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Abstract

Dataflow models are valuable tools for representing, analyzing, and synthesizing

embedded systems. Heterogeneous computing platforms with multi-core CPU and

Graphics Processing Units (GPUs) provide a low cost platform for high perfor-

mance computations. In this report, we present a dataflow based automated design

framework that incorporates analysis, optimization and synthesis tools for embedded

systems. Our framework is capable of generating high-performance software from

dataflow applications targeted on heterogeneous CPU-GPU platforms. This frame-

work exploits task and data-level parallelism in the dataflow specification and auto-

matically utilizes the heterogeneous platform for performance gain without the need

for manual, platform and application specific optimization. We demonstrate the

novel and useful capabilities of this framework through experiments on an adapted

MP-Sched benchmark that is representative for a wide range of DSP applications.



Chapter 1

Introduction

Embedded systems are rapidly increasing in their complexity and capabili-

ties. Driven by continuously growing demand for functionality and performance,

many types of embedded systems now utilize heterogeneous multiprocessor plat-

forms. Among a variety of available classes of heterogeneous platforms, multicore

CPU-GPU platforms, which integrate central processing unit (CPU) and graphics

processing unit (GPU) devices, have been shown to provide significant performance

gains on a wide range of embedded applications. An example of a widely-used

CPU-GPU product family is the NVIDIA Tegra.

GPUs accelerate computational tasks by supporting data-level parallelism on

a large scale with hundreds or thousands of SIMD (single instruction multiple data)

multiprocessors. Achieving maximal performance gain of computational tasks on

CPU-GPU platforms typically involves highly specialized optimization techniques

that are specific to the application functions and hardware. In the context of embed-

ded system development, where applications are often required to meet multidimen-

sional constraints (e.g., constraints on throughput, latency, memory requirements,

and power consumption), derivation and application of such specialized optimiza-

tion techniques by hand can be highly error-prone and time-consuming. Moreover,

designers sometimes need to migrate embedded software across platforms — for ex-
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ample, to derive different versions of a given application with different trade-offs, or

to utilize newer platform generations. As processing platforms continue to evolve,

hand optimization techniques become increasingly difficult to track and maintain

across platforms in an efficient and reliable manner.

Model-based design methodologies using dataflow models of computation have

significant potential to help address the challenges in developing efficient and reliable

GPU-CPU implementations with high productivity. Dataflow methods have been

widely adopted in many application areas of embedded signal processing [1]. When

using dataflow techniques in this context, the designer specifies an application as a

directed graph, where vertices (actors) represent computational functions and edges

represent inter-actor communication channels.

Dataflow formalisms provide well-structured and formally-rooted approaches

for representing and implementing signal processing applications. Dataflow models

allow important forms of design analysis and optimization to be applied systemat-

ically, including task scheduling, memory allocation and power management. Such

capabilities provide the designer with valuable insight on implementation trade-offs

that are difficult or impossible to extract purely from lower level representations,

such as C or CUDA programs. Additionally, their high level of abstraction and sys-

tematic methods for component integration facilitate retargetable design method-

ologies, enabling efficient migration across diverse computing platforms, such as

programmable digital signal processors, field programmable gate arrays, GPUs, and

hybrid CPU-GPU systems.

An important challenge in advancing the state-of-the-art in dataflow-based
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design methods is the automated synthesis of efficient embedded implementations

on heterogeneous CPU-GPU platforms. Such automated synthesis needs to take

into account complex implementation aspects that include actor-level vectorization,

inter-processor data transfer, task scheduling, and dataflow buffer management. De-

velopment of dataflow design frameworks that systematically addresses these issues

in CPU-GPU implementation is an important research area in high-performance

embedded signal processing.

With this motivation, we have developed in this research a novel dataflow-

based design framework that integrates relevant methods for analysis, optimization

and synthesis of signal processing implementations on CPU-GPU platforms. Our

framework is based on the Dataflow Interchange Format (DIF) [2], a standard lan-

guage for representing dataflow models of signal processing applications, and the

the Lightweight Dataflow Environment (LIDE) [3], which provides a programming

methodology for implementing dataflow graph actors and edges in a wide variety of

lower level languages. Our framework allows the designer to specify a signal pro-

cessing application using dataflow models, and generate executable software that is

optimized for efficient operation on a targeted CPU-GPU platform. Our framework

also provides systematic exploration of design trade-offs on target platforms involv-

ing multidimensional design evaluation metrics. In this report, we focus specifically

on demonstrating the capabilities of our framework in optimizing trade-offs between

signal processing latency and throughput.

3



Chapter 2

Related Work

A variety of model-based design frameworks has been explored previously

for heterogeneous multiprocessor platforms. For example, StreamIt [4], a popu-

lar dataflow-centered language and design infrastructure, has been applied to gen-

erate throughput-efficient software for GPU execution [5, 6]. These works focus

on throughput optimization techniques for GPU kernel functions, considering op-

timized methods for memory coalescing, register allocation, and GPU utilization.

StarPU [7] is a run-time task graph scheduling system for heterogeneous multipro-

cessor architectures. This system allows the designer to specify applications as task

graphs, and perform run-time task scheduling for a heterogeneous platform with

multi-core CPUs and a GPU.

Software optimization from dataflow models targeted to heterogeneous archi-

tectures has been studied in two different directions. The first direction focuses on ef-

ficient code generation for GPU kernels from fine-grained dataflow graphs [5, 6]. The

second focuses on system level code synthesis for mix-grained dataflow graphs [8, 9].

Our work is related to this second direction. We go beyond the previous works in

this direction by addressing problems that are critical to the performance of mul-

ticore signal processing systems, including graph-level vectorization, inter-processor

data transfer, and CPU-GPU parallel execution.
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In summary, the distinguishing aspect of the design framework that we present

in this report is its integrated consideration of vectorization, heterogeneous multipro-

cessor scheduling, and optimized software synthesis for hybrid CPU-GPU platforms.

The support in our design framework for vectorization allows data-level parallelism

to be expressed in dataflow models and harnessed systematically by the GPU for

parallel execution. Our approach to heterogeneous multiprocessor scheduling allows

inter-actor (task-level) parallelism to be exploited in conjunction with our vector-

ization techniques for data-level parallelism. The software synthesis capabilities of

our framework provide a high level of automation for the developed modeling and

optimization techniques, allowing them to be applied with fast turnaround time.
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Chapter 3

Framework

Our new dataflow-based design framework, which we refer to as the DIF-GPU

framework (or simply “DIF-GPU”), aims to integrate important aspects of mapping

signal processing applications onto heterogeneous platforms, including vectorization,

scheduling and code generation, as depicted in Figure 3.1. Before discussing DIF-

GPU in further detail, we present some relevant background on dataflow models.

3.1 Dataflow Models

A dataflow graph is a directed graph G = (V,E) composed of a set of vertices

V and a set of edges E. An actor v ∈ V represents a computational task of arbitrary

complexity. An edge e = (u, v) ∈ E connects actors u to v, and represents a data

buffer that stores tokens as they are communicated from the output of actor u to

the input of v. Tokens represent the basic unit of data that is processed by actors.

We define u = src(e) as the the source actor of edge e, and v = snk(e) as the sink

actor of e. Dataflow actors are executed in terms of discrete units of execution,

called firings of the associated actors.

Synchronous dataflow (SDF) is a specialized form of dataflow in which the

numbers of tokens produced by an actor onto each output edge and consumed from

each input edge are constant across all firings of the actor [10]. SDF is used widely
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in the design and implementation of signal processing systems (e.g., see [1]). An

important feature of properly-constructed SDF graphs is that they can be executed

indefinitely (e.g., on unbounded streams of input data) with bounded memory re-

quirements, which is an important feature for signal processing systems [10]. Such

bounded memory execution can be achieved using a scheduling construct called a

valid periodic schedule or simply valid schedule. SDF graphs for which valid sched-

ules exists are called consistent SDF graphs.

For each actor v in a consistent SDF graph, there is a unique repetition count

q(v), which gives the minimum number of firings of v in a valid schedule. The vector

q of these repetition counts, indexed by the actors in the associated SDF graph, is

called the repetitions vector of the graph. A variety of more general forms of dataflow

has been proposed as alternatives to the SDF model. A few examples of such

alternative models are Multidimensional SDF [11], parameterized dataflow [12], and

Core Functional Dataflow [13]. DIF-GPU assumes that the input signal processing

application is specified in terms of the SDF model. Extension of our framework to

more general models, such as those listed above, is an interesting direction for future

work.

Additionally, the input SDF graph is assumed to be acyclic and delay-free. –

that is, the SDF graph does not contain any cyclic paths, and all edges have zero

delay. Here, by a delay, we mean an initial token on the edge. Acyclic, delay-free

SDF graphs can be used to represent a broad class of signal processing applications.

As described above, each edge e in an SDF graph is associated with a constant

production rate and consumption rate, where these rates are in terms of tokens per
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actor firing. These rates are denoted, respectively, as prd(e) and cns(e).

3.2 Heterogeneous Computing Platform

In this section, we describe the class of processing platforms that is targeted

by our design framework. Heterogeneous computing platforms (HCPs) consist of

multiple processor types, such as the hybrid CPU-GPU architectures targeted in

this report. More specifically, our design framework focuses on an important class

of cooperating single-GPP, single-GPU pairs. Each platform in this class consists of

a multicore, general purpose processor (GPP) that is integrated with a GPU. The

GPP, the main memory and the GPUs are connected via a shared bus, and the GPP

controls overall execution flow, and is thus referred to as the “host processor” of the

enclosing heterogeneous multiprocessor platform. The GPU receives instructions

and data from the GPP, and is referred to as the (acceleration) device. In the

remainder of this report, by an HCP, we mean a platform belonging to this class

of single-GPP, single-GPU platforms that is targeted by our proposed new design

framework.

In HCP architectures, GPUs are powerful Single Instruction Multiple Thread

(SIMT) computational engines consisting of hundreds or thousands of processing

cores that can concurrently perform computational tasks on massive data sets. GPU

software is implemented with specialized programming models that facilitate ex-

ploitation of data-level parallelism. Parallel software for GPUs is written in terms

of code modules called kernels. It has been shown that GPUs can achieve large
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Figure 3.1: An illustration of the DIF-GPU framework for mapping signal processing
applications onto heterogeneous platforms.

speed ups on some applications, but the realized performance gain varies greatly

depending on the application, data set size and other factors.

Each GPU has its own memory (device memory), which is separated from

main memory and other device memory. When data required for a GPU task in

an HCP is outside the device memory, the GPU needs to copy the data into device

memory using the shared bus. Data transfers between the host and the device

are referred to as host-to-device or device-to-host data transfers depending on the

direction. These data transfer steps result in large overhead that can significantly

reduce the performance gain of HCPs [14]. In DIF-GPU, this issue is addressed in

the scheduling step, where HCP data transfers are carefully modeled and optimized.

The scheduling step is discussed further in Section 3.4.
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3.3 Vectorization

Dataflow graph vectorization is a graph transformation that groups together

multiple firings of a given actor into a single unit of execution [15, 16]. The number

of firings involved in such a group is referred to as the vectorization degree. For

example, if vectorization is applied to actor A with vectorization degree n, then

blocks of n firings of A are executed together (sequentially on a single processor or

concurrently across multiple processors).

In DIF-GPU, we apply a form of vectorization at the graph level in addition

to the actor-level form of vectorization described above. The amount of graph-level

vectorization applied is in general a positive integer, which is referred to as the

graph-level vectorization degree (GVD). Use of a GVD in scheduling that is greater

than 1 implies scheduling an unfolded version of the input dataflow graph [17].

This is a specialized form of unfolded scheduling where successive executions of

individual actors are constrained to execute in blocks, as determined by the GVD.

The vectorization degree of a given actor v in the input dataflow graph is given as

q(v)× b, where b is the GVD.

Let b be a GVD that is applied to an SDF graph G = (V,E) in DIF-GPU.

Then we derive another SDF graph νb(G), called the the b-vectorized graph of G.

The b-vectorized graph may also be referred to simply as the vectorized graph. In

νb(G), the actors and edges are in one-to-one correspondence with the actors and

edges in G, respectively. Each actor v in νb(G) represents a vectorized version of

the corresponding actor in G with vectorization degree b × q(v), where q is the
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repetitions vector of G. Accordingly, the dataflow rate (production or consumption

rate) associated with each actor port in νb(G) is b times the dataflow rate of the

corresponding actor port in G.

Figure 3.2 shows an example of graph-level vectorization. Note that the repe-

tition count of any actor in a b-vectorized graph is unity, independently of the value

of b. In other words, if r represents the repetitions vector of the b-vectorized graph

of G, for some b ≥ 1, then r(v) = 1 for every actor v in νb(G).

DIF-GPU applies graph-level vectorization for two reasons. First, the frame-

work aims to improve dataflow application throughput, which in turn requires opti-

mized application of data- and task-level parallelism. With graph-level vectorization

on a GPU target, b× q(A) firings of an actor A can execute concurrently if depen-

dencies (through use of state) among firings of A don’t require serialization of some

of the firings. Even if A is mapped onto a single core of a GPP, the vectorized execu-

tion of A reduces the rate of context switching, and can improve performance further

due to enhanced processor pipeline utilization and memory access locality [15, 18].

Second, many scheduling methods exist for mapping signal processing task

graphs onto multiprocessor systems (e.g., see [19]). Here, by a task graph, we mean

an acyclic dataflow graph in which all actors are fired at the same average rate.

Because r(v) = 1 for all actors v, as described above, νb(G) is in the form of a

task graph, and is therefore compatible with the rich library of existing task graph

methods. Our framework takes advantage of these methods for generating efficient

vectorized schedules for the given dataflow application.
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(a)

(b)

Figure 3.2: An illustration of graph-level vectorization. (a) Original SDF graph. (b)
Vectorized SDF graph νb(G).

3.4 Scheduling

Dataflow scheduling for heterogeneous platforms is a complex problem. The

problem is complicated by differences in actor execution times among different types

of processors, and the overhead of interprocessor communication. Although find-

ing optimal schedules in this context is NP-hard, a variety of heuristics has been

developed.

In DIF-GPU, the scheduler takes the vectorized SDF graph νb(G) produced

in the vectorization step, and generates a schedule for a single iteration of νb(G) as

defined by the repetitions vector of νb(G). This schedule can then be iterated any

number of times to provide an execution for the given DSP application.

As described previously, the vectorized graph is in the form of a task graph,

and thus, various available task graph scheduling techniques can be applied in the

DIF-GPU framework. Currently, we have incorporated two task graph scheduling

techniques into DIF-GPU. We refer to these techniques as the First-Come-First-

Serve (FCFS) and Mixed Linear Programming (MLP) schedulers.
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FCFS is a well-known scheduling technique that is applicable in a wide variety

of scheduling contexts. It has been studied previously in the context of CPU-GPU

implementation by Teodoro et al. [20]. The FCFS scheduler in DIF-GPU manages

a list of actors (the “ready list”) that have sufficient data to be executed at any

given time during scheduling. As the schedule evolves, the ready is list is updated.

Whenever a processor is available, the scheduler assigns the actor with the shortest

execution time in the ready list on that processor. This heuristic has the features

of being simple and fast, but the quality of the schedules that it generates is often

inferior to more sophisticated methods.

On the other hand, the MLP scheduler converts the task graph scheduling

problem into a Mixed Linear Programming problem that can then be solved us-

ing off-of-the-shelf linear programming algorithms [16]. This method can generate

efficient schedules, but can require a long running time to compute the schedule,

especially when the input graph has large numbers of actors and edges. The FCFS

and the MLP scheduler can be viewed as lying near two extremes of the trade-off

between the schedule quality and scheduling speed — for this reason, they are in-

teresting to start with to investigate design and implementation trade-offs using the

DIF-GPU framework. Other scheduling heuristics, such as the Heterogeneous Ear-

liest Finish Time (HEFT) [21] technique, can be integrated into the scheduling step

of DIF-GPU to provide more trade-offs between schedule quality and scheduling

speed. This is a useful area for further development of DIF-GPU.
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3.5 Integrated Workflow

The DIF-GPU framework provides a complete dataflow graph scheduling and

software synthesis workflow. The workflow encompasses application-level dataflow

modeling (application graph specification), vectorization, scheduling, and code syn-

thesis of cooperating C and CUDA subsystems for hybrid GPP/GPU implementa-

tion on the targeted HCP. In the remainder of this section, we discuss in more detail

the different components of the DIF-GPU workflow.

3.5.1 Application Graph Specification and Actor Implementation

In DIF-GPU, dataflow models of DSP applications are specified using the

Dataflow Interchange Format (DIF) [2] and the associated DIF package, a Java-

based tool for specifying and analyzing dataflow models and applications. The

vectorization and scheduling features of DIF-GPU as well as the code synthesis

capabilities are implemented in and integrated into the DIF package.

The DIF package supports the DIF language, which is a language for specifying

dataflow graph topologies. To implement the internal functionality of application

graph actors, we employ the the lightweight dataflow environment (LIDE) [3], which

provides retargetable application programming interfaces (APIs) for implementing

dataflow actors in arbitrary platform-oriented languages, such as C, CUDA, and

Verilog.

Developing an actor in LIDE requires implementation of four methods for the

actor — namely new, enable, invoke and terminate. The new method performs
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memory allocation and initialization for the actor. The enable methods returns a

Boolean value indicating whether the actor is “fireable” — that is, whether sufficient

data is available on its input edges, and sufficient empty space is available on its

output edges when the method is called. The invoke method consumes input tokens

from the actor input edges, performs the computation associated with the firing,

and produces output tokens onto the actor output edges. LIDE does not place

restrictions on the complexity of the invoke method. The terminate method frees

memory that has been dynamically allocated for the actor.

LIDE supports various languages, including C, CUDA [22], and Verilog. In

DIF-GPU, we use LIDE-C for actor implementation targeted to the GPP and LIDE-

CUDA for actor implementation targeted to the NVIDIA GPU in our HCP plat-

form. LIDE-C and LIDE-CUDA, are sub-packages within the LIDE package that

support dataflow graph implementation in the C and CUDA languages, respectively.

In DIF-GPU, we require that the actor implementations are vectorized. That is,

each actor A should incorporate a positive-integer-valued vectorization parameter

vect(A), which specifies the number of successive firings of that are “treated as a

single unit” for scheduling purposes. The enable and invoke functions for each ac-

tor A apply vect(A) to, respectively, (a) check whether there is sufficient data and

empty space available to support vect(A) firings of vect(A), and (b) execute vect(A)

firings of A.
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3.5.2 Multithreaded Programming Models

DIF-GPU applies a multi-threaded programming model to implement actor

scheduling on the targeted heterogeneous multi-processor platform. GPU and GPP

operating systems typically provide extensive support for multithreading. Also,

some operating systems provide methods to set the “affinity” of a task to a certain

processor, which provides the programmer or software synthesis tool a means for

guiding the mapping of program threads to processor cores. In DIF-GPU, we assume

that each actor is implemented as a single thread. In the synthesized implementa-

tion, a total number of threads is created that is less than or equal to the number of

processor cores. Furthermore, scheduling analysis within DIF-GPU assigns specific

affinities to each actor’s thread. That is, each actor’s thread is assigned maximum

affinity to a distinct processor core.

DIF-GPU employs a manager-worker thread model. Each GPP core and the

GPU are treated as a individual “workers”, and associated with individual worker

threads. During run-time, a single manager thread keeps track of the state of the

worker threads. When a worker thread is idle, the manager selects an actor and

notifies the worker of the next actor to be fired. Upon receiving this notification,

the worker starts executing the invoke method of the specified actor. When the

invoke method completes, the worker notifies the manager thread, and the process

repeats with selection and execution of the next actor by the manager thread.

DIF-GPU uses a self-timed scheduling approach for implementing schedules.

The timing information used to construct the schedule is discarded before the code
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generation phase, and only the sequence of vectorized actor firings on each processor

(worker) is used. At runtime, the manager thread loads a pre-computed schedule in

the application initialization phase. During schedule execution, the manager needs

to periodically check the status of each worker (busy or idle) and the result from

the enable method of the next actor in each worker’s schedule. When a worker is

idle and its next actor has sufficient data and empty space (as determined by its

enable method), the manager can launch the actor to be executed by the worker. If

all workers become busy at some point during execution, then the manager thread

is blocked until an idle worker becomes available again.

3.5.3 Data Transfer

As described previously, a GPU has its own private memory space, called de-

vice memory. It has been shown that performing CPU-to-GPU and GPU-to-CPU

transfers for each actor results in significant performance reduction [23], and there-

fore, should not be adopted in a practical framework. We apply the structure of

the computed self-timed schedule in DIF-GPU to help eliminate unnecessary data

transfers between the CPU and GPU. We do this by inserting special interproces-

sor communication (IPC) actors (“send” and “receive” actors) to provide the data

transfers for each edge that has its source and sink actors mapped to different pro-

cessors. This approach of incorporating send and receive actors is adapted from IPC

modeling and implementation techniques discussed in [19].
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3.5.4 Code Generation

DIF-GPU generates well-structured, human readable source code for compi-

lation with back-end tools associated with the targeted HCP. Given a dataflow

application graph G that is provided as input to DIF-GPU, we refer to the resulting

synthesized software implementation as the synthesized package of G. The synthe-

sized package contains a C++ header file (.h file), a C++ implementation file (.cpp

file), and a set of schedule files, where each schedule file contains the schedule for a

separate worker thread.

The C++ header and implementation files define a class that encapsulates the

computation ofG. Graph-level input, output and parameters can be applied through

constructor arguments. In this manner, DIF-GPU generates an object-oriented

module rather than generating a main function as the entry point for the derived

executables. Through their modular structure, the implementations generated by

DIF-GPU can be integrated flexibly into different design frameworks. This flexibility

of integration is useful, for example, for generating DSP components in larger designs

where it is not desired to employ dataflow techniques for all parts of the designs.

The synthesized package for an application graph depends on the LIDE pack-

age and and the library of LIDE-based actors that is used to construct the graph.

Figure 3.3 shows a simple example based on a finite impulse response (FIR) fil-

ter. The application graph (Figure 3.3(a)) is transformed to the graph shown in

Figure 3.3(b) after vectorization is performed and data transfer actors are inserted.

The vectorization degree used in this example is b = 100. Figure 3.3(c) shows the
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Figure 3.3: An FIR filter example.

corresponding actor firing sequence on each processor when the GPU is used to

accelerate the FIR filtering actor.

Figure 3.4 and Figure 3.5 show the synthesized code for the header and imple-

mentation files. The class fir_graph_1 contains a constructor, a destructor, and

a simple execute method. The constructor takes the data to be filtered and the

filter length as two input parameters. The argument lists of the execute method

and the destructor are empty. The constructor performs buffer allocation for the

edges, initializes the graph actors, and initializes the manager-worker threads. The

execute function starts the scheduler and provides the interface for executing the

application graph. The destructor reclaims the memory allocated for the edges and

actors.

19



Figure 3.4: Header code for the FIR filter example.

Figure 3.5: Implementation code for the FIR filter application.
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Chapter 4

Experiments

We have implemented first versions of the proposed DIF-GPU workflow, in-

cluding the heterogeneous multiprocessor schedulers (FCFS and MLP), and code

generator described in Section 3. In this section, we demonstrate this first version

of the DIF-GPU framework by evaluating its performance on an adaptation of the

MP-Sched benchmark [24], which is illustrated in Figure 4.1.

Our adapted benchmark, which we refer to as the sliding-window inner product

(SWIP)) system, describes a signal processing flow graph that consists of a grid of

P × S actors (called SWIP actors) that perform inner product computations on

sliding windows of data. Here, P is the number of pipelines and S is the number of

stages. The SWIP benchmark is relatively easy to construct as an initial benchmark,

and involves computations that are representative of common computations in the

DSP domain. Each SWIP actor consumes an array x[n] of size L, performs a sliding

window inner product function, and produces an output array y[n] of size L. The

computation performed by a SWIP actor can be expressed as follows:

y[n] =
r∑

k=−r

W [r + k]x[n+ k]. (4.1)

where W [n] is a pre-defined window of length 2r+ 1. The benchmark is a synthetic

benchmark with a parameterized structure that is representative of a class of prac-
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Figure 4.1: An illustration of the SWIP benchmark.

tical signal flowgraph structures. The benchmark is a non-trivial problem for the

multiprocessor schedulers in DIF-GPU because of the multiple forms of parallelism

that are employed, including fine grained parallelism within actors, task-level par-

allelism across different pipelines, and pipeline parallelism within a given pipeline.

4.1 Experimental Setup

We use an Intel Core i7-2600K CPU with an NVIDIA GeForce GTX680 GPU

for our experiments. In our framework, the benchmark application graph is speci-

fied in the DIF language. Then the graph is vectorized over selected vectorization

degrees. Here, we selected the following set of vectorization degrees:

B = {b = 256k|k = 1, 2, ..., 10}. (4.2)

For each vectorized graph, DIF GPU computes its schedule and mapping based

on the selected scheduling strategy. A C++ header file and implementation file that

realize the dataflow application are then generated.

For each SWIP actor, we set the window length to be 7. The actors are
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Figure 4.2: Speedup of a SWIP actor.

individually profiled for the specified vectorization degrees. The speedup of a GPU-

accelerated SWIP actor is shown in Figure 4.2, excluding data transfer time. We

observe an increase in speedup by increasing the vectorization degree for GPU-

accelerated implementation. When b = 256, the actor runs slower when mapped

onto a GPU because the GPU cores are significantly under-utilized, and a small

number of GPU cores cannot provide performance gain over a powerful CPU. As

the vectorization degree increases, more GPU-cores operate in parallel, providing

more speedup. When b increases, the speedup continues to improve to 5.4x at

b = 2, 560.

In our experiments, we found that data transfer can be a significant overhead

in mapping the the SWIP benchmark to the targeted HCP. Figure 4.3 shows a

comparison between computation time and data transfer overhead for an individual

SWIP actor. In this setting, the host-to-device and and device-to-host data transfer

times are comparable or even higher than the actor computation times. This is due
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Figure 4.3: Comparison of the computation time of a SWIP actor, and H2D and
D2H data transfers.

to the relatively small computational load of a SWIP actor. For the GTX680, there

are 1, 536 CUDA cores, each of which is capable of executing computations on a warp

(group of 32 CUDA threads), which enables a group of 41, 952 floating point numbers

to be processed concurrently. At b = 2, 560, the device is significantly under-utilized,

and all 2, 560 tokens can be processed on the device concurrently. Therefore we see

no performance increase with increases in b at this range of vectorization levels. The

sum of the H2D and D2H times is 2.0 times more than the computational time when

b = 2, 560.

4.2 Scheduling

We compare the simulated throughput of the benchmark application graph

using the two implemented schedulers (FCFS and MLP) for the 2x5 and 4x4 config-

urations of the SWIP benchmark. The simulated throughput is defined as (N/M),

where M is the execution time of the generated schedule (i.e., of one iteration of
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vectorized graph), and N is the number of tokens processed within that period.

Figure 4.4 shows the throughput for the 2x5 benchmark under 4 different

mappings. The Single-CPU mapping assigns all actors to a single CPU core. Single-

GPU maps all actors with GPU-accelerated implementations on the GPU and the

rest on a single CPU core. FCFS maps the actors according to the schedule generated

by the FCFS scheduler, where the target architecture contains 1 CPU core and

1 GPU. MLP maps the actors according to the schedule generated by the MLP

scheduler, where the target architecture again contains 1 CPU core and 1 GPU.

We observe that among the 4 mappings, the MLP mapping obtains the highest

simulated throughput. It outperforms the single-GPU mapping by at least 20%.

On the other hand, the FCFS mapping does not provide a consistent improvement

over the single-GPU mapping. It outperforms the single-GPU mapping for small

vectorization degrees, when the CPU performance of a SWIP actor is similar to the

GPU performance. However, as the vectorization degree increases, FCFS mappings

are not able to efficiently utilize the GPU in the 2x5 mpsched benchmark. In our

experimental setup, the improvement quickly saturates as the vectorization degree

increases beyond 1024.

Figure 4.5 shows the throughput for the 4x4 SWIP benchmark under 4 different

mappings. Here, we use the FCFS scheduler with two target architectures: 1 CPU

core + 1 GPU, and 3 CPU cores + 1 GPU. We do not provide MLP mappings

here due to its very large schedule computation time [16]. We observe that among

the 4 mappings, the 3 CPU + 1 GPU FCFS outperforms other mappings, as it

utilizes more CPU cores for computation. This is especially significant when the
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Figure 4.4: Simulated throughput on different mappings for the 2x5 SWIP bench-
mark.

Figure 4.5: Simulated throughput on different mappings for the 4x4 SWIP bench-
mark.

vectorization degree is small (the GPU has less speedup over the CPU). As the

GPU speedup grows, the relative improvement provided by the 3 CPU + 1 GPU

FCFS decreases.

To evaluate the actual running time for the benchmark with different map-

pings, we implemented the 2x5 SWIP benchmark using the LIDE multithreading

APIs. Figure 4.6 shows the actual running time of the application. Overall, the

MLP provides the mapping with the highest throughput, but its improvement over

a single-GPU mapping is smaller compared to the simulation results. The greatest
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Figure 4.6: Actual throughput of the 2x5 SWIP benchmark.

improvement occurs for v = 2, 560, This difference in performance may be due to

the operating system overhead for multi-thread management. For small vectoriza-

tion degrees (v < 1, 000), the MLP and FCFS mappings perform similarly. This

indicates that when the performance gain on the GPU is relatively small, utilizing

more CPU cores with the FCFS scheduler may provide significant speed-up gain.
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Chapter 5

Conclusion

In this report, we have presented a new integrated design framework, called

DIF-GPU, that integrates graphics processing unit (GPU) acceleration in the dataflow

interchange format (DIF), and targets multi-core heterogeneous computing plat-

forms (HCPs) that combine central processing unit (CPU) and GPU devices. Through

experiments, we have demonstrated the utility of DIF-GPU to facilitate efficient

design space exploration, and enhance application performance by vectorizing the

application graph, generating efficient schedules, reducing inter-processor communi-

cation overhead, and performing automated code generation. We have shown that

for some application configurations, DIF-GPU is able to generate implementations

that outperform conventional HCP mappings where all GPU-accelerated actors are

mapped to a GPU. Useful directions for future work include: (1) further investi-

gation of efficient mapping methods for CPU-GPU heterogeneous platforms; (2)

evaluation of DIF-GPU on a broader range of benchmarks; and (3) extending DIF-

GPU so that it can handle targets that involve multi-core CPUs and multiple GPU

devices.
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