field sampling and measurement 

methods are very time-consuming and therefore costly, Earth-observation 

satellites are able to cover large areas within a short period of time, but such 

sensors are typically of moderate or coarse spatial resolution. In order to rectify 

this situation, the suitability of a remotely piloted aircraft system (RPAS) as well 

as recent satellite technologies are evaluated and tested for riverine 

environmental monitoring purposes according to the European legal situation.  

Two different areas in Carinthia have been selected as study sites. Having been 

declared as NATURA 2000 protected sites, both river reaches are of high 

ecologic value, and river restoration has been conducted for these reaches in 

recent years. During multi-temporal missions of the RPAS platform, RGB and NIR 

images with a spatial resolution of up to 3 cm are collected, analyzed and 

compared with very high-resolution satellite-derived products. Representing 

recent satellite data acquired in four or eight multispectral bands by GeoEye-

1, QuickBird and WorldView-2 are used for comparison. The spatial resolutions 

of the associated multispectral and panchromatic bands of these sensors are 

200cm, 240cm and 200cm, respectively; and 50cm, 60cm and 50cm, 

respectively. For the analysis of the RPAS as well as the satellite images, 

traditional statistical pattern-recognition techniques, as well as more recently-

developed methods, are used to classify present riverine habitats. Classification 

is performed via ISODATA, Maximum Likelihood, and an image-segmentation 

algorithm based on Full Lambda Schedule. A photogrammetrically-derived 

digital surface model is used as auxiliary information to enhance classification 

accuracy. Field reference data are used for accuracy assessment. To gain 
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knowledge about the spatio-temporal characteristics of the different 

restoration measures, an object-based change detection is performed using 

RPAS data.  

The result of this research project is an overall quality and suitability assessment 

of a small RPAS-based multi-sensor platform for high-resolution spatio-temporal 

monitoring of vegetation and geomorphological change in dynamic river 

environments. Furthermore, recent satellite systems are compared to the RPAS 

platform, and possibilities and limitations for different application areas are 

demonstrated for both remote sensing systems. 
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1. INTRODUCTION 

 

After significant river regulations especially in the first half of the 20th century in 

recent decades the field of river restoration and management has developed 

enormously.  While earlier reasons for the straightening of rivers had been to 

gain land for agriculture or settlement nowadays an increased recognition of 

river ecological values, river functions and ecosystem services appear 

(Carbonneau et al., 2012). Additionally new requirements on flood safety 

caused by global warming and changes of the frequency and intensity of 

extreme weather events gave an impulse to rethink river regulation. In the 

European Union (EU) certain directives regulate the development of 

ecosystems. The Water Framework Directive has been issued to ensure water 

quality and quantity and also states which streams need to be restored to 

reach more natural states (EU Water Framework Directive, 2000). On the other 

hand the Habitats Directive has the aim to ensure biodiversity of wild flora and 

fauna throughout the EU (EU Habitats Directive, 1992). But to ensure a high 

water quality and biodiversity the protected regions have to be monitored 

regularly to detect changes and avoid degradation. One problem that persists 

still lies with the ability to reliably acquire environmental data in dynamic river 

environments. 

 

1.1. MOTIVATION 

With an average precipitation of 1,100 mm per year (BMLFUW, 2015d) Austria is 

among the countries of Europe most richly endowed with water resources. To 

ensure a certain drinking water quality all water bodies are monitored regularly 

according to the Water Framework Directive. Natural riverine environments 

have a high potential of being used as habitats for different flora and fauna 

and therefore are often specifically protected for the purpose of maintaining 

biodiversity.  

In 2010 the Austrian Federal Ministry of Agriculture, Forestry, Environment and 

Water Management (BMLFUW) in cooperation with the EU started the Gail LIFE 

Nature Conservation project. Aim of this project with a duration of five years 

was to restore a monotonously regulated river section of the river Gail into a 

nature-near but still flood-safe stream. Different actions have been realized in 

three river sections to show how the water reacts on diverse restoration 
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methods and which action improve the ecological situation most sustainably 

without restricting flood safety. The results gained in the Gail LIFE project should 

now further be adapted to other river environments in similar situations. 

Additionally to the river bed itself the surrounding areas have been improved 

concerning quality and quantity to create wetlands of high ecological value 

(BMLFUW, 2015a). The location of the project site had been chosen because 

additionally to the river shape and the highly biodiverse surrounding the project 

site is from supraregional importance as it acts as resting place for migratory 

birds. The project was finished successfully at the end of 2014 (BMLFUW, 2010).  

Another project performed by the BMLFUW is the LIFE project Life Vein – Upper 

Drau River. Starting in 2006 this project was finished in 2011 with the aim to 

continue the successful revitalization to sustainably integrate the upper Drau 

River as life vein for the region. Furthermore, the project was used to highlight 

solutions for managing ecologic problems and difficulties that are relevant in 

terms of water management. With high biodiversity this project site is 

accounted for NATURA 2000 protection site (BMLFUW, 2015b). 

Because of their high relevance as NATURA 2000 sites and the recent 

processing and high amount of data available, the Gail LIFE project site as well 

as the area of the Drau LIFE project are chosen for the current work as project 

sites for river monitoring with the help of earth observing satellites as well as with 

Remotely Piloted Aircraft Systems (RPAS). The different multispectral sensors are 

used for data collection in these protected areas of high ecological value to 

assess their suitability for environmental monitoring applications.  

Another important project related to the present work is the cooperation & 

innovation project New Environmental Robotic Services with a Remotely Piloted 

Aircraft Multi Sensor System for Environmental Monitoring (RPAmSS) funded by 

the Austrian Research Promotion Agency. The cooperative RPAmSS project has 

the major goal to develop, apply and quantitatively assess the capabilities of 

a civil, low-cost unmanned aerial multi-sensor system for the fast and high-

resolution capture of multidimensional environmental data. With a project 

duration of two years the RPAmSS project will combine state of the art RPAS 

technology with on the one hand the latest innovations in the field of airborne 

remote sensing presented as a hyperspectral camera and on the other a new 

standardized sensor system for capturing weather and air quality data. The 

outcome of this project is expected being the development of new and 

innovative services based on high quality validated multidimensional data of 
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dynamic river environments, weather conditions and air quality for long-term 

monitoring and change detection.  

This present work cooperates with the RPAmSS project in having the major goal 

to perform an analysis on data acquired from different remote sensors 

regarding river vegetation and geomorphology and compare the 

informational content of products derived from the different sensors. Therefore, 

the RPAS infrastructure of the RPAmSS project is used and the analyses are 

done for the same project sites. 

 

1.2. PROBLEM DEFINITION 

To fulfil the requirements of the European directives concerning environmental 

protection and biodiversity conservation each member state has to define 

specific protection sites with high ecologic value. Those protection sites need 

to be monitored regularly every six years to detect changes and maintain 

natural states. Additionally the surface waters are obliged to be monitored in 

a time interval of six years as well in all European member states to inspect their 

qualitative and quantitative state. 

Currently, field sampling and measurement methods for river vegetation and 

geomorphology are time-consuming and therefore expensive, especially 

when it comes to change detection and other long-term environmental 

monitoring tasks. On the other hand, Earth-observation satellites are able to 

acquire data covering large areas within a short period of time, but with lower 

ground resolution. Very high-resolution (VHR) satellite systems indeed provide 

high spatial resolution with up to 31 cm but with a spectral resolution of only 4 

spectral bands (8 bands for World View-2 and -3, respectively). Systems with 

high spectral resolution like Hyperion with 220 bands only provide low spatial 

resolution, i.e. 30 m for Hyperion (Thenkabaill et al., 2012). The temporal 

resolution of satellite systems is also rather low with a nominal revisit interval of 

several days.  

Also known under the names Unmanned Arearial Vehicle (UAV), Unmanned 

Aerial System (UAS) or drone the RPAS market worldwide is currently developing 

extremely quickly. With high agility and relatively low costs RPAS technology is 

applicable in almost every area to be monitored. The potential improvement 

in the temporal resolution of images captured by RPAS is likely to be a key 

factor in their expanding usage since it allows for monitoring at monthly or even 

daily or sub-daily timescales. Additionally, choosing the altitude of flight and 
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thus adjusting the ground resolution leads to an almost free choice of spatial 

resolution. Such monitoring methods with both high temporal and spatial 

resolutions are crucially needed in river sciences and monitoring (Fonstad, 

2012). 

 

1.3. OBJECTIVE AND RESEARCH QUESTION 

The main goal of the present work is to analyze and compare environmental 

data concerning river vegetation and geomorphology gained out of different 

sensors. For the data acquisition traditional earth observation satellites as well 

as the RPAmSS, a fixed-wing RPAS loaded with multiple environmental sensors, 

are used. To support the achievement of this objective the major research 

question is formulated as follows:  

 

 How usable are the different sensors for monitoring riverine environments 

in terms of informational content and accuracy? 

 

The research question results in other sub-questions that are associated with 

various science fields and are additionally treated in this project. One of these 

additional problems goes into detail about the classification of multispectral 

data to research on the possibility to differentiate between different vegetation 

species and to even distinguish different varieties. This information then can 

further be used to detect pioneer species in plant communities, simulate their 

spreading and predict their influence on restoration measures and natural 

habitats in river environments like gravel banks. Furthermore the detection of 

species/varieties is useful in the field of natural conservation to identify and 

keep invasive neophytes in check and therewith protect indigenous 

vegetation. Another sub-problem of this research project is integrated in the 

field of river hydrology and geomorphology. According to the Water 

Framework Directive the EU member states especially have to monitor water 

quality and quantity to make statements about the natural state of flowing 

waters. Additionally morphologic changes are tried to be detected to 

understand how the riverbed changes over time. Efforts are being expanded 

to complement the analysis to the field of grain size distribution and to research 

on the possibility of classifying soils based on their granulometric composition 

with the help of remote sensing.  

These further research questions are the following: 
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 To what scale is it possible to distinguish between different plants using 

multispectral and Red Green Blue (RGB) aerial images? 

 Which statements can be made about water quality and quantity of the 

monitored rivers?  

 How far can the geomorphology of flowing rivers be described using the 

sensors mentioned before? 

 Is the spatial resolution of currently operating earth observation satellite 

systems high enough to fulfil environmental monitoring tasks according 

to EU directives?  

 Is it possible and in which application areas is it appropriate to use a RPAS 

for environmental monitoring tasks? 

 

These questions will be answered by analyzing and validating the appropriate 

data and comparing the results to the requirements of the European directives 

in the field of conservation and environmental monitoring. 

 

1.4. EXPECTED RESULTS 

The major goal of this master’s project is to perform an analysis on data 

acquired from different remote sensors regarding river vegetation and 

geomorphology and compare the informational content of different sensors.  

To achieve this objective, the following intermediate results are expected: 

 

 Overall quality and suitability assessment of a small RPAS-based multi-

sensor platform for high-resolution spatiotemporal monitoring of 

dynamic river environments in the context of vegetation and 

geomorphology 

 Evaluation of classification results for vegetation and geomorphic 

landforms 

 Comparison of the different remote sensing systems 

 A large quantity of environmental data sets generated by multiple 

missions during the project period 

 

Firstly, one of the most important expected results is an overall quality and 

suitability assessment of the applicability of a RPAS for monitoring tasks of river 

environments. This will be achieved by analyzing the results of a variety of test 



6 

flights in two different project sites and comparing these results to the 

requirements in environmental monitoring. Next the evaluation of classification 

results regarding vegetation and geomorphic landforms is expected. This is 

realized through the validation of the analyzed data gained during multiple 

missions in comparison to data of the same regions collected by Austrian 

domain experts with visual image interpretation and field methods. The 

comparison of the different data types acquired by RGB and multispectral 

sensors will be attained based on accuracy and informational content. Finally 

a large quantity of multi-temporal environmental data sets generated during 

multiple RPAS flights for the appropriate Austrian project sites is expected as 

result.  
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2. THEORETICAL PRINCIPLES 

 

This chapter covers the main fields relevant for the present work and provides 

a theoretical background of the different disciplines. Starting with the European 

legal basis the most important directives and legal regulations asking for 

regularly environmental monitoring are presented. Altogether this section 

justifies the need to research in this area of environmental monitoring and to 

develop an RPAS to fulfil the requirements of the EU. The next main field is the 

science of remote sensing. This part deals with general important definitions 

concerning remote sensing, the functionality of earth observation satellite 

systems and the development of RPASs and their use for environmental 

monitoring. As one aim of this work is to combine satellite data with data 

received during RPAS missions this part provides the theoretical background of 

both systems. The last disciplines covered in this chapter are biology and 

geology with a look at biotic and abiotic principles. This part is fundamental to 

understand typical European river environments and their geomorphology for 

data evaluation.  

 

2.1. EUROPEAN LEGAL BASIS 

With 28 member states and 6 candidate countries the EU forms a large 

community that promotes the participating European countries in building an 

economic and social cohesion, equating men and women, protecting the 

environment and supporting the scientific and technical progress. 

Understandably such a large community needs rules to regulate the 

cohabitation. Therefore, the European Commission (EC) has the possibility of 

new legislation in cooperation with the European Parliament (EP) and the 

Council of the EU. In the following subchapters the most important legal basics 

of the EU for the current work are summarized. At first the Habitats Directive that 

has the aim to ensure the maintenance of biodiversity in Europe is explained 

shortly. After that the Water Framework Directive to improve or obtain water 

quality in the European member states is described. The final subchapter deals 

with the requirements of monitoring agricultural.    
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2.1.1. HABITATS DIRECTIVE 

The COUNCIL DIRECTIVE 92/43/EEC of 21 May 1992 on the conservation of 

natural habitats and of wild fauna and flora, also known as Habitats Directive, 

was published for all European member states in 1992. The directive has the 

aim to preserve and protect wild species and natural habitats and to build a 

connection between habitats all over Europe. The major goal of this Habitats 

Directive is to support the maintenance of biodiversity taking into account 

economic, social, cultural and regional requirements of each member state. 

To ensure the restoration or maintenance of natural habitats protected areas 

need to be defined that have a connection all over Europe to build a network 

of continuous natural habitats. After the DIRECTIVE 2009/147/EC of the EP and 

of the Council of 30 November 2009 on the conservation of wild birds the 

European member states additionally are asked to define specially protected 

areas for all wild birds naturally occurring in the European Union (EU Birds 

Directive, 2009). The Birds Directive is only mentioned for the sake of 

completeness as the protection areas defined in the Habitats Directive 

together with those defined in the Birds Directive build a network of natural 

habitats known as NATURA 2000 protection territories. Those NATURA 2000 

protected areas have the aim to preserve and maintain wild flora and fauna 

of high conservation value and thereby sustainably ensure the natural 

biodiversity in Europe. Species with high conservation value are defined in the 

appendix of the Habitats Directive and have to be protected in all member 

states where they occur. These definitions of habitat types with high ecologic 

value are attached in ANNEX A. To fulfil the ecologic requirements of protected 

species and ensure their maintenance a system of interlinked biotopes is 

essential. Once the NATURA 2000 sites have been accepted a regularly control 

of the conservation status as well as the monitoring of actions for improvement 

has to take place every six years (EU Habitats Directive, 1992). In order to 

enable reliable assessments extensive information concerning the unique 

habitats and species, their development status and possible threats is needed.   

With accession into the EU in 1995 Austria agreed to implement the European 

directives and thus the conversation and maintenance of natural biodiversity. 

Due to the legal situation in Austria the legislative and executive jurisdiction of 

conservation falls under the competence of the nine provinces. Therefore, both 

directives have been implemented in corresponding national laws like the 

Nature Conservation-, the Hunting-, the Fisheries-, the National Park-, the 

Regional Development Act and others. The site selection process was done by 
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the provinces having regard to the habitat types or species mentioned in the 

Habitats- and Birds Directive. In 2012 Austria had nominated 218 NATURA 2000 

sites that take in total 15 % of the Austrian territory and from which 167 are 

legally ordered (Federal Environmental Agency, 2015). The distribution of 

NATURA 2000 sites over the Austrian provinces can be seen in Table 1. 

 

Table 1: NATURA 2000 sites in Austria, 2012 (European Environment Agency, 2012) 

Austrian Province Number of 

NATURA 2000 

sites 

NATURA 2000 

Areas  

Share of the 

Province’s Area 

Burgenland 14 1,100 km² 27.7 % 

Carinthia 33 557 km² 5.8 % 

Lower Austria 36 4,414 km² 23.0 % 

Salzburg 29 1,091 km² 15.3 % 

Styria 41 2,557 km² 15.6 % 

Tyrol 13 1,836 km² 14.5 % 

Upper Austria 25 744 km² 6.2 % 

Vienna 4 55 km² 13.2 % 

Vorarlberg 23 211 km² 8.1 % 

Austria in total 218 12,565 km² 15.0 % 

 

Consequently, to fulfil the requirements of the Habitats Directive as well as those 

of the Birds Directive Austria has to regularly monitor the area of 12,565 km² with 

a resolution high enough to detect the development status of natural habitats 

and species and possible future threats of their maintenance. 

 

2.1.2. WATER FRAMEWORK DIRECTIVE 

In 2000 the Water Framework Directive printed as the DIRECTIVE 2000/60/EC OF 

THE EP AND OF THE COUNCIL of 23 October 2000 establishing a framework for 

community action in the field of water policy has been published. The main 

goals of the directive are the sustainable management and the protection of 

freshwater resources to ensure a stable quality and quantity. Through the Water 

Framework Directive the EU regulates the abstraction of freshwater and 

develops an integrated water policy in the European community. Additionally 

to the protection and improvement of the water quality the Water Framework 

Directive requests the protection and improvement of directly adjacent 
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aquatic and terrestrial ecosystems and wetlands. All member states are 

required to reach at least a good water status. If a good status already exists 

this needs to be maintained. Due to a defined time frame the Water Framework 

Directive has to be implemented until 2015 – in exceptional cases until 2027. To 

analyze the freshwater status the member states are asked to monitor the 

water development on a systematic and comparable basis every six years (EU 

Water Framework Directive, 2000).   

In Austria the Water Framework Directive has been implemented in 2003 in the 

Water Rights Act. With the Monitoring of the Quality of Water Bodies Regulation 

in 2006 all Austrian monitoring programs have been adapted to the 

requirements of the European directive. Three different types of monitoring 

programs have been formed: the surveillance-, the operational- and the 

investigative monitoring program. The surveillance monitoring is used to 

distinguish large scale trends in water quality while the operational monitoring 

especially takes care of the water bodies that have been rated in the inventory 

with “not clear” or “unlikely” in reaching the quality goals. The investigative 

monitoring program is used if the cause of appearing pollution is unknown or if 

accidental pollution occurs.  

 

2.1.3. LEGAL REGULATIONS FOR AGRICULTURE 

When the council of the EU legislated the COUNCIL REGULATION (EC) No 

1782/2003 of 29 September 2003 establishing common rules for direct support 

schemes under the common agricultural policy and establishing certain 

support schemes for farmers, a link between agriculture and conversation has 

been built. Considering other regulations this regulation predicates agricultural 

direct payments with the compliance of regulations in the field of conservation, 

feed and food safety, animal health and plant health. Due to the cross 

compliance of this regulation cropland has to be maintained in good 

agricultural and environmental conditions. Good agricultural and 

environmental conditions mean among others the maintenance of soil organic 

matter, prevention of erosion and the regeneration of brownfield sites (EU 

Single Farm Payment Regulation, 2003). Especially the monitoring of the 

agricultural areas can be linked with the requirements of the Habitats- and the 

Water Framework Directive as all three ask for a regularly, areal monitoring.  
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2.2. REMOTE SENSING 

Remote Sensing is defined as the science to derive information about the 

earth’s surface through a sensor that is not in physical contact with the 

observed object. In order to accomplish remote sensing of an object the 

reflected and emitted electromagnetic radiation of the earth’s surface in 

multiple regions of the electromagnetic spectrum is measured (Campbell, 

2002). The whole range of the electromagnetic spectrum is shown in Figure 1. 

As can be seen the light visible for the human eye is only a minor part of the 

spectrum and ranges from about 400 nm to 700 nm. Because the different 

ranges of the electromagnetic spectrum are overlapping and have no sharp 

boundary differences can be found in literature. The whole idea of remote 

sensing is based on the fact that each material reflects, absorbs, transmits and 

emits electromagnetic radiation in a unique way.  

 

 
Figure 1: Electromagnetic spectrum and its use for remote sensing (Albertz, 2007 with modifications) 

 

Although the light visible for a human eye makes only a small part of the whole 

spectrum this part is very important and mainly used in remote sensing. 

However, short-wave radiation like ultraviolet radiation or X-rays is not useful for 

remote sensing. The range above 700 nm includes infrared (IR) and thermal 

radiation as well as micro- and radio-waves. Optical sensors measure radiation 

reflected by the earth’s surface in the range from near-IR (NIR) to far-IR while 
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non-optical sensors, in the narrow sense radar sensors, collect data about 

objects on the earth mainly using microwaves (Albertz, 2007). 

When in the middle of the 19th century the Frenchman FÉLIX TOURNACHON 

took the first aerial images from a hot-air balloon (Löffler et al., 2005) the idea 

of remote sensing was born and started developing. In the following years the 

field of remote sensing derived benefit from technical progress in aviation and 

photo technology. After World War II the first colored aerial images have been 

taken (Matusch, 2009). When in 1972 the National Aeronautics and Space 

Administration (NASA) launched Landsat-1 the first earth observation satellite 

for cartography started operating (USGS, 2015).  

In general remote sensing includes two major recording techniques which are 

active and passive procedures. While passive systems use the sun as source for 

radiation, active systems work independently from solar light by having an own 

radiation source on board. On the way from the sun to the earth and back to 

the sensor incident radiation is affected by disturbing influences especially in 

the atmosphere. The effect of absorption means the transformation of 

radiation into a different energy form which leads to a loss for remote sensing. 

However, scatter describes the effect of distraction and dispersion of radiation 

caused by aerosols. Both influences, together called extinction, reduce the 

measurable radiation. Naturally active systems are subject to the same 

disturbing atmospheric influences. To counter this, long-wave radiation of 1,000 

mm is used, as the degree of atmospheric transmission depends on the 

wavelength of radiation (Albertz, 2007).  

Another important factor is the atmospheric transmittance which is also 

included in Figure 1. Only in the atmospheric windows remote sensing can be 

applied. Another factor also having a large influence for the results of optical 

sensors are clouds. The high cloud density in some regions complicates a high 

resolution long-term monitoring a lot, wherefore radar systems are mostly used 

in these areas. 

Nowadays the monitoring tasks of the EU member states required by legal 

regulations are mostly fulfilled using earth observation satellite systems. 

Therefore, the monitoring results of satellite systems especially in terms of 

vegetation classification, geomorphology and change detection are 

evaluated in the present work. By introducing a small RPAS for further 

environmental monitoring task the classification results are tried to be 

improved. The following subchapters will go into detail about the possibilities of 
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earth observation with satellite systems as well as the advantages of using 

RPASs.  

 

2.2.1. EARTH OBSERVATION WITH SATELLITE SYSTEMS 

Since the first earth observation satellite was launched more than forty years 

ago the constructers of satellites continually improved the spatial resolution. 

Caused by novel technologies and rapid development the US American 

Landsat series with a spatial resolution of 30 m has been exceeded by the 

French SPOT satellites with a resolution of 10 m but also they have been 

surpassed by the Indian satellites IRS 1C and 1D with a nominal resolution of 5 m 

in the panchromatic spectral range within a few years. Nevertheless, when 

IKONOS delivered the first images with a spatial resolution below 1 m the world 

was surprised about the resolution comparable to an ortho-photo in an image 

that had been taken from 680 km altitude (Mansberger and Eisl, 2009).  

Through continuous further development currently operating Civil Earth-

observation satellites deliver data with ground resolutions down to 50 cm/pixel 

(in part data with higher detail, currently down to 30 cm/pixel, is acquired but 

not provided to customers due to limitations of the US law). A summary of the 

specifications of the data acquired by current VHR satellite systems is given in 

Table 2. Most current systems of this type provide high spatial-resolution data in 

only four spectral bands (3 visible, 1 near infrared), thus allowing for 

composition of near-real color image products and false-color infrared image 

products for vegetation applications, for example. To date, only WorldView-2 

and WorldView-3 go beyond this by providing 8 multispectral bands each, 

significantly increasing the potential to discriminate among various land-cover 

classes. 

 

Table 2: VHR Satellite Systems (DigitalGlobe, 2013a, 2013b and Satellite Imaging Corporation, 2015) 

System Ground 

resolution            

ms (pan) 

Spectral 

Resolution 

(Bands) 

Swath width 

IKONOS 3.20 m (0.82 m) 4 MS + 1 PAN 11.3 km 

GeoEye-1 1.65 m (0.41 m) 4 MS + 1 PAN 15.3 km 

QuickBird 2.16 m (0.55 m) 4 MS + 1 PAN 14.9 km 

WorldView-2 1.85 m (0.46 m) 8 MS + 1 PAN 16.4 km 

WorldView-3 1.24 m (0.31 m) 8 MS + 1 PAN 13.1 km 

Pleiades (1A and 1B) 2.00 m (0.50 m) 4 MS + 1 PAN 20.0 km 

Eros B -  (0.70 m)       1 PAN   7.0 km 
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Particularly regarding hyperspectral satellites, which are significantly more 

suitable for multidimensional remote-sensing tasks because they combine 

spectroscopy and imaging, only a very limited number of civil space borne 

hyperspectral instruments are operating so far. For instance, the Hyperion 

sensor onboard NASA’s scientific Earth Observing-1 (EO-1) platform is acquiring 

data in 220 bands, but with a spatial resolution of only 30 m/pixel (Thenkabaill 

et al., 2012).  

The use of satellite systems for environmental monitoring mainly depends on 

three factors: spatial, spectral and temporal resolution. As a rule satellite 

systems with a high spatial resolution in most cases only have a low spectral 

resolution and vice versa. The temporal resolution of a satellite system is 

determined by its orbit which usually defines a time of revisit of several days. 

 

2.2.2. REMOTELY PILOTED AIRCRAFT SYSTEMS 

The development of RPASs started in the 1950s with main focus on military use 

where the RPASs could demonstrate their operational capacity. But RPASs 

additionally have a great potential for civil applications and are expected to 

bring important benefits into a wide variety of applications (EC, 2012).  

In general small RPAS platforms can be roughly divided into Vertical Take-off 

and Landing (VTOL) Systems, mainly implemented as quadro- or octo-copter 

systems and fixed-wing systems. VTOL Systems are mainly used for surveillance, 

real-time video streaming, perspective imaging for touristic applications and 

point-related sensor measurements. They are very well-suited for local problems 

and short-time missions. Due to their available payload capacity of up to one 

kg, they are also suitable for carrying sensors of such mass for short mission 

duration of up to approximately 30 minutes. A significant disadvantage of 

these VTOL systems is their vulnerability against adverse weather conditions, 

especially including higher wind speeds. However, fixed-wing systems fly 

comparably stable even in adverse weather conditions and therefore are 

more suitable for environmental monitoring tasks. 

Compared to satellite systems for environmental monitoring RPAS platforms 

have some significant advantages. Using a RPAS the spatial resolution can be 

adjusted by changing the altitude of flight and therefore can easily be 

adapted to the user’s needs. The spectral resolution depends on the camera 

sensor that is mounted on the system but the temporal resolution can also be 

adapted because the system is not dependent on an orbit and is operational 

whenever the user wants to take images. Additionally to the comparison 
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between satellite systems and RPASs for environmental monitoring, the present 

project researches on the potential of both systems. 

 

2.2.3. MULTISPECTRAL AND HYPERSPECTRAL DATA  

The whole idea of remote sensing is based on the fact that each material 

reflects, absorbs, transmits and emits electromagnetic radiation in a unique 

way. Through remote sensing the reflectance of each material can be 

measured in different regions of the electromagnetic spectrum. Thereby a 

reflectance value of 100 % means that the whole light striking an object is 

reflected from the object and is detected by the sensor. Contrariwise the 

reflectance value is said to be 0 % if none of the energy returns to the sensor. 

Through the principle of reflecting light with different percentage values in the 

diverse regions of the electromagnetic spectrum each material creates its own 

spectral signature. Figure 2 shows spectral signatures of different materials. For 

instance the spectral signature of green grass stays relatively low in the visible 

light. As it has its highest value in the visible spectrum of green light it appears 

to look green for the human eye. But in the NIR light the spectral signature of 

green grass suddenly increases to a reflectance value of about 40 %. After 

another lower peak in the mid-IR it decreases again. Because the spectral 

signature contains much more information than detectable in visible light, it 

can be used to differentiate more precisely between different materials. As 

shown in Figure 2 with the green and red graph the spectral signature makes it 

possible to even differentiate between green and dry grass as the reflectance 

values differ a lot in the electromagnetic spectrum.  

 

 
Figure 2: Spectral signatures of different materials (Ashraf et al., 2011) 
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Based on this idea of each material having a unique spectral signature the 

difference between multispectral and hyperspectral sensors can be explained. 

While multispectral sensors usually have only four, in exceptional cases 

(WorldView-2 and WorldView-3) eight bands, hyperspectral sensors have 

hundreds of continuous spectral bands available. For instance, the Hyperion 

sensor onboard NASA’s scientific Earth Observing-1 platform is acquiring data 

in 220 bands with a bandwidth of 10 nm each (Thenkabaill et al., 2012). 

Understandably a complicated spectral signature can be approximated much 

better with 220 available values than with four (or eight). Therefore, 

hyperspectral data are more suitable to extract specific objects from the data 

set.  

In general multispectral image pixel vectors have poorer information than 

hyperspectral image pixel vectors. For that reason multispectral image 

processing is mainly based on image spatial information and correlation to 

compensate insufficient spectral resolution. Therefore, spatial domain-based 

techniques predominate in multispectral image processing. However, with the 

introduction of hyperspectral sensors materials that cannot be made visible 

with multispectral sensors are now analyzed from hyperspectral data. 

Consequentially application areas for multispectral and hyperspectral data 

differ according to target and objects to be analyzed. While for multispectral 

data land cover is from major interest on the contrary the objects of interest in 

hyperspectral data are mainly targets with particular spectral characteristics. 

Generally these types of targets appear either as a mixture of different 

materials or as a mixed pixel due to their size being smaller than the sensor’s 

spatial resolution. Additionally these types of targets usually have a low 

probabilistic of occurrence. For that reason image processing techniques for 

multispectral data usually perform pattern classification and analysis assuming 

that each pixel belongs to one particular spatial class. On the other hand 

targets of hyperspectral data analysis can only be detected at mixed or 

subpixel level and traditional spatial domain based image classification 

algorithms may not be suitable. Algorithms for hyperspectral data analysis 

need to extract targets based on their spectral profile and have to perform 

target based detections (Chang, 2013). 

 

2.2.4. PHOTOGRAMMETRY 

As another form of remote sensing, photogrammetry started developing 

between 1850 and 1900 with the plane table photogrammetry, the analysis of 
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complexly manufactured visualizations of the landscape (Linder, 2005). After 

Slama (1980) photogrammetry is defined as an art, science and technology of 

obtaining reliable information about physical objects and the environment 

through processes of recording, measuring and interpreting photographic 

images and patterns of recorded radiant electromagnetic energy and other 

phenomena. Photogrammetry can be divided into four categories based on 

the camera position (Ahmad, 2013): 

 

 Aerial Photogrammetry; the camera is positioned at > 300 m altitude 

 Close-Range Photogrammetry; defined as < 300 m altitude 

 Terrestrial Photogrammetry; the photo is taken near to the ground 

 Outer Space Photogrammetry; the photo is taken from space 

 

For the present project close-range photogrammetry is used to calculate a 

Digital Surface Model (DSM) from the highly overlapping RGB data collected 

during RPAmSS missions. The calculation is done using the Software Agisoft 

PhotoScan. The DSMs of the project sites are then used as additional 

information to support the classification procedures. Besides the use of the 

original multispectral, RGB and Near Infrared (NIR) data for classification the 

height information of the photogrammetrically-derived DSM in combination 

with the original data is used to achieve a better classification result. 

 

2.2.5. VISUAL IMAGE INTERPRETATION 

Meanwhile the Second Italian War of Independence in 1859 and the American 

Civil War in 1861-65 the idea of taking aerial images from a balloon and later 

from other aerial vehicles started developing. Simultaneously, the visual image 

interpretation has been established. Early on, the applicability of aerial images 

not only for military applications has been recognized. While petroleum 

industries have been one of the most consistently using aerial image 

interpretation, nowadays especially forestry is taking advantage of this 

technique (Hagen, 1950).  

Visual image interpretation in forestry and other arboricultural application 

areas is useful to extract information about tree height, volume of wood 

growing, tree species and others. Although the preparation takes some time, 

this technique is especially useful for mapping larger areas. Mapping tree 

species requires an interpretation key to build a connection between the 

appearance of an object in nature and how the same object is visualized in 
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the image. Of main importance for identification purposes are therewith color, 

texture, shape of the shadow if visible and size of the object. The normal 

procedure for visual image interpretation aiming in vegetation species is to start 

in the field and map the vegetation in a representative sample area. 

Preferably, each species of the complete study site should be present in the 

smaller sample area at least once. After the species are mapped and their 

location is known an interpretation key is developed using all available 

information. An example of a tree interpretation key for forestry in southern 

Oregon and northern California can be seen in Figure 3. Finally, each object in 

the image is identified according to the interpretation key (Oester, 2003).  

 
Figure 3: Partial key to identification of tree species in southern Oregon and northern California on large-

scale, color aerial photographs (Ciesla and Hoppus, 1990) 

 

The main difficulty in visual tree identification based on aerial images is the 

missing information compared to profile view. While in aerial images each tree 

crown appears more or less circular, laterally viewed crown shapes differ 

enormously between species. Figure 4 shows four main tree species of central 

Europe and their appearance in above and laterally view. Other information 

an expert would consider outside in the field for tree identification are bark 

structure, leaf shape and bud appearance. Although some of these 

information might not be visible caused by seasons and tree location, there are 
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always some characteristics to at least identify the species. Due to camera 

angle and limited resolution these information are not included in most aerial 

images. Therefore, the interpreter needs to change his habit of tree 

identification and develop and use an interpretation key to ensure proper 

identification. Visual image interpretation should always be conducted by 

experts in the field of interest as they have experience how different objects 

appear and are able to develop and apply a meaningful interpretation key. 

In this project visual image interpretation is used on the one hand as part of the 

reference data acquisition and on the other to examine the interpretability of 

VHR RGB RPAS-derived images. 

 
Figure 4: Four main tree species in above and laterally view (Engleder, 2004 with modifications) 

 

2.2.6. IMAGE CLASSIFICATION 

Classification is the process of sorting pixels into a defined number of categories 

according to their data values. A class or category includes all pixels that satisfy 

a set of certain criteria. Depending on the type of information that should be 

extracted from the original data, classes can either represent areas with 

different appearance or be associated with known features on the ground. In 

general two different classification methods can be applied: unsupervised and 

supervised training (Jensen, 2005). 
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Unsupervised classification is the process where the user specifies some 

parameters which the computer uses to find statistical patterns. These patterns 

are detected based on the clustering of pixels with similar spectral 

characteristics and do not necessarily stand in the context of the analyzed 

scene. Unsupervised classification is mostly used when there is less knowledge 

about the data and possible classes. However, supervised training gives the 

analyst more control by selecting single pixels and assign them to certain 

classes. To classify data using supervised classification, at first the computer 

needs to be trained to be able to recognize patterns. Therefore, reference 

data are required. According to the selected pixels the computer identifies 

other pixels with similar characteristics to form classes. To make use of this 

method, knowledge about the data and the aimed classes is required. The 

result of the training phase is a signature for each class containing data to 

define the content of the class. Based on the signature a mathematical 

algorithm, known as decision rule, is formulated and applied to data for 

classification (Jensen, 2005).  

 

2.3. BIOTIC AND ABIOTIC PRINCIPLES 

As every ecosystem natural flowing rivers are characterized by biotic as well as 

abiotic factors. Plants growing adjacent to rivers have a significant influence 

on its dynamic and sediment load but otherwise are dependent on the flood 

delivering nutrients. Pioneer species with their capacity of rapid spread 

populate newly formed banks and therewith create landing zones for softwood 

meadows. Invasive neophytes displace species, endanger indigenous 

biotopes and disturb the natural equilibrium. The stability of a river regarding 

morphologic changes depends on the relation between water flow, sediment 

load and bed grain size. To determine a river’s ecological value and predict 

the future drainage basin among others the soil type of the river bed needs to 

be included as important factor.  

 

2.3.1. RIVER VEGETATION 

For long-term survival trees need to make high investments because of 

relatively slow growth, long life duration and the need to adapt to evolving 

locational factors because of immobility. Therefore, different tree species have 

developed their own survival strategy and thus two major survival strategies 

have been established. Pioneer tree species are those tree species that 
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populate open spaces at first using their high spread potential, like willow 

(Salix), birch (Betula), pine (Pinus), ash (Fraxinus), poplar (Populus) and alder 

(Alnus). A birch forest as an impression of pioneer species is shown in Figure 5. 

On the contrary, climax tree species appear much later in the regeneration 

cycle and focus on the strategy to respond the pressure in the competitive 

environment. Climax tree species usually have a high life expectancy like 

beech (Fagus) and oak (Quercus). Figure 6 shows a beech as representative 

of the climax tree species. Another group is formed by the tree species that 

neither belong to the pioneer- nor the climax tree species. This group is called 

transition tree species and includes trees like maple (Acer), lime tree (Tilia) and 

hornbeam (Carpinus). 

 

 
Figure 5: Birch Forest representing Pioneer Species 

(Arnoldius, 2012) 

 
Figure 6: Beech representing Climax Species 

(Augsburger Allgemeine, 2013) 

 

Table 3 has a comparative look at the characteristics of pioneer- and climax 

tree species. This table highlights the major goal of the different survival 

strategies. While pioneer species aim to secure the survival of the species in 

having high regrowth potential, a low life expectancy and a high spread 

potential in being dispersed by the wind, climax species aim to secure the 

survival of the individual. Climax species ensure this with a high life expectancy, 

high competitive strength and a high shade tolerance. Seeds are distributed 

slowly using conservative dispersion pattern that only reach the surrounding 

area. The CODIT (compartmentalization of decay in trees, in the 1990s 

reformulated to compartmentalization of damage in trees) model developed 

by Shigo and Marx (1977) explains the process of compartmentalization of 
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decay in trees. With regard to the CODIT model pioneer species are sensitive 

to damages because they have a low compartmentalization while climax 

species have a high compartmentalization and therewith are able to deal 

better with decays and damages.  

 

Table 3: Comparison of pioneer and climax tree species (Leitsch, 2012)  

Pioneer Tree Species Climax Tree Species 

High regrowth potential Low crown elasticity 

Low life expectancy  High life expectancy 

High spread potential Slow spread  

Low shade tolerance High shade tolerance 

Broad site amplitude High competitive strength 

Low compartmentalization  High compartmentalization 

High risk tolerance Conservative strategy 

Aim: Secure survival of the species Aim: Secure survival of individual 

  

Pioneer species are from certain interest for natural conservation because they 

usually expand first on open spaces and for this reason can have a disturbing 

effect to executed actions in the field of river restoration. Water flow and 

sedimentation experience a braking effect caused by the root penetration of 

newly established species. Another vegetation group having an influence on 

the existing flora are the invasive neophytes.  

Caused by globalization and export of goods around the whole world 

exogenous species are introduced into local landscape either purposely as 

ornamental or useful plant or accidentally as innocent bystander in global 

transportation. Because of climate change good conditions are offered for 

some of these invasive plants and they begin to spread. These neophytes which 

manage to establish permanently are an issue for natural conservation 

because they displace indigenous species and have an impact on the natural 

equilibrium. Furthermore, in river environments invasive plants can impair flood 

protection in endangering stability of the embankment zones. After the Federal 

Environment Agency (Essl & Rabitsch 2002) in Austria 17 invasive neophytes exist 

which are relevant from a nature conservation perspective. Additionally 18 

species are declared as potentially invasive and are expected to cause 

problems in the future. All of these 17 neophytes grow more or less as a matter 

of priority in river environments. All invasive species of Austria are introduced in 
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Table 4 (Magnes, 2012 and German Federal Office of Nature Conservation, 

2015).  

The European Network on Invasive Alien Species (NOBANIS) was developed as 

a result of the recommendations formulated on the Convention on Biological 

Diversity’s 6th meeting of the Conference of Parties in 2002. Aim of NOBANIS is 

the establishment of a database including all invasive species that are currently 

present or might become invasive in the future in the participating countries 

(NOBANIS, 2015).  As another database DAISIE (Delivering Alien Invasive 

Species Inventories for Europe) funded by the sixth framework program of the 

EC includes many exogenous species growing in European countries (DAISIE, 

2015). 

 

Table 4: Neophytes in Austria (Austrian Federal Environment Agency, 2015 and NOBANIS, 2015, the images 

are from the NOBANIS fact sheets, Stiftung Hessischer Jaegerhof, 2015 and Intermountain Region, 2015) 

Name Botanic Name Description Impression 

Ash-leaved 

maple 

Acer         

negundo 

Small tree, grows 

amongst others in 

alluvial forests, 

danger of 

displacement of 

indigenous species  

Tree of      

heaven 

Ailanthus  

altissima 

Appears 

predominantly in 

urban areas but 

grows also in alluvial 

forests, builds 

monocultures and 

displaces species  

Flat-leaved 

aster 

Aster                   

novi-belgii 

Herbaceous plant, 

displacement of 

indigenous species 

through rapid 

expansion  

Lancet-

leaved aster 

Aster   

lanceolatus 

Perennial plant, 

displacement of 

indigenous species 

through rapid 

expansion 
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Common 

tickseed 

Bidens        

frondosa 

Annual herbaceous 

plant, displacement 

of indigenous 

species 

 

American 

waterweed 

Elodea 

canadensis 

Aquatic plant, 

displacement of 

pondweeds 

through rapid 

expansion 
 

Hairy         

willow-weed 

Epilobium 

ciliatum 

Perennial 

herbaceous plant, 

potential risk of 

hybridization with 

indigenous species 
 

Japanese 

knotweed 

Fallopia   

japonica 

Up to 3 m high 

shrub, spread 

through rhizomes, 

danger of 

destabilization of 

banks  

Green             

ash 

Fraxinus 

pennsylvanicum 

Deciduous tree, 

occurrence in 

alluvial forests, 

overgrows flood 

channels, 

displacement of 

indigenous species 
 

Topinambour  Helianthus 

tuberosus 

Perennial 

herbaceous plant 

used for agriculture, 

occurrence in 

riverine areas leads 

to displacement of 

species  
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Giant   

hogweed 

Heracleum 

mantegazzianum 

Perennial 

herbaceous plant, 

forms photo 

toxically-effective 

substance, 

displacement of 

indigenous species  

Himalayan 

balsam 

Impatiens 

glandulifera 

Annual tall shrub, 

displacement of 

indigenous species 

through rapid 

expansion 
 

Canadian 

poplar 

Populus x 

canadensis 

Deciduous tree, 

especially 

displacement of the 

black poplar 

(Populus nigra), 

genetically 

influences black 

poplar 

 

Locust           

tree 

Robinia 

pseudoacacia 

Deciduous tree, 

mostly occurs in 

urban areas but 

also in river 

environments, 

displacement of 

species through 

enrichment of soils 

with nitrogen 

 

Cut-leaved 

daisy 

Rudbeckia 

laciniata 

Perennial 

herbaceous plant, 

displacement of 

indigenous species 

 

Canadian 

goldenrod 

Solidago 

canadensis 

Herbaceous plant, 

displacement of 

indigenous species 

through rapid 

expansion  
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Late    

goldenrod 

Solidago 

gigantea 

Herbaceous plant, 

displacement of 

indigenous species 

through rapid 

expansion  

 

While most of the invasive neophytes hold the risk to displace indigenous 

species caused by their massive spreading, some neophytes like the giant 

hogweed are additionally toxic for humans. Others like the Japanese 

knotweed destabilize river banks with their missing establishment of fine roots. 

Locust trees sustainably change soil compositions by enriching them with 

nitrogen collected from the air. And other invasive plants like the hairy willow-

weed and the Canadian poplar genetically influence other subspecies. For 

natural conservation it is important to know about the occurrence of 

neophytes to keep them in bay and protect indigenous species. 

The probably most significant spectral characteristic of Austrian neophytes is 

their individual flowering time. However, the flowering time is highly influenced 

by seasonal conditions and some neophytes only bloom inconspicuously. But 

plants comply with the phonological calendar and therefore, the flowering 

time of each species will always follow a certain order.  

 

2.3.2. GEOMORPHOLOGY OF RIVERS 

The zonation of dynamic rivers in general depends on the ground water and 

duration of flood events. As natural retention basins alluvial forests are 

important for flood safety and their soils fulfil filter functions to clear water. 

Contrariwise flood events are of major importance for alluvial forest because 

they enrich soils with nutrients and contribute to a genetic exchange caused 

by the current and transposition of species. Figure 7 displays the cross zonation 

of an ordinary flowing water in Europe. Hereby low water describes the situation 

when the water level lies significantly below an as normal declared status. As a 

consequence of meteorologically related lack of precipitation low water is 

subject to seasonal fluctuations. The zone covered with water in a low water 

phase is called water zone and usually characterized by a soil consisting of 

gravel and brash. In rivers with a natural dynamic the riverbed often changes 

through erosion and sedimentation. The water meadow zone of a natural river 

is situated directly adjacent to the water. Therefore, this zone is frequently 

flooded throughout the year. Dividing the water meadow zone again in three 
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parts, the part closest to the river mainly is populated by annual species. Above 

low growing grasses and herbs settle and finally the third part is characterized 

by river reeds and tall grasses. The sediments are coarser grained caused by 

the increased current and mainly consist of gravel, brash and partly sand. The 

sandy-gravelly soils of the softwood meadow are flooded up to 190 days per 

year. Additionally to the mechanical tension and pressure of the water the 

trees need to compensate oxygen deficiency at the roots. Therefore, the trees 

have developed different strategies to absorb oxygen and the most frequently 

represented species of this zone are willows and gray elders. Caused by the 

missing river dynamics nowadays softwood meadows are often replaced by 

hardwood meadows which leads to a loss of these habitats and therewith 

certain species. The hardwood meadow zone is characterized by shorter 

flooding time and more mature soils because of the larger distance to the 

water body. Typical species in a hardwood meadow are oaks and elms but 

also ashes and field maples. These species usually have to tolerate a flooding 

time of up to three months per year caused by the peak flood. The rich soil in 

a hardwood meadow consists of fine grained components, mainly clay and 

sand. Nowadays most remaining hardwood meadows are no longer flooded 

regularly but have at best a groundwater connection (Roth-Kleyer, 2009 and 

2011 and Scheidegger et al., 2012).  

 

 
Figure 7: Vegetation sequence of an idealized cross section of a bed load carrying river with dominant 

summer high water in Central Europe (Ellenberg and Leuschner, 2010 with modifications) 
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Soils are composed of solid, liquid and gaseous components whereby the solids 

are of organic and inorganic nature. Additionally to the separate grain sizes of 

the basic material newly formed clay minerals and salts belong to the inorganic 

components. The grain size distribution of a soil mainly depends on its basic 

material and past weathering processes. The organic components of soil 

include living organisms as well as plant roots and dead organic materials like 

plant residues and dead micro-organisms. Liquid soil water fulfils the function of 

a solvent and transporting agent for plant nutrients and colloid substances. 

Besides soil water soil vapor fills the pores and ensures oxygen supply of the 

plant roots and life of soil organisms. In general soils are classified based on their 

percentage content of main soil types which are gravel, sand, silt and clay. The 

grain diameters of the main soil types are stated in Table 5. Figure 8 displays a 

soil texture triangle which is used to classify the soil based on its content of each 

main soil type.  

 

 

 

Table 5: Main soil types and their grain diameters 

(Roth-Kleyer, 2009) 

Name Grain Diameter 

Stones, blocks > 60 mm 

g
ra

v
e

l 

Coarse gravel 20-60 mm 

Medium 

gravel 

6-20 mm 

Fine gravel 2-6 mm 

sa
n

d
 Coarse sand 0.6-2 mm 

Medium sand 0.2-0.6 mm 

Fine sand 0.06-0.2 mm 

si
lt
 

Coarse silt 0.02-0.06 mm 

Medium silt 0.006-0.02 mm 

Fine silt 0.002-0.006 mm 

clay < 0.002 mm 

 
 

 

 

Figure 8: Soil texture triangle to determine soil type 

(Bellingham, 2007) 

  

The morphology and dynamics of a fluvial system are controlled by several 

interrelated variables. After Lane (1954) river channels are formed, maintained, 

and altered based on two main influences: flows and sediment loads. 

Equilibrium is achieved through a balance of the four factors sediment load, 

bed sediment size, stream discharge and stream slope. For that reason 
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equilibrium occurs when the streamflow power is constant over the length of 

the stream resulting in no changes in the shape.  

Caused by seasonal precipitation and other factors natural dynamic rivers 

usually not reach equilibrium but change morphologically. The soil type of a 

river bed can provide information about the river bed’s stability. While clayey 

or rocky bed and banks usually indicate high stability silty, sandy or gravely bed 

and banks normally form less stable systems with high morphologic change 

potential. Through sedimentation of particles in calmer regions and erosion in 

regions with strong current a natural river forms its bed, promotes high 

biodiversity and fulfils its ecosystem function. Sediment rearrangement is 

important for the species in alluvial forests and to build temporal gravel- and 

sand banks with high ecologic value (Scheidegger et al., 2012). 
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3. RELATED WORK 

Due to the rapid development of the RPAS market in combination with the 

requirements of the European Union for environmental monitoring a variety of 

different related research projects have been performed. Salamí et al. (2014) 

focused on the survey of vegetated areas with a RPAS and concluded that 

these remote systems are especially useful for precision agriculture and their 

high potential for diverse application areas presently only is limited by legal 

restrictions.  

In 2009 Rango et al. researched on the applicability of a RPAS for rangeland 

monitoring. Besides the use of traditional classification algorithms they gave the 

aerial images to experts in the field of rangelands for visual interpretation. With 

their experiments they showed that the RPAS is directly applicable to 

operational agency needs for measuring and monitoring rangelands.  

As a service center of the Utah Water Research Laboratory at Utah State 

University the AggieAir Flying Circus has developed a RPAS called AggieAir. This 

platform is able to acquire multispectral data for riparian and wetlands 

applications. In different projects the AggieAir Flying Circus has proven the 

applicability of the AggieAir platform for fish habitat mapping and monitoring 

(Jensen et al., 2011) and mapping and predicting the growth of invasive plant 

species in wetlands (Zaman et al., 2011).  

Although the principles of river restoration are now quite well established, some 

aspects like the monitoring process still need to improve (Palmer et al., 2005). 

As Carbonneau et al. (2012) showed in a recent review in the area of fluvial 

remote sensing radar, Light Detection And Ranging (LiDAR) and RPAS 

approaches represent the most recent and least used and completed systems 

for applied uses in river environment. To counter this a research project was 

performed by Dufour et al. in 2013 with the aim to illustrate recent 

developments and perspectives for riparian vegetation monitoring purposes. 

Therefore, they used three different image sources: LIDAR, radar and RPAS. 

Because of the high overlap of RGB images collected by RPAS they could be 

used to photogrammetrically derive local DSMs. They concluded that LiDAR, 

radar and RPAS images notably allow a three dimensional characterization of 

vegetation through DSM regarding RPAS, point cloud concerning LiDAR and 

Shannon entropy for radar. 

In 2006 Frick published her thesis (PhD) about the utilization of highest resolution 

satellite systems for environmental monitoring after the Habitats Directive. She 
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presented a semi-automatic method for habitats classification in the 

northeastern part of Germany. After Frick the use of satellite images is a good 

way to improve large aerial environmental monitoring tasks. Additionally 

automatic classification facilitates and improves visual interpretation. 

Concerning geomorphology in 2013 Güneralp et al. delineated river-flow 

boundaries from digital aerial photography and ancillary images using Support 

Vector Machines. They found that Support Vector Machines perform 

satisfactory delineations of the boundaries using a multiscale evaluation 

scheme to not only evaluate the performance for the whole river reach but 

also for subriver sections. 

Lucas et al. published in 2014 their results of the development of an Earth 

Observation Data for Habitat Monitoring system. The aim of the system is to 

consistently map habitats of high ecologic value and monitor biodiversity 

throughout the EU. The highly automated system has been tested on VHR 

satellite data in NATURA 2000 sites in different member states. The results prove 

the applicability and transferability of the monitoring system to the natural 

conditions in different member states.  

Other related researches focus on automatic analyses of forest stands using 

remote sensing. In 2002 Atzberger and Schlerf presented their tool to 

automatically estimate stem density in coniferous forests from high resolution 

black-white ortho-photos. The method works with an accuracy of 

approximately ± 65 trees per hectare for stem densities varying between 200 

and 800 trees per hectare. Another study conducted by Lefsky et al. (2002) 

concentrates on the application of LIDAR remote sensing for ecosystem 

studies. The authors conclude that LIDAR remote sensing is an extremely 

accurate method for measuring topography, vegetation height and cover as 

well as more complex attributes of canopy structure and functions. 

These and much more projects have been used to get an overview about 

current works in the field of VHR remote sensing and habitats monitoring.  

 

3.1. CORINE LAND COVER AND COPERNICUS 

The CORINE (Coordination of Information on the Environment) Land Cover 

(CLC) project as part of the European CORINE program was intended to 

provide geographic information on the land cover in the EU member states 

and other European countries. The inventory was initiated in 1985 because the 

environmentally relevant data available at the time have not been 

comparable with regard to both content and structure. The CLC project is 
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supervised by the European Environment Agency and uses satellites to acquire 

land cover data in a scale of 1:100,000 (Federal Environmental Agency, 2014). 

The land cover inventory has been taken place in the years 1990, 2000, 2006 

and 2012. While the first two recordings have been taken with the American 

Landsat-5 and Landsat-7 satellites, CLC2006 and CLC2012 used the imagery of 

the Indian ResourceSat-1 and in addition the French SPOT-4 and -5 satellites for 

CLC2006 and the German RapidEye satellite for CLC2012 (Copernicus, 2015). 

Since the latest update in 2012 the CLC project monitors the land cover in 39 

states with a minimum mapping unit of 25 ha and a minimum width of linear 

elements of 100 m. The standard CLC nomenclature consists of 44 land cover 

classes (Federal Environmental Agency, 2014). CLC data sets provide spatio-

temporal data of land cover and land use information of Europe used to 

monitor changes of the earth’s surface.  

The objective of the European Copernicus land monitoring service is to provide 

information on land cover and land use to responsibles in the field of 

environmental and other terrestrial application areas. Previously known as 

Global Monitoring for Environment and Security (GMES) the Copernicus 

program started with the initial operations in 2011 with the objective of being 

fully operational by 2016 and is managed by the EC. Overall Copernicus 

consists of six thematic areas: land, marine, atmosphere, climate change, 

emergency management and security. The project uses earth observation 

satellites as well as in situ sensors such as ground stations, airborne and sea-

borne sensors to collect data from multiple sources (EC, 2015). 

 

Since 1992 the CLC project is performed in Austria under the responsibility of 

the Federal Environmental Agency. With the project Land Information System 

Austria (LISA) which was started in 2009 the basis for the computer-aided 

evaluation of ortho-photos has been created in Austria. Forming three phases 

the LISA project was finished in June 2015 as Austrian contribution to 

Copernicus. LISA uses earth observation imageries for analyzing and monitoring 

land cover and land use in Austria (LISA, 2015).  
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4. TEST SITES AND DATA BASIS 

 

The project has the aim to perform analyses on data captured with different 

remote sensing systems to evaluate their use for environmental monitoring of 

river environments according to the European legal situation. Therefore, the 

project sites should represent different natural characteristics to cover as much 

different land cover types with high ecologic value as possible. In the following 

both project sites at the river Gail and Drau in Carinthia, Austria, are described 

based on their natural characteristics. Additionally reasons for the choice of 

the VHR satellite systems WorldView-2, GeoEye-1 and QuickBird-2 as well as the 

systems’ characteristics are stated. Finally the RPA platform with its technical 

specifications, the reference data and the elevation data used are described. 

For acquiring the reference data traditional field sampling methods are 

performed by Austrian domain experts. In the end of this chapter Table 9 gives 

a summary of all data used in the present project.  

 

4.1. LOCATION AND DESCRIPTION OF PROJECT SITES 

For the choice of the project sites certain criteria concerning natural 

characteristics and location have to be fulfilled. Because the major aim of the 

survey is to test its applicability for the European directives the project areas 

should cover as much different monitoring requirements mentioned in the 

directives as possible. As stated in chapter 2 the Habitats Directive together 

with the Birds Directive asks for the monitoring of interconnected NATURA 2000 

protection sites while each directive on its own already requires a regularly 

monitoring of natural habitats. Additionally, after the Water Framework 

Directive all rivers and their directly adjacent ecosystems have to be monitored 

to ensure high water quality and quantity. For agriculture a bundle of related 

regulations ensures the maintenance or establishment of good environmental 

and agricultural conditions by linking the requirements to the agricultural direct 

payments.  

In recent years two different LIFE projects have been performed by the BMLFUW 

in NATURA 2000 protected sites at the rivers Gail and Drau. Both project sites 

are not only of importance in the sense of the Habitats Directive but 

additionally have a relevance for the Birds Directive as migratory birds use the 

areas for resting. In addition the Water Framework Directive can be applied to 
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both project areas because they include dynamic rivers. Being surrounded by 

agricultural fields both LIFE project sites cover all of the four presented legal 

regulations that ask for monitoring in the EU and demonstrate comparability as 

both of them have the same legal characteristics. Therefore, the LIFE project 

sites Gail and Upper Drau River are chosen as study sites in the present project. 

In the following their natural characteristics are described in detail. 

 

The first project site is the area of the Gail LIFE Nature Conservation project 

performed by the Austrian BMLFUW. Simultaneously this project site is 

accounted for NATURA 2000 site. The test area is located in Gailtal east of 

Hermagor and in between Pressegger See and Nötsch in Carinthia. An 

overview of the spatial spread of the project site is given in Figure 9. The project 

site has a total area of 83 ha and is located at an altitude of 580-600 m above 

the Adriatic Sea. The directly adjacent floodplain areas are represented by 

calcareous, sandy and silty soils and loamy and sandy soils while the soils far 

away from the river Gail are predominantly formed as fen soils rich in humus 

and lime-free transitional peat bogs. The river Gail traverses the project site as 

potentially meandering and braided river. In the project site the river is 

regulated with a trapezoidal- or duplicate trapezoidal profile. Through the 

reduction of the outflow’s cross sectional area the discharge capacity gets 

restricted and therewith the danger of flooding caused by the bursting of the 

dam increases. The fauna of the project site is comparatively well explored and 

with an amount of at least 35 species with high conservation value after the 

Habitats Directive the NATURA 2000 site is one of the most important protected 

areas in Carinthia. Additionally the project site is used by migratory birds as a 

resting place and therewith reaches supraregional significance (BMLFUW, 

2015a). 

 

For the second project side a part of the LIFE project Life Vein – Upper Drau 

River is chosen. The whole LIFE project area has a size of 977 ha and is located 

at an altitude of 525-640 above the Adriatic Sea (BMLFUW, 2015b). The NATURA 

2000 protection site includes Austria’s largest gray elder alluvial forest, in total 

19 indigenous fish species and extremely rare plant species like the German 

Tamarisk and the Dwarf Bulrush. Additionally the area residents more than 140 

bird species and is used as resting place by migratory birds on their crossing of 

the Alps (BMLFUW, 2015c). The extent of the second project site at the river Drau 

is shown in Figure 10. 
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Project Site I  

NATURA 2000 

protected area in 

Lower Gailtal, 

Carinthia at the 

river Gail 
 

Scale: 1:52,500 

N 

Figure 9: Project site I at the river Gail (KAGIS, 2015 and Glanznig, 2006) 
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Project Site II  

Part of NATURA 

2000 protected 

area at Upper 

Drau River, 

Carinthia 

Scale: 1:30,000 

 

 

Scale: 1:33,000 
N 

Figure 10: Project site II at the river Drau (KAGIS, 2015 and Glanznig, 2006) 
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4.2. SATELLITE IMAGERY 

To have a comparison between the collected RPAS and satellite data a 

satellite system needs to be chosen. Although Hyperion provides an interesting 

possibility of using a hyperspectral sensor with 220 bands the spatial resolution 

of 30 m is too low for the research purposes of the present project. Looking at 

the available VHR satellite systems WorldView-3 offers data with the highest 

spatial resolution of up to 31 cm in panchromatic range. Additionally this system 

has one of the highest spectral resolution with eight multispectral and one 

panchromatic bands. But data of WorldView-3 covering the project sites were 

not available in the starting phase of this project. As another VHR satellite 

system WorldView-2 is the main choice for resenting data collected with earth 

observation methods for environmental monitoring. With its high spatial 

resolution this system is especially suitable for local analysis as treated in this 

project. 

Launched in October 2009 by DigitalGlobe WorldView-2 was the first VHR 

satellite system recording in eight multispectral bands. With an operating 

altitude of 770 km and a sun synchronous orbit the system provides 46 cm 

spatial resolution in panchromatic and 1.85 m in multispectral range at nadir. 

Due to US law the high spatial resolution has to be re-sampled by DigitalGlobe 

for panchromatic and multispectral bands to 50 cm and 2 m, respectively. The 

temporal resolution is specified with an average revisit time of 1.1 days. Besides 

the four standard colors blue, green, red and NIR1 WorldView-2 provides four 

additional colors coastal, yellow, red edge and NIR2 for precise change 

analyses and mapping. Table 6 specifies the spectral ranges and bandwidths 

of WorldView-2’s nine sensor bands (DigitalGlobe, 2013). 

 

Table 6: Sensor bands of WorldView-2 (DigitalGlobe, 2013b) 

Panchromatic 450-800 nm   

Multispectral:    

Coastal 400-450 nm Red 630-690 nm 

Blue 450-510 nm Red Edge  705-745 nm 

Green 510-580 nm NIR1 770-895 nm 

Yellow 585-625 nm NIR2 860-1040 nm 

 

But there is only one WorldView-2 image of each project site available, 

acquired in March 2013 which shows snow cover in both project areas. The 
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snow covering the landscape distorts the spectral signature of underlying land 

cover and therefore these images have a limited use for classification 

purposes. Nevertheless, it is used to find out about the usability of snow images 

for classification purposes. 

Thankfully DigitalGlobe provided one additional satellite image for each 

project area without snow cover. GeoEye-1 was launched in September 2006 

and is collecting data in four multispectral and one panchromatic bands, 

which are specified in Table 7. With a sun-synchronous orbit in 681 km altitude 

GeoEye-1 delivers data in 41 cm in the panchromatic and 1.65 cm in 

multispectral bands spatial resolution at nadir. Due to US law all images are 

resampled to 50 cm and 2 m, respectively. The images from GeoEye-1 are used 

in the project site at the river Gail. The imagery was acquired in August 26, 2011 

and shows the river reach before the restoration project started. 

For the project site at the river Drau the data from QuickBird-2 of September 9, 

2006 are chosen and show the project area before the restoration started. This 

satellite was launched in October 2001 and collects data in one panchromatic 

and four multispectral bands which are specified in Table 8. The spatial 

resolution is given as 55 cm and 2.16 m at nadir, acquired in 400 km altitude. 

An overview about the different multispectral satellite images used in this 

project is given in Figure 11. 

 

Table 7: Sensor bands of GeoEye-1 (DigitalGlobe, 

2015a)  

Panchromatic 450-800 nm 

Multispectral:  

Blue 450-510 nm 

Green 510-580 nm 

Red 655-690 nm 

NIR 780-920 nm 
 

Table 8: Sensor bands of QuickBird-2 

(DigitalGlobe, 2015b) 

Panchromatic 405-1053 nm 

Multispectral:  

Blue 430-545 nm 

Green 466-620 nm 

Red 590-710 nm 

NIR 715-918 nm 
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Figure 11: Satellite Imagery: A = WorldView-2 Drau, B = QuickBird Drau, C = WorldView-2 Gail, D = GeoEye 

Gail 

A B 

C 

D 

N N 

N 

N 
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4.3. RPAS AND DATA 

For achieving the objective of comparing high resolution RPAS data with data 

collected from a satellite system, first of all a RPAS platform needs to be chosen. 

The system should meet the requirements of flying stable even in adverse 

weather conditions and under wind influence, being easily controllable for 

inexperienced pilots and providing the possibility of mounting all necessary 

sensors. With a safe catapult launch, an autonomous flight following 

predefined waypoints and an automatic parachute landing the chosen 

Bramor rTK RPAS produced by the Slovenian company C-Astral is easily 

controllable. Being a fixed-wing system the platform is characterized by rain 

proofing and wind resistance up to a wind speed of 60 km/h. With a  wingspan 

of 230 cm and a total weight of 4.5 kg the system has a command and control 

range of 40 km and the battery’s endurance is specifies with 2.5 h (C-Astral, 

2015). A RGB Sony Advanced Photo System type C sensor is mounted on the 

platform for the RGB imagery acquisition and an additional Sony Alpha 6000 

reconstructed as NIR sensor is used for data acquisition in IR spectra. On a 

second system a hyperspectral camera from the Finnish company Rikola is 

planned to be mounted in future for hyperspectral data acquisition. Working 

based on a Fabry-Perot Interferometer the spectral range of this camera can 

be selected in the range from 400-950 nm and the maximum spectral image 

dimensions are specified with 1024 x 1024 pixels. The two mirrors of the 

interferometer create an optical resonator. Constructive interference allows 

certain wavelengths to be transmitted through the interferometer whereas 

other wavelengths are reflected (Mäkeläinen et al., 2013). The weight of less 

than 600 g allows it to attach the camera sensor to the RPAS (Rikola, 2015).  

While Figure 12 shows the RPAS, in Figure 13 the RPAS-derived data used in this 

project can be seen. 

 
Figure 12: Bramor rTK RPAS produced by C-Astral (C-Astral, 2015) 
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Figure 13: RPAS Imagery A = RGB Drau 12/2013, B = RGB Gail 09/2014, C = RGB + NIR Gail 06/2015 

4.4. AERIAL IMAGERY 

One goal of this master’s project is to evaluate the effect of the different 

actions performed during restoration with different change detection 

techniques. To detect change between two images it is from crucial 

importance to keep spectral and seasonal conditions as similar as possible. As 

there is a temporal lack of several months between the satellite and RPAS 

images and the spectral resolutions differ as well, these data sets are not 

suitable for change detection purposes. 

For that reason, airborne ortho-images acquired before and after the 

restoration are used for change detection. These images have a spatial 

resolution of 20 cm, have been collected by the Carinthian government and 

are shown in Figure 14. For the study site at the river Drau the recording times of 

the ortho-images used for change detection are July 2006 and August 2013 

and for the Gail site images were acquired in July 2010 and August 2013.  

B 
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Figure 14: Aerial Imagery A = Drau 2006, B = Drau 2013, C = Gail 2010, D = Gail 2013 
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4.5. REFERENCE DATA 

For the river Gail the first field mapping was done in 2010 based on current 

ortho-photos of the same year and the existing mapping of the NATURA 2000 

protected area. Identified classes as well as areas without available data have 

been validated and mapped in the field. The second field mapping was 

performed after the restoration project has been finished in 2014. This time 

ortho-photos from 2013 were overlaid with the field mapping results of 2010 and 

classes were assigned by visual interpretation. For validation the results were 

checked in the field and the state of the habitats was reported. 

The spatial base data of the project site at the river Drau was collected in a 

similar way as for the river Gail. The current NATURA 2000 mapping was 

compared to ortho-photos of the years 2006/2007. In areas where a significant 

mismatch was found the habitat type was checked in the field. In 2011 a 

second comparison between the mapping and ortho-photos from 2010 was 

performed. If necessary the classes have been adapted due to the current 

ortho-photo.  

Using field methods and comparison to ortho-photos the experts have 

performed a vegetation classification in both project sites according to the 

natural habitat types defined after the Habitats Directive. The specific natural 

habitat types with high ecologic value can be found in ANNEX A. Besides the 

Habitats Code after the Habitats Directive with the associated description and 

a unique number for identification the vector data set includes attributes 

specifying a more detailed internal vegetation typification as numerical as well 

as descriptive value. Additionally information about the use of the habitats and 

the presence of deadwood are provided. Another attribute includes a note 

about the habitat to describe exceptional characteristics and the status of the 

natural habitat. The reference data with the internal habitat classes are shown 

in Figure 15. 
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Figure 15: Reference data A = Drau 2004, B = Drau 2011, C = Gail 2014 
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4.6.  ELEVATION DATA 

In addition to the before mentioned data other data sources are used to enrich 

the available information. The Austrian government provides current data 

open for everyone and accessible through the internet. Thereof the national 

digital elevation model (DEM) is used to include elevation information and 

ortho-rectify the satellite images. The data set has a spatial resolution of 10 m 

and has been derived by airborne laser scanning in 2013. The horizontal 

position accuracy is stated with 20 cm and the vertical elevation accuracy with 

7.5 cm. Additionally DSMs are calculated based on the high overlap between 

the RPAS-derived images and used as auxiliary information to improve 

classification. The different elevation data can be seen in Figure 16. 

 

 

 
 

A 
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Figure 16: Elevation data A = DTM Gail, B = DSM Gail 2014, C = DSM Gail 2015 
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4.7. SUMMARY DATA USED 

Table 9: Overview of all data sources used in the present project 

Restoration performed 

 Start End   

Drau 09/2006 08/2011   

Gail 01/2010 12/2014   

     

Satellite Imagery 

 Acquisition Date Spectral 

Resolution 

Spatial 

Resolution 

MS/PAN 

Project 

site 

QuickBird 09/09/2006 4 MS+1 PAN 2.00m/0.51m Drau 

GeoEye-1 08/26/2011 4 MS+1 PAN 2.43m/0.60m Gail 

WorldView-2 03/01/2013 8 MS+1 PAN 2.00m/0.50m Both 

     

RPAS Imagery 

 Acquisition Date Spectral 

Resolution 

Spatial 

Resolution 

Project 

site 

Sony Alpha 6000 12/30/2013 RGB 7 cm Drau 

Sony Alpha 6000 09/24/2014 RGB 5 cm Gail 

Sony Alpha 6000 06/29/2015 RGB 3 cm Gail 

Sony Alpha 6000 06/29/2015 NIR 3 cm Gail 

     

Aerial Imagery 

 Acquisition Date Spectral 

Resolution 

Spatial 

Resolution 

Project 

site 

Pre-restoration 07/17-19/2006 RGB 20 cm Drau 

Post-restoration 08/17-09/25/2013 RGB 20 cm Drau 

Pre-restoration 06/24-07/14/2010 RGB 20 cm Gail 

Post-restoration 08/16/2013 RGB 20 cm Gail 

     

Reference Data 

 Acquisition Date Source Project 

site 

Vegetation 2004 Field mapping, aerial image Drau 

Vegetation 2011 Field mapping, aerial image Drau 

Vegetation 2010 Field mapping, aerial image Gail 

Vegetation 2014 Field mapping, aerial image Gail 
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Elevation Data     

 Acquisition Date Source Spatial 

Resolution 

Project 

site 

DTM 2013 Airborne Laser 

Scanning 

10 m Both 

DSM 09/24/2014 Photogrammetri-

cally calculated 

using RPAS RGB 

5 cm Gail 

DSM 06/29/2015 Photogrammetri-

cally calculated 

using RPAS RGB 

3 cm Gail 
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5. METHODOLOGY 

 

The following subchapters are intended to give an overview about the 

methodical approach followed to analyze the different data types of the 

project sites. Starting with the overall concept the explanations go into detail 

about each of the planned steps. Additionally methods to improve the 

classification result are discussed. The photogrammetrically-derived DSM is 

used in the classification process to test if the additional altitude information 

helps improving the classification result. Another approach to increase the 

accuracy of classification is to pan-sharpen the medium resolution 

multispectral satellite images based on their corresponding high resolution 

panchromatic images. Different algorithms for pan-sharpening as well as 

classification and change detection are applied to the data to find the best 

suitable for the present research problem. 

 

5.1. CONCEPT 

After acquiring the data in the project sites with the help of satellite and RPA 

systems, the first step of the image analysis is the data preprocessing. The 

preprocessing part includes the correction of geometric, radiometric and 

atmospheric deficiencies and the removal of data errors. The preprocessing 

process makes the images comparable and therefore needs to be finished 

before the classification and change detection analyses can start. When all 

data sets are preprocessed the next step is to classify all different images. For 

the classification three different classification algorithm are applied to test their 

suitability and find the most accurate one for gaining information related to the 

specific monitoring questions. In the change detection phase images with 

different time stamps are compared to analyze the spatio-temporal aspect of 

the project sites. At last after analyzing each and every data type an overall 

evaluation and accuracy assessment is performed to find out about the 

suitability of different data for environmental monitoring tasks. Therefore, the 

results of the analyses of different data types are compared based on 

accuracy and informational content. The whole image processing workflow is 

explained in detail in the following subchapters and visually summarized in 

Figure 17. 
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Figure 17: Overview about the image processing workflow 

 

5.2. PREPROCESSING 

According to the general explanations of chapter 2.2 data acquired with the 

help of remote sensing include diverse disturbances and blurs. Before starting 

with the analysis and evaluation of data these deficiencies need to be filtered 

out or compensated. In general it can be differentiated between geometric 

and radiometric correction.  

Radiometric correction includes the compensation of errors caused by the 

recording sensor, the sun angle and topography of the study site and the 

atmosphere. To perform a complex atmospheric correction data of the 

atmospheric composition at the time of data acquisition is required. To 

compensate disturbances caused by the sensor its camera signal noise needs 

to be taken into consideration. Diffusely reflectance resulting in sun spots and 

shading can be corrected by estimating a shading curve and knowing the 

angle of solar radiation to identify shaded areas (Murai, 1993).  

For the geometric correction the shape of the images is modified but the 

original color values stay unchanged. Geometric correction procedures are 

used to compensate distortion and geometric errors and to geo-reference the 

images for further use in a geographic information system. For referencing into 

a certain coordinate system usually ground control points (GCP) are used. 

GCPs are clearly discernible points of the distorted image whose positions are 

then either given in ground coordinates or measured from a map or geo-

referenced image. Based on the identified GCPs the images are then 
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transformed using mathematical operations. The accuracy of the geo-

referenced result mainly depends on the amount of selected GCPs, their 

distribution over the image area and the types of objects identified (Eltohamy 

& Hamza, 2009). The preprocessing steps for the satellite images are 

summarized in Figure 19. 

To correct distortions and errors in the aerial images of the project sites different 

correction methods need to be applied for the various sensors. WorldView-2, 

GeoEye-1 and QuickBird-2 data is already geometrically and radiometrically 

corrected by DigitalGlobe before delivered to customers. The geometric 

correction has been done based on a coarse DEM with a resolution of 

90m/pixel and resulted in a root mean square error (RMSE) of 2.3 m. 

Nevertheless, the satellite data do not match well the other data sets and 

therefore several preprocessing steps are performed for improvement. 

 

Additionally, the images gained during RPAS missions need to pass different 

preprocessing steps to become comparable to the satellite data and among 

themselves. For spatial registration the RPAS data are geometrically corrected 

with the help of the software Agisoft PhotoScan on the basis of predefined 

GCPs with known coordinates. Through this step of geometric correction 

additionally the next step including image registration is fulfilled. With getting 

geo-referenced the diversified images recorded on the flight of the fixed-wing 

RPAS are matched together based on their location and then are mosaicked 

to an ortho-photo. A visual summary of the performed preprocessing tasks on 

the RPAS-derived data are shown in Figure 20. 

Whenever the NIR camera in addition to the RGB camera acquires data, this 

has to be done in two different flights because of payload and space 

limitations of the system. Although both times the RPAS follows the same 

defined route and there usually only is a small time interval in between, small 

wind influences and change of conditions lead to significant differences in 

spatial locations of the images. These small offsets are hard to correct as they 

appear very locally in the mosaicked ortho-photo. Nevertheless, one NIR 

image is geo-referenced to detect the degree of improvement. The results are 

described in chapter 6.3.  

 

 

 



52 

5.3. VISUAL INTERPRETATION METHODS 

Visual interpretation of high resolution aerial images can be a helpful addition 

to field mapping in diverse application areas. However, the usefulness of an 

interpretation result is mainly dependent on the problem to solve, the data 

material and the interpreter. To assess the visual interpretability of the very high 

resolution RPAS images, smaller subsets of the imagery are generated including 

trees of different species each and handed to experienced experts in the field 

of tree assessment, arboriculture and forestry. The experts excel in long-lasting 

experience in identifying trees and checking their traffic safety. Each expert 

works on a dissimilar subset area to test the identifiability of different tree 

species. The experts are asked to mark single tree locations and write down as 

much information as possible about each tree. All the experts know about the 

aerial image subset is acquisition date, scale and location. These information 

are provided to allow them using their experience in terms of vegetation cycles 

like flowering time, soil necessities and relative crown size. However, an 

interpretation key is by purpose not handed to the experts as aim is to examine 

the interpretability of the collected raw image without further time-consuming 

preparation.  

The evaluation takes into account not only the accuracy of classification but 

also the level of detail achieved. While the lowest level of detail is defined as 

identifying single tree locations, a higher level is to differentiate between 

coniferous and deciduous trees. A pretty high level of detail is to be able 

distinguishing different species and finally the highest level is to differentiate 

between diverse varieties. The different levels of detail defined for visual image 

interpretation are shown in Figure 18. 

The results are then digitized in ArcMap and compared to reference data 

collected in the field in July 2015. The reference data include the tree species 

in each subset area, the appropriate tree group and their locations in the field. 

The tree species have been identified by the author, who holds a B. Eng. In 

landscape architecture and is certified as tree inspector by the German FLL 

(Research Society for Landscape Development and Landscaping). The 

comparison is done concerning the distance between the point features of the 

reference and the expert data set to find out about the accuracy of single tree 

locations. All features without any distance between the data sets are counted 

and divided by the total number of features in the reference data set to get 

the percentage of correctly located trees. For the tree group the appropriate 

attributes are compared using an if-statement. All correctly identified tree 
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groups are counted and divided by the total number of trees in the subset 

area. The accuracy of identifying the species and variety are assessed in the 

same way.  

 
Figure 18: Levels of detail evaluated for visual image interpretation 

 

5.4. CLASSIFICATION PROCEDURES 

For the present project all different data types need to be analyzed to evaluate 

the applicability of the particular remote sensing technique in terms of riverine 

environmental monitoring. To compare the results, first of all a classification has 

to be performed on the different data sets. As mentioned in chapter 2.2.3 

traditional statistical pattern recognition techniques primarily have been 

developed to evaluate spatial domain-based phenomena like land cover, 

while analyses of hyperspectral data have the goal to extract targets with 

particular spectral characteristics. However, in this project the pattern 

recognition techniques are applied to the multispectral satellite data and also 

to the RGB and NIR RPAS data because they contain a maximum number of 

four bands and therefore do not map very detailed spectral signatures. The 

concept of the classification procedure of the different data is shown in Figure 

19 and Figure 20. 

Varieties

Species

Tree Group

Single Tree Location
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Figure 19: Image processing workflow VHR 

multispectral satellite data 

 
Figure 20:  Image processing workflow RPAS-

derived data 

 

5.4.1. ISODATA ALGORITHM 

Probably the most often used unsupervised classification algorithm, the 

Iterative Self-Organizing Data Analysis Technique (ISODATA) is a further 

development of k-means algorithm and uses statistical calculations to find 

spectrally similar, spatially close clusters. ISODATA starts with either arbitrary 

initial class centers or centers loaded from a signature set. Each cell is assigned 

to the classes with the minimum Euclidean distance and based on the class 

sizes a new center is calculated using the mean vector. But in difference to k-

means, at the beginning of each iteration, large classes might be split based 

on different factors like the maximum standard deviation of the class, the 

average distance of class cells from the center and the total amount of class 

cells. A combination of classes takes place when the distances between their 

centers fall below a defined threshold. Iterations continue until there is no or 

only little change in the locations of class centers or the predefined maximum 

number of iterations is reached. To run this algorithm the analyst has to specify 

the parameters: minimum number of classes, maximum iterations, maximum 

standard deviation, minimum distance to combine, minimum cluster cells and 
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minimum distance for chaining (Jensen, 2005 and Leica, 2006). The main 

challenge in applying ISODATA algorithm is to find a significant number of 

clusters to be created. In merging and splitting the resulting clusters the analyst 

then is able to acquire the classes he is interested in. Post classification of this 

classifier is the allocation of clusters into their appropriate classes. 

 

5.4.2. IMAGE SEGMENTATION 

The German psychologist Kurt Koffka formulated the maxim “the whole is other 

than the sum of its parts” that is used by the Gestalt theory and describes the 

human ability of perceiving structures and ordering principles (Tuck, 2010). In 

machine learning the principles of Gestalt theory are implemented in 

algorithms that aim to find clusters in an image like e.g. ISODATA and Image 

Segmentation. 

As another concept of unsupervised classification Full Lambda Schedule (FLS) 

based Image Segmentation segments an image into meaningful clusters. 

Image Segmentation is based on the idea of dividing an image into smaller 

sections of spatially close pixels with similar spectral characteristics instead of 

assigning each pixel to one class. First of all, edge detection is performed on 

the raster image to find boundaries between dissimilar pixel groups. These 

edges are then used to form the segments. After computing the mean spectral 

values for each adjacent segment of each band the Euclidean distance 

between the segments is computed. This is done using FLS algorithm 

(Intergraph, 2013b). Based on a combination of spatial and spectral 

information adjacent segments are merged to form categories. Merging 

occurs if the algorithm finds adjacent segments where the merging costs are 

lower than a defined threshold lambda value (Exelis Visual Information 

Solutions, 2015). The user directly controls the segment sizes in setting the 

minimum and maximum size constraint as well as the pixel to segment ratio that 

specifies an average number of pixels forming one segment. Furthermore, the 

merge cost function is executed based on user-defined weights for spectral, 

texture, size and shape components. The spectral component is measured as 

the mean of the digital number values of all pixels in the segment. Texture is 

measured as the standard deviation of all digital number values of the pixels in 

a segment. The size component is defined as the number of pixels being 

included in one segment and finally the shape component is a measurement 

of the shape complexity of the segment (Hexagon Geospatial, 2015a). 
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The challenge in using the Image Segmentation algorithm implemented in 

ERDAS Imagine is to find the best suitable scale to get segments that best 

approximate meaningful areas in the image. An example of Image 

Segmentation in different levels of detail is shown in Figure 21. 

 

  

  
Figure 21: The Image Segmentation classification performed in different levels of detail, becoming coarser 

from A to D 

 

5.4.3. MAXIMUM LIKELIHOOD CLASSIFICATION ALGORITHM 

The second field of classification techniques is the field of supervised 

classification. Applying supervised classification requires some knowledge 

about the classes and their distribution in the study sites. Usually the data set to 

be classified is divided into training and test data. Thereby, care should be 

taken to select representative areas of the class. While training data is used to 

learn identifying similar pixels in the image, test data later is used for validation. 

Although most methods have been developed to analyze multispectral data, 

A B 

C D 
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they can also be applied to hyperspectral data if the number of features has 

been reduced to a similar level (Thenkabaill et al., 2012).  

Maximum Likelihood Classification is the by far most commonly used supervised 

classification method if data are Gaussian distributed. Based on the Bayes 

classification rule the conditional probabilities of the test data are estimated 

and then used to develop the decision rule. To obtain reasonable accuracy a 

large amount of training samples is required (Thenkabaill et al., 2012). The basic 

equation assumes an equality of probabilities for all classes and a normal 

distribution of the input bands but can be adapted due to user’s prior 

knowledge about the data.  

To evaluate the separability of the trained classes their divergence is 

computed. Divergence is a measure to evaluate the suitability of the training 

pixels to represent the appropriate class. The basic problem of spectral pattern 

recognition is demonstrated in Figure 22 where just one band and two classes 

are visualized. The more bands are used the higher is the probability of using 

redundant information. The two major errors that result of the overlap of classes 

are on the one hand the error of commission that appears when a pixel is 

assigned to a class to which it does not belong. And on the other, the error of 

omission describes the case of a pixel not being assigned to its appropriate 

class. To decrease these errors and find training data with high separability the 

transformed divergence is computed using the mean and covariance 

matrices. Thereby, signature separability is a statistical measure between two 

signatures. Because separability can be calculated for every combination of 

bands that is used in the classification, unnecessary bands can be detected 

and eliminated based on the best average separability (Hexagon Geospatial, 

2015b). The resulting transformed divergence values rank from 0 to 2000 for the 

different class combinations. While a value of 2000 expresses excellent class 

separability, >1900 means good separability and values <1700 indicate a poor 

separability between the classes (Jensen, 2005). 
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Figure 22: The problem of finding an n-dimensional decision boundary to separate major classes in a 

spectral distribution of data in n bands (here just 1 band) (Jensen, 2005) 

 

5.4.4. VALIDATION 

To detect which of the algorithms delivers the highest accuracy of classification 

results, each classification result needs to be evaluated and compared. 

Therefore, an accuracy assessment is performed for a pixel-by-pixel 

comparison. For this technique the classified image as well as the appropriate 

reference data reflecting the land cover is accurately compared to examine 

the correctness of classification. The result of the evaluation is displayed in form 

of a confusion matrix; overall accuracy and Kappa coefficient are calculated. 

The confusion matrix, sometimes also called error matrix, is a confrontation of 

actual against predicted classes to visualize true and false positive as well as 

true and false negative classified objects. The confusion matrix helps to better 

understand the classification errors that occur by analyzing the correlation 

between classes. Overall accuracy is achieved by dividing the total number of 

correctly classified pixels of one class by the total number of reference pixels of 

the same class. Thereby, it is differentiated between producer’s and 

consumer’s accuracy or error of omission and error of commission. While 

producer’s accuracy represents how well reference pixels are classified the 

consumer’s accuracy represents the probability that a pixel classified into a 

given class actually represents that class on the ground. The Kappa coefficient 

of the error matrix is an evaluation how well the data set was classified 

compared to a randomly generated data set. The Kappa coefficient ranks 

between -1 and 1 whereas 0 denotes a random accordance and means that 
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the classification result is equal to a randomly generated data set. Positive 

values point out the classification as being more precise than a random data 

set whereby 1 means perfect classification. And negative values identify the 

classification being worse than a randomly generated image (Congalton & 

Green, 2009). 

 

5.5.  IMPROVEMENT OF CLASSIFICATION  

To improve the classification results different auxiliary information are added to 

the data sets and the new results are compared and evaluated. In a first 

attempt the NIR band of the RPAS NIR image is added to the RPAS RGB record 

to achieve an image comparable to the GeoEye-1 satellite image. Afterwards, 

the photogrammetrically-derived DSM is added to the multispectral RPAS data 

to simplify the separability of different objects based on their height. 

Furthermore the panchromatic band is used to improve the classification of the 

multispectral satellite images. Although the panchromatic band misses the 

color information, the spatial resolution usually is much higher than in the 

multispectral bands. The process of merging medium resolution multispectral 

with high resolution panchromatic images is called pan-sharpening. 

 

The result of a pan-sharpening operation is a multispectral image with the same 

resolution and extent as the panchromatic image. While a huge amount of 

pan-sharpening algorithms has been published, only a few outstanding 

algorithms have been adapted by industry (Mishra and Zhang, 2013). In a first 

analyzing step different pan-sharpening techniques provided by ERDAS 

Imagine are tested with the GeoEye-1 satellite data to compare the results and 

find the best fitting method. After the best pan-sharpening technique for the 

satellite images is found a classification is conducted and compared to the 

classification results of the original data set. 

Because there is no consensus on quantitative evaluation methods for pan-

sharpening algorithms (Mishra and Zhang, 2013), Figure 23 shows the original 

data as well as four suitable pan-sharpening methods for visual comparison. 

While the multispectral image has a coarser resolution, the color information is 

missing in the panchromatic image. The pan-sharpening algorithm should 

combine both images in maintaining the color as well as the high resolution. 

Hyperspherical Color Space (HCS) Pan Sharpening was specifically designed 

having WorldView-2 in mind. The advantage of HCS pan-sharpening algorithm 
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is that it handles any number of input bands. Mathematically it uses the 

transformation from native into hyperspherical color space and back again 

(Padwick, 2010). The result shows clear colors and a significantly higher quality 

in terms of resolution.  

The principal components resolution merge uses a principal components 

transformation of the low resolution image. The first principal component is 

assumed to contain the intensity variation in the image.  The radiometric 

response of the high resolution image is adjusted so that the histogram shape 

is kept constant with the same numeric range of the low resolution intensity 

channel. The high resolution image is substituted for the first principle 

component, and the inverse principle component transform is applied to 

generate an enhanced image. The resulting imagery is visually sharper; 

however, there is some loss of spectral quality (Goforth, 1998). 

Especially designed for the merge of QuickBird, Ikonos, and Formosat data the 

Subtractive Resolution Merge is from high interest for the present project as one 

satellite image from QuickBird is used. This method is limited to dual sensor 

platforms with specific band ratios between the high resolution panchromatic 

image and the lower resolution multispectral image (Ashraf et al., 2013). But 

although resolution information is well used in the result, color is almost 

completely lost. 

A similar problem can be seen for the High Pass Filter (HPF) Resolution Merge. 

Thereby, a high pass convolution filter kernel is created and applied to filter the 

high resolution input data. The result is then weighted relative to the standard 

deviation of each multispectral band and added to each band (Gangkofner 

& Holcomb, 2008). 

The pan-sharpening results of the before described algorithms for the GeoEye-

1 satellite image can be found in Figure 23. To conclude, HCS resolution merge 

and resolution merge deliver the best pan-sharpening results in terms of 

resolution and color. While HCS resolution merge achieves bright contrasts, the 

colors in the resolution merge result seem pale. For that reason HCS resolution 

merge is chosen as pan-sharpening algorithm to find out if the classification of 

the pan-sharpened result ends up with higher accuracy or informational 

content. 
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Figure 23: Comparison of pan-sharpening algorithms for a GeoEye-1 satellite image 
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5.6.  CHANGE DETECTION TECHNIQUES 

The multi-temporal analysis of the project sites is especially from interest to 

detect the way of natural adjustment after a river restoration has taken place. 

Through the change detection analysis the establishment of vegetation 

species as well as the geomorphological adoption of the river can be 

highlighted. The comparison of two data sets with different recording times 

highlights the spreading of neophytes and pioneer species on open spaces 

and visualizes changes in the course of the river. 

Pixel-based change detection algorithms take the subtraction or ratio of two 

raster images with different recording times to detect whether a change has 

taken place or not. A threshold value is useful to counteract the impact of 

random factors. The main disadvantage of both methods is the loss of 

reflectance of changes between classified categories (Shaoqing & Lu, 2008). 

On the other hand post-classification change detection techniques involve the 

comparison between independently produced and classified data sets. In 

comparison to differencing and ratioing methods post-classification 

techniques depict a complete descriptive matrix containing changes 

between two time stamps. Caused by the independently produced 

classification of each data set the different atmospheric conditions at 

recording time as well as geometric inaccuracies are compensated much 

better (Sohl, 1999).  

With their research on the effects of image misregistration on the accuracy of 

remotely sensed change detection Dai and Khorram (1998) have proven that 

a registration accuracy of less than one-fifth of a pixel is required to achieve a 

change detection error of less than 10%. Because of the high geometric 

inaccuracies between the satellite data and the data acquired with the RPAS 

change detection cannot be used for comparison between these images. For 

that reason regarding change detection the focus is put on RPAS-derived 

images from 2014 and 2015 and airplane-derived ortho-photos of the 

Carinthian government of 2010 and 2013. 

 

 

 

 

 

 



 

  63 

5.7. COMPARISON STRATEGY 

The final methodical step in the data analysis is the comparison between the 

classification results of the different data types to find out about their suitability 

for various environmental monitoring tasks. For the comparison different 

categories are created according to the research questions formulated in 

chapter 1.3. To represent the accuracy of each data type the results of the 

data validation, explained in chapter 5.4.4, are used. The percentage of 

overall classification accuracy derived from the Accuracy Totals is calculated 

for the classified data set that was acquired temporarily closest to the data of 

the reference data collection for the multispectral, RGB and NIR data each. If 

two data sets of one type with the same distance of time exist, the mean 

accuracy value and standard deviation are calculated. To make statements 

about the quantity of classification and evaluate the informational content the 

classification accuracy values are finally compared for each of the defined 

categories, which are: 

 

1. Accuracy of classification after the Habitats Directive  

2. Accuracy of classification in accordance to the more detailed internal 

habitat type classification 

3. Accuracy of classification of single vegetation species 

4. Accuracy of classification of single vegetation varieties 

5. Accuracy of classification of soil types 

 

The Habitats Directive defines natural habitat types of community interest 

which are described in ANNEX A. Based on the accuracy of detecting these 

habitats compared to the reference data set the accuracy values of the 

different data types are compared in this category. The next category presents 

the accuracy of classifying the internal habitat types which are provided in the 

reference data and offer more detail about present vegetation. To validate 

the accuracy of classifying single vegetation species and varieties reference 

data will be collected for a representative part of the complete project sites. 

For the geomorphologic aspect in this project the accuracy of classifying 

different soil types for the different data types will be compared. 
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6. APPLICATION  

This chapter summarizes the application following the methodology as 

described in chapter 5. Besides evaluating the results of visual image 

interpretation, the preprocessing processes for satellite and RPAS data are 

described in detail. Furthermore, the classification results are stated and 

compared and finally the results of the change detection analysis can be 

found at the end of this chapter. 

 

6.1. VISUAL INTERPRETATION RESULTS 

After the experts finished working on the tree identification of their aerial subset, 

their work has been digitized to automatically compare the trees and their 

locations with the reference data collected in the field. Figure 24 shows 

exemplary the interpretation results of expert 2 in comparison of the 

appropriate reference data. All the other results can be found in detail in 

ANNEX B. 

 

 
Figure 24: Visual image interpretation result and reference data, A = interpretation results expert 2, B = 

reference data subset 2 

The results of the visual image interpretation by experts of forestry and 

arboriculture show different percentages of correctly classified tree species, 

tree groups and tree locations that can be seen in Table 10. As can be seen 
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the highest level of tree varieties was not reached by any of the experts. 

However, the second level, tree species, could be differentiated by most 

experts. While expert 2 only found the correct species of 7 of 68 trees and 

therewith identified species with 10.29 %, expert 3 only differentiated between 

willows and general tree groups. With 44 correctly classified willows out of 166 

trees, he reached an accuracy of 26.51 % regarding tree species. Although all 

trees he marked as willows are correctly classified, he still missed some other 

willows in the sample area and did not identify all the other species. Level three, 

the tree group, meaning the difference between coniferous and deciduous 

trees, could be distinguished fairly well from all three experts. Expert 3 had some 

problems and confused many ashes with coniferous trees. Expert 1 correctly 

identified 12 out of 52 trees regarding their group and therewith achieved an 

accuracy of 23.08 %. His problem was that he missed a lot of trees in the area. 

With a percentage of 85.29 % expert 2 correctly classified 58 out of 68 tree 

groups. And finally expert 3 correctly identified 58 from 166 trees regarding their 

group and therewith achieved an accuracy of 34.94 %. Finally, the location of 

single trees has been identified with the highest accuracy of all experts. While 

expert 1 identified 21 of 52 trees with their correct location and resulted in an 

accuracy value of 40.38 %, experts 2 correctly located 60 out of 68 and 

therewith 88.24 % trees in the area. Finally, expert 3 correctly located 96 from 

166 trees and therewith achieved an accuracy of 57.83 %. Additionally, the 

processing time for the RPAS images was at most half the time needed for 

collecting the reference data. In terms of time visual image interpretation is 

much faster than acquiring data in the field. 

 

Table 10: Correctly classified results of visual image interpretation 

 Expert 1 Expert 2 Expert 3 

Tree variety - - - 

Tree species - 10.29 % 26.51 % 

Tree group 23.08 % 85.29 % 34.94 % 

Single tree location 40.38 % 88.24 % 57.83 % 

 

To conclude, the experts had some issues in visually interpreting the RPAS-

derived RGB images. As they usually have a laterally view on the trees they 

inspect, more experience and training with aerial images could probably 

improve the results. While statements about the varieties could not be made at 

all, the species have only been identified with poor accuracy. With decreasing 

categorical detail, the accuracy of identification increased. Thus, the single 
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tree location could be identified with the highest accuracy from all experts. 

Besides the processing time for the RPAS images was always shorter than the 

time needed to collect the appropriate reference data in the field. 

 

6.2. PREPROCESSING SATELLITE IMAGERY 

For the radiometric correction the pixel values are calculated as a function of 

the spectral radiance entering the sensor’s aperture and the instrument’s 

conversion of radiance into a digital signal. To normalize the pixel values a 

radiometric calibration is performed using ENVI 5.1 software. The therewith 

achieved top-of-atmosphere spectral radiance depends on the earth-sun 

distance, the solar zenith angle, the topography of the project site and 

atmospheric effects (Elsharkawy et al., 2012). Furthermore, an atmospheric 

correction is performed using FLAASH tool of ENVI 4.8. As atmospheric model 

Mid-Latitude Winter is chosen for the WorldView-2 images and Mid-Latitude 

summer for the other satellite data. The aerosol model is specified as Rural. 

Atmospheric correction normalizes the reflectance of objects by removing 

distortions caused by the atmospheric composition. 

The satellite imagery comes already preprocessed by DigitalGlobe. For the 

geometric correction the images have been orthorectified using a DEM with 

90 m resolution. But even with geo-referencing based on GCPs it is not possible 

to get a location accuracy of pixel resolution or less. Therefore, the not 

preprocessed raw data are taken and orthorectified using the 10 m DEM of 

Carinthia. Comparing this result to the images being orthorectified with the 

coarser DEM, the location accuracy is higher, but still not high enough to work 

with per pixel comparison techniques between the satellite and even higher 

resolution RPAS images. The required accuracy of more than one-fifth pixel (Dai 

and Khorram, 1998) could not be achieved in the available satellite data.  

After Hoja et al. 2008 there is no significant difference concerning accuracy of 

the orthorectification results between software like ERDAS Imagine and ENVI. 

Therefore, to simplify matters, the satellite images are orthorectified using 

ERDAS Imagine. Orthorectification is the process of removing spatial distortions 

caused by terrain relief and off-nadir image acquisition and locating the 

features to their positions in a planimetric map. For that purpose a DEM needs 

to be added containing altitude information. ERDAS Imagine provides a 

rational polynomial coefficient model for each of the satellite sensors used in 
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this research project. As elevation source the Austrian national DEM with a 10 m 

spatial resolution is used.  

To finalize the geometric correction all satellite images are geo-referenced with 

a second order polynomial transformation using clearly discernible and well 

distributed GCPs. The geo-referencing procedure is performed based on the 

Austrian national ortho-photo with a pixel resolution of 29 cm and a position 

accuracy of 20 cm RMSE. The final results of the preprocessing process have a 

geometric accuracy that is shown in Table 11. Bovolo et al. (2009) explain the 

high residual registration noise of the VHR satellite images with the ability of the 

satellite systems to acquire images in different view angles resulting in different 

geometrical distortions. These distortions even stay after proper registration and 

strongly affect the geometric precision.   
 

Table 11: Final RMSEs of the satellite images after geometric correction 

 Drau Gail 

 Number of GCPs RMSE [m] Number of GCPs RMSE [m] 

GeoEye-1 - - 75 3.59 

QuickBird 59 2.88 - - 

WorldView-2 51 3.07 50 4.05 

 

6.3. PREPROCESSING RPAS IMAGERY 

To improve geometric accuracy between RGB and NIR data, the NIR image is 

geo-referenced using 100 GCPs. Before geo-referencing offsets of 1.80 m 

between the two data sets are found. After geo-referencing the NIR image the 

highest offset found is 0.15 m which is still three times the pixel resolution. The 

RMSE is 1.34x10-6 m with a 2nd order polynomial transformation. Although geo-

referencing lead to a significant improvement concerning location accuracy, 

there is still a shift of up to three pixels between RGB and NIR images. The 

combination of RGB and NIR data therewith often leads to a wrong spectral 

signature of small materials and materials in border areas of different classes. 

Despite this serious error, RGB and NIR bands are merged into a multispectral 

image to test if there is an improvement in the classification. 
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6.4. CLASSIFICATION RESULTS 

Due to the nature of the different classification computations, the algorithms 

used result in different numbers of classes. To result in similar classes, a 

hierarchical structure is defined. Broader classes are reached in merging some 

or all underlying classes. To clarify what lies behind the class names, a brief 

description of the classes can be found in Table 12. The numeric code of the 

column “Hierarchy” is further used to state which classes are merged to get 

these broader classes. 

 

Table 12: Available classes in the project site Gail 

Hierarchy Class Name Description 

1 Natural eutrophic lakes with 

Magnopotamion or Hydrocharition- 

type vegetation  

Habitats Directive Habitat 

Type 3150 

1.1 Oxbow Part without connection 

to main branch 

1.2 Reed bed Habitat type, consisting of 

tall, reed-like plants 

1.3 Pond/standing water Artificial or natural 

standing water 

1.4 Water lily Standing water covered 

with water lily 

2 Alpine rivers and the herbaceous 

vegetation along their banks  

Habitats Directive Habitat 

Type 3220 

2.1 Gravel/sand bank River banks of gravel 

and/or sand 

2.2 River Flowing water 

3 Water courses of plain to montane 

levels with the Ranunculion fluitantis 

and Callitricho-Batrachion 

vegetation  

Habitats Directive Habitat 

Type 3260 

3.1 Creek Creek created to 

develop a side arm 

4 Semi-natural dry grasslands and 

scrubland facies on calcareous 

substrates (Festuco Brometalia)  

Habitats Directive Habitat 

Type 6210 

4.1 Tor grass/red fescue semi-dry 

grassland 

Grassland, mainly 

consisting of tor grass and 

red fescue 

5 Lowland hay meadows (Alopecurus 

pratensis, Sanguisorba officinalis)  

Habitats Directive Habitat 

Type 6210 

5.1 Purple moor/tall oat grass 

 

Grassland mainly 

consisting of purple moor 

and tall oat grass 
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5.2 Tall oat grass Grassland, mainly 

consisting of tall oat grass 

5.3 Sedges/hassock Grassland, mainly 

consisting of sedges and 

hassock 

6 Alluvial forests with Alnus glutinosa 

and Fraxinus excelsior(Alno-Padion, 

Alnion incanae, Salicion albae)  

Habitats Directive Habitat 

Type 91E0 

6.1 Gray alder alluvial forest Alluvial forest mainly 

consisting of gray alder 

6.2 White willow alluvial forest Alluvial forest mainly 

consisting of white willow 

6.3 Gray alder/ash alluvial forest Alluvial forest mainly 

consisting of gray alder 

and ash 

6.4 Alder/willow shrub Shrub mainly consisting of 

alder and willow 

6.5 Reed/willow bush Bush mainly consisting of 

reed and willow 

7 other classes  Present classes of the 

study sites that are not 

mentioned in EU directive 

7.1 Agricultural field/bare soil Agricultural field without 

growing plants 

7.2 Sowing meadow Grassland, composition of 

grass species not known 

in detail 

7.3 Single tree Deciduous individual tree 

7.4 Path Footpaths, streets, bridges 

7.5 Spruce forest Coniferous forest, mainly 

spruce 

7.6 Building Building 

7.7 Infrastructure Power pole, power line 

7.8 Cabbage thistle meadow Meadow, mainly 

consisting of cabbage 

thistle 

7.9 White clover/ryegrass meadow Meadow, mainly 

consisting of white clover 

and ryegrass 

7.10 Agriculture 1 Agricultural field, crop not 

known in detail 

7.11 Agriculture 2 Agricultural field, crop not 

known in detail 

7.12 Agriculture 3 Agricultural field, crop not 

known in detail 
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To get the high accuracy value in the Maximum Likelihood classification, the 

original classes are merged in the following way to 15 classes (Table 13): 

 

Table 13: Combination of classes to reach 15 classes for Maximum Likelihood classification 

Class Combination of original classes 

Standing water and water plants 1.1, 1.3, 1.4 

Alluvial forest 1.2, 6.1, 6.2, 6.3, 6.4, 6.5, 7.3 

Gravel/sand bank 2.1 

River 2.2 

Tor grass/red fescue 4.1 

Purple moor/tall oat grass 5.1, 5.2 

Agricultural field/bare soil 7.1 

Sowing meadow 7.2 

Path 7.4 

Spruce forest 7.5 

Building/infrastructure 7.6, 7.7 

White clover 7.9 

Agriculture 1 7.10 

Agriculture 2 7.11 

Agriculture 3 7.12 

 

To become comparable to the ISODATA result, the 15 Maximum Likelihood are 

merged to 11 classes in the following way (Table 14): 

 

Table 14: Combination of classes to reach 11 classes for Maximum Likelihood classification 

Class Combination of original classes 

Standing water and water plants 1.1, 1.3, 1.4 

Alluvial forest 1.2, 6.1, 6.2, 6.3, 6.4, 6.5, 7.3 

Gravel/sand bank 2.1 

River 2.2 

Grassland 4.1, 5.1, 5.2, 5.3, 7.2, 7.8 

Agricultural field/bare soil 7.1 

Manmade structure 7.4, 7.6, 7.7 

Spruce forest 7.5 

White clover 7.9 

Agriculture 1 7.10 

Agriculture 2 7.11, 7.12 
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The following classes are merged to get 11 ISODATA classes (Table 15): 

 

Table 15: Combination of classes to get 11 ISODATA classes 

Class Combination of original classes 

Standing water and water plants 1.1, 1.2, 1.4, 6.5 

Alluvial forest 1.3, 6.1, 6.2, 6.3, 6.4, 7.3 

Gravel/sand bank 2.1 

River 2.2 

Grassland 4.1, 5.1, 5.2, 5.3, 7.2, 7.8 

Agricultural field/bare soil 7.1 

Manmade structure 7.4, 7.6, 7.7 

Spruce forest 7.5 

White clover 7.9 

Agriculture 1 7.10 

Agriculture 2 7.11, 7.12 

 

6.4.1. SATELLITE DATA 

After applying all preprocessing steps that are described in chapter 5.2 the 

satellite images are classified based on the classification algorithms described 

in chapter 5.4. in detail. As the best result concerning both, classification 

accuracy and informational content, Figure 25 A shows the result of the FLS-

based Image Segmentation algorithm including 23 classes with an overall 

accuracy of 77.18 % at the study site Gail. The final parameters for the Image 

Segmentation algorithm are the following: Pixel:Segment Ratio: 700 

(boundaries: 10-1,400), Relative Weights: spectral: 1, texture: 0, size: 0, shape: 0, 

Size Limit: Minimum: 100, Maximum 100,000. The result of the Maximum 

Likelihood classification with 15 classes and an overall accuracy of 76.73 % can 

be seen in Figure 25 B. And Figure 25 C shows the result of the classification 

based on ISODATA resulting in 11 classes and an overall accuracy of 39.64 % 

both at the river Gail as well. The method of calculating overall accuracy is 

explained in chapter 7.1. 

 



72 

 

 

 

  

 

Figure 25: GeoEye-1 classification results, A = FLS-based Image Segmentation, B = Maximum Likelihood 

classification, C = ISODATA 

A 

B 

C 

N 
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A summary of the classification accuracies of the GeoEye-1 satellite image for 

different amounts of classes is given in Table 16 and Table 17. The different 

numbers of classes are achieved by nature of the diverse algorithms and 

merged to result in meaningful classes. The five Habitats classes are derived by 

merging all subclasses as described in Table 12 to their appropriate higher 

hierarchical class. For ISODATA classification it was not possible to reach all five 

habitats classes. Evaluating these five habitat classes gives information about 

how accurate the habitats, defined according to the Habitats Directive, can 

be classified with the different algorithms. While 11 is the highest number of 

classes being reached with ISODATA, Maximum Likelihood results in 15 classes 

showing high classification accuracy and with the segmentation algorithm it is 

even possible to differentiate between 23 classes. To be able to better 

compare the different accuracy values, the Image Segmentation and 

Maximum Likelihood classes are merged to the 11 ISODATA classes. Surprisingly, 

accuracy decreases for these algorithms, especially for Maximum Likelihood. 

This is caused by the fact that classes with low classification accuracy that are 

not merged with other classes become more meaningful relative to classes 

with high accuracy that are merged together. Table 17 shows the classification 

results without including the agricultural classes as they are not mentioned in 

the reference data.  

 

Table 16: Classification results of the GeoEye-1 satellite image at the river Gail (number of classes 

achieved) 

 ISODATA Maximum 

Likelihood 

Segmentation 

Overall accuracy 51.22 % (4) 35.60 % (5) 81.60 % (5) 

Kappa 0.2894 (4) 0.3027 (5) 0.7700 (5) 

Overall accuracy 39.64 % (11) 43.27 % (11) 74.55 % (11) 

Kappa 0.3360 (11) 0.3643 (11) 0.7200 (11) 

Overall accuracy - 76.73 % (15) - 

Kappa - 0.7507 (15) - 

Overall accuracy - 33.30 % (23) 77.18 % (23) 

Kappa - 0.2951 (23) 0.7614 (23) 
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Table 17: Classification results of the GeoEye-1 satellite image at the river Gail without agricultural classes 

 ISODATA Maximum 

Likelihood 

Segmentation 

Overall accuracy 34.07 % (9) 41.08 % (12) 84.00 % (20) 

Kappa 0.2583 (9) 0.3613 (12) 0.8316 (20) 

 

Finally the pan-sharpened GeoEye-1 image is classified using the segmentation 

algorithm, as it delivers the best results in terms of accuracy and informational 

content. After the segments are merged, 22 classes are found. The overall 

accuracy is 70.73% with a corresponding Kappa coefficient of 0.6941 and 

therewith slightly lower than the accuracy of the original image. Although there 

are several parameters that affect the function of the algorithm and could 

partly explain this behavior, there is no trend of improvement visible. To 

conclude the process of pan-sharpen VHR multispectral satellite images does 

not improve the classification result significantly. 

Because of the snow coverage in the WorldView-2 satellite images, their use for 

habitat classification is limited. But the leaf-off situation not only has 

disadvantages. No leaves hide the riverbank in winter and therefore the shape 

of the river is much better visible. Using this fact, a classification of the 

WorldView-2 images is performed aiming to achieve an accurate shape of the 

river course. Problematic is in this case the validation. The change of water level 

has a significant influence on the river’s shape and unfortunately there is no 

ground truth data about the river available at recording time. For these reasons 

the river classification results are only visually evaluated based on the winter 

scenes. In a further step the hydraulic model of the river could be used for 

validation.  

Figure 26 shows two parts of the river with the superimposed shapes of riverbank 

classification. In image A all three algorithms agree all in all on the line of 

riverbank. Only ISODATA classifies a part of the surrounding alluvial forest as river 

while Maximum Likelihood leads to a slightly smaller river bed in not classifying 

the shallower bank regions as river. Finally, impression B shows a part with a sand 

bank in the river. As can be seen Maximum Likelihood classifier again considers 

the shallower parts as not belonging to the water body while the other 

algorithms more or less agree on the shape of the larger sand bank. However, 

the smaller sand bank is not recognized at all by Image Segmentation classifier. 

This is caused by the user defined pixel to segment ratio and the boundary of 

a minimum number of pixels per segment.  
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Figure 26: Result of the river classification in the WorlView-2 winter scene at river Gail 

 

For comparison purposes the same is done in the test site at the river Drau. 

Again, the winter scene of WorldView-2 is used for visual evaluation. Figure 27 

visualizes two impression of the result. While ISODATA in both images includes 

other land cover types, Image Segmentation algorithm adds alluvial forest to 

the river class in image B as well. Overall, the Maximum Likelihood algorithm 

again proves to be the most accurate one in detecting river shapes in winter 

situations but has some issues in not classifying shallower banks as river. 

Especially in image B Image Segmentation algorithm works inaccurately by 

including alluvial forest to the river shape.  

       ISODATA 

       Maximum Likelihood 

       Image Segmentation 

A 

B 

N 

N 
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Figure 27: Result of the river classification in the WorlView-2 winter scene at river Drau 

To conclude, the shape of the river can be extracted well in winter because 

the riverbanks are not hidden by overlapping tree crowns. The Maximum 

Likelihood algorithm delivers the overall best result, but often does not include 

shallower areas to the river class and instead concentrates more on the deeper 

water body. ISODATA and Image Segmentation classifier sometimes add 

objects of other classes to the river class because of their spectral and spatial 

similarity and therewith become inaccurate.  

 

6.4.2. RPAS DATA 

Caused by the missing certification of the RPAS in the project site at the river 

Drau, only recordings of the Gail are available and processed during this 

master’s project. The RPAS-derived data caused a lot of problems during 

processing because of the very high resolution and thus high data size. As a 

consequence the classification techniques that require intensive post 

processing could not be applied. This means the unsupervised classification 

techniques fail for the RPAS-derived data as they result in clusters and require 

conversion from raster to vector to be assigned to target classes. For these 

reasons only the supervised Maximum Likelihood algorithm is applied to the 

RPAS-derived RGB, NIR and DSM data in different combinations as described 

in chapter 5.5. Figure 28 shows the result of the Maximum Likelihood 

classification for the RPAS-derived images in different combinations. The 

appropriate accuracy values can be found in Table 18. 

       ISODATA 

       Maximum Likelihood 

       Image Segmentation 

B 

N 

N 
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Table 18: Classification accuracy of the RPAS-derived images at the river Gail (number of classes) 

 Overall 

Accuracy 

 Kappa 

Coefficient 

RGB 41.18 % (23)  0.3978 (23) 

RGB + NIR 43.77 % (23)  0.4122 (23) 

RGB + DSM 42.81 % (23)  0.4063 (23) 

RGB + NIR + DSM 43.62 % (23)  0.4107 (23) 

Image band combinations:  

A: RGB 

B: RGB + NIR 

C: RGB + DSM 

D: RGB + NIR + DSM  

  

  
Figure 28: Maximum Likelihood classification results RPAS-derived data 

N 

A B 

D C 



78 

6.4.3. COMPARISON  

As can be seen in Table 18, classification accuracy for the RPAS-derived 

imagery is much lower than the accuracy of the multispectral satellite data. 

Although it could be argued that the RGB data include less bands than the 

multispectral satellite images, RGB + NIR contain the same number of bands 

and the combination with DSM even more. At first glance the classification 

results of the satellite images look much more accurate than the results of the 

RPAS-derived data. But in this case the values for overall accuracy and Kappa 

coefficient mislead. The reason for the lower values lies in the evaluation 

method as described in chapter 7.1. The punctual accuracy assessment 

method requires reference data in at least the same spatial resolution as the 

data to be assessed. In the present project the resolution of the reference data 

is lower than the original RPAS-derived imagery and therefore, the usually 

applied assessment method is not applicable. For the evaluation of the RPAS-

derived images novel object-based accuracy assessment methods need to be 

developed to get meaningful accuracy values. 

Table 19 displays another way of accuracy evaluation. Transformed 

divergence as described in chapter 5.4.3 is normally used to test separability of 

signatures for supervised classification. In computing statistical distance 

between the signatures its equations are very similar to Maximum Likelihood 

classification and therefore are best suited to predict Maximum Likelihood 

classification results (Sahu, 2008). As can be seen for the RPAS classifications the 

values increase continuously from poor separability for RGB imagery over good 

separability for combined RGB and NIR bands culminating in perfect 

separability in adding the DSM to RGB or combined RGB and NIR data. In 

comparison the multispectral satellite data show a good separability while the 

pan-sharpened images even result in excellent separability as well.  

 

Table 19: Transformed Divergence separability values for Maximum Likelihood signatures 

  Best average Best minimum 

RPAS RGB 1566.50 58.224 

 RGB + NIR 1735.20 145.300 

 RGB + DSM 1941.58 479.208 

 RGB + NIR + DSM 1960.57 504.224 

Satellite Multispectral (RGB+NIR) 1837.64 246.264 

 Pan sharpened 1904.13 72.212 
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According to the values of transformed divergence, especially the additional 

altitude information in the form of the DSM increases classification accuracy. 

Furthermore, multispectral satellite and a combination of RPAS-derived RGB 

and NIR classification result in very similar results in terms of classification 

accuracy, whereas the satellite data show slightly better results. Comparing 

multispectral and pan-sharpened satellite classification shows a slightly better 

separability for pan-sharpened classification concerning best average. 

However, the best minimum value is much lower than for the multispectral data 

which can be caused by a spatial outlier or indicate poorer separability. 

The good or even perfect class separability of the RPAS-derived image 

classifications could even be improved by increasing positional accuracy. To 

support the good trend of classification suitability, working on the location 

accuracy of RGB and NIR RPAS-derived images should be one of the following 

most important research interests. 

 

6.5.  CHANGE DETECTION RESULTS  

The pixel-based subtractive change detection technique results in probability 

change maps that can be seen in Figure 29 and Figure 30. Through subtractive 

map algebra the difference between two images with different recording time 

is computed and expressed as probability of change. Figure 29 shows the 

probability of change between RPAS-derived RGB images from September 

2014 and June 2015. While green indicates no or a low probability of change, 

red visualizes areas with high probability of change. As both data sets are 

acquired after restoration, newly build restored areas are present in both 

images. Nevertheless, high probability of change can be seen around the 

ponds which can be caused in change of shape and depth but also water 

level at recording time. Other areas of high probability change are the 

agricultural fields. Understandably, they have a high probability of change 

because farmers change crop regularly. The small stripe of high probability 

change in the river curve is caused by different light conditions. While the 

image of 2014 shows larger shaded areas the same areas are sunny in 2015. To 

exclude these kind of errors flights with the RPAS should always take place at 

sun peak. Most other zones of higher probability change are caused by 

growing vegetation or landing of segments at groynes which changed shape 

and size of gravel banks. 



80 

 

Figure 29: Probability of change between RPAS RGB images 2014 and 2015 at the river Gail 

 

However, Figure 30 displays the probability of change between the pre and 

post restoration situation. The images are acquired by airplane by the 

Carinthian government in July 2010 and August 2013. All restoration actions are 

highlighted in red and therewith understandably show a high probability 

change as they only appear in the second image. All the newly formed ponds 

as well as the creek are highlighted in red as part of the restoration. The curved 

path in the right side of the image was created at the same time as the spruce 

forest surrounded by the lower left oxbow regions was deforested. The high 

probability change areas at forest borders and around power poles are errors 

caused by slight changes of recording angle and light conditions. Again, crop 

changes between both time stamps. In the river change can be observed 

where groynes were built and gravel or sand banks start building.  

N 
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Figure 30: Probability of change between RGB ortho-photos from 2010 and 2013 at the river Gail 

 

Secondly, post classification change detection is applied to the same data 

sets. Using Maximum Likelihood classifier for the RPAS images 18 classes are 

extracted while Image Segmentation algorithm results in 24 classes for the 

airplane-derived ortho-photos. The parameters for the ortho-photos are 

specified as follows: image 2010: Pixel:Segment Ratio: 100,000 (boundaries: 100-

200,000), Relative Weights: spectral: 0.8, texture: 0.2, size: 0.2, shape: 0.2, Size 

Limits: Minimum: 100, Maximum: 10,000,000,000; image 2013: Pixel:Segment 

Ratio: 30,000 (boundaries: 100-60,000), Relative Weights: spectral: 0.8, texture: 

0.2, size: 0.2, shape: 0.2, Size Limits: Minimum: 100, Maximum: 10,000,000,000. The 

areas of each class at each time stamp are calculated and compared to see 

in which class and how much change occurred. The results can be seen in 

Table 20 and Table 21.  

Negative values in the columns difference and percentage change indicate 

loss of class areas while positive values show new regions of the appropriate 

class. As can be seen in Table 20 there are much less pixels classified as creek 

in 2015 than in 2014. This can be caused by different water levels as the scene 

from 2014 has been collected in autumn while the 2015 scene has been 

collected in summer. For evaluation of the restoration’s success especially the 

water-related classes are of interest. Except the class creek, whose decrease 

might be caused by a classification or condition error, all other water-related 

N 
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classes show an area gain to a certain percentage. The oxbow class increases 

by 27.29 % of area while pond, river and water lily even show a gain of 43.76 %, 

45.32 % and 46.97 %, respectively. Additionally new gravel or sand banks are 

built with a percentage of 47.92 % during this year. Altogether after the post 

classification change detection result the restoration has been accepted 

successfully. 

Table 20: Post classification change detection result RPAS-derived ortho-photos 

Class Area 2014 

[m²] 

Area 2015 

[m²] 

Difference 

[m²] 

Percentage 

Change [%] 

bare soil 626194.6 1471348.71 845154.11 57,44 

building 319719.4 339401.91 19682.51 5,80 

creek 651747.65 315472.35 -336275.3 -106,59 

gravel/sand bank 579416.75 1112610.03 533193.28 47,92 

gray alder 427864.45 1507098.93 1079234.48 71,61 

gray alder/ash 120468.1 945156.9 824688.8 87,25 

oxbow 320057.1 440191.95 120134.85 27,29 

path 289297.6 469794.75 180497.15 38,42 

pond 777294.3 1381985.67 604691.37 43,76 

purple moor/tall oat  1905918.05 1433234.28 -472683.77 -32,98 

reed bed 334706.7 1005987.78 671281.08 66,73 

reed/willow bush 133390.95 806135.19 672744.24 83,45 

river 642294.25 1174641.3 532347.05 45,32 

sowed meadow 1085086.9 1230095.73 145008.83 11,79 

tall oat grass 432407.95 814830.27 382422.32 46,93 

tor grass/red fescue 797763.15 1997012.76 1199249.61 60,05 

water lily 463034.05 873128.58 410094.53 46,97 

white willow 1095947.85 573392.04 -522555.81 -91,13 

 

The second post classification change detection is performed between the 

ortho-photos with pre and post restoration time stamp. Due to the nature of 

Image Segmentation classifier and the object size the creek was not 

recognized and therefore is not included in the results. But as can be seen in 

Table 21 the restoration helped to slow down the discharge in establishing 

gravel or sand banks with 92.66 % and gave the river more space as the area 

increased by 20.58 %. Additionally 83.02 % new ponds formed and build 

standing water habitats. The area of water lily slightly decreased by 8.65 % 

which again can be caused by classification inaccuracy or the nature of water 

lilies and different recording times as water lilies do not appear throughout the 

whole year. As another water-related class the oxbows areas increased 

significantly with 283.23 %. This statistical outlier shows a trend of increased 

oxbow areas but simultaneously constitutes the presumption that the high 
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value is either positively supported by classification inaccuracy or other 

conditions like covering tree canopies.  

But again the comparison of pre and post restoration images supports the result 

of the RPAS-derived change detection that the restoration has been 

successfully accepted. While pixel-based change detection only helped in 

seeing where the changes occurred and how much changed in which area, 

the post classification change detection even could be used to evaluate the 

restoration and prove its success. 

 

Table 21: Post classification change detection result airplane-derived ortho-photos 

Class Area 2010 

[m²] 

Area 2013 

[m²] 

Difference 

[m²] 

Percentage 

Change [%] 

bare soil 1146805.76 1106543.44 -40262.32 -3,64 

agriculture 1 1871739.29 1765567.67 -106171.62 -6,01 

agriculture 2 206576.185 259218.92 52642.735 20,31 

agriculture 3 965782.35 762550.685 -203231.665 -26,65 

alder/willow shrub 17461.19 30545.065 13083.875 42,83 

building 170587.185 190272.24 19685.055 10,35 

gravel/sand bank 486.35 6629.115 6142.765 92,66 

gray alder/ash 976836.15 805049.155 -171786.995 -21,34 

gray elder 56208.94 48775.325 -7433.615 -15,24 

infrastructure 0 317.815 317.815 100,00 

oxbow 5651.9 21659.775 16007.875 283,23 

path 177050.93 181495.1 4444.17 2,45 

pond/standing water 6040.99 35582.91 29541.92 83,02 

reed bed 32120.595 20354.005 -11766.59 -57,81 

reed/willow bush 86289.505 63087.445 -23202.06 -36,78 

river 269119.05 338843.26 69724.21 20,58 

single tree 1276.92 3660.92 2384 65,12 

sowing meadow 3520354.32 3730392.96 210038.64 5,63 

spruce forest 277283.115 376956.875 99673.76 26,44 

tall oat/moor grass 194844.09 167169.19 -27674.9 -16,56 

tor grass/fescue 134964.685 119295.185 -15669.5 -13,14 

water lily 8005.6 7368.555 -637.045 -8,65 

white clover 237390.44 284434.345 47043.905 16,54 

white willow 182415.49 201960.595 19545.105 9,68 
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7. EVALUATION 

To make statements about the accuracy and informational content of 

classification results, spatial base data is used for comparison. This data has 

been acquired based on field sampling and image interpretation as further 

explained in chapter 4.5. For accuracy assessment the most commonly used 

method of generating random points and check their agreement between 

classified and reference data is applied. As classification accuracy measure 

overall accuracy and Kappa coefficient are calculated. But besides, also 

informational content of the different classification results is analyzed and 

described. Finally, an error analysis is performed to highlight classes that are 

likely to be confused. 

 

7.1. ACCURACY ASSESSMENT 

With the advent of remote sensors with increasing resolution the necessity of 

performing an accuracy assessment has become an integral part. To evaluate 

the accuracy of the classes found by the different classification algorithms used 

in this project an accuracy assessment is performed. Therefore, a defined 

number of points is equally randomly distributed over the project area which 

means that for each class the same amount of random points is generated. 

The class of each point in the classified image is then compared to the 

appropriate class in the reference data set. The output of the accuracy 

assessment is a confusion matrix, stating the overall accuracy and the Kappa 

coefficient. The amount of assessment points per class is suggested by 

Congalton (1991) and Congalton and Green (1999) as follows: as a minimum 

50 points per classes should be generated. If the classification results in a large 

number of classes or the area is particularly large, the number of assessment 

points should be increased to 75 or 100 samples per class.  

As descriptive and analytical statistical technique the confusion or error matrix 

is widely used. Comparing each class to every other not only a measurement 

of the overall classification accuracy but also the information which classes are 

likely to become confused is stated. The overall accuracy is calculated by 

dividing the total correct by the total amount of pixels in the confusion matrix. 

Traditionally the accuracy for each class is derived by dividing the number of 

correctly classified pixels by the total amount of pixels of this class in the 

reference data. This accuracy measure indicates the probability of a reference 
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pixel being correctly classified and is also known as producer’s accuracy or 

omission error. On the other hand the user’s accuracy or commission error can 

be derived in dividing the number of correctly classified pixels in a class by the 

total amount of pixels classified in this class. However, this measure indicates 

the probability of a classified pixel in the image really presenting the class on 

the ground (Congalton, 1991).  

Table 22 displays a randomly generated confusion matrix including 11 ISODATA 

classes resulting from GeoEye-1 classification. Besides the confrontation of 

classified and reference data, the column totals as well as the row totals and 

the sum of diagonals are calculated. 

 

Table 22: Example of a confusion matrix evaluating the accuracy of eleven example classes 

 

 

The Kappa analysis is a multivariate technique and a measure of agreement 

or accuracy between the remote sensing-derived image and the reference 

data (Jensen, 2005). While the overall accuracy measure only includes the 

major diagonal of the error matrix, the kappa coefficient indirectly also takes 

the omission and commission errors into account (Congalton, 1991). Kappa 

values of >0.80 represent high accuracy between the classification map and 

the ground reference data. Values between 0.40 and 0.80 represent moderate 

and values <0.40 poor agreement (Landis and Koch, 1977). To calculate the 

Kappa coefficient at first the expected accuracy needs to be computed. The 

expected accuracy can be derived by computing the sum of all column totals 

multiplied by the appropriate row total and divided by the total number of 

samples. Finally, the Kappa coefficient is calculated by subtracting the 

expected accuracy from the overall accuracy and dividing the result by 1 – 

the expected accuracy.  
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Table 23 shows the calculation of overall accuracy and Kappa coefficient per 

class for the same 11 example classes as shown in Table 22. As can be seen 

producer’s and user’s accuracy values often differ a lot and the analyst need 

to be aware of the differences for clear interpretation. But besides, the 

calculation for every single class provides the opportunity to differentiate 

between classes of high and those of low classification accuracy.  
 

Table 23: Overall accuracy values for the 11 ISODATA classes of the example in Table 22 

 

 

Although the Kappa coefficient is widely accepted as accuracy measure in 

remote sensing applications, it also has its opponents. Pontius and Millones 

(2011) remark in their paper “Death to Kappa” that Kappa is inaccurate and 

misleading and should not be used for accuracy assessment. They justify their 

conclusions in criticizing that Kappa compares observed accuracy to an 

accuracy expected due to randomness and prove that randomness is an 

irrelevant and misleading baseline. Therefore, Kappa coefficient as one 

measure of accuracy has to be handled with care and the analyst should 

always keep its issues in mind. 
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7.2. QUANTITATIVE ASSESSMENT 

As mentioned in chapter 5.7 the classification results are not only evaluated 

based on their classification accuracy but also on their informational content 

concerning: 
 

1. Accuracy of classification after the Habitats Directive  

2. Accuracy of classification in accordance to the more detailed internal 

habitat type classification 

3. Accuracy of classification of single vegetation species 

4. Accuracy of classification of single vegetation varieties 

5. Accuracy of classification of soil types 

 

In terms of informational content the Image Segmentation algorithm delivers 

the best results, as it finds segments in the image which are then assigned to 

the appropriate class. With this classifier it was possible to determine the classes 

as mentioned in the Habitats Directive with an accuracy of 81.60 %. The more 

detailed internal habitats classification could be achieved with 77.18 % 

accuracy. However, the Image Segmentation classifier made it possible to 

neither identify single vegetation species nor varieties nor make statements 

about different soil types. On the other hand, ISODATA provides the least 

accurate results concerning informational content. Based on its nature, only 

fewer classes can be found because often clusters appear in multiple classes 

at once. For that reason, clusters can only be merged to broader classes. 

Therefore, it was not possible to identify all present classes as defined in the 

Habitats Directive or the internal classification. Finally, Maximum Likelihood 

algorithm offers the possibility to find all available classes according to the 

Habitats Directive. The difficulty is to find the balance between accuracy and 

informational content. Defining a signature for each and every class and 

therewith getting high informational content usually leads to a lower accuracy. 

With the help of the transformed divergence measure classes can be merged 

to increase the separability, but simultaneously informational content gets lost. 

Thus, the classes according to the habitats directive were found with an 

accuracy of 35.60 % and the more detailed internal classes with 33.30 % 

accuracy. But in the RPAS-derived data it was possible to differentiate 

vegetation species with the help of Maximum Likelihood classifier. But because 

of the high resolution issue as already mentioned, no meaningful accuracy 
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value could be derived. Statements about vegetation varieties or soil types 

could not be made with Maximum Likelihood classifier.  

To conclude, in terms of accuracy Image Segmentation is the most accurate 

classifier used, but regarding quantity Maximum Likelihood can be used to 

identify three of the five defined categories. ISODATA is the most inaccurate 

classifier regarding both, qualitative and quantitative content. 

 

7.3. ERROR ANALYSIS 

Because of their spectral similarity, there are some classes that are most likely 

to be confused during the classification process. For the GeoEye-1 satellite 

imagery ISODATA classifies in 69.3 % of cases pixels that are belonging to the 

alluvial forest class as spruce forest. Furthermore, sowed meadow is classified 

as white clover in 68 % of cases and the class agriculture 2 is classified as 

gravel/sand bank with 62.7 %. However, Image Segmentation has a higher 

overall accuracy and therefore fewer classes are confused with a high 

percentage. Thus, pixels belonging to the class gray alder/ash are classified as 

reed bed with 60 % and 40 % of the pixels belonging to the class agriculture 1 

are classified as gray alder/ash. Also very few high percentage confusions 

between classes are found in the results of Maximum Likelihood algorithm with 

15 resulting classes. A third of the pixels of the river class are classified as natural 

eutrophic lakes and 14 % of the purple moor/tall oat grass pixels are classified 

as bare soil and white clover/ryegrass respectively.   
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8. DISCUSSION 

Closing the circle, this chapter finally addresses the responses to the research 

questions formulated in the introductory chapters. Especially in the first part the 

research questions are treated intensively. In the subchapter Conclusion all 

findings are summarized to highlight the benefits of this master’s project. Finally, 

the chapter closes with an outlook into future work and possible follow-up 

projects.  
 

The key research question of this work asks for the suitability of the different 

remote sensors for monitoring riverine environments in terms of informational 

content and accuracy. The classification results have proven that both, the 

satellite as well as RPAS sensors, are usable for the assigned tasks according to 

riverine environmental monitoring. Concerning informational content even all 

of the more detailed internal classes could be achieved with at least 

satisfactory accuracy. Through change detection analyses temporal changes 

could be mapped and evaluated. One problem that still persists, lies with the 

ability to technically process and interpret the ultra-high resolution RPAS data. 

In this field of high resolution classification a research on efficient classification 

algorithms for VHR RPAS data should be conducted and suitable classifiers 

applied. Another possibility was to develop a novel algorithm specifically 

adopted to the present problem. Furthermore, accuracy assessment should be 

reconsidered concentrating on an object-based approach. Altogether the 

research question about the suitability of the different sensors for environmental 

monitoring has been successfully answered.  

A sub-question asks for the scale to what it is possible to differentiate between 

vegetation. As shown through classification, plant communities as mentioned 

in the Habitats Directive are identified with high accuracy. Whereas for satellite 

images these plant communities are the highest level of differentiation 

reachable, RPAS-derived data can also be used to differentiate between tree 

groups and to a lower degree, tree species. Be it through visual image 

interpretation or through classification via Maximum Likelihood classifier, 

certain tree species are clearly discernible. This research question was 

satisfactorily addressed as well. 

None of the systems fulfils all environmental monitoring tasks as mentioned in 

the EU directives. While statements about the health states of the habitats and 

animal mapping are lacking according to the Habitats and Birds Directive, it is 

the water quality that cannot be determined to fulfil the Water Framework 
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Directive. However, some statements about geomorphologic changes could 

be made in observing the gravel or sand banks and tracking the river course. 

In addition, the water quantity could be captured to a certain degree.  

Therewith, the question about the statements that can be made about water 

quality and quantity of the monitored rivers could be partially answered.  

Although it has many advantages and the results of the RPAS are of higher 

resolution, the monitoring tasks according to the EU directives that could be 

fulfilled, could all be satisfied by the VHR satellite systems. This means that the 

resolution of VHR satellites is high enough to fulfil monitoring tasks. It is to be 

expected that the hyperspectral camera brings about a rebound and 

improves the RPAS-related results significantly through higher spectral 

resolution. But so far the spatial resolution of currently operating earth-

observation satellites can be seen as high enough to partly fulfil monitoring 

tasks according to EU directives. Only health states of vegetation and water 

quality could not be monitored. 

The RPAS has been proven to reliably fulfil environmental monitoring tasks and 

the appropriate research question was successfully answered. However, there 

is still a problem with the positional accuracy that by now already has partly 

been fixed. The advantage of the RPAS compared to satellites is besides the 

adoptable temporal and spatial resolution, the opportunity in changing 

spectral resolution. A hyperspectral camera could be from specific use for 

monitoring the health states of the habitats as well as detecting pioneer 

species and invasive neophytes and monitor their spread. 
 

The expected results of this research have been defined in chapter 1.4 as 

follows: 

 

1. Overall quality and suitability assessment of a small RPAS-based multi-

sensor platform for high-resolution spatiotemporal monitoring of 

dynamic river environments in the context of vegetation and 

geomorphology 

2. Evaluation of classification results for vegetation and geomorphic 

landforms 

3. Comparison of the different remote sensing systems 

4. A large quantity of environmental data sets generated by multiple 

missions during the project period 
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Result number 1 has been reached in classifying RPAS-derived data and 

conducting a change analysis between two temporally different recordings. 

Advantages as well as issues have been detected that can be used for further 

development of the platform. While the RPAS is attractive for its adjustability of 

spatial, temporal and even spectral resolution, geometric inaccuracy and 

issues in processing data in such an ultra-high resolution still need to be solved. 

The classification results of the different remote sensors have been evaluated 

and discussed in chapter 6.4. In addition, a detailed comparison between the 

different results took place. Therewith, the expected results 2 and 3 could be 

fulfilled successfully. Finally, due to the nature of the RPAS, a large quantity of 

environmental data sets have been generated during multiple missions. 

Additionally reference data in single tree resolution have been collected in the 

field for evaluation purpose of the visual image interpretation experiment. To 

conclude, all four expected results have been successfully reached during this 

master’s project. 

 

8.1. CONCLUSION 

The suitability and accuracy of VHR satellite and even higher resolution RPAS 

images have been evaluated for the purpose of riverine environmental 

monitoring. A comparison of different unsupervised and supervised 

classification methods have been performed after geometrically and 

radiometrically correcting the imagery. The dependency of location accuracy 

and the spatial resolution of data used for ortho-rectification could be verified 

in preprocessing satellite data using DEMs in different resolutions. The accuracy 

assessment of the satellite images has proven that the FLS-based Image 

Segmentation algorithm delivers the best results in terms of accuracy and 

quantitative content, followed by Maximum Likelihood and ISODATA. Because 

of the ultra-high resolution and intensive post-classification requirements by 

unsupervised techniques, only Maximum Likelihood classifier could be applied 

on the RPAS data. Problems in the accuracy assessment of RPAS classification 

results caused by lower resolution of the reference data have shown that the 

development of new object-based techniques for accuracy assessment of 

ultra-high resolution data is crucially needed. A change detection analysis 

between two timestamps of the aerial images taken before and after 

restoration could highlight the regions of change during restoration and verify 

the success of restoration actions. Analyzing the change between RPAS 



92 

images with a temporal interval of one year has shown that the study area is 

still changing in essence. Although positional accuracy of the RPAS imagery 

could be improved through geo-referencing, an acceptable inaccuracy of 

less than pixel resolution could not be achieved. By now location accuracy of 

the RPAS system has already been improved and a strategy was developed to 

ensure high location accuracy and handle small deviations from the planned 

trajectory caused by local wind situations.  

 

8.2. OUTLOOK 

Besides environmental monitoring there is a large variety of other application 

areas imaginable for the RPAS. Particularly in these times of climate change, 

wars, poverty and suppression where each day more and more refugees reach 

European land, the RPAS could be used in crisis management. Supporting 

charity organizations in fast mapping of the situation or searching for 

completely overcrowded refugee boats in the Mediterranean Sea close to 

European borders are only two conceivable scenarios. Furthermore, natural 

disasters are another application area for the RPAS to quickly map the situation 

after e.g. an earth-quake or a fire and ensure to introduce the right type of 

help at the right place. In Austria the RPAS could be of particular interest for 

forestry. As different species are clearly discernible at least with aid of an 

interpretation key, RPAS-derived images could be used for forest inventory. In 

addition with the hyperspectral camera the system could even allow a better 

planning of actions to increase forest health and reduce pest infestation. This 

small selection of possible other application areas for the fixed-wing RPAS 

should give a cause for thought and highlight the diversity of this ultra-high 

resolution system. 
 

In a further step a hyperspectral camera will be mounted on the RPAS platform 

to test if the higher spectral resolution increases classification accuracy as well 

as informational content. Because of the larger amount of spectral bands the 

hyperspectral camera is expected to improve the classification results 

significantly. Besides quantitatively assessing riverine habitats, hyperspectral 

data might also provide the possibility to qualitatively monitor present 

vegetation and river geomorphology.  

The present data did not afford an opportunity to make statements about 

existence and spread of inverse neophytes. In this field the application of the 

hyperspectral camera could be worthwhile. Another research project should 
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concentrate on this sector to find ways classifying inverse species. In a first try a 

hand spectrometer could be used to select spectral signatures of neophytes 

and analyze their separability. If separability values are low, spatio-temporal 

analyses through the seasons could help identifying inverse species based on 

their spectral behavior throughout the year.  

To counteract the, compared to resolution, low spatial agreement between 

RPAS images derived in different flights a new model for geo-referencing 

should be developed. As there is no possibility to load the RPAS with the RGB 

and NIR camera simultaneously, all images need to be geometrically 

corrected. Optimally the preprocessing step should take place before all single 

images are mosaicked together to reduce regional location inaccuracy. By 

the end of this thesis, location accuracy could already and will further be 

improved to ensure high spatial agreement between different images.  

Additionally the WorldView-2 winter scenes could be used in combination with 

a hydraulic model of the rivers to evaluate their usage for detection of the river 

bed shapes and water quantity. Another interesting research question could 

be to try to classify trees in the winter scenes. Because of missing leaves other 

methods than spectral characteristics need to be developed to differentiate 

between deciduous species. 
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ANNEX A 

 

NATURAL HABITAT TYPES OF COMMUNITY INTEREST WHOSE CONSERVATION 

REQUIRES THE DESIGNATION OF SPECIAL AREAS OF CONSERVATION (Habitats 

Directive) 

Interpretation  

Guidance on the interpretation of habitat types is given in the 'Interpretation 

Manual of European Union Habitats' as approved by the committee set up in 

Article 20 ('Habitats Committee') and published by the European Commission. 

The code corresponds to the NATURA 2000 code.  

The sign '*' indicates priority habitat types.  

 

1. COASTAL AND HALOPHYTIC HABITATS 
 

11. Open sea and tidal areas  

1110 Sandbanks which are slightly covered by sea water all the time  

1120 * Posidonia beds (Posidonion oceanicae)  

1130 Estuaries  

1140 Mudflats and sandflats not covered by seawater at low tide  

1150 *Coastal lagoons  

1160 Large shallow inlets and bays  

1170 Reefs  

1180 Submarine structures made by leaking gases  

 

12. Sea cliffs and shingle or stony beaches 

1210 Annual vegetation of drift lines  

1220 Perennial vegetation of stony banks  

1230 Vegetated sea cliffs of the Atlantic and Baltic Coasts  

1240 Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium 

spp.  

1250 Vegetated sea cliffs with endemic flora of the Macaronesian coasts 

  

13. Atlantic and continental salt marshes and salt meadows 

1310 Salicornia and other annuals colonizing mud and sand  

1320 Spartina swards (Spartinion maritimae)  

1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae)  

1340 * Inland salt meadows 



xiv 

 14. Mediterranean and thermo-Atlantic salt marshes and salt meadows 

1410 Mediterranean salt meadows (Juncetalia maritimi)  

1420 Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea 

fruticosi)  

1430 Halo-nitrophilous scrubs (Pegano-Salsoletea)  

 

15. Salt and gypsum inland steppes  

1510 * Mediterranean salt steppes (Limonietalia)  

1520 * Iberian gypsum vegetation (Gypsophiletalia)  

1530 * Pannonic salt steppes and salt marshes  

 

16. Boreal Baltic archipelago, coastal and landupheaval areas 

1610 Baltic esker islands with sandy, rocky and shingle beach vegetation and 

sublittoral vegetation  

1620 Boreal Baltic islets and small islands  

1630 * Boreal Baltic coastal meadows  

1640 Boreal Baltic sandy beaches with perennial vegetation  

1650 Boreal Baltic narrow inlets  

 

2. COASTAL SAND DUNES AND INLAND DUNES 
 

21. Sea dunes of the Atlantic, North Sea and Baltic coasts 

2110 Embryonic shifting dunes  

2120 Shifting dunes along the shoreline with Ammophila arenaria('white dunes')  

2130 * Fixed coastal dunes with herbaceous vegetation ('grey dunes')  

2140 * Decalcified fixed dunes with Empetrum nigrum  

2150 * Atlantic decalcified fixed dunes (Calluno-Ulicetea)  

2160 Dunes with Hippophaë rhamnoides  

2170 Dunes with Salix repens ssp. argentea (Salicion arenariae)  

2180 Wooded dunes of the Atlantic, Continental and Boreal region  

2190 Humid dune slacks  

21A0 Machairs (* in Ireland)  

 

22. Sea dunes of the Mediterranean coast  

2210 Crucianellion maritimae fixed beach dunes  

2220 Dunes with Euphorbia terracina  

2230 Malcolmietalia dune grasslands  

2240 Brachypodietalia dune grasslands with annuals  
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2250 * Coastal dunes with Juniperus spp.  

2260 Cisto-Lavenduletalia dune sclerophyllous scrubs  

2270 * Wooded dunes with Pinus pinea and/or Pinus pinaster 

 

23. Inland dunes, old and decalcified  

2310 Dry sand heaths with Calluna and Genista  

2320 Dry sand heaths with Calluna and Empetrum nigrum  

2330 Inland dunes with open Corynephorus and Agrostis grasslands  

2340 * Pannonic inland dunes  

 

3. FRESHWATER HABITATS 
 

31. Standing water 

3110 Oligotrophic waters containing very few minerals of sandy plains 

(Littorelletalia uniflorae)  

3120 Oligothrophic waters containing very few minerals generally on sandy soils 

of the West Mediterranean, with Isoetes spp.  

3130 Oligotrophic to mesotrophic standing waters with vegetation of the 

Littorelletea uniflorae and/or of the Isoëto-Nanojuncetea  

3140 Hard oligo-mesotrophic waters with benthic vegetation of Chara spp.  

3150 Natural eutrophic lakes with Magnopotamion or Hydrocharition- type 

vegetation  

3160 Natural dystrophic lakes and ponds  

3170 * Mediterranean temporary ponds  

3180 * Turloughs  

 

32. Running water - sections of water courses with natural or semi-natural 

dynamics (minor, average and major beds) where the water quality shows no 

significant deterioration 

3210 Fennoscandian natural rivers  

3220 Alpine rivers and the herbaceous vegetation along their banks  

3230 Alpine rivers and their ligneous vegetation with Myricaria germanica  

3240 Alpine rivers and their ligneous vegetation with Salix elaeagnos  

3250 Constantly flowing Mediterranean rivers with Glaucium flavum  

3260 Water courses of plain to montane levels with the Ranunculion fluitantis 

and Callitricho-Batrachion vegetation  

3270 Rivers with muddy banks with Chenopodion rubri p.p. and Bidention p.p. 

vegetation  
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3280 Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species 

and hanging curtains of Salix and Populus alba  

3290 Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion 

 

4. TEMPERATE HEATH AND SCRUB 
 

4010 Northern Atlantic wet heaths with Erica tetralix 

4020 * Temperate Atlantic wet heaths with Erica ciliaris and Erica tetralix 

4030 European dry heaths  

4040 * Dry Atlantic coastal heaths with Erica vagans 

4050 * Endemic macaronesian heaths  

4060 Alpine and Boreal heaths  

4070 * Bushes with Pinus mugo and Rhododendron hirsutum (Mugo 

Rhododendretum hirsuti)  

4080 Sub-Arctic Salix spp. scrub  

4090 Endemic oro-Mediterranean heaths with gorse  

 

5. SCLEROPHYLLOUS SCRUB (MATORRAL) 
 

51. Sub-Mediterranean and temperate scrub 

5110 Stable xerothermophilous formations with Buxus sempervirens on rock 

slopes (Berberidion p.p.)  

5120 Mountain Cytisus purgans formations  

5130 Juniperus communis formations on heaths or calcareous grasslands  

5140 * Cistus palhinhae formations on maritime wet heaths  

 

52. Mediterranean arborescent matorral  

5210 Arborescent matorral with Juniperus spp.  

5220 * Arborescent matorral with Zyziphus 

5230 * Arborescent matorral with Laurus nobilis 

 

53. Thermo-Mediterranean and pre-steppe brush 

5310 Laurus nobilis thickets  

5320 Low formations of Euphorbia close to cliffs  

5330 Thermo-Mediterranean and pre-desert scrub  

 

54. Phrygana  
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5410 West Mediterranean clifftop phryganas (Astragalo-Plantaginetum 

subulatae)  

5420 Sarcopoterium spinosum phryganas  

5430 Endemic phryganas of the Euphorbio-Verbascion 

 

6. NATURAL AND SEMI-NATURAL GRASSLAND FORMATIONS 
 

61. Natural grasslands  

6110 * Rupicolous calcareous orbasophilic grasslands of the Alysso-Sedion albi 

6120 * Xeric sand calcareous grasslands  

6130 Calaminarian grasslands of the Violetalia calaminariae 

6140 Siliceous Pyrenean Festuca eskia grasslands  

6150 Siliceous alpine and boreal grasslands  

6160 Oro-Iberian Festuca indigesta grasslands  

6170 Alpine and subalpine calcareous grasslands  

6180 Macaronesian mesophile grasslands  

 

62. Semi-natural dry grasslands and scrubland facies 

6210 Semi-natural dry grasslands and scrubland facies on calcareous 

substrates (Festuco Brometalia) (* important orchid sites)  

6220 * Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea 

6230 * Species-rich Nardus grasslands, on silicious substrates in mountain areas 

(and submountain areas in Continental Europe)  

6240 * Sub-Pannonic steppic grasslands  

6250 * Pannonic loess steppic grasslands  

6260 * Pannonic sand steppes  

6270 * Fennoscandian lowland species-rich dry to mesic grasslands  

6280 * Nordic alvar and precambrian calcareous flatrocks  

 

63. Sclerophillous grazed forests (dehesas) 

6310 Dehesas with evergreen Quercus spp.  

 

64. Semi-natural tall-herb humid meadows  

6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion 

caeruleae)  

6420 Mediterranean tall humid grasslands of the Molinio-Holoschoenion 

6430 Hydrophilous tall herb fringe communities of plains and of the montane to 

alpine levels  
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6440 Alluvial meadows of river valleys of the Cnidion dubii 

6450 Northern boreal alluvial meadows  

65. Mesophile grasslands  

6510 Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis)  

6520 Mountain hay meadows  

6530 * Fennoscandian wooded meadows  

 

7. RAISED BOGS AND MIRES AND FENS 
 

71. Sphagnum acid bogs  

7110 * Active raised bogs  

7120 Degraded raised bogs still capable of natural regeneration  

7130 Blanket bogs (* if active bog)  

7140 Transition mires and quaking bogs  

7150 Depressions on peat substrates of the Rhynchosporion 

7160 Fennoscandian mineral-rich springs and springfens  

 

72. Calcareous fens  

7210 * Calcareous fens with Cladium mariscusand species of the Caricion 

davallianae 

7220 * Petrifying springs with tufa formation (Cratoneurion)  

7230 Alkaline fens  

7240 * Alpine pioneer formations of the Caricion bicoloris-atrofuscae 

 

73. Boreal mires  

7310 * Aapa mires  

7320 * Palsa mires  

 

8. ROCKY HABITATS AND CAVES 
 

81. Scree  

8110 Siliceous scree of the montane to snow levels (Androsacetalia alpinae 

and Galeopsietalia ladani)  

8120 Calcareous and calcshist screes of the montane to alpine levels 

(Thlaspietea rotundifolii)  

8130 Western Mediterranean and thermophilous scree  

8140 Eastern Mediterranean screes  

8150 Medio-European upland siliceous screes  
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8160 * Medio-European calcareous scree of hill and montane levels  

 

82. Rocky slopes with chasmophytic vegetation 

8210 Calcareous rocky slopes with chasmophytic vegetation  

8220 Siliceous rocky slopes with chasmophytic vegetation  

8230 Siliceous rock with pioneer vegetation of the Sedo-Scleranthionor of the 

Sedo albi-Veronicion dillenii 

8240 * Limestone pavements  

 

83. Other rocky habitats  

8310 Caves not open to the public  

8320 Fields of lava and natural excavations  

8330 Submerged or partially submerged sea caves  

8340 Permanent glaciers  

 

9. FORESTS 
 

(Sub)natural woodland vegetation comprising native species forming forests 

of tall trees, with typical undergrowth, and meeting the following criteria: rare 

or residual, and/or hosting species of Community interest 
 

90. Forests of Boreal Europe  

9010 * Western Taïga  

9020 * Fennoscandian hemiboreal natural old broad-leaved deciduous forests 

(Quercus, Tilia, Acer, Fraxinus or Ulmus) rich in epiphytes  

9030 * Natural forests of primary succession stages of landupheaval coast  

9040 Nordic subalpine/subarctic forests with Betula pubescens ssp. 

czerepanovii 

9050 Fennoscandian herb-rich forests with Picea abies 

9060 Coniferous forests on, or connected to, glaciofluvial eskers  

9070 Fennoscandian wooded pastures  

9080 * Fennoscandian deciduous swamp woods  

 

91. Forests of Temperate Europe  

9110 Luzulo-Fagetum beech forests  

9120 Atlantic acidophilous beech forests with Ilex and sometimes also Taxus in 

the shrublayer (Quercion robori-petraeaeor Ilici-Fagenion)  

9130 Asperulo-Fagetum beech forests  
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9140 Medio-European subalpine beech woods with Acer and Rumex arifolius 

9150 Medio-European limestone beech forests of the Cephalanthero-Fagion 

9160 Sub-Atlantic and medio-European oak or oak-hornbeam forests of the 

Carpinion betuli 

9170 Galio-Carpinetum oak-hornbeam forests  

9180 * Tilio-Acerion forests of slopes, screes and ravines  

9190 Old acidophilous oak woods with Quercus robur on sandy plains  

91A0 Old sessile oak woods with Ilex and Blechnumin the British Isles  

91B0 Thermophilous Fraxinus angustifolia woods  

91C0 * Caledonian forest  

91D0 * Bog woodland  

91E0 * Alluvial forests with Alnus glutinosa and Fraxinus excelsior(Alno-Padion, 

Alnion incanae, Salicion albae)  

91F0 Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, 

Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion 

minoris)  

91G0 * Pannonic woods with Quercus petraea and Carpinus betulus 

91H0 * Pannonian woods with Quercus pubescens 

91I0 * Euro-Siberian steppic woods with Quercus spp.  

91J0 * Taxus baccata woods of the British Isles  

 

92. Mediterranean deciduous forests  

9210 * Apeninne beech forests with Taxus and Ilex 

9220 * Apennine beech forests with Abies alba and beech forests with Abies 

nebrodensis 

9230 Galicio-Portuguese oak woods with Quercus robur and Quercus 

pyrenaica 

9240 Quercus faginea and Quercus canariensis Iberian woods  

9250 Quercus trojana woods  

9260 Castanea sativa woods  

9270 Hellenic beech forests with Abies borisii-regis 

9280 Quercus frainetto woods  

9290 Cupressus forests (Acero-Cupression)  

92A0 Salix alba and Populus alba galleries  

92B0 Riparian formations on intermittent Mediterranean water courses with 

Rhododendron ponticum, Salix and others  

92C0 Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis)  
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92D0 Southern riparian galleries and thickets (Nerio-Tamaricetea and 

Securinegion tinctoriae)  

 

93. Mediterranean sclerophyllous forests  

9310 Aegean Quercus brachyphylla woods  

9320 Olea and Ceratonia forests  

9330 Quercus suber forests  

9340 Quercus ilex and Quercus rotundifolia forests  

9350 Quercus macrolepis forests  

9360 * Macaronesian laurel forests (Laurus, Ocotea)  

9370 * Palm groves of Phoenix 

9380 Forests of Ilex aquifolium 

 

94. Temperate mountainous coniferous forests 

9410 Acidophilous Picea forests of the montane to alpine levels (Vaccinio-

Piceetea)  

9420 Alpine Larix decidua and/or Pinus cembra forests  

9430 Subalpine and montane Pinus uncinata forests (* if on gypsum or 

limestone)  

 

95. Mediterranean and Macaronesian mountainous coniferous forests 

9510 * Southern Apennine Abies alba forests  

9520 Abies pinsapo forests  

9530 * (Sub-) Mediterranean pine forests with endemic black pines  

9540 Mediterranean pine forests with endemic Mesogean pines  

9550 Canarian endemic pine forests  

9560 * Endemic forests with Juniperus spp.  

9570 *Tetraclinis articulata forests  

9580 * Mediterranean Taxus baccata woods 
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ANNEX B 

Results visual image interpretation 

 
Scaled aerial image derived by RPAS of a sample area in study site Gail, edited by expert 1 

N 
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Reference data for sample site of expert 1 

 

 

 

N 
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Result of expert 1 of the above shown sample area in study site Gail (“Nadelbaum” = coniferous tree, 

“Laubbaum” = deciduous tree) 

 

N 
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Analogous Translation: 

Riverside Gail 

Scale:   1:118 

Recording Date: June 3rd, 2015 

Time needed: ca. 30 min 

 

Comments: 

There are more trees in the image of course, but I could not clearly identify 

definite single trees. I can only assume their species, but I do not know. I think 

the coniferous trees are larches (Larix), most deciduous trees are willows (Salix). 

If this helps you.  
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Size Sample Area  1595.72 m² 

   

Total Number of Trees  52 

 Ash 26 

 Beech 12 

 Spruce  12 

 Willow 2 

   

 Coniferous 12 

 Deciduous  40 

   

Estimated collection time  1.5 hours 

 

Summarized reference data sample site of expert 1 

 

 

Size Sample Area  1595.72 m² 

   

Total Number of Trees  21 

 Coniferous 14 

 Deciduous  7 

   

Estimated identification time  0.5 hours 

 

Summarized interpretation results expert 1 
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Scaled aerial image derived by RPAS of a sample area in study site Gail, edited by expert 2  

 

N 
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Reference data for sample area of expert 2 

 

 

 

 

N 
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Result of expert 2 of the above shown sample area in study site Gail  
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Maßstab     1:118 

Datum der Aufnahme  03.06.2015 (am 05.07.2015 von mir bearbeitet) 

Benötigte Zeit   1 Stunde 

 

 

GRÜN  #1+2 Laubbäume 

ROT #3-37 hauptsächlich Weiden und Pappeln 

GELB #38-67 Prunus, meist Vogelkirsche 

BLAU #68+69 könnten Nadelbäume sein 

 

Den verschwommenen Bereich konnte ich leider nicht identifizieren und habe 

ihn deshalb ausgelassen 

 

 

 

Analogous Translation: 

Scale:    1:118 

Recording Date:  June 3rd, 2015 (edited on July 7th) 

Time needed:  1 hour 

 

GREEN number 1+2  deciduous trees 

RED  number 3-37 primarily willows and poplars 

YELLOW number 38-67 Prunus, primarily wild cherry 

BLUE  number 68+69 might be coniferous trees 

 

Unfortunately, I was not able to identify the blurry part of the image and 

therefore skipped it. 

  



 

  xxxi 

Size Sample Area  1572.35 m² 

   

Total Number of Trees  68 

 Alder 6 

 Ash 11 

 Beech 19 

 Willow 32 

   

 Coniferous 0 

 Deciduous  68 

   

Estimated collection time  2.0 hours 

 

Summarized reference data sample site of expert 2 

 

 

 

 

 

Size Sample Area  1572.35 m² 

   

Total Number of Trees  68 

 Other Coniferous Tree 2 

 Other Deciduous Tree 2 

 Wild Cherry 30 

 Willow 34 

   

 Coniferous 2 

 Deciduous  66 

   

Estimated collection time  1.0 hour 

 

Summarized interpretation results expert 2 
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Scaled aerial image derived by RPAS of a sample area in study site Gail, edited by expert 3 

N 
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Reference data for sample area of expert 3 

 

 

 

 

N 
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Result of expert 3 of the above shown sample area in study site Gail  

 

N 



 

  xxxv 

Ich habe folgendes gekennzeichnet: runder hellgrüner Ring sind für mich die 

Weiden, dunkelgrüner Wabenrand sind Nadelbäume, und die hellblauen 

Sprechblasen sind Laubbäume verschiedener Arten, dies wage ich mir nicht zu 

bestimmen. Ich habe noch nie eine Luftbildauswertung gemacht. 

Ich habe dies mit Paint bearbeitet, bitte ignoriere die oberen roten Ringe 

diese konnte ich nicht wieder entfernen. 

 

 

 

 

 

 

Analogous Translation: 

 

I marked the following: round, light-green circles are willows, dark-green 

hexagons are coniferous trees and the light-blue balloons are deciduous trees 

of different species which I do not dare to identify. I have never done an aerial 

image interpretation before.  

I worked in Paint, please ignore the upper red circles, I was not able to remove 

them. 
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Size Sample Area  1598.04 m² 

   

Total Number of Trees  121 

 Alder 1 

 Ash 39 

 Beech 11 

 Willow 70 

   

 Coniferous 0 

 Deciduous  121 

   

Estimated collection time  2.5 hours 

 

Summarized reference data sample site of expert 3 

 

 

 

Size Sample Area  1598.04 m² 

   

Total Number of Trees  166 

 Other Coniferous Tree 85 

 Other Deciduous Tree 27 

 Willow 54 

   

 Coniferous 85 

 Deciduous  81 

   

Estimated collection time  Not specified 

 

Summarized interpretation results expert 3 
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ANNEX C 

Confusion Matrices of the Classification Processes 

1. GeoEye-1 Image Segmentation 

2. GeoEye-1 ISODATA 

3. GeoEye-1 Maximum Likelihood 
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