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Application of Spatial Exploratory Global Uncertainty-Sensitivity Analysis 

for Flood Damage Assessment Scenarios 

 

Abstract 

 

Eco-hydrological modeling of flood risk and damage assessment often employs spatially 

explicit models, which are prone to uncertainty in their input and output data. A modeling 

approach, which quantifies both uncertainty and sensitivity, is a mandatory step to increase 

the quality of model and dependability in spatially explicit models. This research on flood 

damage assessment model aims to provide an effective tool for assessment of the quality in 

output and therefore leading an optimization for the resource allocation problems for flood 

damage assessment. 

The spatially-explicit integrated Uncertainty-Sensitivity Analysis (iUSA) framework 

(Ligmann-Zielinska & Jankowski, 2014) will be used in the proposed research to investigate 

the relationship between model input and output. The uncertainty analysis will focus on the 

input data by exploring the effect of spatial relationships in input factors on model output. For 

the sensitivity analysis, a variance-based decomposition will be used to understand the 

contribution of input factor variances on the output variance as the first and total order 

indices. The extended spatially-explicit iUSA framework will be tested in flood damage 

assessment model used in Carinthia, Austria. 

  



5 
 

1. Introduction 

According to the 2015 Global Assessment Report on Disaster Risk Reduction Report of the 

United Nations International Strategy for Disaster Reduction (UNISDR), floods are the most 

frequently and costly occurring natural disasters and expected to increase due to the climate 

change (UNISDR, 2015). This is not an exception in many European cities where old 

infrastructures, growing urbanization and climate conditions  are mostly common ( Ugarelli, 

et al., 2005, Freni, La Loggia, & Notaro, 2010). Therefore, failure of preparedness and 

protection from such a catastrophic event may result in severe consequences considering the 

high concentration of population and valued assets in flood prone zones (Barredo, 2009).   

Flood damage can be defined as the sum of losses or harm caused by the flooding incident 

and flood damage assessment is the process of evaluation of extent and content of damage and 

estimates the cost and time required for the replacement and restoration of the disaster.  Many 

government agencies, research institutes or insurance companies are putting effort to develop 

models to understand the extend and severity of flood damage and assess the expected impact 

after the event (Jongman et al., 2012). The primary aim of flood damage assessments is to 

help decreasing the vulnerability in case of flood hazard by providing reasonably accurate 

information to the researchers and policy makers. Therefore, the dependability and quality of 

the output of the flood damage assessment models has paramount importance. 

In spatially-explicit modeling of flood damage assessment, presence of uncertainty is always 

inevitable due to nature of geographical data.  Additionally, an input variable regarded as non-

influential could appear in the result of the analysis at a larger scale. Therefore, understanding 

the relationship and the dependence between a model output and its input is critical in terms 

of confidence in the model results. In this sense, analysis of uncertainty together with 
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sensitivity will contribute to resource allocation and risk mitigation processes for spatially-

explicit models such as flood damage assessment. 

In this study, an iUSA framework is proposed to investigate the relation between model input 

and output for flood damage assessment model provided by Carinthia municipality. The 

proposed method for the flood damage assessment model is expected to support the decision 

making process in resource allocation policy making and risk mitigation for floods in 

Carinthia region. 

2. Literature Review  

2.1 Background for Uncertainty and Sensitivity Analysis Methods 

Models are numerical representations of complex phenomena which produce output values 

based on a set of input variables. The output of models is valuable in describing, 

understanding, predicting or forecasting complex phenomena or helping decision or policy 

making processes. However, uncertainty is an inextricable part of representing complex real-

world phenomena in especially environmental models where model depends on spatially 

distributed data. With the increase of variety in data sources, the degree of the complexity of 

model tends to increase since the interactions between these inputs can be amplified (Crosetto 

& Tarantola, 2001). For example, in spatially explicit models a variable considered as non-

influential at some scale and kept fixed in model simulations could appear influential at a 

larger scale. Moreover, in case of multiple operations combined, errors are compounded 

making it difficult to evaluate the final results. Therefore, understanding the relationship and 

the dependence between model output and its inputs becomes critical in terms of confidence 

and robustness in the model results.  
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Uncertainty in spatially explicit models can be analyzed by implementing methods for 

comparing the importance of the input uncertainties in terms of their relative contributions to 

uncertainty in the outputs. The result of uncertainty analysis can be in the form of mean and 

standard deviation to visualize for the target end-users. However, due to non-linear nature of 

most models, sometimes the output of a model may have much greater uncertainty compared 

to input data. Therefore, the uncertainties could be compounded rather than being enhanced. 

Given this case, it is important to have some information about the impact of input uncertainty 

to the output. Consequently, an integrated usage of sensitivity analysis together with 

uncertainty analysis will help to reveal the influence of various input factors.  By this way, we 

can better advocate to our models. 

Sensitivity analysis (SA) analyses the variation in the output of a model and its dependence on 

input by defining it qualitatively and/or quantitatively. With its basic definition made by 

Morgan and Henrion (1992), for a model, sensitivity analysis (SA) is the measure of change 

of the output y of a model with respect to variation in an input x of the model (Morgan & 

Henrion, 1992). Unlike uncertainty analysis, which measures the uncertainty in a model’s 

results (forward-looking), sensitivity analysis backtracks the relationship between inputs and 

outputs of the model (backward-looking) (Saltelli, Chan, & Scott, 2000 ;Gómez-Delgado & 

Bosque-Sendra, 2004; Chu-Agor, Munõz-Carpena, Kiker, Emanuelsson, & Linkov, 2011). 

Therefore every component of the model and the effects of their interaction on the variability 

of model output can be examined and quantified. Information about the dependence of model 

output variability on model input may lead to model simplification through fixing of non-

influential model input factors and reducing model uncertainty through procurement of higher 

accuracy data for influential model input factors. 

There is a variety of methods for applying SA for spatial models, depending on the particular 

problem under consideration (Saltelli et al, 2000; Helton & Davis, 2003). Behavior and 
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effectiveness of different sensitivity analysis techniques could be different from one another. 

Therefore, one should consider the model structure, input data dependence, and computational 

cost before selection one technique.  For example, local approaches investigate the input 

perturbations at specific points by estimating partial derivatives (Iooss & Lemaitre, 2015). As 

one of the widely used local SA methods in  spatially inexplicit models, the one-at-a-time 

approach evaluates one model parameter at a time in order to determine a given parameter’s 

effect on the model output ( Lilburne et al. 2006; Ligmann-Zielinska & Jankowski 2008;  

Saltelli et al. 2010; Anderson et al. 2014) . As illustrated in Kocabas and Dragicevic’s study 

(2006), this technique can be applied to define the degree of similarity between outputs when 

varying different input parameters (Kocabas & Dragicevic, 2006). The OAT is 

computationally efficient and does not need a large number of model executions. However, 

besides its advantages, the OAT approach has some drawbacks. First of all, it fails to identify 

the interactions among exogenous variables, therefore understanding of the significance of 

interactions is underestimated (Butler et al. 1997; Anderson et al. 2014). Secondly, the OAT 

only gives reliable results where the model input-output relation is linear. However, as stated 

by Ligmann-Zielinska and Jankowski (2008) the majority of spatial decision problems are 

non-linear. Moreover, the OAT is vulnerable to sudden change of parameter values due to its 

interactive environment (Crosetto, Tarantola, & Saltelli, 2000). This could result in vagueness 

in the magnitude of the input value change. These disadvantages limit the OAT usage in 

problems where model parameters can be spatially autocorrolated (Ligmann-Zielinska & 

Jankowski, 2014). 

Variance-based techniques can also be defined as global sensitivity measures since they 

consider the full ranges of uncertainty of the inputs. However, a distinction should be made 

here since not all of SA methods, which used variance as a sensitivity indicator, are regarded 

as global. Regression-based methods such as correlation coefficients (CCs), standardized 
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regression coefficients (SRC), partial correlation coefficients (PCC) and their rank 

transformations such as rank correlation coefficients (RCCs), standardized rank regression 

coefficients (SRRC), and partial rank correlation coefficient (PRCC) rely on the idea of using 

variance as an indicator of importance for input factors.  These regression-based models are 

stronger in linear models. Comparison of a test set examples of these models with random and 

LHS sampling methods is thoroughly discussed in Helton and Davis (2002). According to 

their finding, for linear models, CC and RCC can identify the important parameters for even 

small sample sets for both random and LHS sampling. Moreover, in the complete absence of 

correlation, CC and SRC or RCC and SRCC would give the same results whereas neither 

PCC nor PRCC can provide information regarding to importance of individual inputs(Helton 

& Davis, 2002).   

Other variance-based method in SA such as FAST, E-FAST and Sobol design, considered as 

global SA (GSA) where the influence of the variation of model components (called model 

factors) on the model output is studied. (Homma & Saltelli, 1996; Saltelli, Tarantola, & Chan, 

1999a; Sobol, 2001).  GSA helps to improve the overall quality of model and input 

parameters by improving reliability, enabling transparency and building credibility by 

showing the variations of the output in terms of input. In recent years, the investigations of 

variance-based GSA approaches in the complex models have been on the rise due to their 

multiparametric nature.  Saltelli and his co-authors (1999b) recommended in their study GSA 

methods for spatial problem analysis. They proposed Fourier Amplitude Sensitivity Test 

(FAST) as a model independent method effective for both monotonic and non-monotonic 

models (Saltelli, Tarantola, & Chan, 1999b). Tarantola and his co-authors (2002) advanced 

GSA by using Extended-FAST method and tested it in an environmental assessment case 

study. This new technique is an extension of FAST by introducing a resampling technique. It 

also introduces the computation of first-order (S) and total sensitivity (ST) indices, which are 
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instrumental to understand the influence of model’s factors on model output variability. 

However, for inputs which are not continuous in their ranges, FAST fails to make good 

predictions. Saisana, Saltelli and Tarantola (2005) argued that composite indicators (similar to 

aggregation functions in MCDA models), commonly used in many policy studies, could be 

the massive source of uncertainty due to the large amount of data used in deriving index 

values. Research conducted by Saisana and her colleagues has been aimed at increasing 

robustness and quality of composite indicators by using GSA methods. Gomez-Delgado and 

Tarantola (2006) proposed an integrated approach for Extended-FAST method, which 

assumes uncorrelated input factors.  In 2010, Saltelli and his co-authors presented another 

GSA approach, which is superior to FAST and Extended-FAST by easing the computational 

cost of higher-order model factor interactions. This method of Sobol’ decomposes the output 

variance into fractions so that the fractional composition of each input can be traced with first 

order and total effects (Saltelli, et al., 2010).  

The importance of variance-based GSA is that they provide higher order effects which give 

the information about interactions among input factors. Therefore, factor prioritization and 

factor fixing becomes possible after USA. In particular, they are recommended due to their 

model-independent approach with supporting nonlinear models and spatially explicit data. A 

well-developed technique of GSA uses variance-based  measures that can deal with nonlinear 

models and measure the effect of interactions of model components (Ligmann-Zielinska & 

Jankowski, 2008; Saisana, Saltelli, & Tarantola, 2005; Saltelli, Tarantola, & Chan, 1999a).  

Differing from correlation ratios and rank coefficients which similarly use variance as an 

indicator of importance for input factors, GSA variance-based methods are independent of 

any assumptions about model structure.  Therefore, GSA variance-based methods can be 

applicable for non-monotonic and monotonic models as well as nonlinear models. 
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As stated in many application of USA in complex models, the selection of the method always 

depends on the particular problem (Saltelli et al, 2000; Helton & Davis, 2003). Behavior and 

effectives of different sensitivity analysis techniques could be different from one another. 

Therefore, one should consider the model structure, input data dependence, and computational 

cost before selecting a particular technique.  Of course, for some of the models, more than one 

technique could be applied. In such cases, one can implement selected subset of methods to a 

smaller test problem rather than the full-size problem. Therefore, without spending more 

energy on the computation side, researcher can have the comparison of results of selected 

techniques. In addition, the model’s additivity or linearity could also influence the accuracy of 

the SA, which may require a test with a model-independent SA method.  However, the most 

influential limit could be the number of factors to be investigated in the model. For the larger 

sets of input factors, the computational cost becomes high and SA is difficult to accomplish. 

In general, quantitative SA methods give accurate and exact percentages of the variance in the 

output, whereas qualitative methods rank the input factors in terms of importance. However 

the quantitative methods are more complex to solve due to this computational exactness, 

therefore they are computationally more expensive.  One possible comprise might be first to 

apply parameter screening and then evaluate sensitivity and uncertainty by using a 

quantitative SA method with the simplified version of the model (Gan et al., 2014). 

Considering its importance for model evaluation, SA becomes a requirement for any model 

whether it is going to be used for analytical or predictive purposes. Various research applied 

SA in various spatial models including hydrological models (Dixon, 2005; Estrada & Diaz, 

2010; Saint-Geours & Lilburne, 2010; Marrel, Iooss, Jullien, Laurent, & Volkova, 2011; 

Chen, Yu, & Khan, 2013; Baroni & Tarantola, 2014; Gan, et al., 2014; Massmann, Wagener, 

& Holzmann, 2014), environmental models (Diebel, Maxted, Nowak, & Vander Zanden, 

2008; Pantus, Ellis, Possingham, & Venables, 2008; Li, Brimicombe, & Ralphs, 2000; Roura-
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Pascual, Krug, Richardson, & Hui, 2010; Chu-Agor et al , 2011; Yang, 2011), land suitability 

and land allocation (Humphries, Bourgeron, & Reynolds, 2010; Verburg, Tabeau, & Hatna, 

2013; Ligmann-Zielinska & Jankowski, 2014) and spatially explicit resource allocation 

decisions developed by means of multi-criteria evaluation (Alexander, 1989; Jankowski, 

Nyerges, Smith, Moore, & Horvath, 1997; Butler, Jia, & Dyer, 1997; Butler & Olson, 1999; 

Tarantola, Giglioli, Jesinghaus, & Saltelli, 2002; Feick & Hall, 2004; Gómez-Delgado & 

Bosque-Sendra, 2004; Feizizadeh, Jankowski, & Blaschke, 2014).  

Spatially-explicit sensitivity analysis for eco-hydrological modeling also applied in various 

domains such as flood monitoring and flood prediction (Hossain, Anagnostou, & Dinku, 

2004;Akbari, Nezhad, & Rema, 2012); flood risk assessment (Islam & Sado, 2000) and flood 

retention (Chen et al., 2012). Regarding the especially economic assessment in flood damage 

assessment models, to increase the robustness and improvement in confidence, SA is a strong 

mechanism in flood risk assessment chain (Saint-Geours, 2012). 

2.2 Uncertainty and Sensitivity Analysis in Flood Damage Assessment 

Most of the studies in the literature for flood damage and risk assessment, investigated only 

uncertainty in models of different scenarios such as land use (Te Linde, Bubeck, Dekkers, De 

Moel, & Aerts, 2011), hydraulic simulation (Bales & Wagner, 2009), or damage estimation 

(Koivumaki, et al., 2010)  Relatively fewer and more recent publications addressed the 

question of sensitivity along with uncertainty analysis. De Moel and co-authors (2012) 

proposed a new approach for flood inundation depth estimation incorporated with an 

uncertainty analysis (de Moel, Asselman, & Aerts, 2012). They also discussed the source of 

uncertainty related to the damage estimation and pointed as the most influential parameter as 

depth-damage curves in damage calculation.  Another application on flood risk management 

with sensitivity analysis was conducted by Saint-Geours (2012). In this study, uncertainties in 
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flood damage modeling and cost-benefit analysis of flood risk management plans were 

investigated by applying variance-based  global sensitivity analysis to NOE model which is a 

model for computing expected annual flood damages at the scale of land use and water depth 

maps (Saint-Geours, 2012). Finally, Baroni and Tarantola (2014) illustrate a general 

framework for uncertainty and sensitivity analysis for deterministic models considering the 

scalar, non-scalar or correlated inputs. They used the first- order sensitivity indices to improve 

and simplify the model and applied the developed model to a 1D hydrological model (Baroni 

& Tarantola, 2014). 

This research integrates the spatial and statistical analysis methods for flood damage 

assessment to explore the uncertainty in input factors on damage estimation model output.  

The model used in the study has been provided by Carinthia municipality, which uses the 

damage estimation model to assess the flood risk analysis at building level. In this research, 

the concept damage estimation extended through uncertainty and sensitivity analysis of model 

output due to input factors. The results are expected to help to prioritize the input parameters 

and understand the relative importance for the model output. 

3. Problem Definition and Research Questions 

The goal of this research is to explore the methods to flood damage assessment by 

investigating the relationship between the input and output in damage estimation model. Since 

flood damage assessment is depend on several factors, the dependability of those factors and 

their effect on the result is definitely important for policy making. Specifically, in this 

research, we address two principle questions: 

1. Which factors are more sensitive to the model output in damage estimation model 

used in flood damage assessment in Carinthia region? 
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2. What would be the necessary steps to improve the applicability of GSA to flood 

damage assessment? 

Thus, initially, this research evaluates the input/output relation for existing damage estimation 

model used for flood damage assessment in Carinthia region by applying iUSA framework at 

building level. Then, the research investigates the approaches which may improve the 

coupling of GSA to flood damage assessment. 

4. Methodology 

4.1 Overview 

In this research, the spatially-explicit iUSA framework (Ligmann-Zielinska & Jankowski, 

2014) has been used to investigate the relationship between model input and output for flood 

damage assessment.  The existing script implementing iUSA framework, written in Python, is 

extended by adding the damage estimation model provided by the Department for Water 

Resource Management of the regional government of Carinthia. This model is based on a 

guideline for cost-benefit assessment for structural flood mitigation published by the Austrian 

Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW 

2009). 

The implementation consists of three steps. In the first step, a sample set for each input factor 

is created. Next, for the uncertainty analysis, the multiple outputs are calculated through MC 

simulations and they are summarized intro average damage estimation and uncertainty maps. 

For the last step, variance-based decomposition GSA is performed. As the result of variance-

based decomposition method, the variability of the output is apportioned to each input factor 

and the results are mapped in the form of S and ST sensitivity index maps.  
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4.2 Conceptual Model 

The conceptual model for the iUSA for damage assessment model has been illustrated in 

Figure 1. 

 

Figure 1 Conceptual Framework for iUSA for Damage Estimation Model 

The hazard zones play a paramount importance in the hazard damage assessment. These 

zones are representation of the water depth which is used in estimation of damage in flood 

prone zones.  This is a fundamental concept in flood damage assessments since it is tightly 

coupled to the flood inundation and damage caused to building. Therefore, first and most 

important step in a flood damage assessment is the determination of hazard zones by 

considering the water depth for the flood zone. Since in this study, damage estimations are 

done in building level, buildings in hazard zones are determined prior to damage estimation 

model. 

Sensitivity Analysis 

Uncertainty Analysis 

Multiple Realization of Damage Assessment Maps 

Monte Carlo Simulations  

Damage Estimation Model 

Determination of Vulnerable Buildings in Hazard Zones 
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Although water depth has strong evidence in the variability in flood damage, there are also 

other tangible factors which should be considered in damage assessment such as economic 

consideration or the type of the building in use. Therefore, to be able to estimate the damage 

caused by flood, addition to water depth information, damage estimation function for 

buildings also consider the type of the building in use, and some constant minimum damage 

values for different floor levels. This minimum value is referred as Smin and varies with the 

building type, independent from water depth. (Prettenthaler, Amrusch, & Habsburg-

Lothringen, 2010).  During damage estimation, a use-specific factor (symbolled as B in the 

equation 4.1) is also taken into account which represents the relation of amount of damage 

occurring at a specific depth without considering an initial damage.  These factor values might 

have a wide range and they are adapted according to the specific characteristics of the project 

site. In general, B values has a negative relation with presence of older or smaller buildings, 

low construction and furnishing quality, long time ahead warning, short flood period or 

existing protective actions. According to guidelines for cost-benefit studies in the protection 

of hydraulic engineering (BMLFUW, 2009), it is expected to have higher B values in case of: 

 New and/or larger buildings compared to statistical mean 

  Higher construction/furnishing compared to statistical mean, 

 No or very short time ahead warning 

 Fast water level rise 

 Long flood duration 

 Dynamic forces present due to high water flow velocities/erosion/material transport 

 Flood with high material component like mud, contamination 

 Flood only during winter time 
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In general, these parameters affecting the damage caused by flood has some pre –defined 

ranges determined by experts. These ranges are also coupled with a certain building type are 

embedded into a look-up table for conventional damage estimation (Table 1).  Depending on 

the parameters on Table 1, for each different building type, damage is calculated based on 

damage estimation function as follows: 

 

𝐷𝑎𝑚𝑎𝑔𝑒 = (𝑆min 𝐵𝑎𝑠𝑒𝑚𝑒𝑛𝑡 +  𝐵𝐵𝑎𝑠𝑒𝑚𝑒𝑛𝑡 ∗ 1000 ∗ √𝑤𝑎𝑡𝑒𝑟𝑑𝑒𝑝𝑡ℎ ) + (𝑆min 𝐹𝑖𝑟𝑠𝑡 𝐹𝑙𝑜𝑜𝑟 +

 𝐵𝐹𝑖𝑟𝑠𝑡 𝐹𝑙𝑜𝑜𝑟 ∗ 1000 ∗ √𝑤𝑎𝑡𝑒𝑟𝑑𝑒𝑝𝑡ℎ )                                                                       (Eq. 4.1) 

 

Table 1 Damage Estimation Look-up Table for Buildings 

Building 

Type 

Smin Basement Smin 

First Floor 

B Basement B First Floor Waterdepth 

(depending 

on zone) 

Industrial or 

Commercial 

Buildings 

12000 30000 21.3 168.8 0.77/0.15 

Public 

Buildings 

12000 30000 21.3 168.8 0.77/0.15 

Building with 

one flat 

3250 13360 11 30 0.77/0.15 

Building with 

two or more 

flats 

2800 11800 11 29 0.77/0.15 

Tourism 10000 20000 20 62.5 0.77/0.15 

Other 

buildings 

1000 7000 8 20 0.77/0.15 

Buildings for 1000 8000 5 25 0.77/0.15 
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communities 

 

One important distinction for input parameter water depth is that although the rest of the input 

factors depend on the type of the building, water depth is related with hazard zone severity. 

For example, if a building is in Hazard Zone 1 (Red) which is regarded as highly risk area, 

water depth value for that building is taken as 0.77 m in damage estimation. For moderate and 

low severity hazard zones, water depth is selected as 0.15 m for the same calculation. These 

values are decided by expert knowledge and originally coming from damage curves. Flood 

damage curves are the graphical representations of depth of flood versus monetary values, 

considering the land-use classification such as residential, commercial, industrial or public 

services (Nascimento et al., 2006).  Direct damages are largely estimated through damage 

curves which show the difference between flood inundation level and floor level therefore any 

error or uncertainty attached to this information will be carried through the damage estimation 

(Messner et al., 2007).  

Following, in MC simulation, a sample set of N is generated for each input in the damage 

estimation model by using corresponding probability distribution functions. MC simulations 

can use different sampling methods to generate uncertainty surfaces. Simple random, quasi-

random, and stratified (Latin Hypercube Sampling (LHS)) are among the commonly used 

sampling methods in MC simulations. 

The basic MC method is based on random number generation, however, this technique is not 

preferred since the generated random numbers do not necessarily cover the sample region. 

Clusters or gap regions can occur in random sampling generation.  Samples obtained in 

stratified sampling or LHS are more evenly distributed in the sample space. Stratified 
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sampling can be achieved by using partitions (strata) and producing at least one sample from 

each interval in this partition. 

Especially for monotonic and nonmonotonic functions, with strong nonlinear relationships, 

the stability of LHS is noticeable when compared to random sampling.  However, LHS fails 

to provide good uniformity properties in an n-dimensional unit hypercube (Kucherenko et al., 

2013). Although it performs superior to random sampling, sample exploration may still be 

improved. Moreover, there is a possibility of correlation between variables. 

In each sample generation algorithm, a deviation of sample point from the ideal uniform 

distribution occurs. This quantitative measure is defined as discrepancy and the amount of 

discrepancy is related with the effectiveness of MC simulations. Quasi-random sampling, 

sometimes called as low discrepancy sequences, has the ability to both act as a random 

variable and ability to show a uniform distribution. Quasi random sequences produce random 

numbers but these points know the positions of previously sampled points therefore do not 

form clusters or gaps in the sample space. For this reason they are called quasi-random and 

their discrepancy from original input are low. This characteristic of quasi-random sequence is 

an important advantage in MC simulation. Considering these advantages, for this model, 

quasi-random sampling method is selected for sample generation for MC simulation.  The 

quasi-random sampling by using Sobol’s experimental design implemented in a software 

called Simlab, which is developed by Joint Research Center (The software can be freely 

accessed from simlab.jrc.ec.europa.edu) (Sobol, 2001; Lilburne & Tarantola, 2009; Saltelli, et 

al., 2010). Output of Simlab software is a .sam file and this file is read through one part of the 

code to be used for MC simulation embedded in the main code. 

The input factors which are considered to be affected by significant uncertainties will be 

randomly derived from n distributions. The type of the distribution should be given in 
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advance depending on the range of preferences, empirical observations and priory expert 

knowledge or opinion.  The selection of specific probability density functions (pdfs) or wider 

intervals for the input factors has the possibility of affecting the conclusions therefore, 

whenever there is a possibility of calibration or detailed observations to acquire more precise 

representations for distributions, the pdf selection can be reconsidered and updated with 

posterior information (Tarantola, Giglioli, Jesinghaus, & Saltelli, 2002).  

For the sensitivity analysis, as explained in detail in section 2, variance-based GSA has been 

selected. To illustrate variance-based GSA, a model can be represented in the form of 

Y = f(X1, X2, ⋯ , Xk) where Y is a scalar value corresponds to output and 𝑋𝑖 is the generic 

input factor. As given in Saltelli and his coworkers’ study, the sensitivity measure can be 

expressed by first order sensitivity coefficient which can be shown as below equation 

(Saltelli, et al., 2010): 

𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑋~𝑖
(𝑌|𝑋𝑖))

𝑉(𝑌)
                                                                                                          Eq. (4.2) 

For the numerator inner operator, the mean of Y is calculated for all factors except 𝑋𝑖  when 

𝑋𝑖  kept fixed. The outer operator takes the variance of all possible values of 𝑋𝑖. This is 

divided by the total variance so that the first order effect can be calculated for ith input factor.  

The total effect (𝑆𝑇𝑖
), is a measure of variance of all higher order effects for factor 𝑋𝑖 and can 

be calculated as follows: 

𝑆𝑇 =
𝐸𝑋~𝑖

(𝑉𝑋𝑖
(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖
(𝐸𝑋𝑖

(𝑌|𝑋~𝑖))

𝑉(𝑌)
                                                                     Eq.(4.3) 

By calculating these indices, the influence of the input parameters in the damage estimation 

variability can be expressed mathematically. 
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5. Study Area 

For the implementation of iUSA for flood damage estimation model, for this case study, 

conducted in twelve different municipalities along the river Drau in Upper Carinthia has been 

selected. Flood risk zones are determined by hydraulic modeling and after an expert fieldwork 

campaign has been conducted in the study area. Hazard zone map is the combination of the 

four outputs from four fieldwork projects and shown in Figure 2.  

 

Figure 2 Fieldwork Project Boundaries in the Upper Drau Valley, Carinthia, Austria 

Depending on the fieldwork outputs for the study region, hazard zones are defined as red, 

yellow, and moderate, which is a scale used for expressing the severity of hazard in a 
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particular zone (Figure 3). In this scale the red zone is representing the highest intensity for a 

flooding event following by yellow and moderate flood hazard zone. 

 

 

Figure 3 Flood Hazard Zones coming from Fieldwork Study 

6. Implementation 

6.1 Data Preparation 

For the iUSA , first building in the hazard zones are extracted by zonal statistics. A hazard 

zone surface with 1 m cell resolution was used to define hazard zone boundaries for different 

severity levels (Figure 3).  Buildings in these zones were determined by using Zonal Statistics 

as Table in ArcMap 10.1 software. In zonal statistics analysis, within the boundaries of the 

selected building, the most occurring hazard zone value of the cells is selected and assigned 

for each building object. According to the output tables, the number of the buildings in the 

hazard zones vary depending on the hazard zone scale. With the highest resolution (1 m cell 

resolution), 114 buildings are in the hazard zone where in the case of 30 cell size, only 36 

buildings are considered in the hazard zone. To have more spatial variability, dataset is 



23 
 

prepared from 1m hazard zone data, resulting in 114 buildings with three different level of 

hazard severity.  

For the damage estimation model, since every distinct building type has different ranges for 

each parameter, a look-up table is formed in the code so that for each and every single 

execution, the parameters are selected for each building depending on the building type. This 

information is bridged over the identification number key (IDNK) which has been created in 

the database for former applications.  

6.2 Quasi Random Sample Generation and MC Simulation for Uncertainty Analysis 

Since there isn’t sufficient prior information about the range or distribution characteristics of 

input parameters, their perturbation is considered to follow a uniform distribution with an 

equal chance of being selected from the allowable ranges determined by expert knowledge 

(Table 2). For example, for water depth, a +/- 10% change in the red (0.77) and yellow zone 

(0.15) water depth values are considered as the upper and lower limits for the uniform pdf. 

By using quasi-random sampling method proposed by Sobol, input samples are generated for 

each input.  

For each factor, Smin, Smin first floor, B basement, Bmin first floor and water depth parameters, (k=5) and 

6656 samples (N=6656), the damage estimation model was run 46592 times (N*(k+2)) for 

each buildings in the hazard zone. 

For the spatially explicit uncertainty analysis, multiple realizations of the damage estimation 

are computed from all input values generated by quasi-random sampling.  These estimations 

are summarized with minimum (MIN), maximum (MAX), average (AVG) and standard 

deviation (STD) maps. The two extreme value maps (MAX and MIN) help to understand the 
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repeating high and low damage estimation buildings whereas AVG and STD maps are the key 

surfaces to explain the distribution and the accompanying uncertainty. 

 

 

Table 2 . Allowable Minimum and Maximum Value Ranges for Input Factors 

Inputs Minimum Allowable 

Value 

Maximum Allowable 

Value 

Smin 10000 30000 

Smin First Floor 25000 35000 

B Basement 20 22 

B First Floor 150 170 

Water depth (Red Zone) 0.693 0.847 

Water depth (Yellow Zone) 0.135 0.165 

 

6.3 Variance-Based Sensitivity Analysis 

For each input factor in Table 2, by using the equations 4.2 and 4.3, both first order and total 

order sensitivity indices are calculated and those values are added as attribute values for the 

buildings in the hazard zone. Namely, 46592 model output coming from MC simulations are 

evaluated and summarized into sensitivity index values for input factors for damage 

estimation equations. 
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The overall flowchart of the whole implementation is summarized in Figure 4. 

 

Figure 4 Flowchart of the  iUSA Framework for Flood Damage Assessment Model 
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7. Results and Discussion 

7.1 UA Results for Flood Damage Assessment  

The results of MC simulations were summarized as average (AVG) damage estimation map 

(Figure 5) and standard deviation of average suitability (STD) maps (Figure 6).  By 

examining the results of AVG map, buildings with higher damage estimations can be 

obtained. However, the level of confidence for these buildings can be only ascertained by 

comparing the AVG map with the STD map since higher uncertainty is expected with high 

standard deviation. Therefore, in order to select and observe priority buildings depending on 

the uncertainty associated with input factors, AVG map values should be examined together 

with STD map values. 

 

Figure 5 AVG Map for Building Damage Estimates in Damage Estimation Model 
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Figure 6 STD Map for Building Damage Estimates in Damage Estimation Model 

However, since it is visually hard to inspect and compare the high and low vulnerability 

buildings due to dispersed polygons over the study area, the buildings were further grouped 

into four categories, which are High AVG- High STD, High AVG- Low STD, Low AVG – 

High STD, and Low AVG – Low STD.  

The value threshold for high average damage estimation is estimated as 100,000 Euros and 

high standard deviation (uncertainty) is estimated as 1000 Euros by comparing the histograms 

of AVG (Figure 7) and STD values (Figure 8).  According to these threshold values, buildings 

in High-High (Table 3) values are selected as below: 

Table 3 Buildings with High AVG-High STD Damage Estimation 
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As can be seen from Table 3, there are repetitive average estimates for damage for multiple 

buildings which is expected since those matching values correspond to the same building type 

within same hazard zone.  Following the damage equation (Eq.4.1), building type and water 

depth are the key factors determining the amount of damage expected. Therefore, with the 

small variations in those parameters, perturbations in the output can be visible. However, to 

better explain the reasons behind the observed differences, a GSA should be applied to 

understand which input factors have more effect on the output. 

 

Figure 7 Histogram for Average Damage Estimations 

 

 

Figure 8 Histogram for STD Damage Estimations 
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7.2 SA Results for Flood Damage Assessment 

Similar to the average damage estimation case, there are repeating values for first and total 

order sensitivity indices as well. The first order sensitivity index for an input factor gives us 

the relationship between that input and output and if it is zero than it can be interpreted as 

non-influential, meaning that the changes in the input factor do not influence the result. 

Conversely, if the first order index value equals to 1.0 then that could be interpreted as the 

observed variability at given location is due to the input factor under investigation. However, 

in some cases, the first order index may exceed 1.0 which makes interpretation difficult. 

According to Saltelli and his co-authors (2000), very small sample sizes (small N) are likely to 

produce values exceeding 1.0 for first order indices (Saltelli, Chan, & Scott, 2000). Another possible 

reason of the failure to get unexpected ranges for index values could be result of the poor judgment of 

pdf for input factors. Last, spatial variability in the input factors also affects the range of first order 

sensitivity indices. Considering these factors, index values different from zero is selected for each 

input factor.  

As a result, the Table 4 shows which factors affect which buildings at the first order level. The most 

frequent building type affected by the most of the input factors is single flat building. This may be a 

predictable result considering the flooding event and its nature. Another result that be gleaned from 

Table 4 is that the damage estimation is more sensitive to the 10% variations in the some of the input 

factors (Smin and Smin first floor) when compared to rest (B basement and B first floor). This could 

be a guide for possible calibration or detailed observation for more precise distribution selection for 

those input factors. 
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Table 4 Comparison Table for First order Sensitivity Index Results 

 Smin Smin First 

Floor 

B basement B First Floor Water Depth 

Count of 

buildings 

26 26 2 None 12 

Majority 

Type 

Single Flat Single Flat Single Flat None Other 

𝑺𝒊  min 0 0 0 0 0 

𝑺𝒊  max 0.13 0.91 0.01 0 Greater than 1 

(>>1) 

 

For the ease of visualization of dispersed buildings, the study area was divided into four sub 

parts (Figure 9). The buildings which have greater values than zero for every input are: 30 and 

41. Higher first order index values are common in 21 buildings (Table 5) for Smin and Smin 

first floor factors are all single flat buildings (Figure 10).  

 

Figure 9 Sub parts in the study Area 
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Part A 

 

Part B 

 

 

 

Part C 

 

 

Part D 

 

Figure 10 Spatial Locations of Buildings with Relatively high first order index values for Smin 

and Smin first floor (selected buildings are blue colored) 
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Table 5 Common buildings with high first order index values for Smin and Smin first floor 

 

Although 𝑆𝑇𝑖
 indices do not fully explain the uncertainty of model output, it is more reliable to 

investigate the overall (𝑆𝑇𝑖
) effect in concert with single factors than individual (S) effects alone. 

Therefore, 𝑆𝑇𝑖   indices also compared in a table for each factor (Table 6).  

Table 6 Comparison Table for First order Sensitivity Index Results 

 Smin Smin First Floor B basement B First Floor Water Depth 

Count of 

buildings 

26 26 26 None 12 

Majority 

Type 

Single 

Flat 

Single Flat Single Flat None Other 

𝑺𝑻𝒊
min 0 0 0 0 0 

𝑺𝑻𝒊
max 0.08 0.89 0.01 0 1.03  
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Part A 

 

 

Part B 

 

 

Part C 

 

 

Part D 

 

Figure 11 Locations of Buildings with Relatively high first order index values for Smin and Smin 

first floor (selected buildings are blue colored) 

Like in the first order representation, study area was divided into four sub parts for  𝑆𝑇𝑖
 

indices as well.  Similarly to the single factor results, the buildings which have greater values 

than zero for every input are: 30 and 41. Higher first order index values are common in 26 
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buildings for Smin and Smin first floor factors are all single flat buildings (Figure 11).  

Differently from selected buildings for Table 5, 𝑆𝑇𝑖
are high for buildings 4, 5, 15, 21 and 27 

which are again single flat buildings 

As pointed out for both first and total order results for sensitivity analysis, buildings 30 and 

41 are the most influenced buildings to small variations in the input factors, specifically Smin 

and Smin first floor.  When these buildings are investigated at larger scale in Figures 12 and 13, 

the building 30 is located in the transition zone between red(high) to yellow( low) and 41 is 

located in the red (high severity).  They are both regarded as high risk zone buildings in the 

zonal statistics different from rest of the buildings in the output. The reason behind the highly 

dependence on perturbations on Smin values can be related with Single Flat building type since 

these variable is independent from water depth. For the other buildings in the Table 5, an 

argument can be made depending on Messner and his co-authors’ discussion. They comment 

on the relationship between the estimated error in damage assessment and water depths as 

follows:  

“..The effect of error coming from estimated difference between flood level and floor level are 

greatest for shallow depths of flooding because flood damages at 0.1 meters of flooding for 

the UK average house is estimated to be 23% higher than those for 0.05 meters (and 

considerably higher for 0.05 as opposed to 0 meters)” (page 16) Flood Damage Guidelines, 

(Messner et al, 2007) 

Following this argument, we can expect higher sensitivity index values for lower water 

depths, which corresponds yellow zone in our study. The majority of the buildings with 

higher sensitivity indices are in low hazard zones, which can be interpreted as the water depth 

or related hazard zone information is much more vulnerable to uncertainties in the input 

values.  
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One last comment can be made on the comparison of outcomes of uncertainty and sensitivity 

analysis. As shown in Tables 3 and 5, selected buildings from the sensitivity analysis do not 

overlap with high average and high standard deviation buildings. The sensitivity of the output 

in those buildings can be misleading however; the validity of this statement can only be 

possible after retesting the whole model with the improved pdf distributions and reconsidering 

the damage estimation methodology. Since the flood damage curves are also affected by the 

land-use classification, the model can be re-run accordingly.  

 

 

 

 

Figure 12 Building 30 in detailed Zoom Level 
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We need SA for understanding the quality of the results in the absence of any information 

regarding the errors and this is established by imposing variations on the inputs. Therefore, 

SA helps us to point out critical values in the output. In this analysis, with the help of multiple 

simulations and extensive statistical calculations, we can visualize the effect of some input 

factors, which are much more influential to others. Therefore, the necessary steps to improve 

the applicability of GSA for flood assessment should include improving the prior information 

coming from fieldwork and provide more empirical observations, expert knowledge, and 

expert opinion in the selection of proper probability distribution for input factors. These steps 

will help to calibrate the model and acquire more precise representations in sensitivity 

analysis. Consequently, more reliable conclusions can be drawn from output maps.  

 

 

 

Figure 13 Building 40 in Detailed Zoom Level 
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8. Limitations and Future Works 

As discussed in the methodology section, the spatially explicit iUSA is based on simulating 

many model solutions in response to variability in model parameter values, which puts high 

demand on computational resources. In this research, with the selected 114 buildings in the 

hazard zone and 46592 model runs including 5 inputs, the execution time was 8h 49min. 

However, this number will drastically increase when the scale of the study increases from 

Carinthia to whole Austria. Even including other infrastructures such as roads or bridges will 

increase the execution time for simulations.  

Potential solutions to this problem could involve employing high performance architecture in 

the simulation (Zhang & You, 2012). High-performance architectures can be achieved by 

multi-central processing unit (CPU), multi-core graphical processing unit (GPU), clustered 

computing using network of workstations, cloud & grid computing or general-purpose 

computing. All of these methods have promising performance advantages. However, GPU 

when compared to closed computing architecture counterparts (supercomputers or other 

parallel computing resources) has advantages of higher operating performance, higher main 

memory (off-chip) bandwidth, and efficiency of cost, energy and physical size (Zecena, 

Burtscher, Jin, & Zong, 2013). These advantages make high performance architectures 

attractive for spatially complex decision making. Especially, as stated in recent studies in the 

literature, some examples of cyberinfrastructure-enabled GPU parallel computing seem 

promising for spatiotemporal uncertainty and sensitivity analysis (Tang & Jia, 2013). 

9. Conclusion 

Floods have caused severe economic and social loses due to growing population density and 

urbanized areas encroaching on natural hazard zones (Yalcin and Akyurek, 2004). In the 
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context of the European Flood Directive, each member state of the European Union must 

perform a flood risk assessment for its river basins. Over the last years such flood risk 

assessment studies have also been performed by the water resource department of the 

Regional Government of Carinthia. For this purpose a GIS-based flood damage assessment 

model has been developed and applied in several case studies in Carinthia.  

Flooding damage assessment is usually conducted based on prior information and estimates 

obtained from using interpolated real damage data from historic flood events. However, 

dependability of a model is closely related with the confidence in the model output as well as 

model itself. The uncertainty coming from different sources (lack of knowledge about 

phenomena, measurement errors, model assumptions, etc.) can be investigated through 

uncertainty analysis, which gives an idea about the confidence in the output by representing 

confidence intervals. In addition, how these uncertainties can be apportioned to the input 

variables can be answered by sensitivity analysis followed by uncertainty analysis. Therefore, 

to increase the robustness of a model and investigate the level of confidence in the results, the 

uncertainty and sensitivity analysis becomes crucial for spatially explicit models. In this 

sense, uncertainty analysis aims to uncover the multiple sources of uncertainty and their 

relative magnitudes. However, uncertainty analysis is not quite useful without translating its 

findings into decision or policy making.   

Flood damage evaluation is an essential part of flood risk analysis, however, it is not only 

related to monetary damages but also to some intangible terms such as loss of life, health 

effects, and loss of ecological value. As stated in the “Directive on the assessment and 

management of floods proposal of EU Flood Directive, more concrete forms of analysis and 

practices are now expected to elaborate under EU Water Framework Directive. To be able to 

consider flood risk analysis as a comprehensive approach, it is necessary to include intangible 
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terms is inevitable. This aim may be achieved with multi-criteria evaluation approach by 

considering the all intangible effects and their weights in the analysis. 

  



40 
 

Acknowledgement 

Financial support for this work was provided by the Austrian Marshall Plan Foundation. Any 

opinion, findings, conclusions, and recommendations expressed in this material are those of 

the author and do not necessarily reflect the views of the Marshall Plan Foundation. I also 

appreciate the generous support of the Department of Geoinformation and Environmental 

Technologies at Carinthia University of Applied Science Department in general, and Dr. 

Gernot Paulus and Dr. Piotr Jankowski in particular, to be extremely supportive and helpful 

in pursuing this research. This research would not have been possible without the provision 

of all relevant data by the Carinthian Geographical Information System (KAGIS). In this 

context the support from Dr. Stephan Schober, Department of Water Resource Management 

and Flood Mitigation of the Regional Government of Carinthia and Daniel Sichler is highly 

acknowledged. 

   



41 
 

Appendix 

Snippets of Source Code for Damage Estimation Model 
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