
Marshall Plan
Scholarship Report

Reduction of False Positives in Smart Grid

Intrusion Detection

Bowling Green State University (BGSU), Ohio, USA

Salzburg University of Applied Sciences (SUAS), Salzburg, Austria

Submmitted by:

Joris Lückenga, BSc

BGSU: Prof. Robert R. Green II, Ph.D

SUAS: FH-Prof. DI Mag. Dr. Dominik Engel

By order of the

Austrian Marshall Plan Foundation

Salzburg, September 2015

Details

First Name, Surname: Joris Lückenga
University: Salzburg University of Applied Sciences
Degree Program: Information Technology & Systems Manage-

ment
Title of Thesis: Reduction of False Positives in Smart Grid

Intrusion Detection
Keywords: Smart Grid

Intrusion Detection
Anomaly Detection
Cybersecurity
Pattern Recognition
Data Classification
Machine Learning
Weighted Vote Classification

Academic Supervisor: FH-Prof. DI Mag. Dr. Dominik Engel

Abstract

The topic of Smart Grid technology and its consequences on security and privacy is a
continual discussion in several countries. In order to protect the network infrastruc-
ture from security breaches and its possible impacts, several solutions exist and much
research is conducted in this area. The following work evaluates and tests a novel
classification mechanism for intrusion detection infrastructures, as they are planned
for Smart Grid scenarios. The first part covers an overview of Smart Grid topics as
well as intrusion detection techniques. For the Smart Grid, common concepts, benefits
as well as the security problems are discussed. In intrusion detection, the most pop-
ular methods, benefits and problems, as well as existing suggestions for Smart Grid
implementations are presented. For further understanding the process of anomaly de-
tection, a basic introduction into pattern recognition tasks as well as a dataset analysis
is given. The practical part covers the development of a weighted voting technique and
a formula for its weight calculation. Most important steps of the algorithm, a result
analysis and constraints of the technique as well as possible parameter improvements
will be treated in the last part.

iv

Contents

Affidavit ii

Acknowledgement iii

Details iv

Abstract iv

Table of Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 The Future of the Power Grid . 2

1.1.0.1 Concept and Infrastructure 2

1.1.0.2 Challenges and Benefits 6

2 Smart Grid Security 9

2.1 Cyber-Threats for Smart Grid Networks 9

2.2 Intrusion Detection in Smart Grid . 11

2.2.1 Common Approaches for IDS 11

2.2.2 Current Smart Grid Security Concepts 14

3 Classifier Voting Concept 19

3.1 Basics for Data Classification . 19

3.1.1 Pattern Recognition for anomaly detection 22

3.2 The KDD-NSL Dataset . 23

v

3.2.1 Details and Challenges . 25

3.3 Combination of Classification Algorithms 26

3.3.1 Algorithms Selection . 27

3.3.1.1 Support Vector Machine 28

3.3.1.2 AdaBoost . 30

3.3.1.3 K-Nearest-Neighbor 32

3.3.1.4 Decision Tree . 33

3.3.2 Voting Techniques . 34

4 Creation of a Voting-Classification system 36

4.1 Implementation and approach . 36

4.1.1 Dataset preparation and modifications 38

4.1.2 Testing of Classifiers . 43

4.1.3 Combination Technique . 46

4.1.4 Experimental setup . 49

4.1.5 Results . 50

4.1.6 Performance Improvement Function 57

4.1.7 Simple voting techniques . 59

4.1.8 False Positive Reduction With Weighted Voting 60

4.1.9 Observed constraints . 61

4.1.10 Vote-Classification in a Distributed Environment 63

4.1.11 Creation of a Hierarchical IDS Communication 64

5 Conclusion 67

Bibliography 70

List of Abbreviations 76

vi

List of Figures

1.1 Smart Home Concept [8] . 5

1.2 Smart Grid Three Layer Network Architecture 7

3.1 Feature space for Salmon and Sea Bass measures [11, p.7] 20

3.2 Decision boundaries for linear and complex model [11, p.7/8] 21

3.3 Packet types of training and testing dataset 26

3.4 Decision boundary creation with SVM [37] 28

3.5 Kernel-Trick for SVM algorithms [37] 29

3.6 Complex decision boundary of a SVM 30

3.7 Boosting algorithm [30] . 31

3.8 AdaBoost decision boundary with 200 estimators 31

3.9 kNN decision boundary with different K values 32

3.10 Boundary example of a decision-tree algorithm 33

3.11 Example of an optimal vote scenario 34

4.1 Graph of the weight balancing function 50

4.2 Chart of detected and existing intrusions with vote classification 52

4.3 Weight function graphs of different parameters 58

vii

List of Tables

3.1 Table of KDD-NSL Features . 25

4.1 Example of a confusion matrix . 45

4.2 Classification results of each classifier with NSL-KDD training set . . . 46

4.3 Classification results for a 50% split of the NSL-KDD test-set with A-tan
scaling . 51

4.4 Classification results for a 50% verification-split of the NSL-KDD test-
set with A-tan scaling . 51

4.5 Classification results for a 50% split of the NSL-KDD test-set with nor-
malized scaling . 53

4.6 Classification results for a 50% verification-split of the NSL-KDD test-
set with normalized scaling . 53

4.7 Classification results for a 50% verification-split of the NSL-KDD test-
set without scaling . 54

4.8 Classification results for a 5% verification-split of the full NSL-KDD set
with A-tan scaling . 55

4.9 Classification results for a 5% verification-split of the full NSL-KDD set
with normalized scaling . 55

4.10 Classification results for a 5% verification-split of the full NSL-KDD set
without scaling . 56

4.11 Achieved performances for vote-classification 57

viii

1

Introduction

With the growing energy consumption and the commitment of using renewable re-

sources for electricity production, the infrastructure of energy systems started to change.

The most visible changes were increasing households with solar panels, investments in

wind parks and the construction of different types of power plants using renewable

resources. With the looming era of electric mobility and the growing demand for these

cars, the power grid has to meet new requirements and challenges in the future: The

demand for electricity can further increase, clean energy sources like solar and wind

energy are not unconditionally available when needed, and demand peaks can cause

energy shortage as well as high costs for producers.

As a solution to achieve an intelligent distribution and management of power resources,

the concept of Smart Grid and Smart Metering was developed. This concept is based

on the possibility to monitor consumption of end-consumers and control power gen-

erators, substations as well as other power grid components over a communication

network. The Smart Meter, installed at the consumers site, is able to receive billing

rates and manage electronic devices depending on current electricity prices. Another

function of a Smart Meter is the possibility to cut the power, in case invoices are not

paid or prepaid credits are depleted. These capabilities are very useful and offer a

whole new way of power management. Nevertheless, Smart Grid functions may risk

the privacy of customers and power grid control components offer a new set of possible

attacks for hackers. If an attacker is able to compromise the Smart Grid functional-

ity, he would be able to spy on consumption behavior, gain financial benefits or cause

damage to power networks, companies or even countries. Due to this vulnerability, the

1

1. Introduction 2

privacy of consumers and the security of grid components must be assured. For this

reason, the following work focuses on reinforcing the security of the Smart Grid, by

improving the performance of an existing Intrusion Detection System (IDS) concept.

1.1 The Future of the Power Grid

The Smart Grid is currently a large discussion in politics and economy, because this

technology could clear the way for a more ecologic future. As stated in [2], the US

invested $4.5 billion for the Smart Grid development. The European Union encour-

aged member states to evaluate the potential benefits and mandated for a law, which

obligates the use of Smart Meters by the year 2022 [14]. This is a very important and

supporting condition for the Smart Grid development. By passing laws for the power

grid, a fast transition to a new, modernized power grid is possible. Nevertheless, many

functions are still in discussion, not yet realized or laws have to be determined. Cur-

rently, a lot of research is conducted to find ways for either customers, power suppliers

and grid administrators to avoid law infringements, without losing the benefits and

functionality of a Smart Grid network. At the same time, privacy as well as security

should be provided for each party. The contribution with this work is to further im-

prove detection systems in order to enhance current solutions and technology in the

security area. The following sections will give an overview of the Smart Grid concept

and its benefits.

1.1.0.1 Concept and Infrastructure

The power grid combines many different types of power plants. Nuclear and coal-power

stations, for example, are in the category of base load power plants, which mostly run

at maximum capacity with high and constant energy output. They are considerable

investments, produce a large amount of electricity and have high maintenance costs.

It is also very expensive and impractical to use nuclear or coal plants as backup-power

resources, since it takes long to shut down or start electricity production. Every minute

of disabled reactors produce high profit losses for the bearer. In addition to that, the

1. Introduction 3

ecology of these power sources is widely contested and efforts are made by several coun-

tries to abstain from this type of electricity generation. Nevertheless, the great amount

of power output and the increasing demand for cheap electricity led many countries

and energy producers to the decision to further invest in nuclear or coal power plants.

Alternative base load stations can be fuel-oil, hydroelectric, biomass or natural gas

plants. Despite those options, costs are often higher and resource prices or restrictions

exacerbate the construction. Depending on the plant construction and power genera-

tion method, some of these stations can also be used as load following power plants.

These generators are used to follow the growing electricity, based on the time of the

day. For example hydroelectric plants are active during the day and evening, when

the demand for electricity is considerably higher. When the required power decreases

during the night,the water turbines are closed and the water is dammed up. Peaking

power plants are used when base and load following stations can not meet the cur-

rent demand. The costs of kilowatts per hour of those stations is considerably higher,

but the supply feed can be established in seconds or minutes, depending on the type

of generator. The generators used for peak-demands are often hydroelectric or gas

turbines. As it can be derived from those different types of power generation, it is a

complicated and challenging task to manage and distribute electricity. In addition to

that, a growing number of renewable energy plants and also devices to store electricity,

which gain more and more popularity, have to be managed. Further information on

the power plants and distribution can be found in [10].

Another important aspect of distributing energy is to measure the consumption and bill

a customer properly. This is required to provide a fair business and precise metering is

important in order to maintain a stable load on the grid. As high peaks in electricity

demand are rather expensive and base-load power is cheaper for the energy provider,

the usual prices in several countries vary only two or three times a day. Higher costs

for the customer are often billed during the day and early evening, lower costs during

night times. To measure the consumed amount of electricity, there is still technology

from the first watt-hour meters used. This method of consumption measurement was

invented in 1888. Nevertheless, the technology is still wide spread and used in large

parts of the world. A pioneer considering electricity metering is South Africa, which

1. Introduction 4

started constructing low cost digital meters in the early 1990s. Due to the rural popu-

lations and problems with billing customers, this solution helped the providers by using

prepayment meters. Customers could buy credit for their electricity from ATM ma-

chines and refill their meter with a code. This avoided problems with customers which

did not have a proper bank account or refused to pay their electricity bill. They also

discovered that digital meters were more cost efficient and customers started paying

more attention to their energy consumption. Brazil, Russia and also the UK followed

this example and a transition to the new meters in many other countries is imminent.

Ross Anderson conducted much research on this topic and more information can be

found in [2].

The idea of Smart Grid is to modernize the whole power infrastructure. Since the

power grid grew in many steps to the distribution network of today, many devices from

different decades are integrated in the network. Especially in the last years, with large

investments and new inventions in the sector of renewable or green energies, the power

grid has to meet new requirements. One important problem is, that current energy

load in the power grid is distributed based on estimations by the power providers. A

factor which adds up to the complexity of this task are wind- and solar-parks as well

as private power generators. These plants started contributing to the power network

during the last years and the energy production can often vary within seconds. This

affects the task of balancing the load in the power network and makes it more and more

difficult. To manage all those additional factors, it is very important to control stations

remotely and gather enough data on current consumption as well as production. Also,

an adjustment of the electricity prices,which is based on the load, would be beneficial

for power producers and consumers. Those and many other reasons led to the concept

of creating an intelligent power network, which is able to monitor current consumption

of every household. Further, home devices which can be equipped with a control &

communication microchip, like washing machines, heaters, refrigerators and electricity

storage mediums could be triggered remotely by a Smart Meter. A concept of a Smart

Home implementation is shown in Figure 1.1.

The core-element of the concept is the Smart Meter device, which receives billing rates

1. Introduction 5

from the power provider and controls devices based on the prices. On low rates, the

electric car can be charged, the cooler and washing machines can be activated etc. If

no energy is needed or the solar panel produces enough electricity, it can be stored in

a large storage battery. On high rates, it is also possible to use the vehicle or storage

battery to sell electricity to the provider, since high billing rates are often due to power

shortage. Otherwise the stored energy could be used to bypass expensive rates.

Figure 1.1: Smart Home Concept [8]

Besides the home devices of a customer, also the power grid needs to be equipped with

modern communication systems, control modules and monitoring to enable the best

possible coordination of energy resources and storage possibilities.

To enable a scenario like described above, new control- and communication equip-

ment, as well as Smart Meters have to be installed and interconnected with the power

provider. Not only billing rates, also the current consumption of the costumer needs to

be monitored precisely and sent to a control instance, in order to achieve best results.

Many different concepts exist on how to establish the communication with the power

provider. The work of [34] suggests to implement Smart Meter communication with

power & service providers by using mobile Internet connection. Using the private In-

ternet connection of the customer would be possible too, but it is not very convenient,

1. Introduction 6

since customers could cut the connection and systems may require a completely new

setup, when a client is moving out of a place or changing providers. Apart from those

examples, there are many other architecture suggestions of different parties and experts

all over the world. A survey on a selection of different concepts can be found in [20]. A

very popular approach and also the concept this thesis will consider, is to use a wireless

mesh network or grid with distributed communication nodes. A detailed description of

the network architecture can be found in Section III A in [48]. This concept is based

on a three layer network architecture. The smallest instance is the Home Area Net-

work (HAN), which is basically the architecture presented in Figure 1.1. Every device

connected or interacting with a Smart Meter is a member of the HAN and usually only

a small amount of people or devices will contribute. The connection to the appliances

can be achieved in many different ways, e.g. over WLAN, LAN, Bluetooth etc. The

next instance is the Neighborhood Area Network (NAN), which pools HANs and in-

terconnects them. The exit and entry points of this network is either a Smart Meter of

a HAN or the NAN switch. Depending on the applied architecture, there are several

different ways to establish the connection to the NAN switch. Also it is possible to

connect the NAN node with control- and measuring modules of a local power genera-

tion plant, e.g. a wind wheel or a small hydroelectric power plant. The largest part of

the network is the Wide Area Network (WAN) which interconnects other NANs, power

plants, transformer- and control stations as well as the power provider. An illustration

of this architecture is shown in Figure 1.2.

On the left, the HAN Network connects storage mediums as well as other electric

devices, which are located in or near the house. The exit point is the Smart Meter,

which has a connection to the NAN network switch. The NAN network, which is

located in the middle, has other HAN networks and a wind wheel connected to the

node. The last instance on the right is the WAN network, which interconnects several

NAN networks, large power plants and the provider.

1.1.0.2 Challenges and Benefits

With the stated scenario of an intelligent power grid, many benefits can be gained

from its implementation. Load balancing is a challenging task and power providers

1. Introduction 7

Figure 1.2: Smart Grid Three Layer Network Architecture

must be constantly aware of demand fluctuations in the grid. Therefore, idling backup

generators or storage systems are used. This is a countermeasure for voltage drops

(Brownouts) or complete power blackouts, in order to enable power providers to react

quickly. With Smart Grid technology, the monitoring options and the added flexibility

of controlling the grid can help to make the grid more cost effective and reliable. Espe-

cially electricity storage systems would highly contribute to the grid stability. Charging

car- and storage batteries can be accomplished with low costs when the grid load is

low or when generators of renewable resources are running. This way, the electricity

provider does not have to further decrease the base load and renewable resources can

be used more efficiently. In the other way round, the stored electricity can be used

during demand peaks, to avoid high energy costs. Also customers could profit from

flexible electricity prices, in case they equip their homes with Smart Meter controllable

devices or adapt their consummation behavior to the billing rates. Apart of these few

examples, there are many more. Several scenarios can be found in [15, 35, 47].

To realize this power grid, many questions arise with its implementation. The commu-

nication infrastructure has to be useful and convenient, it has to be determined which

technologies work best together and how interoperability can be assured. Also there

1. Introduction 8

has to be decided, how legacy systems can be bound into the system and of course -

how the data can be handled in terms of storage, security and privacy. As stated in

several resources [13, 24], the data collection, which comes with Smart Grid implemen-

tations, is a big concern for privacy and security reasons. For example, personal data

collection and also the possibility to remotely cut the power, e.g. in case an electricity

bill is not paid, violate European laws of human rights. A set of law violations of a

theoretic Smart Grid implementation can be found in [28]. In addition to that, the

Smart Grid infrastructure offers a whole new set of attack and espionage scenarios for

hackers. More detailed information on the Smart Grid security and possible attacks

will be discussed in Chapter 2. Even if there are contrary opinions and surveys on the

Smart Grid idea and its implementations, the power grid has to be updated with com-

munication networks in order to meet the requirements of power supply in the future.

Also, as it can be found in [21, 46], many projects and implementations exist already.

To ensure a safe change for the power grid, research has to be done in order to avoid

errors and flaws in the Smart Grid. The past and present has shown in many cases,

that the implementation of security systems to prevent attacks in communication net-

works is inevitable. This work will present an intrusion detection method which could

be applied for Smart Grid scenarios and also other different network architectures and

applications.

2

Smart Grid Security

In the last years, the motivation of hackers has changed from “having fun” with ex-

ploiting software vulnerabilities to more sophisticated and specific attacks on targets

to gain financial benefits. Allen Harper describes these changes in hacking behavior in

his book [19, C. 1]. Since the Smart Grid requires large communication and control

infrastructures, it offers a large variety of intrusion scenarios. Impacts on compromised

hardware in the Smart Grid can range from minor monetary losses to threatening situ-

ations which can harm lives. The following sections will describe a set of attack vectors

and give detailed information about intrusion detection techniques.

2.1 Cyber-Threats for Smart Grid Networks

Since the beginning of electrical power distribution, many issues with metering were

discovered. In the early 1990s, overloads, for example caused by lightnings, made the

electricity meters run faster and customers started to steal energy by looping a wire

over the meter. With more sophisticated digital meters, as they appeared in South

Africa around the 1990s, different approaches were found to steal energy. It is possible

to recharge these types of meters with a 20-digit code. An encrypted command is then

send to the customers meter and the credit is replenished. Even though this system

seems to be safe, thefts were made in the distribution chain of the recharge numbers.

For example, tampering a vending machine allowed the raider to get free recharge

9

2. Smart Grid Security 10

codes. In addition to that, exploitable vulnerabilities were found in the systems soft-

ware. One example is, that a brownout of several meter types could set the credit

to maximum. In order to cause those brownouts, people started throwing chains over

electrical 11kV feeders. These examples show, that even with digital technology and

securely acting implementations, attackers can and will try to manipulate the Smart

Grid infrastructure in order gain financial benefits. One specific Smart Grid scenario,

in which an attacker tries to lower the billing rates is shown in [29]. This scenario de-

scribes the procedure of packet-manipulation to inject false data into the Smart Grid

network. As a result, billing rates are compromised and other clients have to pay

more. Another problem is the intention to weaken a company or country by invading

communication networks to limit or stop critical services. Current events showed that

hacking activity is used for espionage and can be used as an instrument to threaten or

damage countries. For example, as shown in [25], the North Korean government trains

and recruits skilled hackers, possibly to gain more potential in cyber-warfare abilities.

Common viruses or attacks, like Stuxnet or countless examples of exploits available

in the Internet are menacing threats for the Smart Grid security. Especially a virus

which is active in control mechanisms and SCADA-Systems can cause serious damage.

SCADA-Systems are data-acquisition and control systems which are responsible for

regulating and supervising a large amount of power grid devices. In a survey of the

Anti-virus company Symantec, attacks on the energy sector were gathered and pre-

sented. It becomes quite clear, that the power grid is a very popular target: “In the

second half of 2012, the energy sector was the second most targeted with 16 percent

of all the targeted attacks [...] The attackers tend to go after valuable information

[...] but the sector is also a major target for sabotage attacks”[6, p. 19]. Many other

different types of Smart Grid attacks can be found in [45, 17, 29]. With the possibility

of controlling electrical devices and cutting power supply, the Smart Grid functionality

must be ensured and secured. Great threats, which even can harm lives, for example

when electronic medical equipment is in use, become reality if attackers are able to

compromise control modules of the power grid. Further information on the importance

of Smart Grid security, challenges and requirements are presented in [24, 49, 2, 3, 13].

The basis of all these attack-types are manipulated packets, which contain a malicious

2. Smart Grid Security 11

payload or cause system faults. Therefore it is essential to filter the traffic and control

the packet flow.

To defend against the above mentioned actions, intrusion detection concepts to ensure

the Smart Grid security are developed. An overview of IDS techniques and approaches

can be found in [44]. As IDS are also a well known topic in Internet technology,

concepts from these systems are adapted to Smart Grid networks.

2.2 Intrusion Detection in Smart Grid

There are many different approaches on how to protect systems against attacks. Most

common are firewalls, which block ports of incoming and outgoing traffic. They are ei-

ther installed on hosts or they are used to secure incoming web-traffic from the internal

network. This is more an approach to block vulnerable spots and dangerous protocols

to prevent a successful attack. Another way to uncover attacks is to attract hackers by

using a vulnerable system, called a honey-pot, which has security flaws on purpose, but

does not carry any sensitive information. If an attack is conducted, the attacker can

be uncovered over the logging or the misbehavior of the system. Security authorities

become aware of an attack and will conduct countermeasures to stop further attempts.

All of these techniques are not able to detect a specific attack when the packet is sent

to a target. Therefore, intrusion detection systems are needed, which either work on

a host,on a network or are integrated in a firewall. These systems inspect packets

and sessions of a communication and use different methods to recognize attacks. The

following sections will describe how intrusion detection systems work and which tech-

niques are used. Furthermore, current solutions and concepts for the Smart Grid are

presented.

2.2.1 Common Approaches for IDS

The general idea of intrusion detection is to identify an attack, either before a malicious

packet reaches its destination or shortly after it. A desirable goal of the concept is the

identification of an attack to initiate countermeasures as soon as possible. If that is

2. Smart Grid Security 12

possible, the packets can be discarded and a potential hacker can be isolated from the

network. The following approaches are most commonly used:

Misuse Detection is based on the concept of comparing a packet against a ma-

licious behavior. The system is trained for attack-patterns, e.g. when a protocols

tries to execute sensitive system commands. These patterns are often abstracted from

known attack techniques. Misuse-detection systems contain a signature-database with

common malicious patterns. If a packet arrives, it is scanned and compared against

the database. In case a packet matches an entry of the database, the communication

is discarded and an administrator is informed.

The downside of this is the limitation to known attacks. If a hacker uses a so-called

zero-day attack, the malicious packet is not known yet and probably uses a new secu-

rity flaw to intrude the system. A misuse detection system is most likely not able to

identify the attack and allows the packet to pass without any issue. Especially in Smart

Grid implementations, where attack patterns do not exist yet or are not available in a

large variety, this can be a crucial security issue. As shown with the example of digital

Smart Meters in South Africa, new technologies often have many unknown flaws and

hackers may be able to find security gaps more easily. Therefore, a misuse detection

system is less likely to be an effective IDS in Smart Grid applications during the first

years of usage. In case this type of IDS is deployed in a power grid network, it would

be best to combine it with other techniques, in order to complement it with a detection

method for unknown attack vectors.

Specification-based Detection is a derivation of a misuse IDS but uses a different

approach to find rules for the communication behavior. The specified actions in a pro-

tocol or systems are usually defined very precisely. Based on the constraints and the

behavior that is described in the specification, a rule-set can be extracted. This means

that packet parameters or actions of system components can only act in the defined

range. Especially when using simple systems and only few protocol types, this method

can be very effective to protect against intrusions. The more complex a system or pro-

tocol is, and the more variety of communication methods are in the network, the more

2. Smart Grid Security 13

challenging is the task of designing a specification based IDS. In addition to that, there

is no guarantee that the specification does not leave any room for security flaws. As

an example, the Heartbleed vulnerability used legitimate Heartbeat packets to retrieve

data from the server RAM and therefore could be used to steal private keys and user

session cookies. The problem was, that just one variable in the packet was not checked

correctly, but the impact on Internet security was enormous. Even though this issue

was implementation based, those flaws may also occur in a specification. More details

on the Heartbleed vulnerability can be found in [12]. Therefore a specification based

IDS has to be designed very carefully and this task can be more and more challenging

with increasing complexity. Nevertheless, this approach can be very effective for the

Smart Grid, in case implementations are simple or control mechanisms can be gener-

alized easily. This is often the case when security is integrated in the design process in

the early beginning. Due to the problem that many companies have already created

specifications and are also running Smart Grid devices in several projects, the imple-

mentation of a specification based IDS may be too difficult afterwards. In addition to

that, every company and its own implementation will require a specific IDS and this

would cause problems with compatibility.

Anomaly Detection is used to train a system for normal traffic. To achieve this,

several methods can be applied and will further be described in the following chapters.

Generally, the system will “learn” the normal communication behavior of the network.

Depending on which approach is used, the system can also be trained with data of

anomalous behavior to enhance detection chances. That way, the IDS can decide,

based on a set of parameters, if a packet has normal behavior or not. This is a great

advantage compared to the misbehavior system, since zero-day attacks might not be

able to fall through the detection mechanism. If suspicious parameters occur in the

packet payload, the IDS can detect an anomaly. The detection approach can be used

in any network, completely independent from existing implementations and protocol

standards. This is a critical aspect, because Smart Grid implementations already exist

in many countries and anomaly solutions simplify the deployment of IDS in an existing

network structure.

2. Smart Grid Security 14

The problem with anomaly detection is the vague border between good and bad be-

havior of packets in a network. It is a complicated task to design a line between the

classification decisions. The result of this is the very certain appearance of false clas-

sifications. A “bad” packet might be able to slip through the detection mechanism,

and a “good” packet might be classified as an intrusion. Those errors are called false

positives (FP), in case a normal packet is classified as an attack, and false negatives

(FN), in case an attack is not detected. They can occur, for example when the IDS

has never learned the type of packet parameters or payload before. High rates of FP or

FN cause inefficient defense mechanisms, detection overflows and system misbehavior.

The problem of occurring miss-classifications is accompanied by high sensitivity to FP

or FN in the Smart Grid network, due to the large amount of machine-to-machine

traffic with important control flows. As a consequence, an efficient anomaly detection

mechanism with very low FP/FN rates is required, in order to assure flawless Smart

Grid communication.

There are several derivations and other methods for intrusion detection available but

usually the basic principle of anomaly- or misuse detection is applied. A set of current

concepts on Smart Grid IDS will be presented in Section 2.2.2. More and detailed

information on this topic as well as other approaches can be found in [44] and [1, C.2].

2.2.2 Current Smart Grid Security Concepts

Several concepts and suggestions to secure Smart Grid communications have already

been developed. The work of A. Murillo gives a review of some anomaly detection

methods in Smart Grid systems [4]. This section will also present a set of different

popular concepts and alternative ideas of securing a Smart Grid network. Due to the

large variety of suggestions and methods which can be applied in the Smart Grid, the

following will only give a short summary and a small assortment of ideas to give an

overview of current research. Also restrictions and constrains for each work will be

presented. Some concepts might be adapted and integrated into a Smart Grid security

concept in order to achieve the best possible solution.

2. Smart Grid Security 15

Mobile WAN Connection Concept

In the work of [34], the Smart Meter is basically the core-element of all functionality.

Due to the mobile Internet connection, which is used to communicate with the power

provider, a network infrastructure besides the HAN is not required. Also, the Smart

Meter is considered a multi-functional device which contains a firewall and provides

Power Line Connection (PLC) Zig-Bee or WLAN for HAN communication. To en-

sure the security and integrity of the connection, a tamper-resistant cryptoprocessor

is used. The device will also have cryptographic algorithms and functions to support

a public-private key infrastructure. The concept also suggests that, apart from the

sender and receiver part of the transmitted data, packets should be fully encrypted.

Using encryption would make this system safe, if the methods are applied and imple-

mented correctly. It also would make IDS rather difficult, because the package content

could not be read and checked against attacks. Another issue which Anderson states

in his work [3], is the problem of key compromising. If the private key of a provider

is acquired, an attacker could remote control a large set of meters and would be able

to cause large electricity blackouts. Nevertheless, the concept provides good security

measures and does not require the construction of a NAN and WAN infrastructure.

Model Based IDS

An approach of F. Tabrizi and K. Pattabiraman [42] focuses on Smart Meter security.

It suggests a concept which enables the Smart Meter software to detect unauthorized

function calls. This means that an intrusion is not detected by an independent device or

filter. Instead, the Smart Meter software checks itself when code is executed. Therefore,

the Smart Meter software and its architecture has to be specified and additional code

annotations have to be added to the source code in order to enable the functionality.

These annotations specify important security functions and in case a sensitive function

is called, there will be a check against an abstract rule-model, if the call is legitimate.

Tests only could be conducted by trying to insert bad function calls and check if the

IDS worked. Four scenarios were tested successfully and the system seems to work

2. Smart Grid Security 16

efficiently. Another advantage is, that if only sensitive functions are monitored, the

overhead for the CPU, which is added due to the integrated detection mechanism, is

not very high. The downside of this concept is that this solution has to be engineered

into the system before it is sold or firmware updates have to be enabled. Also it

does not protect other assets on the grid. Despite this, the concept would be a great

additional “last barrier” for attacks against Smart Meters, especially when encryption

is used. The encryption would not hinder the detection mechanism because the package

is decrypted before. Afterwards, resulting actions are taken with the aid of function

calls, which are checked by the IDS. The method could also be adapted to secure other

hardware assets in the grid.

Rule Based IDS

In the work of [32], a Behavior-Rule Based Intrusion Detection System is suggested.

The argumentation here is that anomaly detection methods can not avoid false classi-

fications and still have too many false positives in the current research. Therefore it is

argued, that they are not suitable for Smart Grid implementations. Instead, the work

suggests a derivation of a specification based technique. In order to specify constraints

for the possible actions of network nodes, a table of behavior rules is created. A rule can

look like the following: “if a certain demand is above the threshold, power generation

is increased”. This would be valid behavior. Any derivations from this rule would be

considered as an attack. Every node has a monitor and a trustee to be able to control

the behavior of each other. This approach can be very effective, since known as well

as unknown attacks would trigger invalid behavior, like lowering the price, even if the

demand is high. The downside of this is similar to the specification based concepts. If

complex implementations already exist or if there is not enough effort done to be able

to implement this rule based concept, the creation of this type of IDS might become

too complex.

2. Smart Grid Security 17

Applying Domain Knowledge for IDS

One method of enhancing anomaly based intrusion detection is presented in the work

of [27]. This concept suggests using Fuzzy Logic systems in order to represent human

domain knowledge. To achieve this, several rules have to be defined. One example

could be: “if the number of protocols is high, then an attack is more likely”. This can

be the case if a system only uses a small variety of protocols and it is rather unlikely

that a large protocol variety occurs. This knowledge can be mapped to a fuzzy rule,

which controls the sensitivity of an anomaly detection algorithm. In case the detection

sensitivity is high, packets are more likely to be considered as an attack and this will

trigger more findings. It will also increase the likelihood of false positives, but since an

attack might occur, it would be useful to find every malicious packet. The other way

round would happen when the number of protocols is low. In this case, less detections

are triggered. This concept could be used very efficiently, when good human domain

knowledge rules can be found for a system. It also could be combined with an already

existing implementation, in order to enhance detection accuracy.

Smart Grid Distributed Intrusion Detection System

One promising and popular concept for detecting anomalous traffic in the Smart Grid is

the Smart Grid Distributed Intrusion Detection System (SGDIDS) developed by Yichi

Zhang, Lingfeng Wang, Weiqing Sun, Robert C. Green II, and Mansoor Alam [48].

This concept uses interconnected, distributed IDS nodes in a network infrastructure

as it is illustrated in Figure 1.2. The concept was tested with a modified KDD-NSL

dataset and three different anomaly detection methods were used. Also, clustering

algorithms CLONALG and AIRS2Parallel were used in order test unsupervised classi-

fication efficiency. The basic principle is to have IDS systems in every network layer,

which are able to communicate between the IDS nodes in the hierarchy. In case a node

in the lower level of the hierarchy can not classify the data, the packet is passed to the

next instance, which has more powerful detection algorithms. Since this approach uses

a popular infrastructure as well as a widely usable and retrofittable anomaly detection,

this thesis will adapt the idea and further tries to test a new approach on anomaly

2. Smart Grid Security 18

detection. Due to the sensitivity of the Smart Grid communication, the attention is

directed to decreasing the false positive rates.

3

Classifier Voting Concept

This chapter will explain the idea of a classifier voting concept and give an overview

on anomaly detection. In order to be able to further describe the concept, a basic

overview on pattern recognition techniques and selected algorithms will be given. Also,

the important factors which influence the precision of the classification output will be

presented. Pattern recognition is a very large, knowledge intensive topic and due to

the restricted scope of this work, only a small and basic part will be covered. Further

and detailed information on machine learning and pattern recognition can be found in

[11].

3.1 Basics for Data Classification

The common technique which is used in an anomaly detection system in order to

detect and analyze an Internet packet, is called pattern recognition. It is a branch

of machine learning and focuses on detecting regularities in data. To describe how

the process works and which problems are involved, an example of the book “Pattern

Classification” is used [11, Ch. 1.2]. In this case, a fish plant wants to automate the

process of sorting incoming fish into the according species. The two types of fish, sea

bass and salmon, should be recognized by optical sensing. In order to distinguish the

breed, it is possible to extract certain features from the pictures, like length, width,

number and shape of fins as well as the mouth position. It has to be considered that

the values of the features vary picture by picture, because of different sizes of the fish,

19

3. Classifier Voting Concept 20

lightning conditions etc. To reduce this occurring noise, preprocessing is used. In this

procedure, the data is simplified, but relevant information for the breed prediction

should not be lost. Afterwards, the features with the biggest variation between the

breeds are used in order to built a model. In this case, the width of the fish and the

lightness is selected, because the sea bass usually has more lightness than the salmon.

If the features are populated into a two-dimensional space as shown in Figure 3.1,

the black dots represent features from salmons and the pink dots represents features

from sea basses. The data here is represented as the training data for a classification

Figure 3.1: Feature space for Salmon and Sea Bass measures [11, p.7]

algorithm. The next step is to build the model, which defines the relationship between

features and patterns. This means that a set of features, like a two-dimensional vector,

containing the value for width and lightness, is mapped to the pattern salmon or

sea bass. Depending on which algorithm is used, different decision boundaries will

be created. These boundaries decide, how a new vector will be classified. In a two-

dimensional model, those lines can be in different shapes, like linear, cornered, round

etc. Figure 3.1 shows how the decision boundaries look like in a two dimensional feature

space for a linear model and a complex model. If three dimension are used, the line

becomes a plane and if more dimensions are added, the decision boundary will be in

the form of a hyperplane. In the classification process, a fish is photographed and the

values for its width and lightness are preprocessed and transformed into a vector. The

values are populated in the feature space and depending on which side of the decision

boundary the dot appears, the classification is made.

After a model is build with the training data, it is usually tested with a new set of

data, the testing set. It contains data which has not occurred before in the training

3. Classifier Voting Concept 21

Figure 3.2: Decision boundaries for linear and complex model [11, p.7/8]

set and usually consists of similar data instances. The testing set is used to determine

the classification efficiency, so it can be resolved if the constructed decision boundary

can also be exposed to new data and still make mostly correct predictions. To create

a test set, two approaches exist. The first method is to use a small amount of the

whole dataset, for example a 10% or 20% split for testing and the other, larger part

of the data is used for training. Another method is to use a test-set which is already

provided with the data. This is often the case when popular datasets are used, to

enable benchmarking of the algorithm efficiency. When it comes to evaluation, there

are many ways to measure the performance and the method also strongly depends on

the used data. Most common values are FN and FP rates for two class performance

measures. Another way of showing the precision of the predicted output is to populate

the data in confusion plots, which show correct and falsely classified data in a matrix

format.

As it can already be observed on both the linear and complex model in Figure 3.2,

there might be problems with the boundary. In the complex model, no data is classified

incorrectly in the training set. But when there is new data populated in the feature

space, it is very likely that false classifications may occur. The problem here is called

overfitting, since the boundary is matched too precisely to the training set. Another

issue is the feature space, which is not able to create a large gap between the classes.

This causes some vectors to blur into the other class. In the linear model, there are

already cases in which the salmon will be classified as sea bass and vice versa, but the

accuracy of this model might be more efficient than the one of the complex model. To

determine the efficiency and to check if the complex model might be overfitted, the

testing set is used. This example shows how important models, decision boundaries

3. Classifier Voting Concept 22

and feature selection are for classification efficiency. Sometimes it also makes sense to

use a verification set, which is a new set of data which hasn’t been in the training or

testing set yet. This is used in order to check if the classification model has not been

fitted too precisely to the testing set.

3.1.1 Pattern Recognition for anomaly detection

The example stated Section in 3.1 is simple but the main principles do not differ in

most of the anomaly detection approaches. In order to enable pattern recognition,

features have to be extracted, preprocessed and a model has to be built. In the case

of anomaly detection, the main goal is to train the system with the normal traffic. In

order to do this, it is important to select a set of features which will create a cluster for

normal data packets and place anomalous packets somewhere outside of the cluster.

The outlier-packets can then be detected by a classification system and therefore rec-

ognized as attacks. It is strongly dependent on the features and the prescaling method

applied, how far away the anomalous packet can be placed from the “normal-cluster”.

This means the most important task comes down to the feature extraction and there-

fore finding, which properties differ most between intrusion packets and normal traffic.

Since this can be very complicated, a common approach is to gather every feature

that can be thought of, and then reducing the data to the relevant features with most

variation between the classes. Many different values can be extracted from digital com-

munication, like protocol types, services, ports etc. But since this engineering task is

not only implementation specific but also very difficult, this work will use a common

dataset to evaluate the classification performance. Using a popular performance mea-

suring method also enables the possibility to evaluate and compare the performance

of a classification system. Further information on this will be presented in Section

3.2. After the features are selected, there are many different ways on how to detect

outlier-packets. Common approaches and research from the last six years in this area

can be found in [5]. Popular techniques for pattern recognition are the use of Support

Vector Machines (SVM), Cluster analysis and Ensemble techniques. The methods also

vary on which layer the anomaly detection is used and which data is gathered. Either

the system is integrated in a machine and the IDS controls the behavior by monitoring

3. Classifier Voting Concept 23

device parameters, or the detection system works on a meta level. For example when

a set of devices is used and the IDS monitors the communication traffic. Also device

status and behavior updates of the machines can be used in order to create an anomaly

IDS. Since deploying an IDS as a network node is the most flexible solution and also

offers the possibility to upgrade a network infrastructure after its implementation, this

approach is used in this thesis.

3.2 The KDD-NSL Dataset

To evaluate the classification performance, the KDD-NSL dataset is used. The files can

be downloaded on the website of the Information Security Center of Excellence [36].

This dataset is a modified version of the popular dataset KDD Cup 1999, which can be

found on the SIGKDD website [41]. The reason for the name and its existence is, that

the data was used in the Third International Knowledge Discovery and Data-mining

Tools Competition which was held in 1999. The purpose of the set was to evaluate an

anomaly based intrusion detection system, which was developed by the competitors.

The data consists of normal traffic and attacks, which can be divided in four categories:

1. Denial of Service (DoS) attacks like syn-flood, to block or overload a targeted

system.

2. Root-to-Local (R2L) attacks to gain access to a remote machine. Methods for

password or login acquisition are used, for example guessing passwords

3. User-to-Root (U2R) attacks to gain administrator privileges. In this case, a very

common approach is using exploits with buffer overflows

4. Probing, to gather system information. This can be done with port scanning and

OS-fingerprint techniques

The set was prepared and managed by MIT Lincoln Labs. To gather the data, standard

communication was audited and a wide variety of intrusions, which were simulated in

a military network environment, was added. For the classification purpose, 41 features

3. Classifier Voting Concept 24

are contained in the dataset. A brief description of every feature can be found in

the task section of the SIGKDD site [41] and in Section 3.2.1. The set consists of

simple features like a packet flag and protocol as well as meta-level, connection-,time-,

or host-based features. For example the host-based feature “Same Host” works on

a higher level, since it examines the last requests to the same source in a window

of 100 connections. In this case not only knowledge of the packet itself but also of

past connections is included. This is effective in order to discover several attack types

because it also enables to evaluate communication specific features. If only packet-

specific attributes are used, additional information about the past connections can not

be gained and this might worsen the discovery chances. Even though the features seem

to be chosen in an efficient way, some problems exist in the original KDD CUP 1999

dataset. One problem is the large size of over 700 Megabytes, which requires algorithms

and systems with high performance. Another issue is the amount of redundant records,

which biases the classifier performance. A detailed analysis of these problems can be

found in [43]. In order to approach the issues, the NSL-KDD dataset was developed

and the amount of records was significantly reduced. An overall reduction rate of

about 75 % was possible after eliminating redundant records. With that reduction, the

dataset comes down to a size of about 20 Megabytes, which makes it very applicable for

experimenting with classification systems. Even though there is still critique about the

addressed problems of the CUP 1999 set, which were not resolved with the KDD-NSL

development, the NSL-KDD is widely used by several researchers. Details for of the

unresolved issues are stated in [23]. This popularity is due to the reduced size and

the enhanced applicability, which is offered by the dataset. It has to be considered

that using data in this way is only a first step for general performance evaluation.

It enables to compare results and helps to determine the efficiency of the proposed

method, which also applies for the implementation tests in this thesis. Even though

the solution is suggested for a Smart Grid implementation, regular Internet traffic is

used for the evaluation. This is due to the lack of available smart-grid communication

data. A dataset with attacks and Smart Grid traffic is not yet available.

3. Classifier Voting Concept 25

3.2.1 Details and Challenges

In order to understand and interpret the results, a detailed analysis of the dataset is

necessary. The NSL-KDD consists of 42 features, including the class attribute. Every

feature is either numeric, binary or a string value (nominal). Also, the values are either

extracted from the packet or contain a “meta-value” of the communication. Table 3.1

shows the available features, their format and type. As it can be observed, there are five

same host and three same service features. In addition to that, there are nine features

with discrete values. Four are string- and five are binary values. The class-feature is

also a discrete string value, but it is not considered as a real feature, since it serves for

classification evaluation.

Features with type and format
duration [D,Bin] su attempted [SHo] same srv rate
[D,Str] protocol type num root [SHo] diff srv rate
[D,Str] service num file creation [SSe] srv diff host rate
[D,Str] flag num shells dst host count
src byte num access file dst host srv count
dst byte num outbound cmds dst host same srv rate
[D,Bin] land [D,Bin] is host login dst host diff srv rate
wrong fragment [D,Bin] is gust login dst host same src port rate
urgent count dst host srv diff host rate
hot [SHo] srv count dst host serror rate
num failed login [SHo] serror rate dst host srv serro rate
[D,Bin] logged in [SSe] srv serror rate dst host rerror rate
num compromised [SHo] rerror rate dst host srv rerror rate
[D,Bin] root shell [SSe] srv rerror rate [D,Str] class
D = Discrete feature, Str = string value, Bin = binary value
SHo = same-host feature, SSe = same-service feature

Table 3.1: Table of KDD-NSL Features

There are different types of KDD-NSL datasets available, which include a training and

a test set. The training set consists of 125973 instances, the testing set has 22544.

There is also a subset of the testing data available, which does not include data of

a certain difficulty level. In this work, the full testing set will be used. In order to

analyze the dataset in more detail, Figure 3.3 shows the number of packet types of the

two datasets, split into the specific attack-types and normal traffic.

3. Classifier Voting Concept 26

Figure 3.3: Packet types of training and testing dataset

As it can be observed, the Training dataset has many normal, DoS and Probing in-

stances. The amount of R2L and U2R types is rather small, only 52 Instances for U2R

and 995 for R2L. In contrast to that, the amount of R2L and U2R attacks in the testing

set is fairly large. The R2L instances are three times the size of the training data and

the amount of U2R attacks is even 15 times higher than in the test set. This means that

an efficient training for those attacks is rather difficult with the provided data. Another

complication for the attack detection task is the large variety of trained and untrained

intrusions, which are present in the test set. To produce a more challenging set, the

developers interspersed attack methods which are not contained in the training data.

This requires the IDS to detect unknown intrusion patterns, in order to be efficient.

The intention of this is to test the algorithm for its ability to detect zero-day attacks.

Therefore, it is very challenging for an algorithm to produce a good performance, but

the more challenging the dataset, the better an evaluation and comparison is possible.

Since unknown attacks can be the most harmful ones, this encourages the production

of algorithms, which may be able to detect unknown intrusions in the future.

3.3 Combination of Classification Algorithms

The following sections describe different algorithms which are implemented in a clas-

sifier voting scenario for an IDS. To be able to classify data in a voting scenario most

efficiently, different approaches to classify the data are used. A set of algorithms pro-

duces a variety of different classification outputs, which then can be combined with

voting. The classifiers are chosen based on their performance and learning strategy.

3. Classifier Voting Concept 27

By using the most efficient algorithms, a voting mechanism may achieve best results.

Combining different learning strategies can also play an important role for efficiency

and the impact on the performance is examined. It has to be considered that a super-

vised classifier may perform best in a testing scenario with a defined database, because

different attack strategies and types are already known and classified correctly. The

supervised classifier can be trained with a clearly defined good and bad behavior. Sim-

ilar attack patterns as trained in the KDD-NSL dataset may be detected, even if a

zero-day attack is present in the traffic. When an IDS system is deployed in a Smart

Grid scenario, a predefined and classified attack-database is not yet available. Despite

this problem, an unsupervised classifier does not require training for attacks and will

be able to decide without indication, if a packet is considered as an intrusion or not,

for example by clustering. Therefore an unsupervised algorithm might be useful in the

current situation, because it only needs normal behavior data to be trained. Never-

theless, companies and security specialists may be able to create a Smart Grid dataset

for supervised learning in the future, which would enable to use the generally better

performing supervised classifiers. This thesis will also focus on supervised training al-

gorithms, since benchmarks are more easy to create and new concepts mostly adapted

this type of training.

To reach the desired goal of reducing a FP-rate of an algorithm, the focus is on improv-

ing the performance of individual classifiers with a combination of learners. It is not

the goal to achieve better results than research has attained before with the KDD-NSL

dataset. It also has to be mentioned, that the feature extraction is the most crucial

factor for the effectiveness of classifiers. If it is possible to divide bad and good behavior

in Smart Grid traffic by using a set of features containing high variance between normal

and anomalous traffic, packets can be easily distinguished. This could enable the pos-

sibility to detect intrusions with a great probability and even unsupervised clustering

algorithms may then be used as an efficient mechanism to detect intrusions.

3.3.1 Algorithms Selection

In order to understand the different classifiers and the learning techniques, the following

section will present a set of selected classifiers, which contribute in a voting scenario.

3. Classifier Voting Concept 28

The explanation of the algorithms will only cover the basics and will not be illustrated

with the NSL-KDD data. The dataset used in this work contains 42 features and since

every feature is used, the dimension in which the classification is carried out is the

same as the amount of features. However, this is not presentable in order to explain

the algorithms,and therefore, examples with two-dimensional data will be used. The

methods presented were implemented and tested, and can also be applied to more than

two dimensions. In the case of multidimensional data, the decision boundaries will form

a hyperplane or multidimensional areas instead of simple lines. In the examples shown,

the boundaries are always represented as lines in a two dimensional feature space.

3.3.1.1 Support Vector Machine

Support Vector Machines (SVM) are used for pattern classification and regression. This

algorithm only uses mathematical procedures to form a decision boundary. The main

concept with SVMs is to create a hyperplane, which is able to separate the different

classes. The goal of this method is to maximize the distance between the vectors of

differing classes, which are located closest to the decision boundary. Figure 3.4 shows

the separating planes and the optimal hyperplane in a simplified manner. On the left

side, possible decision boundaries are shown, but the distance between the class data-

points are not maximized. The optimal hyperplane on the right side is found by the

SVM, due to its algorithm.

Figure 3.4: Decision boundary creation with SVM [37]

In this case, a linear separation and a two-class classification is used. Since this is

3. Classifier Voting Concept 29

only applicable in a simple feature space, which can be separated by a line, more com-

plex solutions for creating a decision boundary are required. Therefore, SVMs can

use different kernels to do a so called “Kernel-Trick”. With this method, additional

dimensions are added to the feature space in order to make the data linearly separable.

This is possible due to the fact that every feature space can be linearly separated, if

only enough dimensions are added. When this line in the higher dimensional space

is transformed back into the original space, a non-linear boundary is created. It is

determined by the kernel selection, in which way and which general shape the decision

boundary is formed. It may require just one or even nearly unlimited additional di-

mensions to achieve this, depending on the feature space used. An example of a Radial

Basis Function (RBF)-Kernel and a Polynomial Kernel is shown in Figure 3.5.

Figure 3.5: Kernel-Trick for SVM algorithms [37]

In this example, the feature space illustration on the left, which consists of red and

blue dots in a round shape, is transformed with the Kernel-Trick into a linear separable

area. The plot in the middle shows a Gaussian kernel transformation, on the right is

the polynomial transformation. It can be observed that in this case, the Gaussian

Kernel might be a more efficient method to classify the data, since the blue dots

are separated clearly from the red ones. Also, different parameters can be used for the

decision boundary tolerance, based on which kernel is applied. This is practical in order

to influence the classification performance. These operations can be very complex and

finding best fitting values is an experimentation task. The consequence of this technique

is also, that the higher the dimensions and instances of the training data, the more

calculation intensive is the SVM algorithm. Figure 3.6 shows an example of a complex

decision boundary of a SVM.

3. Classifier Voting Concept 30

Figure 3.6: Complex decision boundary of a SVM

In addition to that, many different implementations of SVMs exist, which can even

handle multi-class problems. Due to the kernel-tricks, training time might be very

long. However, the prediction of data-points is often much faster, once the decision

boundary is set. More detailed information on this topic can be found in [40].

3.3.1.2 AdaBoost

AdaBoost is short for “Adaptive Boosting” and is an ensemble meta algorithm. It is

currently very successfully used as a face-detection method, but can also be applied for

other classification problems. It is called an ensemble-algorithm since it uses a set of

simple learners which are then combined in a voting method. This method originates

from boosting. When learning, a simple classifier, for example an algorithm that creates

a linear boundary, like a horizontal or vertical line, is trained with the dataset. If the

feature space can not be separated by this single line, there will be miss-classifications

in the dataset. The data-points which weren’t detected correctly will then be weighted

as “more important”. In the next step, a new model will then try to classify every

weighted data-point correctly, which means that every miss-classification on the last

step should now be covered with the next model. The data-points which haven’t been

detected correctly by the second model, will again be weighted and a new model is

trained. That procedure will be done several times and in the end, weights are applied

to every model. With combining each simple model with a voting-weight, a decision

boundary is created. This procedure is illustrated in Figure 3.2. M1 shows the first

3. Classifier Voting Concept 31

model, which has three false classifications. The enlarged “+” data-points show the

false classifications on the first model, which shall be covered by M2. M3 shows the

third decision boundary, which tries to cover the enlarged false classifications of M2.

The circled plus data-points are already covered by M1 and not considered. In the

final result, all three models are combined to one decision boundary with weights, as

shown in Figure 3.7.

Figure 3.7: Boosting algorithm [30]

The decision boundary form can vary with the chosen models, but most commonly a

linear classifier is used, which creates an angular surface. With AdaBoost, the weights

are updated in each operation with a combination of logarithmic and exponential func-

tions. The more models, or so called estimators, are trained, the more precise the

model can become. As a result, AdaBoost can be a very efficient algorithm, which is

used in more and more applications, due to its increasing popularity over the years. A

more complex example of an AdaBoost decision boundary is shown in Figure 3.8.

Figure 3.8: AdaBoost decision boundary with 200 estimators

As it can be observed, the decision boundary strongly differs from those of a SVM

3. Classifier Voting Concept 32

in terms of shape. The training time for AdaBoost is strongly dependent on the

number of estimators used and of course, the training data size and dimensions. Further

information on the algorithm as well as detailed formulas are presented in [22].

3.3.1.3 K-Nearest-Neighbor

The K-Nearest Neighbor (kNN) algorithm is a comparably simple classifier. The basic

idea here is to determine, to which class a vector is closer to. In the feature space, every

training vector will be populated with the related class. When a new point should be

calculated, the vector is populated in the space, and the distance to the nearest points

are measured. The K-Value will determine, how many other vectors will be included

in the evaluation. This algorithm resolves, how many of the K neighbors of the vector

are from a certain class. The algorithm can be configured with several parameters in

order to configure the class decision. Options like the distance measurement method or

the influence and amount of data-points next to the predicted vector can be set. The

class decision is then based on the most neighbors, which have the smallest distance to

the data-point. Depending on the chosen K-value, the decision boundaries can change.

An example of this is shown in Figure 3.9.

Figure 3.9: kNN decision boundary with different K values

The kNN algorithm is simple but the performance is also very dependent on the feature

space and parameters used. There is nearly no training time required, since the feature

space of the training data is used to predict the model. The downside of this is, that

predictions take a long time, since every instance has to be populated in the feature

space and then evaluated based on the algorithm. Also, the size of the training model

3. Classifier Voting Concept 33

is as big as the training size. In the case of the full KDD Cup 1999 Dataset, the kNN-

Training model would have more than 700 Mb. Further reading for this topic can be

found in [26].

3.3.1.4 Decision Tree

The decision tree algorithm is a relatively fast and robust method which uses a tree as

a predictive model in order to do classification decisions. It represents leaves as class

labels, branches as conjunctions and works similar to a flow chart. To go through this

flow-chart like structure, tests are made at each node and based on the given value,

decisions are made. After each decision, the next test will be issued until the end of

the branch is reached. The last decision leads to a leaf, which determines the class.

The construction of this tree is realized by using class-labeled training tuples. Each

tuple can be derived into an attribute test, which will be attached to the tree. On

the end of each branch, the leaf is represented as the decision for a class. Since the

decisions are straight forward, the decision boundary is angular. Decision trees with

a small deepness, which means that only a few tests are issued until a class decision

is reached, can also be used as a function in boosting algorithms. An example of a

decision-tree boundary is shown in Figure 3.10

Figure 3.10: Boundary example of a decision-tree algorithm

Depending on the complexity and the deepness of the tree, even boundaries like shown

with AdaBoost in Figure 3.8 can be achieved. Decision tree algorithms can be con-

figured with options like deepness-levels and the amount of leaf nodes, in order to

3. Classifier Voting Concept 34

control the complexity of the tree. Generally, this algorithm is trained comparably

quickly, does not need much data-preparation and also provides predictions very fast.

In the same time, depending on the parameters, the classifier can be provide good

performance and accuracy. Further information can be found in [33, Ch. 3].

3.3.2 Voting Techniques

As stated in Section 3.3.1.2, voting techniques are already known in pattern recogni-

tion. The idea is to classify a vector and exposing it to different decision boundaries.

Afterwards, every class-decision of each model counts as a vote for the final decision.

There are several methods on how voting can be realized, for example with differently

trained models or with variation of the training data. The difference with this work is,

that not only weak learners or one differently trained models are used in order to form

a voting scenario, but different learning approaches and algorithms contribute to the

voting mechanism. The work of Thomas G. Dietterich [9] states many different exam-

ples on how voting can be applied in machine learning. It is also argued, that different

approaches on how data is classified have each its own flaws and benefits, which might

be used in order to create a more powerful classifier with voting. Also, a work of Gareth

James [16] uses majority votes to solve classification problems. The basic principle,

why a vote can be more efficient than only one classification mechanism, is illustrated

in Figure 3.11. In this example, the detection rates of different attack types with a set

of classifiers is shown. For simplicity, the scenario only contains false negative cases

(grey area) and normal traffic is always classified correctly. Thus, non-attack instances

are left out in the illustration.

Figure 3.11: Example of an optimal vote scenario

the first three boxes from the left show three algorithms, which have different prediction

accuracy for each intrusion type. If an area is grey, the algorithm can not detect this

3. Classifier Voting Concept 35

attack type very efficiently and will very likely classify it as normal traffic. As it can

be observed, Algorithm 1 can predict DoS attacks as well as probing and scanning, but

has very bad prediction for R2L and U2R attacks. Algorithm 2 can’t predict DoS and

algorithm 3 is weak on Probing and Scanning. When all these models are combined,

as shown on the far right, each field has at least two classifiers, which will vote for an

attack. This will result in very high accuracy for the predictions, if a majority vote

is chosen. However, this is an optimal scenario and is most likely not reproducible in

reality. The majority votes can also have a bad impact on the classifier performance,

for example if a weak algorithm is selected. There is also the possibility of using a

weighted majority vote. Instead of only counting the classifiers which voted for a class,

the vote weights vary with each model. This means that the vote decision is done by

the amount of weight assigned, and not by the highest number of votes. As shown

in several research papers, similar approaches have been applied successfully in other

fields [7, 39]. The aim of this thesis is to achieve better performances with a multi-

classifier vote than with a single classifier, using the NSL-KDD Dataset. The focus

is hereby on false positives. In order to do this, the technique of weighted majority

voting is applied.

4

Creation of a Voting-Classification

system

In this chapter, the methods and the realization of a voting-classifier is documented,

to give an comprehensible and reproducible setup for the voting classifier. In order to

create and test an anomaly IDS with the KDD-NSL dataset, several constraints exist

and decisions had to be made in order to be able to implement and test a classification

system. A set of different libraries and scripts were developed for this purpose. The

following chapter presents essential development steps and explains the reasons for

some of the test-architecture decisions. The full source code will be provided as a

download on Bitbucket.

4.1 Implementation and approach

Several software solutions and libraries exist in order to test and implement classifica-

tion systems. One very popular machine learning and data mining software is WEKA

[31]. This open source tool is a collection of machine learning algorithms and also

provides a user-interface, in order to test different classifiers. In addition to the very

wide range of provided functions within WEKA, it offers the possibility to create,

plot and modify datasets. Since the program is open source and provides interfaces

to add new modules, developers can write new algorithms and use the UI for test-

ing. Unfortunately, several Internet sources stated that the source code is not always

36

4. Creation of a Voting-Classification system 37

comprehensible or completely reliable. In addition to that, personal experiences with

developing for WEKA showed a rather fragmentary documentation. As a resulting

conclusion, the source code production seemed to be rather difficult and not advised

for this type of project. Nevertheless, WEKA was used in this work for simple tests,

to check classification results and to carry out several dataset preparation tasks. Ad-

ditional code development was not required in order to perform these tasks.

To find possible alternatives and to determine the best solution to implement the clas-

sifiers, several libraries were collected and compared. A set of possible candidates

including Python, .Net and Java-Libraries were gathered. The decision was made in

favor for the python library Scikit-Learn, which offers a well maintained documentation

and a large set of algorithms. Other useful classification and preprocessing tools are

also provided.

To develop python scripts and libraries, several software modules had to be installed.

The following list presents the versions and included libraries which were used in the

project:

1. Python 3.4.3

2. Numpy 1.9.2

3. SciPy 0.15.1

4. Scikit-Learn 0.16.0

Python 3.0 was released in 2008 and is a new version of the language. It is incompatible

with 2.x releases, but the language is mostly the same. Version 3.X differs in many

details and functions, for example how built-in objects, like strings, work. Therefore all

developed source code will not be executable with 2.x versions. Although Python 2 is

still very popular, version 3 was chosen because newer functions, libraries and updates

will only be provided for the most recent release.

Numpy is a fundamental package for scientific programming and contains tools to

integrate modules written in other languages like C. Among others, it offers linear

algebra functions and N-dimensional array objects. SciPy is also a library for scientific

and technical computing, since it contains a large set of algebra, plotting and processing

4. Creation of a Voting-Classification system 38

modules. Both packages SciPy and Numpy are mandatory in order to use the Scikit-

Learn library.

Scikit-Learn is built on the above mentioned libraries and is a simple and efficient

tool for data mining and data analysis. The range of functions includes classification-

,regression- and clustering algorithms, as well as methods for dimensionality reduction

and preprocessing. In addition to that, model comparison and validation functions are

provided. Further information on this tool can be found in [38].

For developing scripts and libraries, the Python IDE PyCharm professional 4.04 was

used.

4.1.1 Dataset preparation and modifications

The KDD-NSL Dataset generally comes in an .arff format but it can also be downloaded

as a .txt file. The .arff Format is WEKA-Specific and definitions of attributes and value

types as well as ranges are included in this file. In general, datasets can be seen as N

times M matrices. Each row N represents one instance of the data. The M columns

represent the amount of features, which every instance contains. In the .arff file, the

name of each attribute is stated in the beginning, as well as every possible value for

the feature. As stated in Section 3.2, some features of the NSL-Dataset are in a string

format. For example, 70 distinct string-values are available for the “service” feature.

Since a string type is not practical to use for mathematical operations, like they will

be executed in the pattern recognition process, every string-value has to be replaced

with a distinct number. To do this and other operations, like enabling to use the data

with scikit-learn functions, the library “KDDTools” was created.

The very first step was to remove the first 44 lines in each of the training and testing

sets of the .arff file, since those are only required when used with WEKA. This process

was done manually. After this operation, the data is represented as a comma-separated

matrix with each 42 features per row.

4. Creation of a Voting-Classification system 39

Transformation and mapping of NSL-Data

In order to transform the text into a python object and map the data afterwards,

the function “genFromNSL” is used. In that function, a file is read and parsed into

an object. To do this, Numpy has a method “generatefromtxt” in its package. The

comma can be specified as a separator, which then is used to copy the data into a

multidimensional Numpy array. Since there is no common datatype for every feature

in the NSL set, the strings are saved as byte-strings and numeric values are saved

as floats. In the next step, the byte strings have to be decoded and replaced with a

distinct numeric value. Also, the last feature, which represents the class, has to be

detached from the data. The reason why this has to be done is, that Scikit requires a

separate array of the matching classes for each data-point, called targets, in order to

train the classifier. The class feature should not be in the training data at any time,

since the class attribute will be used over the targets array. Each instance of data and

its matching target can be regained by using the same index number. Therefore it is

crucial that the data arrangement of both data and targets is not scrambled. If there

is a randomization, each column in the arrays are exchanged in the same way to keep

the correct matches. The function “KDD NSLmapper” has been developed in order to

create a matrix of data-instances and to generate a separate targets array. It can be

found in the library “KDDTools”. The operation that is carried out by this mapper

function, is the replacement of strings with a numeric value. The optional Boolean

parameter “attack types” allows to map the classes to the four specified categories.

For the voting-classifier, only a two-class pattern recognition problem will be used.

That means that the classifier has to distinguish between normal and anomalous traffic.

Nevertheless, the attack type mapping is required in order to create derivations of the

sets. When the mapper function is called the byte-strings are decoded and replaced

with a number. The code sample below shows this approach for the protocol type

feature with the value ’udp’.

protocol = nsl Data[i][1].decode(’UTF−8’)

if protocol == ’udp’:

protocol type.append(2)

4. Creation of a Voting-Classification system 40

The variable “i” iterates through every instance and the “1” stands for the column-

position of the feature. With that method, every string-value is exchanged and stored

in a separate array. In this case, the array is called “protocol type” and ’udp’ is

represented by the number “2”. Before the return of the function is called, the data

is put back together and the output is a N times 41 dimensional matrix, consisting of

only numeric values. The same method is used to map the classes-feature. Since this

feature is either “normal” or “anomaly”, a 0 or 1 value replaces the string to generate

the targets array. The mapper function returns both the mapped targets and data

instances, in the form of an Numpy array. This is required for Scikit-Learn functions.

Applied Scaling Methods

The next step before the data is used for training and testing, is scaling. This is used

to standardize the range of the features and is also known as data normalization. In

general, the values, which can for example vary in between 0 and 5000, are scaled into

a defined range. Usually this is from 0 to 1 or -1 to 1. When Arcustangens scaling is

used, the data is standardized first and afterwards, an arctangent function is applied.

The standardization implies that the mean value of the specific feature is subtracted

from each number in the matching feature-column. This causes values near the mean

to be close to zero. After that, the value of each feature is put in the Arctangent

function and multiplied with 2 divided by pi. This puts the data in the interval -1 and

1. The operation causes exceptions of the mean value to be placed on the edges of the

interval. The arctangent scaling is usually a very efficient way to scale the data, since

it causes non-regular values to be more recognizable.

For general classification tasks, the library “ClfTools” was developed. It contains the

methods “scaleAtan” and “scaleSimple”. Since scaling can have a great impact on

classification performance as well as training and prediction time, several scenarios

are evaluated. For simple scaling applications, Scikit offers various functions which

are used in this library. Arctangent scaling does not exist in the Scikit module and

has therefore been programmed. The Listing below shows an extract of the scaling

function.

def scaleAtan(trainData , testData):

4. Creation of a Voting-Classification system 41

std scale = preprocessing.StandardScaler(copy=True)

std scale.fit(trainData)

trainData = std scale.fit transform(trainData)

testData = std scale.fit transform(testData)

trainData = 2 / np.pi ∗ np.arctan(trainData)

First, the “StandardScaler” from the Scikit module “preprocessing” has to be in-

stanced. After that, the scaling object is fitted to the training data. This means

that several values, like the means, are calculated and stored for further use. This is

crucial for classification, since both training and testing data have to be scaled with

the same values. Otherwise, the results are distorted. In the next step, both training

and testing data are scaled with the function “fit transform”. This method scales the

data according to the calculated values, which were determined from the data given in

the “fit” function. In general, this is always the training data. The last operation is

to use the Arctangent and multiply it with 2 divided by pi. In this case, mathematical

values and operations are used from the Numpy module “np”. It has to be mentioned

that if an array is given to the mathematical operation, as it is stated in the last line

of the listing, the operation is taken out on each of the array elements. A loop for

iteration is not required in this case.

The tests with the classifiers are carried out with three different preprocessing ap-

proaches. Unscaled data, normalized data in between the range of -1/1 and Arctangent

scaled data is used. It also has to be mentioned that scaling can have a large impact

on the training time, based on the applied algorithm. Especially the SVM-Model may

require about five times longer for training, when no scaling method is applied.

Saving and Loading Prepared Data

The “KDDTools” library also contains several other functions to ease the use of the

NSL-Dataset. Since mapping and preprocessing of the data takes time and resources,

it is unpractical to do this process for every test situation. It also has to be mentioned,

that the data does not change, unless another scaling method is applied. Therefore

the functions “saveDataset” and “loadDataset” were defined. These enable to save

4. Creation of a Voting-Classification system 42

and load Numpy objects, which is considerably faster than doing the whole prepro-

cessing. Another advantage is, that targets and data are stored in separate objects,

which makes it more applicable for Scikit-learn.

Another interesting factor for performance analysis is, which and how many of the

different attack types were found by a classifier. Considering that only a two-class

problem is executed with the classification, the method “findIntrusionType” was de-

fined. With this function it is possible to find which intrusions of a certain type were

found. This works only when the regular and unmodified NSL-KDD test or training

data is used. The function loads a stored array of the intrusion types, which occur

in the specified set, and then uses the given targets array to exchange the binary val-

ues with a five-class detection. Simply put, each detection will be exchanged with its

matching intrusion type. This can only be applied when the classification data is still

in the same order.

The last important function for dataset preparation is the “makeDataset” method. It

will be used to create datasets containing only specific attack types. The listing below

shows the function header.

def makeDataset(data,targets,classes):

When a dataset with multiple classes is given to the function, the “classes” parameter

is an array that specifies, which of the different targets should be put in the resulting

set. Since the KDD-NSL dataset can be downloaded with the exact intrusion types, it

is possible to map this data to the more sophisticated five-class problem, consisting of

normal traffic, R2L, U2R, Probing and DoS attacks. With the “makeDataset” function

it is possible to create a training or testing set, which only contains the specified classes.

Script for Dataset Creation

To enable easier and faster testing, it is practical to use a script to generate the datasets.

Like this, the data can be mapped, preprocessed and scaled. Afterwards, the object

can be saved to a specified location. If a change of the scaling method is done, the

new sets can be saved and reused in the same way. This facilitates test scenarios

and makes changes to datasets more easy. Because of these advantages, the script

4. Creation of a Voting-Classification system 43

“CreateNSLSets” was developed. In general, the execution of the script does three

steps. The first is to load the data, transform it into a Numpy object and map the

string values to numbers. After that, the data is scaled in the specified way. To be able

to reuse the data in testing scripts, the targets as well as the data is then stored in a

given location. If the file already exists, it will be exchanged against the newer version.

Another task that is executed with the Script is the generation of a validation dataset.

The use of this set is to check, weather the classification is not fitted to the testing set,

but also is able to classify “unseen” data with roughly the same performance. With

this approach, overfitting for the training and testing set is avoided. In Section 4.1.2,

further reading and details on the validation-set construction and architecture will be

given.

4.1.2 Testing of Classifiers

When combining algorithms, it has to be ensured, that every component works cor-

rectly. For this purpose, tests of each classifier were made before they were used in the

vote scenario. The following sections will describe which parameters were chosen, how

tests have been carried out and which results were achieved.

To train the classifiers, the datasets are be generated with the script “CreateNSLSets”

and then loaded with “loadDataset”. Before every classifier can be created, the ap-

propriate module has to be imported and assigned to a variable. In addition to that,

there is a possibility to modify the default values of each classifier. As it is stated in

Section 3.1, every algorithm can use different values and attributes in order to calculate

a decision boundary. Those values are given when the objects are instantiated. This

process is shown in the listing below.

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

dTree = DecisionTreeClassifier(max depth=None,class weight=’auto’,min samples leaf=20),

aBoost = AdaBoostClassifier(DecisionTreeClassifier(max depth=3),n estimators=70),

4. Creation of a Voting-Classification system 44

kNN = KNeighborsClassifier(n neighbors=1,weights=’distance’,algorithm=’kd tree’,leaf size=50),

svm = SVC(C=1.0, kernel=’rbf’, cache size=500, verbose=True)]

These algorithm parameters are used for training with the NSL-KDD dataset. The

Decision Tree classifier is configured to have at least 20 leaves. The AdaBoost classifier

also uses a Decision Tree as base estimator, but the maximum depth is restricted to

three levels. This allows the classifier a have simple and fast learning algorithm. In

addition to that, only 70 estimators are given, but if less are required, the algorithm

will stop before. These two classifiers have quite similar behavior and training, but

the AdaBoost-Classifier will add a more complex decision boundary with its ensemble

voting technique. Very different from that is the Nearest-Neighbor classifier, which is

only configured to use one Neighbor. Therefore only the closest neighbor is chosen. A

regular distance measure is configured to determine the closest instance. This means

every data-point close to an intrusion-point, will be classified as such. The same works

the other way round. The last classifier is the SVM, which is configured to use a

Radial Basis Function. The C-Parameter configures the optimization, which implies

the tolerance for allowed misclassification in the training set. A low value will result

in a rather loose boundary and will avoid overfitting. This low value is used since

the testing set contains a lot of unknown data and attack types. The cache size and

verbose parameters are only for computation and output purposes. It has to be said

that the SVC-Module of Scikit is an adaption of the libSVM library. This is due to the

problem that libSVM does not use the same commands for fitting and prediction. The

SVC-module therefore simplifies this library and adapted the methods. Nevertheless, it

uses the libSVM source code in the background. After the Instantiation and parameter

configuration, the models have to be trained with the training set. This is carried out

for each Scikit classifier with the method “fit”. For supervised classifiers, as it is the

case here, the targets array with the matching classes always have to be given for

training. When the model is trained, the classification can be done with the method

“predict”. This will trigger the classifier to estimate each data-point of a given array

and apply its trained and calculated decision boundary. Naturally, the correct class is

hereby not known and will not be given. The output of the predict function is an array

with the predicted targets of each data-point. This also implies that each instance can

4. Creation of a Voting-Classification system 45

be regained by its index. An example of this process is given in the listing below.

svm.fit(trainData , trainTargets)

svm out = svm.predict(testData)

Result evaluation method

Since the result of each prediction has the same size and order as the correct targets

array, a comparison between the output can be executed in an easy way. One approach

can be to compare, how often the results from targets and predicted array differ. Nev-

ertheless, this would only give information about the general precision. No knowledge

about FP,FN,TP and TN rates can be gained from this method. Therefore a confu-

sion matrix can help to clarify the classification performance. In the matrix, each row

resembles a class. Row zero and column zero represent the class “normal”, since it

has been mapped this way. Class one is represented in class and column one, which is

the case if an attack prediction is carried out. Each match of “zero” elements in the

targets- and predicted array will cause to add up the number in the zero-zero position

of the matrix. The same principle is applied when a match of “one” elements is found.

In case a class is classified incorrectly, it will be added to the “wrong” column. To

illustrate this, an example with the matching indicator is shown in Table 4.1

Confusion Matrix
Class 0 5000 (TN) 500 (FP)
Class 1 100 (FN) 3000 (TP)

Class 0 Class 1

Table 4.1: Example of a confusion matrix

This matrix can also be extended to more classes and is therefore used to give distin-

guished results for detection of the different attack types. To generate a more readable

output and develop several functions for classification problems, the library “ClfTools”

was created. Among others, this library contains the function “printStats”, which

prints the amount of correctly and incorrectly classified data, calculates percentages

and gives an overall accuracy as well. For this purpose, the Scikit module “metrics” is

used to generate an confusion plot. After that the formulas for each classification type

4. Creation of a Voting-Classification system 46

are applied and printed to the console. The table 4.2 gives the classification results for

each of the classifiers, when using the default KDD-NSL training and testing sets.

Classification Results
Dec. Tree AdaBoost kNN SVM

TP 85% 91% 97% 96%
TN 78% 76% 68% 70%
FP 15% 9% 3% 4%
FN 22% 24% 32% 30%
ACC 81.2% 83.1% 79% 80%

Table 4.2: Classification results of each classifier with NSL-KDD training set

Naturally, false classifications should have low rates and true classifications high rates.

As it can be observed, Decision Tree and AdaBoost have best accuracy because these

classifiers find more normal traffic instances, called true negatives (TN), than SVM

and kNN. With that comes an decreasing FN rate but the FP-Rate increases. SVM

and kNN can find many attacks but are weak with finding normal traffic. Therefore,

fewer FP classifications occur. This behavior can be used in advantage for a voting

system.

4.1.3 Combination Technique

To combine the classifiers, a weighted voting technique was chosen. This implies that

for every vote, a certain weight is assigned, based on the classifier performance. To

achieve the best results, different weights will be used when a classifier either votes

for an attack or against it. The calculation of this weight will be presented in Section

4.1.3. To carry out this voting and weight checking, each classifier has first to be

trained and the predicted output has to be saved. Every weight is then added up to

a two dimensional array. The array used for storing the vote weights is shown in the

listing below.

weights = []

for j in range(0,len(testTargets)):

weights.append(np.array([0,0]).astype(float))

4. Creation of a Voting-Classification system 47

The code creates an object similar to an N by two matrix of weights. The first index

represents the position of each vote. This means each weight of a data instance can

be regained by its index. The created matrix can be seen as an more advanced, two-

dimensional targets array. In the first column is used to store the weight for a “normal”-

vote, the second is for attacks. Afterwards, this array will sum up votes of each

classifier. This process is shown in the following listing:

for prediction in predictions[i]:

if prediction == 0:

weights[j][0] = weights[j][0] + model weights normal[i]

else:

weights[j][1] = weights[j][1] + model weights attack[i]

j=j+1

Each model has the predicted array of targets, called “predictions”. With a for-each

loop, every vote, which can be either zero or one, is picked up and weights are summed

up for the matching column. As it can be observed, the weights can be different,

since two independent arrays, containing the vote weights, are used to sum up the

array. The “i” variable represents an iteration through each model. The “j” variable is

required to go through every index and assign the weight. After this process, the final

vote-classifier prediction is carried out as stated below:

for x in range(0,len(testTargets)):

if weights[x][0] >= weights[x][1]:

vote clf.append(0)

else:

vote clf.append(1)

In this case, an iteration in the length of the targets is carried out and the weights of

each vote are compared. Based on which number is higher, the vote is assigned to have

an attack or normal traffic prediction. If the weights are the same, the decision is in

favor of the “normal” classification.

4. Creation of a Voting-Classification system 48

Weight Balancing Function

In order to assign and calculate weights to each model, a function was developed in

order to balance the given amount in an efficient way. Due to the problem that several

classifiers might work better than others, it is crucial to assign more or less weight,

based on the performance. To do this, the following function fw(x) (4.1) was developed:

fw(x) =
1

(1 − x) ∗ A + B
(4.1)

The variables A and B are used for adjustments. The Variable X stands for the

precision of TP or TN values. Those values are typically between 0 and 1 and represent

the probability of a correct prediction of either normal traffic or an attack. The closer

the value is to 1, the better is the prediction rate. This means that high values should

produce high weights, which is enforced by the formula. Weight values increase strongly

as they get closer to one, on the other hand, lower values in classification performance

will be penalized with low weight. The A value is used to control the slope of the

function. A small A value will create a slower rising slope, beginning with lower x

values. This means that even low performance numbers get a higher base weight

and the impact of the formula is decreased. On the other hand, when higher values

are used,only very well performing classifiers will have higher weights assigned. The

maximum achievable weight is also decreased. To be able to control the highest assigned

value and to avoid an infinite number for the weight, the B value can be adjusted. Very

small B values will allow the weight value to rise very high, when x is close to 1, smaller

B values will decrease the slope and also decrease the impact of the formula once again.

For example, if a 1 is chosen for B, the weight formula is practically not existent and

therefore, the classification can be compared to a majority vote. Nevertheless, this

approach allows to balance different weights for each TN or TP values, which can also

push the results to either higher FN or FP rates. The sample values which are used in

the voting scenario, as well as a graph for this formula, will follow in the next section.

4. Creation of a Voting-Classification system 49

4.1.4 Experimental setup

To do a test with the a vote-classifier, several steps have to be done as follows:

1. Instantiation and training of classifiers

2. Carry out a prediction of each classifier with a small data set

3. Comparison and decision for a vote, based on the assigned weights

The small data in step 2. is required in order to calibrate weights, since they are

calculated based on the classification performance. The first and the last step are

already described in the last chapters. Therefore this section will further describe how

the weights are assigned and which data was used to carry out the calibration.

Two approaches are possible in order to get data for weight calibration. Either a split

of the training set can be used, or a part of the training data. Since the regular testing

data of the NSL-dataset is very difficult to predict, a 50% Split of the NSL-KDD test-

set was created to calibrate the weights in a first step. To split data and generate two

new datasets, the function “randomSampling” in the library “ClfTools” is used. This

function randomly scrambles the data and returns two datasets with matching targets.

The length of the sets are defined with the split-size value.

In addition to that, another method was developed and carried out in order to test

the vote-classification performance. The method differs, because the whole KDD-

NSL dataset is used and training and testing sets are merged. Afterwards, the set is

randomized and split into a training- calibration- and testing set.

To calibrate the weights and to keep things simple, the value 1 was used for the constant

A. The B value was set to 0.01, to allow a maximum weight of 100. The result of this

is shown in formula 4.2.

fw(x) =
1

(1 − x) + 0.01
(4.2)

Naturally, more differentiated calibrations with the formula can be done, which will

be discussed in Section 4.1.6. To further illustrate the selected function, the graph in

4. Creation of a Voting-Classification system 50

Figure 4.1 shows the impact on the x-values.

Figure 4.1: Graph of the weight balancing function

The graph shows, how TP- or TN-values with a correct prediction rate over 0.9 will

generate strongly increasing vote weights. After the weights have been calculated with

a calibration set, the vote-classification will be carried out with a test-set.

4.1.5 Results

In order to test the weight balancing function of the vote-classifier, several scenarios

were created and tests were carried out with either a modified or unmodified NSL-

KDD dataset. Every test is presented in a table, with the classification performance

of each classifier and its TN,TP,FN and FP rates. Each test generates two results.

The first table presents the vote classification with calibrated weights from the same

test set. Afterwards, the same models and the calibrated vote-classifier is used with a

verification set. The parameters of the classifiers were never changed, only the training

and testing data was exchanged. The first test was carried out with Arctangent scaling

and with the regular KDD-NSL dataset. Table 4.3 and 4.4 present the results for the

test and the verification set.

This table shows the classification results and the calculated weights after testing with

a 50% split of the regular NSL-KDD test set. As it can be observed, the large amount

of unknown data impacts on the classification performance. This is noticeable due to

the high false negative rates, which represent undetected intrusions. It implies that

most of the classifiers evaluate 20 to 30% of the roughly 6000 intrusions as normal

traffic. In addition to that, the FP rates are also rather high, which occurs especially

4. Creation of a Voting-Classification system 51

Classification results & calculated weights
Type Decision Tree AdaBoost K-Neighbors SVM Vote
TP 84.89% 90.58% 96.38% 95.83% 91.03%
TN 77.42% 75.71% 68.59% 70.10% 80.34%
FP 15.10% 9.41% 3.61% 4.16% 8.96%
FN 22.57% 24.28% 31.40% 29.89% 19.65%
ACC 81.50% 82.95% 79.36% 80.51% 85.88%
f(w) 5.8 / 4.2 9 / 3.8 20 / 3 16.6 / 3.8 TP / TN

Table 4.3: Classification results for a 50% split of the NSL-KDD test-set with A-tan
scaling

in the better performing classifiers like AdaBoost and Decision Tree. This implies that

a trade-off with correct TN and FP rates occurs. Either the FP rate is low and less

normal traffic is classified correctly, or more normal instances are found and the FP

rate is higher. Considering the assigned weights, SVM and K-Neighbors have best rates

in finding attacks, but with a high FN trade-off. This also results in lower weights for

TN values. Decision Tree and AdaBoost perform better in finding normal traffic but

are weaker with attacks. Combined in a voting scenario, the overall detection rate can

be increase by roughly 3%, which achieves an overall of 3300 more correct predictions

compared to the best single classifier performance.

Of course, the weights have only been calibrated here, which means that the classifi-

cation performance after the calculation has also to be tested on new data. This will

be done by using the verification set. The results of this test is shown in Table 4.4.

Classification Results for verification set
Type Decision Tree AdaBoost K-Neighbors SVM Vote
TP 85.82% 91.25% 96.90% 96.38% 91.77%
TN 77.64% 68.59% 67.46% 69.38% 79.81%
FP 14.17% 8.75% 3.09% 3.61% 8.22%
FN 22.35% 24.19% 32.53% 30.61% 20.18%
ACC 82.14% 83.41% 78.77% 80.32% 87.01%

Table 4.4: Classification results for a 50% verification-split of the NSL-KDD test-set
with A-tan scaling

For the verification set, the classification performance only varies in small percentages

between 0% and 2%. This is crucial to the weight-balancing process, since the classifi-

cation performance is also expected to be the same with new data. It also implies that

4. Creation of a Voting-Classification system 52

the data has to be about the same and should not generate completely new perfor-

mance values for the classifiers, otherwise this method can not be applied efficiently. In

this case, the vote-classification can boost the accuracy rate up to 3.5%, compared to

the best model. Even though this might not seem much, considering the low detection

rates, it can be interpreted as a large increase. Another reason is that during research,

the author was not able to find any reproducible classifications with original NSL-KDD

data, which have performed better than 82% accuracy. Another observation is, that

FP rates are lowered compared to the best classifier, but the lowest FP-Rates of other

classifiers can not be achieved.

For further performance analysis, a confusion plot for the different attack types was

generated. The chart presented in Figure 4.2 shows the existing and detected intrusions

by the vote classifier.

Figure 4.2: Chart of detected and existing intrusions with vote classification

The results demonstrate, that a large gap of detected and existing R2L attacks occurs.

This is most likely due to the lack of R2L instances in the training data. Other attacks

can be found with better accuracy. About the same ratios were produced with other

classifiers but always with less accuracy. Significant variations of detection rates, when

applying other algorithms, were not observed.

In the next scenario, the training as well as the classification will be carried out with

only normalizing the dataset and scaling it in the range between 1 and -1. This means

that outliers are not placed as striking as in Arctangent scaling. The results of the

calibration dataset is presented in Table 4.5.

4. Creation of a Voting-Classification system 53

Classification Results for test-set & calculated weights
Decision Tree AdaBoost K-Neighbors SVM Vote

TP 90.40% 96.32% 97.39% 96.68% 90.93%
TN 66.33% 63.93% 67.99% 65.54% 73.70%
FP 9.59% 3.67% 2.60% 3.32% 9.06%
FN 33.66% 36.06% 32.00% 34.45% 26.29%
ACC 76.12% 75.05% 79.11% 76.69% 81.82%
f(w) 9 / 2.8 20 / 2.6 25 / 2.9 20 / 2.7 TP / TN

Table 4.5: Classification results for a 50% split of the NSL-KDD test-set with
normalized scaling

It is not surprising, that the classification results have less accuracy than before. Nev-

ertheless, the vote-classifier can prove its efficiency. In this case, an increase of about

3% can be observed within the calibration set. A larger change in performance rates

occurred with the switch of the scaling method. Only the K-Neighbors algorithm could

roughly keep the performance. Other models had a dropping accuracy and AdaBoost

as well as the Decision Tree are now less efficient than the SVM. This is completely

opposing to the results with arctangent scaling. With normalized scaling, more at-

tacks are found in general, but false negatives are increased more drastically. If a

classifier votes for a normal behavior in this case, it is quickly outweighed with an

attack-weight, which is comparably high for each classifier. Table 4.6 shows the results

for the verification set.

Classification results for verification-set
Decision Tree AdaBoost K-Neighbors SVM Vote

TP 90.12% 96.25% 97.42% 96.87% 90.72%
TN 64.95% 62.94% 67.06% 65.06% 72.66%
FP 9.87% 3.74% 2.57% 3.12% 9.27%
FN 35.05% 37.05% 32.93% 34.93% 27.33%
ACC 75.03% 74.22% 78.45% 76.45% 81.14%

Table 4.6: Classification results for a 50% verification-split of the NSL-KDD test-set
with normalized scaling

In this scenario, the results did not vary in a large scale, only the accuracy rate dropped

by about 1% in most of the models. However, the vote-classifier was able to improve

the performance again with roughly 3%.

Another scenario was tested with completely unscaled data. Again, the same process

with first calibrating the weights was used, as stated in the other scenarios before. After

4. Creation of a Voting-Classification system 54

calibration, the verification results, as they can be found in Table 4.7 were produced.

Classification results for verification set
Decision Tree AdaBoost K-Neighbors SVM Vote

TP 91.81% 96.35% 95.94% 96.63% 92.08%
TN 65.12% 66.95% 66.18% 59.51% 71.01%
FP 8.18% 3.648% 4.05% 3.36% 7.91%
FN 34.87% 33.04% 33.81% 40.48% 28.98%
ACC 75.45% 78.03% 77.24% 70.37% 80.34%

Table 4.7: Classification results for a 50% verification-split of the NSL-KDD test-set
without scaling

It can be observed that the classification results show even less performance than before

and the vote classifier is able to boost the performance by about 2%. Other than the

quite stable accuracy improvements, this example also shows that scaling impacts the

classification performance positively, when the regular NSL-KDD is applied. With a

scenario of several classifiers, which are able to perform in a range of 70% to 84%, the

vote-classifier seemed to work well.

Results with a Modified KDD-NSL Dataset

To generate more different results for performance comparisons, a scenario setup with

larger accuracy gaps and also testing with easier data might be useful. Therefore,

the NSL-KDD test and training set were assembled to one dataset. This results in

a large set with all possible attacks and normal traffic instances. After that, the

instances are scrambled and split, which is the usual process when pattern recognition

is carried out. The final result is a test set with less zero-day attacks and a training

set with more different intrusion types. These changes lead to a higher accuracy and

different classification results. To use this setup with the Vote-Classifier, the data was

prepared as stated in Section 4.1.4. 80% of the full data were used for training, 15% for

calibrating the votes and 5% for verifying the vote-classifier. The following examples

will only show the results for the verification set. It has to be mentioned that due to

the randomization of the data, which is carried out each time the sets are generated,

the classification results may vary. Table 4.8 shows the achieved performance for an

Arctangent scaled verification set.

4. Creation of a Voting-Classification system 55

Classification Results for verification-set complete set,A-tan scaling
Decision Tree AdaBoost K-Neighbors SVM Vote

TP 73.34% 90.75% 99.79% 98.65% 99.88%
TN 99.53% 99.86% 99.82% 97.81% 99.72%
FP 26.65% 9.24% 0.20% 1.34% 0.11%
FN 0.46% 0.13% 0.17% 2.18% 0.27%
ACC 83.24 % 95.27% 99.81% 98.19% 99.79%

Table 4.8: Classification results for a 5% verification-split of the full NSL-KDD set
with A-tan scaling

In this case, the classification results show large variations. The Decision Tree has low

performance in terms of finding attacks but has a good normal traffic detection. This

will give the classifier a high weight for the matching class. Also, AdaBoost seems to

have the same detection issue, which is most likely due to the similar algorithm. This

problem also may be due to the Arctangent tan scaling, which can result in a more

complex feature space. It might be required to tune the parameters of the classifiers

Decision Tree and AdaBoost in order to get better results, for example by allowing

more estimators. Especially the K-Neighbors algorithm performs very well here and a

large performance gap is created. For the Vote-Classifier, the overall accuracy is just

0.02% less than that of the K-Neighbors. So in this case, the overall performance can

not be improved, but the FP-rate is the best achievable. With only 0.11%, only half

of the false detections occur, compared to the best model. Most likely, this is due

to the high TN rates of the three classifiers. If this behavior can be reproduced, it

would be very attractive for a Smart Grid implementation. In another scenario, the

Vote-Classifier proves to be even more useful. Table 4.9 shows the results when normal

scaling is used.

Classification results for verification-set
Decision Tree AdaBoost K-Neighbors SVM Vote

TP 99.46% 99.77% 99.65% 98.00% 99.88%
TN 99.48% 99.59% 99.56% 97.90% 99.71%
FP 0.54% 0.23% 0.34% 1.99% 0.11%
FN 0.51% 0.40% 0.43% 2.09% 0.28%
ACC 99.47% 99.67% 99.60% 97.95% 99.80%

Table 4.9: Classification results for a 5% verification-split of the full NSL-KDD set
with normalized scaling

4. Creation of a Voting-Classification system 56

Even though this scaling method has not proven to be very efficient in the regular NSL-

KDD sets, it changes when using the complete dataset. Arctangent scaling may work

in many cases, but also might place data-instances in an unfavorable way. This can be

case when the variation in an attribute is very high. In this case, regular scaling might

work better, because the changes made to the feature space are a lot less altering. Since

the features were developed to place attacks away from regular traffic instances, good

results can be achieved when more intrusions exist in training data. Every classifier

has now good performance, only the SVM has comparably less accuracy. The best

classification can again be achieved by the vote classifier, which performs 0.13% better

than every other classifier. Again, this reduces the false positives by more than a half.

In addition to this improvement, the vote-classifier also provides the best accuracy and

with that, the best FN rates. Even though the limits of classification can not be pushed

much further, due to the good results of each classifier, the voting is able to improve

the performance. Similar results can also be found in the next scenario without scaling,

as Table 4.10 shows.

Classification results for verification-set
Decision Tree AdaBoost K-Neighbors SVM Vote

TP 99.62% 99.88% 99.70% 99.88% 99.88%
TN 99.47% 99.85% 99.8% 97.84% 99.80%
FP 0.38% 0.11% 0.29% 0.11% 0.11%
FN 0.52% 0.15% 0.2% 2.15% 0.20%
ACC 99.54% 99.86% 99.75% 98.76% 99.83%

Table 4.10: Classification results for a 5% verification-split of the full NSL-KDD set
without scaling

The best performance now can be achieved with AdaBoost and the Vote-Classifier only

has 0.03% less accuracy and the same FP-rates. This result is not surprising, since most

of the classifiers have very similar and also a very high performance. This results in

getting mostly the same weight for every classifier. Nevertheless, the Vote-Classifier still

provides one of the highest efficiencies and is not a considerable downgrade compared

to AdaBoost.

For better result comparison, table 4.11 shows best achieved performance for the most

accurate model and the voting classifier. It has to be noted that in the cases of

NSL/Atan and NSL/None , the best accuracy model does not equal the best FP

4. Creation of a Voting-Classification system 57

model. With Atan scaling, the voting-technique was able improve FP rates of the

best accuracy model. All other instances have the same model and can be compared

directly. Another important fact is, that improvement of accuracy always implies, that

either better FN or FP rates were achieved with an overall of more correct detections.

Set/Scaling Best Acc. Best FP Vote-Acc Vote-FP
NSL/Atan 83.41% 3.09% 87.01% (+3.6%) 8.22% (+5.13%)
NSL/Norm 78.45% 2.57% 81.14% (+2.7%) 9.27% (+6.7%)
NSL/None 78.03% 3.36% 80.34% (+2.31%) 7.91% (+4.55%)
mod/Atan 99.81% 0.20% 99.79% (-0.02%) 0.11% (-0.09%)
mod/Norm 99.67% 0.23% 99.80% (+0.13%) 0.11% (-0.12%)
mod/None 99.86% 0.11% 99.83% (-0.03%) 0.11% (0.00%)

Table 4.11: Achieved performances for vote-classification

The results show, that voting was able to get more accuracy in most of the cases. When

this was not achieved, the FP rates were reduced or equal. This implies that voting

might help to improve classification results and its implementation can be considered,

when the boundaries of a classification system should be pushed. Of course, the per-

formance values might be able to be adjusted to the models in a more efficient way,

depending on the applied models. The suggest formula is merely a way to simplify

combinations and an approach to get favorable results in most applications. However

this was a more general approach, the system was able to significantly improve results

in 3 cases and give a slightly better outcome in 5 of 6 cases, by only swapping scaling

methods and training sets. An individual adaption to the applied models might bring

even more improvement.

4.1.6 Performance Improvement Function

As the tests have shown, the vote-classifier is able to improve the accuracy and often

also enhances the false positive values. Nevertheless, the created formula is only an

estimation, based on how the weight can be assigned in an efficient way. To further

investigate, if the assigned constants A or B of the formula can be improved, an algo-

rithm was developed. The function “findFormulaParams” can be found in the library

4. Creation of a Voting-Classification system 58

“ClfTools” and only requires two parameters. The first parameter is a list of votes

from each classifier, the second is an array of correct targets. In a first step, a com-

mon range for the values A and B is set. To iterate through each range and test the

vote-performance, the function “getBestParams” is called. For testing purposes, it is

also possible to use this function with own specified values and a different formula.

In this case, the voting scenario is carried out with the preset ranges of the executing

function. The best achieved value for the classification is given back afterwards. For

A the testing range it is set between 0.1 and 5, with 0.25 steps. For B the range is

between 0.1 and 5, with 0.25 steps. When the best value is returned, the algorithm

tries to optimize the formula and checks, weather better values can be achieved. This

is executed by using more fine granulated ranges, which are closer to the value of the

last returned best performance. Based on the available computing resources, used clas-

sifiers, specified ranges and the amount of array-length, this process can take long. In

summary, the basic idea is to go through each possible slope and value-formation of

the formula, as shown in Figure 4.3.

Figure 4.3: Weight function graphs of different parameters

It has to be mentioned that this approach is only experimental, but some test results

already showed that vote-results have been improved in several cases. Nevertheless,

the improvements were not significantly higher, which means that the current formula

seems to be a good estimation. Improvements of about 0.015 to 0.025% compared to

the regular vote classification accuracy have been observed. Not only this experiment

could determine if the specified formula is close to an optimum, it also enables the exact

calculation of the parameters for future use. Since the constraint is to have similar

4. Creation of a Voting-Classification system 59

classification performance and a test set for weight calibration is always required, it is

useful to apply this technique for best possible results. Naturally, this may only one of

many available solutions, but further investigation into other formulas and approaches

for weight calculation would reach beyond the scope of this thesis.

4.1.7 Simple voting techniques

When experimenting with voting methods, a few different approaches were elaborated

before the finally resulting formula was developed. Several ideas on how voting can also

be realized, is presented in this section. The very first option was to use the strongest

classifier, if a set of models did not agree on a prediction. This was simply realized by

iterating through the votes of each algorithm and compare them with each other. The

results of this approach showed an overall increase in accuracy but could not lower FP

rates. Therefore, the kNN algorithm, which had the lowest FP-rate in the scenario,

was used for the strongest classifier. A code sample of this process is shown in the

listing.

for i in range(0,len(testTargets)):

if (nn out[i] == 1):

votes.append(1)

elif (boost out[i] == 0) and dTree out[i] == 0) or

(boost out[i] == 0 and svm out[i] == 0):

votes.append(0)

elif (boost out[i] == 1 and dTree out[i] == 1) or

(boost out[i] == 1 and svm out[i] == 1):

votes.append(1)

else:

votes.append(nn out[i])

When the code is executed, the outputs of each classifier are compared. nn out is the

array for the kNN, others are self explanatory. In this case, the kNN decides when

an attack is found. Otherwise AdaBoost and Decision Tree, or the SVM, have to

agree on a vote. If this is not possible, the decision of the kNN will be used. The

4. Creation of a Voting-Classification system 60

stated scenario was tested with the regular KDD-NSL set with Arctangent scaling.

In this case, the intention was to reduce the FP rate, but keeping about the same

accuracy. AdaBoost achieved a precision of 83.16% and a FP rate of 9.1%. Even

though the FP rate is very high, AdaBoost still had the most correct predictions. The

kNN algorithm has 79.07% accuracy, but an FP rate of only 3.35%. Therefore, the

kNN was chosen to set the attacks, but normal decisions had to be carried out with

other models. The resulting vote-classification achieved an accuracy of 84.31% and

lowered the FP rate down to 8.62%. This means that overall prediction as well as the

FP rate were improved slightly. For further tests, another scenario was developed to

achieve a more drastic decrease of the FP rates. To do this, it should be more difficult

for the voting mechanism to produce attack-predictions, in order to overrule the kNN

algorithm. Therefore, the AdaBoost, Decision Tree and the SVM output had to be

the same if an attack prediction is made. This is contrary to the first scenario, which

only required two classifiers. The results show a large impact of the small change: The

vote-classification achieved only 82.82% accuracy, but FP rates were lowered down to

4.26%.

The tests show, that simple voting scenarios with a primary model and an overrule

possibility can also improve classification performances in a desired and controlled

way.

4.1.8 False Positive Reduction With Weighted Voting

To apply the FP reduction technique of a simple scenario to the weighted voting,

another approach had to be used. To lower or raise the calculated weight based on the

FP value, it had to be integrated in the formula. This was carried out by influencing

the numerator of the weight function. The updated function is now as stated in formula

4.3.

fw(x, y) =

1
y

(1 − x) + 0.01
(4.3)

The x-value is still used for TN or TP values, and the y value represents the FP-rate.

This leads to an overall weight increase, when a low FP-value is used. In case a 0.10

4. Creation of a Voting-Classification system 61

FP-rate occurs, the numerator is 10. If a very low FP-rate with only 0.01 is used,

the numerator will be increased to 100. Nevertheless, all TN,TP and FP values are

important, since the slope of the function will rise strongly with good performances.

For the test scenario, the regular KDD-NSL sets were used, and Arctangent scaling

was applied. With this setup, the weighted vote classifier achieved 83.03% accuracy

and lowered the FP rate to 4.53%. For comparison, the classic weighted vote achieved

86% accuracy, with an FP-rate of 9%. The simplified voting achieved 82.82% and an

FP-rate of 4.26%. This means that FP rates were still lowered by over a half compared

to the best classifier and the classic weight-technique, but an accuracy of 83% could

be kept. Of course, the formula can be further adjusted and the impact of FPs can

be increased or lowered when modifying the numerator. Naturally, it is always better

to have more correct predictions, even if the FP rate might increase. As stated in the

first sections, security breaches in the smart grid can be quite drastic, and therefore it

is very important to find as many intrusions as possible.

4.1.9 Observed constraints

Several observations of constraints have been made during the testing phase. These

define the limits of creating a successful vote-scenario and therefore are presented in

this section. As stated before, one big constraint is the dependency of the classifica-

tion performance. Once the performance differs in larger ranges, for example when

new data is used, the voting mechanism might not work anymore. This is due to the

weights, which are balanced based on the estimated classification accuracy. Because

of this problem, an additional test case, where vote weights are calibrated with the

regular NSL-training set, was not carried out. It is most likely that voting may de-

crease performance, since the test set has a different structure. In other scenarios, it

might be possible to use the training set to conduct the weight calibration. A good

application example is the use of K-folds. This way, the performances for each K-fold

are determined and the mean values can be used to compute weights.

A second problem which can occur are unequally or baldy trained classifiers. Even

though the formula will only use lower weights for classifiers with bad performance, it

might influence the classification in an unfavorable way. Naturally, it does not make

4. Creation of a Voting-Classification system 62

sense to use considerably weak classifiers, when better ones are available. When it

comes to weak or baldy trained algorithms, it might happen that the classification is

very unilateral. For example if most packets are interpreted as an attack. This will

create high TP values, since most of the attacks might be discovered. It will also result

in a high FP rate, but the suggested weight calculation for the attack performance will

not be affected by this occurrence. In the worst case, when every packet is found in

the calibration set, this comparably weak model will impact the results in a bad way,

with its very high attack-prediction weight. One approach to avoid this is to adapt the

formula by lowering the weight, based on the false predictions, or by integrating the

overall performance as it is stated in Section 4.1.8. Otherwise it is best to integrate

only tested and well performing classifiers. A very efficient classifier is very likely to

perform better individually, than in a vote-set with other, considerably weaker models.

The third constraint is the amount of algorithms or models used. Smaller tests showed

that the best accuracy was achieved with four models. Lesser models can not influence

the weight-decision enough to shift the voting results. Four classifiers is the suggested

and tested scenario. A set of more classifiers may also perform well, but was not tested

due to the higher resource requirements.

A last constraint is dedicated to the models and algorithms used. As stated in the

examples, the type of algorithm varies and basically four different approaches were

applied in the scenario. This produces varied results and therefore improves the clas-

sification performance. If only the same algorithm is used, it is very likely that the

results are very similar. Nevertheless, a scenario with differently trained or configured

models of the same algorithm might also produce favorable results, in case the predic-

tions vary sufficiently.

It has to be added, that a set of very efficient classifiers may not produce satisfactory

improve or any improvement at all, since the predictions might already be close to the

100%. Anyhow, the vote-classification can be adjusted in many ways, and the perfor-

mance is strongly dependent on the applied voting technique, feature space, algorithms,

model configuration and performance. The following list summarizes the constraints,

which should be adhered for a voting scenario. However, it does not entirely guarantee

a favorable output.

4. Creation of a Voting-Classification system 63

1. A test set for calibration is required and classification performances of each clas-

sifier are not allowed to vary in a large range

2. Unequal algorithm performances or baldy trained classifiers may impact a vote

scenario in an unfavorable way

3. A voting implementation should at least contain 3 models or more

4. Applied algorithms and models should use different approaches or parameters

4.1.10 Vote-Classification in a Distributed Environment

In a last scenario, the voting-classifier will be implemented in a distributed environ-

ment, as stated in [48]. The purpose if this is to check weather a voting scenario can be

applied in a Smart Grid implementation. The following sections describe the changes

done to the NSL-KDD dataset and further details on the developed scripts to simulate

a distributed voting scenario.

Adaption of the KDD-NSL Dataset

As it can be found in [48, p. 10], every module has its own specialized training set.

For HAN implementations, only DoS and Probing attacks were used for training. The

NAN model used the best HAN Model and was also trained with U2R attacks. The

WAN model implemented both the best HAN and NAN model, and was also trained

with the whole attack range, including R2L attacks. To create training and test sets for

this purpose, the function “makeDataset” in the library “KDDTools” was used, and

suitable datasets were built. Therefore, the NSL-dataset with the complete attack-

types was downloaded and every specific attack has been mapped to its matching

intrusion pattern, according to the table in [18, p. 7]. Afterwards, the data was

filtered for the specified intrusions. This process was carried out on each of the regular

NSL-KDD training set as well as the testing set. As output, three different training and

testing sets, only containing the suited attacks, were created. The additional difficulty

value, which came with the downloaded dataset and included a 43rd feature, was not

added to the data.

4. Creation of a Voting-Classification system 64

4.1.11 Creation of a Hierarchical IDS Communication

To built the hierarchical network infrastructure, each IDS module had several differ-

ently trained models assigned. For the HAN IDS, only two classifiers were used. It

consisted of an AdaBoost and a SVM model, which were trained only for DoS and

Probing intrusions. This way, the implementation was less resource intensive and pre-

dictions were carried out faster. This scenario was chosen to be comparably small, due

to the problem that home-devices usually have to be cheap and do often not provide

high computation power. Since voting does not really work with two classifiers, both

models had to agree on the classification result. Otherwise, the data was passed to a

higher instance. In the case of a HAN node, the next layer is the NAN node. These

type of nodes were trained additionally with U2R attacks and used three classifiers. In

the NAN-scenario, at least one additional classifier had to agree on the result of the

best performing SVM model. Otherwise, the packet was again passed to the next level.

WAN nodes had four attack classifiers and implemented the voting mechanism. The

WAN Model contained basically the vote-classifier version which has been used before,

as it is presented in Table 4.4.

To realize the whole scenario, the scripts “createDIDS modules” and “DIDS Vote” were

created. The first script builds the specified datasets, saves the testing data and trains

the models. In addition to that, the trained models are saved with the “makePersistent”

function. The “DIDS Vote” script loads the trained models as well as the data and

executes the vote-classification. Since this is only an experimental version, a complex

communication was not implemented. Instead, a simple control flow with if-conditions

was created. This simulates the communication, in case a classification can not be

done. The listing below shows this process.

for data instance in testData:

Decision = 0

HAN Vote = [HAN AdaBoost.predict(data instance) ,HAN SVM.predict(data instance)]

if HAN Vote[0][0] != HAN Vote[1][0]:

NAN Vote = [NAN AdaBoost.predict(data instance),

NAN DecisionTree.predict(data instance),

NAN SVM.predict(data instance)]

4. Creation of a Voting-Classification system 65

if (NAN Vote[2][0] != NAN Vote[1][0]) or (NAN Vote[2][0] != NAN Vote[0][0]):

...

First, each data instance of the test set is used to make a prediction. The predicted

value of the HAN module is then stored in the HAN Vote array. If the check of the

condition fails, the NAN carries out the vote in the next step. The same procedure

with storing predictions is applied here too, with the array NAN Vote. Afterwards

the if-condition checks, weather the SVM has at least one other agreeing classifier. Is

this not the case, the regular vote scenario will be carried out with four models in the

WAN-module.

Results

The tests were executed with the regular NSL sets, but with filtered attack types. For

the HAN-Scenario, the HAN-specific test set, without U2R and R2L attacks, was used

for training and classification. For the NAN, only the U2L instances were missing in the

data. The voting scenario, as it is described in the last section, was carried out. The

results were compared to the best performing classifiers of each node. The following

results were achieved:

1. 2% Overall accuracy increase with the HAN classification

2. 1% Overall accuracy increase with the NAN classification

3. 3% Overall accuriacy increase with the WAN classification

These results show that even with smaller amounts of available models and an hierarchi-

cal detection mechanism, the vote-classification is still able to improve the performance.

Nevertheless, a better accuracy resulted in a trade-off with the FP-rate. The FP rates

increased as follows:

1. 3% FP increase with the HAN classification

2. 2.8% FP increase increase with the NAN classification

4. Creation of a Voting-Classification system 66

3. 4% FP increase increase with the WAN classification

This shows a quite unfavorable trade-off, if FP-rates should be low. At the same time,

more discovered attacks are the consequence. More uncovered intrusions should always

be preferred in a security sensitive network, as it is the case in smart grid applications.

However, other approaches and implementations using votes might be able to lower

FP-rates.

To demonstrate, how many instances are passed to the next classification system, a

variable was set to count the packages which were passed on. This is used in order to

check, weather the classifiers work and do not produce a high amount of communica-

tion.

1. in the HAN scenario, 912 of 9412 packets were passed to the NAN node, 642 of

these were further passed to the WAN node

2. in the NAN scenario, 1593 of 9412 were passed to the WAN node

The transfer rate of roughly 10-20% of the predictions, proves an efficient usage of the

communication system and results in a classification with an accuracy increase of 1-2%.

5

Conclusion

The aim of this work was to improve FP rates for an anomaly IDS in a Smart Grid

scenario. The NSL-KDD Dataset was used to train and test a set of classifiers, which

then were combined with a voting technique. Even though a Smart Grid dataset was

not used and is not available at this point, the gathered information and conclusions

can also be applied to Smart Grid scenarios. To achieve best possible results, different

scaling methods were applied, and a formula for a vote weight calculation technique

was developed. The code development and execution was carried out in a python

environment. Classification functions of the Scikit-Learn library were used with the

complementation of developed source code. In addition to the regular NSL-KDD test-

ing scenarios, the dataset was also modified and a set of different voting techniques were

carried out and compared. The reduction of FP-rates and with it, the improvement of

classification accuracy is a complicated task. To this aspect comes the quite resourceful

intensive application, since more than only one classifier has to execute a prediction.

The additional cost of time and resources might not be applicable in every scenario.

In contrast to this downside, several benefits have been discovered with voting. With

the experiments carried out on the classifier-voting system, it has been observed that

a voting technique was able to show, in several cases, significant increase in prediction

accuracy. Nevertheless, a reduction of FP-rates in voting always reduced the overall

possible correct predictions. When a combination of very efficient classifiers was used,

the improvement of accuracy was either the same or only little significant. The posi-

tive aspect however, were dropping FP-rates, which is in many cases more favorable in

machine-to-machine traffic, when the same accuracy can be achieved. On the long run,

67

5. Conclusion 68

this can avoid much overhead for false prediction handling. Another aspect treated was

the combination technique. Although the output is always dependent on the chosen

classifiers and their performance, the weight balancing formula was able to produce

favorable results in most of the test scenarios. This was a general approach and proved

to be quite successful. In addition to the formula suggestion, other techniques were

tested, with specific focus on reducing the FP-rate. It was found out, that is possible

to reduce the false predictions with a primary model and an overruling-system, or by

integrating the rate into the suggested formula. The primary model scenarios were

specifically fitted to the model performances and this method can be an alternative,

if the weight voting technique is not working. Also, a set of constraints was derived

from the observations and documented in the thesis. Based on these findings, it might

be possible to apply a successful voting mechanism in a Smart Grid network. Espe-

cially since there are not any attack scenarios available yet, clustering classifications

or outlier detection might be applied in the future. Those algorithms often have lesser

performance than supervised classifiers and a voting scenario might be able to improve

the resulting accuracy. Also, due to the machine-to-machine generated traffic of Smart

Grid applications, a feature space for efficient classification might be developed more

easily than in Internet applications. This will result in strong classification algorithms

which can be improved afterwards with voting. Even if the enhancements are limited

to several percent, the output can avoid thousands of false detentions in the long run.

Elaborated scenarios also showed the strong dependency on the chosen feature space,

scaling method, individual classification performance and parameters, as well as the

combination method, which can be applied in many different ways. In terms of FP-

Rates, one scenario showed a decrease of false attack predictions by from 0.40% to

0.20%. Even though this does not seem much, it reduces the amount of FPs by 50%.

For Smart Grid implementations, this can be crucial to avoid false alarms and stabilize

the system behavior. In addition to that, defective packets, which might be produced

due to system errors, can very likely be detected by an anomaly IDS. In general, the

scenarios showed that a vote-application can produce favorable results in many cases

and implementations may benefit from improved FP-rates for Smart Grid applications.

By combining this technique with other elaborated anomaly detection improvements,

5. Conclusion 69

this approach could find its way in reliable IDS system for the Smart Grid.

Bibliography

[1] al., Paul B. Kantor et: Intelligence and security informatics. IEEE International

Conference on Intelligence and Security Informatics, 2005.

[2] Anderson, R. and Fuloria, S.: On the security economics of electricity metering. In

Smart Grid Communications, 2010 First IEEE International Conference, 2010.

[3] Anderson, R. and Fuloria, S.: Who controls the off switch? In Smart Grid Com-

munications, 2010 First IEEE International Conference, pages 96–101, 2010.

[4] Andres F. Murillo: Review of anomalies detection schemes in smart grids. Telein-

formation and Automation Group, Rio de Janeiro, 2012.

[5] Animesh Patcha and Jung-Min Park: An overview of anomaly detection tech-

niques: Existing solutions and latest technological trends. Computer Networks,

pages 3448–3470, 2007, ISSN 1389-1286.

[6] Cabdud Wyeest: Targeted attacks against the energy sector: Security response.

Symantec Security Research, 2014.

[7] Cheng-Ho Huang and Jhing-Fa Wang: Multi-weighted majority voting algorithm

on support vector machine and its application. In TENCON 2009 - 2009 IEEE

Region 10 Conference, pages 1–4, 2009.

[8] Chris A. Ciufo: Modular choices simplify and future-proof m2m, wi-fi, and zigbee

connectivity. Digi-Key Electronics, 2012.

[9] Dietterich, ThomasG.: Ensemble methods in machine learning. In Multiple Clas-

sifier Systems, volume 1857 of Lecture Notes in Computer Science, pages 1–15.

Springer Berlin Heidelberg, 2000, ISBN 978-3-540-67704-8.

70

Bibliography 71

[10] Dr. Sri Niwas Singh: Electric Power Generation: Transmission and Distribution.

PHI Learning, 2008, ISBN 9788120335608.

[11] Duda, Richard O., Hart, Peter E., and Stork, David G.: Pattern Classification

(2Nd Edition). Wiley-Interscience, 2000, ISBN 0471056693.

[12] Durumeric et al.: The matter of heartbleed. In Proceedings of the 2014 Conference

on Internet Measurement Conference, pages 475–488, New York, NY, USA, 2014.

ISBN 978-1-4503-3213-2.

[13] Eckert, Claudia: Sicherheit im smart grid: Eckpunkte für ein energieinformation-

snetz. Alcatel-Lucent Stiftung fuer Kommunikationsforschung, 2011.

[14] European Parliament and Council: Directive 2009/72/ec : concerning common

rules for the internal market in electricity and repealing directive 2003/54/ec, 2009.

https://www.energy-community.org/pls/portal/docs/1164180.PDF.

[15] Farhangi, H.: The path of the smart grid. Power and Energy Magazine, IEEE,

pages 18–28, 2010, ISSN 1540-7977.

[16] Gareth James: Majority vote classifiers: theory and applications. Dissertation,

Stanford University, 2006.

[17] Giani et al.: Smart grid data integrity attacks. Smart Grid, IEEE Transactions on,

pages 1244–1253, 2013, ISSN 1949-3053.

[18] H. Güneş Kayacık and A. Nur Zincir-heywood: Using self-organizing maps to build

an attack map for forensic analysis. International Conference on Privacy, Security

and Trust, 2006.

[19] Harper, Allen: Gray hat hacking: The ethical hacker’s handbook. McGraw-Hill,

New York, 3rd ed. edition, 2011, ISBN 0071742557.

[20] Hashmi, M., Hanninen, S., and Maki, K.: Survey of smart grid concepts, archi-

tectures, and technological demonstrations worldwide. In Innovative Smart Grid

Technologies (ISGT Latin America), 2011 IEEE PES Conference on, pages 1–7,

2011.

https://www.energy-community.org/pls/portal/docs/1164180.PDF

Bibliography 72

[21] Institute for Energy and Transportation: Smart grid projects outlook 2014, April

2015. http://ses.jrc.ec.europa.eu/smart-grids-observatory, visited on

4/19/2015.

[22] Jan Sochman, Jiri Matas: Adaboost classification - lecture script. http://cmp.

felk.cvut.cz/~sochmj1/adaboost_talk.pdf, visited on 6/2/2015.

[23] John McHugh: Testing intrusion detection systems: A critique of the 1998 and

1999 darpa intrusion detection system evaluations as performed by lincoln labo-

ratory. ACM Transactions on Information and System Security, pages 262–294,

2000.

[24] John Steven, Gunnar Peterson, Deborah A. Frincke: Smart-grid security issues.

IEEE Computer Society, 2010.

[25] Ju-Min Park and James Pearson: In north korea, hackers are a hand-

picked, pampered elite, 12/05/2014. http://www.reuters.com/article/2014/

12/05/us-sony-cybersecurity-northkorea-idUSKCN0JJ08B20141205, visited

on 4/20/2015.

[26] Leif E. Peterson, Scholarpedia: K-nearest neighbor. http://www.scholarpedia.

org/article/K-nearest_neighbor, visited on 6/1/2015.

[27] Linda, O., Manic, M., and Vollmer, T.: Improving cyber-security of smart grid sys-

tems via anomaly detection and linguistic domain knowledge. In Resilient Control

Systems (ISRCS), 2012 5th International Symposium on, pages 48–54, 2012.

[28] Liz Barris: Legal,constitutional and human rights violations of smart grid and

smart meters. http://stopsmartgrid.org/wp-content/uploads/2013/10/

Legal-Constitutional-and-Human-Rights-Violations-of-Smart-Grid-and-Smart-Meters.

pdf, visited on 4/7/2015.

[29] Lo, Chun Hao and Ansari, N.: Consumer: A novel hybrid intrusion detection

system for distribution networks in smart grid. Emerging Topics in Computing,

IEEE Transactions on, pages 33–44, 2013, ISSN 2168-6750.

http://ses.jrc.ec.europa.eu/smart-grids-observatory
http://cmp.felk.cvut.cz/~sochmj1/adaboost_talk.pdf
http://cmp.felk.cvut.cz/~sochmj1/adaboost_talk.pdf
http://www.reuters.com/article/2014/12/05/us-sony-cybersecurity-northkorea-idUSKCN0JJ08B20141205
http://www.reuters.com/article/2014/12/05/us-sony-cybersecurity-northkorea-idUSKCN0JJ08B20141205
http://www.scholarpedia.org/article/K-nearest_neighbor
http://www.scholarpedia.org/article/K-nearest_neighbor
http://stopsmartgrid.org/wp-content/uploads/2013/10/Legal-Constitutional-and-Human-Rights-Violations-of-Smart-Grid-and-Smart-Meters.pdf
http://stopsmartgrid.org/wp-content/uploads/2013/10/Legal-Constitutional-and-Human-Rights-Violations-of-Smart-Grid-and-Smart-Meters.pdf
http://stopsmartgrid.org/wp-content/uploads/2013/10/Legal-Constitutional-and-Human-Rights-Violations-of-Smart-Grid-and-Smart-Meters.pdf

Bibliography 73

[30] Lyle Ungar: Machine learning - computer and information science, university

of pennsylvanias. Lecutre Wiki, 2014. https://alliance.seas.upenn.edu/

~cis520/wiki/index.php?n=lectures.boosting, visited on 5/28/2015.

[31] Machine Learning Group at University of Waikato: Weka - data mining software

in java. http://www.cs.waikato.ac.nz/~ml/weka/, visited on 6/4/2015.

[32] Mitchell, R. and Ing-Ray Chen: Behavior-rule based intrusion detection systems

for safety critical smart grid applications. Smart Grid, IEEE Transactions on,

pages 1254–1263, 2013, ISSN 1949-3053.

[33] Mitchell, Thomas M.: Machine Learning. McGraw-Hill, Inc, New York, NY, USA,

1st edition, 1997, ISBN 0070428077.

[34] Naruchitparames et al.: Secure communications in the smart grid. In Consumer

Communications and Networking Conference (CCNC), 2011 IEEE, pages 1171–

1175, 2011.

[35] NETL - National Energy Technology Laboratory: The netl modern grid ini-

tiative,powering our 21st-century economy: smart grid benefits, 2007. https:

//www.netl.doe.gov/File%20Library/research/energy%20efficiency/

smart%20grid/whitepapers/Modern-Grid-Benefits_Final_v1_0.pdf, visited

on 5/26/2015.

[36] Network Security Laboratory, University of New Brunswick: Nsl-kdd data set

for network-based intrusion detection systems, 2009. http://nsl.cs.unb.ca/

NSL-KDD/, visited on 5/26/2015.

[37] OpenCV: Introduction to support vector machines. http://docs.opencv.org/

doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html, visited

on 5/27/2015.

[38] Pedregosa et al.: Scikit-learn: Machine learning in python. Journal of Machine

Learning Research, pages 2825–2830, 2011.

[39] Remya, K. R. and Ramya, J. S.: Using weighted majority voting classifier combi-

nation for relation classification in biomedical texts. In Control, Instrumentation,

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=lectures.boosting
https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=lectures.boosting
http://www.cs.waikato.ac.nz/~ml/weka/
https://www.netl.doe.gov/File%20Library/research/energy%20efficiency/smart%20grid/whitepapers/Modern-Grid-Benefits_Final_v1_0.pdf
https://www.netl.doe.gov/File%20Library/research/energy%20efficiency/smart%20grid/whitepapers/Modern-Grid-Benefits_Final_v1_0.pdf
https://www.netl.doe.gov/File%20Library/research/energy%20efficiency/smart%20grid/whitepapers/Modern-Grid-Benefits_Final_v1_0.pdf
http://nsl.cs.unb.ca/NSL-KDD/
http://nsl.cs.unb.ca/NSL-KDD/
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

Bibliography 74

Communication and Computational Technologies (ICCICCT), 2014 International

Conference on, pages 1205–1209, 2014.

[40] Shigeo Abe: Support Vector Machines for Pattern Classification (Ad-

vances in Computer Vision and Pattern Recognition). Springer, 2010,

ISBN 978-1-84996-098-4.

[41] SIGKDD: Kdd cup 1999: Computer network intrusion detection, 1999. http:

//www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection,

visited on 5/19/2015.

[42] Tabrizi, F. M. and Pattabiraman, K.: A model-based intrusion detection system

for smart meters. In High-Assurance Systems Engineering (HASE), 2014 IEEE

15th International Symposium on, pages 17–24, 2014.

[43] Tavallaee, M., Bagheri, E., Lu, Wei, and Ghorbani, A. A.: A detailed analysis of

the kdd cup 99 data set. In Computational Intelligence for Security and Defense

Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6, 2009.

[44] Theuns Verwoerd and Ray Hunt: Intrusion detection techniques and approaches.

Computer Communications, 2002. http://www.researchgate.net/profile/

Ray_Hunt/publication/222551704_Intrusion_detection_techniques_and_

approaches/links/00b7d5266f587d2645000000.pdf, visited on 6/2/2015.

[45] Tsang, R.: Cyberthreats, vulnerabilities and attacks on scada networks. http:

//de.scribd.com/doc/144823067/Tsang-SCADA-Attacks#scribd, visited on

5/26/2015.

[46] United States Department of Energy: 2014 2014 smart grid system re-

port, 2014. https://www.smartgrid.gov/sites/default/files/doc/files/

2014-Smart-Grid-System-Report.pdf, visited on 4/19/2015.

[47] WhatIsSmartGrid.org: Consumer benefits. http://www.whatissmartgrid.org/

smart-grid-101/consumer-benefits, visited on 6/2/2015.

http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection
http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection
http://www.researchgate.net/profile/Ray_Hunt/publication/222551704_Intrusion_detection_techniques_and_approaches/links/00b7d5266f587d2645000000.pdf
http://www.researchgate.net/profile/Ray_Hunt/publication/222551704_Intrusion_detection_techniques_and_approaches/links/00b7d5266f587d2645000000.pdf
http://www.researchgate.net/profile/Ray_Hunt/publication/222551704_Intrusion_detection_techniques_and_approaches/links/00b7d5266f587d2645000000.pdf
http://de.scribd.com/doc/144823067/Tsang-SCADA-Attacks#scribd
http://de.scribd.com/doc/144823067/Tsang-SCADA-Attacks#scribd
https://www.smartgrid.gov/sites/default/files/doc/files/2014-Smart-Grid-System-Report.pdf
https://www.smartgrid.gov/sites/default/files/doc/files/2014-Smart-Grid-System-Report.pdf
http://www.whatissmartgrid.org/smart-grid-101/consumer-benefits
http://www.whatissmartgrid.org/smart-grid-101/consumer-benefits

Bibliography 75

[48] Zhang, Yichi, Wang, Lingfeng, Sun, Weiqing, Green, R. C., and Alam, M.: Dis-

tributed intrusion detection system in a multi-layer network architecture of smart

grids. Smart Grid, IEEE Transactions on, pages 796–808, 2011, ISSN 1949-3053.

[49] Zhong Fan et al.: Smart grid communications: Overview of research challenges, so-

lutions, and standardization activities. Communications Surveys Tutorials, IEEE,

pages 21–38, 2013, ISSN 1553-877X.

List of Abbreviations

WAN Wide Area Network

NAN Neighborhood Area Network

HAN Home Area Network

IDS Intrusion Detection System

PLC Power Line Connection

SGDIDS Smart Grid Distributed Intrusion Detection System

FP False Positive

FN False Negative

TP True Positive

TN True Negative

U2R User to Root

R2L Remote to User Local

DoS Denial of Service

SVM Support Vector Machine

RBF Radial Basis Function

kNN K-Nearest Neighbor

76

	Affidavit
	Acknowledgement
	Details
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	The Future of the Power Grid
	Concept and Infrastructure
	Challenges and Benefits

	Smart Grid Security
	Cyber-Threats for Smart Grid Networks
	Intrusion Detection in Smart Grid
	Common Approaches for IDS
	Current Smart Grid Security Concepts

	Classifier Voting Concept
	Basics for Data Classification
	Pattern Recognition for anomaly detection

	The KDD-NSL Dataset
	Details and Challenges

	Combination of Classification Algorithms
	Algorithms Selection
	Support Vector Machine
	AdaBoost
	K-Nearest-Neighbor
	Decision Tree

	Voting Techniques

	Creation of a Voting-Classification system
	Implementation and approach
	Dataset preparation and modifications
	Testing of Classifiers
	Combination Technique
	Experimental setup
	Results
	Performance Improvement Function
	Simple voting techniques
	False Positive Reduction With Weighted Voting
	Observed constraints
	Vote-Classification in a Distributed Environment
	Creation of a Hierarchical IDS Communication

	Conclusion
	Bibliography
	List of Abbreviations

