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 Introduction 

This report is aimed to provide the reader with a general idea of my 

research efforts at Harvard University, Cambridge, USA in the 2014/15 

academic year. The reason for my stay at this institution, namely the 

Harvard Business School (HBS), was to work with Prof. Stefan Thomke 

on my doctoral thesis. He was the one to introduce me to the realm 

“Learning by Using” and, subsequently, the reason for my conducting 

this doctoral research.  

Therefore, in this report I will present an extended summary of my 

thesis, its structure and content, which constitutes the progress of my 

work during this year at Harvard University. Every chapter will first be 

sketched out by its table of content, followed by an abstract of its 

subject matter. In this way, this research report should serve as a quick 

insight into the current state of my work, and the progress I made 
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through the experiences I gathered in the year, subsidized by the 

Marshall Plan Foundation. 

Though I would like to reveal as much of my research as possible at this 

point, I had to find a compromise between my own aspirations, the 

Marshall Plan Foundation report requirements, and constraints of 

circulation protection given the novelty of my research and findings.  

Thus, I apologize that I cannot elaborate on details of my research in the 

depth that the interested reader might deserve and want to refer the ones 

who are keen to the final version of my doctoral thesis. 
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Part 1 

CHAPTER I 
Introduction 

I.1 Introduction 

I.2 Background on Research Problem 

I.3 Aim of Study: Research Question and Motivation 

I.4 Examples of Fields That Are Radically Affected 
  I.4.1 Manufacturing Industry 
  I.4.2. CNC Laser Industry 

I.5 Relevance: Contributions to Academic Literature and Industrial 
Practice 

I.6 Research Flow and Thesis Structure 

I.7. Conclusion 

This Chapter shall provide the reader with an overall idea of my thesis 

and overview of my field of research. 

In this thesis, I investigate the fundamentally simple question of the 

extent to which user activity on industrial machines and machine 
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manufactures’ development endeavor is determined through learning by 

using. Learning by using, a related kind of learning by doing, is external 

to the firm’s manufacturers’ production and development process, and 

can be considered a major innovation process activity. Though greatly 

underrated, “industries that rely heavily on learning by using—aircraft, 

electric power generation, telephones and, more recently, computers—

have had some of the most impressive productivity growth in the 

twentieth century” (Rosenberg, 1982, p. 140). 

To the best of my knowledge, after Rosenberg coined the term “learning 

by using” in 1982, with a study on maintenance progress in the aviation 

industry, not even a handful of papers have been directed towards this 

matter. However, what all the literature has in common is that it 

addresses the economic relevance of this phenomenon, although it is not 

aimed at understanding the ongoing processes at a micro-level. Thus, 

following Rosenberg’s (1982, p. 140) encouragement, with this thesis, I 

will empirically examine the learning-by-using phenomena by more 

clearly identifying the nature and locus of the micro-level activities that 
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provoke technological Ageations and will, therefore, contribute to the 

fields’ understanding of technological change. 

In detail, I will elucidate the learning-by-using process by means of a 

comprehensive study on users (operators) of industrial machines and the 

machines’ manufacturer. More specifically, I aim to understand, why, 

how and under which circumstances users of industrial machines 

innovate, and how the manufacturer deals with the users’ pieces of 

information (their problems and suggested solutions). To do so, I studied 

users, located in Germany, Austria, and Switzerland, of CNC laser 

machines produced by one manufacturer. As will be seen in my literature 

review, I sought to conduct this specific study for three reasons. First, 

although much prior work exists in adjacent fields, from which I draw my 

hypothesis, I know of no such study specifically addressed to the field of 

industrial machines. Second, industrial machines, as part of the 

manufacturing industry, are significant contributors to GDP. Therefore, 

considering their market share, to better understand underlying processes 

could reveal possibilities for improvements, and, consequently, could be 

of great financial potential—for individuals, firms, and social welfare. 
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Third, applications of CNC laser machines are widespread, through a 

range of sectors within the manufacturing industry. Hence, merging the 

results from my different case studies may result in more significant 

results than studying just one sector of this industry. 

Based on my data, I will contribute to the field (of innovation) vis-a-vis 

how users learn to utilize industrial machines, and will reveal 

experimentation as the most important activity in this process. 

Subsequently, I will respond to the hypothesis of why and how users 

innovate, and will show two constraints of this process, which are new to 

the literature, viz. (1) limited access to resources (e.g. tools) and (2) the 

in individuals’ (mainly operators) socialization process. Then, I will 

discuss why learning by using as it pertains to industrial machines is 

greatly underrated and, how tapping into this knowledge would 

contribute to manufacturers’ R&D processes to help solve long-standing 

challenges in the design of new (versions of) products, accelerate the 

design development process and cut the associated time and expense. 

Summarizing my findings will show, that if manufacturers’ consider 

users’ information carefully, learning by using can be thought of as a 
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process of real-world experimentation by the users in the manufacturers’ 

product development scope and can generate such productivity 

improvements that products are utilized even beyond their initial 

(construed) performance characteristics. Thus, it can postpone the 

products’ often premature advancement along a sustaining development 

curve, and a manufacturer’s transition to a more sophisticated and 

smaller user group, where business, in the long run, may no longer be 

profitable (Christensen, 2005; Christensen and Bower, 1996). 
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CHAPTER II  
Literature Review 

II.1 Abstract/Introduction 

II.2 User Innovation 
  II.2.1   Users Definitions: From User Firm to Lead User 
  II.2.1 Lead User and Non-Lead User Innovation 
  II.2.3  Why Users Innovate 

II.3 Learning  
  II.3.1 Problem Solving 
  II.3.2 Experimentation and Testing  
  II.3.3 Organizational Theory on Learning 

II.4 Product Development and Gains in Productivity 
  II.4.1. The Cycles of Innovative Change 
  II.4.2. Learning by Doing 
  II.4.3 Learning by Using 

II.5 The Manufacturer’s Dilemma 

II.6 Conclusion 

  

In this chapter, I will review the body of literature directly related to my 

research. Despite having exhaustively ploughed through the broad range 

of literature on Product Development, Innovation, Learning, Problem 

Solving and Testing, it remains a work in progress. The reason is that I 

want to perfectly mesh the theoretical part of my research with my 

empirical studies, so that I can thoroughly deduce from theory to 
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empiricism on the one hand and induce from empiricism to theory on the 

other. In this way, the reader will be provided with a holistic and gapless 

view on my research cogitations. Therefore I want to chart-like sketch my 

body of sources and refer the reader to my final thesis for more detail on 

this matter. 

For my research, I want to define the following terms. 

• Manufacturers (M), synonymous with Producers (P): the 

provider of a design, product, or service that expects to benefit 

from its sales. Inventors creating knowledge to sell rather than 

use, shall be considered producers, as will those innovating to 

manufacture and sell goods embodying or complementing the 

original innovation. 

• User Firms (UF): organizations that expect to benefit from 

using the manufacturers’ design, product, or service.  

• Users (U): the conglomerate of all users of a manufacturer’s 

design, product, or service, statistically aggregated by a normal 

(Gaussian) distribution. 
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• Ordinary Users (OU): the conglomerate of all users of a 

manufacturer’s design, product or service, statistically 

aggregated between the lower Q(-SD) and upper Q(+SD) 

quantiles, i. e. two times the standard deviation (µ ± SD), of 

the normal distribution with the users’ applications versed-ness 

as the distinctive metric.  

• Innovative Users (IU): the conglomerate of all advanced users of 

a manufacturer’s design, product or service, statistically 

aggregated by the upper quantile, Q(+SD), and Lead Users 

(LU) by the Q(+2*SD) quantile in the aforementioned normal 

distribution. Hence, this understanding is coherent with von 

Hippel’s (1986) lead user notion, of lead users being ahead of 

the non-lead users with their applications, encountering 

additional requirements well before the rest of the user 

population.  

• Low-End User (LEU): the conglomerate of all users of a 

manufacturer’s design, product, or service, statistically 
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aggregated by the lower Q(-SD) quantile of the aforementioned 

normal distribution. 

• Non-Lead Users (OU): the conglomerate of all users of a 

manufacturer’s design, product, or service, statistically 

aggregated below the Q(+2*SD) quantile of the normal 

distribution, and hence entailing IU, OU, and LEU. 

As can be seen in the lead user definition, those sophisticated operators 

would benefit greatly from a solution to their requirements. The 

theoretical assumption is, that manufacturers face great (financial) 

uncertainty by addressing these niche-needs, and thus, lead users are 

being left behind to solve their issues on their own. To better understand 

the resulting users’ innovative activity is why the body of literature on 

innovation shall be discussed in the following.   

To the best of my knowledge, Smith (1937) was one of the first scholars 

to construe the field of user innovation with his findings that users 

innovate on their machines for ease of operation and productivity gains. 

These findings were followed by Enos (1962) with his work on the history 

of process innovation for petroleum progress and profits, who discovered, 
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that almost all important innovations in this industry (for oil refining) 

stem from user firms. In 1976, Rosenberg presented his exhaustive study 

on the technological change in the machine tool industry from 1840 to 

1910 to reveal the origins of some American technologies. He illustrated 

historical examples of technical convergence, like the transfer of 

innovation from bicycles to automobile makers or sewing machine 

manufacturing to firearms. Furthermore, based on my reading of the 

literature, his work is one of the first documents on user firms as 

innovators and producers of machine tools, which can be understood 

through a couple of examples from his research:  

• the production of heavy machine tools for general purpose, 

which was first undertaken by textile machine shops, initiated 

by their internal industry requirements and those of the railroad 

industry 

• the high-speed machine tools for more specialized applications, 

like milling machines or precision grinders, which literally stem 

from the production requirements of arms makers 
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• or, by the innovations of the Brown and Sharpe Manufacturing 

Company of Providence, Rhode Island, a clock, watch and 

mathematical device manufacturer, which was a unique tool 

contributor too, as a consequence of their demands in sewing-

machine operation.  

To summarize, he found out that “the results of these efforts were 

machine tools of a general usefulness far surpassing the industry of 

origin.”(Rosenberg, 1976, p. 22). At around the same time, von Hippel 

(1976) illustrated in his paper, that users of four different types of 

scientific instruments (gas chromatography, nuclear magnetic resonance 

spectrometry, ultraviolet absorption spectophotometry, and transmission 

electron microscopy) can be ascribed the significant innovations in this 

industry. Von Hippel (1977) could confirm these findings for the 

semiconductor industry in a study on innovations in process machinery 

for semiconductors and electronic subassemblies. Moreover he could show 

that the users dominated the entire innovation process, from need 

recognition to building and using the prototypes in their commercial 

production. Pavitt (1984) complemented these findings with a study on 
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significant innovations in Britain from 1945 onwards, and extended the 

dimensions of innovative activity by another source of knowledge external 

to the manufacturer—production intensive, science based—supplier 

innovations. His other classified categories—are not new to the field, but 

reinforce the findings at other places for the European or, at least, the 

British context. 

More interestingly, and to close the arc of the aforementioned 

manufacturers’ uncertainty in addressing lead user niches, scholars 

demonstrated that many of the commercially most significant and novel 

products in a range of fields are rather developed by users than 

manufacturers (Enos, 1962; Freeman et al., 1968; Knight, 1963; Shaw, 

1985; von Hippel, 1988) . Further studies (Baldwin et al., 2006; Franke et 1

al., 2006; Franke and von Hippel, 2003) confirm the bulk of research, 

especially regarding lead user innovation.  

Yet, in none of the aforementioned pieces could I find any indication on 

research on the micro-level mechanisms of (industrial machine) user 

 On a complementary note, Shah (2000) eked the land of user innovation beyond the industrial context to 1

consumer goods and a sports-related one. She extended the terminology by the user-manufacturer innovation, 
and could show that all first of type innovations were solely developed by users and that user-manufacturers 
were responsible for a bulk of the “improvement innovations”.
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innovation activity, though some literature might have touched 

hypothetically on certain aspects such as when users innovate. The only 

attempt to understand inventive activities more in-depth appears to have 

been made by von Hippel and Tyre (1995) via a study of problems 

encountered in the first years of novel process machines. However, central 

to this exploration is providing a more comprehensive understanding of 

the learning behaviors in problem-solving and its influence on the 

learning curve. 

An excurse into problem-solving shows that a problem can be considered 

an “unsatisfied need to change a perceived present situation to a 

perceived desired situation” and can be regarded solved when the 

“perceived present and desired situations are perceived to be the 

same” (Bartee, 1973, p. 439). This process—the problem- to the solution-

state change—is generally understood as problem-solving and can be 

achieved in three ways (Bartee, 1973). Literature in product and process 

development (Alexander, 1964; Clark, 1991; Iansiti, 1998; Wheelwright, 

1992) unfolds a towards an envisaged solution-directed trial and error 

measure (Allen, 1966; Baron, 2000; Marples, 1961; Smith and Eppinger, 
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1997) fundamental to problem-solving and, thus to experimentation, 

which can be considered a form of problem-solving (Duncker, 1945; 

Marples, 1961; Simon, 1996; Thomke et al., 1998; Thomke, 1998). 

However, since the body of literature shall be tailored in strong 

conjunction with the explorative findings in my final thesis, and 

problem-solving shall be further understood from a process of learning, I 

want to pivot the discourse towards the scope of learning.  

In general, learning can be considered as an iterative action and 

reflection process, in which actions are assessed and modified by actors 

towards desired outcomes (Dewey, 1938; Edmondson, 2002; Kolb, 1984; 

Schön, 1983). In case the actors are organizations, drawn from behavioral 

science, the learning process can be understood as “encoding inferences 

from history into routines that guide behavior” (Levitt and March, 1988, 

p. 320). In other words, target oriented learning actions of organizations, 

especially into new product design, tend to rely on history rather than 

on anticipations of the future (Cyert, 1963; Levitt and March, 1988; 

Lindblom, 1959; Nelson, 1982; Siegel, 1957; Simon, 1996; Steinbruner, 

1974) and are discussed in two forms in the bulk of learning literature—
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(1) organizational search (incl. traditional marketing research methods) 

and (2) trial-and-error experimentation. Most past research was on the 

latter, in detail, learning by doing and consequently different variables of 

influence and forms of the learning curve. With my thesis I shall show 

that Rosenberg’s (1982) supplementation of this—roughly speaking—

twofold organizational focus by a third, external factor, the learning of 

user (firms), was in fact appropriate and deserves further attention. 

Therefore, in the following I will expose the “vast sea of literature”, to 

better demonstrate where my thesis anchors in the respective field.  

One of the scholarly pioneers to explore the decrease in labor-production 

costs over units produced can be considered (Wright, 1936) with his 

study on factors affecting the cost of airplanes. His cornerstone work 

opened an entire field of research, with a great amount of literature, 

resulting in the study of this so-called learning curve principle—functions 

that are used henceforth, to delineate labor learning, learning by doing, 

at a meso-level (production process). The literature ploughed the 

learning curve in a descriptive and explanatory way. The descriptive 

depiction ranges from discussions (1) of the learning curve graphs’ 
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variables (Alchian, 1959; Arrow, 1962; Cooper and Charnes, 1954; David, 

1970, 1970; Fellner, 1969; Rapping, 1965; Stobaugh and Townsend, 1975), 

and (2) the functional form of the learning curve (A. Garg, 1961; Asher, 

1956a; Baloff, 1971, 1966a, 1966b; Carlson, 1973; Carr, 1946; Conway, 

1969), to (3) differences in learning rates (Alchian, 1959; Asher, 1956; 

Hirsch, 1952; Stobaugh and Townsend, 1975). The explanatory discourse, 

which I consider most fruitfully characterized in direct (Andress, 1954; 

Hartley, 1965; Hirschmann, 1964) and indirect labor (Hirschmann, 1964; 

Hirsch, 1952), tries to explain the learning curves’ underlying effects. 

The direct labor studies are focusing (4) on the influence of (minor and 

major) technical changes (Hollander, 1965), (5) learning effects in 

equipment modifications (Arrow, 1962; Searle and Goody, 1945; 

Sheshinski, 1967), and (6) capital intense activities (Baloff, 1966a; 

Hirschmann, 1964; Hirsch, 1952). The latter is where indirect labor 

literature can be found as well.  

Another segment of learning curve research is focused on the behavioral 

factors in the scope of the learning process. Hollander (1965) revealed 

these sources of increased efficiency with a study of du Pont rayon 
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plants, whereas Baloff (1970) suggested labor motivation and technical 

support as influential variables, and HaYes (1984) discussed factors 

encouraging and impeding learning. However, what all these studies have 

in common is that they did not model the presented factors as a 

mathematical curve, unlike Levy (1965). He introduced an adaption 

function to model how firms adapt to and improve their performance by 

characterizing the behavioral factors into (pre-) planned or induced, 

industrial engineering (or exogenous), and autonomous learning, 

attributed to on-the-job learning or training, which was complemented 

by Dutton and Thomas (1982) through cross-tabulating different forms 

of distinctions.  

Wright’s (1936) cornerstone piece also resulted in curves of improvement 

types and analysis units different from the learning curve, viz, the 

progress and experience functions. Progress curves (Dutton and Thomas, 

1982; Gold, 1981; Henderson, 1971), enunciated in unit costs, “may 

describe changes in material inputs, process or product technologies, or 

managerial technologies—from the level of a process to the level of a 

firm” (Dutton and Thomas, 1984, p. 235), and, therefore, under my 
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considerations from a meso-to-macro perspective. Experience functions 

(cf. Alchian, 1963; Billon, 1966; Nadler and Smith, 1963) in contrast 

often describe progress at an industry level with price as the proxy 

(Dutton and Thomas, 1984), though they are often used interchangeably 

with learning curves (Pisano et al., 2001).  

However, aside from Adler’s and Clark’s (1991) approach to sketch the 

learning process, this summary of the body of literature should have 

shown that research on understanding the micro-level learning processes 

behind the learning curve is very thin—especially w.r.t. how learning by 

using is done. 
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CHAPTER III 
Methodology of Overall Research: Research Design 

III.1 Abstract/Introduction 

III.2 Scope of Research: Research Boundaries on User’s and 
Manufacturer’s Interaction with the Machine Hardware and 
Software 

III.3. Field of Laser Cutter Application:  
  III.3.2 Use Cases: From One Man Shops to Serial   

Manufacturers 
  III.3.1 Description of investigated CNC Laser Machines 
III.4 Overall Study Design 
  III.4.1 Methodological Approach 
  III.4.2 Triangulation Design as Opposed to Mixed-Methods 

Approach 

III.6 Conclusion 

In this chapter, I will reveal and discuss my general methodological 

approach to the research question. For my explorations, I chose to select 

all of the study samples from the universe of one manufacturer of CNC 

laser machines. I focused on the users of these machines in the German-

speaking area, their interaction with the machine-system compound 

(such as the machine itself, the exhaust system and the software) in their 
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work environment. Three different scenarios of the machines’ field of 

operation will be generalized: (1) one-man businesses with order-related 

pieces (unique copies) and small batch productions, (2) medium-size 

businesses with order-related pieces (unique copies) and serial 

productions, and (3) large firms with serial productions only and, where 

the laser machines are just one of several machines in the production 

cycle. In the section of the CNC laser machine description, I will show 

that these machines were not chosen randomly but rather for the 

following two reasons: (1) CNC lasers have a broad area of application 

within the entire manufacturing sector and, therefore, I anticipate the 

research findings to be generalizable for the manufacturing industry. (2) 

All the examined, different models of CNC laser machines share the same 

(relatively trivial) technology and interfaces, which is why I consider 

them a good fit for comparable studies. Then, in the Overal l Study 

Design section, I will emphasize the explanation of my triangulated 

research composition, which I composed out of different qualitative and 

quantitative research methodologies—from open to fully structured 

forms. I clustered these methodologies in the following four sequential 

steps (illustrated in figure III.1):  
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(1) A Preliminary Field Study, by blending a literature research, 

ethnographical expert interviews as well as field data from the 

manufacturer’s service engineers, which I applied for my first orientation 

and learning the ropes in the field; 

(2) A First Field Study, by triangulating a questionnaire with workflow 

analyses, to gather the users’ assessments of their work systems—the 

machine environment compound—as well as their demographics in such a 

way that the standardized responses could be correlated and 

dependencies of the variables discerned;  

(3) A Second Field Study, consisting of narrative focus group discussions, 

aimed towards an understanding of the first field study’s findings, the 

users systems of relevance and their latent (tacit) knowledge; 

(4) A Third Field Study, comprising a lead user study with open, 

(funnel-) guideline-oriented, face-to-face interviews and, fully structured 

telephone interviews with the manufacturer’s R&D director, built upon 

my prior studies’ results and implemented, to draw my overall research 

conclusions from above—with an overview onto both, the users’ and the 

manufacturer’s activities. 
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Hence, in total, seven different data collection methods  were carefully 2

elected and adapted, given that the aim of my studies is to understand, 

why, how and under which circumstances users of industrial machines 

innovate, and how the machine developer deals with the users’ pieces of 

information (their problems and suggested solutions). I will conclude this 

chapter by outlining chapters IV to VII. 

 Of which I newly conceived two for my research, as the commonly used methods would have not served the 2

specific research questions to my satisfaction.
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Figure III.1. Research design and flow of information.
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Part 2 

CHAPTER IV 
Preliminary Study: Getting into the field of Innovation 
through Expert Interviews and Data from Manufacturer’s 
Service Engineers 

IV.1  Abstract/Introduction 
IV.2 Research Methods (Data Collection Instruments) 
IV.3 Data Collection   
IV.4 Data Analysis 
IV.5 Findings 
IV.6 Discussion  
  IV.6.1 Bias in Findings 
  IV.6.2  Discussion within the Greater Context 
IV.7 Conclusion 

“Since research results are strongly a function of definitions, sample 

selection criteria, and data col lection methodology” (von Hippel, 1977, p. 

60), I conducted a preliminary study to lay solid foundations for my 

research work to follow.  
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This preliminary study served for my first orientation in the field, and, 

hence, to acquire a better understanding of the users’ perspective, their 

contextual language and the thereby conveyed associated knowledge. To 

understand the shared context of the users’ everyday communication, I 

conceived a new interview form by merging ethnographical studies with 

expert interviews. Only through my own experience of working together 

with users (the experts on the machines) in their environment, could I 

establish a common ground with them and, therefore, create shared 

knowledge and language, which I considered to be essential for my 

research.  

Therefore, I spent one day working together with two users in a medium-

sized company solving problems they encountered during the typical 

workday and digging deeper into my own understanding by scrutinizing 

their actions.  

My findings comprised the first draft of hardware and software 

dimensions for the questionnaire of my first field study, and were 

complemented by data attained by the manufacturer’s service engineers.  
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As a researcher, being an exogenous factor to the user and their 

environment would entail the risk of bias of constrained data, which had 

to be avoided through thorough consideration. The latter will be 

discussed in the section Bias in Findings, whereas the section Discussion 

Within the Greater Context of my research will entail a conversation 

about the further exploitation of the preliminary’s studies yielding. 

Finally, this chapter will be concluded with the key takeaway of this 

research step and its meaning for the scientific community.  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CHAPTER V 
First Field Study: Questionnaire and Workflow Analysis 

V.1  Abstract/Introduction 

V.2 Research Methods (Data Collection Instruments) 

V.3 Data Collection   

V.4 Data Analysis 

V.5 Findings 

V.6 Discussion  
  V.6.1 Bias in Findings 
  V.6.2  Discussion Within the Greater context 

V.7 Conclusion 

My first field study consists of a triangulation of (1) quantitative and (2) 

qualitative research methods.  

(1) In my quantitative approach, questionnaires were applied for 

methodical and formal reasons. Methodical justification is provided as 

this method can represent quantities of attributes of the objects 

measured and gather representative scores and dependencies of the users 
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on the formed attributes, without exertion. Furthermore, what should be 

capitalized on, by applying questionnaires, is the ability to gather 

responses in a standardized way from a large and widely scattered 

sample size, which is the most important formal reason.  

I implemented a questionnaire on sociodemographic, job satisfaction, 

ergonomic and technical-aspects within the research boundaries, 

addressed to a target sample size of 103 users at 38 firms in Austria, 

Germany and Switzerland. A response rate of 45,6% (47 users) was 

achieved. Items with a relative frequency of negative scores above 7% in 

the responses were identified as problem fields and the ones related were 

clustered into overal l problem fields. In sum 32 problem fields were 

encountered and summarized in 11 overall problem fields. In a further 

analysis, the problem fields were correlated—Chi-Square, Fisher’s Exact-, 

and Mann Whitney U-tests for independency and dependency of 

variables, Kolmogorov-Smirnov tests to test for normal distribution—on 

the one hand with labor system elements, and on the other hand with 

socio-demographic data.  
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As a result, most noticeable is that experimentation is the significant 

factor for learning to operate the machines properly/to full extent. 

Furthermore, in terms of learning by using interesting to note is that age 

is a significant factor for how users were trained to operate the machines.  

The bias discussion should draw on the fact of constraints in research, 

and how this high response rate, despite limited monetary incentives, 

could be due to my appeal to the users’ intrinsic motivations— i.e to 

improve their everyday work.  

(2) As for the qualitative approach in this study, workflow analyses were 

applied to observe the field under non-laboratory state, thus, real-life 

conditions, mainly to spot deficiencies, which are subconscious to the 

users and, therefore not measured with the questionnaire.  

The workflow analysis was implemented in two ways. First, a section in 

the questionnaire would address the user’s individual workflows. Second, 

8 users of the machines were observed while manufacturing with the 

CNC lasers.  
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Transcription of the observed data, its content analysis and description 

resulted in that all studied users undertook the workflows in the same 

way (sequence and steps). Furthermore, 5 overal l problem fields during 

the workflow were observed, which reinforced the questionnaire results, 

showing that experimentation is in particular the most important factor 

to better know the machine functions.  

Additionally, I will consider how these questionnaires will be used in the 

further context of my research. The bias discussion for the workflow 

analysis will encompass the influence of recording techniques as 

disruptive factors in the data collection in the natural environment of the 

users and how this bias was avoided by the measurement settings.  

Finally, in the conclusion section, merging of the questionnaires and 

workflow analyses will be subject of discussion. Furthermore, a brief 

outlook shall be given on how this study will be used in my further 

research. 
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Chapter VI 
Second Field Study: Narrative Focus Group Discussions 

VI.1  Abstract/Introduction 

VI.2 Research Methods (Data Collection Instruments) 

VI.3 Data Collection   

VI.4 Data Analysis 

VI.5 Findings 

VI.6 Discussion  

  VI.6.1 Bias in Findings 

  VI.6.2  Discussion Within the Greater Context 

VI.7 Conclusion 

My second field study draws upon the qualitative methodology of 

narrative focus group discussions. The narrative focus group is a form of 

group discussion technique, which I newly developed by merging the 

narrative inquiry technique with group discussions. The term “focus” in 

the name may indicate that the discussion is kept within a certain topic-

range, which is only triggered by the moderator’s input at the start of 

the discussion. Therefore, by means of the participants’ narration and 
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their consequent argumentation/negotiation of knowledge  with the other 3

discussants, they would reveal increasingly more tacit information with 

advancement of the discourse, and, thus, point towards their latent 

constructs.  

This new technique was applied for multiple methodological reasons. It 

was used to gather a more comprehensive and deeper understanding of 

the users interaction with the machines, and to further narrow the 

problem definition. In this sense, the group discussions were applied as a 

corrective to the questionnaire, as the latter’s standardized questions and 

items capture the range of variety of attitudes only insufficiently. 

Therefore, my aim for the data collection with this tool was to recall the 

users’ collective memory of everyday work life in order to better 

understand their (shared or different) common ground of perspectives—

from their socialization-processes onwards to operating the machines, up 

to their (physical and social) work environment.  

Three group discussions were conducted, two of them with ordinary users 

and the other with work superiors. An investigator triangulated content 

 With argumentation/negotiation, in lieu of the process of reaching an agreement, the process of coming to a 3

mutual understanding on a matter is meant in this case.
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analysis of the discussion content with a Guetzkow’s U agreement for 

intercoder reliability, resulted in 2139 units for the female, and 3025 

units for the male non-lead users, and 2975 units for group of work 

superiors.  

Among all groups, 71 discussion topics (categories) could be found. A 

frequency analysis revealed a rank of the most dominant topics for the 

individual discussions:  

For the group of female non-lead users, Field of Application (24.18%), 

Functional criteria (10.94%), and Load in material (6.65%) were the 

predominant topics; 

For the group of male non-lead users, Field of Application (14.27%), 

Training Requirements (7.66%), and Learning by Doing / Trial and Error 

(5.51%) were the predominant topics; 

For the group of work superiors (lead users), Accessories (12.27%), Field 

of Application (11.83%), Learn to Use the System / Training (6.817%), 

the predominant topics;  
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Though the results between the groups might appear similar at a first 

glance, the content differs strongly within the categories. While, for 

example, most of the Field of Application units of the female discussion 

group expressed their problems with processing unique pieces and other 

applications, the group of work superiors mostly exchanged information 

about how to best extend their scope of applications with the most 

suitable innovation. However, a detailed explanation of the categories, 

their contents within the individual groups, a group comparison and a 

sequence analysis will be depicted in my thesis. Moreover, I will list the 

innovations that were expressed within the groups and will discuss their 

relevance. 

In the discussion section of this chapter, I will then address the bias of 

the methodology. In general, the flanks of group discussions’ research 

settings are wide open and particularly susceptible for biases and, 

therefore, these factors of influence, which are roughly speaking the 

group composition, spatiotemporal aspects, and the moderation, have to 

be considered in reference to the research question and intended aim of 

study.  
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Finally, the import of my findings in the scope of my research shall be 

contemplated by merging the discoveries with those of my prior studies. I 

will discuss the innovative activities and topics of the group of work 

superiors and draw the arc to lead user behavior. Moreover, a brief 

outlook will be given on how these results will be further processed in 

the context of my study to follow.  
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Chapter VII 

Third Field Study: Interviews with Lead Users (LU) and 
Manufacturer 

VII.1  Abstract/Introduction 

VII.2 Research Methods (Data Collection Instruments) 

VII.3 Data Collection   

VII.4 Data Analysis 

VII.5 Findings 

VII.6 Discussion  
  VII.6.1 Bias in Findings 
  VII.6.2  Discussion Within the Greater Context 

VII.7 Conclusion 

My third study exploration harvests the field of qualitative research for 

suitable measuring instruments, which we  concluded to be (1) lead user 4

studies and (2) interviews with the manufacturer’s R&D department.  

Methodical reasoning is given, as lead users and ordinary users may not 

only solve problems differently, but may further encounter different types 

of problems. Therefore, the lead users needed to be examined separately 

 In recognition of Prof. Stefan Thomke’s suggestion during one of our meetings.4
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with an open methodology. The telephone interviews with the 

manufacturer’s director of R&D, were a consequence of spatiotemporal 

factors and the urge to attain comprehensive and first-hand information 

about the producer’s line of decision processes.  

(1) The implementation of the lead user study involved pyramiding (cf. 

von Hippel et al., 1999), with the manufacturer’s user database and their 

service engineers’ recommendations for innovative user firms, as my 

starting point. My systematic search yielded in 5 lead user interviews, 

which I kept open in the first part of every conversation and then 

expanded into a structured poll on the problem fields the ordinary users 

experienced. A summarizing content analysis clustered the raw material 

into 18 inductive and deductive categories and concluded 199 units, of 

which 101 (50.8%) were initially problems, and 98 (49.2%) initially non-

problems. Of these initial problems, 71 (78.2%) could be solved to the 

lead users’ full satisfaction, remaining in 22 (21.8%) insufficient 

addressed issues.  

Overall, 116 units were counted for lead users approaches to challenges 

they encounter while working on the machines. In 26 (22.41%) cases, the 
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users innovated by modifying the machines, in 32 (27.6%) instances, by 

process changes, whereas in 2 (1.7%) times, material innovations lead to 

a sufficient problem solution. Furthermore, the content analysis exposed 

12 (10.3%) units, which were problems ordinary users encountered and 

the lead users could envisage but did not experience, as they had solved 

them from the outset. In 10 (8.62%) cases, the lead user made solution 

proposals, as they could not apply those themselves, because the closed 

machine architecture would not provide users with the opportunity to do 

so. In one instance, the user did not want to intrude on the existing 

system too severely. 30(25.9%) times, user adjustments were necessary to 

deal with the situation, as a solution would not be feasible or conceivable 

to the users. These cases included user adjustments through learning by 

doing and adjustments to bugs, acceptance of certain (not changeable) 

work conditions like the odor emission while processing specific materials 

or the acceptance of technical aspects the manufacturer could not avoid. 

However, only in a few instances, viz. 4 (3.44%), users were not able to 

find any of those aforementioned approaches to deal with the situation.  
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One might now wonder about the differences in the sums of solved and 

unsolved problems. The reason for this is twofold. First, though the users 

might have addressed an issue, it does not necessarily mean that the 

problem is fully solved. For example, in most of the cases, an adjustment 

to a problem meant that users couldn’t solve it in another way, and, 

therefore, had to adjust their own behavior to the issue. Second, it is also 

a consequence of how the units were utilized. The reference point for my 

interpretation was the users’ solution approach, meaning that if the 

interviewees were using multiple ways to address the same problem, all of 

them were further analyzed. Conversely, if one innovation served to solve 

various problems just this one was interpreted.  

(2) After understanding the lead users’ problems, the manufacturer 

interviews were conducted. Three telephone interviews, in total 4.5 

hours, were necessary to capture all the required information, to compare 

the elicited data with the lead user data set. Interestingly, the 

manufacturer was aware of almost all the users’ problems (97.5%), but 

contributed only with 3 “innovations” (5%) to the applied solution-space. 

This sharp contrast can be reasoned with means of my data, as a loss of 
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information in the user-manufacturer knowledge-transfer process, and 

hypothesis derived from literature.  

Beyond this bias discussion, I want to reflect on my findings within the 

field of innovation. In other words, I will compound the innovations, 

deduced from the group discussions with work superiors (from chapter 

VI) with those from this field study. Then, I will discuss this 

conglomerate on innovations with the body of literature on (empirical 

studies on) user innovation cf. Abernathy, 1976; Coleman, 1966; Enos, 

2002, 1962; University of Sussex. Science Policy Research Unit, 1972; von 

Hippel, 1977; von Hippel and Finkelstein, 1979, von Hippel et al., 1999;), 

to understand effects specific to the context of the manufacturing 

industry as well as draw conclusions for phenomena that might be 

experienced throughout different fields, and hence, contribute to the 

theory of innovation.  
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CHAPTER VIII 

Summary and Correlation of Field Data 

VIII.1 Overview of gathered and correlated Data 

VIII.2 Correlation Results (will not be shown in this report) 
 VIII.2.1  Crosstabs 
 VIII.2.2 Chi-Square Tests 
 VIII.2.3 Directional Measures 
 VIII.2.4 Symmetric Measures 

This chapter should summarize my gathered research data and show the 

results of its subsequent correlation. Though showing all of my data 

would exceed the constraints of the page and word limit of this report 

and, further, would be in contradiction to the circulation protection of 

my work, I still wish to show some evidence for the sake of transparency. 

Furthermore, developing the tool to measure relevant lead user attributes 

for the comparison with non-lead users, gathering the data, analyzing 

and interpreting it, reflects the bulk of my work at Harvard University 
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and thus, space will be devoted to showing some of the most important 

ones.  

In the following (Table VIII.1), I will provide an overview with 

important items, which were cross tabulated for the lead and non-lead 

user comparison. For circulation protection reasons, a description of 

these variables will be provided in my final thesis only. Then, in Chapter 

IX, these correlation results, of the items I consider most relevant for 

this report, will be represented with Crosstabs, Chi-Square Tests, 

Directional Measures, and Symmetric Measures.  

 Crosstabs will show the (standard (std.) and adjusted Residuals, 

the observed and expected count to enable insight into the direction of 

the dependencies. The Chi-Square Tests show the resulting P-values 

which were consequently tested against chosen alpha errors. The 

Directional and Symmetric Measures show the strength of the 

correlations. Values of 0 < r < 0.2 reflect a very low correlation,          

0.2 < r <= 0.5 a low correlation, 0.5 < r <= 0.7 an average correlation, 

0.7 < r <= 0.9 a high correlation, and 0.9 < r <= 1 a very high 

correlation. 
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Table VIII.1. Case Processing Summary of Correlated Items

Correlated Variables  Description of the Variables

Years of Work on Laser Systems * User Description will be provided in the 
final thesis

Weekly Hours of Work on Manufacturer’s Machines * User

Years of  Computers Usage Before Laser Systems * User

Need for Training * User

Right or Left Handedness * User 

Sex * User 

Age * User 

First Language * User 

Migration * User 

Highest Completed Educational Attainment * User 

Technical Training /Engineering Apprenticeship * User 

Material Positionability * User 
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Workpiece Reachability * User Description will be provided in the 
final thesis

Laser Movement Speed * User 

Table Movement Speed * User 

Table Positioning Accuracy * User 

Cutting- and Engraving-Quality * User 

Material Positioning Accuracy * User 

Machine Noise Level * User 

Dust Exposure and Odor Pollution * User 

Distances of the Keys from Each Other * User 

Key Size * User 

Number of Functions * User 

Function Intuitiveness * User 

Correlated Variables  Description of the Variables
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Menu Architecture * User Description will be provided in the 
final thesis

Free-Handed Operability * User 

Laser Beam Focusing Problems * User 

Load-in Material * User 

Unload Material * User 

Engraving Table Change * User 

Vacuum Table Change * User 

Cutting Table Change * User 

Honeycomb Table Change * User 

Cleaning of the Machine’s Working Area * User 

Exhaust System Maintenance * User 

Vector Ordering * User 

Correlated Variables  Description of the Variables
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Software Logic * User Description will be provided in the 
final thesis

Menu Architecture Logic* User 

Submenu Logic * User 

Submenu Plate Setup Logic  * User 

Legibility of the Symbols * User 

Self-Explanatory Symbols * User 

User Interface Customizability * User 

Years of Work on Laser Systems * User 

Weekly Hours of Work on Manufacturer’s Machines * User 

Years of  Computers Usage Before Laser Systems * User 

Correlated Variables  Description of the Variables
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Part 3 

Chapter IX 

Merging the Field Studies: LU and Non-LU Comparison  

IX.1  Abstract/Introduction 
IX.2 Research Methods (Data Collection Instruments) 
IX.3 Data Collection   
IX.4 Data Analysis 
IX.5 Findings 
IX.6 Discussion  
  IX.6.1 Bias in Findings 
  IX.6.2  Discussion Within the Greater Context 
IX.7 Conclusion 

In this chapter, I will merge the aforementioned described field studies 

and will draw my conclusion on a comparison of lead users and non-lead 

users. Not content to merely descriptively illustrate my data, statistical 

testing should inject excitement into this part of my research.  
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In order to triangulate my methodologies, I used my first field study’s 

questionnaires as a base for my data analysis and coded my qualitative 

data of the third field study’s lead user interviews into this quantitative 

data set of non-lead users. In other words, I assigned the content 

analyzed lead user responses to the respective questionnaire items of my 

first field study in two ways . First, I correlated the non-lead user 5

responses with the lead users’ initial assessments, i.e before they have 

solved or adjusted to the problems they encountered. Second, I correlated 

the non-lead user responses with the lead users’ final assessments, i.e 

after they have solved or adjusted to the problems they encountered.  

My hypothesis for these correlations was raised by my literature and 

empirical findings. As non-lead users’ innovative/modifying activity is 

significantly weaker than those of the lead users (von Hippel, 2005), I 

will assume that if any, there are only very little differences of the non-

lead users initial and final assessments. This can be supported by my 

following findings: (1) Form my third field study I know that most of the 

 One might argue, that with an anonymous questionnaire, sent out to the entire user population in the German-5

speaking area, I might have also had lead users in this dataset without being aware of it. However, I controlled 
the data, and filtered out the one encountered lead user. The data presented in Chapter VIII is not adjusted by 
this user. However, more on this shall be discussed hereafter, in the bias section. 
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users inventive activity is directed towards problem solving (of challenges 

encountered in their work day). (2) From my second field study I know 

that, in general, non-lead users deal with problems by their own 

adjustments to them. (3) From my first and my second field study I 

know that, after years of working with the machines, non-lead users 

mainly encounter the same problems as they did from the outset. 

Therefore, I hypothesize, that the non-lead users’ assessments do not 

(significantly) differ over the time, and consider them as a constant with 

non-LUinital (t = 0) assessment = non-LUfinal (t = date of survey) 

assessment = non-LU assessment—the latter term is, which I will only 

refer to in the following.    

My hypothesis for these correlations was raised by my literature and 

empirical findings. As non-lead users’ innovative/modifying activity is 

significantly weaker than those of the lead users (von Hippel, 2005), I 

will assume that if any, there are only very little differences of the non-

lead users initial and final assessments. This can be supported by my 

following findings: (1) Form my third field study I know that most of the 

users inventive activity is directed towards problem solving (of challenges 
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encountered in their work day). (2) From my second field study I know 

that, in general, non-lead users deal with problems by their own 

adjustments to them. (3) From my first and my second field study I 

know that, after years of working with the machines, non-lead users 

mainly encounter the same problems as they did from the outset. 

Therefore, I hypothesize, that the non-lead users’ assessments do not 

(significantly) differ over the time, and consider them as a constant with 

non-LUinital (t = 0) assessment = non-LUfinal (t = date of survey) 

assessment = non-LU assessment. In the following, I will only refer to 

the latter term.  

As for the questionnaire items, a (non-median split) dichotomizing of the 

variables—into “problem” / “no problem” encountered—was necessary, 

as my qualitative interviews (out of time constraints) only allowed closed 

questions for its structured portions. However, Fisher’s Exact and Mann-

Whitney U tests were applied to correlate non- and lead users’ problem 

fields and proof the resulting P-value against an alpha error of 5%. Since 

the dichotomizing of the variables may result in a loss of test power (1-

beta), the level of significance may be increased to enhance the test’s 
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power. Which means, that the exact P-values  of even low significance 6

(for alpha errors up to 10%) will be stated for the interested reader, as 

they might be an indication for a link between the correlated variables. 

Furthermore, Spearman’s rho, Rankings, and Residues were calculated to 

interpret the strength and direction of the correlations. In the following, 

I offer a quick outlook on what my data shows, first in a descriptive way 

and afterwards for the correlations.  

In general, descriptively depicted, lead users reported fewer problems 

than non-lead users. However, in cases where they did not, the biggest 

deviating results between lead and ordinary users could be found in the 

material positioning accuracy, the material positionability, and the self 

descriptiveness of the software symbols—for which each of these 

problems, lead users reported 56% more dissatisfaction. Further, lead 

users reported more problems in vector ordering (45%), in changing the 

honeycomb table (32%), in their intuition of the control panel functions 

(25%), and in the distances of the keys to each other (13%), among other 

minor differences. 

 As a side note, in the final version of my thesis, the correlation coefficient and its significance level only will be 6

addressed, as instead to the exact P-values like in this outline. 



�60

�

�

Figure IX.1. Problem Areas of Ordinary Users and Lead Users in %
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�

Figure IX.1. Additional Lead User Problem Areas



�62

To get to the bottom of the differences between my lead user and non-

lead user sample, I correlated (1) the lead users’ initial assessments with 

the non-lead users ones and (2) the lead users’ final assessments (after 

their modifications and adjustments) with the non-lead users ones. In the 

following, I will only discuss the most significant differences of the 

compared variables—for the former first, followed by the latter.  

(1) In terms of the lead users initial (LUinitial) and non-lead users (non-

LU) experience interesting to mention is, though one may assume that 

LU might have longer work experience on the machines, my examined 

lead users actually do not have a longer period of use of the 

manufacturer’s machines. My correlation might, at first sight seem to 

imply that lead users have a significantly longer period of the 

manufacturer’s CNC laser machine use (p = 0,034*, mean_ou = 4.44 

years, mean_lu = 7.30 years). However, the questionnaires were 

conducted 3 years before the lead user interviews, which means that, 

when the results are adjusted, the time usage of the machines of lead and 

ordinary users were, with around 4 years on average, about the same. In 
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contrast, lead users tended to use computers longer than non-lead users 

before they started working with CNC laser machines (p = 0.079L, see 

Figure IX.1 for more details).  

Number 
of Users

�

Figure IX.1. Years of  Computers Usage Before Laser Systems
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 My data for the user comparison on how they learned to operate 

the machines, revealed two significant results.  

 First, more lead users than ordinary users were trained to operate 

the machine by the manufacturer’s initial training (p = 0.031*, rho = 

0.314), which confirms prior results that my investigated lead users have 

some sort of autonomy in their jobs, like being work superiors and able 

to purchase machines etc.  

 Second, and more importantly, more lead users learned to operate 

the machines through learning by doing—as they would, in their own 

words refer to experimentation—with the machines (p = 0.003**, rho = 

0.503). More precisely 80.00% of the lead users stated in the 

questionnaire that they learned to operate the machine themselves, 

whereas only 12.77% of the non-lead users would do so. However, this 

result is even more significant (p = 0.000***, rho = 0.630), considering 

the fact, that the one lead user may forgot to state in the questionnaire 

to have learned the machine operation by doing, though he explicitly 

stated it multiple times in the interview. However, for the sake of 

transparency, the questionnaire data was not adjusted. 
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Furthermore, important to mention is that more lead than non-lead users 

encounter problems in the material positionability (p = 0.001***, rho = 

0.625, see Table IX.1-IX.4 for more statistical details). One reason for 

this can be found in the lead users’ higher demand on accuracy and, 

therefore, higher effort in positioning the material—especially for serial 

production and problems with the optional rotary attachments.  
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Table IX.1. Crosstab Material Positionability * User

Non-Lead 
User

Lead User 
Initial 

Interview Total

No Problem Count 34 1 35

Expected Count 30.8 4.2 35

% within Material 
Positionability 0.971 0.029 1

% within User 0.919 0.2 0.833

% of Total 0.81 0.024 0.833

Residual 3.2 -3.2

Std. Residual 0.6 -1.6

Adjusted Residual 4 -4

Problem Count 3 4 7

Expected Count 6.2 0.8 7

% within Material 
Positionability 0.429 0.571 1

% within User 0.081 0.8 0.167

% of Total 0.071 0.095 0.167

Residual -3.2 3.2

Std. Residual -1.3 3.5

Adjusted Residual -4 4

Total Count 37 5 42

Expected Count 37 5 42

% within Material 
Positionability 0.881 0.119 1

% within User 1 1 1

% of Total 0.881 0.119 1



 67

Table IX.2. Chi-Square Tests Material Positionability * User

Value df

Asymp. 
Sig. (2-
sided)

Exact 
Sig. (2-
sided)

Exact 
Sig. (1-
sided)

Point 
Probability

Pearson Chi-Square 16.391a 1 0 0.001 0.001

Continuity Correctionb 11.624 1 0.001

Likelihood Ratio 12.019 1 0.001 0.001 0.001

Fisher's Exact Test 0.001 0.001

Linear-by-Linear 
Association 16.001c 1 0 0.001 0.001 0.001

N of Valid Cases 42
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Table IX.3. Directional Measures Material Positionability * User

Valu
e

Asymp. 
Std. 

Errora

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Lambda Symmetric 0.333 0.314 0.314 0.903 0.366

Material 
Positionability 
Dependent

0.429 0.241 0.241 1.371 0.17

User Dependent 0.2 0.473 0.473 0.379 0.705

Goodman 
and Kruskal 
tau

Material 
Positionability 
Dependent

0.39 0.197 0.197 .000c 0.001

User Dependent 0.39 0.21 0.21 .000c 0.001

Uncertainty 
Coefficient Symmetric 0.351 0.184 0.184 1.673 .001d 0.001

Material 
Positionability 
Dependent

0.318 0.177 0.177 1.673 .001d 0.001

User Dependent 0.392 0.197 0.197 1.673 .001d 0.001
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These results are reflected in the material positioning accuracy             

(p = 0.025*, rho = 0.376), as more problems were, in comparison, 

Table IX.4. Symmetric Measures Material Positionability * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig. Exact Sig.

Nominal by 
Nominal Phi 0.625 0 0.001

Cramer's V 0.625 0 0.001

Contingency 
Coefficient 0.53 0 0.001

Interval by Interval Pearson's R 0.625 0.169 5.06 .000c 0.001

Ordinal by Ordinal Spearman 
Correlation 0.625 0.169 5.06 .000c 0.001

N of Valid Cases 42

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.
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reported among the group of lead users. Protruding for this variable were 

especially zero positioning problems of the machine, which affect the 

quality of the work pieces’ outcome.For more details on the differences 

between non- and lead users for this variable see Figure IX.2-3 and Table 

IX.5.-IX.8. 

Number 
of Users

�

Figure IX.2. Material Positioning Accuracy
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Number 
of Users

�

Figure IX.3. Cutting- and Engraving-Quality
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Table IX.5. Crosstab Material Positioning Accuracy * User

Non-Lead 
User

Lead User 
Initial 

Interview Total

No Problem Count 31 1 32

Expected Count 28.5 3.5 32

% within Material 
Positioning Accuracy 0.969 0.031 1

% within User 0.756 0.2 0.696

% of Total 0.674 0.022 0.696

Residual 2.5 -2.5

Std. Residual 0.5 -1.3

Adjusted Residual 2.6 -2.6

Problem Count 10 4 14

Expected Count 12.5 1.5 14

% within Material 
Positioning Accuracy 0.714 0.286 1

% within User 0.244 0.8 0.304

% of Total 0.217 0.087 0.304

Residual -2.5 2.5

Std. Residual -0.7 2

Adjusted Residual -2.6 2.6

Total Count 41 5 46

Expected Count 41 5 46

% within Material 
Positioning Accuracy 0.891 0.109 1

% within User 1 1 1

% of Total 0.891 0.109 1
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Table IX.6. Chi-Square Tests Material Positioning Accuracy * User

Value df

Asymp. 
Sig. (2-
sided)

Exact 
Sig. (2-
sided)

Exact 
Sig. (1-
sided)

Point 
Probability

Pearson Chi-
Square

6.509a 1 0.011 0.025 0.025

Continuity 
Correctionb 4.148 1 0.042

Likelihood Ratio 5.976 1 0.014 0.025 0.025

Fisher's Exact 
Test 0.025 0.025

Linear-by-Linear 
Association 6.368c 1 0.012 0.025 0.025 0.023

N of Valid Cases 46

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.52.

b. Computed only for a 2x2 table

c. The standardized statistic is 2.523.
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Table IX.7. Directional Measures Material Positioning Accuracy * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig. Exact Sig.

Lambda Symmetric 0.158 0.098 1.369 0.171

Material 
Positioning 
Accuracy 
Dependent

0.214 0.142 1.369 0.171

User Dependent 0 0 .c .c

Goodman and 
Kruskal tau

Material 
Positioning 
Accuracy 
Dependent

0.142 0.099 .012d 0.025

User Dependent 0.142 0.109 .012d 0.025

Uncertainty 
Coefficient Symmetric 0.136 0.104 1.241 .014e 0.025

Material 
Positioning 
Accuracy 
Dependent

0.106 0.085 1.241 .014e 0.025

User Dependent 0.189 0.137 1.241 .014e 0.025

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Cannot be computed because the asymptotic standard error equals zero.

d. Based on chi-square approximation

e. Likelihood ratio chi-square probability.
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More negative reports in the reachability of work pieces of the lead users 

in comparison to the non-lead user ones (p = 0.096L, rho = 0.286), are a 

consequence of cutting small pieces, which can drop underneath the 

Table IX.8. Symmetric Measures Material Positioning Accuracy * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig. Exact Sig.

Nominal by 
Nominal Phi 0.376 0.011 0.025

Cramer's V 0.376 0.011 0.025

Contingency 
Coefficient 0.352 0.011 0.025

Interval by Interval Pearson's R 0.376 0.145 2.693 .010c 0.025

Ordinal by Ordinal Spearman 
Correlation 0.376 0.145 2.693 .010c 0.025

N of Valid Cases 46

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.
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working table and, hence, cannot be reached properly by the users. As 

this might be a machine specific issue, I excluded all machine types other 

than the one used by all of the lead users  from the dataset. 7

Recalculation of the independency of the variables resulted in a slightly 

higher correlation (p = 0.057L, rho = 0.510), which corroborates the 

coherence even more. In the following, Figure IX.4 will make the 

differences between non-and lead users more vivid, whereas Table IX.9-

IX.12 will reveal more statistical details. 

 One lead user worked on an older version of the same machine type and was therefore excluded from this data 7

set. 
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Figure IX.4. Reachability of Workpieces
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Table IX.9. Crosstab Workpiece Reachability * User

Non-Lead 
User

Lead User 
Initial 

Interview Total

No Problem Count 30 2 32

Expected Count 28.3 3.7 32

% within Workpiece 
Reachability 0.938 0.063 1

% within User 0.789 0.4 0.744

% of Total 0.698 0.047 0.744

Residual 1.7 -1.7

Std. Residual 0.3 -0.9

Adjusted Residual 1.9 -1.9

Problem Count 8 3 11

Expected Count 9.7 1.3 11

% within Workpiece 
Reachability 0.727 0.273 1

% within User 0.211 0.6 0.256

% of Total 0.186 0.07 0.256

Residual -1.7 1.7

Std. Residual -0.6 1.5

Adjusted Residual -1.9 1.9

Total Count 38 5 43

Expected Count 38 5 43

% within Workpiece 
Reachability 0.884 0.116 1

% within User 1 1 1

% of Total 0.884 0.116 1
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Table IX.10. Chi-Square Tests Workpiece Reachability * User

Value df

Asymp. 
Sig. (2-
sided)

Exact 
Sig. (2-
sided)

Exact 
Sig. (1-
sided)

Point 
Probability

Pearson Chi-Square 3.521a 1 0.061 0.096 0.096

Continuity Correctionb 1.772 1 0.183

Likelihood Ratio 3.059 1 0.08 0.306 0.096

Fisher's Exact Test 0.096 0.096

Linear-by-Linear 
Association 3.439c 1 0.064 0.096 0.096 0.085

N of Valid Cases 43
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Table IX.11. Directional Measures Workpiece Reachability * User

Approx. Tb Approx. Sig. Exact Sig.

Lambda Symmetric 0.448 0.654

Workpiece Reachability 
Dependent 0.448 0.654

User Dependent .c .c

Goodman and 
Kruskal tau Workpiece Reachability Dependent .064d 0.096

User Dependent .064d 0.096

Uncertainty 
Coefficient Symmetric 0.841 .080e 0.306

Workpiece Reachability 
Dependent 0.841 .080e 0.306

User Dependent 0.841 .080e 0.306

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Cannot be computed because the asymptotic standard error equals zero.

d. Based on chi-square approximation

e. Likelihood ratio chi-square probability.
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Table IX.12. Symmetric Measures Workpiece Reachability * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Nominal by 
Nominal Phi 0.286 0.061 0.096

Cramer's V 0.286 0.061 0.096

Contingency 
Coefficient 0.275 0.061 0.096

Interval by Interval Pearson's R 0.286 0.173 1.912 .063c 0.096

Ordinal by Ordinal Spearman 
Correlation 0.286 0.173 1.912 .063c 0.096

N of Valid Cases 43

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.
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Interestingly, none of the lead users applied vacuum tables for machining, 

as they found their own, better suitable solutions to process the 

products, which are normally processed with this kind of tables.  

That lead users encounter more problems in cleaning the machine 

working space than non-lead users (p = 0.012*, rho = 0.435) and that 

their assessment differs in the same way for the exhaust system 

maintenance (p = 0.044*, rho = 0.398), can be attributed to the lead 

users’ higher precision/accuracy aspirations. Please see Figure IX.5 and 

Table IX.13-15 for more statistical details on non- and lead user 

evaluation differences for cleaning the machine’s working space, and 

Table IX.16-IX.19 for the maintenance of  the machine’s exhaust system. 

To keep the machine clean is a prerequisite for accurate processing, as 

even the smallest dust particle can influence the working process and, 

consequently, the outcome. An example would be that dust-particles on 

the lens of the photoelectric barrier could lead to a deviation in the laser 

beam focusing, and, consequently, result in a greater laser insertion into 

the material, leading to non-sharp results. Therefore, in all of the non-
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structured parts of my lead user interviews, one of the prominent topics 

expressed was the great demand for meticulously accurate and detailed 

cleaning of the machines.   

Number 
of Users

�

Figure IX.5. Cleaning of the Machine’s Working Area
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Table IX.13. Crosstab Cleaning of the Machine’s Working Area * User Crosstab

Non-Lead 
User

Lead User 
Initial 

Interview Total

No Count 27 0 27

Expected Count 24.4 2.6 27

% within Cleaning of 
the Machine’s Working 
Area

1 0 1

% within User 0.711 0 0.643

% of Total 0.643 0 0.643

Residual 2.6 -2.6

Std. Residual 0.5 -1.6

Adjusted Residual 2.8 -2.8

Yes Count 11 4 15

Expected Count 13.6 1.4 15

% within Cleaning of 
the Machine’s Working 
Area

0.733 0.267 1

% within User 0.289 1 0.357

% of Total 0.262 0.095 0.357

Residual -2.6 2.6

Std. Residual -0.7 2.2

Adjusted Residual -2.8 2.8

Total Count 38 4 42

Expected Count 38 4 42

% within Cleaning of 
the Machine’s Working 
Area

0.905 0.095 1

% within User 1 1 1

% of Total 0.905 0.095 1
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Table IX.14. Directional Measures Cleaning of the Machine’s Working Area * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Lambda Symmetric 0.211 0.071 2.103 0.035

Cleaning of the 
Machine’s 
Working Area 
Dependent

0.267 0.114 2.103 0.035

User Dependent 0 0 .c .c

Goodman and 
Kruskal tau

Cleaning of the 
Machine’s 
Working Area 
Dependent

0.189 0.055 .005d 0.012

User Dependent 0.189 0.09 .005d 0.012

Uncertainty 
Coefficient Symmetric 0.222 0.085 2.123 .003e 0.012

Cleaning of the 
Machine’s 
Working Area 
Dependent

0.165 0.078 2.123 .003e 0.012

User Dependent 0.341 0.075 2.123 .003e 0.012

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Cannot be computed because the asymptotic standard error equals zero.

d. Based on chi-square approximation

e. Likelihood ratio chi-square probability.
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Table IX.15. Symmetric Measures Cleaning of the Machine’s Working Area * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Nominal by 
Nominal Phi 0.435 0.005 0.012

Cramer's V 0.435 0.005 0.012

Contingency 
Coefficient 0.399 0.005 0.012

Interval by Interval Pearson's R 0.435 0.105 3.058 .004c

Ordinal by Ordinal Spearman 
Correlation 0.435 0.105 3.058 .004c

N of Valid Cases 42
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Table IX.16. Crosstab Exhaust System Maintenance * User

Non-Lead 
User

Lead User 
Initial 

Interview Total

No Count 22 0 22

Expected Count 20.1 1.9 22

% within Exhaust 
System Maintenance 1 0 1

% within User 0.688 0 0.629

% of Total 0.629 0 0.629

Residual 1.9 -1.9

Std. Residual 0.4 -1.4

Adjusted Residual 2.4 -2.4

Yes Count 10 3 13

Expected Count 11.9 1.1 13

% within Exhaust 
System Maintenance 0.769 0.231 1

% within User 0.313 1 0.371

% of Total 0.286 0.086 0.371

Residual -1.9 1.9

Std. Residual -0.5 1.8

Adjusted Residual -2.4 2.4

Total Count 32 3 35

Expected Count 32 3 35

% within Exhaust 
System Maintenance 0.914 0.086 1

% within User 1 1 1

% of Total 0.914 0.086 1
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Table IX.17. Chi-Square Tests Exhaust System Maintenance * User

Value df

Asymp. 
Sig. (2-
sided)

Exact 
Sig. (2-
sided)

Exact 
Sig. (1-
sided)

Point 
Probability

Pearson Chi-
Square 5.553a 1 0.018 0.044 0.044

Continuity 
Correctionb 2.999 1 0.083

Likelihood Ratio 6.43 1 0.011 0.044 0.044

Fisher's Exact 
Test 0.044 0.044

Linear-by-Linear 
Association 5.394c 1 0.02 0.044 0.044 0.044

N of Valid Cases 35

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.11.

b. Computed only for a 2x2 table

c. The standardized statistic is 2.323.
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Table IX.18. Directional Measures Exhaust System Maintenance * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Lambda Symmetric 0.188 0.077 1.811 0.07

Exhaust System 
Maintenance 
Dependent

0.231 0.117 1.811 0.07

User Dependent 0 0 .c .c

Goodman and 
Kruskal tau

Exhaust System 
Maintenance 
Dependent

0.159 0.051 .020d 0.044

User Dependent 0.159 0.088 .020d 0.044

Uncertainty 
Coefficient Symmetric 0.193 0.087 1.82 .011e 0.044

Exhaust System 
Maintenance 
Dependent

0.139 0.077 1.82 .011e 0.044

User Dependent 0.314 0.078 1.82 .011e 0.044

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Cannot be computed because the asymptotic standard error equals zero.

d. Based on chi-square approximation

e. Likelihood ratio chi-square probability.
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Though criticized by the ordinary users, lead users judge the self-

descriptiveness of the software symbols even more critically (p = 0.035*, 

rho = 0.364, and Table IX.20-IX23 for more statistical details). The 

cause for this critical assessment (despite the lead users’ generally better 

Table IX.19. Symmetric Measures Exhaust System Maintenance * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Nominal by 
Nominal Phi 0.398 0.018 0.044

Cramer's V 0.398 0.018 0.044

Contingency 
Coefficient 0.37 0.018 0.044

Interval by 
Interval Pearson's R 0.398 0.112 2.495 .018c 0.044

Ordinal by 
Ordinal

Spearman 
Correlation 0.398 0.112 2.495 .018c 0.044

N of Valid Cases 35
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evaluation) might be found in the inability to solve this problem and 

hence, the only feasible approach to adjust to it. 

Table IX.20. Crosstab Self-Explanatory Symbols * User

Non-Lead 
User

Lead User 
Initial 

Interview Total

No Problem Count 27 1 28

Expected Count 24.7 3.3 28

% within Self-
Explanatory Symbols 0.964 0.036 1

% within User 0.73 0.2 0.667

% of Total 0.643 0.024 0.667

Residual 2.3 -2.3

Std. Residual 0.5 -1.3

Adjusted Residual 2.4 -2.4

Problem Count 10 4 14

Expected Count 12.3 1.7 14

% within Self-
Explanatory Symbols 0.714 0.286 1

% within User 0.27 0.8 0.333

% of Total 0.238 0.095 0.333

Residual -2.3 2.3

Std. Residual -0.7 1.8

Adjusted Residual -2.4 2.4

Total Count 37 5 42

Expected Count 37 5 42

% within Self-
Explanatory Symbols 0.881 0.119 1

% within User 1 1 1

% of Total 0.881 0.119 1
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Table IX.21. Chi-Square Tests Self-Explanatory Symbols * User

Value df

Asymp. 
Sig. (2-
sided)

Exact 
Sig. (2-
sided)

Exact 
Sig. (1-
sided)

Point 
Probability

Pearson Chi-Square 5.562a 1 0.018 0.035 0.035

Continuity 
Correctionb 3.434 1 0.064

Likelihood Ratio 5.282 1 0.022 0.035 0.035

Fisher's Exact Test 0.035 0.035

Linear-by-Linear 
Association

5.430c 1 0.02 0.035 0.035 0.033

N of Valid Cases 42
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Table IX.22. Directional Measures Self-Explanatory Symbols * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Lambda Symmetric 0.158 0.098 1.371 0.17

Self-Explanatory 
Symbols 
Dependent

0.214 0.142 1.371 0.17

User Dependent 0 0 .c .c

Goodman and 
Kruskal tau

Self-Explanatory 
Symbols 
Dependent

0.132 0.098 .020d 0.035

User Dependent 0.132 0.107 .020d 0.035

Uncertainty 
Coefficient Symmetric 0.126 0.102 1.18 .022e 0.035

Self-Explanatory 
Symbols 
Dependent

0.099 0.083 1.18 .022e 0.035

User Dependent 0.172 0.133 1.18 .022e 0.035

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Cannot be computed because the asymptotic standard error equals zero.

d. Based on chi-square approximation

e. Likelihood ratio chi-square probability.
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Table IX.23. Symmetric Measures Self-Explanatory Symbols * User

Value

Asymp. 
Std. 

Errora
Approx. 

Tb
Approx. 

Sig.
Exact 
Sig.

Nominal by Nominal Phi 0.364 0.018 0.035

Cramer's V 0.364 0.018 0.035

Contingency 
Coefficient 0.342 0.018 0.035

Interval by Interval Pearson's R 0.364 0.147 2.471 .018c 0.035

Ordinal by Ordinal Spearman 
Correlation 0.364 0.147 2.471 .018c 0.035

N of Valid Cases 42

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.
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(2) In terms of the lead users final (LUfinal) and non-lead users (non-LU) 

correlations and considering the LUfinal correlation results above, it is 

important to mention the following aspects: 

After the lead users’ innovations with stencils, other devices to position 

the material in the machine, and similar solutions, no significant 

differences in the evaluation of the material positionability (p = 0.702, 

rho = -0.092) and the material positioning accuracy (p = 0.272, rho = 

-0.177) can be found between the non-lead users and the lead users.  

Similar results can be found for the reachability of work pieces, where no 

significant differences in the assessment can be stated between lead and 

non-lead users (p = 0.673, rho = 0.001), though their ability to work 

more precisely on the machines lead them to cut even the smallest pieces.  

That lead users encounter still more problems in cleaning the machine 

working space than non-lead users (p = 0.095L, rho = 0.279) can be 

attributed to the fact that no fully satisfying innovations could be found 

due to machine design constraints. In order to do so, it would have 

required the lead users to redesign the machine’s inner mantle.  
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As for the self-descriptiveness of the software symbols, after 

experimenting with the symbols and understanding the functions—

though the result is not significant—the group of lead users evaluated 

the symbols slightly better than the non-lead users (p = 0.237, rho = 

0.196). 

Interestingly, though not significant initially, the lead users’ final 

evaluation of the dust exposure and odor pol lution was significantly 

better than that of the non-lead users (p = 0.010**, rho = -0.381). These 

highly significant differences can be attributed to the lead users technical 

understanding and acceptance of the odor emission, which they consider 

as natural when working with certain materials (e.g. foam).  

The bias discussion of this chapter will revolve about the power of my 

analysis. One might criticize three influential factors, which I considered 

carefully—(1) distinguishing between non-and lead users, (2) mixing 

qualitative and quantitative data and, (3) dichotomizing the variables for 

better comparability. Where my Discussion Within the Greater Context 
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is leading to is already implied by the brief depiction of my findings. 

However, in this section I will briefly summarize and generalize my 

specific findings  
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CHAPTER X 

Thesis Conclusion: Theoretical Contributions from Field to 
Academia 

X.1 When do Users actually Innovate? 

X.2 Users’ Constraints on Innovation: Socialization & 
Environmental Influence 

 X.2.1  Background and Socialization 
 X.2.2 Experience (prior and actual) 
 X.2.3 Social Environments: Lead Users freedom in work 
 X2.4 Other Limiting Factors on Inventive Activities 
 X.2.5 Lead users do not necessarily freely reveal their  
  Information 

X.3 The Manufacturer’s Dilemma 
 X.3.1 Manufacturer’s Problem Awareness and (In-)ability  
   to Solve  
 X.3.2 Telephone Game: Lost of Information in Shift of   
   Knowledge 
 X.3.3 Remedy: User Innovation Improves Manufacturers   
   Success  

This chapter should summarize my research explorations and show its 

contribution to the landscape of innovation theory. To do so, I will 

generalize the findings of my field studies (Part 2) and understand them 

by consulting chapters I and II (Part 1) of my doctoral thesis. I will 
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discuss the contributions from a user’s and manufacturer’s perspective 

and will focus on the causes I found for why, when and how users 

innovate and how manufacturers deal with it.  

From a user’s perspective, my research findings suggest, that the users 

own capabilities are key to solve their occurring problems. However, 

these abilities stem from different factors, like (1) their past experiences 

which include, but are not limited to, the socialization process and 

education, working background etc. as well as (2) their own abilities to 

draw on and connect their inputs and (3) how their environment/working 

condition supports them in the problem-solving process.  

(1) My data depicts that the time exposure to a product is not affected 

by whether or not someone is a lead user (see Figure X.1. for differences 

between non- and lead users in years of usage of laser systems and Figure 

X.2. for the manufacturer’s machines). Nevertheless, experience is an 

influencing factor (see Figure X.3. for differences between non- and lead 

users’ highest educational attainment, and Figure X.4 for a comparison 

of the non- and lead users’ technical training /engineering 
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apprenticeship). The users socialization process influences their 

interaction with the machines. More freedom in the user’s (past) personal 

development may lead to an open approach to the systems, and hence to 

more experimentation with the device. This experimentation is crucial to 

learning how to operate the machine, their functions, and to increase the 

productivity, as for example no manual or training would teach the most 

suitable, individual work flow. This personal freedom at work is also 

reflected in my data, since all of my lead users hold a superior position 

in the workplace.  
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Figure X.1. Years of Usage of Laser Systems



�102

Number 
of Users 

�

Figure X.2. Years of Usage of the Manufacturer’s Laser Systems
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Figure X.3. Highest Completed Educational Attainment
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(2) My findings further confirm what has been discussed in other places 

(von Hippel, 1977; von Hippel, 2005) that lead users draw analogies from 

other fields to solve their own problems—my investigated lead user 

sample not only searched online for inspiration, but they also sought 

remedies from the manufacturer, other user firms which they assumed to 

Number 
of Users 

  

Figure X.4. Technical Training / Engineering Apprenticeship Background
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have already dealt with the same issue as well as experts, for what they 

think the source of problem is. However, what was stated in passing 

(Hippel, 2005, p. 94) is confirmed by my data, viz. that the user’s 

personal background leads to different innovations due to different 

solution spaces.  

(3) Exogenous factors can further influence the users’ innovative activity, 

as it is a question of how the consequently necessary experimentation, as 

well as implementation of their ideas, not only with artifacts (like tools, 

materials, does the equipment allow to innovate), but also with the social 

working conditions (e.g. if innovative solutions get incentivized rather 

than being strictly time oriented to carry out the customer’s orders / 

short-term vs. long term oriented, may material/equipment be ordered in 

order to try alternate approaches) is supported. Therefore, the decision-

making ability, which is necessary for the users to innovate, might be the 

main determining factor for why all of the lead users had their own scope 

of responsibility where no higher hierarchy within the organization 

intervened in terms of resource allocation.  
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Once more attributed to the factors of freedom at work and 

experimentation, are my findings that lead users may also continuously 

innovate to extend their scope of applications beyond the basic (specific) 

application(s) for which they initially acquired the machines. Thus, I will 

disclose this (extension of applications) and other factors, which affect 

the learning curve and address what has not been discussed in literature 

so far—an initial slope of the learning curve before its actual drop. 

Though my research data is coherent with conventional wisdom and with 

most of the prescriptive literature, von Hippel’s (2005) hypothesis that 

users’ freely reveal their information is at odds with my findings. The 

lead users at the top end of my sample, only partially revealed their 

information, since they were so specialized and/or advanced in their 

applications, that they would lose their competitive advantage by sharing 

their solution approach. 

From a manufacture’s perspective, several challenges, considering my 

pieces of information, have to be faced.  
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My sample lead users were in communicational exchange with the 

manufacturer’s field force and contacted them in case of occurring 

problems with the machines or for servicing or maintenance reasons. I 

am even aware of one lead user who would travel to the manufacturer, 

when problems occurred which he would not be able to solve on his own 

after several iteration processes in his own experimentation efforts. The 

products he was struggling with, he would bring to the manufacturer’s 

headquarters and tested them with the company’s engineers until they 

would come up with a sufficient solution together. Due to this exchange, 

the manufacturer also benefited, as they would find out about new 

applications and would find alternate ways to use and process with the 

machines. In turn, the manufacturer would diffuse the gained knowledge 

to other users via their online platform, communication of field staff or 

at trade fairs. Therefore, a symbiosis between manufacturer and user 

firms/individual users is mandatory for natural growth of organizations—

as lead users come up with commercially successful innovations, extend 

the machine’s area of application and show alternate ways of processing 

and operating. 
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Therefore, I hypothesize, that the pace of technological change can be 

postponed by subsequently involving lead users knowledge into the 

organizations development process. As lead users strive to innovate or 

change their way of operation and adjust to inefficient processes, which 

they cannot solve on their own in order to make their efforts more 

economically valuable (faster processes, outcomes of higher quality, 

better use of machines, etc) the manufacturer will consequently benefit 

from their knowledge. Hence, as manufacturers generally strive for better 

products along a sustaining development curve (cf. Christensen and 

Bower, 1996; Christensen and Rosenbloom, 1995), they would enforce a 

natural growth of the products and extend the cycle of continuous 

designs (cf. Anderson and Tushman, 1990). Therefore, these lead user 

inputs would show competence enhancing innovations, and bringing the 

operating cost of their products down, without a necessary overall 

discontinuous design or competence destroying innovation.  

In this way, actual designs would be used to a better—and more efficient

—extent, being not only of micro- but also of macro economic influence. 

With competence enhancing innovations (cf. Abernathy, 1976; 
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Henderson, 1995; Henderson and Clark, 1990; Kaplan and Tripsas, 2008), 

the manufacturers’ effort to come up with new model versions are 

significantly lower than designing an entirely new product, which would 

entail R&D and plant set-up costs (for new tools etc.). The 

manufacturers would continue to further exploit their machines, and 

production site, thus continue to progress on the learning curve within 

the production facilities, whilst operating at peak efficiency and 

economies of scale, as more of the same parts could be acquired at 

cheaper costs. The positive macroeconomics effect, from a social welfare 

perspective, would be a consequence of avoiding the scattered locations 

in the search for alternate or discontinuous designs as well as an 

avoidance of a waste of resources in unnecessary competence-destroying 

technology, and subsequent market uncertainty, at an earlier point in 

time as indispensable or best applicable. Therefore, the competitive point 

of market entry for alternate products would be shifted to lower costs for 

processing and would subsequently avoid coming up with competence 

destroying designs where existing products could achieve same 

performance levels. Hence, the times of uncertain designs would also be 

postponed to points where actual designs, and their subsequent processes 
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in operations, cannot be further exploited and the cost curve reached its 

absolute minimum.  

Consequently, embedding lead users knowledge into research and 

development is not optional—it is essential for efficient and effective 

using of (limited) micro economical and macro economical resources. 
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