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Abstract

In the near future, robots will assist humans at work and home environments. To
address this challenge, we formulate formal characterization and algorithms that enable
to computationally implement and test the notions of robust robotic planning. This
thesis attempts to combine human-like planning with high-level decision making,
which successfully handles probabilistic behavior of the human environment. This
research focuses on robotic planning over hierarchically ordered probabilistic task-
workflows, which comprises most human activities such as many household activities.
The Hierarchical Task Network planning reduces the searching space for the Markov
Decision Process algorithms, which provide ability to formulate coherent and robust
plans applying hard feasibility constrains and soft risk measures. Thus, the robot can
proactively chose plans by making decisions over the trade-off problems between the
cost and expected utility related to the robust operation.

Keywords: Artificial intelligence, High-level decision making, Robust planning,
Machine learning, Probabilistic graphical models, Hierarchical planning
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Chapter 1

Introduction

There have been dynamically growing physical and cognitive capabilities in robotics.
The doubtless demand for mobile robots to perform in uncertain and dynamic envi-
ronments results increasing focus on intelligent and robust planning. The complexity
of robot interaction with its environment is often under-estimated, since the variety
for robot to chose appropriate actions in time has exponential increasing tendency,
the planner has to deal with enormous data to specify each operation. A relatively
simple human action such as grabbing of a mug could mean thousands of possible
sequential and methodical variation in time. Therefore it is crucial to have expressive,
but compact representation of a robot planner to handle challenges of this kind in a fast
and accurate manner. Significant developments were made in building low level-level
controllers and detect objects to enable robots to perform navigation and manipulation.
Although manually sequenced instructions are not scalable because of the large variety
of tasks and situations that can arise in unstructured and uncertain environments.
To carry out increasingly complex tasks, robotic communities make strong efforts on
developing robust and sophisticated high-level decision making models and implement
them as planning systems. One of the most challenging issues is to find optimum in
the trade-off between computational efficiency and needed domain expert engineering
work to build a reasoning systems. One might handle the problem with using abstract
models, which are close to human thinking, which has twofold advantages respect
to its effect on domain expert work. On one side, the human-like models need less
abstraction, which lead more intuitive and straightforward systems. On the other hand,
human created big data on internet can be easily interpreted and transformed into
these structures.
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Introduction

This thesis outlines an approach to integrate human-like planning and models,
which are successfully functioning uncertain environments generating robust plans.
Our contributions are as follows:

• Describe human-like high-level planning framework for reasoning over probabilistic
task networks.

• Analyze notions of robustness respect to foresight in human environments and
evaluate specific risk measures on our planning system.

• Give a discussion about the extension of our framework.

This thesis organized as follows. Chapter 2 surveys related work and give a short
overview of the fundamental theory of relevant topics. Chapter 3 reviews Hierarchical
Task Network planning, give formalism and illustrate it with an example. Then Chapter
4 gives formal description of the used probabilistic model and with pseudocodes, it
explains our implementation. Chapter 5 investigates robustness regarding to the given
problem and formally describes the proposed considerations and solutions for handling
them. Chapter 6 describes the evaluation of the result of the proposed planning system.
In Chapter 7 we give a discussion over extension of the planning model. Finally Chapter
8 gives a summary of the work.
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Chapter 2

Background and Related Work

There are a great deal of related work for ours, we attempt to introduce the main
concepts and contacting scientific works in this chapter.

2.1 AI planning in general

This section attempts to give an overview of relevant concepts of Artificial Intelligence
(AI) planning. The following works [18, 20] extends this short review with detailed
introduction and state of the art research concepts.

Autonomous planning is an extensive area of Artificial Intelligence. The most
real world complex planning tasks can be successfully solved in various ways, the
action sequences do not only vary by their order or length but by even more complex
properties such as efficiency. In robotic planning there are many factors, which could
describe the efficiency of a plan and can be functioning as optimization criteria for
it, such as time, cost, energy or even more abstract and complex factors like fluency
or safety. The goal of a plan can be described in various ways: reach a set of states
that satisfies a given goal condition; or to perform a specific task; or a set of states
that the world should be kept in or kept out of; or a partially ordered set of states
that we might want the world to go through. The diversity planning circumstances
results the need for incorporating relevant domain knowledge. The question which is
a problem specific query is then arising: how much a-priori knowledge is need to be
incorporated into a planning system. The question is twofold. If the planner does not
possess enough background knowledge, the decisions might be not enough foresighted.
On the other side, too much hard-coded knowledge limits the flexibility and learning
capability of a system.
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Background and Related Work

One motivation therefore is practice-related. Success of an automated planning
highly depends on its ability to process and interpret given information which is
necessary for efficient planning. Imagine a complex problem such as a company leading,
enormous relevant information is needed for even a single decision. The ability to reason
intelligently is inconceivable without relevant experience and background knowledge,
but unnecessary information and inefficient processes makes the system slow. This
abstract point leads to another motivation of automated planning. As a human
being, our purpose is well described by our decisions. To make intelligent robots and
characterize their behavior, one of the fundamental points is start to design decision
making procedures.

In classical planning based on its conceptional model there are three components of
the planning domain: (1) the planner, (2) the plan-execution agent, and (3) the world
Σ in which the plan is executed as it is shown on Figure 2.1.

Figure 2.1: Conceptional model of AI planning [3]

One important part of the descriptions of Σ is the initial state of the environment
and the plan-execution agent at the beginning of the planning procedure. The state is
described with literals. A literal is a symbolic predicate applied to a list of arguments,
which might be variables or even constants. Such a literal can be: at(car,garage) or
grabbed(ball). Because the infinite number of possible arguments, the characterization
of the world never attempt to be represented complete. There are list of arguments which
has to be defined explicitly, but irrelevant information just make the representation
unnecessarily complex. In all of the representations in this work the closed world
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Background and Related Work

condition is hold, therefore the presumption that a statement is true is also known to
be true. Conversely, what is not currently known to be true, is false. The goal states
are described by conjunction of literals.

The planner output consists of either a plan, which means a linear sequence of
actions or a policy, which is a set of state-action pairs with at most one action for each
state.

2.2 Classical planning model

The previously described conceptional model gives a starting point to assess the
following assumptions, which illustrate the framework of classical planning model:

• Assumption 1 - State-transition model: Σ has finite set of states.

• Assumption 2 - Fully observability: Σ is fully observable, the current state is
always known.

• Assumption 3 - Determinism: Σ is deterministic, from any state an applicable
action take the world to another known state.

• Assumption 4 - Static: Σ is static, it remains in the current state until an
applicable action is applied.

• Assumption 5 - Restricted goals: The goal of the planner is to produce a plan
which take Σ into the goal state, where all goal conditions sg are fulfilled.

• Assumption 6 - Sequential plans: The solution plan is a linearly ordered finite
sequence of actions.

• Assumption 7 - Implicit Time: Actions have no duration, they are instanta-
neously take Σ to the next state.

• Assumption 8 - Offline programming: The planner generates the plan from the
initial state to the goal state without any execution by the agent.

This conceptual model gives a foundation to understand the basic concepts, but
in the latter sections a few of these assumptions will be relaxed and the appropriate
formalism of the problem will be detailed, which will be mathematically exact and
compatible with the created algorithms.
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Background and Related Work

2.3 Hierarchical planning

In Hierarchical Task Network (HTN) planning, similarly to classical AI planning, each
state of the world is represented by a set of literals, and each action corresponds to
deterministic state transitions. On the other hand, HTN planners have significantly
different approach to generate plans in what they plan for, and how they plan for it.

The objective of the HTN planner is to generate a sequence of actions that will
perform some higher-level activity or task. The description of the planning domain
includes a set of operators, which are the primitive actions and also a set of methods,
each of which is a prescription for how to decompose a task into subtasks. Figure 2.2
illustrates the basic approach of HTN planning with a simple example.

Figure 2.2: Conceptional model of HTN planning

The planning domain can be described as follows. The initial set of literals,
similarly to classical AI planning represents the initial state. However, the goal states
are expressed by the problem specification, which contains a list of tasks to accomplish.
The planning process takes the first task from the problem specification and decomposes
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Background and Related Work

it until the planner reaches a primitive operators which after execution takes the world
to the resulting state. When the actual task is not a primitive operator, the planner
chooses an applicable method to decompose this high-level task into lower subtasks
and so on. When the method cannot be decomposed into legal sequence of primitive
operators, the planner need to backtrack to a higher level and try another applicable
method to solve the task problem.

HTN planning was first developed more than 35 years ago [21, 27]. Historically,
most of the HTN-planning researchers have focused on practical applications. Examples
include production-line scheduling [33], planning and scheduling for spacecraft [7, 15],
evacuation planning [17].

2.4 Non-deterministic planning

Many successful algorithms were developed for challenging classical AI planning prob-
lems, but the above described assumptions proved to be strong limitations for many
real problems in human environment. To extend the bounds of the model for further
challenges, a few assumptions has to be relaxed.

The world is not predictable, actions has more than one possible outcomes, which
means a better describing model has to allow non-determinism instead of the deter-
ministic world assumption. In other words, an action can fail as it often does. The
decision-theoretic optimal approach to handle non-determinism in a planning domain is
to make a conditional plan, which can be in a form of a tree or a policy. This supports
the interpretation of the different outcomes of a certain action. On the Figure 2.3
a binary decision tree shows a possible strategy to represent the non-deterministic
outcomes of the actions.

Figure 2.3: Non-determinism represented by binary decision tree

7



Background and Related Work

The process of constructing and reasoning over an exponentially increasing searching
space of this kind can be especially computationally expensive. This problem is one
of the general challenges in fields where searching spaces are constructed. Several
successful research work has been done on this problem such as [8].

2.5 Markov Decision Process

Handling uncertainty is crucial in human environment. Two types of uncertainty
are distinguished, one is related to the present and the other is coming from the
unpredictability of future. In this thesis we focus on the second aspect, but we note
that there are successful implementations of Partially Observable Markov Decision
Processes (POMDPs) [23] in AI planning involving planning in the belief space rather
than the underlying state space of the domain. The belief space is a space of probability
distributions over the underlying world states, where a state estimator (such as a
Bayesian or Kalman filter) maintains the current distribution over the underlying world
states, based on the actions and observations [22].

Markov Decision Process (MDP) [5, 10] is a discrete time stochastic control process,
which is applied for decision making problems, where the actions results outcomes
with uncertainty. The model is an extension of Markov chains, in which the agent has
choice of actions in the states and does not know how many actions has to be made
before the world reach its goal state. If the process may go on forever the process has
infinite horizon, however if the agent will stop eventually, the problem has indefinite
horizon. In every state the agent has to decide which applicable action it wants to
execute. This decision is made based on a policy. The solution for a MDP problem is
the policy which defines the optimal actions for every state in the problem domain.
MDP problems often solved by dynamic programming and reinforcement learning. It
is used in various fields such as robotics, economics or game theory.

Many recent work attempt to formulate and solve problems of robot planning
under uncertainty in probabilistic frameworks. Filling the gap between HTN and MDP,
successful and efficient planning models were built [12, 26], which give foundation of
our work. However, these existing works leaves several challenges open regarding to
robustness.
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2.6 Robust planning

Nowadays, autonomous mobile robotics has grown up for many challenging tasks.
Delegating tasks for robots gives considerable help for people. But it is essential that
the quality has to remain the same or even has to exceed human level. To do this, the
robots has to remain to be robust for the changing of the environment and the planner
has to adopt for unknown effects. There are extensive work on robust planning to
investigate and formally implement notions of robustness.

The authors of [16] design algorithms to build models based on historical data
of operation which can make the robot able to predict previously unknown events
and states. [13] presents a Bayesian approach to learn flexible safety constraints
and subsequently verifying whether plans satisfy these constraints. [4] describes a
planning system, called HOTRiDE (Hierarchical Ordered Task Replanning in Dynamic
Environments), which interleaves plan generation, execution, and repair in order to
work in dynamic environment. [34] proposes solution for handling unexpected faults
at run-time. They have developed methods for the localization and repair of faulty
software components at run-time and the deliberative layer of the control system is
aware of the lost capabilities of the system and adapt its decision-making.

[32] identifies three major meanings for resilience: foresight and avoidance of
undesired events, coping with ongoing trouble and recuperation from occurrence of
these events. [35] defines resilience, which completes the concept of robustness with
the notion of proactive activity, which is a way of anticipating failures. In this work
we will evaluate our planner system for notions of foresight and avoidance of undesired
events in meaning of robustness.
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Chapter 3

Hierarchical planning

3.1 Chosen framework: SHOP2

As it was introduced in the previous chapter, HTN planners are developed based
on a well-known and successful approach to formulate plans in a similar manner
as human does. The potential of this planner family is multilateral. On one side,
since constructing HTN methods are analogous to write receipts for cooking, the
human-based knowledge can be transferred easily into methods. This is not just
comfortable and straightforward but solve several scalability issues of making more
abstract planning models. Moreover, HTN planning has a favorable inherited property:
due to its decomposition structure (methods) it prunes the search space, resulting
computationally more efficient operation.

SHOP2, Simple Hierarchical Ordered Planner 2 [17], is a domain-independent
planning system based on HTN planning. SHOP2 generates the steps of each plan
in the same order that those steps will later be executed, so it knows the current
state at each step of the planning process. This reduces the complexity of reasoning
by eliminating a great deal of uncertainty about the world, thereby making it easy
to incorporate substantial expressive power into the planning system. SHOP2 can
do axiomatic inference, mixed symbolic/numeric computations, and calls to external
programs [18].

3.2 Features of SHOP2

This section describes the basic features of SHOP2 based on [18].

10



Hierarchical planning

3.2.1 Elements of a Domain Description

The description of a planning domain, consists of a set of methods, operators, and
axioms. Below we describe each of these briefly.

Operators

Each operator indicates how a primitive task can be performed. The SHOP2 operators
are very similar to PDDL [9] operators: each operator o has a head head(o) consisting
of the operator’s name and a list of parameters, a precondition expression pre(o)
indicating what has to be true in the current state in order for the operator to be
applicable, and a delete list del(o) and add list add(o) giving the operator’s negative
and positive effects. Like in PDDL, the preconditions and effects may include logical
connectives and quantifiers. The operators also can do numeric computations and
assignments to local variables. Just as in PDDL, no two operators can have the same
name; thus for each primitive task, all applicable actions are instances of the same
operator. Each operator also has an optional cost expression (the default value is 1).
This expression can be arbitrarily complicated and can use any of the variables that
appear in the operator’s head and precondition. The cost of a plan is the sum of the
costs of the operator instances.

1 ; d u s t i n g i n the room
2 ( : o p e r a t o r ( ! d u s t i n g ? p e r f ? l o c )
3 ( ( at ? p e r f ? l o c ) ( c l e a n water ) ( a t c l e a n e r _ c a r t ? l o c ) )
4 ( ( c l e a n water ) )
5 ( ( dus ted ? l o c ) ( d i r t y water ) )
6 )

Listing 1: Operator description

Listing 1 shows an operator description in SHOP2. After the :operator keyword in
the head, the !dusting is the name and the next variables (starting with question mark)
are the parameters of the operator. In line 3 the precondition literals are listed, with
similar syntax the delete post-conditions and add post-conditions are in the fourth and
fifth lines respectively. The dusting operator therefore defines the way of dusting a
room by the performer with help of the cleaner cart. The precondition is the following:
the cleaner cart and the performer have to be at the same location and for dusting the
room there is need for clean water. Then the operator delete post-condition deletes
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the clean water literal from the world state meaning the cleaning changed the state of
the water and in the next line it adds new literals to the state meaning the room is
now dusted and the water became dirty.

Methods

Each method indicates how to decompose a compound task into a partially ordered
set of subtask, each of which can be compound or primitive. The simplest version of a
method has three parts: the task for which the method is to be used, the precondition
that the current state must satisfy in order for the method to be applicable, and the
subtask that need to be accomplished in order to accomplish that task. In general,
there may be several alternative ways of accomplishing head(m). There may be more
than one method whose head is head(m), more than one set of variable bindings that
satisfy precond(m), more than one ordering consistent with sub(m), or more than one
possible way to accomplish some of the subtask in sub(m). These alternatives produce
branches in SHOP2’s search space.

1 ( : method ( Moving ? p e r f ? p e r f _ l o c ? l o c )
2 ; the room i s d i r e c t l y a c c e s s a b l e from the pe r fo rmer ’ s l oc ,
3 ; so move o p e r a t o r i s d i r e c t l y c a l l e d
4 ( ( at ? p e r f ? p e r f _ l o c ) ( TransConnect ? p e r f _ l o c ? l o c ) )
5 ( ( ! move ? p e r f ? p e r f _ l o c ? l o c ) )
6 ; the t a r g e t l o c a t i o n i s not a c c e s s a b l e , t h e r e f o r e an
7 ; i n t e r m e d i a t e l o c a t i o n w i l l be the f i r s t t a r g e t l o c a t i o n
8 ( ( at ? p e r f ? p e r f _ l o c ) ( not ( TransConnect ? p e r f _ l o c ? l o c ) )
9 ( TransConnect ? p e r f _ l o c ? in te rm− l oc ) )

10 ( ( Trave l i ngThrough ? p e r f ? p e r f _ l o c ? in te rm− l oc ? l o c ) )
11 )

Listing 2: Method description

Listing 2 explains a method definition in SHOP2. This method gives instructions
if the performer attempt to move from a location to another, but there is no direct
connection between them, for example these rooms are not separated with door but
the performer has to travel through a corridor. Similarly to the operator definition,
in the head after the name there are the parameters. Then, the method branches
are coming. The first branch of the TravellingThrough method describes the case
when the performer attempt to move between two rooms connected by one additional
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room. The connected rooms are described by an axiom TransConnect, which will be
explained in the next section. After the preconditions in line 5, the move operator
is called to take the performer to the intermediate location, from where it can go to
the original destination. In the second branch the case is described, when there is
no intermediate location which connects the current location and the destination. In
this branch the TravellingThrough method is recursively called to find the way to the
destination. Of course this greedy approach is not efficient way to find optimal path,
but further method can refine the strategy together with this representative example
for a SHOP2 method.

Axioms

The precondition of each method or operator may include conjunctions, disjunctions,
negations, universal and existential quantifiers, implications, numerical computations,
and external function calls. Furthermore, axioms can be used to infer preconditions
that are not explicitly asserted in the current state. The axioms are generalized versions
of Horn clauses, written in a Lisp-like syntax: for example, (:- head tail) says that head
is true if tail is true. The tail of the clause may contain anything that may appear in
the precondition of an operator or method.

1 ; d e f i n i t i o n o f ’ same ’
2 (:− ( same ?x ?x ) n i l )
3 ; d e f i n i t i o n o f ’ d i f f e r e n t ’
4 (:− ( d i f f e r e n t ?x ?y ) ( ( not ( same ?x ?y ) ) ) )
5 ; i n t e r c h a n g e a b i l i t y o f the connect p r o p e r t y o f rooms
6 (:− ( TransConnect ?x ?y ) ( o r ( connect ?y ?x ) ( connect ?x ?y ) ) )
7 ; d e f i n i t i o n o f d i r e c t l y connected rooms
8 (:− ( TransConnect ?x ? z ) ( ( connect ?x ? in te rm− l oc )
9 ( connect ? in te rm− l oc ? z ) ) )

Listing 3: Axiom description

Axiom description is shown in Listing 3, where there are four examples for better
understanding. The first axiom defines what same mean in our problem. This is needed
to define same locations. The next axiom similarly describes difference as the negate
of the same property on two variables. The third and fourth axioms were used in the
method description to help plan the moving strategy from one location to another.
First in line 6 the interchangeability of the connect property is shown, which means
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if room A is connected to room B, then B is also connected to A. The in the fourth
axiom the intermediate location is used to define path between two locations.

3.2.2 Developing domain descriptions and problem for SHOP2

The first step in developing a domain description for SHOP2 is to formulate some
abstract tasks and methods that constitute a reasonable problem-solving strategy. As
an example, we will use a simplified version of HouseCleaning domain. The problem is
to clean the entire house by doing certain household activities and use tools for these
actions. Listing 4 shows the problem definition with describing the initial state with
literals and the high-level tasks which are related to high-level methods, these are a set
of abstract tasks, which can be done by apply further methods which decompose these
task into primitive action, which are applied based on the operator descriptions. Once
we have an abstract strategy similar to the one in Listing 4, we can implement it as a
SHOP2 domain description consisting of methods, operators and axioms. For example,
there are methods to decompose how the performer can clean in the kitchen which
includes the TravellingThrough method in Listing 2. Then this method description is
using axioms in Listing 3. Then arriving to the kitchen the performer can dust the
room applying the dusting operator described in Listing 1.

1( de fp rob l em problem c l e a n i n g
2 (
3 ; i n i t i a l s t a t e s d e f i n e d by ground l o g i c a l atoms
4 ( at c l e a n e r _ c a r t k i t c h e n )
5 ( at robo t bath )
6 ( connect l i v bath )
7 ( connect l i v k i t c h e n )
8 ( c l e a n water )
9 )

10 ; p l a n n i n g prob lems
11 ( : uno rde red ( HouseC lean ing robo t bath )
12 ( HouseC lean ing robo t k i t c h e n )
13 ( HouseC lean ing robo t l i v ) )
14 )

Listing 4: Problem description

As it has been seen in the previous sections, in SHOP2 the planning procedure
is done with help of variables. Similarly to the modern programming languages, the
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variables can take value. For example, ?perf-loc can be be equal to all the location
ground logical atoms such as: liv (living room), bath (bathroom) and kitchen. The
variable matching is done exactly in similar manner as the planing, the high-level task
define for example the robot as ?performer then in every method and operator the
?performer means the robot.

SHOP2 was implemented in Lisp programming language, but the its authors made a
Java version (JSHOP2), which inherited most of the features from the original program.
For easier understanding and debugging we build our domain in this version and use its
interfaces to generate the legal plans. For detailed syntax and algorithm explanation
see [11].

3.3 Example

In this thesis we are introducing an easy but representative example, the HouseCleaning
domain to illustrate the results of JSHOP2 and the later details algorithms.

The main task in the HouseCleaning domain is to clean all the rooms of a house.
The cleaning subtask is the following: the performer, which is the robot has to do
the dusting, the vacuuming and the mopping in all different rooms. In order to add
realistic ordering constrain, the mopping can only start after the vacuuming is done as
well as the dusting has to be before the vacuuming. For each of these cleaning subtask
the performer has to be in the certain room and the robot needs tools from the cleaner
cart, which has to be in the same room where the performer is. Furthermore, after the
dusting and mopping actions the water in the cleaning cart becomes dirty, therefore at
latest before the next dusting or mopping action the water has to be changed. This
means before execution of every cleaning subtask, a method make sure that every
preconditions are fulfilled, namely the performer and the cleaner cart is in the room
and the water is clean for relevant cleaning tasks. There are three rooms: living
room, bathroom and kitchen, where the living room connects directly to bathroom
and kitchen, therefore an axiom defines if two arbitrary rooms are directly connected
or the performer has to go through on a third one when it wants to take the cleaner
cart or just simple go from a room to another.

The Figure 5.1 illustrates the hierarchy of HTN methods and operators for the
previously introduced example. The horizontal direction describes the level of hierar-
chy. While the full lined arrow gives ordering connection between the methods (oval
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elements), the dotted line gives the related operator (rectangular elements) for the
methods.

Figure 3.1: HouseCleaning domain

In Appendix A the HouseCleaning domain description and problem definition
source codes are available. The used syntax has many similarity to Common Lisp and
PDDL languages, but for better understanding comments gives further information,
for detailed description see the Documentation of JSHOP2 [11].
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3.4 Evaluation

Based on the previous sections the HouseCleaning domain was build and simulated
for legal plans. However, JSHOP2 only could generate plan for a simplified model,
because of the exponential blow up the problem of memory overflow terminates the
simulation. Therefore different simplifications were made. For example with only two
rooms, the planner find a few tens of plans depending on the problem description,
which can vary on the performer and the cleaner cart initial locations. Or if one of the
cleaning subtasks such as dusting or mopping were eliminated from the plans, JSHOP2
finds approximately 170 different successful plans. The different scenarios are basically
varies on the robot and cleaner cart movements, depending on scheduling the cleaning
subtasks in different rooms with different orderings.

SHOP2 plans for tasks in the same order that they will be executed, and thus
it knows the current state at each step of the planning process. This reduces the
complexity of reasoning by removing a great deal of uncertainty about the world.
However this property is not compatible with our purpose, because for probabilistic
inference, the planner has to reason over the set of all possibilities instead of having
only choice for the next action. JSHOP2 planning procedure is sound and complete
over a large class of planning problems [17].

However, JSHOP2 has excellent capabilities to generate hierarchical plans based the
predefined problem domain, there are notions of robust probabilistic planning which
cannot be evaluated in this framework. Since the Java implementation of SHOP2 does
not contains all embedded functions which is inherited from the Lisp language, the
forming heuristic functions can be problematic. On the other hand, to implement a
probabilistic domain and apply MDP algorithms on it, is especially involved. Therefore
to combine the advantages of HTN planning, using the already generated method and
action libraries but having flexibility on design a probabilistic environment, we build
our own planner and simulation environment in Java.

3.5 Conclusion

In this chapter Hierarchical Task Network planning were introduced more in detail
with special focus on SHOP2 and its functionality. The basic approach of HTN,
which is close to the human thinking and planning can be transferred into a formal
planning framework. The literals exactly describe the world state. The high-level task
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can be decomposed into subtasks with help of the methods, which define partially
ordered task-workflow. The sequence of actions can be executed based on the operator
descriptions, which define deterministic state transitions to accomplish all the tasks.
With SHOP2 we formed our method and action libraries, which will be used in the
next chapters combined with further tools to generate robust plans.
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Chapter 4

Probabilistic hierarchical planning

To overcome of the limits of the framework used for HTN planning, we are formulating
a simulation-based environment based on the MDP model. The combination of MDP
and HTN planning gives flexibility to evaluate plans respect to the robustness.

4.1 Formalization

In this section we formally define the framework which will be used to handle uncertainty
in our algorithms to generate plans. This work is built on [26].

Definition 1 A non-deterministic state transition domain NSTD is a tuple M =<

P, S, A, R > where: (i) P = Ps∪PA is a finite set of propositions resulting of the union
of state and action propositions respectively; (ii) S ⊆ 2PS is the finite set of all possible
states; (iii) A ⊆ 2PA is the finite set of primitive actions; and (iv) Tr ⊆ S × A× S is
the state-transition relation.

We attempt to build a regression-based planning using logical representation of sets
of world states, actions and the state transitions. We wish to retain the basic HTN
structure of planning to achieve a goal, so we formulate first the framework for HTN
planning.

Definition 2 An HTN planning domain D is a tuple <T,M> where: (i) T is a
finite set of task symbols which are composed by two disjoint sets: non-primitive tasks
NT and primitive actions A; and (ii) M is a finite set of methods to refine the tasks in
T.
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The non-primitive tasks NT can be decomposed into primitive actions A with help
of methods.

Definition 3 An HTN method m ⊆M is represented as a pair (NT, H), where NT
is the non-primitive task to be decomposed and H is a task network which specifies how
NT can be achieved by other tasks. If H defines non-primitive tasks further methods
has to be called via the basic principle of recursion to continue the decomposition.
The method m has preconditions precond(m), if precond(m) ⊆ st then the method is
applicable in st.

Definition 4 A task network H is a pair (T, C) where T is a finite set of tasks
which can be non-primitive tasks NT and primitive actions A. C is a set of fully
ordering constraints on the tasks T. If T ⊆ A then H is a primitive task network.

An action a is expressed by its preconditions precond(a), its postcondition delete
list delete(a) and its postcondition add list add(a).

Definition 5 A primitive action a is executable in st if precond(a) ⊆ st and the
execution of a in st takes the world immediately to the state st+1 such that add(a)
⊆ st+1 and delete(a) ̸⊆ st+1.

Definition 6 A primitive task network H = <C,T> is applicable on st iff (1) the
preconditions of the first primitive action in T is executable st.

Definition 7 Let m1, ..., mn be a sequence of methods that fully decomposes the
set of HTN planning tasks T into task network H. Then, the decomposition is valid at
state s0 iff the resulting primitive task network H is applicable at s0.

In this way sequence of primitive actions a1, ..., an which is defined by the task
network for the set of HTN planner tasks, results a sequence of state transitions
s0, a1, ..., sn−1, an−1, an, which is called trajectory of execution.

Now that the HTN framework can define all the applicable primitive actions in a
given state respecting to the applicable methods, we formally define the MDP model.

Definition 8 And MDP forms a tuple < S, A, app, PR, R >, where S and A are
the finite set of states and actions respectively; app(st) is the set of all applicable actions
in state st, defined by the HTN task network; for every a ⊆ app(st), PR(st, a, st+1) is
the probability distribution of the state transition (st, a, st+1); and for every st ⊆ S,
R(st) ≥ 0 is the reward for st.
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4.2 Probabilistic hierarchical framework

In this section we give an overview of the implemented algorithms with representative
pseudo-codes. The most important parts of the original Java source code can be found
in Appendix B.

Algorithm 1 HTN Search-space building algorithm
Require: initial state s0, max depth D, high-level tasks T (st)
Ensure: fill up the nodemap, edgemap and statetoactions hashmaps

1: procedure BuildingHTNSearchSpace(s0, D, T (st))
2: add s0 to the first hierarchical level
3: for each d = 1...D do
4: for each st in the current hierarchical level d do
5: if all tasks are achieved by st then
6: continue
7: else
8: for each applicable m decomposes T(st) do
9: st+m, T (st+m)← ApplyMethod(m, st)

10: add st+m and T (st+m) to d + 1 level
11: end
12: end
13: end
14: end procedure

Algorithm 1 shows the core iterative routine for building the HTN searching space.
The basic approach is a modified iterative deepening search strategy, where the depth
parameter can be defined as follows. For every certain state on the given hierarchical
level, every applicable method are called, which results a new set of resulting states,
which are then the next hierarchical level. The depth parameter therefore gives a
hierarchical level, choosing the maximum depth for enough high all states on that
given hierarchical level guaranteed to accomplish all the tasks. Therefore this top-down
fashion search takes the initial state and builds up the possible next states inherently
pruned by the methods. It means compared to purely combinatorial approach, the
methods filter out the actions which will not achieve the given task even they are
legal. The most trivial example is the moving action, which can lead to an infinite
loop with completely legal decomposition. This implementation do not attempt to
handle interleaving planning, in a later chapter there will be a short discussion about
this extension.
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Algorithm 2 implements a multiple level conditioning of the state. The certain
worldstate has to fulfill not only the precondition of a method, but also the precondition
of a branch and its first action in this way HTN and MDP has different set of applicable
actions for every states. In the evaluation chapter we will highlight this behavior
in more detail. If all these conditions are hold, then an action can be executed and
the state can be updated. However, a method can be further decomposed into other
methods to accomplish the task. In this case the state is not updated, but the tasks
to be achieved respect to the state will be updated. Algorithm 2 also shows that the
searching space built by Algorithm 1 only takes the last state of a method stack as a
node into account. This would mean the distribution of searching space is not enough
fine, but in the next algorithm we introduce another structure which will represent the
fine searching space for the latter planning modules.

Algorithm 2 Apply a method
Require: current state st, method m
Ensure: resulting state st+n after applying m, updated task T (st+n)

1: procedure ApplyMethod(st,m)
2: add st to the stack of states
3: for each branch b of the method do
4: if precond(b)∈ st then
5: if precond(first action a1)∈ st then
6: apply a1 to get the next state st+1
7: UpdateSearchingSpace(st, a1, st+1, m)
8: update T (st+1)
9: add st+1 to the stack of states

10: else
11: continue...
12: if precond(an)∈ last element of stack then
13: apply an to get the next state st+n

14: UpdateSearchingSpace(st+n−1, an, st+n, m)
15: update T (st+n)
16: return st+n, T (st+n)
17: else
18: continue
19: end
20: return m failed
21: end procedure
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Algorithm 3 updates the nodemap, edgemap and statetoactions hashmaps, which
will be used as a compact representation of searching space for the MDP planning
module.

Algorithm 3 Update the searching space for MDP module
Require: current state st, next state st+1, action a, method library m
Ensure: updated node, edge and statetoactions hashmaps

1: procedure UpdateSearchingSpace(st, st+1, a, m)
2: if st+1 is not in nodemap then
3: add mapping from st+1 to node n in nodemap
4: else
5: get the value n for the key st+1

6: add mapping between st and st+1 in edgemap
7: add a to the applicable actions of st in statetoactions
8: end procedure

It can be easily seen that Algorithm 1 is complete and sound if the value of max
depth parameter D is chosen to be enough high. Otherwise if there are still states
in the last hierarchical level it means, not all of the plans terminated, therefore the
value of the depth parameter has to be increased. After the appropriate number of
iterations these algorithms provide a tree-structured search space which shows all the
possible plans which can be apply for the initial state to complete the highest-level
task. However, the goal of the HTN module is not to generate all the plans, but to map
all the state-action pairs for the later MDP module. Therefore instead of determining
the termination condition by defining a high depth value, it is enough to look on
the dynamics of the stored mappings of the searching space. If the mapping are not
increasing any more it means, the further plans will repeat already existing state-action
sequences from already stored scenarios. In this way the searching space generation
can be much faster, which bear a crucial part in simulation of human environments.

4.3 MDP module

The solution for an MDP problem is a policy, which maps at most one action for each
state. Even there are more applicable actions in a state based on the HTN task network
and MDP conditions, the optimal policy gives the one which has the highest expected
utility to take the world to the desired state or accomplish all the tasks defined by the
problem. This depends on the chosen optimization criteria. There are problems in
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which the optimal plan is defined by its length or its highest probability to achieve
its goal, but there are also different combination of criteria can be chosen such as
probability to safeness. The policy then has to be trained based on these requirements
to get its optimal form.

The learning procedure also has certain challenging aspects, which varies by methods.
One of the most important factors is the speed of convergence, since the time need
to be invested is strongly limited in many applications. Other aspect is the memory
requirements of such a learning procedure. It is obvious that in human environment
there can be enormous information which can have effect on the learning. Even if this
data is highly reduced by an appropriate knowledge representation, a long plan can
be easily intractable if all the history has to be saved. A third aspect is the optimal
criterion of the learning algorithm. Many real world problem is simplified effectively by
the appropriate representation to be handled well and an optimal plan can be found.
However, in many cases there is no best plan, therefore the learning algorithm has to
find if there is one, otherwise has to have considerations to handle the situation. Finally
a fourth important aspect of chosen a learning algorithm for a model is a trade-off
between fully automated procedure and supervised. In the second case, the domain
expert has to contribute in the learning, which can make the procedure much faster
and robust, but also result a natural bias for the system.

In the single-agent reinforcement learning model an agent interacts with its envi-
ronment by choosing an action, which takes the world to a state which is rewarded if
it reached certain goal conditions. The fundamental goal of the agent is to maximize
its reward over the horizon. This can be finite, but even for infinite horizon a discount
factor can result convergence for the algorithm. The reward can be a total sum of all
received rewards but different formalization such the average reward can be also the
goal of an agent. Therefore in our MDP framework the agent in state st chooses an
action a which takes the world into the resulting state st+1 and receive a real number
representing a reward for choosing this particular a in st resulting st+1. In our work
we relax this reward definition and make the reward only dependent on st+1. The
policy which determines which action should be chosen is a collection of probability
distributions over all actions for st. However, in our model resulting to the HTN
approach this probability distribution is narrowed only for the applicable action in st.
This result a sparse matrix for the policy distributions, which makes the learning much
faster. The resulting action-selection policy can be interpreted as a transformation to
an induced discrete-time Markov chain, which then results a more simplified model.
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Fundamental tool to solve MDP algorithms is the state value function V π(s) given
a policy π, which is the expected reward for a certain state. Similarly, Q-function
Qπ(s, a) defines the expected reward given the agent chooses action a in st following
policy π, where the corresponding values are the Q-values. Generally, a deterministic
policy is defined as π : S → A. The problem is often that there is no a-priori knowledge
of the optimal state function and Q-function therefore a technique is necessary to
estimate them and find the optimal policy with their help. Dynamic programming
methods are widely used for this purpose [5]. However, the components of the MDP
have to be known such as the reward table and state transition model, which is not
always the case. Monte Carlo and Inverse Reinforcement algorithms are appropriate for
learning the rewards and find optimal policy based on experience, meaning of choosing
an action and collecting the reward in each state [19].

4.4 Algorithms

Two classical dynamic programming methods for solving MDP problems are the value
iteration and policy iteration.

To find the optimal policy, it is needed to calculate the optimal value function.
The value iteration algorithm is to compute V (s) which has to be proved to converge
to its optimal value. The expression 4.1 to V (s) is obtained by turning the Bellman
optimality equation into an update role [5]:

V (s)← max
a

∑
s′

Tr(s, a, s′)[R(s, a, s′) + γV (s′)], (4.1)

where Tr(s, a, s′) is the state-transition model, R(s, a, s′) is the reward and γ is the
discounting factor. γ is used to handle infinite horizon problems giving a weight for
the newly acquired experience.

The value iteration is guaranteed to find optimal greedy policy in finite number
of steps, even though the optimal value function might not have converged, which is
often the case [6].

The Algorithm 4 shows the basic approach of value iteration. In this work we do
not attempt to define sophisticated convergence criteria, we just state in the algorithm
that the residual must be lower than a experimentally defined bound:

Another approach to find an optimal policy in a finite MDP is to directly update
the policy itself instead of compute it from the state values. A simple algorithm to
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Algorithm 4 Value iteration
Require: state s, residual δ, convergence criteria ϵ, state-transition model Tr, reward

R, value function V (s), action a, discount factor γ
Ensure: updated V (s)

1: procedure ValueIteration(s, δ, ϵ, Tr, R, V (s), a, γ)
2: initialization of V (s)
3: while δ < ϵ do
4: δ ← 0
5: for all s ∈ S do
6: v ← V (s)
7: V (s)← maxa

∑
s′ Tr(s, a, s′)[R(s, a, s′) + γV (s′)]

8: δ ← max(δ, |v − V (s)|)
9: end

10: end
11: end procedure

do that is alternating two steps: the value iteration and policy iteration step. The
first step solves the linear equation system and computes the state value based on
the actual policy which can be different from the optimal. Then in the second step it
updates the policy.

Algorithm 5 Policy iteration
Require: state s, current value function V π(s), policy π(s), state-transition model

Tr, reward R, action a, discount factor γ
Ensure: updated π(s)

1: procedure PolicyIteration(s, π(s), Tr, R, V π(s), a, γ)
2: initialization of V (s) and π(s)
3: while policy is optimal do
4: V π(s)← ∑

s′ π(s, a) ∑
s′ Tr(s, a, s′)[R(s, a, s′) + γV π(s′)]

5: if the policy is optimal then
6: break
7: for all s ∈ S do
8: b← π(s)
9: π(s)← argmaxa

∑
s′ Tr(s, a, s′)[R(s, a, s′) + γV (s′)]

10: if b ̸= π(s) then
11: policy is not optimal
12: end
13: end
14: end procedure
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Policy Iteration often takes fewer iteration steps than value iteration but, on the
other hand, value iteration consumes much less time in each iteration. The reason is
the policy iteration has to solve a possibly large set of equations or use an iterative
procedure similar to value iteration itself, and do it several times.

4.5 Q-learning

The chosen MDP learning method the Q-learning, proposed by [30] is a reinforcement
learning technique. Many of the previously mentioned criteria are fulfilled by this
method. It is an off-policy technique, which means independently from the used policy
during the training it can find the optimal policy. This is very handy, when there is
no prior information about the procedure and it can be combined with the benefit
of HTN planning, which generates all the applicable actions for a state but it does
not give preference for one. Q-learning is model-free, therefore it is well incorporable
with our forward-chaining MDP planning algorithm and it has great memory efficiency
due to the fact that the state transition history does not need to be saved. These
class of algorithms for model-free problems are known as temporal difference methods
[25]. Q-learning is guaranteed to find the optimal action-selection policy for any given
(finite) Markov decision process (MDP) [10], which fulfills the above mentioned optimal
criteria. This property is result of its basic approach to learn action-value functions by
value iteration.

The update rule for Q-learning is:

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)) (4.2)

which is proved to converge for the optimal policy Q* if these conditions are hold
[31]:

• every state-action pair has to be visited infinitely often

• α must decay over time such that ∑∞
t=0 αt =∞ and ∑∞

t=0 αt
2 <∞.

The update rule is always performed based on a greedy and deterministic policy
which is being improved. On the other hand, the actions which are chosen for the
controller to train the optimal policy, are executed and sampled based on the action set
which is determined by the HTN task network and MDP conditions. This is possible
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because of the off-policy property of Q-learning, however, the sampling of for the policy
training has strong impact on efficiency. The Q-learning is shown in Algorithm 6.

Algorithm 6 Q-learning
Require: state s, reward R(s′), discount factor γ, learning rate α
Ensure: optimal policy π∗(s)

1: procedure QLearning(s, R(s′), γ, α)
2: initialization of Q(s, a)
3: Initialization of s0 as s
4: while the policy is optimal do
5: execute a
6: observe the resulting state s′ and the respecting R(s′)
7: Q(s, a)← Q(s, a) + α(R(s′) + γ maxa′ Q(s′, a′)−Q(s, a))
8: end
9: end procedure

There are two parameters in the Q-learning algorithm: learning rate α and discount
factor γ. α controls what is trade-off between the importance of the newly acquired
information and the old value. Obviously, if it is 0 the agent does not learn from the
new experience, otherwise if it is 1 the agent always take the most recent information
into account. For our example we have to use low value such as 0.2 regarding to the
probabilistic behavior of our model. γ determines the importance of the later rewards.
Low value make the agent short-sighted, value which is close to 1 means the agent focus
on the rewards in the future. Our chosen value is 0.8 respect to the value of α. The
initialization of Q(s, a) has also impact on the learning procedure. Since Q-learning
is an iterative algorithm, initial condition is necessary for the Q table. It is often to
initialize the Q(s, a) table to full zero, because otherwise the so called optimistic initial
conditions (values higher than zero) might lead to longer simulation because the special
phenomenon when the initial value is higher than the updated.

4.6 Probability assumptions

There a few probability components in the existing framework, which has to be
incorporated with mathematical assumptions into the algorithms.

First, we introduce a probability in HTN to choose a certain action. The applicable
actions, which are defined by the HTN methods theoretically can be substitutionary
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with each other. A method to be chosen has to only depend on its preconditions but
not the order of the algorithmic call or any random behavior. Therefore the probability
of choosing a certain applicable action in the given state has a probability PRHT N

defined as the following:

PrHT N(s, a) = 1/n, (4.3)

where n is the number of all applicable actions in s, which is analogue with the
number of applicable methods. This model could be extended with the probability of
the likelihood of each methods, but in this work we assumes homogeneous distribution
over the subjective chose of the applicable methods.

Second probability is coming from the MDP state-transition model, which represents
the probability to execute a in s taking the world to s′. PrMDP (s, a, s′) is then defined
with assuming Markov Property over the action sequence meaning the probability of
each state-action transitions are independent. Formally:

PrMDP (sn|an−1, sn−1) = Pr(sn|a1, s1, a2, s2, ...., an−1, sn−1) (4.4)

In our work we assumes PrHT N and PrMDP are independent, therefore with Markov
property assumption, choosing a in s results s′ with Pr(s, a, s′) as follows:

Pr(s, a, s′) = PrHT N × PrMDP (4.5)

After introducing the Q-learning module, the Algorithm 7 shows how it is embedded
into the existing probabilistic hierarchical framework. Algorithm 7 follows the same
approach to Algorithm 1 with Algorithm 6, which results optimal policy for the defined
search space by the HTN based searching algorithm.

4.7 Conclusion

In this chapter we introduced formal definitions for our planner. The HTN and MDP
modules were introduced and implemented by the represented by pseudocodes. The
main procedure consists of two conceptional parts. First, the searching space was built
based on the HTN formalism and the MDP conditions. Then with the help of the
tree representation of the possible state-transitions, the MDP algorithms result the
solution policy. The Q-learning is guaranteed to converge to the policy, which gives
those actions for every states, which has the highest expected utility. Probabilistic
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behavior is captured by the learning algorithms to make the planner able to give the
most probable plan as solution for the initial state.

Algorithm 7 Non-deterministic hierarchical MDP with Q-learning
Require: depth d, hashmap nodemap, hashmap edgemap, training iteration number

iter, method library m ∈ M , action library a ∈ A, reward table R(a′), state-
transition probability Pr(s, a, s′), highest-level task T

Ensure: optimal policy π∗(s)

1: procedure MainProcedure(d,nodemap,edgemap,iter,m,a,R(s′),Pr(s, a, s′),T )
2: initialization of Q(s, a)
3: for iter do
4: Initialization of s0 as s
5: add s to the first hierarchical level
6: for each s in the current hierarchical level d do
7: if goal-condition is fulfilled on s then
8: continue
9: else

10: for each applicable m decomposes T do
11: a and s′ ← apply applicable actions
12: observe R(s′)
13: Q(s, a)← Q(s, a) + α(R(s′) + γPr(s,a,s’)maxâ Q(s′, â)−Q(s, a))
14: add s′ to the list of states in the d + 1
15: end
16: end
17: end
18: end procedure
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Chapter 5

Robust planning

Planning under uncertainty is handled by MDP successfully, various methods were
developed to reasoning over probabilistic state-transition systems. However, robustness
which is captured by foresight is not directly handled by the MDP formalism. In this
chapter we are extending our model in a way to handle risk as a constrain for the
planner. The extended model belongs to the family of Constrained Markov Decision
Processes [2].

To define risk, [28] distinguishes between accumulated and memoryless risk measures.
Accumulated risk is calculated respect to the whole action sequence from the starting
state to the current state. In this way, a total risk has to be defined and updated
after each state-transition to the evaluation and decision-making. Memoryless risk
measure approach is analogue to Markov property and assumes the independence of
the future expected risk from the past risk which was already taken into account. The
model therefore assumes that even a risk factor has been associated with the past
state-transitions, if the actions were successful, this risk is not relevant any more. To
capture accumulated risk, it has to be incorporated into the state space and since risk
is a probability distribution, the classical MDP has to be extended to Continuous MDP,
which is undoubtedly more computational expensive [1]. Handling accumulated risk is
still an ongoing research field, where different function approximation methods attempts
to model and calculate the risk propagation over the action sequence. In [14] the
authors present a sampling-based motion planner (CC-RRT), which generates optimal
plans with handling process noise, localization error and uncertain environmental
constraints. It guarantees probabilistic feasibility with modeling soft risk constraints
and hard probabilistic feasibility bounds. They model the problem with a discrete-time
system where the control problem defines cost functions to be optimized incorporating

31



Robust planning

risk. Both risk models capture aspects of risk handling, although the second one is
closer to MDP approach, because in this formalism the Markov property is also hold.
In this work we are focusing on memoryless risk measure.

In the previous chapter we formally described our probabilistic hierarchical planning
problem with Definition 8, where the optimization problem attempts to find the optimal
policy in a way:

π∗ = arg max
π

E[
T∑

t=0
γtR(st)] (5.1)

In this chapter we extend this model to a Constrained-MDP (CMDP) founding on
the model in [29].

Definition 9 A CMDP is a tuple <S, A, app, PR, R, C>, where S, A, app, PR
and R are defined in the Definition 8 and C is a constrained-model. The constrain-model
C(s) : S → R s ∈ S defines a constrained penalty.

The constrained penalty is used to formally describe risky zones, which the planner
should handle carefully.

In this way our problem is defined as follows:

π∗ = arg max
π

E[
T∑

t=t0

γtR(st)] (5.2)

s. t. E[
T∑

t=t0

C(st)] ≤ λ (5.3)

The constrain model in this way defines a non-negative value in the interval [0,1]
for every state. We can define hard constrains with setting C(s) to 0, which does not
allows for the planner to reach the certain state. A value between 0 and 1 determines
a soft feasibility constrain which describes a probability-like measure to violate the
constrain respect to the given state.

To handle risk in the MDP model, the reward can be combined with a penalty
measure, which is a compensating element in the Equation 5.4 to reduce the expected
utility corresponding to st. Therefore the reward model is extended in the following
way:

R̂(st) = β ×R(st) + (1− β)× Pe(st, a), (5.4)
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where Pe(st, a) is the penalty model and β is a positive number, which defines the
trade-off between conservative and risky decisions by taking penalty into account when
reward is collected by the agent. Lower β results more risky decisions, because the
decreased importance of the reward compared to the cost. The behavior captured by
this formula is way more complex and finding the balance between gain and cost in
general needs further convex optimization work.

However, it can be seen intuitively, that this model led to losing the characteristic of
both the reward and cost separately. There are many cases where the two measures can
balance each other. In [29] it is shown that there are cases when there is no appropriate
value to β, therefore there is not way to avoid the phenomenon that the system become
either too conservative or make too risky decisions with using this formalism of risk.

The proposed solution captures both the characteristics of constrain and reward
models.

5.1 Proposed solution

To extend our model to handle risk as a constrain, the previously introduced algorithm
has to not only optimize the Q-value respecting to the reward but there is need to check
for constrain feasibility beyond the horizon. For ensure feasibility, two value function
have to be tracked VR(s), which is associated with the reward R(s, a) and VC(s), which
is connected with the constrain model C(s). Therefore the forward searching algorithm
has to optimize based the following set of equations:

π∗(s) = arg max
a∈aC

QR(s, a) (5.5)

aC = {a : QC(s, a) < λ} (5.6)

QR(s, a) = (1− α)QR(s, a) + α(R(s′) + γPr(s, a, s′) max
â

QR(s′, â)−QR(s, a)) (5.7)

QC(s, a) = (1− α)QC(s, a) + α(C(s′) + γPr(s, a, s′) max
â

QC(s′, â)−QC(s, a)) (5.8)

In Algorithm 8, QC(s, a) is evaluated for the now extended model according to the
above described mathematical model. The general goal of the planner is to maximize
the expected reward which was received, while keep the feasibility constrain always
under the defined threshold λ.
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Algorithm 8 Non-deterministic hierarchical constrained MDP with Q-learning
Require: depth d, training iteration number iter, action a ∈ A, reward R(s), state-

transition probability Pr(s, a, s′), constrain model C(s, a), feasibility bound λ
Ensure: optimal policy π∗(s)

1: procedure PolicyLearning(d, iter, a, R(s), Pr(s, a, s′), C(s), λ)
2: initialization of QR(s, a) and QC(s, a)
3: for iter do
4: s← s0
5: add s to the first hierarchical level
6: for each state s at all hierarchical level d do
7: if goal-condition is fulfilled on s then
8: continue
9: else

10: for each a ∈ app(s) based on HTN and MDP do
11: a, s′ ← apply a
12: observe R(s′) and C(s′)
13: update QR(s, a) according to Equation 5.7
14: update QC(s, a) according to Equation 5.8
15: add s′ to the list of states on level d + 1
16: end
17: end
18: end
19: aC ← [a : QC(s, a) < λ]
20: π∗(s)← arg max

a∈aC

QR(s, a)
21: end procedure

5.2 Soft constrain and hard feasibility constrain

The above described model eliminates those state-transitions, which might violate
hard feasibility constrains. This means after convergence the policy eliminates those
action which might lead to risky states. In this way we define a policy Π, which can
be described as follows:

Πi(st) = {π(st) : E[
T∑

t=t0

C(st)] < λi} (5.9)

On the other, the model allows state-action transitions which have a certain level
of soft risk if it does not exceed the the hard constrain bound λi respect to Πi. To
use this information to evaluate Πi we need to define first that constrain bound λmin

which results a policy for the given problem, in such a way that it allows at most one
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action for each state. Now a constrain margin measure λmargin(Πi) can be calculated
for an arbitrary Πi, according to Equation 5.10. It gives a measure about what is the
margin of that specific policy Πi given to the described problem.

λΠi
margin = λi − λmin (5.10)

5.3 Bisection search

Algorithm 9 Bisection Search
Require: λinterval : [min, max], tolerance TOL
Ensure: finding λmin with TOL

1: procedure BisectionSearch(min, max, TOL)
2: NumberOfFail = 0
3: λ← (min + max)/2
4: PolicyLearning(λ, d, iter, a, R(s), Pr(s, a, s′), C(s))
5: SuccessF lag ← is there any legal plan based on the generated policy
6: if NumberOfFail > 2 then
7: Return 0
8: else if max−min < TOL and SuccessF lag then
9: Return λmin

10: else if SuccessF lag then
11: NumberOfFail = 0
12: Return BisectionSearch(min, λ, TOL)
13: else
14: NumberOfFail + +
15: BisectionSearch(λ, max, TOL)
16: end procedure

To evaluate the solution policies as function of the constrain margin λmargin, first
λmin has to be found . For this, bisection search strategy is used. The bisection of
binary search is a root-finding method in mathematics and economics, which is widely
used because its straightforward concept and its computational efficiency, which does
not exceed O(log(n)). The basic idea is similar to the Guessing game, where the
guesser can ask to get closer to the number which is figured out by the other. A wise
chose is to half the possible interval, with asking is the number higher or lower than
the middle value and so the possible choices only could be in one of the half intervals.
The searching algorithm therefore needs an ordered list of items. In this work based on
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the definition of λΠ
margin, it can be easily seen that with increasing the value of λi, the

distribution of the solution policy for each states will also increase respectively, allowing
more actions to execute. Based on this analogy, Algorithm 9 gives an implementation
with pseudo-code, which is used to find λmin.

5.4 Test case

In the test case a modified HouseCleaning domain will help to evaluate the planner in
the next chapter.

Figure 5.1: HouseCleaning domain

Figure 5.1 shows the domain setting. The house has three rooms: living room,
bathroom and kitchen. The robot can access the bathroom and kitchen through stairs
from the living room. There is a certain probability to failure to climb on the stairs,
but we assume either the robot fail one time it can correct its action and manage to
successfully reach the destination. There is a terrace which connects the bathroom and
kitchen, which is a faster way between them. On the other hand, there is a certain
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probability for failure and risk if the robot fail to successfully execute the action, it
can stuck into that narrow path. This trade-off between risky but shortest plan versus
low probability and longer plan will be detailed and evaluated with our planner. The
robot has to sequence its actions based on the cleaning high-level tasks, which are
the followings: dusting all the rooms, then vacuuming and mopping them. While the
vacuuming needs only the presents of the performer and the cleaner cart, the dusting
and mopping actions needs clean water in the cleaner cart, which has to be therefore
changed after every of these two actions. There are taps for cleaning the water in
every rooms, but there is a probability to fail and if it happens in the living room it
gets wet which violates the safety constrains. This results another trade-off between
efficiency versus safe operation. The house is modeled as a grid-space, where the state
description is limited by the used literals.

5.5 Conclusion

In this chapter the planing model was extended by a penalty and a constrain-model,
which attempt to capture notions of robustness. The penalty model gives possibility
to find shortest plans by compensating the reward with a penalty for certain states
and actions. To handle risks an additional Q-value is introduced to store the constrain
value functions. The solution policy in this way will give that action for every state,
which has the highest expected utility and not exceed the maximum risk level. In
the next chapter the evaluation will give more details about the introduced trade-off
problems.
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Evaluation

In this chapter we outline the capabilities of the proposed planner. Showing and
evaluate the HouseCleaning domain for different test cases, the scenarios highlight the
aspects the robust robot planning. The evaluation is in top-down fashion, we start to
evaluate the final model first, then going deeper and evaluate the modules separately.

6.1 Modules

The program itself is broken into three pieces for better understanding and faster
operation. The first module is related to the HTN planner. It builds up the state-
action searching space based on the previously detailed algorithms in the first section
of Chapter 4, creating a graph-based model with all the connecting state nodes. The
outcome is a set of mappings for the training procedure in the second MDP module,
which finds optimal policy based on the state-transition, reward, penalty and constrain
models. Finally, the third module is a simulator, which uses the trained policy as input
to chose actions in sequence and in this way create plans for the problem definition.
The simulation combines the background information from the problem description
and random behavior to illustrate the online execution with uncertain environment.

6.2 Robust reasoning over probabilistic hierarchi-
cal workflows

After building the HouseCleaning domain as described in the previous chapter, the
initial state is defined as follows. The performer is in the bathroom, the cleaner cart is
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in the kitchen and additionally the cleaning water is assumed to be clean initially. The
high-level task is to clean all the rooms by dusting, vacuuming and mopping them.

The first test case shows a simple scenario, which can be used as a trivial solution for
later comparisons. The MDP state-transition probabilities are shown in the Figure 6.1,
which are simplified to relates only for actions. The probability values define how
probable each operator is, the higher number is associated with higher chance for
success. As it was introduced in Section 4.6, the state transition probability PrMDP has
to be multiplied with the HTN probability PrHT N , which will be used as a combined
probability in the update functions. This resulting combined probability table describes
our state-transition model for the problem.

Probability of success
Moving (with or without the cart)
Between living room and kitchen 80%
Between living room and bathroom 80%
Between kitchen and bathroom 60%
Cleaning
Dusting 95%
Vacuuming 95%
Mopping 95%
Changing the cleaning water 90%

Figure 6.1: State-transition probability PrMDP

The reward model defines a high number only for one state, when all the cleaning
tasks are accomplished, therefore the house is totally clean. No intermediate rewards
are used to make the learning as flexible as possible. The constrain and penalty models
are not initialized in this model.

The Figure 6.2 shows the generated plan based on the converged policy. Note that
since there is no intention for finding the shortest plan, the performer chooses the most
probable actions in every state by their reward value functions. The most probable
plan is to use the stairs in the living room when moving operation is needed between
the kitchen and bathroom.

39



Evaluation

Figure 6.2: First test case - Most probable plan

The second test case is the extension of the first one with the penalty model, which
is incorporated into the reward value functions of the reward model. By introducing a
compensating term which reduces the value of the function for certain states-action
pairs, penalties can be given for actions or states. Our goal is to train the policy
for finding the shortest plan by avoiding as much moving operations as it possible
(moving with or without the cleaning cart). Note that, handling penalty as a negative
reward can make the planner to shortsighted or risky as it was introduced in Chapter
4. However, in our final formalism risk is handled by a separate value function, which
allows us to neglect this side effect and low value for β as coefficient for the penalty
values to balance the reward and chose always actions for the shortest plan.

Figure 6.3 shows the generated plan, in which the performer prefer to use the
terrace to move between the bathroom and kitchen, instead of going through the living
room, which is obviously a longer path.
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Figure 6.3: Second test case

In the third model the constrain model is also initialized. In the HouseCleaning
domain we distinguish two abstract risks. One is associated with the navigation on
the terrace, where due to the lack of enough space we assume the robot can stuck,
which would lead to unsuccessful plan execution, because without human help, the
cleaning tasks cannot be accomplished any more. In this way we highlight the difference
between the probability of state-transition and related risk. Even the moving through
the terrace is faster and more probable than uses the stairs for many times in the living
room, but if failure occurs on the terrace it ends up to a fatal error. This is then much
worse than having temporal errors because of the stairs which we assume cannot cause
fatal error, only need for more trying.

The other risk-source is the cleaning water changing operator in the living room,
due to the possible outcome of flooding the living room in case of operator failure.
From this reason, to satisfy the feasibility constrain, the robot has to go to the kitchen
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or bathroom to change the cleaning water any time it is needed. Figure 6.4 shows the
constrain definition.

Probability of risk
Stuck at the terrace 90%
Flood the living room 60%

Figure 6.4: Constrain model C(s, a)

Note that both risks are related to the feasibility bound, meaning there is a
probability (based on feasibility bound) for facing to risk during execution of the plan.
To capture this behavior the previously introduced λ can be adjusted. Figure 6.5 shows
the scenario when both risks are introduced into the constrain model and the policy
gives the following plan applying λmin.

Figure 6.5: Third test case
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One might see, to fulfill every feasibility requirements the robot has to chose not
the most efficient and shortest plan, but has to take the possible risks into account
with higher priority. This is analogue to the consideration about safety regulations in
human-robot interaction, where the dangerous actions are eliminated even those could
lead to higher efficiency.

Even this model first eliminate the risks and then optimize the plan for being the
shortest and most probable, one might realize, there is a shorter version for execution
without violating the constrains. Figure 6.6 shows the plan where the robot take the
advantage of changing water in the bathroom and immediately execute the cleaning
tasks there before going back and finish the living room. This is faster and more
probable. The difference between the third and fourth test case is related to interleaving
planning. However our framework is capable to generate the interleaving plan for
the HouseCleaning domain, but this is not guaranteed for other problems as well,
because designing interleaving behavior needs further intelligent strategies, which will
be summarized in the next chapter.

Figure 6.6: Fourth test case
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The most important measure for the generated plans is the probability of success.
To evaluate the generated policy Figure 6.7 summarizes the results of the simulator
using different λ values. Every data point was evaluated based on 1000 plan executions.
The upper graph shows the probability of success as function of λ, while under the
average plan length can be seen.

Figure 6.7: Length and probability of success of the generated plans

Similarly to the control engineering problems, one can define risk levels on the
previous multilevel step-function. In our simplified domain, the human controller can
chose, which risk level is acceptable for the cleaning plan and give preference in the
trade-off between plan length and risk. Having shorter plan might cause risk with
higher probability, while choosing long plan can eliminate all risk sources.
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6.3 Evaluation of the modules separately

In this section both the two planning modules are evaluated separately. First the HTN
module is under the scope. . HTN planner uses a ordered or unordered sequence of
methods to decompose the task and define the sequence of actions, however the purely
combinatorial approach investigate all the legal sequences of actions. Since this thesis
focuses on hierarchical workflows, which covers most of the human activities, the HTN
approach highly applicable, which reduce the searching space by introducing methods.

To illustrate the phenomenon with an example in our domain, let imagine the
performer can move around in the house with or without the cleaning cart, which could
lead to many different legal plans, but obviously this is not an optimal solution for the
cleaning problem. Representing with numbers there are 16,384 different possible state
configurations of the world, which lead to a few hundred thousands state-action pairs
based on the purely combinatorial search. Regarding to the fact, that the performer
can move infinitely between the rooms without doing cleaning task, this approach
means infinite amount of legal plans. Compared to the HTN approach, there are
approximately a several thousands of state-action pairs, because the methods gives
instructions for the execution of the cleaning tasks. Since the methods are guaranteed
to decompose the tasks to actions there are no more than a several hundreds of possible
plans using HTN task network.

The CMDP module combines the probabilistic behavior with a risk sensitive reward
based evaluation model. Compared to the HTN module, where the action sequences
are defined by the methods, in the MDP module each actions has precondition and
postcondition, which are evaluated based on the state-transition, reward, penalty and
constrain models. The MDP module compared to the purely combinatorial searching
strategy reduces the searching space dramatically as well. Figure 6.8 represents the
difference by showing the confusion matrix of the policy based on HTN and MDP. It
can be easily imaginable how sparse is this matrix compared to the full matrix related
to the combinatorial approach.

On the right side of Figure 6.8 one can see that theoretically all actions can be
executed at each state if the purely combinatorial approach is used for the training. On
the left side, the confusion matrix shows that in case of MDP there are many actions
which are not applicable because the preconditions are not fulfilled by the state. The
reward value for each state-action pair is the result of the training procedure, which
gives preferences for executing an action instead of another.
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Figure 6.8: Sparse confusion matrix of HTN-MDP searching space

To specify the confusion matrix for our CMDP module, the reward function values
are balanced with the penalties and scaled by the probabilities every time when the
update function is called. The last element of the CMDP module is the matrix of
risk values, which can be interpreted as separate table which eliminates all the risky
state-transitions independently from its reward function value.

Figure 6.9 illustrates schematically the state-transition search space reduction by
the different components of modules. The original state-transition searching space
consists of all state-action pairs, this is the purely combinatorial searching space. The
first set is defined by HTN, which gives state-action pairs, which are defined by the
methods. The second set is determined by the MDP preconditions and postconditions.
Finally the third set collects all the state-action pairs, which are not risky or with
other words lead to constrained states. Mathematically while the HTN and MDP
module define two surfaces respectively. These sets are assumed to be independent,
therefore the summation of the two results a new surface, which is the controlled space,
which lead to legal plans. The constrain model is then a third surface which can be
interpreted on the same region as the controlled space surface and it cuts down those
state-transition elements, which violates the feasibility constrain. Finally the resulting
set of state-transition elements determines the optimal region, where based on λ the
soft risk level can be adjusted.
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Figure 6.9: Sets

6.4 Conclusions

In this chapter four test cases were evaluated to test the capabilities of the proposed
planner. The first case was to find the most probable plan without taking other models
into account. To generate the most probable and shortest plan as a second test case,
the penalty model was initialized for giving penalty for every moving actions. The third
test case showed the planner capabilities by combining the constrain model together
with the previous two. This plan gave the most probable and shortest plan taking
risks into account. However interleaving behavior was not incorporated into our model
directly we represented a fourth test case which could be generated for this specific
problem, but in general further strategies has to be implemented to guarantee to find
interleaving plan for other domains as well. In the next chapter this behavior together
with other extensions and limitations will be discussed.
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Chapter 7

Discussion

In this chapter we attempt to give a discussion over relevant selected topics: Position
the proposed planner from a more general prospective, evaluate and analyze notions of
robustness respecting to the planner, highlight limits of the planner and give proposals
for extensions and future work.

7.1 Planner as a black box model

After going into details of each module and their functionality, in this section the
possible interfaces and inputs of the model is discussed more in general.

The proposed high-level planner needs to interact with the low-level planning system
meaning both a new input source and a new output channel for the proposed planner.
After decomposing the tasks into actions, the low-level planner has to be called to
execute them in an appropriate and precise way. The first task of the interface is
the communication of the goals, the high-level actions and the constrains to the low
level motion planner. Furthermore the motion planner has to estimate the time to be
needed, the risk, preferences and further circumstances which has to be communicated
back to the high-level decision making system. Finally, after the execution the motion
planner has to report the results together with the motion feasibility, possible failures
and their repair. This experience has to be evaluated and learnt to make the future
planning more successfully. In this way the knowledge representation of the high-level
planner has to be updated all the time. This means need for compact representation
and efficient learning processes. On operator level, these experiences can be stored
with help of suggesters, which give feedback for the high-level planner if the operator
is called to increase the probability of successful online execution.
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On the method level, we already highlighted the importance of human-like planning.
One very important advantage of using human-like methods is their compatibility with
many of human based knowledge storage. Take for instance, a receipt for a meal can
be imported from a cooking book or webpage directly into the form of a HTN method.
The process on the online based knowledge is strongly connected to different research
areas such as Natural Language Processing, Big data or Social Network studies, which
are connected but not part of our work.

Methods as personal preferences and way of thinking can be interpreted and
associated with profiles for each human operator. When the robot plans based on its
knowledge base, it will be biased by the human operator who adjusts the operation.
The human experience and preferences can be stored by personal profiles. These can be
used not only a specific individual, but can help to develop a common knowledge-base,
which increase the service level for all the users. In this way, the probability and risk
estimation can be more foresight and complex, adjusting for even special unique cases,
which can be crucial in safety regulations and prevention of accidents.

7.2 Robustness

In our interpretation robust planing is captured by being prepared for risks and planing
regarding to the probabilistic behavior of the actions. The proposed planner eliminates
does state-transitions which might violates the safety constrains of the plans. This is
analogue to those safety regulations in the everyday life human interaction, which is
always kept in mind to avoid accidents. In the knowledge base however risk and similar
abstract constrains has to be handled as flexible as it is possible. By defining an action
to be risky or state to be risky only by itself regardless for other circumstance might
lead the planner to generate to conservative plans. For a planner to be intelligent to
distinguish risk is a hard challenge, which needs further robustness considerations to
be incorporated. An important factor to design robust planner is the adaptability.
This notion requires to have diverse and wide spectrum of the possible choices to
find optimal solution for the given situation. However a naive representation is also
can work robustly if it only have clear self-awareness of its capabilities and limits.
Adjustable autonomy allows for even simple frameworks to find an appropriate control
level, on which the system can guarantee robust operation.
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7.3 Limitation

One of the most important limitation factors of our framework is about the symbolic
representation of the world. However this simplify many real-world problems, in human
environments with human-robot interaction the symbolic representation can be not
tractable. Theoretically as the natural languages the world can be described by finite
number of predicates and argument, but in planning problem definitions, this can be too
demanding challenge for both the domain experts to design and the computer program
to calculate with. Operators, methods hardly can be described by fix preconditions and
postconditions, the variation of execution needs flexibility and many times continues
world representation. STRIPS and PDDL formalism suffer from the demanding labeling
need. There are several solutions for attribute-based representations to simplify and
relax the definitions, but appropriate knowledge representation for human environment
is still an emerging research field [24].

An important but limiting assumption the Markov property appears more times in
our formalism. By allowing to assume that events and decisions are often independent
from each other is correct for small scale systems and problems. However in real
life problems the decisions and events are highly coupled even if the connection is
far not obvious. Having effect on other people and their actions is part of our life.
In a sophisticated planner representation therefore further considerations has to be
taken into account. Above the local conditions, which allows to simplify the decision
making procedure, global conditions have to be combined, which couple the system
by introducing advanced abstract correlations. In classical physics it was proven that
even the particles has seemingly independent movement, observing the whole system
there are global conditions which introduce interconnection between the individual
particles. To capture this behavior the partition coefficient and partition function is
used in physics and graphical probabilistic model studies respectively. In our model
the HTN probability inherits this property of the methods and decisions, however in
later works these connection has to be investigated in more detail.

The earlier mentioned interleaving planning opens up great opportunity for further
work as well. It is human practice to manage different task in the same time or
accomplish tasks together by mixing the sequence of different procedures. People who
can successfully do multitasking can achieve higher efficiency. In planning interleaving
behavior can be handled in a naive way, making possible to do every action, which are
legal, which take the planing procedure closer to the combinatorial approach, but this is
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obviously computationally highly inefficient. Therefore further searching strategies has
to be incorporated, probability models has to handle the not-logical thinking and often
emotional-based decision making. This is not possible without introducing advanced
plan and intention recognition.

Finally, a forth limitation aspect is a fundamental problem of all planning problems,
which is related to the reduction of searching space. On one side for making prudent
decisions many of the possibilities has to be analyzed, however this is introducing great
amount of information. Then this space has to be reduced for that set, which consists
only the appropriate solutions. The way of reducing the space is crucial. We imple-
mented state of the art solutions to handle this challenge, however for more complex
problems further strategies are needed. To extend and the searching capabilities various
Monte-Carlo searching strategies can be used, which uses probabilistic, likelihood or
mathematical conventions to chose actions for learning or analyzing.

7.4 Extension of the proposed model

As in the chapter 2 it was discussed uncertainty and probabilistic behavior can be
considered related to the present and to the future. Markov Decision Process is
an elegant formalism to handle uncertainty in the future and Partially Observable
Markov Decision Processes are available to handle noise in the present state. Our
framework captures only a few aspects of uncertain environment such as probabilistic
state-transitions, but further aspects such as dynamic environment or adversarial
interaction has to be investigated by help of multi-agent planning consideration or
based on game theory.

A possible extension of our framework is its adaptation for human-robot interaction
and multi-agent planning. In the near future robots will assist human in various tasks in
their home. For this robot has to implement safe, fluent and efficient assistance. The key
components of unobtrusiveness is timeless, meaning the robot should not introduce time
delay for the operation; non-interruption to be autonomous and not interrupt human
inappropriately; safety; predictability to make the human-robot interaction feasible
and comfortable for humans; fluency and proactivity to make intelligent decisions
and being capable to learn. A part of the above mentioned notions of unobtrusive
assistance are fulfilled by the proposed planner such as safety and non-interruption,
but many of them need for further investigation and formal implementation.
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Summary

In this thesis we introduced a human-like planner, which successfully handles un-
certainty and generates robust plans for probabilistic hierarchical workflows. First,
the Hierarchical Task Network planning approach was described, which decomposes
high-level tasks into lower-level tasks and then generates sequence of actions. However
this approach reduce the searching space enormously and give a human-like planning
strategy, there are several open challenges regarding to robust robot planning. After
introducing the Markov Decision Process framework, which is a reward based stochastic
reasoning formalism, we extended this model with a feasibility bounded constrained
model. Hard feasibility constrain and soft risk measures were described to evaluate
the generated plans based on robustness. In the evaluation section, we highlighted the
capabilities of our proposed planner. In the discussion chapter the different approaches
were detailed together with the limitations and overcomes of our model.

In Artificial Intelligence Autonomous Planning there are still wide range of unsolved
challenges. Different models and approaches performs differently depending on the
environment and requirements. General solutions are highly computationally expensive,
which today leads the planning communities to develop more specific solutions. We
believe in the near future robots will assist humans unobtrusively in various household
tasks, this thesis attempts to investigate notions of robust robot planning for bringing
this vision closer.
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Appendix A

Source code of JSHOP2

A.1 Planing domain

1; Cleaning example v2 . 9
2; 22/04/2015
3; Benedek Szulyovszky
4

5( defdomain c l e an ing (
6

7;OPERATORS
8

9 ; moving operator from performer l o c a t i o n to the chosen l o c a t i o n
10 ( : operator ( ! move ? p e r f ? per f_ loc ? l o c )
11 ; p r e cond i t i on s : p e r f at i t s loc , the t a r g e t l o c i s d i f f e r e n t to the
12 ; cu r r ent loc , the t a r g e t l o c a t i o n i s acce sab l e , read the current−cost
13 ( ( at ? pe r f ? per f_loc ) ( d i f f e r e n t ? per f_ loc ? l o c )
14 ( TransConnect ? per f_ loc ? l o c ) ( co s t ? current−cost ) )
15 ; d e l e t e l i s t : performer ’ s loc , cur rent co s t
16 ( ( at ? pe r f ? per f_loc ) ( co s t ? current−cost ) )
17 ; add l i s t : new loc , i n c r ea s ed new cur rent co s t
18 ( ( at ? pe r f ? l o c ) ( co s t ( c a l l + ? current−cost 3 ) ) )
19 )
20

21 ; b r ing ing the c l e a n e r ca r t from i t s l o c to a c e r t a i n l o c
22 ( : operator ( ! b r i n g i n g c a r t ? pe r f ? c l eaner_cart− l oc ? l o c )
23 ; p r e cond i t i on s : c l e a n e r ca r t loc , per former loc , they are at
24 ; d i f f e r e n t l o c a t i o n s , cur r ent co s t
25 ( ( at c l eaner_car t ? c l eaner_cart− l oc ) ( at ? p e r f ? c l eaner_cart− l oc )
26 ( d i f f e r e n t ? c leaner_cart− l oc ? l o c )
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27 ( co s t ? current−cost ) )
28 ; d e l e t e− l i s t : c a r t loc , per former loc , cur rent co s t
29 ( ( at c l eaner_car t ? c l eaner_cart− l oc ) ( at ? p e r f ? c l eaner_cart− l oc )
30 ( co s t ? current−cost ) )
31 ; add− l i s t : new per former loc , new ca r t l o ca t i on , updated co s t
32 ( ( at ? pe r f ? l o c ) ( at c l eaner_car t ? l o c ) ( co s t ( c a l l + ? current−cost 2 ) ) )
33 )
34

35 ; hoover ing in the room
36 ( : operator ( ! hoover ing ? p e r f ? l o c )
37 ( ( at ? pe r f ? l o c ) ( at c l eaner_car t ? l o c ) )
38 ( )
39 ( ( wacuumed ? l o c ) )
40 )
41

42 ; mopping in the room
43 ( : operator ( ! mop ? p e r f ? l o c )
44 ( ( at ? pe r f ? l o c ) ( at c l eaner_car t ? l o c ) (wacuumed ? l o c ) ( c l ean water ) )
45 ( ( c l ean water ) )
46 ( ( mopped ? l o c ) ( d i r t y water ) )
47 )
48

49 ; changing the water independent ly from the room
50 ( : operator ( ! changingwater ? pe r f )
51 ( ( d i r t y water ) )
52 ( ( d i r t y water ) )
53 ( ( c l ean water ) )
54 )
55

56 ; dry ing the f l o o r
57 ( : operator ( ! dry ing ? p e r f ? l o c )
58 ( ( mopped ? l o c ) ( at ? p e r f ? l o c ) ( at c l eaner_car t ? l o c ) )
59 ( )
60 ( ( dr i ed ? l o c ) )
61 )
62

63 ; dust ing in the room
64 ( : operator ( ! dust ing ? pe r f ? l o c )
65 ( ( at ? pe r f ? l o c ) ( c l ean water ) ( at c l eaner_car t ? l o c ) )
66 ( ( c l ean water ) )
67 ( ( dusted ? l o c ) ( d i r t y water ) )
68 )
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69

70;METHODS
71

72;−−−−−−−TOP−LEVEL METHODS
73

74 ( : method ( HouseCleaning ? p e r f ? l o c )
75 ( )
76 ( : unordered ; ( Dusting ? l o c ? pe r f ? per f_loc ? c l eaner_cart− l oc )
77 (Wacuuming ? l o c ? p e r f ? per f_ loc ? c leaner_cart− l oc )
78 ( Mopping ? l o c ? p e r f ? per f_ loc ? c l eaner_cart− l oc )
79 ) )
80

81;−−−−−−−SECOND−LEVEL METHODS
82

83

84 ( : method (Wacuuming ? l o c ? pe r f ? per f_ loc ? c leaner_cart− l oc )
85 ; the c e r t a i n room i s a l r eady wacuumed
86 ( ( wacuumed ? l o c ) )
87 ( ( ) )
88 ; p r eparat ion i s nece s sa ry be f o r e the hoover ing could be made
89 ( ( at ? pe r f ? per f_loc ) ( at c l eaner_car t ? c l eaner_cart− l oc )
90 ( need−to−make−sure ? l o c ? c l eaner_cart− l oc ) )
91 ( ( MakeSure ? l o c ? p e r f ? per f_ loc ? c l eaner_cart− l oc )
92 ( ! hoover ing ? p e r f ? l o c ) )
93 ; every pr e cond i t i on i s g iven f o r execut ing the hoover ing
94 ( ( ( not (wacuumed ? l o c ) ) ( at c l eaner_car t ? l o c ) ( at ? p e r f ? l o c ) ) )
95 ( ( ! hoover ing ? pe r f ? l o c ) )
96 )
97

98 ( : method ( Dusting ? l o c ? p e r f ? per f_ loc ? c leaner_cart− l oc )
99 ; the c e r t a i n room i s a l r eady dusted

100 ( ( dusted ? l o c ) )
101 ( ( ) )
102 ; p r eparat ion i s nece s sa ry be f o r e the dust ing could be made
103 ( ( at ? pe r f ? per f_loc ) ( at c l eaner_car t ? c l eaner_cart− l oc )
104 ( need−to−make−sure ? l o c ? c l eaner_cart− l oc ) )
105 ( ( MakeSure ? l o c ? p e r f ? per f_ loc ? c l eaner_cart− l oc ) ( ! dust ing ? pe r f ? l o c ) )
106 ; every pr e cond i t i on i s g iven f o r execut ing the dust ing
107 ( ( ( not ( dusted ? l o c ) ) ( at c l eaner_car t ? l o c ) ( at ? pe r f ? l o c ) ) )
108 ( ( ! dust ing ? pe r f ? l o c ) )
109 )
110
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111 ( : method ( Mopping ? l o c ? p e r f ? per f_ loc ? c leaner_cart− l oc )
112 ; the c e r t a i n room i s a l r eady mopped
113 ( ( mopped ? l o c ) )
114 ( ( ) )
115 ; the room i s not wacuumed yet which i s the p r e cond i t i on o f the mopping
116 ( ( not (wacuumed ? l o c ) ) )
117 ( ( Wacuuming ? l o c ? p e r f ? per f_ loc ? c l eaner_cart− l oc )
118 ( Mopping ? l o c ? p e r f ? per f_ loc ? c l eaner_cart− l oc ) )
119 ; p r eparat ion i s nece s sa ry be f o r e the mopping and drying could be made
120 ( ( at ? pe r f ? per f_loc ) ( at c l eaner_car t ? c l eaner_cart− l oc )
121 ( need−to−make−sure ? l o c ? c l eaner_cart− l oc ) )
122 ( ( MakeSure ? l o c ? p e r f ? per f_ loc ? c l eaner_cart− l oc )
123 ( ! mop ? p e r f ? l o c ) ( ! dry ing ? p e r f ? l o c ) )
124 ; every pr e cond i t i on i s g iven f o r execut ing the mopping and drying
125 ( ( wacuumed ? l o c ) ( at c l eaner_car t ? l o c ) ( at ? pe r f ? l o c ) )
126 ( ( ! mop ? pe r f ? l o c ) ( ! dry ing ? pe r f ? l o c ) )
127 )
128

129;−−−−−−−THIRD−LEVEL METHODS
130

131 ( : method ( Moving ? p e r f ? per f_ loc ? l o c )
132 ; the room i s d i r e c t l y a c c e s s a b l e from the performer ’ s loc ,
133 ; so move operator i s d i r e c t l y c a l l e d
134 ( ( at ? pe r f ? per f_loc ) ( TransConnect ? per f_ loc ? l o c ) )
135 ( ( ! move ? p e r f ? per f_ loc ? l o c ) )
136 ; the t a r g e t l o c a t i o n i s not acce s sab l e , t h e r e f o r e an
137 ; i n t e rmed ia t e l o c a t i o n w i l l be the f i r s t t a r g e t l o c a t i o n
138 ( ( at ? pe r f ? per f_loc ) ( not ( TransConnect ? per f_loc ? l o c ) )
139 ( TransConnect ? per f_ loc ? interm− loc ) )
140 ( ( TravelingThrough ? pe r f ? per f_loc ? interm− loc ? l o c ) )
141 )
142

143 ( : method ( TravelingThrough ? p e r f ? per f_ loc ? interm− loc ? l o c )
144 ; the re i s an in te rmed ia t e l o c a t i o n which connects the cur rent l o c
145 ; to the target , the per former goes the re f i r s t
146 ( ( at ? pe r f ? per f_loc ) ( TransConnect ? per f_ loc ? interm− loc ) )
147 ( ( ! move ? p e r f ? per f_ loc ? interm− loc ) ( Moving ? p e r f ? interm− loc ? l o c ) )
148 ; the re i s need f o r f u r t h e r in t e rmed ia te l o c a t i o n s
149 ( ( at ? pe r f ? per f_loc ) ( not ( TransConnect ? per f_loc ? interm− loc ) )
150 ( TransConnect ? per f_ loc ? interm2− loc ) )
151 ( ( TravelingThrough ? pe r f ? per f_loc ? interm2− loc ) )
152 )
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153

154 ( : method ( CleanerCartBr ing ing ? l o c ? p e r f ? per f_loc ? c l eaner_cart− l oc )
155 ; the per former i s at the same room as the c l e a n e r ca r t i s ,
156 ; t h e r e f o r e ’ b r ing ingca r t ’ ope ra t i on i s c a l l e d
157 ( ( same ? per f_ loc ? c l eaner_cart− l oc ) ( d i f f e r e n t ? c l eaner_cart− l oc ? l o c ) )
158 ( ( ! b r i n g i n g c a r t ? pe r f ? c l eaner_cart− l oc ? l o c ) )
159 ; the per former i s in another room , t h e r e f o r e he has to go f i r s t
160 ; to the c l e an ing ca r t l o c to br ing i t
161 ( ( not ( at c l eaner_car t ? l o c ) ) ( not ( at ? pe r f ? c l eaner_cart− l oc ) ) )
162 ( ( Moving ? p e r f ? per f_loc ? c l eaner_cart− l oc )
163 ( ! b r i n g i n g c a r t ? pe r f ? c l eaner_cart− l oc ? l o c ) )
164 )
165

166 ( : method ( MakeSure ? l o c ? p e r f ? per f_ loc ? c leaner_cart− l oc )
167 ; the per former i s not in the c e r t a i n room which has to be c l eaned
168 ( ( not ( at ? pe r f ? l o c ) ) ( at c l eaner_car t ? l o c ) )
169 ( ( Moving ? p e r f ? per f_loc ? l o c ) ( MakeSure ? l o c ? pe r f ? l o c ? l o c ) )
170 ; the c l e an ing ca r t i s not in the room which has to be c leaned
171 ( ( d i f f e r e n t ? c leaner_cart− l oc ? l o c ) )
172 ( ( CleanerCartBr ing ing ? l o c ? pe r f ? per f_ loc ? c leaner_cart− l oc )
173 ( MakeSure ? l o c ? p e r f ? l o c ? l o c ) )
174 ; f o r the ’ wacuuming ’ method the cond i t i on a l l ows to n e g l e c t
175 ; the property o f the water
176 ( ( not (wacuumed ? l o c ) ) ( d i r t y water ) ( dusted ? l o c ) )
177 ( ( ) )
178 ; i f the water i s d i r t y i t has to be changed
179 ( d i r t y water )
180 ( ( ! changingwater ? p e r f ) )
181 ; i f every cond i t i on i s f u l l f i e l d by t h i s method the p laner goes back
182 ; to the h igher l e v e l task
183 ( ( at c l eaner_car t ? l o c ) ( at ? p e r f ? l o c ) ( c l ean water ) )
184 ( ( ) )
185 )
186;STATE AXIOMS
187

188 ; d e f i n i t i o n o f ’ same ’
189 (:− ( same ?x ?x ) n i l )
190 ; d e f i n i t i o n o f ’ d i f f e r e n t ’
191 (:− ( d i f f e r e n t ?x ?y ) ( ( not ( same ?x ?y ) ) ) )
192 ; i n t e r c h a n g e a b i l i t y o f the connect property o f rooms
193 (:− ( TransConnect ?x ?y ) ( or ( connect ?y ?x ) ( connect ?x ?y ) ) )
194 ; d e f i n i t i o n o f d i r e c t l y connected rooms
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195 (:− ( TransConnect ?x ? z ) ( ( connect ?x ? interm− loc )
196 ( connect ? interm− loc ? z ) ) )
197 ; d e f i n i t i o n o f ’make sure ’ which d e s c r i b e s the need o f
198 ; p r eparat ion f o r the c e r t a i n c l e an ing task
199 (:− ( need−to−make−sure ? l o c ? c l eaner_cart− l oc ) ( not ( at ? pe r f ? l o c ) )
200 ( d i f f e r e n t ? c leaner_cart− l oc ? l o c ) ( d i r t y water ) )
201) ) )

A.2 Planing problem definition

1( defproblem problem c l ean ing
2 (
3 ; i n i t i a l s t a t e s de f ined by ground l o g i c a l atoms
4 ( at c l eaner_car t k i t chen )
5 ( at robot bath )
6 ( connect l i v bath )
7 ( connect l i v k i t chen )
8 ( c l ean water )
9 )

10 ; p lanning problems
11 ( : unordered ( HouseCleaning robot bath )
12 ( HouseCleaning robot k i t chen )
13 ( HouseCleaning robot l i v ) )
14 )
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Java source code of the planner

B.1 HTN module

1package edu . cmu .HTN;
2

3import java . lang . r e f l e c t . Invocat ionTargetExcept ion ;
4import java . u t i l . ArrayList ;
5import java . u t i l . Arrays ;
6import java . u t i l . L i s t ;
7import java . u t i l . Stack ;
8

9pub l i c c l a s s Methods {
10

11 pub l i c s t a t i c L i s t <Str ing > moppingkitchen_method ( Lis t <Str ing >
↪→ i n p u t s t a t e l i s t , S t r ing methodname ) throws I l l e ga lAcc e s sExcep t i on ,
↪→ I l l ega lArgumentExcept ion , Invocat ionTargetExcept ion {

12

13 i f ( Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "mopped
↪→ k i tchen " ) )&&

14 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ makesure l i v " ) ) &&

15 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ makesure bath " ) ) &&

16 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ makesure k i t chen " ) ) &&

17 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ changing water " ) )

18 ) {
19
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20 i f ( i n p u t s t a t e l i s t . c on ta i n sA l l ( Arrays . a s L i s t ( "mopped k i tchen " ) ) ) {
21 re turn n u l l ;
22 }
23

24 Stack<List <Str ing >> s t a t e s t a c k = new Stack<List <Str ing >>() ;
25 s t a t e s t a c k . push ( i n p u t s t a t e l i s t ) ;
26 List <Str ing > r e s u l t = new ArrayList<Str ing >() ;
27

28 // branch−1
29 i f ( i n p u t s t a t e l i s t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f k i t chen " , "

↪→ at ca r t k i t chen " , " c l ean water " ) ) ) {
30 r e s u l t = Operators_HTN . moppingkitchen ( s t a t e s t a c k . peek ( ) ) ;
31 operatorname = " moppingkitchen " ;
32 i f ( r e s u l t == n u l l ) {
33 re turn n u l l ;
34 }
35 e l s e {
36 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
37 s t a t e s t a c k . push ( r e s u l t ) ;
38 i f ( r e s u l t . c on ta i n sA l l ( Arrays . a s L i s t ( "mopped k i tchen " ) ) ) {
39 Worldstate_HTN . h i g h l e v e l t a s k s . remove ( "mopped k i tchen " ) ; }
40 re turn s t a t e s t a c k . peek ( ) ; }
41 }
42

43 // branch−2
44 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " c l ean water " )
45 ) ) {
46 // f i r s t operator
47 Worldstate_HTN . h i g h l e v e l t a s k s . add ( " makesure k i t chen " ) ;
48 r e s u l t = makesure_kitchen ( s t a t e s t a c k . peek ( ) , methodname ) ;
49 i f ( r e s u l t == n u l l ) {
50 re turn n u l l ;
51 }
52 e l s e {
53 s t a t e s t a c k . push ( r e s u l t ) ;
54 re turn s t a t e s t a c k . peek ( ) ;
55 }
56 }
57

58 // branch−3
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59 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " d i r t y water " ) ) )
↪→ {

60 Worldstate_HTN . h i g h l e v e l t a s k s . add ( " changing water " ) ;
61 re turn n u l l ;
62 }
63 }
64 re turn n u l l ;
65 }
66

67

68 pub l i c s t a t i c L i s t <Str ing > makesure_kitchen ( Lis t <Str ing >
↪→ i n p u t s t a t e l i s t , S t r ing methodname ) throws I l l e ga lAcc e s sExcep t i on ,
↪→ I l l ega lArgumentExcept ion , Invocat ionTargetExcept ion {

69

70 i f ( Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ makesure k i t chen " ) ) &&

71 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ makesure l i v " ) ) &&

72 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ makesure bath " ) ) &&

73 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ changing water " ) ) &&

74 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ movingfrombathtokitchen " ) ) &&

75 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ movingfromkitchentobath " ) ) &&

76 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ br ing ingca r t f r omk i t chentobath " ) ) &&

77 ! Worldstate_HTN . h i g h l e v e l t a s k s . c on ta in sA l l ( Arrays . a s L i s t ( "
↪→ br ing ingca r t f r ombathtok i t chen " ) )

78 ) {
79

80 Stack<List <Str ing >> s t a t e s t a c k = new Stack<List <Str ing >>() ;
81 s t a t e s t a c k . push ( i n p u t s t a t e l i s t ) ;
82 List <Str ing > r e s u l t = new ArrayList<Str ing >() ;
83

84 // branch−0
85 i f ( i n p u t s t a t e l i s t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f k i t chen " , "

↪→ at ca r t k i t chen " ) ) ) {
86 Worldstate_HTN . h i g h l e v e l t a s k s . remove ( " makesure k i t chen " ) ;
87 re turn n u l l ;
88 }
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89

90 // branch−1 ( the per former i s in another room , but the ca r t i s at
↪→ the r i g h t p lace )

91 i f ( i n p u t s t a t e l i s t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f l i v " , " at
↪→ ca r t k i t chen " ) ) ) {

92 // f i r s t operator
93 r e s u l t = Operators_HTN . moving f roml ivtok i tchen ( s t a t e s t a c k . peek ( )

↪→ ) ;
94 operatorname = " moving f roml ivtok i tchen " ;
95 i f ( r e s u l t == n u l l ) {
96 re turn n u l l ;
97 }
98 e l s e {
99 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
100 s t a t e s t a c k . push ( r e s u l t ) ;
101 i f ( r e s u l t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f k i t chen " , " at

↪→ ca r t k i t chen " ) ) ) {
102 Worldstate_HTN . h i g h l e v e l t a s k s . remove ( " makesure k i t chen " )

↪→ ; }
103 re turn s t a t e s t a c k . peek ( ) ; }
104 }
105

106

107 // branch−2 ( the per former i s in another room , but the ca r t i s at
↪→ the r i g h t p lace )

108 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at p e r f bath " ,
↪→ " at ca r t k i t chen " ) ) ) {

109 // f i r s t operator
110 Worldstate_HTN . h i g h l e v e l t a s k s . add ( " movingfrombathtokitchen " ) ;
111 re turn n u l l ;
112

113 }
114

115 // branch−3 ( the per former and the ca r t are in the same but not
↪→ r i g h t room )

116 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at ca r t l i v " , "
↪→ at pe r f l i v " ) ) ) {

117 // f i r s t operator
118 r e s u l t = Operators_HTN . b r i n g i n g c a r t f r o m l i v t o k i t c h e n ( s t a t e s t a c k .

↪→ peek ( ) ) ;
119 operatorname = " b r i n g i n g c a r t f r o m l i v t o k i t c h e n " ;
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120 i f ( r e s u l t == n u l l ) {
121 re turn n u l l ;
122 }
123 e l s e {
124 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
125 s t a t e s t a c k . push ( r e s u l t ) ;
126 i f ( r e s u l t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f k i t chen " , " at

↪→ ca r t k i t chen " ) ) ) {
127 Worldstate_HTN . h i g h l e v e l t a s k s . remove ( " makesure k i t chen " )

↪→ ; }
128 re turn s t a t e s t a c k . peek ( ) ; }
129 }
130

131 // branch−4 ( the per former and the ca r t are in the same but not
↪→ r i g h t room )

132 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at ca r t bath " ,
↪→ " at p e r f bath " ) ) ) {

133 Worldstate_HTN . h i g h l e v e l t a s k s . add ( "
↪→ br ing ingca r t f r ombathtok i t chen " ) ;

134 re turn n u l l ;
135

136 }
137

138 // branch−5 ( the per former and the ca r t are in d i f f e r e n t room )
139 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at ca r t bath " ,

↪→ " at p e r f l i v " ) ) ) {
140 // f i r s t operator
141 r e s u l t = Operators_HTN . movingfromlivtobath ( s t a t e s t a c k . peek ( ) ) ;
142 operatorname = " movingfromlivtobath " ;
143 i f ( r e s u l t == n u l l ) {
144 re turn n u l l ;
145 }
146 e l s e {
147 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
148 s t a t e s t a c k . push ( r e s u l t ) ; }
149

150 // second operator
151 Worldstate_HTN . h i g h l e v e l t a s k s . add ( "

↪→ br ing ingca r t f r ombathtok i t chen " ) ;
152 re turn s t a t e s t a c k . peek ( ) ;
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153 }
154

155 // branch−6 ( the per former and the ca r t are in d i f f e r e n t room )
156 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at ca r t l i v " , "

↪→ at pe r f bath " ) ) ) {
157 // f i r s t operator
158 r e s u l t = Operators_HTN . movingfrombathtol iv ( s t a t e s t a c k . peek ( ) ) ;
159 operatorname = " movingfrombathtol iv " ;
160 i f ( r e s u l t == n u l l ) {
161 re turn n u l l ;
162 }
163 e l s e {
164 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
165 s t a t e s t a c k . push ( r e s u l t ) ; }
166

167 // second operator
168 r e s u l t = Operators_HTN . b r i n g i n g c a r t f r o m l i v t o k i t c h e n ( s t a t e s t a c k .

↪→ peek ( ) ) ;
169 operatorname = " b r i n g i n g c a r t f r o m l i v t o k i t c h e n " ;
170 i f ( r e s u l t == n u l l ) {
171 re turn n u l l ;
172 }
173 e l s e {
174 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
175 s t a t e s t a c k . push ( r e s u l t ) ;
176 i f ( r e s u l t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f k i t chen " , " at

↪→ ca r t k i t chen " ) ) ) {
177 Worldstate_HTN . h i g h l e v e l t a s k s . remove ( " makesure k i t chen " )

↪→ ; }
178 re turn s t a t e s t a c k . peek ( ) ; }
179 }
180

181 // branch−7 ( per former in the good room)
182 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at ca r t bath " ,

↪→ " at p e r f k i t chen " ) ) ) {
183 Worldstate_HTN . h i g h l e v e l t a s k s . add ( " movingfromkitchentobath " ) ;
184 re turn n u l l ;
185 }
186

187 // branch−8 ( per former in the good room)
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188 e l s e i f ( i n p u t s t a t e l i s t . c on ta in sA l l ( Arrays . a s L i s t ( " at ca r t l i v " , "
↪→ at pe r f k i t chen " ) ) ) {

189 // f i r s t operator
190 r e s u l t = Operators_HTN . moving f romkitchento l iv ( s t a t e s t a c k . peek ( )

↪→ ) ;
191 operatorname = " moving f romkitchento l iv " ;
192 i f ( r e s u l t == n u l l ) {
193 re turn n u l l ;
194 }
195 e l s e {
196 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
197 s t a t e s t a c k . push ( r e s u l t ) ; }
198

199 // second operator
200 r e s u l t = Operators_HTN . b r i ng i ng c a r t f r o m l i v t o b a t h ( s t a t e s t a c k .

↪→ peek ( ) ) ;
201 operatorname = " b r i ng i ng c a r t f r o m l i v t o b a t h " ;
202 i f ( r e s u l t == n u l l ) {
203 re turn n u l l ;
204 }
205 e l s e {
206 S e a r c h i n g f o r s u c c e s s o r s . searchOnThePoss ibleAct ions ( s t a t e s t a c k

↪→ . peek ( ) , r e s u l t , methodname , operatorname ) ;
207 s t a t e s t a c k . push ( r e s u l t ) ;
208 i f ( r e s u l t . c on ta i n sA l l ( Arrays . a s L i s t ( " at p e r f k i t chen " , " at

↪→ ca r t k i t chen " ) ) ) {
209 Worldstate_HTN . h i g h l e v e l t a s k s . remove ( " makesure k i t chen " )

↪→ ; }
210 re turn s t a t e s t a c k . peek ( ) ; }
211 }
212

213 }
214

215 re turn n u l l ;
216 }
217}

1package edu . cmu .HTN;
2import java . u t i l . ArrayList ;
3import java . u t i l . Arrays ;
4import java . u t i l . HashMap ;
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5import java . u t i l . L i s t ;
6import java . u t i l .Map;
7import java . u t i l . Random ;
8

9pub l i c c l a s s Operators_HTN {
10

11 pr i va t e s t a t i c L i s t <Str ing > pre cond i t i on s = new ArrayList<Str ing >() ;
12 pr i va t e s t a t i c L i s t <Str ing > postcondit ions_add = new ArrayList<Str ing

↪→ >() ;
13 pr i va t e s t a t i c L i s t <Str ing > pos tcond i t i ons_de l = new ArrayList<Str ing

↪→ >() ;
14

15 //moving from l i v i n g room to bathroom
16 pub l i c s t a t i c L i s t <Str ing > movingfroml ivtobath ( Lis t <Str ing >

↪→ i n p u t s t a t e ) {
17

18 St r ing operatorname = " movingfromlivtobath " ;
19 pr e cond i t i on s = Arrays . a s L i s t ( " at p e r f l i v " ) ;
20 postcondit ions_add = Arrays . a s L i s t ( " at p e r f bath " ) ;
21 pos t cond i t i ons_de l = Arrays . a s L i s t ( " at p e r f l i v " ) ;
22 re turn Determinist icUpdate ( precond i t i ons , input s ta te ,

↪→ postcondit ions_add , postcond i t ions_de l , operatorname ) ;
23 }
24

25 //vacuuming in bathroom
26 pub l i c s t a t i c L i s t <Str ing > vacuumingbath ( Lis t <Str ing > in p u t s t a t e ) {
27

28 St r ing operatorname = " vacuumingbath " ;
29 pr e cond i t i on s = Arrays . a s L i s t ( " at p e r f bath " , " at ca r t bath " , " not

↪→ vacuumed bath " ) ;
30 postcondit ions_add = Arrays . a s L i s t ( " vacuumed bath " ) ;
31 pos t cond i t i ons_de l = Arrays . a s L i s t ( " not vacuumed bath " ) ;
32 re turn Determinist icUpdate ( precond i t i ons , input s ta te ,

↪→ postcondit ions_add , postcond i t ions_de l , operatorname ) ;
33 }
34

35 // water change
36 pub l i c s t a t i c L i s t <Str ing > changewater ( Li s t <Str ing > i n p u t s t a t e ) {
37

38 St r ing operatorname = " changewater " ;
39 pr e cond i t i on s = Arrays . a s L i s t ( " d i r t y water " ) ;
40 postcondit ions_add = Arrays . a s L i s t ( " c l ean water " ) ;
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41 pos t cond i t i ons_de l = Arrays . a s L i s t ( " d i r t y water " ) ;
42 re turn Determinist icUpdate ( precond i t i ons , input s ta te ,

↪→ postcondit ions_add , postcond i t ions_de l , operatorname ) ;
43 }
44

45 //mopping the bathroom
46 pub l i c s t a t i c L i s t <Str ing > moppingbath ( Lis t <Str ing > i n pu t s t a t e ) {
47

48 St r ing operatorname = " moppingbath " ;
49 pr e cond i t i on s = Arrays . a s L i s t ( " at p e r f bath " , " at ca r t bath " , "

↪→ vacuumed bath " , " not mopped bath " , " c l ean water " ) ;
50 postcondit ions_add = Arrays . a s L i s t ( "mopped bath " , " d i r t y water " ) ;
51 pos t cond i t i ons_de l = Arrays . a s L i s t ( " not mopped bath " , " c l ean water

↪→ " ) ;
52 re turn Determinist icUpdate ( precond i t i ons , input s ta te ,

↪→ postcondit ions_add , postcond i t ions_de l , operatorname ) ;
53 }
54

55 pr i va t e s t a t i c L i s t <Str ing > Determinist icUpdate ( Lis t <Str ing >
↪→ precond i t i ons , L i s t <Str ing > inputs ta te , L i s t <Str ing >
↪→ postcondit ions_add , Lis t <Str ing > postcond i t ions_de l ,

56 St r ing operatorname ) {
57

58 i f ( i n p u t s t a t e . c on ta i n sA l l ( p r e cond i t i on s ) ) {
59 Worldstate_HTN . stateUpdate ( input s ta te , postcondit ions_add ,

↪→ postcond i t ions_de l , operatorname ) ;
60 re turn Worldstate_HTN . getState_actua l ( ) ;
61 }
62 e l s e {
63 re turn n u l l ;
64 }
65 }
66

67}

1package edu . cmu .HTN;
2import java . lang . r e f l e c t . Invocat ionTargetExcept ion ;
3import java . lang . r e f l e c t . Method ;
4import java . u t i l . ArrayList ;
5import java . u t i l . Arrays ;
6import java . u t i l . C o l l e c t i o n s ;
7import java . u t i l . HashMap ;
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8import java . u t i l . LinkedHashSet ;
9import java . u t i l . L i s t ;

10import java . u t i l .Map;
11

12

13pub l i c c l a s s S e a r c h i n g f o r s u c c e s s o r s {
14

15 // f l a g s and indexes
16 pub l i c s t a t i c i n t p lanindex = 0 ;
17 pub l i c s t a t i c i n t s u c c e s s f u l p l a n s = 0 ;
18

19 //map from wor ld s ta t e to executab l e a c t i o n s
20 pub l i c s t a t i c Map<List <Str ing >, Lis t <Str ing >> mapfromstates toact ions

↪→ = new HashMap<List <Str ing >, List <Str ing >>() ;
21 pub l i c s t a t i c Map<Integer , L i s t <Str ing >> nodetable = new HashMap<

↪→ Integer , L i s t <Str ing >>() ;
22 pub l i c s t a t i c Map<Integer , L i s t <Integer >> edgetab l e = new HashMap<

↪→ Integer , L i s t <Integer >>() ;
23 pub l i c s t a t i c i n t t rans index = 0 ;
24

25 pr i va t e s t a t i c Methods t = new Methods ( ) ;
26 pr i va t e s t a t i c Class c l s = t . ge tC la s s ( ) ;
27 pr i va t e s t a t i c Method [ ] m = c l s . getMethods ( ) ;
28

29 pub l i c s t a t i c ArrayList<List <Str ing >> methodcal l ( L i s t <Str ing >
↪→ i n p u t s t a t e l i s t ) throws I l l e ga lAcc e s sExcep t i on ,
↪→ I l l ega lArgumentExcept ion , Invocat ionTargetExcept ion {

30

31 ArrayList<List <Str ing >> s u c c e s s o r s = new ArrayList<List <Str ing >>()
↪→ ;

32

33 // i t e r a t i o n through e x i s t i n g methods
34 c a l l : f o r ( i n t i = 0 ; i < Methods . numberofmethods ; i++) {
35 Worldstate_HTN . h i g h l e v e l t a s k s = new ArrayList<Str ing >(

↪→ Worldstate_HTN . h i g h l e v e l t a s k s _ l a s t ) ;
36 St r ing methodname = m[ i ] . t oS t r i ng ( ) . r e p l a c e ( " pub l i c s t a t i c java

↪→ . u t i l . L i s t edu . cmu . probplan . Methods . " , " " )
37 . r e p l a c e ( " ( java . u t i l . L i s t , java . lang . S t r ing ) throws java .

↪→ lang . I l l e ga lAcc e s sExcep t i on , java . lang . I l l ega lArgumentExcept ion ,
↪→ java . lang . r e f l e c t . Invocat ionTargetExcept ion " , " " ) ;

38 Object r e s u l t = m[ i ] . invoke ( t , i n p u t s t a t e l i s t , methodname ) ;
39 List <Str ing > r e s u l t s t a t e = ( List <Str ing >) r e s u l t ;
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40

41 i f ( r e s u l t s t a t e != n u l l && r e s u l t s t a t e . c on ta i n sA l l (
↪→ Worldstate_HTN . getState_goa l ( ) ) ) {}

42 e l s e i f ( r e s u l t s t a t e == n u l l && ! Worldstate_HTN . getTask ( ) .
↪→ equa l s ( Worldstate_HTN . h i g h l e v e l t a s k s _ l a s t ) ) {

43 C o l l e c t i o n s . s o r t ( i n p u t s t a t e l i s t ) ;
44 s u c c e s s o r s . add ( i n p u t s t a t e l i s t ) ;
45 List <List <Str ing >> tasks = new ArrayList<List <Str ing >> (

↪→ Worldstate_HTN . taskmap . get ( i n p u t s t a t e l i s t ) ) ;
46 ta sk s . remove ( Worldstate_HTN . h i g h l e v e l t a s k s _ l a s t ) ;
47 ta sk s . add ( Worldstate_HTN . getTask ( ) ) ;
48 f o r ( L i s t <Str ing > goa l : t a sk s ) {
49 C o l l e c t i o n s . s o r t ( goa l ) ;
50 }
51 ta sk s = new ArrayList<List <Str ing >>(new LinkedHashSet<List <

↪→ Str ing >>(ta sk s ) ) ;
52 Worldstate_HTN . taskmap . put (new ArrayList<Str ing >(

↪→ i n p u t s t a t e l i s t ) , t a sk s ) ;
53 }
54 e l s e i f ( r e s u l t s t a t e != n u l l ) {
55 C o l l e c t i o n s . s o r t ( r e s u l t s t a t e ) ;
56 i f ( ! ( Worldstate_HTN . taskmap . get ( r e s u l t s t a t e ) == n u l l ) ) {
57 f o r ( L i s t <Str ing > goa l : Worldstate_HTN . taskmap . get (

↪→ r e s u l t s t a t e ) ) {
58 i f ( goa l . equa l s ( Worldstate_HTN . getTask ( ) ) ) {
59 cont inue c a l l ;
60 }
61 }
62 List <List <Str ing >> tasks = new ArrayList<List <Str ing >> (

↪→ Worldstate_HTN . taskmap . get ( r e s u l t s t a t e ) ) ;
63 ta sk s . add ( Worldstate_HTN . getTask ( ) ) ;
64 Worldstate_HTN . taskmap . put (new ArrayList<Str ing >(

↪→ r e s u l t s t a t e ) , t a sk s ) ;
65 }
66 e l s e {
67 List <List <Str ing >> tasks = new ArrayList<List <Str ing >>() ;
68 ta sk s . add ( Worldstate_HTN . getTask ( ) ) ;
69 Worldstate_HTN . taskmap . put (new ArrayList<Str ing >(

↪→ r e s u l t s t a t e ) , t a sk s ) ;
70 }
71 s u c c e s s o r s . add ( r e s u l t s t a t e ) ;
72 }
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73 }
74

75 re turn s u c c e s s o r s ;
76 }
77

78 pub l i c s t a t i c void searchOnThePoss ibleAct ions ( Lis t <Str ing >
↪→ i n p u t s t a t e l i s t , L i s t <Str ing > newstates , S t r ing methodname , S t r ing
↪→ operatorname ) throws I l l e ga lAcc e s sExcep t i on ,
↪→ I l l ega lArgumentExcept ion , Invocat ionTargetExcept ion {

79

80

81 ArrayList<List <Str ing >> l e a f s _ s t a t e s = new ArrayList<List <Str ing
↪→ >>() ;

82 List <Integer > nodes = new ArrayList<Integer >() ;
83

84 // check i f the r e s u l t i n g s t a t e s conta in s the goa l s t a t e s
85 i f ( newstates . c on ta in sA l l ( Worldstate_HTN . getState_goal ( ) ) ) {
86 s u c c e s s f u l p l a n s ++;
87 l e a f s _ s t a t e s . add ( newstates ) ;
88 }
89 e l s e {
90 l e a f s _ s t a t e s . add ( newstates ) ;
91 }
92

93 // sav ing f o r t r e e
94 f o r ( L i s t <Str ing > node : l e a f s _ s t a t e s ) {
95 i f ( S e a r c h i n g f o r s u c c e s s o r s . edgetab l e . get ( savenewnode (

↪→ i n p u t s t a t e l i s t ) ) != n u l l ) {
96 nodes = S e a r c h i n g f o r s u c c e s s o r s . edge tab l e . get ( savenewnode (

↪→ i n p u t s t a t e l i s t ) ) ;
97 }
98 nodes . add ( savenewnode ( node ) ) ;
99 }

100 nodes = new ArrayList<Integer >(new LinkedHashSet<Integer >(
↪→ nodes ) ) ;

101 edgetab l e . put ( savenewnode ( i n p u t s t a t e l i s t ) , nodes ) ;
102

103 C o l l e c t i o n s . s o r t ( i n p u t s t a t e l i s t ) ;
104 List <Str ing > p o s s i b l e a c t i o n s = new ArrayList<Str ing >() ;
105 f o r (Map. Entry<List <Str ing >, Lis t <Str ing >> entry :

↪→ mapfromstates toact ions . entrySet ( ) ) {
106 i f ( entry . getKey ( ) . equa l s ( i n p u t s t a t e l i s t ) ) {
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107 p o s s i b l e a c t i o n s = entry . getValue ( ) ;
108 }
109 }
110 p o s s i b l e a c t i o n s . add ( operatorname ) ;
111 p o s s i b l e a c t i o n s = new ArrayList<Str ing >(new LinkedHashSet<

↪→ Str ing >( p o s s i b l e a c t i o n s ) ) ;
112 mapfromstates toact ions . put ( i n p u t s t a t e l i s t , p o s s i b l e a c t i o n s ) ;
113

114 }
115

116

117 pr i va t e s t a t i c i n t savenewnode ( Lis t <Str ing > i n p u t s t a t e l i s t ) {
118

119 f o r (Map. Entry<Integer , L i s t <Str ing >> entry : nodetable . entrySet ( )
↪→ ) {

120 i f ( e q u a l L i s t s ( entry . getValue ( ) , i n p u t s t a t e l i s t ) )
121 re turn entry . getKey ( ) ;
122 }
123 nodetable . put ( planindex , i n p u t s t a t e l i s t ) ;
124 planindex++;
125 re turn planindex −1;
126 }
127

128 pub l i c s t a t i c boolean e q u a l L i s t s ( L i s t <Str ing > one , L i s t <Str ing > two ) {
129 i f ( one == n u l l && two == n u l l ) {
130 re turn true ;
131 }
132

133 i f ( ( one == n u l l && two != n u l l )
134 | | one != n u l l && two == n u l l
135 | | one . s i z e ( ) != two . s i z e ( ) ) {
136 re turn f a l s e ;
137 }
138 C o l l e c t i o n s . s o r t ( one ) ;
139 C o l l e c t i o n s . s o r t ( two ) ;
140 re turn one . equa l s ( two ) ;
141 }
142

143}
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B.2 MDP module

1package edu . cmu . probplan ;
2

3import java . lang . r e f l e c t . Invocat ionTargetExcept ion ;
4import java . lang . r e f l e c t . Method ;
5import java . t ex t . DecimalFormat ;
6import java . u t i l . ArrayList ;
7import java . u t i l . C o l l e c t i o n s ;
8import java . u t i l . HashMap ;
9import java . u t i l . L i s t ;

10import java . u t i l .Map;
11

12pub l i c c l a s s Qlearning {
13

14 pub l i c s t a t i c Map<List <Str ing >, Integer > inve r s enode tab l e = new
↪→ HashMap<List <Str ing >, Integer >() ;

15 pub l i c s t a t i c double [ ] [ ] Q = new double [ Main . nodemap . s i z e ( ) ] [
↪→ Operators . numberofoperators +1] ;

16 pub l i c s t a t i c double [ ] [ ] Q_c = new double [ Main . nodemap . s i z e ( ) ] [
↪→ Operators . numberofoperators +1] ;

17 pr i va t e s t a t i c f i n a l DecimalFormat df = new DecimalFormat ( "#.####" ) ;
18

19 pr i va t e s t a t i c f i n a l double alpha = 0 . 1 ;
20 pr i va t e s t a t i c f i n a l double gamma = 0 . 9 ;
21

22 pub l i c s t a t i c void l e a rn ( i n t i t e r a t i o n i n d e x ) throws
↪→ I l l e ga lAcc e s sExcep t i on , I l l ega lArgumentExcept ion ,
↪→ Invocat ionTargetExcept ion , Inter ruptedExcept ion {

23

24 Main . q l ea rn ing_s ta r t = true ;
25 newNodetable ( ) ;
26 Operators . p r o b a b i l i t y b l e I n i t ( ) ;
27

28 Operators t = new Operators ( ) ;
29 Class <? extends Operators> c l s = t . ge tC la s s ( ) ;
30 Class [ ] argTypes = new Class [ ] { L i s t . c l a s s } ;
31 Method m;
32

33 f o r ( i n t j = 1 ; j<=i t e r a t i o n i n d e x ; j++){
34 i f ( ( double ) 100∗ j / i t e r a t i o n i n d e x % 10 == 0) {
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35 System . out . p r i n t l n ( " Process at : " + ( i n t ) 100∗ j /
↪→ i t e r a t i o n i n d e x + "%" ) ;

36 }
37 f o r (Map. Entry<List <Str ing >, Lis t <Str ing >> entry : Main .

↪→ mapfromstates toact ions . entrySet ( ) ) {
38

39 f o r ( S t r ing operatorname : entry . getValue ( ) ) {
40 t ry {
41 m = c l s . getMethod ( operatorname , argTypes ) ;
42 m. invoke ( t , entry . getKey ( ) ) ;
43 } catch ( NoSuchMethodException e ) {
44 System . out . p r i n t l n ( " There i s no such an operator : " +

↪→ operatorname ) ;
45 }
46 }
47 }
48 }
49

50 }
51

52 pub l i c s t a t i c void tab leupdate ( Lis t <Str ing > state_actua l , S t r ing
↪→ operatorname , Lis t <Str ing > newstates ) {

53

54 C o l l e c t i o n s . s o r t ( newstates ) ;
55 C o l l e c t i o n s . s o r t ( s ta te_actua l ) ;
56 double p = p r o b a b i l i t y ( s ta te_actua l ) ;
57 double p_action = Operators . p r o b a b i l i t y t a b l e . get ( operatorname ) ;
58

59 //Q_R value parameters
60 double q = Q[ inve r s enode tab l e . get ( s ta te_actua l ) ] [ Operators .

↪→ ope ra t o r t ab l e . get ( operatorname ) ] ;
61 double maxQ = maxQ( inve r s enode tab l e . get ( newstates ) ) ;
62 i n t r = Reward . rewardtab le . get ( newstates ) ;
63 double pena l ty = Main . pena l t y coe f ∗ Operators . p ena l ty tab l e . get (

↪→ operatorname ) ;
64 //Q_R value update
65 double va lue = q + alpha ∗ ( r − pena l ty + gamma ∗ p_action ∗ p ∗

↪→ maxQ − q ) ; //(1−alpha ) ∗
66 setQ ( inve r s enode tab l e . get ( s ta te_actua l ) , Operators . ope r a t o r t ab l e

↪→ . get ( operatorname ) , va lue ) ;
67

68 //Q_C value parameters
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69 double q_c = Q_c[ i nve r s enode tab l e . get ( s ta te_actua l ) ] [ Operators .
↪→ ope ra t o r t ab l e . get ( operatorname ) ] ;

70 List <Str ing > cons t r a in input = new ArrayList<Str ing >(newstates ) ;
71 con s t r a in input . add ( operatorname ) ;
72 double c = Constra in . c o n s t r a i n t a b l e . get ( con s t r a in input ) ;
73 double maxQ_c = maxQ_c( inve r s enode tab l e . get ( newstates ) ) ;
74 //Q_C value update
75 double con s t r a i nva lu e = (1−alpha ) ∗q_c + alpha ∗ ( c + gamma ∗

↪→ p_action ∗ p ∗ maxQ_c − q_c) ;
76 setQ_c ( inve r s enode tab l e . get ( s ta te_actua l ) , Operators .

↪→ ope ra t o r t ab l e . get ( operatorname ) , c on s t r a i nva lu e ) ;
77 }
78

79 pr i va t e s t a t i c double p r o b a b i l i t y ( Lis t <Str ing > state_actua l ) {
80 double numberofch i ldren = 1 ;
81 numberofch i ldren = Main . edgemap . get ( i nve r s enode tab l e . get (

↪→ s ta te_actua l ) ) . s i z e ( ) ;
82 re turn 1/ numberofch i ldren ;
83 }
84

85 pub l i c s t a t i c double maxQ( i n t s ) {
86 double maxValue = Double .MIN_VALUE;
87 f o r ( i n t i = 0 ; i < Q[ s ] . l ength ; i++) {
88 double va lue = Q[ s ] [ i ] ;
89

90 i f ( va lue > maxValue )
91 maxValue = value ;
92 }
93 re turn maxValue ;
94 }
95

96 pub l i c s t a t i c double maxQ_c( i n t s ) {
97 double maxValue = Double .MIN_VALUE;
98 f o r ( i n t i = 0 ; i < Q_c[ s ] . l ength ; i++) {
99 double va lue = Q_c[ s ] [ i ] ;

100

101 i f ( va lue > maxValue )
102 maxValue = value ;
103 }
104 re turn maxValue ;
105 }
106
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107 pub l i c s t a t i c void setQ ( i n t s ta te , i n t act ion , double va lue ) {
108 Q[ s t a t e ] [ a c t i on ] = value ;
109 }
110

111 pub l i c s t a t i c void setQ_c ( i n t s ta te , i n t act ion , double va lue ) {
112 Q_c[ s t a t e ] [ a c t i on ] = value ;
113 }
114

115 pr i va t e s t a t i c void newNodetable ( ) {
116 f o r (Map. Entry<Integer , L i s t <Str ing >> entry : Main . nodemap .

↪→ entrySet ( ) ) {
117 i nv e r s enode tab l e . put ( entry . getValue ( ) , entry . getKey ( ) ) ;
118 }
119 }
120

121 pub l i c s t a t i c i n t [ ] toIntArray ( Lis t <Integer > l i s t ) {
122 i n t [ ] r e t = new i n t [ l i s t . s i z e ( ) ] ;
123 f o r ( i n t i = 0 ; i < r e t . l ength ; i++)
124 r e t [ i ] = l i s t . get ( i ) ;
125 re turn r e t ;
126 }
127

128

129 // −−−−−−−−−−−−−−−−−−−−p o l i c y eva luat ion
↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

130 pub l i c s t a t i c In t eg e r p o l i c y ( i n t s t a t e ) {
131 double maxValue = Double .MIN_VALUE;
132 I n t eg e r po l i cyGotoState = 0 ; // do done ! act ion , which w i l l g ive

↪→ e r r o r
133 f o r ( i n t i = 0 ; i < Q[ s t a t e ] . l ength ; i++) {
134 i f (Q_c[ s t a t e ] [ i ] < Main . lambda ) {
135 i f (Q[ s t a t e ] [ i ] > maxValue ) {
136 maxValue = Q[ s t a t e ] [ i ] ;
137 po l i cyGotoState = i ;
138 }
139 }
140 }
141 re turn po l i cyGotoState ;
142 }
143

144 pub l i c s t a t i c void Qconstra in ( ) {
145 System . out . p r i n t l n ( " \nQ−con s t r a i n r e s u l t s : " ) ;
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146 f o r ( i n t i = 0 ; i < Q_c. l ength ; i++) {
147 System . out . p r i n t ( " out from " + Main . nodemap . get ( i ) + " : " ) ;
148 f o r ( i n t j = 0 ; j < Q_c[ i ] . l ength ; j++) {
149 System . out . p r i n t ( df . format (Q_c[ i ] [ j ] ) + " " ) ;
150 }
151 System . out . p r i n t l n ( ) ;
152 }
153 }
154

155 // p o l i c y i s maxQ( s t a t e s )
156 pub l i c s t a t i c void showPolicy ( ) {
157 System . out . p r i n t l n ( " \ nPol icy : " ) ;
158 f o r ( i n t i = 0 ; i < inve r s enode tab l e . s i z e ( ) ; i++) {
159 List <Str ing > from = Main . nodemap . get ( i ) ;
160 f o r (Map. Entry<Str ing , Integer > entry : Operators .

↪→ ope ra t o r t ab l e . entrySet ( ) ) {
161 i f ( entry . getValue ( ) == p o l i c y ( i ) ) {
162 System . out . p r i n t l n ( "FROM: "+ from + " TO: "+ entry . getKey

↪→ ( ) ) ;
163 break ; }
164 }
165

166 }
167 }
168

169}

B.3 Simulator module

1package edu . cmu . s imu la to r ;
2

3import java . i o . Fi le InputStream ;
4import java . i o . FileOutputStream ;
5import java . i o . IOException ;
6import java . i o . ObjectInputStream ;
7import java . i o . ObjectOutputStream ;
8import java . lang . r e f l e c t . Invocat ionTargetExcept ion ;
9import java . lang . r e f l e c t . Method ;

10import java . t ex t . DecimalFormat ;
11import java . u t i l . Arrays ;
12import java . u t i l . C o l l e c t i o n s ;
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13import java . u t i l . HashMap ;
14import java . u t i l . L i s t ;
15import java . u t i l .Map;
16import java . u t i l . Random ;
17import java . u t i l .Map. Entry ;
18import java . u t i l . Stack ;
19

20import edu . cmu . probplan . Qlearning ;
21import edu . cmu .HTN. S e a r c h i n g f o r s u c c e s s o r s ;
22

23

24pub l i c c l a s s Main_simulator {
25

26 pub l i c s t a t i c double [ ] [ ] Q ;
27 pub l i c s t a t i c double [ ] [ ] Q_c;
28 pub l i c s t a t i c double lambda = 0 . 0 0 ;
29 pub l i c s t a t i c Map<Integer , L i s t <Str ing >> nodemap = new HashMap<

↪→ Integer , L i s t <Str ing >>() ;
30 pub l i c s t a t i c Map<List <Str ing >, Integer > inversenodemap = new HashMap

↪→ <List <Str ing >, Integer >() ;
31

32 // s imula tor i n t e r f a c e s e t t i n g s
33 s t a t i c boolean showtheplan = f a l s e ;
34 s t a t i c i n t i t e r a t i o n = 500 ;
35 s t a t i c i n t r e s o l u t i o n = 50 ;
36 s t a t i c double i n c r e a s e = 0 . 0 2 ;
37

38 // sav ing f o r eva lua t i on
39 pub l i c s t a t i c double s t a t i s t i c _ s u c c e s s = 0 ;
40 pub l i c s t a t i c double s t a t i s t i c _ l e n g t h = 0 ;
41

42 pub l i c s t a t i c void main ( St r ing [ ] arg ) throws Exception {
43

44 readData ( ) ;
45 eva luate ( ) ;
46

47 }
48

49 pub l i c s t a t i c void eva luate ( ) throws I l l e ga lAcc e s sExcep t i on ,
↪→ I l l ega lArgumentExcept ion , Invocat ionTargetExcept ion {

50 f o r ( i n t k=0; k<r e s o l u t i o n ; k++){
51 lambda += i n c r e a s e ;

83



Appendix B

52 s t a t i s t i c _ s u c c e s s = 0 ;
53 s t a t i s t i c _ l e n g t h = 0 ;
54 f o r ( i n t i =0; i<i t e r a t i o n ; i++){
55 i f ( s imu la t i on ( ) ) {
56 s t a t i s t i c _ s u c c e s s ++;
57 }
58 }
59 s t a t i s t i c _ s u c c e s s/= i t e r a t i o n ;
60 s t a t i s t i c _ l e n g t h/= i t e r a t i o n ;
61 System . out . p r i n t l n ( " \nAvarage l ength o f the p lans a f t e r " +

↪→ i t e r a t i o n+ " i t e r a t i o n : " + s t a t i s t i c _ l e n g t h ) ;
62 System . out . p r i n t l n ( " Probab i l i t y o f s u c c e s s a f t e r " +i t e r a t i o n+

↪→ " i t e r a t i o n : " + s t a t i s t i c _ s u c c e s s + " lambda : " + lambda ) ;
63 }
64 }
65

66 pub l i c s t a t i c boolean s imu la t i on ( ) throws I l l e ga lAcc e s sExcep t i on ,
↪→ I l l ega lArgumentExcept ion , Invocat ionTargetExcept ion {

67

68 Operators_simulator . o p e r a t o r t a b l e I n i t ( ) ;
69 Operators_simulator . p r o b a b i l i t y b l e I n i t ( ) ;
70 Operators_simulator t = new Operators_simulator ( ) ;
71 Class <? extends Operators_simulator> c l s = t . ge tC la s s ( ) ;
72 Class [ ] argTypes = new Class [ ] { L i s t . c l a s s } ;
73

74 Stack<List <Str ing >> plan = new Stack<List <Str ing >>() ;
75 List <Str ing > i np u t s t a t e = StateTrans_simulator . g e t S t a t e _ i n i t i a l ( ) ;
76 C o l l e c t i o n s . s o r t ( i n p u t s t a t e ) ;
77 plan . push ( i n pu t s t a t e ) ;
78

79 whi le ( plan . peek ( ) . c on ta i n sA l l ( StateTrans_simulator . getState_goa l
↪→ ( ) ) == f a l s e ) {

80 i f ( i n p u t s t a t e . c on ta i n sA l l ( Arrays . a s L i s t ( " at ca r t c o r r i d o r " ) ) ) {
81 Random randomGenerator = new Random( ) ;
82 i f ( randomGenerator . nextDouble ( ) <= 0 . 8 ) {
83 re turn f a l s e ;
84 }
85 }
86 C o l l e c t i o n s . s o r t ( i n p u t s t a t e ) ;
87

88 i n t operatornumber = dec is ionBasedOnPol icy ( inversenodemap . get (
↪→ i n p u t s t a t e ) ) ;

84



Appendix B

89 St r ing operatorname = n u l l ;
90 f o r (Map. Entry<Str ing , Integer > entry : Operators_simulator .

↪→ ope ra t o r t ab l e . entrySet ( ) ) {
91 i f ( entry . getValue ( ) == operatornumber ) {
92 operatorname = entry . getKey ( ) ; }
93 }
94

95 Method m;
96 t ry {
97 m = c l s . getMethod ( operatorname , argTypes ) ;
98 } catch ( NoSuchMethodException e ) {
99 re turn f a l s e ;

100 }
101 plan . push ( ( Lis t <Str ing >) m. invoke ( t , i np u t s t a t e ) ) ;
102 i n p u t s t a t e = plan . peek ( ) ;
103 }
104 s t a t i s t i c _ l e n g t h+= plan . s i z e ( ) ;
105

106 i f ( showtheplan == true ) {
107 System . out . p r i n t l n ( " \nPlan based on the p o l i c y : " ) ;
108 f o r ( i n t k = 0 ; k<plan . s i z e ( ) ; k++){
109 System . out . p r i n t l n ( plan . get ( k ) ) ;
110 }
111 }
112 re turn true ;
113

114 }
115

116 pub l i c s t a t i c void readData ( ) throws ClassNotFoundException ,
↪→ IOException{

117

118 Fi leInputStream Q_reward = new Fi leInputStream ( " /home/benny/
↪→ workspace /ProbPlan non−det separated v6/Q_reward . dat " ) ;

119 ObjectInputStream o i s = new ObjectInputStream (Q_reward) ;
120 Q = ( double [ ] [ ] ) o i s . readObject ( ) ;
121

122 Fi leInputStream Q_constrain = new Fi leInputStream ( " /home/benny/
↪→ workspace /ProbPlan non−det separated v6/Q_constrain . dat " ) ;

123 ObjectInputStream o i s 2 = new ObjectInputStream ( Q_constrain ) ;
124 Q_c = ( double [ ] [ ] ) o i s 2 . readObject ( ) ;
125
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126 Fi leInputStream nodemapf i le = new Fi leInputStream ( " /home/benny/
↪→ workspace /ProbPlan non−det separated v6/nodemap . dat " ) ;

127 ObjectInputStream o i s 3 = new ObjectInputStream ( nodemapf i le ) ;
128 nodemap = (Map<Integer , L i s t <Str ing >>) o i s 3 . readObject ( ) ;
129

130 Fi leInputStream inve r s enodemap f i l e = new Fi leInputStream ( " /home/
↪→ benny/ workspace /ProbPlan non−det separated v6/ inversenodemap . dat " )
↪→ ;

131 ObjectInputStream o i s 4 = new ObjectInputStream ( inve r s enodemap f i l e )
↪→ ;

132 inversenodemap = (Map<List <Str ing >, Integer >) o i s 4 . readObject ( ) ;
133 }
134

135 pub l i c s t a t i c i n t dec is ionBasedOnPol icy ( In t eg e r s t a t e ) {
136 double maxValue = Double .MIN_VALUE;
137 I n t eg e r po l i cyGotoState = 0 ; // d e f a u l t goto s e l f i f not found
138 f o r ( i n t i = 0 ; i < Q[ s t a t e ] . l ength ; i++) {
139 double va lue = Q[ s t a t e ] [ i ] ;
140

141 i f ( va lue > maxValue && Q_c[ s t a t e ] [ i ]<lambda ) {
142 maxValue = value ;
143 po l i cyGotoState = i ;
144 }
145 }
146 re turn po l i cyGotoState ;
147 }
148

149

150}
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