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2 Test problem: Electromagnetically heated sphere

1 Introduction

The field of nanoplasmonics is one of the most dynamic branches of physics in the 21st
century. Its current enormous growth is outmatched only by the widespread application
of its ideas and concepts. Nanoplasmonic devices such as plasmonically enhanced or-
ganic solar cells,! organic light emitting diodes® or nanoscopic coherent light sources® are

destined to have a massive impact on future technologies.

My primary task at Purdue University was to simulate full-wave optics of nonlinear media
using Maxwell’s equations coupled with other partial differential equations (e.g., the heat
equation). The term nonlinear media here refers to materials whose optical properties
may depend on intensity, as well as other variables like temperature, thus complicating
the situation. Due to the high complexity of the problem, simulations of this kind are

almost absent in the field of nanoplasmonics.

A very new and promising device in nanoplasmonics is the so-called spaser. First pre-

dicted in 2003 by Bergman and Stockman,*

a spaser basically is a coherent nanoscopic
light source. The name itself is an acronym for surface plasmon amplification by stim-
ulated emission of radiation, very similar to the commonly known laser (light amplifi-
cation. ..). I focus my efforts on simulating the transient thermal behaviour of such a
device. The heating of plasmonic nanostructures is interesting in two different aspects:
Either the heating is a desired effect, e.g. for medical applications of nanoparticles in
living tissue,® or it threatens the realizability of the device. Some spaser types may work
perfectly in theory, but vaporize within a microsecond when operating in a continuous
mode. Hence, the subtitle of my progress report is: "Thermal limitations of a spaser".
In it, I study the maximum range of parameters under which a spaser can still safely

operate.

As a test problem to verify different aspects of the used numerical framework, I first
consider the electromagnetic heating of a spherical silver nanoparticle. This problem is

6-13

especially well suited, since it has been extensively studied in literature, and it can be

solved analytically in very good approximation.

2 Test problem: Electromagnetically heated sphere

2.1 Introduction

In this chapter, I investigate the electromagnetic heating of a small (50 nm radius) silver

nanoparticle in an infinite water ambient. The same problem for gold nanoparticles has
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Symbol Definition Unit
a Particle radius
S Particle surface, S = 4mra? 2

m
Vv Particle volume, V = 4ma®/3 m
T(rt) Temperature K
Particle surface temperature, T,,(t) = lim, o+ T(a —n,t) K
K
K

0

T.(t) Ambient surface temperature, T,(t) = lim,_,o+ T'(a + 7,1)

OT.(t) Particle core temperature rise, 7. (t) = 7(0,t) — T,,(t)

p Density kg/m?

c Specific heat capacity J/(kgK)
k Thermal conductivity W/(mK)
D Diffusivity, D = k/(cp) m? /s

G Kapitza conductance W/(m?K)
Q Heat source W/m?

P Total heating power of the sphere, P = [, d®r Q(x) W

E Electric field V/m

k Wave vector (of exciting wave) m~!

Table 1: A list of the most important physical quantities and material properties appear-
ing in this work.

been extensively studied in literature: Govorov et al. and Richardson et al. investigated
melting and heating effects,”® Hu et al. and Stoll et al. described cooling dynamics via

910 and Harris et al., Richardson et al. and Jiang et al. discuss

pump-probe experiments
possibilities for heating optimization.''™® Also, Chen et al. solves the identical problem

(including Kapitza resistance) numerically for a 50 nm radius gold nanoparticle.®

First, I discuss a simplified model, which can be solved analytically. My model is sim-
ilar to the model of Goldenberg et al.,'* only I use interfacial thermal (Kapitza) resis-
tance instead of continuity of temperature as boundary condition at the particle-ambient
interface. In section 2.3, the problem is numerically solved using finite element tech-

niques.

To achieve a maximum temperature change, the particle is excited at its quadrupolar
resonance, which is at 390 nm (see figure 1). For sake of simplicity, I set the initial tem-
perature to zero in this chapter. Table 1 contains all relevant physical quantities. Please

note that material constants can be accompanied by a subscript "p" or "a', indicating

that they are either particle or ambient properties.

2.2 Analytical model

If a nanoparticle is electromagnetically heated, the heat source @ oc |E|? inside the
particle is usually not position-independent. However, since the heat conductivity of

silver (or metal in general) is very high, the temperature in the particle will even out very
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quickly. Hence, one can model the system with a spatially constant power source.

The particle is surrounded infinitely by an ambient material (e.g. water). To simplify
the problem further, I assume all material properties to be temperature-independent and

I make use of the spherical symmetry.

The boundary conditions for the flux at the particle-ambient interface are

J(a.1) = G(Ty(t) = Tu(1)), ()
J(a,t) = —k, 1_133r VT(r,t)|r—a—e = —ka l_lgl+ VT (r,t)|r—ate- (2)

Equation (1) reflects the thermal Kapitza resistance while equation (2) is the continuity of
flux. Even though the temperature inside the particle will be almost constant, the former
demands a non-zero temperature gradient inside. Hence, I assume a slightly parabolic

decrease

a?

T(r < a,t) = Ty(t) + (1 - 7"2>5Tc(t), (3)

where Tj, is the surface and T}, 4+ 07; the core temperature of the particle. Further, the

comparison of equations (2) and (3) yields for §7¢:

STu(t) = ZZPJ(CL,t) (4)

In the ambient region, the temperature satisfies the heat equation, i.e.

T(r,t) = D,AT(r,t). (5)
Substituting 7" = u/r reduces the problem to a 1D heat equation,

(r,t) = Dyt (7, 1), (6)

where a subscript v’ denotes the derivative with respect to the radius. This equation can

be solved in Laplace space (assuming u(r,0) = 0), transforming back and evaluating at

w(a,t) = —\/?/Otdt”i;g“_’_?. (1)

Taking the time derivative and applying an inverse Abel transform yields

r = a yields

uy(a, t) = — —;)aﬂ /Ot dt’u(_ta’_tlz/, (8)
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which can be used to express the flux at the boundary

k:a a
J(CI/, t) = ETa(t) + \/D_’/T 0

Inside the particle, the heat equation is
coppT(r,t) = kp AT (r, 1) + Q. (10)

Note that, even on a nanoscopic scale, the heat equation remains valid according to
Keblinski et al.'’® Substituting 7' with equation (3) and integrating over the sphere
yields

P= chpp<T () + 5T( )) + SJ(a,t). (11)

To further simplify the relevant equations, I introduce reduced units, which are denoted

by an asterisk.

P
T(rt)=T"(rt)Ty, Tu=-—r, 12
) =TT, T = o (12)
J(rt) = J (r,t") J, Jse = P/S, (13)

a’c
t = t*ty, ty = 3;:)". (14)

In reduced units, equations (1), (4), (9) and (11) are
) = ) - ), (15)
O\ a t* 1
) = T (), (16)
3Capa

T (a, 1) = T (") / dn 17
(a,1%) = T3(1) o (17)
J*(a,t")=1— T;(t*) — géTc*(t*). (18)

Please note that in this context T7* is the derivative of the reduced temperature with

respect to t*, not t. One can solve these equations in Laplace space, assuming zero initial
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temperature and flux,
7+ (s) Vs+cet+ge!
s) = ,
’ (1+ Zkg)A(s)

oo gc!
“) = T3 Zhg) A

Y N L )
07 (s) =kJ (a,s) = (11 2kg)A(s)’
Ga

I k, 3Capa
I =k 2k,’ CpPp

The common denominator A is a fifth degree polynomial in /s,

A(s) = s(v/s +a) (Vs + 8) (Vs +7),

whose non-trivial roots satisfy

cHr+1)=a+B+7,
K=af+ay+ 5y,

¢ 'k =apy,
e 9
14 2kg’

For equations (19)-(21) only two essential inverse Laplace transforms are needed,

s?t* . *
NG 3 et erfc(s;v/1*)

= ZO(t*)a
A(s) weiasqy (50— 85)(si — k)
i#j#k
1 1 1— Z sjskesft*erfc(si\/t_*) — 1-— Zl(t*) '
A(S) aﬁf}/ si€{a,B} (Si - 5j)<si — Sk CYB’Y
i#j#k

Now equations (19)-(21) can be easily transformed back into real space,

e (%) = Zzo(t*) + 1;g(l - %i(t)),

Ty(t) =1 =%4(t),
ST (1) = kJ*(a,t*) = k(1 + w¥(t") — Sa(tY)),

C

Additionally, one can show that

lim T7(t") = ﬁh_r)n JH(r,t") =1,

t*—00

(23)
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thus motivating the names "stationary temperature" and "stationary flux" for Ty and Jg.

However, note that the limit for 7} is unequal to 1,

lim T5(t) =1+g " (34)

t*—o00

The general solutions can be simplified, if one assumes a particle with high heat con-
ductivity and no Kapitza resistance. Applying the limits ¢ — oo and & — 0, A(s)

degenerates into a second degree polynomial in /s,

lim lim A(s) = s+ cy/s + 1. (35)

g—00 k—0

The result for the surface temperature then simplifies to

e erfe(\/art*)  ane® erfe(y/ast*)

Qg — () Q1 — Q2

Ql/QI;(C:l:\/C2—4). (37)

T (r=a,t")=1 ) (36)

2.3 Finite element simulation

I simulate a 50nm radius silver particle with the dielectric function of Johnson and
Christy,'¢ which is surrounded by water. According to Mie theory,!” such a particle has
a quadrupolar resonance at 390nm (see figure 1), hence I choose this as my excitation
wavelength. To simulate a realistic scenario, I choose the excitation intensity to be
9550 W /cm?, which corresponds to a 30 mW laser focused on a circular, 10 um radius

spot.

All thermal and electromagnetic material properties are assumed to be constant, hence
the problem is decoupled. I first simulate the field distribution in the particle to calculate
a heat source Q oc |EJ?, which I then insert into the heat equation and solve for the

temperature. The used material constants are given in table 2.

2.3.1 Expectations

Mie theory yields an absorption cross section of 0.01754 um? at 390 nm (see figure 1),
hence the absorbed power P should be 1.675 4W. This in turn can be used to calculate
the transient limit of the particle surface temperature 7, (see equation (34)), which yields

a total temperature change of approximately 5.02 K.
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Name Symbol  Value for Ag Value for HyO
Relative permittivity e, +1ie] —3.8951 +0.19747 1.7951

Relative permeability —pl +iu! 1 1

Thermal conductivity & 430 W/(m K) 0.5942 W/(m K)
Density p 10490 kg/m? 999.6 kg /m?
Specific heat capacity ¢ 235 J/(kg K) 4187 J/(kg K)
Kapitza conductance G 108 W/(m? K)

Table 2: Used material constants for the simulation. Note that thermodynamic quan-
tities are assumed temperature-independent and electrodynamic quantities are given for
a wavelength of 390nm. Also, the given Kapitza conductance is for the silver/water
interface, even though it is attributed to silver in the table.

Figure 1: Cross sections for a 50 nm radius Johnson-Christy silver particle surrounded by
water according to Mie theory. The gray, dotted line at 390 nm marks the quadrupolar
resonance. The calculations have been done with the program M@ Mie.
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2.3.2 Boundary condition

The choice of boundary condition is crucial for the accuracy of FEM calculations. In this,
it should be chosen as such that all the heat propagates to infinity and none is reflected
back to the particle. A reasonable choice is the convection boundary condition, which
assumes that, far away from the system, the stationary temperature behaves like for a

localized, time-independent source. At the boundary, the flux should satisfy

T Dl = 2 (T0x, ) o~ T), (3%)

where R is the radius of the computational domain and T the temperature at infinity
(usually zero). Mathematically speaking, this condition is called a Robin boundary con-

dition, which is a combination of a Dirichlet and a Neumann boundary condition.

Since this condition in fact imposes the stationary solution on the system, it can lead
to unrealistically fast convergence if the computational domain is too small. Hence I
also introduce an infinite element domain, which is best described in the COMSOL user

manual itself:!®

"An Infinite Element Domain [...] applies a rational coordinate scaling to a layer of
virtual domains surrounding the physical region of interest. When the dependent
variables vary slowly with radial distance from the centre of the physical domain, the
finite elements can be stretched in the radial direction such that boundary conditions
on the outside of the infinite element layer are affectively applied at a very large

distance from any region of interest."

Using an infinite element domain, one could even replace the convection boundary con-

dition with a constant temperature one — the difference is negligible.

2.3.3 Results

Electrodynamic calculation The field distribution |E| is shown in figure 2 while fig-
ure 3 shows the heat source @ o |E|? inside the particle. Due to high forward scattering,
the heat source is highest at the side which is averted from the laser. Also, since the
particle diameter is much larger than the skin depth of electromagnetic waves (roughly

10-20 nm for silver at 390 nm wavelength), @) is concentrated near the surface.

One can numerically integrate the heat source over the particle to get the total heating

power,

p= / &1 Q(x) ~ 1.658 W, (39)
1%
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This value for P is in agreement with the result obtained via Mie theory in section 2.3.1
— the 1% deviation probably exists due to the finite mesh. Since the power is an input
quantity for the thermal simulation, I use the value given in equation (39) for further

calculations rather than the value given in section 2.3.1.

Thermal calculations The results from the thermal simulation agree with the ana-
lytical model of chapter 2.2. In figures 7 and 8 the particle and ambient surface temper-
atures are compared with their analytical counterpart. Although there is difference for
very small times, for ¢ > 1ns both temperatures coincide. Figure 6 compares the particle
and ambient surface temperatures of the simulation. Since there is always a heat flux
over the boundary, both temperatures do not converge to the same value, but rather to

the limits given in equations (33) and (34).

The given surface temperatures have not been averaged over the particle surface, but
instead evaluated at two points on the z-axis (z = 0.9999a and z = 1.0001a, see figures
4 and 5). An evaluation directly at the surface would lead to unphysical results, since
the temperature jumps due to the Kapitza resistance. One would need to average over
two spheres with radii slightly smaller and larger than a. However, since this is very

cumbersome, it has been omitted here.

Figure 4 shows the temperature distribution after 100 ps. Since the heat conductivity of
silver is three orders of magnitude higher than that of water, the temperature in the sphere
is almost constant. From the fundamental solution of the heat equation, one can find that
the typical time the temperature needs to spread over the particle is approximately 3.6 ps.
The temperature distribution in the system after 2000 ns can be seen in figure 5. The
system is very close to thermal equilibrium. Hence, inside the particle the temperature

is almost constant while outside it decreases with 1/r.
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Figure 2: Absolute value of the electric  Figure 3: Heat source in the particle. Note
field in the near vicinity of the particle.  that @ o |E|?.

The arrows denoted with E and k repre-

sent the polarization and wave vector of

the exciting wave, respectively.

Figure 4: Temperature distribution after  Figure 5: Temperature distribution after
100ps. The small, black square is the 2000 ns.

point of evaluation for both surface tem-

peratures, see figures 7 - 6.

Figure 6: Comparison of the numeric particle and ambient surface temperatures.

10
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Figure 7: Numeric particle surface temperature in comparison with the analytic model,
equation (30). The gray, dotted line represents the limit for large times according to
equation (34).

Figure 8: Numeric ambient surface temperature in comparison with the analytic model,
equation (31). The gray, dotted line represents the limit for large times according to
equation (33).

11



3 Heating of a spaser

Figure 9: Oblate spheroidal geometry of a dipolar, saturated spaser. The aspect ratio
of the core spheroid is 5.43. The black arrow indicates the polarization of the exciting
wave, which is parallel to the axis of rotation of the oblate spheroid.

3 Heating of a spaser

3.1 Introduction

%4 While its counterpart, the

In short, a spaser is a generator of coherent local fields.
laser, produces coherent photons, a spaser generates coherent localized surface plasmons
in the metal nanoparticle. However, such plasmons have a finite lifetime, their main
relaxation channel being Ohmic loss (i.e. heat). This heating up of the spaser can be
very intense, possibly destroying the device. Hence it is of crucial interest to understand

the thermal behaviour of an operating spaser.

3.2 Finite element simulation

To model the nonlinear electrodynamic processes of a saturated spaser, I use the frame-

19:20 T simulate a dipolar, saturated spaser surrounded

work developed by Arnold et al.
by water. The structure has an oblate spheroidal geometry and consists of a gain core
(host material is polystyrene) coated by a silver shell (see figure 9). The polarization of
the exciting wave is parallel to the axis of rotation and the system is tuned to a spasing

wavelength of 520 nm by choice of geometry.

3.2.1 Electromagnetic material properties

For the dielectric function of silver I use the data from Johnson and Christy.'® To include

a temperature dependence in the optical properties of the metal, I modify the dielectric

12



3 Heating of a spaser

Name Silver Polystyrene Water
Thermal conductivity 426.4W/(mK) 0.1556 W/(mK) 0.6056 W/(mK)
Density 10470kg/m3 1047 kg/m? 997.66 kg/m?

Specific heat capacity 236.66J/(kgK) 1233J/(kgK) 4181.5J/(kg K)

Table 3: Room temperature values for thermal material properties.?!2

function in the following way:
eag(T) = exg +exy(T) — eng(Th)- (40)

Here, e} is the data from Johnson and Christy (measured at room temperature Tp)
and agg is a Drude interpolation of the data with a temperature-dependent collision
frequency:

w3 T

o+ (1) with — y(T) =07 (41)

Dr IB
6Ag( ) X TO

The parameters of the Drude interpolation are hwp = 9.222¢V, hyy = 0.019eV and
B = 3.081. To model the gain material, I use an intensity-dependent Lorentzian dielec-

tric function,' which accounts for gain saturation:

er(wL — w +i/2)7./2
(wL —w)? + (/2)*(1 + 5?)

6(;(8) — E&h — with S = |E|/Esat (42)

Here, e, = 2.6 refers to the gain host material, which is polystyrene. The other parameters
of the Lorentzian are hwy, = 2.391eV, hy, = 1.575eV and Fg = 1.026 x 103 V/m. The
amplitude e, of the Lorentzian increases monotonically with the pumping intensity.!®
Similar to the laser, a spaser also has a certain threshold ey, 1, at which spasing starts. In
the case considered below, the spaser operates at twice this value, i.e. 1, = 2¢y, ¢, = 0.21.
The dielectric function of the surrounding water is assumed to be constant, ey = 1.78.

All materials are assumed to be non-magnetic.

3.2.2 Thermal material properties

With the exception of the Kapitza conductance, all thermal material properties are as-
sumed to be temperature-dependent.?2* The values for room temperature are shown
in table 3. For both the silver/polystyrene and polystyrene/water interfaces, I assume a

temperate-independent Kapitza conductance of 108 W/(m? K).

13



3 Heating of a spaser

3.2.3 Quasistatic approximation

To estimate the spasing threshold ey, 4, (see chapter 3.2.1), the electrodynamic response
of a coated spheroid can be found in a quasistatic approximation (i.e. assuming k ~ 0 in
the Maxwell equations). Assuming that the core, shell and the ambient have the dielectric

functions €1, €5 and €3, the polarizability a of coated spheroid is*”

o V((€2 — 83) (82 + (51 — 62)(L1 — fLQ)) + f€2(€1 — 62)) (43)
(62 + (51 — 62)(L1 — ng)) (63 + (52 — Eg)Lg) + fL252(€1 — 52)7

where V' is the total volume of the structure and f < 1 is the volume fraction of the core
spheroid to the total structure. The function L; = L(e;) depends on the eccentricities e;

and e, of the core and shell spheroids. If both are oblate,
L(e) = 672(1 —e V1 —e? arcsin(e)). (44)

Using a simple model for the gain material, e = €y, + i€, thr, and Johnson-Christy data'®
for 9, the spasing threshold and wavelength (e, ¢, and Ai,) can be numerically calculated
by setting the complex denomintor of the polarizability to zero. Figures 10 and 11 show
the spasing threshold and wavelength for the geometry in figure 9 as a function of the
core aspect ratio. The numerically studied spaser has an aspect ratio of 5.43, hence the
quasistatic approximation yields er, ¢n, = 0.086 and A, = 505.8 nm, while the numerical
values are er, ¢, = 0.105 and Ag,y = 519.8nm. The discrepancy between the quasistatic
and numerical results is due to retardation, which increases the threshold via radiative

losses.

3.2.4 Heat sources and thermal limits

There are three relevant sources of heat in a spaser. The non-radiative decay of sur-
face plasmons and the absorption of the pumping radiation generates heat in the metal
component, while the non-radiative relaxation of individual dye molecules heats the gain
material. In this work, I only simulate the decay of resonant surface plasmons, i.e., I as-
sume that the intensity of non-resonant surface plasmons is negligible. I also assume that
the spaser is continuously illuminated by the pump, meaning that the pumping intensity
(and therefore the amplitude of the Lorentzian of the gain material, 1, in equation (42))

is time-independent.

The two main factors which determine the thermal limitations of a spaser are the melting
of the gain material and the sintering of the metal. Both processes would lead to structural

changes on an atomic level and thus inflict irreversible damage onto the structure. While

14



3 Heating of a spaser

Figure 10: Quasistatic gain threshold —ey, ¢, versus the aspect ratio of the gain core for
the geometry shown in figure 9. The dashed line refers to the numerically studied spaser,
which has an aspect ratio of 5.43.

Figure 11: Quasistatic threshold wavelength A, versus the aspect ratio of the gain core
for the geometry shown in figure 9. The dashed line refers to the numerically studied
spaser, which has an aspect ratio of 5.43.

15



3 Heating of a spaser

the melting point of the gain material is clearly defined, the sintering of the metal is
much harder to estimate. The rule of thumb is that sintering starts at approximately
half the melting point temperature. The melting point of polystyrene is approximately at
510 K, while the melting point of silver is at about 1230 K. Assuming that both metal and
polystyrene have similar temperature (which is reasonable given the gain-core/metal-shell

geometry), the operating temperature of such a spaser should not exceed 500 K.

3.2.5 Numerical methods

The electrodynamic part is solved in frequency domain, while the thermal part is solved
in time domain. However, despite the problems being set in different domains, they can
still be coupled, because the electrodynamic problem equilibrates much faster than the
thermal one. Hence, it is possible to couple both domains by applying the stationary
electromagnetic solution from the frequency domain to every time step in the thermal

problem.

Due to the dependence of the optical properties on intensity and temperature (see equa-
tions (40) and (42)), the coupled problem is nonlinear in both temperature and electric
field and, as it turns out, numerically unstable. To further simplify it, I assume that
the temperature inside the metal is spatially constant. This assumption is reasonable,
because the thermal conductivity of the metal is 2-3 orders of magnitude higher than in
the gain and surrounding materials, leading to much smaller temperature gradients in
the metal nanoparticle (MNP). In addition, the heat conduction homogenizes the tem-
perature in the MNP within several picoseconds, while the whole thermal problem takes
10 to 100 nanoseconds to reach the stationary state. Using this approximation, the elec-
tromagnetic and thermal problems then can be run separately. First, the electrodynamic
problem is calculated by assuming a spatially constant temperature 7" in the metal for a
reasonable temperature range (typically 300 K to 600 K in steps of 1 K). This is done for a
fixed e1,, and incident field Ej,.. The latter is however almost irrelevant, because the field
in the (generating) spaser is practically independent on Ej,., provided that Ei,./Fgs < 1.
From the results I then build an average heat source Q(7") inside the metal (see figure 13),
which is used in the thermal simulation. Investigations of the accuracy of this method
show that the difference in temperature originating from this simplification is on the order
of 0.1 K and thus negligible.

3.2.6 Results

Figure 14 shows the average metal temperature of the studied spaser over time. Figure

12 shows the temperature distribution at 4 representative times. As discussed in chapter

16
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Figure 12: Spaser temperature T — T at various times. The spaser is operating at
twice the spasing threshold and a wavelength of 520 nm. The white arrows indicate the
direction and polarization of the incident plane wave.

3.2.4, the operating temperature for this spaser should be below 500 K, which is clearly
not the case for the stationary state of continuous pumping. To avoid permanent damage,
the pump should be switched off after 2-3 ns, assuming a generous safety margin, since

not all heating effects have been considered in the present simulation.

4 Summary

In chapter 2 the electromagnetic heating of a small silver particle is investigated. A
simple model, which can be solved analytically, is presented, and then compared with the
calculated results to verify the applied numerical methods. In chapter 3, the heating due
to absorption of resonant surface plasmons in dipolar saturated spaser is simulated and
estimations for its maximum safe operation time are made. In the future, the inclusion of

other heating effects is planned to be able to make more quantitative predictions.
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I would like to thank Prof. Thomas Klar, Prof. Alexander Kildishev and Dr. Nikita

Arnold for providing scientific guidance. Special thanks go to Dr. Calin Hrelescu and
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Figure 13: Average heat source versus the temperature in the metal component of the
studied spaser (see figure 9). In these calculations, the metal temperature is assumed to
be spatially constant.

Figure 14: Average metal temperature rise T' — Ty of the studied spaser (see figure 9)
operating at twice the spasing threshold and a wavelength of 520 nm. The dashed grey
lines indicates the maximum operating temperature and corresponding pumping time, as
discussed in chapters 3.2.4 and 3.2.6.
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