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1 Introduction

This report summarizes my 5 months research internship at the Systems

Security Lab at Northeastern University in Boston, Massachusetts. During

that time period I contributed to several projects related to the main topics

of my PhD thesis – malware analysis and mobile security. This internship

was graciously supported by the Marshall Plan Foundation.

1.1 General Information

Scholarship Recipient:

Martina Lindorfer

Margaretenstrasse 145

1050 Vienna, Austria

mlindorfer@iseclab.org

https://iseclab.org/people/mlindorfer

Home Institution:

Vienna University of Technology

Karlsplatz 13

1040 Vienna, Austria

Advisor: Edgar Weippl

https://www.sba-research.org/team/management/edgar-weippl

Host Institution:

Northeastern University

College of Information and Computer Science

202 West Village H

360 Huntington Avenue

Boston, MA 02115, USA

Advisors: Engin Kirda and William Robertson

https://www.ccs.neu.edu/home/ek

https://wkr.io

Scholarship Duration: October 1, 2014 - February 28, 2015 (5 months)

Total Duration: October 14, 2014 - March 31, 2015 (5 1/2 months)1

1Due to unfinished business at Vienna University of Technology, as well as personal

reasons, I was not able to start the internship on October 1, as planned, and thus extended

my stay until the end of March.
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1.2 Acknowledgements

First and foremost I thank the Marshall Plan Foundation for facilitating this

research exchange through a scholarship. Secondly, I thank my advisors in

Boston, Prof. Engin Kirda and Prof. William Robertson for hosting me and

providing an incredible learning experience, as well as my advisor in Vienna,

Prof. Edgar Weippl for allowing me to take this opportunity. Furthermore, I

would like to thank Prof. Manuel Egele and Prof. Dave Choffnes for inviting

me to contribute to their projects.

The Secure Systems Lab proved to be a very productive and inspiring

environment and I would like to thank my fellow lab members for this, most

notably Collin Mulliner, Michael Weissbacher, Patrick Carter and Abdelberi

Chaabane.

1.3 Short Biography

I am a fourth-year PhD student at the Secure Systems Lab at Vienna Univer-

sity of Technology in collaboration with SBA Research. I hold a Master’s

degree in Software Engineering and Internet Computing from the Vienna

University of Technology, as well as a Bachelor’s degree in Computer and

Media Security from the University of Applied Science in Hagenberg.

My research focuses on the analysis of malicious software (malware) and

mobile security. I use dynamic analysis methods to investigate the behavior

of un-known software and combine them with machine-learning techniques

to automatically classify malware. Furthermore, I work on identifying anti-

analysis techniques that malware uses to evade dynamic analysis and, thus,

to circumvent detection.

Since smartphones are becoming increasingly attractive targets for at-

tackers (due to their direct monetization techniques), my research also shifted

from desktop-based threats to mobile security more recently. Thus, I am

heavily involved in the development and maintenance of Andrubis, which

is an analysis sandbox to detect Android malware that is publicly available

at http://anubis.iseclab.org. Additionally, I also work on the efficient

detection and removal of malware from and across app stores, which are

often used by attackers to distribute malicious apps that they disguise as

mobile bank-ing apps or popular apps, like Angry Birds, to trick users into

downloading them.
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1.4 Motivation

The Systems Security Lab at Northeastern University is, like the Secure

Systems Lab in Vienna, where I am pursuing my PhD, part of the Interna-

tional Secure Systems Lab2. Members of this lab, and the Systems Security

Lab in particular, are well respected for their research in the field of mal-

ware analysis and cybercrime. Thus, the goal of this exchange was to foster

the collaboration between our lab at Vienna University of Technology and

Northeastern University.

One specific topic for collaboration is the analysis of Android malware:

As part of this exchange we integrated CuriousDroid, a system for the

automated stimulation of Android application user interfaces (developed in

Boston), into our dynamic Android application analysis system Andrubis

(developed in Vienna). The end result significantly enhances the behavior

coverage of the current Android malware analysis and and allows us to

build better Android application verification mechanisms based on machine

learning.

Another goal was to benefit from the Systems Security Lab’s expertise on

malware analysis and mobile security and start working on the final part of

my PhD thesis on malware analysis and detection techniques, with a special

focus on mobile malware.

2http://www.iseclab.org
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2 Events

Besides my work at university and regular meetings with my advisors to

discuss the individual projects I was working on, I also took part in sev-

eral other (regular) events within the Systems Security Lab, Northeastern

University, as well as externally.

2.1 Research Jour Fixe

The Systems Security Lab holds regular meetings, usually once a week,

amongst all professors, post-doctoral researchers and students. During this

meetings, the students briefly present their projects, discuss their current

progress as well as open problems. Meetings such as this are beneficial to get

an overview of other students’ work, provide and receive overall feedback,

as well as more detailed support from students with related expertise.

2.2 Hiring Talks

During my time at Northeastern the university was looking to fill several

open faculty positions. PhD students are encouraged to attend the hiring

talks intended to give the applicants a chance to present their research to

faculty and students, as well as subsequent informal meetings to introduce

them and their teaching goals to students. I attended several of those talks

and meetings, including the ones by and with Alexandros Kapravelos, Xiao

Feng Wang and Vasileios Kemerlis.

2.3 Cyber Security Awareness Week (CSAW)

The Cyber Security Awareness Week (CSAW)3 is an annual student-run

cyber security event including a research conference, organized by the NYU

School of Engineering in Brooklyn, New York. Since New York is only a

short bus ride from Boston, and the research conference featured several

high-profile speakers and talks related to my research interests, I joined

several of my lab mates in attending CSAW in November 2014.

2.4 Boston Girl Geek Dinners

The Boston Girl Geek Dinners4 (most recently renamed to She Geeks Out)

are monthly events in Boston that supports local organizations focused on

3http://csaw.isis.poly.edu
4http://www.bostongirlgeekdinners.com
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encouraging girls to take part in STEM related fields. The dinners are a

great opportunity to meet and network with other women from all fields of

science and usually feature inspiring talks by women in science sharing their

experiences.
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3 Mobile Malware Analysis

3.1 Background

Introduction. Android is undoubtedly the most popular mobile oper-

ating system for smartphones and tablets with a market share of almost

80% [18], however, it is also the undisputed market leader when it comes

to mobile malware: Due to its widespread distribution and wealth of ap-

plication (app) distribution channels besides the official Google Play Store,

including a plethora of alternative markets that often deploy limited or no

app review process at all [21], as many as 97% of mobile malware fami-

lies target Android [14]. Estimations by anti-virus (AV) vendors as to the

number of Android malware in the wild vary widely. McAfee reports about

68,000 distinct malicious Android apps [24] and Sophos collected a total of

650,000 unique Android malware samples to date, with 2,000 new samples

being discovered every day [32]. Clearly, automated and scalable analysis

tools for the detection of Android malware are necessary (1) to remove An-

droid malware from markets or prevent them from entering markets in the

first place and (2) to warn users about potentially harmful apps installed on

their devices.

Analysis Techniques. Analysis methods have been mainly adapted from

years of experience with dealing with Windows malware: Static Analysis is

performed on an app’s Android Application Package (APK) file, without ex-

ecuting an app. The APK file contains an app’s bytecode stored in Dalvik

Executable (DEX) format, resources, such as UI layouts, as well a mani-

fest file, that, amongst other things, contains the requested permissions. In

contrast, Dynamic Analysis executes the app in an isolated environment,

a so-called sandbox, or even on a real device, in order to observe its ac-

tual behavior and collect detailed runtime traces. Both methods have their

drawbacks: Static analysis can be defeated by code obfuscation, the use of

reflection and dynamically loading code at runtime. Dynamic analysis suf-

fers from incomplete code coverage as only one execution path is observed

and the runtime is usually limited to several minutes. Furthermore, dynamic

analysis is prone to evasion by anti-analysis techniques that aim at detecting

the analysis environment and consequently do not perform any malicious ac-

tivity when a sandboxed execution environment is detected. Thus, analysis

tools often leverage Hybrid Analysis techniques that combine both static

and dynamic techniques to achieve the best possible analysis results.
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Figure 1: System Overview of Andrubis [20].

Numerous such analysis tools and services have been proposed and are

operated by researchers [9,11,31,33,38] and security companies [1,2,4] alike.

Google itself introduced Bouncer in February 2012 [22], that checks apps in a

dynamic analysis environment for anomalous behavior before listing them in

the Play Store. There are no details available about this system but Google

claims that Bouncer has reduced malicious app downloads by 40%. At

the International Secure Systems Lab we have developed our own Android

app analysis sandbox Andrubis [20]. To overcome the issue of limited

or no availability of related work [26], we integrated Andrubis into the

publicly available Windows malware analysis sandbox Anubis and provide

this service for submissions via its web interface5 and a dedicated mobile

app available in the Google Play Store6.

Andrubis generates detailed analysis reports of unknown Android apps

based on features extracted during static analysis and behavior observed

through dynamic analysis during runtime. Figure 1 shows a high-level

overview of Andrubis: Users can submit apps through the web interface,

mobile apps or batch scripts for large-scale analyses. Andrubis then per-

forms static analysis to extract information from an apps manifest and its

bytecode. This mainly provides information about requested and used per-

missions, as well a about the app’s components that is useful for the dynamic

analysis. In the core dynamic analysis stage Andrubis then executes the

app in a complete Android environment, and its actions are monitored at

both the Dalvik and the system level through virtual machine introspection

(VMI) in the emulator. Besides monitoring an apps file system and network

behavior as well as phone-specific activities such as sending SMS and per-

5https://anubis.iseclab.org
6https://play.google.com/store/apps/details?id=org.iseclab.andrubis
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Figure 2: System Overview of Marvin [19].

forming calls, Andrubis builds on TaintDroid [13] to monitor potential data

leaks to files, SMS, and most importantly the network. Finally, our system

captures the network traffic from outside the Android operating system and

performs a detailed network protocol analysis during post-processing.

While a detailed analysis report such as the one provided by Andrubis

and other aforementioned tools is useful for the in-depth analysis of po-

tentially malicious apps by security researchers, often a simple distinction

between malicious apps (malware) and benign apps (goodware) is useful.

For this purpose we built an extension to Andrubis, called Marvin [19].

We leverage machine learning techniques in order to automatically classify

samples as benign or malicious based on features learned from a large cor-

pus of known malicious and benign apps. Figure 2 shows an overview of

this process: In the training mode we use features extracted from the An-

drubis analysis of reference apps to train a linear classifier. The resulting

model is then used in production mode to classify previously unseen apps

from end users and provide a malice score indicating whether an app is

malware or not. In our evaluation we learned that static analysis features

are equally, or even more decisive to create the model for an accurate as-

sessment than dynamic analysis features (but not both). Related work on

Android malware classification based on static features alone also reported

good results [5,7,16]. However, dynamic features are indispensable for cap-

turing an app’s network behavior and accurately classifying apps that are

heavily obfuscated or dynamically load code at runtime. Thus, improving

the coverage of dynamic analysis and thus the dynamic features for Mar-

vin by simulating realistic user input is one of the topics of the research

collaboration with Northeastern University (CuriousDroid; described in

Section 3.2).

Privacy Leaks. From a privacy perspective one particularly interesting

behavior of mobile apps, both malware and benign apps, is the leakage

of personally identifiable information (PII). Mobile apps process and store

a multitude of privacy-sensitive and security-critical data that especially

9
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malware, but also ad and tracker libraries included in widely-used legitimate

apps, are interested in. In a recent study based on results collected from

Andrubis we found an alarming trend of an increasing number of apps

leaking data over the network, almost half of the most recent apps we studied

in 2014 [20]. Andrubis determines these data leaks during dynamic analysis

with taint tracking based on TaintDroid [13]. TaintDroid tracks the data

flow of all sensitive data sources to the network, such as the user’s contacts,

her phone number, location, IMEI and IMSI numbers, SMS and call logs,

or the browser history. Thus, building a system that makes users aware of

this privacy leaks and allows them to block the leakage of PII was the topic

of another research collaboration with Northeastern University (ReCon;

described in Section 3.3).

iOS Security. While Android has received significant attention from the

research community, few researchers have tackled the topic of iOS security

so far. However, related work on privacy leaks on iOS [12] and preliminary

experiments with ReCon have shown that a large number of iOS apps

also leak sensitive information about the user to third parties. Furthermore,

researchers have managed to publish malicious apps in the iTunes App Store

as a proof-of-concept despite Apple’s strict review policies [36]. Thus, as

a final research collaboration we started looking into the security of iOS

(described in Section 3.4).

3.2 CuriousDroid

CuriousDroid is a project by Patrick Carter, PhD student at Northeast-

ern University and Collin Mulliner, post-doctoral researcher at Northeastern

University, under the supervision of Prof. William Robertson and Prof. En-

gin Kirda. I contributed to the evaluation of this project, mainly based on

the benefits of its superior user interface stimulation on our Android malware

classification results, and supported Patrick in integrating CuriousDroid

into our existing Andrubis analysis sandbox.

A paper on this project is currently being prepared for submission to the

International Symposium on Research in Attacks, Intrusions and Defenses

(RAID).

10
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Table 1: Stimulation techniques performed by Andrubis [37].

Category Target

Activities Activities declared in the manifest

Services Services declared in the manifest

Broadcast Receivers Broadcast receivers declared in the manifest and registered dy-

namically during runtime

Common Events Incoming SMS and phone calls, WiFi+3G connectivity, location

changes, phone state changes

Random Events Random input stream by the Application Exerciser Monkey

3.2.1 Motivation

As already mentioned in Section 3.1, dynamic analysis is an important part

of Android app analysis. While there are numerous static analysis tools

for Android apps available and malware classification approaches related to

Marvin based on static analysis alone lead good classification results, dy-

namic analysis is indispensable in many cases. One reason is that many

static analysis tools are easily defeated by the use of reflection and obfusca-

tion. But most importantly Android apps increasingly load code at runtime

to dynamically extend their functionality. While dynamic code loading is

popular for legitimate reasons, such as loading external add-on code, shared

library code from frameworks, or dynamically updating code during beta

and/or A/B testing [28], it is especially interesting for malware. Since apps

are typically inspected only once, either by an app market (e.g. by Bouncer

in the Google Play Store) or by an AV scanner at installation time, mali-

cious apps can download and load their malicious payload later at runtime

to evade detection. In our recent study on apps from 2010 until 2014 [20]

we found this behavior increasing, especially in goodware: 29.29% of re-

cent benign apps and 13.15% of recent malicious apps load Dalvik code at

runtime.

However, the major drawback of dynamic analysis in general is the fact

that only a few of all possible execution paths are traversed within one

analysis run. Furthermore, Android apps can have multiple entry points

besides the main activity, which is displayed to the user when an app is

launched, so that apps can react to system events or interact with each

other. Thus, in order to drive program execution, Andrubis implements the

stimulation techniques summarized in Table 1: First we invoke all exported

activities and services listed in an app’s manifest. Furthermore, Andrubis

monitors the registration of broadcast receivers, which an app can register

11
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for events of interest such as a phone reboot or incoming SMS. This allows

us to invoke both statically and dynamically registered broadcast receivers.

In addition, we simulate a set of events malicious applications are likely to

react to, even when we do not capture registered broadcast receivers for these

events. These events include boot completion, general phone state changes,

incoming SMS and phone calls, changes in WiFi and cellular connectivity,

and location changes. Finally, Andrubis uses the Application Exerciser

Monkey [15] (”monkey”) to simulate user input by delivering a stream of

pseudo-random user interface interactions such as swipes, taps and keyboard

presses.

However, most user interfaces require more targeted user interaction

than simple random inputs. For the examples in Figure 3 for example the

monkey should try to hit the Agree and Ok buttons instead of Cancel or

try to generate meaningful imput for name and date fields. Recent related

work such as Dynodroid [23], SmartDroid [40], Swifthand [10], A3E [8],

and AppsPlayground [30], has explored numerous approaches in improving

the state-of-the-art of user interface exploration. However, so far these ap-

proaches to ”intelligent monkeys” either require access to source code, prior

static analysis of the app to identify paths to visit during dynamic analysis,

static instrumentation of the app, or do not scale in a large-scale analysis

environment. With CuriousDroid we try to overcome this limitations and

build an user interface automation tool that emulates human interaction and

is applicable in any environment without modification or prior knowledge of

an app.

3.2.2 System Overview

In contrast to the random user interface interactions produced by monkey,

CuriousDroid aims at automating Android app user interfaces in an intel-

ligent, user-like manner. To achieve this, it iterates over all activities of an

app in three phases: (1) user interface decomposition, (2) input inference,

and (3) input generation.

User Interface Decomposition. In the first stage CuriousDroid de-

composes the user interfaces of an app on-the-fly at draw-time through dy-

namic instrumentation with the Dynamic Dalvik Instrumentation (DDI)

framework [25]. During this process it discovers all interactive user interface

elements, such as editable text fields, buttons, spinners, radio buttons, and

checkboxes.

12
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Figure 3: Examples for user interfaces benefiting from intelligent, user-like

interaction as provided by CuriousDroid.

Input Inference. In the second stage CuriousDroid infer the user inter-

actions an activity expects in order to generate meaningful inputs. In order

to exercise a user interface like a human would do it is first of all neces-

sary to infer the order in which user interface elements should be activated.

Furthermore, instead of blindly providing random text as input for editable

text fields, CuriousDroid infers the type of input a text field expects, such

as names, phone numbers, passwords or email addresses, from its context,

and populates those fields accordingly.

Input Generation. In the third stage CuriousDroid translates and feeds

the inferred input to the Android touchscreen event driver that performs

the desired taps and swipes and inputs the inferred text as virtual keyboard

presses.

Finally, one important concern of the design of CuriousDroid was that it

is agnostic to its environment. Since CuriousDroid does not require any

prior knowledge of an app, can be deployed in any Android environment

with minimal effort and without modifications to the Android operating

system, and is highly performant, it is an ideal candidate for the integration

in large-scale analysis sandboxes such as Andrubis as a replacement for the

current state-of-the-art monkey.

13
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Table 2: Dynamic app behavior uncovered by CuriousDroid. By compar-

ison, Andrubis used with monkey produced no behavior in each category.

Category # Apps # Triggered % Triggered

Sending SMS 6,871 440 6.40%

Dynamic Code Loading 8,371 358 4.28%

Native Code Loading 7,669 1,945 25.36%

Networking 7,134 2,650 37.15%

3.2.3 Results

For the evaluation we integrated CuriousDroid in 36 virtual instances of

Andrubis, running at Northeastern University in order to not interfere with

regular operations. This experimental setup achieved a throughput of 5,500

apps per day allowing us to evaluate a dataset of 51,571 apps.

We evaluated CuriousDroid on this dataset in terms of activity (i.e.

the number of different user interface screens covered) and behavior coverage

(i.e. the number of interesting behaviors elicited) compared to random user

interface interactions from the monkey. Apps in this dataset belong to one

of the following two categories:

Borderline Apps. Apps that received a ”borderline” classification from

Marvin, i.e. apps our classification algorithm could not classify as either

malicious and benign, possibly due to a lack of expressive dynamic features.

Missing Dynamic Behaviors. Apps that were flagged by static analysis

as being capable of interesting behavior in four categories (sending SMS, dy-

namically loading DEX code, loading native code, and performing network

activity), but that did not show this behavior during runtime in Andrubis.

Related work has shown that these behaviors are potentially (and often)

indicative of malware [42].

For the first category of apps our evaluation demonstrated that the increase

in dynamic features from an average of 21.6 per application to 30.8 per

application with CuriousDroid indeed improved classification results sig-

nificantly and allowed relabeling from unknown to benign for many apps

while also reclassifying a group of apps from unknown to malicious.

For the second category CuriousDroid allowed us to trigger behavior

for each category of apps whereas monkey did not trigger this behavior in

any of the apps. Table 2 summarizes our results and shows that Curious-

Droid elicited interesting behaviors in up to 37.15% of apps in the case of

networking and 25.26% in the case of dynamic code loading.

14
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Finally, the integration of CuriousDroid with Andrubis for our eval-

uation showed, that our methods are indeed suitable for large-scale analysis

and thus will be available in the public version of Andrubis in the near

future.

3.3 ReCon

ReCon is a project by Jingjing Ren, PhD student at Northeastern Univer-

sity, Ashwin Rao, post-doctoral researcher at the University of Helsinki, and

Arnaud Legout, post-doctoral researcher at INRIA Sophia Antipolis under

the supervision of Prof. David Choffnes. I contributed to this project by

providing insights on the workings of host-based detection of information

leaks and support on the dynamic analysis of privacy leaks through Taint-

Droid as integrated in Andrubis. Furthermore, I was able to gather and

contribute a dataset from Andrubis for training and evaluating ReCon’s

classifier.

A paper on this project is currently in the final stages of evaluation and being

prepared for submission to the Internet Measurement Conference (IMC).

3.3.1 Motivation

In our study on the behavior of Android apps we found up to 49.78% of

recent apps leaking personally identifiable information (PII), drastically in-

creasing from only 13.45% in 2010 [20]. Reasons for this are that information

uniquely identifying a device and user, such as IMSI, IMEI, device ID, or

phone number, and also the current location of a user, are of great value to

advertisers to track a users actions and tailor the displayed advertisements

to the interests of a specific user. In addition, malicious apps are interested

in exfiltrating valuable information such as contacts, credentials, usernames,

passwords, and credit card numbers.

Tools monitoring PII leaks usually fall into two categories: There are

dynamic analysis methods, such as TaintDroid [13], that monitor data flow

from sensitive information sources to the network, but require modifica-

tion of the Android operating system. Static analysis tools, such as Ap-

pIntent [39], identify PII leaks based on an app’s code but cannot defend

against dynamic code loading at run time.

In addition, these approaches do not address the problem of which PII

leaks should be blocked (and how), a problem that is difficult to address in

15
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practice [17]. The classification of data leaks is not always black and white:

For example, an app recommending restaurants surrounding the current

position of the user has a legitimate reason to send the user’s position to its

server, while the same behavior in an ad library in that same app that uses

the location purely for tracking, is undesirable. To this end, user feedback

is invaluable when automatically classifying PII leaks.

The goal of ReCon is to provide a user-friendly interface that allows

users to monitor data that is leaked by apps installed on their device and

decide whether they want to allow that connection, replace the leaked in-

formation with fake information, or block the connection altogether.

3.3.2 System Overview

Our key observation is that since PII leaks must occur over the network, the

network is the ideal vantage point to monitor them and also gives us the

opportunity to modify flows should a data leak be detected. Thus, ReCon

uses a software middlebox atop the Meddle7 [29] platform to man-in-the-

middle, i.e. redirect and inspect, the network traffic. Since network traffic

increasingly is encrypted, we use SSL bumping [3] to decrypt and inspect

SSL flows, however only during our controlled experiments where no real

user traffic is intercepted. Figure 4 shows an overview of the deployment

of ReCon with the traffic either redirected through our Meddle instance

in the cloud (currently Amazon EC2) or a private trusted instances. Users

concerned about the privacy of their sensitive traffic can deploy their private

Meddle instance and e.g. redirect plaintext traffic to our EC2 deployment

and SSL traffic to their trusted instance.

Sine we do not know the contents of the PII in advance, our key challenge

is how to detect the PII leaks in the redirected network flows. Creating

signatures for every possible app is infeasible, hence we experimented with

several machine learning techniques to automatically build a model of PII

leaks that we can apply to data from arbitrary users and apps. Training data

for this model can for example come from the PII leaks detected through

TaintDroid in Andrubis since we already have a large database of over

one million apps to start with,with almost half of them leaking data to the

network.

Finally, ReCon visualizes the detected PII leaks for users and shows

them how their data is shared with third parties. Users then can validate

7http://www.meddle.mobi
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Figure 4: ReCon System Overview.

ReCon s suspected PII, as well as replace the PII with other text (or noth-

ing) for future flows between the app and tracker. We can then feed their

feedback about the correctness of our predictions back into our machine

learning classifier in order to improve future classification results.

3.3.3 Results

We started by analyzing the most popular apps from the Apple iTunes App

Store, the Google Play Store as well as the alternative market appsapk.com.

In this controlled experiment we intercepted both HTTP and encrypted

HTTPS traffic. We found that the IMEI and device ID that can be used to

track a user’s behavior are the most frequently leaked information. Further-

more we found apps leaking email addresses, a user’s contacts and passwords

in the cleartext.

In an ongoing IRB-approved user study we collected feedback from users

at Northeastern University, currently for 122,176 HTTP flows, in which

ReCon detected a large number of PII leaks, and classified them correctly

according to user feedback. By far the most often leaked information are

device identifiers and the location. Again, in this study ReCon also found

the leakage of sensitive information such email addresses and even passwords

in the clear.

We will open-source our code in order to allow users to deploy their own

trusted instances of Meddle in order to promote the usage of ReCon.

By presenting the data leaks of the apps installed on their devices and

attributing leaks to trackers, we hope to raise awareness of users and enable

them to modify or remove the leaked PII.
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3.4 Untitled iOS Security Project

This project is currently my main research project and is carried out under

the supervision of Prof. William Robertson and Prof. Engin Kirda from

Northeastern University as well as Prof. Manuel Egele from Boston Univer-

sity.

As this project is work in progress we have not scheduled a publication

target yet.

3.4.1 Overview

In contrast to Android security the field of iOS security has hardly been

studied so far. Reasons are the closed nature of the operating systems that

hinders dynamic analysis and the closely guarded app distribution through

the iTunes App Store. Still, related work has shown that it is possible to

infect iOS devices with malicious apps [35, 36, 41] and that PII leaks is not

only a concern for Android users [12]. Consequently, the security of iOS

devices deserves a closer look, especially the security implications of new

feature additions in the latest version.

With the release of iOS8 in September 2014, Apple opened the strict

separation between apps and introduced the new concept of extensions [6].

Extensions allow apps to share data through widgets, photo editing, sharing

and action extensions. Naturally, this also opens up ways for attackers to

take advantage and extract information from apps. So far, the only way

to communicate between on iOS apps was through URL handler, a process

that is not without its vulnerabilities and can for example leak a user’s

authentication credentials [34].

As it is important to have an extensive (ideally inclusive) dataset to

base our evaluation on, we started with the collection of as many iOS apps

as possible. For this we implemented a crawler to download all available

free iOS apps from the iTunes App Store. While Apple reports 1.2 million

apps [27] in the store, our crawler discovered only 981,949 apps, with 668,370

of them being free and thus candidates for download and further evaluation.

In the meantime, while this crawler is building our dataset, we started

looking into data leaks from a different perspective: Apps might also un-

knowingly leak more information to the user, and potential attackers, than

necessary. So far, we found evidence of this behavior in an airline apps

transmitting more information on the upgrade lists than intended for the
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standard user or a quiz app already transmitting the correct answers with its

questions. Currently, we are exploring this topic further and are in the pro-

cess of automating the discovery of this behavior. Challenges include first

of all the interception of network traffic from the server to the client app,

where we can learn from our experience with ReCon. Secondly, we need

to distinguish the superfluously transmitted information, for which we are

exploring taint tracking, fine-grained method tracing of the Android user

interface and user interface stimulation, and can thus use our experience

from Andrubis and CuriousDroid.

19



Marshall Plan Scholarship: Final Report Martina Lindorfer

4 Conclusion

I would like to thank the Marshall Plan Foundation again for supporting

me with a scholarship and the Secure Systems Lab at Northeastern Univer-

sity for hosting me. The internship proved to be very productive, with two

papers currently being prepared for submission and another one following

shortly. The projects I worked on closely relate to the topic of my PhD thesis

of malware analysis and mobile security: Automated user interface interac-

tion for Android app analysis sandboxes, controlling privacy leaks in mobile

network traffic, and general iOS security and privacy issues. Furthermore,

the internship provided valuable exchange of ideas with fellow researchers

and served as the basis for future collaborations. I am looking forward to

continuing working on our shared projects and hopefully visiting the Secure

Systems Lab again in the future.
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