
Marshall Plan Scholarship Research Report1

Application of the Spherical Induction Motor to Dynamically

Stable Robots

Author

Olaf Saßnick

1st. Advisor Prof. Ralph Hollis

Carnegie Mellon University, Pittsburgh, USA

2nd. Advisor Prof. Robert Merz

Salzburg University of Applied Sciences, Salzburg, Austria

Monday 16th November, 2015

1The content of this report is based on the authors master thesis with same title.

Abstract

The content of this report is based on the master thesis with same title.

This work gives an introduction to the spherical induction motor and its application to

dynamically stable robots [19]. It restricts to mobile balancing robots with a single point

of contact to the floor. The robot balances its main body on a single spherical wheel. It

moves by leaning towards a direction, and therefore by shifting its center of mass with

respect to the point of contact on the floor. This category of robots is known as ballbot.

They have been invented by Ralph Hollis in the Microdynamic Systems Laboratory of

the Carnegie Mellon University in Pittsburgh, in 2005 [17].

The existing drive mechanisms for a ballbot have always been a trade-off between me-

chanical complexity and efficiency. The required omni-directional movement capabilities

make it challenging to achieve both together: a high efficiency and a low complexity.

The spherical induction motor is considered a potential superior alternative to existing

mechanical drive systems for ballbots. Instead of relying on mechanical contact, the

torque is applied via a generated electromagnetic field to the main wheel.

Overview

The very first section (1 Introduction) sets out to give the reader a broader overview

on dynamic stable robots (ballbot). The motivation behind this non-conventional design

approach for mobile robots is explained and possible usage scenarios are given, where

conventional mobile robots are outperformed. As well the drawbacks of current ballbot

implementations are briefly covered, and why the spherical induction motor poses an

alternative worth exploring.

Next, section 2 (Conventional Drive Mechanisms) gives a short overview on existing

mechanical drive mechanisms for ballbots, whereas section 3 (Spherical Induction Motor)

introduces the function principle of the spherical induction motor ([19]).

As the ballbot, with only one single point of contact to the floor, represents an inherently

unstable system, an active balancing control is required. The first basic steps towards

an actual balancing control implementation are taken in section 4 (Dynamic Model).

Here, a simplified 2D dynamic model of the robot is being introduced and in addition, a

3D simulation in the open dynamics engine (ODE) is attempted for the robots dynamic

behavior. Results for scenarios with different start conditions are compared. In section 5

(Control), the balancing control design is attempted based on the dynamic model, which

has been introduced beforehand in section 4. A simple full state feedback state-space

approach and a conventional approach with cascaded PID and PD controllers are being

looked at.

In section 6 (Implementation) focus is placed on the actual implementation of a ballbot

with the novel spherical induction motor (named SIMbot).

Finally, in section 7 (Testing and Initial Results) early performance results of SIMbot

are presented. This includes the balancing performance, station-keeping and point-to-

point motion trajectories.

i

Contents

1. Introduction 1

2. Conventional Drive Mechanisms 5

2.1. Inverse Ball Mouse Drive Mechanism (CMU Ballbot) 5

2.2. Omniwheel Mechanism . 6

3. Spherical Induction Motor 8

3.1. Function Principle . 8

3.2. Torque Output . 10

3.3. Implementation . 10

3.3.1. Odometry Sensors . 13

4. Dynamic Model 14

4.1. Parameters . 15

4.2. Assumptions . 15

4.3. Generalized Coordinates . 16

4.4. Potential Energy . 17

4.5. Kinetic Energy . 17

4.6. External Forces and Torque . 18

4.7. Equations of Motion . 19

4.8. Linearisation . 21

4.9. State Space Representation . 23

4.10. Stability of the linear system . 24

4.11. Comparison with the non-linear system . 25

4.12. Simulation with a physics engine . 31

4.12.1. Preparation . 31

4.12.2. At run time . 33

4.12.3. Results . 35

ii

5. Control 38

5.1. State Feedback . 38

5.1.1. Controllability . 39

5.1.2. Linear Quadratic Controller . 39

5.1.3. Simulation . 42

5.2. Conventional Controller . 44

6. Implementation 46

6.1. Power Distribution Layout . 47

6.2. Communication and Processing . 47

7. Testing and Initial Results 49

7.1. Controller Setup . 49

7.2. On-board Mouse Sensor Adjustment . 50

7.3. Balancing . 55

7.4. Station Keeping . 59

7.5. Trajectories . 63

8. Conclusions 65

A. Physical System Parameters 67

B. Spherical Induction Motor 68

B.1. Torque Output . 68

B.1.1. Torque limit . 70

B.2. Odometry Sensors . 73

C. 2D Planar Model 76

C.1. External Disturbance . 76

D. Maxima Scripts 78

D.1. Lagrange Equations Rev2 . 78

iii

List of Figures

1. The original ballbot [37] . 3

2. A disassembled omniwheel of the FHS-ballbot. It has 12 separate rollers.

Number of parts: 78, [5] . 4

3. Schematic Overview of the drive system of the CMU ballbot 5

4. Schematic top view of the CMU ballbot 5

5. Mecanum wheel [29] (left) and Omniwheel with different radia (right) . . . 6

6. Omniwheels with different radia, as seen on the FHS-ballbot [5] 7

7. Structure diagram of a single-sided linear induction motor (SLIM) 9

8. A LIM stator next to a spherical induction motor stator (with blue coating)

for comparison . 9

9. SIM stator frame (left) and stator frame with rotor, constrained by ball

transfer units (right) . 11

10. The stators are made out of laser-cut iron sheets 11

11. Resulting stator forces for different commanded torque vectors 12

12. Sensor positions for nm = 3 . 13

13. Simplified planar model, adopted from [37] 14

14. Comparison between the linear (red) and non-linear system (blue) response,

given a initial non-zero lnean angle (φ = 0.1 deg) 28

15. Input step at t = 0, comparison between the linear (red) and non-linear

system (blue) response . 29

16. Error due to linearisation - scenario 1: Initial non-zero lean angle (loga-

rithmic scaling on y-axis) . 30

17. Error due to linearisation - scenario 2: Input step (logarithmic scaling on

y-axis) . 30

18. ODE model, showing the collision shapes and joint placements 32

19. The ODE simulation is visualized with the drawstuff library 33

20. Fall from φ = 0.1 deg lean angle, comparison between the non-linear system

(red) and the ODE simulation (blue) result 35

21. Input step at t = 0, comparison between the non-linear system (red) and

the ODE simulation (blue) result . 36

iv

22. Error (logarithmic scaling on Y-axis) . 36

23. Error (logarithmic scaling on Y-axis) . 37

24. The influence of the input cost Qu, with initial φ = 2 lean angle 40

25. System step response . 41

26. System step response with precompensation 42

27. Two separate state feedback controllers stabilize the ballbot in the ODE

simulation . 43

28. Two separate state feedback controllers, lean angle and wheel angle plot,

with applied disturbance forces . 43

29. Wheel global position plot, with applied disturbance forces 44

30. Finished SIMbot while balancing (left) and a CAD drawing (right), showing

the positions of the most important components 46

31. Power Distribution Layout . 47

32. Communication protocols and paths on SIMbot 48

33. Sketch of test set-up to perform on-board mouse sensor adjustments . . . 51

34. Definition of the length lx . 52

35. Exemplary odometry test result . 53

36. The data from Fig. 35, now projected on the main movement axis and

reduced to 1D . 54

37. Lean angle vs. time . 56

38. Wheel surface velocity vs. time . 57

39. Angular velocity vector of the wheel vs. time 57

40. Global position plot of the ballbot . 58

41. Torques τx and τy vs. time . 59

42. Global position station keeping plot . 60

43. Global and projected position of SIMbot 60

44. The lean angle φx and φy of SIMbot . 61

45. The commanded torque vector components τs.x and τs.y 62

46. Position plot . 63

47. Velocity plot . 64

48. Lean angle plot . 64

v

49. A used ball transfer unit next to a new one (left) - An opened ball transfer

units with its supporting balls exposed (left) 66

50. A six stator (ns = 6) configuration (left) and the angles φi, β and γ for

stator i (right) . 68

51. Sensor positions for nm = 3 . 73

List of Tables

1. Sensor adjustment results . 55

2. Physical system parameters . 67

Listings

1. Matlab function, calculating the nonlinear system response 27

2. Matlab function, calculating the linear discrete system response 27

3. Update of the state vector in the ODE simulation 34

1. Introduction 1

1. Introduction

The robotics industry has been a fast growing branch over the last two decades. In 2003

the number of worldwide yearly delivered industrial robots was 82,000 which climbed to

178,000 units in 2013, see [25]. That equals an increase of ≈ 217%. The demand for

industrial robots and automation is assumed to continue growing. However, the forecasts

do not solely focus on the usage in the industrial sector, where robots already replaced

much of the labor work, but also look for future applications of robots closer to the human

environment ([27], [31]). New opportunities arise in the market for service robots. While

today very much in its beginning, the market for service robots is predicted to emerge as a

fast growing market [27]. According to [26]a service robot is a robot that performs useful

tasks for humans or equipment excluding industrial automation application. According

to [41] already in 2013 the majority of service robots were mobile platforms. However,

where can mobile service robots be useful? What kind of applications are suitable for a

mobile robot in a human environment? How can a robot assist humans and where can

they help and not just hinder us? There is no definite answer yet, however there exist

pilot studies for numerous tasks and first service robots have been successfully deployed.

Some examples are described here:

• Panasonic Hospital Robot:

The project started back in 2004. The main idea is to relieve the medical staff at

hospitals by automatizing the transport of small objects, for example drugs, from

one place to another. To do so, the robot needs to navigate and maneuver safely

inside buildings without interfering with obstacles or people [7].

• Care-O-Bot:

The Care-O-Bot by the German Fraunhofer Society is aimed to take over tasks of a

butler or human assistant. It is designed to help people within domestic environment

as well for elderly care [14].

• Savioke robot:

Savioke is a company located in California. For now it produces a mobile delivery

1. Introduction 2

robot specialized for the hospitality industry. However the company plans to extend

their fleet of service robots, see [32]. One task for example is to deliver items to

hotel rooms.

All three of them are mobile robots, designated to operate in environments used by

humans. As a consequence they must be able to deal with humans in a safe and predictable

manner, unlike most industrial robots, which work alone locked down in a safety cage.

For example, their environment can be cluttered with people.

Nevertheless the mobile service robot should be able to navigate through this cluttered

space in a very gentle way, avoiding incidents and adapt quickly to a changing environ-

ment. Ideally they would behave very much like a human, moving similar as we do based

on our instinct. Their movement pattern should blend in. They should behave as one

would expect from a human. To accomplish this, a small footprint and height similar to

a human helps.

All three robots are built statically stable and locomote with wheeled drives. To ensure

that the robot does not tip over on contact, a low center of gravity is required. Neverthe-

less, due to the required height, the base is required to be wider than a human body. All

three designs keep the robot base as compact as possible, which however compromises the

dynamic capabilities of the robots and reduces their stability. Slightly over-exaggerated,

but true in essence, the these robots are heavy and slow. It reduces their possible benefits

in serving and delivering goods.

However, what are the alternatives? Assuming the environment is built to fit the needs

of humans, there exists the belief, that robots have to resemble them closely to achieve best

results in terms of flexibility and adaptation. Furthermore, if a robot should maneuver

human-like, then it may as well appear, that it should be built like a human, i.e. resemble

the human body, as this is what our non-natural surroundings are designed for.

Following this logic, the classic humanoid robot is the prime candidate for operation

in human environments. Humanoids resemble the human body closely. In consequence

these robots reach the desired height of a human while still having a similar footprint.

1. Introduction 3

Stability is reached by dynamic active balancing control. In theory this approach seems

to be ideal. But the benefits come at a cost, just think of the many joints, all of them have

to be motorized and controlled! At the DARPA 2015 Challenge, teams from all over the

world tried to push the boundaries. Most of them competed with bipedal robots [8].And

even though being remotely supervised and operated, only one among the 25 finalists of

the 2015 DARPA event did not fall or need physical human intervention like a reset, [4].

To summarize, the current technology for bipedal robots is still a few ”steps” away from

performing smooth and robust movements, like quick direction changes, faster walking or

even running.

Figure 1: The original ballbot
[37]

The ballbot robot category takes a different approach

to solve this problem. Instead of resembling the hu-

man mechanics/ kinematics, it tries to achieve the same

movement capabilities with a different mechanical con-

cept. By balancing the upper body on a single spherical

wheel, it is capable of smooth omni-directional move-

ments and able to perform trajectories, which are sim-

ilar to what humans can achieve. Biggest advantage of

this approach is the vastly reduced mechanical complex-

ity. This as well reduces the complexity of the required

robust control algorithms and results in a robot with

high dynamic stability. Due to the dynamic stability

the ballbot can be as tall as a human, and still maintain

a small footprint (see Fig. 1). Furthermore this gives

the robot an implied physical compliance. The robot

can be moved or pushed away with a minimum amount

of external force, which leads to increased safety.

Despite of the mechanical simplicity compared to the

legs of humanoids or bipedal robots, the omni-directional

drive mechanism for a spherical wheel is nevertheless challenging and of critical importance

to the operation. So far two different mechanical concept have emerged, the first is the

1. Introduction 4

inverse mouse-ball drive, invented by Ralph Hollis [17], while the second uses a set of

omni-directional wheels to drive the spherical wheel underneath. Both of them however

have individual disadvantages. The inverse mouse-ball drive has lossy friction effects

and requires five electric motors to work well, whereas the concept with omni-directional

wheels only has limited load-carrying capabilities and requires a large amount of movable

parts and at least three electric motors. (see Fig. 2, [5]).

The spherical induction motor is a potential superior alternative to the mechanical drive

systems. The application of the spherical induction motor vastly reduces the mechanical

complexity, basically reducing the robot to two moving parts, the spherical rotor of the

induction motor and the main body of the robot. Instead of requiring mechanical contact,

the torque is applied via a generated electromagnetic field.

This work focuses on the driving system and the overall control of a ballbot actuated

by a spherical induction motor.

Figure 2: A disassembled omniwheel of the FHS-ballbot. It has 12 separate rollers. Num-
ber of parts: 78, [5]

2. Conventional Drive Mechanisms 5

2. Conventional Drive Mechanisms

2.1. Inverse Ball Mouse Drive Mechanism (CMU Ballbot)

Figure 3: Schematic Overview of the drive system of the CMU ballbot

The first ballbot built at the Carnegie Mellon University in the Microdynamic Systems

Laboratory uses an inverse ball mouse drive mechanism to achieve a omni-directional

movement. The principle is similar to a mechanical computer mouse, where two encoder

discs driven by a ball on the surface ground are used to track the users motion. As the

name already implies however, the mechanism has been reversed. The ball is no longer a

passive component but instead actuated [1].

W1

W2

rotational axis

ro
ta

ti
o
n
a
l
a
x
is

Figure 4: Schematic top view of the
CMU ballbot

The principle is shown in Fig. 3. Two blank

shafts W1 andW2 are driven via electric motors.

Each motor is placed at a higher position to al-

low for smaller overall dimensions. The torque

transmission from the motor to the blank shaft

is realized with a toothed belt. The two oppo-

nent shafts of W1 and W2 are passive.

Ball transfer units (depicted in Fig. 3 as K1,

K2 and K3) support the main body on the

ball. The ball itself is made out of a hollow

2.2. Omniwheel Mechanism 6

aluminum sphere, covered with a urethane plastic layer. The aluminum layer helps to

keep the shape and can reduce the amount of deform-ability while the outer urethane

layer creates a surface with desirable friction properties.

The preloading force prevents slip and makes movement more controllable but also adds

friction, see Fig. 3. Ideally there should exist only one point of contact between shaft

and ball. As the point of contact lies within the rotational axis for the other drive system

these two ideally do not influence each other, see Fig. 4.

A later version of the CMU ballbot has two more drive motors added, acting on the two

remaining passive shafts. These changes result in a better controllability and a smoother

torque curve.

One flaw of the drive mechanism is that it does not allow a rotation around the z-axis.

This is added with a further mechanism, a rotary table, mounted on top of the drive

mechanism.

2.2. Omniwheel Mechanism

Figure 5: Mecanum wheel [29] (left) and Omniwheel with different radia (right)

The name already suggests it: an omni-wheel is intended to allow movements in more

than one direction. Compared to a normal wheel, which given a no slip condition, has only

one rotational degree of freedom, the omniwheel adds one more by allowing an additional

2.2. Omniwheel Mechanism 7

sideways movement. Two configurations of the omniwheel have proved their worth in

practice, shown in Fig. 5:

• Mecanum wheel: To ensure rotation in two directions, the wheels of the Mecanum

wheel are turned by a defined inclination angle.

• Omniwheel with different radia: By combining wheels with smaller and larger radia

running on a spherical surface can be accomplished with almost no discontinuity

[30], [40]. This configuration is used by the Rezero built at the ETH Zurich and the

BallIP built at the Tohoku Gakuin University [42], [12].

Figure 6: Omniwheels with different radia, as seen on the FHS-ballbot [5]

3. Spherical Induction Motor 8

3. Spherical Induction Motor

This section does briefly cover the spherical induction motor (short: SIM). It has been

invented by Ralph Hollis. A description can be also found in the following papers: [3] and

[21]. There already existed other spherical motors which however are unable to perform

continuous rotation, due to their limited rotation range. Besides that, so far developed

spherical motors have not been able to generate a sufficient amount of torque to drive

a human-sized robot ([23], [16], [35]). The SIM was developed particularly with the

application as an alternative omni-directional drive-system for the ballbot in mind.

3.1. Function Principle

The function principle of the spherical induction motor (SIM) is comparable to a linear

induction motor with a single-sided stator, the abbreviation SLIM is commonly used for

such kind of motor. The SLIM is classified as a machine with one degree of mechanical

freedom, since the movement of the actuated part can be only commanded in one degree

of freedom.

A SLIM consists of an armature (the stator) and a secondary part:

• The stator is made of several stacked iron layers to reduce eddy current losses.

The slots in the stator are used to add wire windings, usually a three-phase winding

layout is chosen.

• The secondary commonly consists of two layers, one conductive thin (aluminum

or copper) sheet on the top, and a larger layer below, made of iron.

Applying a sine wave voltage to the three windings of the stator creates a traveling

magnetic field, which induces a voltage into the secondary. The conductive layer of the

secondary improves the amount of the induced voltage.

3.1. Function Principle 9

The induced voltage generates an eddy current flow in the secondary, which is strength-

ened by the lower iron layer. Consequently, the eddy current flow creates a magnetic field

in the secondary.

The interaction between the two magnetic fields of the stator and the secondary results

in a thrust force and as well a normal force component.

Stator

Secondary
(Rotor / Reaction Plate)

Laminated
iron sheets

Conductive outer layer Iron core

Figure 7: Structure diagram of a single-sided linear induction motor (SLIM)

Taking the function principle of the SLIM and adapting it for a spherical induction

motor results in the following changes, see Fig. 8:

Figure 8: A LIM stator next to a spherical induction motor stator (with blue coating)
for comparison

First of all, the shape of the secondary changes. Instead of a plane it becomes a sphere.

The outer and the inner layer remain. The larger inner layer is now required as a structural

part, to keep the sphere in shape under magnetic forces from the stator in addition to

hold the external load added by the robots body [21]. The secondary is supported with

omni-directional ball transfer units, to allow for three rotational degree of freedom.

3.2. Torque Output 10

The stator shape is adapted to fit the spherical surface of the secondary. To actuate

all three degrees of freedom of the secondary, which now is a rotor, a minimum of ns = 3

stator elements are required. The thrust force of each stator no longer results in a linear

movement of the secondary, instead a rotational movement is introduced. The thrust force

of each stator results in a torque, acting on the secondary. The thrust force mapping to

a resulting torque vector is covered in section 3.2. Each stator is controlled individually

with a three phase circuit electronics board.

3.2. Torque Output

The desired input for the spherical drive should be a torque vector τs. However it is only

possible to command the generated force acting on the sphere by each stator. Thus a

conversion from the resulting torque vector τs to ns single stator output forces is required,

as described in [3]. More details regarding this can be found in Appendix B.

3.3. Implementation

The 2015 revision of the SIM is built with of six stator coils, whereas a previous version

only had four of them [21]. Each stator coil is driven by a separate controller. More details

about the driver board electronics can be found in section 3.2 . Each SIM stator has three

phase windings: A, B and C. They are connected in delta mode. The rotor is constrained

by six ball transfer units. The torque output of the newer 2015 revision SIM is specifically

tuned for balancing mobile robots. The stator coils are positioned to generate a smaller

torque around the z-axis in upper body frame and a higher torque around an arbitrary

axis passing through the origin, perpendicular to the z-axis (see Fig. 9). In the current

state of development, the main focus is put on the dynamic stability of the ballbot. Hence,

not having sufficient torque available to perform a rotation around the z-axis is acceptable

as does not cause instability. However not being capable to apply the required torque

to recover from a steep lean angle is critical. It results in the robot failing to maintain

balance, falling over and causing possible damage to itself and its surrounding.

3.3. Implementation 11

Figure 9: SIM stator frame (left) and stator frame with rotor, constrained by ball transfer
units (right)

Figure 10: The stators are made out of laser-cut iron sheets

Fig. 11 displays the resulting stator forces, when commanding τs.x = [1, 0, 0]T Nm,

τs.y = [0, 1, 0]T Nm, τs.xy = [1, 1, 0]T Nm and τs.z = [0, 0, 0.1]T Nm respectively.

3.3. Implementation 12

−0.1

0

0.1 −0.1

0
0.1

0

0.1

τs.x = [1, 0, 0] Nm

|F | = 6.6 N

x y

z

−0.1

0

0.1 −0.1

0
0.1

0

0.1

τs.y = [0, 1, 0] Nm

|F | = 6.6 N

x y

z

−0.1

0

0.1 −0.1

0
0.1

0

0.1

τs.xy = [1, 1, 0] Nm

|F | = 9.4 N

x y

z

−0.1

0

0.1 −0.1

0
0.1

0

0.1

τs.z = [0, 0, 0.1] Nm

F = 5.7 N

x y

z

Figure 11: Resulting stator forces for different commanded torque vectors

The individual stator positions are symbolized with arcs in black color, whereas the

resulting torque axis is drawn as dashed-dotted blue line. Additionally to the desired

torque, a non-zero net force is introduced, acting between the stator frame and the rotor.

As expected, for the τs.z vector, which applies solely torque around the z-axis, all stators

output the same amount of force.

3.3. Implementation 13

3.3.1. Odometry Sensors

PC-mouse optical sensors are used to measure the angular velocity ωs and the traveled

distance of the spherical rotor. Each sensor i gives readings on two perpendicular axes,

xmi and ymi (see Fig. 12). Multiple sensors have to be used to calculate the angular

velocity vector ωs from the sensed surface velocities. According to [20], at least two

sensors are required. In principle, the required calculation is similar to the previously

discussed torque output mapping and has been shown in [21] and [3]. However as the

latest published paper [3] included a slightly incomplete sensor matrix, it seems reasonable

to briefly introduce a corrected version (see Appendix B.2).

pm0

xm0

ym0

pm1

xm1

ym1

pm2

xm2

ym2{SIM}

Figure 12: Sensor positions for nm = 3

4. Dynamic Model 14

4. Dynamic Model

Before the actual balance controller design is being discussed, the motion characteristics

have to be derived. To achieve this we will derive equations of motion with the Euler-

Lagrange approach.

Instead of deriving the equations for a full 3D model, a simplified 2D approach is chosen

(see Fig 13). This is referred to as the simplified planar model. To achieve control of the

real robot, two planar models, in xz and yz are combined. The combined planar models

do not fully represent the dynamics of the actual ballbot, but they give a good enough

approximation for smaller lean angles.

The derivation of simplified planar models can be found in [37], the simplified planar

model is displayed in Fig. 13.

Figure 13: Simplified planar model, adopted from [37]

The global frame origin is assumed to be in the initial wheel center point. A reduction

to the two bodies is done:

4.1. Parameters 15

• Main body b

• Wheel w

A full step-by step solution calculated with the open-source symbolic mathematics tool

Maxima is listed in appendix D.

4.1. Parameters

All parameters related to the main body are denoted with the index b:

mb Mass

lb Distance from wheel center to main body mass center

Ib Inertia

All parameters describing the wheel are denoted with the index w:

mw Mass

rw Radius

Iw Inertia

The gravity of Earth is denoted by g.

4.2. Assumptions

The following assumptions are made to further reduce the complexity of the planar model:

• There exists no slip between the wheel w and the ground

4.3. Generalized Coordinates 16

• The floor is parallel to the xy-plane

4.3. Generalized Coordinates

In the simplified planar model all possible states can be described with n = 2 coordinate

variables, both are indicated in Fig. 13.

• Lean angle φ

• Wheel angle θ

Thus, the vector q with generalized coordinates can be described as:

q =

(
θ

φ

)
(4.1)

The lean angle φ defines the inclination of the body compared to the vertical (z-

direction). Instead of defining the wheel angle θ only with respect to a global reference

point on the horizontal axis (x- or y-axis) as done in a few previous works (see [22] and

[39]), here θ describes the rotation of the wheel also with respect to the lean angle φ and

a global reference point. As it is assumed that there is no slip (see section 4.2), the wheel

angle describes the distance to the horizontal reference point by a given lean angle φ, it

can adopt values between ±∞. This resembles the actual situation on the robot, where

the sensors are attached to the main body to collect wheel odometry data, and therefore

change their position with respect to the lean angle φ.

First, the position vectors for the body b and the wheel w are defined:

vw =


rw (θ + φ)

0

0

 vb = vw + lb ·


sin (φ)

0

cos (φ)

 (4.2)

4.4. Potential Energy 17

Next, the corresponding velocity vectors, v̇w and v̇b, can be derived:

v̇w =


rw

(
θ̇ + φ̇

)
0

0

 v̇b = v̇w + lb ·


cos (φ) φ̇

0

−sin (φ) φ̇

 (4.3)

Lastly, the angular velocity vectors ωw and ωb for both bodies are defined:

ωw =


0

θ̇ + φ̇

0

 ωb =


0

φ̇

0

 (4.4)

4.4. Potential Energy

Next, the potential energies of the two bodies are deduced. As the floor is assumed to be

horizontal and perfectly flat, the potential energy of the wheel Vw remains constant.

Vw = 0 (4.5)

The potential energy of the body, denoted as Vb, changes corresponding to the lean angle

φ:

Vb = mb · g · lb cos(φ) (4.6)

4.5. Kinetic Energy

To find the kinetic energy for each body a generalized approach is taken:

T =
1

2
m 〈v̇, v̇〉+

1

2
I 〈ω, ω〉 (4.7)

T represents the objects kinetic energy, v̇ its velocity vector and ω its angular velocity

vector. The constant m denotes the objects mass property and I its inertia.

4.6. External Forces and Torque 18

With Eq.(4.7) and the further vectors defined before (see 4.3) we can now calculate the

kinetic energy of the wheel Tw and the main body Tb.

Tw =
(mw rw

2 + Iw)
(
θ̇ + φ̇

)2
2

(4.8)

Tb =
mb rw

2 θ̇2 + 2mb rw (lb cos (φ) + rw) φ̇ θ̇ +
(
2 lbmb rw cos (φ) +mb rw

2 + lb
2mb + Ib

)
φ̇2

2
(4.9)

4.6. External Forces and Torque

The vector Q represents all of the external/non conservative forces and torques. It is

the resultant of all forces and torques acting from outside on the system, modifying the

total energy of the system. These can be frictional forces, damping forces or general

forces/torques acting from outside on the ballbot.

Q =
∑
i

Fi +
∑
j

τj (4.10)

Q has to be written in the selected generalized coordinates. Force Fc and torque τc have

to be transformed from Cartesian coordinates to the generalized coordinates q first.

F =

(
∂rc
∂q

)T
· Fc , τ =

(
∂ωc
∂q

)T
· τc (4.11)

The vector rc represents the contact point of the force Fc on the body and ωc the angular

velocity of the body on which the torque τc is acting. Both are written in Cartesian

coordinates.

The only external force and torque that has to be factored in is the torque τ acting on

the wheel w generated by the spherical induction motor. As the stator of the spherical

4.7. Equations of Motion 19

drive is attached to the main body, every torque acting on the wheel w creates an equal

counter torque acting on the main body b (Newton’s third law, actio = reactio). This is

written in Cartesian coordinates:

τw = −τb =


0

τsim

0

 (4.12)

Taking the partial derivatives of ωw and ωb with respect to the generalized coordinates q

yields the required transformation matrices:

Jw =

(
∂ωw
∂q

)
=


0 0

1 −1

0 0

 Jb =

(
∂ωb
∂q

)
=


0 0

0 −1

0 0

 (4.13)

At last we need to resolve Q as shown before in Eq.(4.10):

Q = (J1)
T · τw + (J2)

T · (−τb) =

(
τsim

0

)
(4.14)

Further external forces are neglected for now, but Appendix C gives an example how

they can be included.

4.7. Equations of Motion

The Euler-Lagrange approach, as seen in the following Eq.(4.15) , is used to derive the

equations of motion, compare [11].

d

dt

(
∂T

∂q̇

)
−
(
∂T

∂q

)
+

(
∂V

∂q

)
= Q (4.15)

4.7. Equations of Motion 20

where T is the sum of all kinetic energy in the system, V is the sum of all potential energy

in the system and Q represents all external forces and torques.

For the simplified planar system of the ballbot T and V respectively are:

T = Tw + Tb V = Vw + Vb (4.16)

The equation (4.9) was already getting quite spacious. So before moving on, a few substi-

tutions are introduced for constant parameter products and sums by looking at Eq.(4.6),

Eq.(4.8) and Eq.(4.9) (as done in [37]):

α =mb r
2
w +mw r

2
w + Iw (4.17)

β = lbmb rw (4.18)

γ = Ib + l2b mb (4.19)

ε =mb · g · lb (4.20)

With all substitution rules applied, the total kinetic energy T in the system is:

T =
1

2

(
α
(
θ̇
)2

+ (2 β cos (φ) + 2α)
(
φ̇ θ̇
)

+ (2 β cos (φ) + α + γ)
(
φ̇
)2)

(4.21)

Taking the derivatives of T as required for Eq.(4.15) results in:

d

dt

(
∂T

∂q̇

)
−
(
∂T

∂q

)
=

 α
(
θ̈
)

+ (β cos (φ) + α)
(
φ̈
)
− β sin (φ)

(
φ̇
)2

(β cos (φ) + α)
(
θ̈
)

+ (2 β cos (φ) + α + γ)
(
φ̈
)
− β sin (φ)

(
φ̇
)2


(4.22)

The same is repeated for the V term:

(
∂V

∂q

)
=

(
0

−ε sin (φ)

)
(4.23)

There exists an alternative more compact notation form for the Euler-Lagrange equation,

which is hereby introduced, compare [11]. M is usually denoted as the mass matrix with

4.8. Linearisation 21

shape n by n, whereas n is the number of coordinates. C is the centrifugal and coriolis

forces vector and G is the vector of gravitational forces.

M(q) · q̈ + C(q, q̇) +G(q) = Q (4.24)

As only Eq.(4.22) contains the second derivative of q, M can be expressed by only

taking coefficients from Eq.(4.22). This results in:

M(q) =

(
α β cos (φ) + α

β cos (φ) + α 2 β cos (φ) + α + γ

)
(4.25)

If the mass matrix M is given, the vector C yields:

C =
d

dt

(
∂T

∂q̇

)
−
(
∂T

∂q

)
−M

(
θ̈

φ̈

)
=

−β sin (φ)
(
φ̇
)2

−β sin (φ)
(
φ̇
)2
 (4.26)

No expression has to be rewritten to retrieve G. The vector G already equals (∂V/∂q) of

Eq.(4.23):

G =

(
∂V

∂q

)
=

(
0

−ε sin (φ)

)
(4.27)

4.8. Linearisation

The linearisation is done with the first order of the Taylor series approximation. First,

an equilibrium point has to be found for the system. The equilibrium point is a system

operating point, in which a specific equilibrium input does not change the system state.

So, given there are no external disturbances, the system will remain in that operating

point for all time.

For the planer model of the ballbot an equilibrium point is found by applying the

following conditions: It is assumed that the robot initially has a zero lean angle and no

body velocity. Furthermore the robot is assumed to be positioned in the world coordinate

4.8. Linearisation 22

system origin and the wheel should have no angular velocity. Under these conditions no

torque has to be applied to the wheel (system input) at any time.

Formulated in general coordinates (see Eq.(4.1)), these assumptions for the operating

point are:

q0 =

(
θ0

φ0

)
=

(
0

0

)
q̇0 =

(
θ̇0

φ̇0

)
=

(
0

0

)
(4.28)

The formula for the first order Taylor approximation is, where t(x) is a non-linear term,

and x0 the selected equilibrium value for variable x [2].

t∗(x) ≈ t(x0) + t′(x0) · (x− x0) (4.29)

All linear terms remain unchanged, while all non-linear terms are approximated around

the value x0 with a linear gradient. Eq.(4.30), Eq.(4.31) and Eq.(4.32) can be deduced

from the taylor-approximation Eq.(4.29) in the chosen equilibrium point (see Eq.(4.28)).

Eq.(4.24) from the previous Section 4.7 is then taken as a basis for the linearisation. The

substitions are performed according to Eq.(4.30), Eq.(4.31) and Eq.(4.32).

cos(φ) ≈ 1 (4.30)

sin(φ) ≈φ (4.31)

(φ̇)2 ≈ 0 (4.32)

Next, the linearized version of Eq.(4.24) can be formulated:(
α β + α

β + α 2β + α + γ

)
︸ ︷︷ ︸

M∗

·q̈ +

(
0

0

)
︸︷︷︸
C∗

+

(
0

−ε φ

)
︸ ︷︷ ︸

G∗

=

(
τsim

0

)
︸ ︷︷ ︸

QNC

(4.33)

4.9. State Space Representation 23

4.9. State Space Representation

In a state space representation, a system of two equations is commonly used. The first

equation determinates the system state, the second updates the systems output:

ẋ(t) =Ax(t) +B u(t) (4.34)

y(t) =C x(t) +Du(t) (4.35)

The linearized model, from Eq.(4.33), is taken as a basis for the state space representation.

The two equations are solved for the highest order derivatives, θ̈ and φ̈ 2:

θ̈ =− (β + γ) Tsim − β ε φ
β2 − γ α

(4.36)

φ̈ =
(β + α) Tsim − α ε φ

β2 − γ α
(4.37)

Next, the system state vector x(t) and system input u are chosen:

x(t) =


θ

φ

θ̇

φ̇

 u = τsim (4.38)

The system matrix A and the input weight matrix B are derived from Eq.(4.36):

A =


0 0 1 0

0 0 0 1

0 −β ε
β2−γ α 0 0

0 −α ε
β2−γ α 0 0

 B =
1

β2 − γ α


0

0

β + γ

β + α

 (4.39)

Next, the output matrix C and the feed forward matrix D for the system output y(t) are

2ε is substituted, see Eq.(4.20)

4.10. Stability of the linear system 24

determined:

C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 D =


0

0

0

0

 (4.40)

C is an identity matrix, as all components of the state vector x(t) can be measured with

sensors on the robot, and therefore used as controller input.

4.10. Stability of the linear system

To evaluate the stability of the system, the poles of system matrix A have to be deter-

mined. These are the solutions to the characteristic polynomial. The solution is simply

a linear combination of Exponentials raised to the eigenvalues of the system matrix A.

If all exponentials are raised to a negative value, the system is decaying and therefore

stable, while a positive exponent results in an unstable system.

Solving A for eigenvalues,

det(A− Iλ) = 0 (4.41)

yields:

λ1,2 = 0 (4.42)

λ3,4 = ±
√
−ε · α
β2 − γ α

=

√
−ε · α
β2 − γ α

(4.43)

Two poles are located in the origin, while the third and the fourth require further investi-

gation. If the following condition (in Eq.(4.44)) can be assured, the poles created by λ3,4

do not form an imaginary pole pair:

−ε · α
β2 − γ α

= 0 (4.44)

Substituting α, β and γ with their original expressions (from Eq.(4.17), Eq.(4.18) and

4.11. Comparison with the non-linear system 25

Eq.(4.19)) and factoring out shared terms results in:

lb (mb (g mw rw
2 + g iw) + g mb

2 rw
2)

lb
2mb (mw rw2 + iw) + ib (mw rw2 + iw) + ibmb rw2

= 0 (4.45)

We can see in Eq.(4.45) that the expression underneath the radical sign cannot become

negative as the length lb, the earth gravity g, the masses mw & mb, the radius rw, and iw

& ib are all positive physical constants.

To summarize, all poles only have a real part. Therefore the system does not exhibit

oscillation in a step or impulse response. However, as one pole is located in the positive

half on the real axis, the system must be considered unstable.

This should not come as a surprise, given that there only exists one contact point with

the floor, whereas to be statically stable, a minimum of three contact points forming a

triangular profile are required.

4.11. Comparison with the non-linear system

Without doubt the linearized system is easier to work with, but how accurate is it com-

pared to the original non-linear system?

Under normal conditions, the lean angle stays close to zero, a lean angle larger than 5-

10 deg. is unusual. For example, during acceleration the original ballbot does not exceed

a max lean angle φ of 5 deg [33]. As such, a close approximation of the linearized system

is only considered to be required for φ < 10 deg.

Finding solutions for the non-linear system is attempted by applying numerical meth-

ods. For example, the Euler or other Runge-Kutta methods can be used to find approx-

imative solutions for ordinary differential equations. In order to apply them, the system

has to be rewritten first:

˙x(t) = f(x(t), t) for initial condition x0 at t0 (4.46)

4.11. Comparison with the non-linear system 26

x is the system state vector and f is a continuous function depending on x and t. Given

the initial system condition x0, a solution can be approximated.

Eq.(4.46) is not much different from the first state space equation, Eq.(4.34). However

due to the non-linear nature, having a separate input matrix B and a system matrix A

is not feasible. The state variables vector x remains unchanged compared to the linear

system (see Eq.(4.38)):

x(t) =


θ

φ

θ̇

φ̇

 (4.47)

Solving the non-linear system from Eq.(4.24) for θ̈ and φ̈ yields:

θ̈ =
− (2 β cos (φ) + α + γ) Tsim − β (β cos (φ) + γ) sin (φ)

(
φ̇
)2

+ ε (β cos (φ) + α) sin (φ)

β2 cos (φ)2 − γ α
(4.48)

φ̈ =
(β cos (φ) + α) Tsim + β2 cos (φ) sin (φ)

(
φ̇
)2
− α ε sin (φ)

β2 cos (φ)2 − γ α
(4.49)

The denominator on the right hand side is the same for both equations. It contains the

state variable φ. Hence, a non-zero denominator has to be ensured for the range of cos(φ),

which is true given the following condition:

β2 cos (φ)2 − γ α 6= 0 −→ −
√
γ α

β
< −1 or

√
γ α

β
> 1 (4.50)

Using the parameters from ... the condition formulated in Eq.(4.50) is met. The denom-

inator always remains non-zero.

With the state vector formulated in Eq.(4.47) and the explicit results for the second

derivatives θ̈ and φ̈ it is now possible to solve the non-linear system numerically.

The MATLABr implementation of the Runge-Kutta method, ode45, is used to solve

the differential equations system. The numerical calculation is stopped when one of the

4.11. Comparison with the non-linear system 27

following criteria is met:

φ > 90◦ or φ < −90◦ (4.51)

In both cases the lean angle φ indicates, that the robot has fallen and is unable to recover.

Listing 1 shows the implemented MATLABr function to calculate the state vector x

over time, given an initial state x0 and input u. The passed argument ssEq is a function

handle to a custom function. This function is called from ode45 each timestep and returns

the calculated derivative ẋ (as solved in Eq.(4.49) and Eq.(4.48)) for a given a state vector

x and system input u. Both return all state vector values over time.

1 function [xv,t] = nonLinStateSpaceSim(ssEq , x0, uv, Ts,

tEnd)

2 t = 0:Ts:tEnd;

3 xv = zeros(4,length(t)); xv(:,1) = x0;

4 for i = 2: length(t)

5 [to,xo] = ode45(ssEq , [t(i)-Ts t(i)],[xv(:,i-1);

uv(i-1)]);

6 xv(:,i) = xo(end ,1:4)’;

7 end

8 end

Listing 1: Matlab function, calculating the nonlinear system response

Listing 2 shows the custom MATLABr function to calculate the linear system response.

The function expects a discrete state space system. The continuous linearized system

is discretized with the c2d() function (zero order hold, sampling time Ts = 1/200 s)

beforehand.

1 function [xv,t] = discreteLinStateSpaceSim(dsys , x0, uv,

tEnd)

2 t = 0:dsys.Ts:tEnd;

3 xv = zeros(4,length(t)); xv(:,1) = x0;

4 for i = 2: length(t)

5 if (abs(xv(2,i-1)) >= pi/2)

6 xv(:,i) = xv(:,i-1); % freeze

7 continue

8 end

9 xv(:,i)= dsys.A*xv(:,i-1) + dsys.B*uv(:,i-1);

10 end

11 end

Listing 2: Matlab function, calculating the linear discrete system response

4.11. Comparison with the non-linear system 28

The behaviors of the linear and non-linear system are compared in two scenarios:

1. Initial non-zero lean angle

The robot is put in an initial state x0, where the lean angle φ = 0.1 deg. The system

input Tsim is set to zero.

2. Input step

Applying an input step to the system is done by setting Tsim = 1 Nm. This equals

commanding 1 Nm of torque to the drive system.

Fig. 14 shows the resulting wheel travel θ and lean angle φ over time for an initial

non-zero lean angle. The robot body starts falling over in the positive direction on the

X-axis whereas the wheel moves backwards in the opposite direction.

0 0.5 1 1.5
−600

−400

−200

0

Time in s

W
h
ee

l
tr

av
el

in
d
eg

.

0 0.5 1 1.5
0

20

40

60

80

100

Time in s

L
ea

n
an

gl
e

in
d
eg

.

Figure 14: Comparison between the linear (red) and non-linear system (blue) response,
given a initial non-zero lnean angle (φ = 0.1 deg)

Fig. 15 displays the resulting wheel travel θ and lean angle φ over time with an input

step applied at t = 0. The wheel starts moving in positive direction on the X-axis, while

the robot body starts falling over in the opposite direction.

4.11. Comparison with the non-linear system 29

0 0.5 1 1.5
0

200

400

600

Time in s

W
h
ee

l
tr

av
el

in
d
eg

.

0 0.5 1 1.5
−100

−80

−60

−40

−20

0

Time in s

L
ea

n
an

gl
e

in
d
eg

.
Figure 15: Input step at t = 0, comparison between the linear (red) and non-linear system

(blue) response

Fig. 16 and 17 give a more detailed view on the error caused by the linearisation. The

vertical dashed lines indicate where the non-linear system response reached a lean angle

φ of 5◦, 10◦ and 45◦ respectively. For both scenarios the error increases depending on the

lean angle φ. The linearized system response becomes less accurate for a larger φ due

to the small angle approximation. In both figures the wheel travel error increases with a

higher rate than the lean angle error. However, for φ < 5◦, the response of the non-linear

system is approximated with negligible error. At φ = 10◦ the lean angle error is 3.96 and

1.28 percent respectively.

Given these results it seems acceptable to design a controller based on the linearized

system.

4.11. Comparison with the non-linear system 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

10−9

10−7

10−5

10−3

10−1

101

103 5◦

0.108◦
0.796◦

10◦

0.396◦
2.946◦

45◦

19.713◦
152.437◦

Time in s

ab
s.

E
rr

or
in

d
eg

.

Wheel travel error
Lean angle error

Figure 16: Error due to linearisation - scenario 1: Initial non-zero lean angle (logarithmic
scaling on y-axis)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

5◦

0.002◦
0.008◦

10◦

0.128◦

1.047◦

45◦

16.513◦

130.477◦

Time in s

ab
s.

E
rr

or
in

d
eg

.

Wheel travel error
Lean angle error

Figure 17: Error due to linearisation - scenario 2: Input step (logarithmic scaling on y-
axis)

4.12. Simulation with a physics engine 31

4.12. Simulation with a physics engine

This section describes how to implement the robot in a physics engine to simulate the

motion dynamics. ODE 3 is used to accomplish this task. This engine is open source

software and has been available since 2001 [9]. It has been successfully used in many

robotics simulation software already, most notably in the DARPA Humanoid Challenge

simulator in 2015, see [8].

ODE applies the Euler method to calculate constrained rigid body dynamics for each

simulation time step. The implemented algorithms are intended for real-time applications,

which means the solution precision is reduced in favor of a lower computation time. For

example, instead of repeating an iterative procedure until a certain convergence limit has

been reached, only a fixed amount of iteration steps are being carried out.

The previous section already described an approach how to work with the more accurate

non-linear system dynamics equations, see 4.11. What additional gains can be expected

from a simulation with a physics engine? First off, it provides a way to counter-check the

plausibility of the derived system equations from the previous section, as no knowledge

about them is required to build the simulation in ODE. And secondly, a model in 3D-space

can be obtained this way with little effort, while up to this point, only the planar model

has been discussed. This can be useful at a later stage for testing the actual controller

for the real robot.

4.12.1. Preparation

At the beginning a scene has to be set up. This is done by positioning bodies and joints

in a dynamics world object, the ODEworld.

The robot is modeled with two solid bodies: one body with spherical shape represents

the wheel, while the upper body is abstracted as a body with a rectangular solid shape.

3open dynamics engine

4.12. Simulation with a physics engine 32

Each body is associated with mass, inertia and a collision shape. Regarding the collision

shapes, it is important to take special care, that bodies do not intrude each other in their

initial position. Otherwise the simulation will give inconsistent results.

A ball-socket joint is used to model the connection between the upper body and the

wheel. The joint is positioned in the center of the wheel, as can be seen in Fig. 18. The

rotation of the ball-socket joint is internally stored in quaternions, therefore no gimbal

lock phenomena should occur.

In addition, an angular motor joint is created in the same position. The angular motor

is configured for three rotational degrees of freedom (to generate torque around three

axes), where each axis is defined relative to the upper body frame of the robot. During

simulation, the dJointAddAMotorTorques() function of the angular motor is used to

simulate the drive torque input. This function call first transforms the commanded torque

vector into the global frame. Then the torque is added to the two bodies linked to the

angular motor, whereas the torque added to the second body is reversed.

Figure 18: ODE model, showing the collision shapes and joint placements

The robot has now been modeled and is ready to roll, the last thing missing is a floor.

An even, horizontal floor can be created with the dCreatePlane() function. The plane

object is single-sided. Therefore collisions are only being registered on the side, which the

normal vector of the plane is facing.

4.12. Simulation with a physics engine 33

The drawstuff library is used to visualize the simulation. It comes included with the

ODE library and provides basic functions to visualize a 3D scene. Fig. 19 shows the

simulation in action.

Figure 19: The ODE simulation is visualized with the drawstuff library

4.12.2. At run time

All the preparation work is done - now it is simulation time. Beforehand however a

general short note: Setting directly positions or velocities for bodies should only be done

to create the initial scene before the simulation. Once the simulation has been started,

active bodies should be manipulated by applying force or torque to them. Otherwise

discontinuities are introduced, which cause incorrect simulation results.

One time step in the simulation is carried out as follows:

• Body collision detection

Collisions are modeled in ODE by creating temporary contact joints in the points

where the bodies collide/intersect. All joints of this type are added to one dJointGroupID

object. This way it is easier to discard them later.

Two kind of collisions are assumed to occur in this particular simulation: The first

kind is a collision between the wheel and the floor, which is expected for every time

4.12. Simulation with a physics engine 34

step. The second kind only occurs in case of a fall, where the upper body collides

with the floor.

The collision surface properties are defined as follows: the static friction mu is set

to dInfinite, the dynamic friction rho is set to zero and bounce as well is set to

zero. This creates a ”rolling without slip” condition for the wheel body on the floor

plane.

• Compute results for the next time step

This is done by calling dWorldStep(). ODE provides a second method, named

dWorldQuickStep(...) which takes less computation time but is less precise.

• Remove temporary collision joints

The function call dJointGroupEmpty(...) is used remove all collision joints, they

have to be recalculated for the new body positions.

• Update visuals

The two bodies are redrawn in their new pose with the drawstuff function calls

dsDrawBox(...) and dsDrawSphere(...) respectively.

• Update space state vector x

Listing 3 shows the corresponding code, the state space vector is stored as a Eigen

library matrix object4. The wheel angle θ and lean angle φ are calculated us-

ing the dBodyGetPosition(...) and dBodyGetRotation(...) function. The

atan2(...) function returns the lean angle with the correct sign. The angular

velocities of the wheel θ̇ and the body φ̇ around Y-axis can be directly retrieved

with the dBodyGetAngularVel(...) function.

1 Eigen :: MatrixXd X(4,1);

2 const dReal* R = dBodyGetRotation(upperBody);

3 // R is 3x4 matrix , flattened , every 4. val empty

4 X(1,0) = atan2(R[2],R[10]); // phi

5 X(0,0) = -dBodyGetPosition(wheel)[0] / r_w + X(1,0); //

theta

4The Eigen library is used in the written code whenever matrices or vectors are required. It is an
open source C++ library and can be found under [36]

4.12. Simulation with a physics engine 35

6 X(3,0) = dBodyGetAngularVel(upperBody)[1]; // dphi

7 X(2,0) = -dBodyGetAngularVel(wheel)[1] + X(3,0); // dtheta

Listing 3: Update of the state vector in the ODE simulation

4.12.3. Results

The system responses are generated for the same scenarios as in previous section. Again,

the response to an initial 0.1 deg lean angle and an input step are being looked at. The

non-linear system response (see section 4.11) is assumed as ground truth and compared

to the results obtained with the simulation in ODE.

0 0.5 1 1.5 2
−400

−300

−200

−100

0

time in s

th
et

a

0 0.5 1 1.5 2
0

20

40

60

80

100

time in s

p
h
i

Figure 20: Fall from φ = 0.1 deg lean angle, comparison between the non-linear system
(red) and the ODE simulation (blue) result

4.12. Simulation with a physics engine 36

0 0.5 1 1.5
0

100

200

300

400

time in s

th
et

a

0 0.5 1 1.5
−100

−80

−60

−40

−20

0

time in s

p
h
i

Figure 21: Input step at t = 0, comparison between the non-linear system (red) and the
ODE simulation (blue) result

As can be seen Fig. 20 and Fig. 21, the response characteristics are overall similar.

However, for the initial non-zero lean angle scenario the results are further apart.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

5◦

5.250◦

0.848◦

10◦

10.505◦

1.712◦

45◦

26.904◦

5.715◦

Time in s

ab
s.

E
rr

or
in

d
eg

.

Figure 22: Error (logarithmic scaling on Y-axis)

4.12. Simulation with a physics engine 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
10−4

10−3

10−2

10−1

100

101

5◦

1.097◦

0.155◦

10◦

1.803◦

0.269◦

45◦
3.795◦

0.745◦

Time in s

ab
s.

E
rr

or
in

d
eg

.

theta error
phi error

Figure 23: Error (logarithmic scaling on Y-axis)

A small spike can be seen for the lean angle in both scenarios. The lean angle shortly

rises above 90 deg, which means the main body sinks into the floor plane due to an

insufficient collision approximation and does not satisfy the contact constraint.

When the approximative solution in one time step does not satisfy a joint constraint,

then a corrective force is applied in the next time step. The strength of the force can be

adjusted with the Error Reduction Parameter (ERP). The second parameter provided by

ODE to influence the joint constraint solving is named Constraint Force Mixing (CFM).

An increased CFM value softens a rigid joint constraint. The ERP and CFM parameters

cause a joint to behave like a spring damper system.

The ERP and CFM parameters can be set for each joint individually. Global default

values can be set with the dWorldSetCFM() and dWorldSetERP() functions. For the

simulation CFM = 1e− 16 and ERP = 0.3 are used for all joints to keep them rigid and

to achieve an error reduction with minimum overshoot.

5. Control 38

5. Control

In the previous section an equation system describing the motion of the robot has been

derived. Now in this section, based on the equation system, the design of an appropriate

controller for dynamic stability - balancing - of the planar ballbot system is discussed.

For balancing, the target of the controller is to maintain a zero lean angle, which means

to keep the robot in an upright position by commanding an appropriate torque to the

drive system of the robot.

A simulation in a physics engine has been introduced, which can be useful to test a

control solution for the 2D planar model in 3D-space, once the controller design results

for the planar ballbot system have proven successful.

5.1. State Feedback

This section describes how to implement a basic state feedback controller for the linearized

system in state space. The state feedback in the state space is one way to modify the

behavior of a system. The term ”full state feedback” is used, when all variables of the

state vector are used in the feedback path.

Choosing the right gain matrix K is the key to achieve the desired system behavior.

The state vector x is multiplied by the gain matrix K in the feedback path. The difference

between K · x and a reference input r is fed back into the system as input u. Therefore

the new full closed loop system matrix Acl becomes [28], [10]:

ẋ(t) =Ax(t) +Bu(t) where: u(t) = r(t) − K · x(t) (5.1)

ẋ(t) = (A−BK)︸ ︷︷ ︸
Acl

x(t) +Br(t) (5.2)

5.1. State Feedback 39

5.1.1. Controllability

Before an optimal feedback gain matrix K is designed for the planar ballbot system, the

controllability matrix MC of the system has to be examined. The controllability matrix

MC depends on the system matrix A and the input matrix B. It is calculated as follows:

MC =
(
A0B A1B . . . An−1B

)
(5.3)

where n is the number of state variables. In case the number of outputs = 1, the resulting

MC matrix is square. The controllability criteria is fulfilled, if rank(MC) = n. For

rank(MC) = n, beginning from an arbitrary initial state x0 every possible state xf can be

achieved in finite time by applying a certain input u. This is not the case, if for example

one state variable cannot be influenced by the input. Then only a sub-system of A is

controllable [10].

Back to the planar system of the robot, the controllability criteria is fulfilled for

Eq.(4.39). State space, as the resulting matrix has full rank (rank(MC) = n = 4).

Given that relieving information, focus can shift back to the state feedback.

5.1.2. Linear Quadratic Controller

The gain matrix K directly influences the pole positions of the original system matrix A

in the closed loop system. So a manual pole-placement method can be attempted. Alter-

natively the gains can be found by minimizing a quadratic cost function. The resulting

controller is known as the Linear Quadratic Regulator (LQR) or the LQ controller, where

linear stands for the linear system, and quadratic for the quadratic cost function. The

quadratic cost function is defined as follows [28]:

J̃ =

∫ ∞
0

(
x(t)TQx x(t) + u(t)TQu u(t)

)
dt (5.4)

The controlled system behavior can be tuned by adjusting the cost matrices Qx and Qu.

5.1. State Feedback 40

A common strategy is just to popularize the diagonal elements [28]. For this arrangement

the cost matrix elements define how much each squared state variable and each squared

input contributes to the total cost.

Returning from the short theory excursion to the planar ballbot system, the cost matrix

Qx and the scalar Qu (only one system input exists) are now carefully selected: The

lean angle φ and its angular velocity φ̇ should remain small, to make the system more

predictable, less dynamic and to decrease the risk of a fall. Hence, a larger value for φ and

φ̇ should be punished with an increased cost, whereas the wheel travel θ and the wheel

velocity θ̇ are not considered to be as costly.

Qx =


10 0 0 0

0 100 0 0

0 0 1 0

0 0 0 1000

 Qu = 1 (5.5)

The optimal gain matrix K for Qx and Qu is obtained in MATLABr with the lqr()

function. Fig. 24 shows the system response to a φ = 2 deg initial lean angle and reference

input r = 0. A higher value for Qu reduces the commanded drive torque and increases

the steady state time.

0 2 4 6 8

0

20

40

60

Time in s

W
h

ee
l

tr
av

el
θ

in
d

eg
.

0 2 4 6 8
−1

0

1

2

Time in s

L
ea

n
an

g
le
φ

in
d

eg
.

0 2 4 6 8

0

2

4

6

8 8.8 Nm

5.1 Nm
4.2 Nm

Time in s

T
o
rq

u
e

in
p

u
t

u
in

N
m

Qu=1
Qu=10
Qu=100

Figure 24: The influence of the input cost Qu, with initial φ = 2 lean angle

For a reference input r = 0, the augmented system attempts to reach zero for each

5.1. State Feedback 41

state variable, which as well can be seen in Fig. 24. The initial non-zero lean angle φ is

reduced by applying a torque to accelerate the wheel. Once the lean angle changes its

sign, the robot returns to its origin, which gives all zero for the state variables.

For r 6= 0, the system behavior is yet not known and requires further examination.

Therefore the augmented system is tested in the same scenario as before in section 4.11.

where a step input is applied. So far this always resulted in a lean angle φ exceeding ±90◦

- or put differently: The robot always took a hard landing on the floor.

The step response (r = 1) is displayed in Fig. 25. As can be seen, initially the wheel

moves slightly backwards, which results in the robot starting to lean forward. Next, the

wheel is accelerated in direction of the now increasing angular lean velocity of the upper

body. This decreases the lean angle until it changes to the opposite. The wheel decelerates

and the robot comes to halt at a different position. Hence, applying an input step sets a

new position target. However, the reached steady state wheel angle θ does not equal the

size of the input step.

0 2 4 6

0

0.5

1

Time in s

W
h

ee
l

tr
av

el
θ

in
ra

d
.

0 2 4 6

−0.2

−0.1

0

0.1

Time in s

L
ea

n
an

gl
e
φ

in
d

eg
.

0 2 4 6

0

0.5

1

Time in s

T
or

q
u

e
in

p
u

t
u

in
N

m

Figure 25: System step response

This issue is addressed by adding a precompensation to the reference input.

5.1. State Feedback 42

ẋ(t) =Aclx(t) +Br̃(t) where: r̃(t) = V r(t) (5.6)

ẋ(t) =Aclx(t) +B V︸︷︷︸
Bv

r(t) (5.7)

Assuming a steady state ẋ(t = ts) = 0 at time ts, the precompensation has to be chosen

so that y(t = ts) − r(t = ts) = 0. For D = 0, the required precompensation can be

calculated as follows:

V = −
(
C(Acl

−1 B)
)−1

(5.8)

With the added precompensation an unit input reference step results in a position

change to θ = 1 rad, see Fig. 26.

0 2 4 6

0

0.5

1

Time in s

W
h

ee
l

tr
av

el
θ

in
ra

d
.

0 2 4 6

0

0.5

Time in s

L
ea

n
an

gl
e
φ

in
d

eg
.

0 2 4 6

−2

0

Time in s

T
or

q
u

e
in

p
u

t
u

in
N

m

Figure 26: System step response with precompensation

5.1.3. Simulation

Two state feedback controllers are now added to the simulation in the open dynamics

engine (see section 4.12), the first for the xz-plane, and a second one for the yz-plane. A

sequential overlay image capturing the movement of the robot is displayed in Fig. 27. The

robot starts at x = y = 0 m. The reference input is set to r = 1/rw for both controllers.

The same reference input is used in Fig. 28 and 29 . However, now between time

5.1. State Feedback 43

t = 5 s and t = 27 s disturbance forces are applied to the main body of the robot. This

is accomplished in ODE with the dBodyAddForceAtRelPos(...) function. Despite the

applied disturbance forces, the simulation remains stable. Once the disturbance forces

are removed, the robot returns to its reference position (x = y = 1 m)

Figure 27: Two separate state feedback controllers stabilize the ballbot in the ODE sim-
ulation

0 10 20 30

0

200

400

600

Time in s

W
h

ee
l

an
gl

e
in

d
eg

0 10 20 30
−4

−2

0

2

4

Time in s

L
ea

n
an

g
le

in
d

eg

Figure 28: Two separate state feedback controllers, lean angle and wheel angle plot, with
applied disturbance forces

5.2. Conventional Controller 44

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Global x position in m

G
lo

b
al

y
p

os
it

io
n

in
m

Figure 29: Wheel global position plot, with applied disturbance forces

5.2. Conventional Controller

In the current software implementation of the original ballbot a more conventional control

structure is used [38]. It consists of an inner and outer closed loop. The inner loop is

realized as a PID controller, which tracks the desired center of mass (COM) position

xd. This controller is sufficient for balancing and gives the robot an implied physical

compliance. It can be moved around or pushed away with minimal force. The to be

minimized error ecom is the difference between the desired COM position xd and the

actual COM position xcom:

ecom(t) = xd(t)− xcom(t) where: xcom(t) = lb · sin(φ(t)) (5.9)

5.2. Conventional Controller 45

The controller output u, based on the error ecom, is defined as

u(t) = kp ecom(t) + ki

∫ t

0

ecom(t) dt+ kd (ẋd(t)− rw θ̇(t)), (5.10)

where the global wheel velocity is approximated by the relative wheel velocity θ̇ observed

from the upper body frame.

The outer loop control can be realized in different ways. For performing more com-

plicated trajectories, an advanced planner software is used (see [33]) which feed-forwards

lean angle and velocity values to the inner loop.An additional feedback loop corrects the

commanded values based on the occurring error.

Solely for station keeping, the outer loop can be realized as a PD controller. It tracks

a desired wheel position xwd. The wheel position error ew is defined as

ew(t) = xwd(t)− rw(θ(t) + φ(t)) (5.11)

This yields the following PD controller for station-keeping with lean angle output:

φ(t) = kp ew(t)− kd rw θ̇(t), (5.12)

under the assumption that φ̇(t) ≈ 0 and the desired velocity ẋwd(t) = 0.

6. Implementation 46

6. Implementation

The newly built robot is named SIMbot, as it is a ballbot actuated by a spherical induction

motor (short: SIM). Fig. 30 shows a picture of the robot balancing on its own and gives

an overview about the positioning of the most important components. In order to test

Figure 30: Finished SIMbot while balancing (left) and a CAD drawing (right), showing
the positions of the most important components

the capabilities of the SIMbot, first a power distribution layout and a communication

concept had to be designed and implemented. This was done having the concepts of the

original ballbot as a guidance.

6.1. Power Distribution Layout 47

6.1. Power Distribution Layout

Fig. 31 displays the power distribution layout on SIMbot. Four non spillable 12 V lead

acid batteries (4x Panasonic LC-R127R2P) connected in series supply power during mobile

operation. In contrast to the original ballbot, the power distribution layout for SIMbot

is capable of dealing with up to 96 V, just in case this would be needed for future tests

or applications. SIMbot carries its own charger on board (Schauer JAC1548) to allow for

easy recharging wherever. Each of the six Three Phase Driver Board is connected to the

battery pack via the circuit breaker switch. The battery voltage is converted down to

Figure 31: Power Distribution Layout

12.4 V via a DC-DC Converter (Delta Electronics B70SR12424A) capable of supplying a

current of up to 24 A, which is more than sufficient to power both computers on board

and the three leg motor drivers. The 5 V USB output voltage of the low-level computer

is used to power the inertial measurement unit (IMU. and the Mouse Master Board and

all three connected laser mouse sensors via an additional analog voltage regulator.

6.2. Communication and Processing

Fig. 32 focuses on the communication and the used protocols between subsystems. The

robot carries two Intel architecture computers on board: The high-level computer, an

6.2. Communication and Processing 48

Figure 32: Communication protocols and paths on SIMbot

Intel NUC D34010WYK, is designated for future vision and path planning tasks.

The low-level computer used here is an Intel NUC 5i5MYHE. It runs a QNX real-time

system and is used for the closed loop balancing control. The control loop is closed at 200

Hz. The low-level computer handles all communication with the six Three Phase Driver

Boards of the spherical induction motor and reads sensor data from the Mouse Master

Board and the inertial measurement unit (IMU).

The IMU sensor is a VectorNav VN-100. It supports sensor fusion and is configured to

output Euler angles and angular velocities.

The Mouse Master Board deals with the low-level parts required for the communication

with the three Avago ADNS-9800 laser mouse sensors and regularly retrieves data from

the sensors.

Commands can be transmitted from remote via wireless to the high-level computer.

These are consequently passed on to the low-level computer via a wired Ethernet connec-

tion.

7. Testing and Initial Results 49

7. Testing and Initial Results

7.1. Controller Setup

Two different control structures have been shortly introduced in section 5. For the im-

plementation on the real robot, the conventional approach is selected. The main reason

for this decision is the original ballbot, where the conventional control structure yields

robust results. Furthermore, this enables SIMbot to make use of higher-level software,

which already has been written for ballbot, like the trajectory planner.

Now, the first step is to find the right balancing controller gains. This is done ex-

perimentally. At the beginning only the proportional gain kp is increased until SIMbot

attempts to accelerate under larger lean angle errors. This gives a rough idea about the

required order of magnitude for kp.

Next the BayesOpt library is used, which implements the Bayesian optimization method-

ology for nonlinear-optimization, [24]. Given bounds for each gain and a cost function c,

it attempts to optimize the gains for an unknown non-linear model. At first the bounds

for the gains kp, ki and kd are selected very conservatively to be on the safe side. Then,

whenever the resulting gain set converges towards a gain bound, the bounds are extended

for that particular gain and the optimization procedure is restarted.

The optimization procedure works as follows: First, the optimizer suggests a gain set.

Five supervised short balancing trials, each with a duration of 5 sec, are carried out for

the suggested gain set. The cost function c is evaluated for all of the five trials. The result

is fed back into the optimizer. Based on the last and all previous results, the optimizer

selects new gains and the whole procedure is repeated.

Compared to manual tuning, this procedure is systematic. However choosing the right

cost function is crucial. At first, only the mean square error of φx and φy has been taken

7.2. On-board Mouse Sensor Adjustment 50

into account:

c =
1

n

n∑
i=1

(0◦ − φx)2 +
1

n

n∑
i=1

(0◦ − φy)2, (7.1)

where φx and φy are the separate controller inputs, the lean of the SIMbot body in

the xz- and yz- planes. This however leads to gain sets, where the spherical induction

motor exhibits high frequency oscillations. To prevent this, the quadratic derivate of

the lean angle error is additionally taken into account. Furthermore, the amount of

commanded torque is another measure that can be taken into account. Using lower

torque while keeping the lean angle error in the same range compared to some controller

which commands higher torque should be rewarded by the cost function.

In the end, this systematic approach gives a good understanding about the usable range

for each gain and their influence on the behavior.

7.2. On-board Mouse Sensor Adjustment

To determine a change of position of the robot over time, three laser mouse sensors

are mounted on the frame of the spherical induction motor (see section 3.3.1). The

resolution of the sensors is adjustable by writing a 2 byte value to the register over the

SPI communication bus.

The default resolution register value rv is used (= 0x44). According to the sensor

documentation, this gives approximately the following resolution [13]:

CPIref ≈ rv · 50. (7.2)

The sensors return surface path length data as a number of ”Counts” registered on their

local x- and y-axis. With the CPI value (Counts per Inch) the Counts can be converted

to the inch unit.

A linear error is assumed individually for each sensor and each x/y-axis, which should

7.2. On-board Mouse Sensor Adjustment 51

be compensated with a corrected CPI value. It is not necessary to compensate an offset,

as all three sensors give zero-readings, when the robot is resting motionless.

The x-axis of each sensor should give the same reading, when a rotation of the rotor

around the global z-axis is introduced. Correcting them is straight-forward. To determine

the error for the y-axis of each sensor, the robot is moved multiple times a known distance

forwards and backwards.

To ensure that the distance is always the same, stoppers are placed on the floor. The

stoppers are angular aluminum brackets. So the robot is moved until its wheel hits one

of the stoppers and then it is pushed back in the opposite direction until the opposing

stopper is reached. The robot is hinged up in a movable frame, in order to prevent a lean

angle influencing this procedure, see Fig. 33.

Figure 33: Sketch of test set-up to perform on-board mouse sensor adjustments

The distance l between the angular brackets has to be measured. This however is not

equal to the required wheel travel distance. As shown in Fig. 34 a distance lx remains

between the center of the rotor and the edge of the bracket. Consequently, the reference

distance lref is,

lref = l − 2 · lx (7.3)

Measuring lx directly is difficult as it is hard to determine the actual contact point

7.2. On-board Mouse Sensor Adjustment 52

between the wheel and the floor. However, measuring twice the distance, 2 · lx, utilizing

a second bracket, placed as shown in Fig. 34 opposing and parallel to the first one can

Figure 34: Definition of the length lx

be done instead.

Three series of runs are performed. For each of them, the yaw of the robot is adjusted

to have a different mouse sensor recording the main movement direction. The three

corresponding direction unit vectors vd0,1,2 are 5:

vdi =


cos(120◦ · i)
− sin(120◦ · i)

0

 for i = 0, 1, 2 (7.4)

Given Eq.(7.4) , the individual angular velocity unit vectors of the rotor are expected to

be:

ωi =


sin(120◦ · i)
cos(120◦ · i)

0

 for i = 0, 1, 2 (7.5)

Fig. 35 shows an exemplary run, vd2 is the robots main movement direction. This means,

the sensor M2 is facing in the main movement direction. The odometry results are shown

in the Fig. 35 on the left side. The traversed path of the robot is colored according to

time.

5equal to pmi/rw with nm = 3 from Eq.(B.15)

7.2. On-board Mouse Sensor Adjustment 53

First the main movement direction is computed from the data. Assuming that the main

movement axis gives maximum variance, the principal components analysis is applied.

Next the data dimension is reduced to one by projecting all x/y position coordinates onto

the main axis. Subsequently the one-dimensional data is searched for local minima and

maxima, assuming one zero-crossing in-between neighboring extreme values (Fig. 35 on

the right side) . Taking the absolute differences between all found extreme values yields

the measured distances along the main axis [15].

Figure 35: Exemplary odometry test result

7.2. On-board Mouse Sensor Adjustment 54

0.0 0.2 0.4 0.6 0.8 1.0

normalized time

1.0

0.5

0.0

0.5

1.0
gl

ob
al

 p
os

iti
on

, p
ro

je
ct

ed
 o

n
m

ai
n

ax
is

 i
n
 m

Figure 36: The data from Fig. 35, now projected on the main movement axis and reduced
to 1D

Going back to section 3, Eq.(B.21) yields the local surface velocities given an angular

velocity vector. Using the angular velocity vectors from Eq.(7.5) as input for Eq.(B.21)

and applying the L1-norm to the results gives the individual sensor influences concerning

the y-axis for each of the three measurement series:

s0 =


1/2

1/4

1/4

 s1 =


1/4

1/4

1/2

 s2 =


1/4

1/2

1/4

 (7.6)

Given the information provided by Eq.(7.6), and the average distance result from each

7.3. Balancing 55

measurement series, the individual distances measured by each sensor can be retrieved:
(s0)

T

(s1)
T

(s2)
T


︸ ︷︷ ︸

Ssens

·


lsens.0

lsens.1

lsens.2


︸ ︷︷ ︸

Lsens

=


lavg.0

lavg.1

lavg.2


︸ ︷︷ ︸

Lavg

(7.7)

Lsens = S−1sens · Lavg (7.8)

Finally, using Eq.(7.9) an adjusted CPI value can be calculated for each sensors y-axis:

CPIy.i =
CPIref
lref

· lsens.i for i = 0, 1, 2. (7.9)

Table 1 summarizes the adjustment results:

Table 1: Sensor adjustment results

lx = 40.45 cm
lref = 1.656 m

CPIref = 3400 cnt/in

Series Avg. Std.
0 1.686 m ±0.52 cm
1 1.722 m ±0.81 cm
2 1.658 m ±1.06 cm

Sensor lsens.i CPIy.i
M0 1.678 m 3355.42 cnt/in
M1 1.566 m 3595.40 cnt/in
M2 1.822 m 3090.23 cnt/in

7.3. Balancing

Only the two inner loop PID controllers are active for balancing. The following figures

show an 8 s time extract of data recorded while balancing. The data was obtained on

a floor consisting of soft foam tiles. This leads to additional damping, and the risk of

damaging the copper surface of the rotor is minimized. The gains for both PID controllers

are set to kp = 750, kd = 55 and ki = 55 respectively. This gain set yields moderately

good lean angle tracking (Fig. 37) while as well giving a sufficient physical compliance.

7.3. Balancing 56

Figure 37: Lean angle vs. time

The lean angle tracking results can be seen in Fig. 37. The tracking target for balancing

is a lean angle of 0 deg. The lean angle in x- and y-direction directly corresponds to the

PID controller feedback values, whereas the actual body lean angle is at least as large as

φx or φy. According to [37] the original CMU ballbot is able to maintain a lean angle of

less than ± 0.1 deg. With the current controller implementation, SIMbot yields sightly

more. The maximum observed lean angle is approx. ± 0.12 deg. A low lean angle tracking

error is advantageous for executing pre-planned movement trajectories.

7.3. Balancing 57

Figure 38: Wheel surface velocity vs. time

Fig. 38 depicts the surface velocities of the wheel. These are calculated based on the

number of counts measured by the three laser mouse sensors.As to be expected, all three

sensors give a similar reading on their y-axes. These correspond to the body yaw angle 6.

Figure 39: Angular velocity vector of the wheel vs. time

6assuming a non-slip condition between the wheel w of the robot and the floor

7.3. Balancing 58

Converting the six measured surface velocities to an angular velocity vector, yields the

plot depicted in Fig. 39.

Integrating the measured angular velocities ωx and ωy over time, plus compensating

for the yaw and the actual lean angle gives a position plot in the global frame, as shown

in Fig. 40. The robot performs a spiral-like movement, but stays within a patch with

≈ 7.5 cm radius.

Figure 40: Global position plot of the ballbot

The commanded torque around x- and y-axis (τx and τy) can be seen in Fig. 41. There

is no yaw angle control active, therefore the commanded torque τz = 0. A maximum

torque of ≈ ±5 Nm (τx and τy) is demanded from the spherical induction motor. Going

back to Fig. 39, it can be noted, that the maximum of the combined torque occurs at the

same time as the maximum observed yaw velocity. This suggests, that the actual stator

forces vary from their commanded strength, which consequently leads to an undesired

non-zero τz, applied by the spherical induction motor to the main body of SIMbot.

7.4. Station Keeping 59

Figure 41: Torques τx and τy vs. time

7.4. Station Keeping

For station keeping, each of the two PID controllers is separately augmented with a station

keeping controller. The station keeping controller consists of a proportional gain and a

damping gain (PD). The gains were manually tuned and are set to kp = 3.0 and kd = 0.7

. Fig. 42 displays a 48 sec time period, in which the robot receives multiple pushes to

demonstrate the station keeping capabilities. Each push direction is indicated with an

arrow. During this time period SIMbot always returns to its initial spot with an accuracy

of ≈ ±3.6 cm in x-direction and ≈ ±2 cm in y-direction. Each push is applied for ≈ 2 s

with a force of 8− 10 N. This force is applied manually and measured by a force sensor.

The resulting largest displacement from its initial position is 38 cm.

Fig. 43, 44 and 45 show the behavior focusing on a single push. The push is initiated

at t =≈ 1.8 sec. This can be seen in the plot on the right in Fig. 43 which displays the

global x and y-coordinates projected onto the main movement axis.

7.4. Station Keeping 60

Figure 42: Global position station keeping plot

Figure 43: Global and projected position of SIMbot

7.4. Station Keeping 61

The lean angle plot in Fig. 44 shows how the body of SIMbot starts leaning against the

direction of the occurring push due to the active PD-controller. Beginning at t = 7.5 sec

until t = 12 sec an overshoot occurs, which as well can be observed in the global position

plot in Fig. 43.

Figure 44: The lean angle φx and φy of SIMbot

The torque limit is set to 8 Nm for each component of the vector τs. Depending on

the resulting torque vector, a stator force limit Fs.max might be reached before hitting the

maximum 8 Nm. Fig. 45 however indicates no capped torque output during the station

keeping maneuver.

7.4. Station Keeping 62

Figure 45: The commanded torque vector components τs.x and τs.y

7.5. Trajectories 63

7.5. Trajectories

A simple point to point trajectory is demonstrated with SIMbot. A planning software

which has been written for the original ballbot (see [34]) is reused for this task. The

movement direction is aligned with the global x-direction. Therefore Fig 46, 47 and 48

only show one coordinate.

Figure 46: Position plot

SIMbot reaches the end of the 0.7 m long trajectory, however takes slightly longer than

planned. The velocity plot in Fig. 47 reveals some uneven, or wobbly, angular velocity

of the wheel. To a certain extent, this is as well reflected in the lean angle plot in Fig.

48. A possible explanation for this is a changing friction torque in the drive mechanism

caused by the ball transfer units.

7.5. Trajectories 64

Figure 47: Velocity plot

Figure 48: Lean angle plot

8. Conclusions 65

8. Conclusions

The initial attempts for stabilizing and driving a ballbot with the novel spherical induction

motor were successful. The results show that the maximum generated torque and the

dynamic characteristics, especially the rise time, of the current spherical induction motor

are sufficient for balancing, station keeping and for traversing trajectories.

As well, the current design of the spherical induction motor is able to bear the added

mass of the robot body without negative implications. Thanks to the advancements

in electronics, the required computation power is realized in a much smaller package,

compared to the original ballbot. This leaves more space for additional modules and

future applications on the robot.

Comparing the obtained results to the drive mechanism of the original ballbot, it be-

comes clear that the spherical induction motor is yet no match for the mechanical drive

system. This however is not a concern, as the main goal has been to figure out whether

this novel technology can be applied to mobile balancing robots after all.

Now that this has been affirmed, improving the yielded torque output and efficiency

of the drive system will be the next steps. For the results presented in this work, the

capabilities of the spherical induction motor are limited by the maximum current that

the driver boards can supply to the stator coils. There are also thermal problems to be

solved. A new driver board with higher performance is in work, which will develop less

heat and allow for more current.

The air gaps between the rotor and the stators can be further reduced to increase the

efficiency of the drive. The current design does not allow for individual adjustment of the

gap between the stator element and the spherical rotor. Instead each stator is mounted

at a fixed distance on the stator support frame. To allow for effortless testing of different

air gap sizes and to compensate for manufacturing tolerances of the stator support frame,

it seems useful to have each stator individually adjustable in a future revision.

Once those improvements have been implemented, a more thorough comparison of both

8. Conclusions 66

drive systems regarding their energy consumption and their dynamic capabilities can be

attempted in mobile robots with same mass and inertia. .

Another area for future work is the bearing of the spherical wheel. In both, the ballbot

and the SIMbot, three ball transfer units (with 1 inch ball diameter) carry the static and

dynamic load of the robot body. The performance of the ball transfer units degrades due

to dirt and other abrasive particles over time, see Fig. 49, left image. This causes the

friction to become less homogeneous. Worst case dirt particles block the supporting balls

internally and lock the position of the bearing, see Fig. 49, right image. These kinds of

drastic abrupt friction changes make balancing a lot more unstable, or even might create

a large enough disturbance to cause a fall. An advanced solution which would eliminate

Figure 49: A used ball transfer unit next to a new one (left) - An opened ball transfer
units with its supporting balls exposed (left)

these discussed problems is to replace the mechanical ball transfer units with air bearings.

As a downside however an air pressure pump would need to be added to the robot.This

as well will contribute to the overall power consumption, still the added benefits could

easily out-weight the drawbacks.

Finally, measures have to be taken to enable SIMbot to traverse hard floor surfaces

without damaging the outer copper layer of the spherical rotor. One idea is to add a thin

resilient coating to the spherical rotor. More effective however could be configuration with

a soft interposer ball, acting between the spherical rotor and the floor, as demonstrated

on BallIP, [18].

A. Physical System Parameters 67

A. Physical System Parameters

Table 2: Physical system parameters

Parameter name Symbol Value
Mass of the body mb 41.975 kg
Mass of the wheel mw 7.45 kg

Moment of inertia of the wheel Iw 0.05 kg ·m2

Moment of inertia of the body 7 Ib 12.16 kg ·m2

Wheel radius rw 0.1013± 0.00012 m
COM of body above center of wheel lb 0.679 m

polar angle of stators θ 40 ◦

skew angle of stators γ 10 ◦

B. Spherical Induction Motor 68

B. Spherical Induction Motor

B.1. Torque Output

According to [3], each stator i is assumed to generate a force Fsi in its volume center,

projected onto the spherical rotor surface. Fig. 50 shows a ns = 6 evenly spaced stator

configuration. Each stator is represented in the figure as a blue arc.

{SIM}
s0

ps0

s1

ps1
s2

ps2

s3
ps3

s4
ps4

s5 ps5

si

psi
φi β

γ

Figure 50: A six stator (ns = 6) configuration (left) and the angles φi, β and γ for stator
i (right)

A position vector psi is defined for each stator. The vector psi gives the position of

the stator center on the sphere surface in the spherical induction motor coordinate frame.

Hence, first a rotation matrix Ri is created according to Fig. 50.

Ri =


cφi −sφi 0

sφi cφi 0

0 0 1

 ·

cβ 0 −sβ
0 1 0

sβ 0 cβ

 =


cβcφi −sφi −sβcφi
cβsφi cφi −sβcφi
sβ 0 cβ

 (B.1)

The angle φi defines each stator location in the xy-plane, while β describes the elevation

angle. Taking the first column of Ri and multiplying it by rw (the sphere radius) yields

B.1. Torque Output 69

the stator position vector psi:

psi = Ri ·


rw

0

0

 = rw ·


cβcφi

cβsφi

sβ

 (B.2)

To allow for torque generation around the z-axis, all stators are slightly skewed by the

skew angle γ. The rotation axis around which γ is applied equals the first column in the

previously defined rotation matrix Ri.

Given this information each stator force vector Fsi can be formulated:

Fsi = Ri ·


1 0 0

0 cγ sγ

0 −sγ cγ

 ·


0

0

|Fsi|

 =


−sφisγ − sβcφicγ
cφisγ − sβcφicγ

cβcγ

 |Fsi| (B.3)

In general a torque vector τ is the vector-crossproduct of r and force vector F , where

r is a position vector, perpendicular to F , with its origin in the axis of rotation:

τ = r × F (B.4)

In this particular application, r from Eq.(B.4) equals the defined stator position vector

psi. When each stator force Fsiis given, the resulting torque τs of the spherical motor can

be calculated by summing up all acting stator torque vectors:

τs =
∑

i=0...ns−1

psi × Fsi (B.5)

The acting direction of each stator torque τsi always remains constant, only the torque

strength changes according to |Fsi|. Therefore Eq.(B.5) can be rewritten to

τs = ·
∑

i=0...ns−1

|Fsi| · (psi × fsi)︸ ︷︷ ︸
tsi

, (B.6)

B.1. Torque Output 70

where tsi is a vector, describing the torque introduced by an unitary force fsi of stator i

on the rotor. In the next step, the sum is rewritten to a matrix notation:

τs =


ts0.x · · · ts(ns−1).x

ts0.y · · · ts(ns−1).y

ts0.z · · · ts(ns−1).z


︸ ︷︷ ︸

T

·


|Fs0|

:

|Fs(ns−1)|


︸ ︷︷ ︸

F

(B.7)

The matrix T in Eq.(B.7) does not depend on τs or F and therefore is constant, given the

condition that the stator positions do not change physically.

Given a torque vector τs and searching a solution for the F vector, there exist more

unknown force variables 8 than equations, which means the normal inverse of T cannot

be used. However, by reversing Eq.(B.7) with the Moore-Penrose pseudo-inverse (left

inverse, T+T = I) [6], it is possible to calculate each stator force for a given torque

vector τs:

(
(T TT)−1 T T

)︸ ︷︷ ︸
=T+...pseudo-inverse

·τs =
(
(T TT)−1 T T

)
· T︸ ︷︷ ︸

I

F (B.8)

T+ · τs =F (B.9)

The pseudo inverse T+ yields the least square optimal solution. The T+ matrix does not

depend on time-dependent variables, and therefore only needs to be calculated once and

not for every time step.

B.1.1. Torque limit

The size of the torque vector τs is limited by the maximum thrust force Fsi.max, that can

be individually generated by each of the ns stators. In a scenario where one component

of the resulting stator force vector F exceeds the maximum, the following procedure can

8when the number of stators ns > 3

B.1. Torque Output 71

be performed to reduce the torque vector adequately:

τs =

τs ·
Fsi.max

max(abs(F))
if max(abs(F)) > Fsi.max

τs = τs otherwise
(B.10)

The torque strength is reduced, whereas the direction of the torque vector remains un-

changed. Just limiting the one exceeding stator force causes an uncontrolled new direc-

tional component in the resulting torque vector.

For the application of the spherical induction motor in the Ballbot, a higher torque is

expected to becommanded about the x- and y-axis. Torque around the z-axis is not as

important, because it is not required to stabilize the robot.

The force limiting approach, shown in Eq.(B.10) is acceptable, if keeping the direction

has the highest priority. However, concerning the ballbot, applying the maximum available

torque when needed for stabilization, should be considered a higher priority. A change

of direction for the torque vector is acceptable, as long as the torque applied around the

z-axis remains unchanged, to avoid a spinning of the upper body of the robot.

Given this consideration, the approach in Eq.(B.10) causes the non-exceeding torque

components to be clamped down more than required, as they are reduced by the same

scale-down factor. A short example to illustrate this:

τs =


20

2

0

⇒ F =



−14.26
50.10

64.36

14.26

−50.10

−64.36


⇒ Fsi.max = 30⇒ F ∗ =



−6.65
23.35

30.00

6.65

−23.35

−30.00


⇒ τs

∗ = T · F ∗ =


9.32

0.93

0.00



(B.11)

The torque applied around the y-axis is reduced to ≈ 46.26%, although not all stators

do exceed their limit and can provide more thrust force.

The issue can be addressed by scaling the x- and y-component of the torque vector

B.1. Torque Output 72

individually beforehand applying the approach in Eq.(B.10).

D =|T+ · I| (B.12)

τs.max =Fsi.max/(max
1≤i≤3

dij) (B.13)

τs.max contains the maximum permitted torque around x-, y- and z-axis, if the torque

vector only has one non-zero component. Now, if one component in the torque vector τs

is larger than its corresponding τs.max component, it is scaled down individually. After

this, the obtained τ ∗∗s is tested as shown before in Eq.(B.10). A recalculation of the

clamped down output using the modified approach from Eq.(B.12) yields:

τs =


20

2

0

⇒ τ∗∗s =


9.72

2

0

⇒ F =



−10.37
22.32

32.69

10.37

−22.32

−32.69


⇒ Fsi.max = 30⇒ F ∗ =



−9.5168
20.4832

30.0000

9.5168

−20.4832

−30.0000



⇒ τs
∗ = T · F ∗ =


8.93

1.84

0

 (B.14)

By using the second approach, the torque around the y-axis only got reduced to 91.78%.

B.2. Odometry Sensors 73

B.2. Odometry Sensors

pm0

xm0

ym0

pm1

xm1

ym1

pm2

xm2

ym2{SIM}

Figure 51: Sensor positions for nm = 3

First, the three (nm = 3) mouse sensor positions vectors pmi (i = 0, .. , nm−1) are defined

in the spherical induction motor frame, where rw is the spherical induction rotor wheel

radius:

pmi = rw


cos(2π/nm · i)
− sin(2π/nm · i)

0

 (B.15)

As can be seen from Fig 51 and Eq.(B.15), all nm sensors are assumed in the equatorial

plane of the rotor.

Next, the xmi and ymi unit vectors are defined, in which the surface velocity components

are measured by the mouse sensors. While ymi is different for each sensor, xmi is the same

as they share the same x-component-axis:

xmi =


0

0

1

 ymi =


− sin(2π/nm · i)
− cos(2π/nm · i)

0

 (B.16)

Given the angular velocity vector ωs, the tangential surface velocity vmi at the mouse

B.2. Odometry Sensors 74

sensor position pmi can be calculated with the vector cross product:

vmi = ωs × pmi (B.17)

The components of vmi measured by the sensor are:

vxmi =
vmi · xmi
|xmi|

vymi =
vmi · ymi
|ymi|

(B.18)

vxmi = (ωs × pmi) · xmi vymi = (ωs × pmi) · ymi (B.19)

The triple product shown in Eq.(B.19) can be rewritten to have ωs included with the dot

operator instead:

vxmi = (pmi × xmi) · ωs vymi = (pmi × ymi) · ωs (B.20)

Next, the dot-product for each individual component in Eq.(B.20) can be rewritten to a

matrix notation: 
vxm0

vym0

:

:


︸ ︷︷ ︸

Vm

=


(pm0 × xm0)

T

(pm0 × ym0)
T

:

:


︸ ︷︷ ︸
S ... sensor matrix

·


ωsx

ωsy

ωsz


︸ ︷︷ ︸

ωs

(B.21)

The matrix S on the right hand side of Eq.(B.21) is named sensor matrix and describes

the sensor geometry, while the column vector Vm on the left hand side consists of the

2 · nm mouse sensor surface velocity components. Eq.(B.21) shows the relation between

the sensor surface velocities (Vm) and ωs. However, it yields the sensor surface velocities

for a known ωs, whereas the opposite is actually needed.

As in the previous section 3.2, again the left pseudo inverse is applied, this time to S,

to solve for the angular velocity ωs:

S+ · Vm = ωs. (B.22)

The inverse sensor matrix S+ is time-independent, as it only contains the sensor position

B.2. Odometry Sensors 75

information and their axis alignments.

For a nm = 3 configuration, as it is used on the spherical induction motor, the following

result can be retrieved for S+:

S+
nm=3 =

1

rw
·


0 0 −

√
3
3

0
√
3
3

0

−2
3

0 1
3

0 1
3

0

0 −1
3

0 −1
3

0 −1
3

 (B.23)

The surface velocity y-component axis ymi of each sensor points in a different direction, but

they share the same rotation axis (the z-axis of the spherical induction motor coordinate

frame). Therefore, as can be seen in Eq.(B.23), the solution S+
nm=3 takes an evenly

weighted average of the three components ym0, ym1 and ym2.

C. 2D Planar Model 76

C. 2D Planar Model

C.1. External Disturbance

Later on it might be useful to study the behavior of ballbot when exhibited to an external

disturbance. The external disturbance is represented by an external force Fe, applied to

the upper body of the robot at height he. This force Fe could, for example, represent a

person pushing the robot.

So far no external forces have been considered in the dynamic model. The external force

is added in the same fashion as it has been done for the drive torque in section 4.6.The

external force Fe and the corresponding position vector ve, both in Cartesian coordinates,

are:

Fe =


F

0

0

 ve = vw + he ·


tan (φ)

0

1

 (C.1)

In the next step Fe is transformed from Cartesian coordinates to the generalized coordi-

nates q:

Feq =

(
∂ve
∂q

)T
· Fe =


rw he sec (φ)2 + rw

0 0

0 0


T

· Fe =

(
rw F(

he sec (φ)2 + rw
)
F

)
(C.2)

Feq is added to the external forces vector Q. All other terms of the motion equation

remain unaffected. The new solutions for θ̈ and φ̈, both denoted with index e, are:

θ̈e = θ̈ +
he (β cos (φ) + α) − rw cos (φ)2 (β cos (φ) + γ)

cos (φ)2
(
β2 cos (φ)2 − γ α

) · F (C.3)

φ̈e = φ̈ +

(
rw β cos (φ)3 − αhe

)
cos (φ)2

(
β2 cos (φ)2 − γ α

) · F (C.4)

To include the new terms introduced by the external force in the state space representa-

C.1. External Disturbance 77

tion, both have to be linearized (as done before in section 4.8):

θ̈e = θ̈ +
((β + α) he − rw β − γ rw) F

β2 − γ α
(C.5)

φ̈e = φ̈ − (αhe − rw β) F

β2 − γ α
(C.6)

The disturbance is commonly included in the state space system as matrix E in addition

to A and B:

ẋ(t) =Ax(t) +B u(t) + E d(t) (C.7)

y(t) =C x(t) +Du(t) (C.8)

Taking the linearized results from Eq.(C.5) yields the following matrix E and vector d:

E =


0 0 0 0

0 0 0 0

0 0 ((β+α)he−rw β−γ rw)F
β2−γ α 0

0 0 0 − (αhe−rw β)F
β2−γ α

 d(t) =


0

0

F (t)

F (t)

 (C.9)

D. Maxima Scripts 78

D. Maxima Scripts

The scripts have been created in the wxmaxima viewer. The output formatting defines

are specific to wxmaxima, but not required to run the scripts. The defines just create an

easier readable formatting for the variable symbols.

D.1. Lagrange Equations Rev2

output formatting defines

(%i1) :lisp (defprop $lb "<i>l<n>b</n></i>" wxxmlword);

(%i1) :lisp (defprop $mb "<i>m<n>b</n></i>" wxxmlword);

(%i1) :lisp (defprop $mw "<i>m<n>w</n></i>" wxxmlword);

(%i1) :lisp (defprop $iw "<i>I<n>w</n></i>" wxxmlword);

(%i1) :lisp (defprop $ib "<i>I<n>b</n></i>" wxxmlword);

(%i1) :lisp (defprop $th "<g>theta</g>" wxxmlword);

(%i1) :lisp (defprop $ph "<g>phi</g>" wxxmlword);

(%i1) :lisp (defprop $rw "<i>r<n>w</n></i>" wxxmlword);

(%i1) :lisp (defprop $he "<i>h<n>e</n></i>" wxxmlword);

(%i1) :lisp (defprop $xw "<i>x<n>w</n></i>" wxxmlword);

D.1. Lagrange Equations Rev2 79

(%i1) :lisp (defprop $xb "<i>x<n>b</n></i>" wxxmlword);

Euler-Lagrange equations

Variable definitions and assumptions

(%i1) declare([ph,th,t], real)$

(%i2) declare([lb,mb,mw,rw, ib, iw,g], [real, constant])$

(%i3) assume([lb,mb,mw,rw, ib, iw,g] > 0)$

(%i4) depends([ph,th],t);

(%o4) [φ (t) , θ (t)]

Generalized Coordinates:

(%i5) q : [th, ph];

(%o5) [θ, φ]

(%i6) facts(ph);

(%o6) [kind (φ, real)]

(%i7) dph: diff(ph,t);

(%o7)
d

d t
φ

(%i8) dth: diff(th,t);

(%o8)
d

d t
θ

(%i9) ddth: diff(dth,t);

D.1. Lagrange Equations Rev2 80

(%o9)
d2

d t2
θ

(%i10) ddph: diff(dph,t);

(%o10)
d2

d t2
φ

(%i11) dq : [dth, dph];

(%o11) [
d

d t
θ,

d

d t
φ]

Wheel

mass center position vector:

(%i12) v[w] : matrix([(ph+th)*(rw)], [0],[0]);

(%o12)

rw (θ + φ)
0
0


(%i13) dv[w] : diff(v[w],t);

(%o13)

rw (dd t θ + d
d t φ

)
0
0


kinetic energy:

(%i14) T_old[w] := 1/2 * mw * (rw * dph)^2 + 1/2 * iw * (dph)^2;

(%o14) T oldw :=
1

2
mw (rw dph)

2
+

1

2
Iw dph

2

(%i15) T[w] : facsum(1/2*mw * trigsimp(dv[w]. dv[w]) + 1/2*iw * (dph+dth)^2);

(%o15)

(
mw rw

2 + Iw
) (

d
d t θ + d

d t φ
)2

2

potential energy:

(%i16) V[w] : 0;

D.1. Lagrange Equations Rev2 81

(%o16) 0

Body

mass center position vector:

(%i17) v[b] : (v[w] + lb*matrix([sin(ph)], [0],[cos(ph)]));

(%o17)

rw (θ + φ) + lb sin (φ)
0

lb cos (φ)


(%i18) dv[b] : diff(v[b],t);

(%o18)

rw (dd t θ + d
d t φ

)
+ lb cos (φ)

(
d
d t φ

)
0

−lb sin (φ)
(
d
d t φ

)


potential energy:

(%i19) V[b] : mb * g * v[b][3][1];

(%o19) g lbmb cos (φ)

kinetic energy:

(%i20) T[b] : facsum(1/2*mb * trigsimp(dv[b]. dv[b]) + 1/2*ib * (dph)^2

,ddph,ddth,dth,dph);

(%o20)

mb rw
2
(
d
d t θ

)2
+ 2mb rw (lb cos (φ) + rw)

(
d
d t φ

) (
d
d t θ

)
+
(
2 lbmb rw cos (φ) +mb rw

2 + lb
2mb + Ib

) (
d
d t φ

)2
2

Total Energy

Potential energy:

(%i21) V : V[b] + V[w];

(%o21) g lbmb cos (φ)

D.1. Lagrange Equations Rev2 82

Kinetic Energy:

(%i22) Tt: facsum(T[b] + T[w],ddph,ddth,dth,dph);

(%o22) (
(
mw rw

2 +mb rw
2 + Iw

) (d

d t
θ

)2

+ 2
(
lbmb rw cos (φ) +mw rw

2 +mb rw
2 + Iw

)
(
d

d t
φ

) (
d

d t
θ

)
+
(
2 lbmb rw cos (φ) +mw rw

2 +mb rw
2 + lb

2mb + Iw + Ib
) (d

d t
φ

)2

)/ 2

substitute constant expressions with alpha, beta, gamma:

(%i23) Tt: ratsubst(%beta, lb*mb*rw, Tt);

(%o23) (
(
(mw +mb) rw

2 + Iw
) (d

d t
θ

)2

+
(
2β cos (φ) + (2mw + 2mb) rw

2 + 2 Iw
) (d

d t
φ

)
(
d

d t
θ

)
+
(
2β cos (φ) + (mw +mb) rw

2 + lb
2mb + Iw + Ib

) (d

d t
φ

)2

)/ 2

(%i24) Tt: ratsubst(%gamma, ib+lb^2 * mb, Tt);

(%o24) (
(
(mw +mb) rw

2 + Iw
) (d

d t
θ

)2

+
(
2β cos (φ) + (2mw + 2mb) rw

2 + 2 Iw
) (d

d t
φ

)
(
d

d t
θ

)
+
(
2β cos (φ) + (mw +mb) rw

2 + Iw + γ
) (d

d t
φ

)2

)/ 2

(%i25) Tt: ratsubst(%alpha, mb*rw^2 + mw*rw^2 +iw, Tt);

(%o25)
α
(
d
d t θ

)2
+ (2β cos (φ) + 2α)

(
d
d t φ

) (
d
d t θ

)
+ (2β cos (φ) + α+ γ)

(
d
d t φ

)2
2

(%i26) V: ratsubst(%epsilon, g*lb*mb, V);

(%o26) ε cos (φ)

Non-potential/external forces

angular velocity vector for the wheel (wheel and body located the XZ-plane):

D.1. Lagrange Equations Rev2 83

(%i27) %omega[w] : matrix([0],[-dph+dth],[0]);

(%o27)

 0
d
d t θ −

d
d t φ

0


(%i28) %omega[b] : matrix([0],[-dph],[0]);

(%o28)

 0
− d
d t φ
0


applied torque:

(%i29) To[w]: matrix([0],[Tsim],[0]);

(%o29)

 0
Tsim

0


(%i30) To[b]: -To[w];

(%o30)

 0
−Tsim

0


required in respect to the generalized coordinates, transformation matrix:

(%i31) J[R1] : jacobian(flatten(args(%omega[w])), dq);

(%o31)

0 0
1 −1
0 0


(%i32) J[R2] : jacobian(flatten(args(%omega[b])), dq);

(%o32)

0 0
0 −1
0 0


(%i33) F[NP] : transpose(J[R1]) . To[w] + transpose(J[R2]) . To[b];

(%o33)

(
Tsim

0

)

D.1. Lagrange Equations Rev2 84

Euler-Lagrange equation

(%i34) dV: transpose(jacobian([V],q));

(%o34)

(
0

−ε sin (φ)

)

(%i35) dT: transpose(jacobian([Tt],q));

(%o35)

(
0

−2 β sin(φ) (d
d t φ) (d

d t θ)−2 β sin(φ) (d
d t φ)

2

2

)

(%i36) ddT: facsum(fullratsimp(diff(transpose(jacobian([Tt],dq)),t))

,ddph,ddth,dth,dph);

(%o36)


α
(
d2

d t2 θ
)

+ (β cos (φ) + α)
(
d2

d t2 φ
)
− β sin (φ)

(
d
d t φ

)2[
(β cos (φ) + α)

(
d2

d t2 θ
)
− β sin (φ)

(
d
d t φ

) (
d
d t θ

)
+ (2β cos (φ) + α+ γ)

(
d2

d t2 φ
)

−2β sin (φ)
(
d
d t φ

)2
]

(%i37) L1: facsum(ddT-dT, ddph,ddth,dth,dph);

(%o37)

 α
(
d2

d t2 θ
)

+ (β cos (φ) + α)
(
d2

d t2 φ
)
− β sin (φ)

(
d
d t φ

)2
(β cos (φ) + α)

(
d2

d t2 θ
)

+ (2β cos (φ) + α+ γ)
(
d2

d t2 φ
)
− β sin (φ)

(
d
d t φ

)2


(%i38) M: transpose(matrix(flatten(args(coeff(L1, ddth))),

flatten(args(coeff(L1,ddph)))));

(%o38)

(
α β cos (φ) + α

β cos (φ) + α 2β cos (φ) + α+ γ

)

(%i39) C : L1 - M . matrix([ddth], [ddph]);

(%o39)

(
−β sin (φ)

(
d
d t φ

)2
−β sin (φ)

(
d
d t φ

)2
)

(%i40) eq1: (L1 + dV - F[NP])[1][1] = 0;

(%o40) − Tsim+ α

(
d2

d t2
θ

)
+ (β cos (φ) + α)

(
d2

d t2
φ

)
− β sin (φ)

(
d

d t
φ

)2

= 0

D.1. Lagrange Equations Rev2 85

(%i41) eq2: (L1 + dV - F[NP])[2][1] = 0;

(%o41) (β cos (φ) + α)

(
d2

d t2
θ

)
+ (2β cos (φ) + α+ γ)

(
d2

d t2
φ

)
− β sin (φ)

(
d

d t
φ

)2

− ε sin (φ) = 0

(%i42) sol: solve([eq1,eq2],[ddth, ddph]);

(%o42) [[
d2

d t2
θ = −

(2β cos (φ) + α+ γ) Tsim+
(
β2 cos (φ) + γ β

)
sin (φ)

(
d
d t φ

)2
+ (−β ε cos (φ)− α ε) sin (φ)

β2 cos (φ)
2 − γ α

,

d2

d t2
φ =

(β cos (φ) + α) Tsim+ β2 cos (φ) sin (φ)
(
d
d t φ

)2 − α ε sin (φ)

β2 cos (φ)
2 − γ α

]]

(%i43) sol2: facsum(sol, dth,dph, th, ph, Tsim);

(%o43) [[
d2

d t2
θ =

− (2β cos (φ) + α+ γ) Tsim− β (β cos (φ) + γ) sin (φ)
(
d
d t φ

)2
+ ε (β cos (φ) + α) sin (φ)

β2 cos (φ)
2 − γ α

,

d2

d t2
φ =

(β cos (φ) + α) Tsim+ β2 cos (φ) sin (φ)
(
d
d t φ

)2 − α ε sin (φ)

β2 cos (φ)
2 − γ α

]]

Linearisation

(%i44) lin1: ratsubst(1, cos(ph), sol2[1]);

(%o44) [
d2

d t2
θ = −

(2β + α+ γ) Tsim+
(
β2 + γ β

)
sin (φ)

(
d
d t φ

)2
+ (−β − α) ε sin (φ)

β2 − γ α
,

d2

d t2
φ =

(β + α) Tsim+ β2 sin (φ)
(
d
d t φ

)2 − α ε sin (φ)

β2 − γ α
]

(%i45) lin2: ratsubst(ph, sin(ph), lin1);

(%o45) [
d2

d t2
θ = −

(2β + α+ γ) Tsim+
(
β2 φ+ γ β φ

) (
d
d t φ

)2
+ ε (−β φ− αφ)

β2 − γ α
,

d2

d t2
φ =

(β + α) Tsim+ β2 φ
(
d
d t φ

)2 − α εφ
β2 − γ α

]

D.1. Lagrange Equations Rev2 86

(%i46) lin3: ratsubst(0, dph, lin2);

(%o46) [
d2

d t2
θ = − (2β + α+ γ) Tsim+ (−β − α) ε φ

β2 − γ α
,
d2

d t2
φ =

(β + α) Tsim− α εφ
β2 − γ α

]

External Force

(%i47) F[e]: matrix([F], [0],[0]);

(%o47)

F0
0


(%i48) v[e]: v[w] + he* matrix([tan(ph)], [0],[0]);

(%o48)

rw (θ + φ) + he tan (φ)
0
0


(%i49) J[Fe] : jacobian(flatten(args(v[e])), q);

(%o49)

rw he sec (φ)
2

+ rw
0 0
0 0


(%i50) F[NP2]: F[NP] + transpose(J[Fe]).F[e];

(%o50)

(
rw F + Tsim(

he sec (φ)
2

+ rw

)
F

)

(%i51) eqF1: (L1 + dV - F[NP2])[1][1] = 0;

(%o51) − rw F − Tsim+ α

(
d2

d t2
θ

)
+ (β cos (φ) + α)

(
d2

d t2
φ

)
− β sin (φ)

(
d

d t
φ

)2

= 0

(%i52) eqF2: (L1 + dV - F[NP2])[2][1] = 0;

(%o52) −
(
he sec (φ)

2
+ rw

)
F+(β cos (φ) + α)

(
d2

d t2
θ

)
+(2β cos (φ) + α+ γ)

(
d2

d t2
φ

)
−β sin (φ)

(
d

d t
φ

)2

−

ε sin (φ) = 0

D.1. Lagrange Equations Rev2 87

(%i53) solF: solve([eqF1,eqF2],[ddth, ddph]);

(%o53) [[
d2

d t2
θ = −(

(
β cos (φ)

(
rw − he sec (φ)

2
)
− αhe sec (φ)

2
+ γ rw

)
F

+ (2β cos (φ) + α+ γ) Tsim+
(
β2 cos (φ) + γ β

)
sin (φ)

(
d

d t
φ

)2

+ (−β ε cos (φ)− α ε) sin (φ))/(β2 cos (φ)
2 − γ α),

d2

d t2

φ =

(
rw β cos (φ)− αhe sec (φ)

2
)
F + (β cos (φ) + α) Tsim+ β2 cos (φ) sin (φ)

(
d
d t φ

)2 − α ε sin (φ)

β2 cos (φ)
2 − γ α

]]

(%i54) addterm1: facsum(trigsimp(expand(rhs(solF[1][1]) - rhs(sol2[1][1]))),F,rw,he);

(%o54)
he (β cos (φ) + α) F − rw cos (φ)

2
(β cos (φ) + γ) F

cos (φ)
2
(
β2 cos (φ)

2 − γ α
)

(%i55) addterm2: facsum(trigsimp(expand(rhs(solF[1][2]) - rhs(sol2[1][2]))),F);

(%o55)

(
rw β cos (φ)

3 − αhe
)
F

cos (φ)
2
(
β2 cos (φ)

2 − γ α
)

(%i56) linF1: ratsubst(1, cos(ph), addterm1);

(%o56)
((β + α) he − rw β − γ rw) F

β2 − γ α

(%i57) linF2: ratsubst(1, cos(ph), addterm2);

(%o57) − (αhe − rw β) F

β2 − γ α

References 88

References

[1] Microdynamic Systems Laboratory an der Carnegie Mellon University. Dynamically-

stable mobile robots in human environments. http://www.msl.ri.cmu.edu/

projects/ballbot/. Accessed August 24, 2015.

[2] Kameshwar Poolla Andrew Packard and Roberto Horowitz. Dynamic systems and

feedback class notes for me 132 (chapters 19-23. linear systems). http://www.cds.

caltech.edu/~murray/courses/cds101/fa02/caltech/pph.html. Accessed Au-

gust 24, 2015.

[3] Masaaki Kumagai Ankit Bhatia and Ralph Hollis. Six-stator spherical induction

motor for balancing mobile robots. IEEE Int’l. Conf. on Robotics and Automation,

2015.

[4] Chris Atkeson. Team wpi-cmu: Darpa robotics challenge. http://www.cs.cmu.edu/

~cga/drc/. Accessed August 28, 2015.

[5] Johannes Auer and Olaf Sassnick. Entwicklung und Bau eines Ballbots. Pre Bachelor

Work, Salzburg University of Applied Sciences, 2013.

[6] Adi Ben-Israel and Thomas N.E. Greville. Generalized inverses: Theory and appli-

cations. Springer-Verlag, New York, 2nd edition, 2003.

[7] Panasonic Corporation. http://news.panasonic.com/global/topics/2015/44009.html.

http://news.panasonic.com/global/topics/2015/44009.html. Accessed August

24, 2015.

[8] DARPA. Darpa robotics challenge finals 2015. http://www.

theroboticschallenge.org. Accessed August 24, 2015.

[9] ODE Developers. Bitbucket ode - commits. https://bitbucket.org/odedevs/ode/

commits/all. Accessed August 24, 2015.

http://www.msl.ri.cmu.edu/projects/ballbot/
http://www.msl.ri.cmu.edu/projects/ballbot/
http://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/pph.html
http://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/pph.html
http://www.cs.cmu.edu/~cga/drc/
http://www.cs.cmu.edu/~cga/drc/
http://news.panasonic.com/global/topics/2015/44009.html
http://www.theroboticschallenge.org
http://www.theroboticschallenge.org
https://bitbucket.org/odedevs/ode/commits/all
https://bitbucket.org/odedevs/ode/commits/all

References 89

[10] Stephen J. Dodds. Feedback Control. Springer-Verlag, London, 2015.

[11] J. Ginsberg. Engineering Dynamics. Cambridge University Press, Cambridge, 2007.

[12] Erico Guizzo. A robot that balances on a ball. http://spectrum.ieee.org/

automaton/robotics/robotics-software/042910-a-robot-that-balances-on-

a-ball. Accessed August 24, 2015.

[13] PixArt Imaging Inc. Adns 9800 - data sheet. http://www.pixart.com.tw/upload/

ADNS-9800%20DS_S_V1.0_20130514144352.pdf. Accessed August 24, 2015.

[14] Fraunhofer IPA. Care-o-bot 4. http://www.care-o-bot.de/en/care-o-bot-4.

html. Accessed August 24, 2015.

[15] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 2002.

[16] K Kaneko, I Yamada, and K Itao. A spherical dc servo motor with three degrees

of freedom. Journal of dynamic systems, measurement, and control, 111(3):398–402,

1989.

[17] Tom Lauwers, George Kantor and Ralph Hollis. One is enough! Proc. Int’l. Symp.

for Robotics Research, 2005.

[18] Masaaki Kumagai. Ballipsm - ballip snowman, balancing robot with double ball.

https://www.youtube.com/watch?v=ZjlZN9qhTXY. Accessed August 28, 2015.

[19] Masaaki Kumagai and Ralph Hollis. Development and control of a three dof planar

induction motor. IEEE Int’l. Conf. on Robotics and Automation, 2012.

[20] Masaaki Kumagai and Ralph L Hollis. Development of a three-dimensional ball

rotation sensing system using optical mouse sensors. In Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pages 5038–5043. IEEE, 2011.

[21] Masaaki Kumagai and Ralph L Hollis. Development and control of a three dof spher-

http://spectrum.ieee.org/automaton/robotics/robotics-software/042910-a-robot-that-balances-on-a-ball
http://spectrum.ieee.org/automaton/robotics/robotics-software/042910-a-robot-that-balances-on-a-ball
http://spectrum.ieee.org/automaton/robotics/robotics-software/042910-a-robot-that-balances-on-a-ball
http://www.pixart.com.tw/upload/ADNS-9800%20DS_S_V1.0_20130514144352.pdf
http://www.pixart.com.tw/upload/ADNS-9800%20DS_S_V1.0_20130514144352.pdf
http://www.care-o-bot.de/en/care-o-bot-4.html
http://www.care-o-bot.de/en/care-o-bot-4.html
https://www.youtube.com/watch?v=ZjlZN9qhTXY

References 90

ical induction motor. In Robotics and Automation (ICRA), 2013 IEEE International

Conference on, pages 1528–1533. IEEE, 2013.

[22] TB Lauwers, George A Kantor, and Ralph L Hollis. A dynamically stable single-

wheeled mobile robot with inverse mouse-ball drive. In Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 2884–

2889. IEEE, 2006.

[23] Kok-Meng Lee, Hungsun Son, Jeffry Joni, et al. Concept development and design of

a spherical wheel motor (SWM). In IEEE International Conference on Robotics and

Automation, volume 4, page 3652. IEEE; 1999, 2005.

[24] Ruben Martinez-Cantin. Bayesopt: A bayesian optimization library for nonlinear op-

timization, experimental design and bandits. Journal of Machine Learning Research,

15(Nov):3735–3739, 2014.

[25] International Federation of Robotics. Industrial robot statistics. http://www.ifr.

org/industrial-robots/statistics/. Accessed August 24, 2015.

[26] International Federation of Robotics. Service robot. http://www.ifr.org/service-

robots/. Accessed August 24, 2015.

[27] International Federation of Robotics. Service robot statistics. http://www.ifr.org/

service-robots/statistics/. Accessed August 24, 2015.

[28] Karl Johan Åstrom and Richard M. Murray. Feedback Systems: An introduction for

Scientists and Engineers. Princeton University Press, New Jersey, 2008.

[29] Robocave. Darstellung eines mecanum wheels. http://robocave.pk/media/

catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/1/0/

100mm_mecanum_h.jpg. Accessed August 24, 2015.

[30] RobotorNETZ. Omniwheels. http://www.rn-wissen.de/index.php/OmniWheels.

Accessed August 24, 2015.

http://www.ifr.org/industrial-robots/statistics/
http://www.ifr.org/industrial-robots/statistics/
http://www.ifr.org/service-robots/
http://www.ifr.org/service-robots/
http://www.ifr.org/service-robots/statistics/
http://www.ifr.org/service-robots/statistics/
http://robocave.pk/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/1/0/100mm_mecanum_h.jpg
http://robocave.pk/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/1/0/100mm_mecanum_h.jpg
http://robocave.pk/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/1/0/100mm_mecanum_h.jpg
http://www.rn-wissen.de/index.php/OmniWheels

References 91

[31] Alison Sander and Meldon Wolfgang. The rise of robotics. https:

//www.bcgperspectives.com/content/articles/business_unit_strategy_

innovation_rise_of_robotics/. Accessed August 24, 2015.

[32] Savioke. Savioke. http://www.savioke.com/. Accessed August 24, 2015.

[33] Michael Shomin and Ralph Hollis. Differentially flat trajectory generation for a

dynamically stable mobile robot. IEEE Int’l. Conf. on Robotics and Automation,

2013.

[34] Michael Shomin and Ralph Hollis. Fast, dynamic trajectory planning for a dynami-

cally stable mobile robot. IEEE Int’l. Conf. on Robotics and Automation, 2014.

[35] Shegeki Toyama, Shigeru Sugitani, Zhang Guoqiang, Yasutaro Miyatani, and Kazuto

Nakamura. Multi degree of freedom spherical ultrasonic motor. In Robotics and

Automation, 1995. Proceedings., 1995 IEEE International Conference on, volume 3,

pages 2935–2940. IEEE, 1995.

[36] Tuxfamily. Eigen c++ template library. http://eigen.tuxfamily.org/index.

php?title=Main_Page. Accessed August 24, 2015.

[37] Nagarajan Umashankar, George Kantor, and Ralph Hollis. The ballbot: An omni-

directional balancing mobile robot. The International Journal of Robotics Research,

33(6):917–930, May 2013.

[38] George Kantor Umashankar Nagarajan and Ralph Hollis. Integrated planning and

control for graceful navigation of shape-accelerated underactuated balancing mobile

robots. IEEE Int’l. Conf. on Robotics and Automation, 2012.

[39] Frankhauser P. und Gwerder C. Modeling and control of a ballbot. ETH Zürich,

2010.

[40] Wikipedia. Omniwheel. http://en.wikipedia.org/wiki/Omni_wheel. Accessed

August 24, 2015.

https://www.bcgperspectives.com/content/articles/business_unit_strategy_innovation_rise_of_robotics/
https://www.bcgperspectives.com/content/articles/business_unit_strategy_innovation_rise_of_robotics/
https://www.bcgperspectives.com/content/articles/business_unit_strategy_innovation_rise_of_robotics/
http://www.savioke.com/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://en.wikipedia.org/wiki/Omni_wheel

References 92

[41] hosted by the VDMA Worldrobotics, IFR Statistical Department. Executive sum-

mary: World robotics 2014 1. industrial robots, 2. service robots. http://www.

worldrobotics.org/uploads/media/Executive_Summary_WR_2014_02.pdf. Ac-

cessed August 28, 2015.

[42] ETH Zürich. Rezero projekt. http://rezero.ethz.ch. Accessed August 24, 2015.

http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2014_02.pdf
http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2014_02.pdf
http://rezero.ethz.ch

	Introduction
	Conventional Drive Mechanisms
	Inverse Ball Mouse Drive Mechanism (CMU Ballbot)
	Omniwheel Mechanism

	Spherical Induction Motor
	Function Principle
	Torque Output
	Implementation
	Odometry Sensors

	Dynamic Model
	Parameters
	Assumptions
	Generalized Coordinates
	Potential Energy
	Kinetic Energy
	External Forces and Torque
	Equations of Motion
	Linearisation
	State Space Representation
	Stability of the linear system
	Comparison with the non-linear system
	Simulation with a physics engine
	Preparation
	At run time
	Results

	Control
	State Feedback
	Controllability
	Linear Quadratic Controller
	Simulation

	Conventional Controller

	Implementation
	Power Distribution Layout
	Communication and Processing

	Testing and Initial Results
	Controller Setup
	On-board Mouse Sensor Adjustment
	Balancing
	Station Keeping
	Trajectories

	Conclusions
	Physical System Parameters
	Spherical Induction Motor
	Torque Output
	Torque limit

	Odometry Sensors

	2D Planar Model
	External Disturbance

	Maxima Scripts
	Lagrange Equations Rev2

