
Fachhochschul-Masterstudiengang 

BIOMEDIZINISCHE INFORMATIK 

4232 Hagenberg, Austria 
 

 

 
 
 
 
 
 
 

Computational analysis of post-transcriptional 
control of cell state transitions by RNA-binding 

proteins 

 
 
 
 
 

Masterarbeit 
 
 

zur Erlangung des akademischen Grades 
Master of Science in Engineering 

 
 
 

Eingereicht von 
 

Konstantin Krismer, BSc 
 
 
 
 
 
 
 
 
 
 
 
 

Betreuer:  Michael B. Yaffe, M.D., Ph.D., MIT, Cambridge, MA, USA 
Begutachter:  Andreas Heinzel, MSc 

 
 

 
September 2015 



© Copyright 2015 Konstantin Krismer

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/


Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 9, 2015

Konstantin Krismer

iii



Contents

Declaration iii

Acknowledgements vi

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Post-transcriptional regulation and RBPs . . . . . . . . . . . 1
1.2 Aim of this study . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Transite pipeline 4
2.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Sequence retrieval . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Differential gene expression analysis . . . . . . . . . . . . . . 9
2.4 Definition of foreground sets . . . . . . . . . . . . . . . . . . . 10

2.4.1 Foreground sets for Transcript Set Motif Analysis . . 10
2.4.2 Foreground sets for Spectrum Motif Analysis . . . . . 10

2.5 Transcript Set Motif Analysis . . . . . . . . . . . . . . . . . . 11
2.5.1 k-mer-based TSMA . . . . . . . . . . . . . . . . . . . 11
2.5.2 Transcript-based TSMA . . . . . . . . . . . . . . . . . 16

2.6 Spectrum Motif Analysis . . . . . . . . . . . . . . . . . . . . . 17
2.6.1 Transite spectrum plots . . . . . . . . . . . . . . . . . 17

2.7 SPMA: Evaluating spectrum plots . . . . . . . . . . . . . . . 18
2.7.1 Local consistency score . . . . . . . . . . . . . . . . . 19
2.7.2 Polynomial regression model . . . . . . . . . . . . . . 20

2.8 Single Transcript Motif Analysis . . . . . . . . . . . . . . . . 25

3 Materials and Methods 27
3.1 Motif databases . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Methods for combining p-values . . . . . . . . . . . . . . . . . 27

3.2.1 Fisher’s method . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Stouffer’s method . . . . . . . . . . . . . . . . . . . . . 28

iv



Contents v

3.2.3 Mudholkar and George’s method . . . . . . . . . . . . 29
3.2.4 Edgington’s method . . . . . . . . . . . . . . . . . . . 29
3.2.5 Tippett’s method . . . . . . . . . . . . . . . . . . . . . 29

3.3 Methods for adjusting p-values . . . . . . . . . . . . . . . . . 29
3.3.1 Familywise error rate controlling methods . . . . . . . 30
3.3.2 False discovery rate controlling methods . . . . . . . . 31

3.4 Similarity coefficients for binary data . . . . . . . . . . . . . . 31
3.4.1 Matthews correlation coefficient . . . . . . . . . . . . . 32
3.4.2 Simple matching coefficient . . . . . . . . . . . . . . . 32
3.4.3 Jaccard similarity coefficient . . . . . . . . . . . . . . 32

3.5 Motif representations . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Monte Carlo tests . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Results 36
4.1 Transite configuration . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Choice of bin number . . . . . . . . . . . . . . . . . . 37
4.2 Spectrum labeling . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Comparison of sorting approaches . . . . . . . . . . . . . . . . 40
4.4 Adverse effects of transcripts with multiple hits . . . . . . . . 44
4.5 Permutation approaches for Monte Carlo tests . . . . . . . . 45

4.5.1 Permutation approaches . . . . . . . . . . . . . . . . . 46
4.5.2 Comparison of permutation approaches . . . . . . . . 48

4.6 RBPs and cisplatin . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.1 Cell lines . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.2 Sample clustering . . . . . . . . . . . . . . . . . . . . . 53
4.6.3 Differential gene expression analysis . . . . . . . . . . 53
4.6.4 Transcript Set Motif Analysis . . . . . . . . . . . . . . 54
4.6.5 Spectrum Motif Analysis . . . . . . . . . . . . . . . . 59

4.7 R package Transite . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7.1 Package dependencies . . . . . . . . . . . . . . . . . . 61

4.8 Transite website . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . 61
4.8.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Discussion 68

6 Conclusion and Outlook 69

References 70



Acknowledgements

I would like to thank Michael B. Yaffe and his entire lab for providing the
best work environment imaginable. I hope my next experience in academia
will be at least half as exciting and intellectually stimulating as my time at
the Yaffe lab. After more than a year in the Yaffe lab I believe the world
of academia is full of scientific adventures, fueled by exploratory spirit and
intrinsic motivation. According to researchers outside the Yaffe lab it is a
path of trial and tribulation, littered with bureaucratic obstacles. A path
that eventually and inevitably leads to suicide. I think I will give it a shot
anyway. There must be other Mikes out there.

I want to thank Ian Cannell and Brian Joughin, my informal project
supervisors at MIT, and Andreas Heinzel, my supervisor at my home uni-
versity. Three very different people, with different fields of expertise and
different drinking habits. I highly appreciated your thought provoking con-
versations and ingenious insights.

Transite was built on top of Anna Gattinger’s excellent work, without
her, this thesis would not have been possible.

I want to express my gratitude to the Marshall Plan Foundation for
helping me to finance my research, and to an even greater extent to my
liberal parents, for financing the first 𝑘 years of my life. I don’t take it for
granted.

I also feel the desire to thank my friends in Boston, Vienna and Salzburg
for making my life as awesome as it is. Without them I would have finished
this work three months earlier.

vi



Abstract

Despite its crucial role in post-transcriptional regulation of gene expression,
the functions of the majority of RNA-binding proteins (RBPs) are largely
unknown. Unlike transcriptional control of gene expression, which has been
studied extensively over the past decades, post-transcriptional regulation in
general, and RBPs in particular, are comparatively poorly understood and
have not until recently been the focus of large systematic studies.

In the light of this research gap, this thesis presents Transite, a novel
computational method that allows cost-effective, time-effective and com-
prehensive analysis of the regulatory role of RBPs in various cellular pro-
cesses by leveraging a wealth of preexisting gene expression data and current
knowledge of RBP binding preferences. To gain insights into vastly complex
processes including the DNA damage response or the immune response,
the preliminary step is to calculate the change of mRNA expression levels
after stimulus, i.e., the administration of DNA-damaging agents or an im-
mune stimulus, respectively. Based on these results, Transite provides two
approaches to investigate inferred mRNA stability changes due to differ-
ences in transcript abundance, Transcript Set Motif Analysis and Spectrum
Motif Analysis. The former focuses on significantly upregulated and down-
regulated sets of transcripts and identifies RBPs whose binding sites are
overrepresented among those transcripts, whereas the latter approach ex-
amines the distribution of RBP binding sites across the entire spectrum of
transcripts, sorted according to their fold change.

Transite will be available as an R/Bioconductor package to ensure a
seamless integration in current workflows. Additionally, a user-friendly on-
line version will be accessible at http://transite.mit.edu.
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Kurzfassung

Obwohl der posttranskriptionellen Ebene der Regulation der Genexpression
eine bedeutende Rolle zukommt, ist die Funktion der Mehrheit der RNA-
bindenden Proteine (RBPs) noch großteils unbekannt. Im Gegensatz zur
transkriptionellen Regulation, die in den letzten Jahrzehnten ausgiebig er-
forscht wurde, ist das Wissen über die posttranskriptionelle Regulation im
Allgemeinen und RBPs im Besonderen mangels großer systematischer Stu-
dien als vergleichsweise lückenhaft anzusehen.

Angesichts der aufgezeigten Forschungslücke wird in dieser Arbeit Tran-
site präsentiert, eine neuartige bioinformatische Methode, die es erlaubt,
die regulative Rolle der RBPs in verschiedenen zellulären Prozessen mit-
tels vorhandener Genexpressionsdaten kosten- und zeiteffizient zu untersu-
chen. Um Einsichten in äußerst komplexe Prozesse wie die zelluläre DNA-
Schadensantwort oder immunologische Abwehrreaktionen zu erlangen, wer-
den initial die Veränderung der Expressionsniveaus der Transkripte nach
Gabe beispielsweise einer DNA-schädigenden Substanz oder eines Antigens
ermittelt. Auf diesen Ergebnissen basierend werden mit Transite zwei An-
sätze angeboten, um RBP-induzierte Änderungen der mRNA-Stabilität zu
untersuchen: Transcript Set Motif Analysis und Spectrum Motif Analysis.
Ersterer konzentriert sich auf signifikant hoch- beziehungsweise runterregu-
lierte Transkripte und identifiziert RBPs, deren Bindungsstellen in diesen
Gruppen von Transkripten überrepräsentiert sind. Der zweitgenannte An-
satz untersucht die Verteilung der RBP-Bindungsstellen über das gesamte
Transkript-Spektrum, sortiert nach Stärke der Änderung des Expressionsni-
veaus.

Der Funktionsumfang der Transite-Pipeline wird in zwei Formen zur Ver-
fügung gestellt: als R/Bioconductor-Package, um die Integration in beste-
hende Datenanalyse-Workflows zu vereinfachen; und als benutzerfreundliche
Website, erreichbar unter http://transite.mit.edu.
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Chapter 1

Introduction

This thesis presents the analytical pipeline Transite, a computational method
that has been developed to shed light on the post-transcriptional control of
cell state transitions by RNA-binding proteins (RBPs). Leveraging newly
available data from large-scale assays that identify the binding sites of a
great number of RBPs, Transite generates hypotheses regarding how the
change of transcript abundance levels in gene expression data can be ex-
plained by RBP-mediated mRNA stability changes. Specifically, position
specific scoring matrices (see section 3.5) of RBP binding sites are used to
quantify the combined binding evidence among 5’ UTRs, 3’ UTRs or intronic
regions of meaningful sets of transcripts (e.g., transcripts upregulated after
the administration of a DNA-damaging agent). In this way, the increased
transcript abundance can be partially attributed to the stabilizing effect of
certain RBPs.

Transite can be seen as the post-transcriptional counterpart to Scan-
site [1], which predicts (post-translational) phosphorylation sites.

1.1 Post-transcriptional regulation and RBPs
Post-transcriptional control of gene expression regulates all aspects of RNA
metabolism and function, including mRNA stability, localization, silencing,
splicing, transport and translation. Examples are the 3’ UTR-dependent
protein localization that is independent of RNA localization [2], sequence-
specific downregulation or suppression of gene expression by microRNAs, or
alternative splicing mediated by cis-acting RNA sequence elements present
in pre-mRNAs and trans-acting RBPs [3].

Alongside microRNAs, RBPs are major post-transcriptional regulators.
In general, RBPs bind to short sequence stretches in mRNAs, nascent tran-
scripts, noncoding RNAs, and damaged DNA [4]. Their binding sites are
predominantly found in evolutionary conserved regions in the 5’ and 3’ un-
translated regions of mature mRNA [5] (see schematic in figure 1.1 for ori-

1
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P
←  →mRNA

cap

CDS AAA200-250
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Figure 1.1: Structure of mature messenger RNA: 5’ cap, 5’ untrans-
lated region, coding sequence, 3’ untranslated region, poly(A) tail

entation), and to a lesser extent in intronic regions of unspliced mRNA pre-
cursors. RBPs are involved in pre-mRNA splicing, polyadenylation, mRNA
stability, and translation. They are key regulatory factors in a vast number
of cellular processes.

Once mRNAs are transcribed, the amount of protein produced is essen-
tially determined by two factors, mRNA stability and translation. Both are
subject to post-transcriptional regulation via RBPs. RBPs like ELAVL1 [6,
7] regulate the longevity of their mRNA targets, and as a result, the half-lives
of mRNAs differ greatly in a transcript-specific manner, in eukaryotic cells
up to a 100-fold [8]. This RBP-mediated regulation of transcript stability is
the reason why gene expression data from microarrays or RNA-sequencing
can be used to investigate RBP activity. After the activation of a stabilizing
RBP, the measurable mRNA levels of its targets will rise, given that the
rate of transcription does not change.

1.2 Aim of this study
The DNA damage response is traditionally considered to have two main
arms, an early and rapid protein kinase-driven signaling response and a de-
layed transcriptional response mediated by a subset of dominant transcrip-
tional regulators. However, growing evidence suggests that a third perhaps
equally important and vastly complex response exists at the level of post-
transcriptional control, through the modulation of mRNA splicing, stability
and translation. [4]

The response to DNA damage is one of many cellular processes in which
RBPs are assumed to play a vital part. But unlike transcriptional control,
which has been studied extensively over the past decades, post-transcription-
al regulation in general, and RBPs in particular, are comparatively poorly
understood and have not been the focus of large systematic studies (apart
from a few exceptions). This evident research gap underscores the need for
efficient computational methods to elucidate the role of RBPs in various
contexts.

The aim of this study is to develop a tool that helps biologists to un-
derstand how key post-transcriptional regulators (mainly RNA-binding pro-
teins, but also microRNAs) contribute to the concerted regulation and func-
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tion of cellular processes. The idea is to utilize the large body of publicly
available gene expression data from microarray and RNA sequencing exper-
iments to identify changes in mRNA expression levels upon certain stimuli
(DNA-damaging agents, antigens, etc.) coupled to the subsequent identifica-
tion of enriched or depleted RBP binding sites in sequence regions of those
mRNAs. In this way, hypotheses can be generated regarding what RBPs
interact preferentially with mRNAs that are sensitive to the aforementioned
stimuli.

A brief introduction to RBPs and post-transcriptional regulation is given
in chapter 1. The novel analytical pipeline and algorithms behind Transite
are described in chapter 2. Data sources and existing statistical methods
are described in chapter 3, and evaluations and applications of the Transite
pipeline can be found in chapter 4.



Chapter 2

Transite pipeline

This chapter describes the analytical pipeline of Transite and the statistical
methods that have been developed.

Sections 2.1 to 2.6 correspond to the six steps of the schematic dia-
gram in figure 2.1. They explain the main components of the analytical
pipeline of Transite, broken down into six steps. The tasks of step 1 include
to retrieve gene expression data from the GEO database, generate quality
control plots to visually inspect the data, and detect and—if necessary—
exclude outlier samples. In step 2 the requested sequence regions (3’ UTR,
5’ UTR or intronic regions) of all platform genes are collected from current
genome assemblies. Step 3 contains the groundwork for step 4 by computing
fold changes and associated p-values between user-defined sample groups,
i.e., treatment and control samples of the gene expression data. In step 4 the
foreground sets are defined. Depending on the analysis type, foreground sets
are either upregulated and downregulated transcripts (Transcript Set Mo-
tif Analysis), or 𝑛 equally sized bins, grouping transcripts with similar fold
changes (Spectrum Motif Analysis). Steps 5 and 6 contain the RNA-binding
protein scoring algorithms, based on publicly available position specific scor-
ing matrices (PSSMs). The results of step 5 help to understand which RBPs
have targets that are predominantly overrepresented or underrepresented in
the sets of upregulated and downregulated transcripts relative to all platform
transcripts. The Spectrum Motif Analysis in step 6, in contrast, is not limited
to the most upregulated or downregulated transcripts, but investigates the
distribution of RBP targets across the entire spectrum of transcripts, sorted
by their fold change. Both the Transcript Set Motif Analysis in step 5 and
the Spectrum Motif Analysis in step 6 are available in a hexamer-based and
a transcript-based version. Section 2.7 introduces methods to systematically
evaluate the results of Spectrum Motif Analysis.

Section 2.8 describes Single Transcript Motif Analysis, a Transite add-on,
which is not part of the usual Transite workflow.

Transite supports a number of different methods to combine and adjust

4
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p-values, only one of which is used per analysis. Since there is no universally
superior method that outperforms all others, it is the user’s choice to decide
which one to use.
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Gene expression data retrieval Sequence data retrieval Differential expression analysis1 2 3
GRCh38/hg38

GRCm38/mm10

←  →mRNA
CDS5’ UTR 3’ UTR

CDS5’ UTR 3’ UTR

CDS5’ UTR 3’ UTR

CDS5’ UTR 3’ UTR

←  →mRNA

4 Definition of foreground sets

(1) Transcript Set Motif Analysis (TSMA)

transcripts upregulated* in condition 1

Gene expression profile

Condition 1

Condition 2

transcripts upregulated* in condition 2

high negative log fold change* log fold change close to zero* high positive log fold change*

foreground set 1 (log(FC)* ≤ -θ) foreground set 2 (log(FC)* ≥ θ)

(2) Spectrum Motif Analysis (SPMA)

n foreground sets

5 Transcript Set Motif Analysis (TSMA)

Hexamer-based TSMA Transcript-based TSMA

1. Break down sequences into hexamers:
AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
AGUCCU AAAGCG UAUACA GGAUCA CAGUCU AUCAUC ACGGUA UGCAGU
 GUCCUG AAGCGG AUACAU GAUCAG AGUCUG UCAUCG CGGUAC GCAGUG
  UCCUGA AGCGGU UACAUG AUCAGC GUCUGA CAUCGA GGUACU CAGUGG
   CCUGAA GCGGUA ACAUGG UCAGCA UCUGAU AUCGAC GUACUG AGUGGA
    CUGAAA CGGUAU CAUGGA CAGCAG CUGAUC UCGACG UACUGC GUGGAA
     UGAAAG GGUAUA AUGGAU AGCAGU UGAUCA CGACGG ACUGCA UGGAAA
      GAAAGC GUAUAC UGGAUC GCAGUC GAUCAU GACGGU CUGCAG GGAAAC

2. Obtain hexamer-based motif score and estimate
p-value by Monte Carlo sampling:

1. Score whole transcript region (e.g., 3' UTR) of all 
foreground and background transcripts with PSSM and
count hits:

AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
→

PSSM

6 Spectrum Motif Analysis (SPMA)

Hexamer-based SPMA Transcript-based SPMA
1. Score sequences of each bin, count hits and visualize 
enrichment values with spectrum plots:

1. Visualize hexamer enrichment values and PSSM scores 
per bin with spectrum plots:

2. Calculate enrichment of hits between each 
bin (foreground set) and background set.

2. Evaluate consistency of spectrum plot gradient.2. Evaluate consistency of spectrum plot gradient.

AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
→

hit PSSM

AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
→

hit hit PSSM

Figure 2.1: Transite pipeline: A schematic of the main steps; starting
with preliminary tasks like gene expression data retrieval, sequence data re-
trieval, data preprocessing, quality control, and differential gene expression
analysis in panels (1) to (3); and foreground/background sequence assign-
ments in panel (4). (continued on next page)
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Figure 2.1: The asterisk in panel (4) denotes the exchangeability of the sort-
ing approach, where sorting the transcripts according to their fold change is
one possibility. The 𝜃 in the TSMA section of the same panel represents a
threshold that determines the foreground sets (usually a threshold for dif-
ferential expression). The k-mer-based and transcript-based approaches of
Transcript Set Motif Analysis and Spectrum Motif Analysis are briefly pre-
sented in panels (5) and (6).

2.1 Data preprocessing
In case the analysis is based on publicly available gene expression data, the
R/Bioconductor package GEOquery [9] is used to retrieve the data set from
the Gene Expression Omnibus database [10].

The data set of a gene expression study consists of a set of samples,
where each sample is a vector of gene expression values and a sample label,
e.g., treatment or control. Each gene expression value is associated with a
platform-specific probe identifier, which can be mapped to gene name and
RefSeq identifier. The type of the gene expression values depend on the un-
derlying experiment. Values from single channel microarrays are normalized
signal count data, dual channel microarrays are normalized log ratios, and
values from RNA-seq experiments are discrete counts. Formally, the data of
a gene expression study can be denoted as matrix 𝐴 ∈ R𝑛×𝑚, where 𝑛 is
the number of probes and 𝑚 is the number of samples.

Unless microarray gene expression values are already transformed, log2
transformation is performed as an initial step. Furthermore, all probes, i.e.,
rows of 𝐴, with missing values are removed.

Outlier1 samples are detected and, if required, excluded from further
analysis. Samples are identified as outliers based on (1) their Euclidean
distance to other samples, and (2) the Kolmogorov-Smirnov test statistic
between the distribution of intensities from the sample in question and the
pooled distribution of intensities from all samples.

The R/Bioconductor package arrayQualityMetrics [12] is used to pro-
duce diagnostic plots (see figure 2.2) to get a first impression of how well
the sample groups are reflected in the data. Biological replicates should be
similar to each other, their pairwise distances are expected to be smaller
than the distances between samples from different conditions. This is the
case in columns (1) and (2) of the exemplary gene expression experiments
shown in figure 2.2, but not in column (3). The dendrograms are obtained
by sample clustering with complete linkage and 1 − 𝜌 as distance metric,
where 𝜌 is the Pearson product-moment correlation coefficient.

1Outliers are points that are 1.5 interquartile ranges below the first quartile or above
the third quartile[11]
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A

B

(1) (2) (3)

Figure 2.2: Diagnostic plots: (A) Columns (1) to (3) contain heatmaps of
the ℓ2 norm (Euclidean distance) between samples of three different studies.
The heatmaps in columns (1) and (2) depict distinct groupings of samples
that correspond to the sample labels treatment and control. Column (3) is
an example of a study without a clear distinction between treatment and
control samples with respect to sample distance. (B) recapitulates the vi-
sual sample groupings in the heatmaps by unsupervised sample clustering
based on sample correlation. The red and blue bars below the dendrograms
indicate sample labels. The dendrograms of columns (1) and (2) cluster sam-
ples according to their labels, whereas the treatment and control samples in
dendrogram (3) are seemingly randomly distributed.

2.2 Sequence retrieval
After the gene expression data is preprocessed, the requested sequence re-
gions of all transcripts of the platform are retrieved. Available sequence
regions include three prime untranslated region (3’ UTR), intronic regions,
and five prime untranslated region (5’ UTR).

In order to request transcript sequences from NCBI genome assemblies,
probe identifiers are mapped to RefSeq identifiers by using information
stored in the platform annotation files from GEO.

Probes without associated RefSeq identifiers are removed, as well as
probes with invalid (e.g., obsolete) RefSeq identifiers or RefSeq identifiers of
entries without annotated sequence regions.

The GRCh38/hg38 genome assembly is used for human platforms and
the GRCm38/mm10 for mouse platforms.

Figure 2.3 shows histograms of the length distribution of the retrieved
set of sequences. These plots are part of the final Transite analysis output
and help to immediately spot serious issues in the sequence retrieval step,
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such as insufficient platform annotation or identifier mapping issues.

3’ UTR sequences 5’ UTR sequences

sequence length (nt) sequence length (nt)

de
ns

ity

de
ns

ity

Figure 2.3: Sequence length distribution: Diagnostic plots are provided
to identify incompatible platforms or platforms with incomplete annotations,
which cause identifier mapping and sequence retrieval issues.

2.3 Differential gene expression analysis
The aim of this step is to rank genes in order of their differential expression.
This ranking constitutes the basis of the foreground set definitions in the
next step.

Differential gene expression analysis is applied in order to subdivide the
transcripts of the gene expression data obtained in step 1 (described in
section 2.1) into meaningful foreground sets.

The following section describes the differential gene expression analysis
workflow using the R/Bioconductor package limma [13]. This is one of many
ways to obtain the ranking of transcripts and subsequent steps of the Tran-
site pipeline are agnostic to the used methodology. In fact, Transcript Set
Motif Analysis only requires a nominal measure per transcript to define the
foreground sets. For Spectrum Motif Analysis, at least an ordinal measure
is required to rank transcripts.

The inital step towards a ranking of differential expression is to specify
the sample groups, i.e., which samples belong to the treatment and which
to the control group. Only two sample groups are allowed. If there are more
than two (e.g., treatment 1, treatment 2 and control), the differential ex-
pression analysis is broken into two separate analyses excluding all samples
belonging to one of the treatment groups at a time. The assignment of
sample groups is defined by the so-called design matrix. limma fits a linear
model (specified by the design matrix) to each row of the log2-transformed
expression value matrix 𝐴 defined in section 2.1, where each row corresponds
to one of 𝑛 probes/transcripts, measured in 𝑚 samples. The coefficients of
the fitted models describe the differences between the treatment and con-
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trol groups. An empirical Bayes method is used to obtain the significance
and the strength of the log fold change between sample groups for each
transcript [14].

The result of the differential expression analysis are two values per tran-
script: (1) the expression fold change between the sample groups, and (2) the
p-value, which quantifies the significance of the change between the sample
groups. Both can be used to define foreground sets for Transcript Set Motif
Analysis and Spectrum Motif Analysis. The raw p-values are adjusted to
avoid alpha error accumulation (see section 3.3). By default, the Benjamini-
Hochberg procedure [15] is used.

2.4 Definition of foreground sets
The elements of the background set are the requested sequence regions (3’
UTR, 5’ UTR or introns) of all platform transcripts.

Foreground sets are proper subsets of the background set and their defini-
tion depends on the desired motif analysis approach. In any case, foreground
and background sets define the groups of sequences relative to which the
overrepresentation and underrepresentation of RBP binding evidence (also
called binding or target sites, or hits) is investigated.

2.4.1 Foreground sets for Transcript Set Motif Analysis

When gene expression data is used, the two foreground sets for Transcript
Set Motif Analysis are composed of the statistically significantly upregu-
lated and downregulated transcripts (see figure 2.1, panel 4). Transcripts are
deemed statistically significantly differentially expressed if their Benjamini-
Hochberg adjusted p-value is equal to or less than 0.05. Whether a transcript
belongs to the upregulated or downregulated foreground set is naturally
given by the sign of their log fold change.

Various deviations of this canonical definition of foreground sets are pos-
sible. Upregulated and downregulated sets can be defined by fold change
only, neglecting the p-value. It is not even necessary to use gene expression
data. TSMA can be used with predefined gene sets as well, for example all
(human/murine) genes associated with a certain Gene Ontology [16] term.
In which case the background set would consist of all genes of human or
mouse, respectively, which are annotated with at least one GO term.

2.4.2 Foreground sets for Spectrum Motif Analysis

The Spectrum Motif Analysis approach requires a number of foreground
sets (usually 40), which collectively cover the entire spectrum of transcripts.
The transcripts are sorted according to their fold change, signed log p-value
(sign(log2 (FC)) * (−1) * log2 (𝑝)), or other user-defined ordinal or metric
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measures. Then this so-called transcript spectrum is subdivided into 40 bins
(foreground sets) of equal width, i.e., equal number of transcripts per bin.
The number of bins is somewhat arbitrary. If the number is too high, the
number of transcripts per bin is low, leading to noisy spectrum plots. If the
number of bins is too low, the gradient from the lowest to the highest bin is
covered or evened out by intermediate transcripts. How the number of bins
influences the outcome is investigated in section 4.1.1. An illustration of the
subdivision of the sorted transcript spectrum is part of figure 2.1, panel 4.

2.5 Transcript Set Motif Analysis
The aim of Transcript Set Motif Analysis (TSMA) is to identify the over-
representation and underrepresentation of potential RBP targets (binding
sites) in a set (or sets) of sequences, i.e., the foreground set, relative to the
entire population of sequences. The latter is called background set, which
can be composed of all sequences of the genes of a microarray platform or all
sequences of an organism or any other meaningful superset of the foreground
sets.

Once foreground and background sets are defined, there are two ap-
proaches to analyze overrepresentation (or underrepresentation, respectively)
of RBP binding sites.

2.5.1 k-mer-based TSMA

Before sequences are scored with the PSSMs that define RBP binding sites
(see section 3.5), they are broken into k-mers, i.e., oligonucleotide sequences
of k bases. And only statistically significantly enriched or depleted k-mers
are then used to calculate a score for each RBP, which quantifies its target
overrepresentation.

k-mer enrichment analysis

After foreground and background sets are defined, the sequences of both
sets are broken into hexamers, i.e., k-mers of length 6. While Transite also
supports heptamers and octamers (sequences of length 7 and 8, respectively),
hexamers are recommended, since run-time increases exponentially with 𝑘
and the results for heptamers and octamers mirror the ones for hexamers.

Strength of hexamer enrichment: There are 46 or 4096 distinct hex-
amers, for which the occurrences in foreground and background sets are
counted. In the following, we call the vector of hexamer counts for the fore-
ground set 𝑓 and for the background set 𝑏.
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𝑓⏞  ⏟  ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|AAAAAA|1
|AAAAAC|2
|AAAAAG|3

...
|GGUUUU|4094
|GUUUUU|4095
|UUUUUU|4096

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏⏞  ⏟  ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|AAAAAA|1
|AAAAAC|2
|AAAAAG|3

...
|GGUUUU|4094
|GUUUUU|4095
|UUUUUU|4096

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.1)

Hexamer enrichment values are calculated as follows:

𝑒𝑖 = 𝑓𝑖/𝐹

𝑏𝑖/𝐵
, (2.2)

where 𝐹 =
∑︀

𝑓𝑖 and 𝐵 =
∑︀

𝑏𝑖.

Significance of hexamer enrichment: First, a contingency table for
k-mer 𝑖 called 𝐶𝑖, where 𝑖 ∈ [1, 4096] is created.

𝐶𝑖 =
(︂

𝑓𝑖 𝐹 − 𝑓𝑖

𝑏𝑖 𝐵 − 𝑏𝑖

)︂
. (2.3)

Then the p-value 𝑝𝑖 for 𝐶𝑖 is approximated with Pearson’s 𝜒2 test. If 𝑝𝑖 < 5𝛼,
𝑝𝑖 is replaced with the p-value obtained by Fisher’s exact test for 𝐶𝑖. This
odd procedure reduces computation time dramatically (approximately 50-
fold decrease), because the computationally expensive Fisher’s exact test is
only used in cases, where the approximate p-value from the computationally
inexpensive 𝜒2 test is close to the decision boundary (𝛼). Mathematical
accuracy is traded for efficiency.

Fisher’s exact test is always used if at least one of the expected counts
is less than five.

The p-values are subsequently adjusted to avoid alpha error accumula-
tion (see section 3.3).

Transite uses so-called volcano plots to visualize the hexamer enrich-
ment values (x-coordinate, log transformed) and associated p-values (y-
coordinate, log transformed and multiplied by -1) of a TSMA run (see
panel (A) of figure 2.4). The enrichment values on the x-axis are logarith-
mized in order to display enrichment values symetrically around zero (e.g.,
| log(0.5)| = | log(2)|).



2. Transite pipeline 13

log2(FC)

-lo
g 1

0(
p)

A

B

mean enrichment value

de
ns

ity

Figure 2.4: k-mer-based TSMA result plots: (A) Volcano plot of hex-
amers: black dots represent insignificant hexamers, blue dots denote signifi-
cantly depleted and red dots significantly enriched hexamers. Yellow hexam-
ers are compatible hexamers to motif 𝑗. (B) Histogram of the distribution of
geometric mean enrichment values of compatible hexamers after Monte Carlo
sampling. Red line denotes observed mean enrichment value of compatible
hexamers (yellow hexamers in (A)).

Motif hexamer enrichment

There are two values to describe each hexamer, its enrichment value 𝑒𝑖 and
the associated adjusted p-value 𝑝𝑖, i.e., the significance of the enrichment.

For each sequence motif (position probability matrix in this case) in
Transite there is a set of compatible hexamers (also called motif-associated
hexamers). Hexamer 𝑖 is compatible to motif 𝑗 if and only if hexamer 𝑖 can
be aligned with motif 𝑗 in a way that the probability of each position in
hexamer 𝑖 is greater than threshold 𝜃. The exact value of 𝜃 is not important.
For all subsequent analyses, 𝜃 was set to 0.2.

One way to describe the overrepresentation (or underrepresentation, re-
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spectively) of RNA-binding protein target sites is to provide a summary of
enrichment values and enrichment p-values of the compatible hexamers of
each sequence motif. An adequate summary of the enrichment values of com-
patible hexamers of some motif 𝑗 would be their mean, and since enrichment
values are ratios, the geometric mean must be used.

𝑒 = 𝑒𝑥𝑝

(︃
1
𝑛

𝑛∑︁
𝑖=1

log(𝑒𝑖)
)︃

, (2.4)

where 𝑒 is the geometric mean of 𝑒, the vector of enrichment values of motif-
associated hexamers. The sum of logarithms is used instead of the product
to avoid arithmetic underflow.

Monte Carlo tests (permutation tests) are performed to obtain an esti-
mate of the significance of 𝑒. The procedure is described in detail in sec-
tion 3.6.

Panel (B) of figure 2.4 shows the empirical distribution of the mean of
motif-associated hexamer enrichment values of an exemplary TSMA run,
where the actual mean enrichment value is indicated by the red bar.

How 𝑝, the vector of enrichment p-values of motif-associated hexamers,
can be combined to a single value is described in section 3.2.

Motif scoring

Instead of merely looking at compatible hexamers (and summaries of their
enrichments), an algorithm was developed by Anna Gattinger [17] to calcu-
late a score, which uses the position weight matrices described in section 3.5
to quantify the degree of binding evidence among statistically significantly
enriched and depleted hexamers. RNA-binding proteins with a positive score
have stronger binding sites among the enriched hexamers, whereas the bind-
ing sites of RBPs with a negative score are predominantly found in the set
of depleted hexamers.

Scoring algorithm: Initially, all statistically significant hexamers (en-
riched or depleted) are selected as input. The score 𝑠𝑖 for motif 𝑖 is calcu-
lated as follows: (1) All input hexamers are scored by the position weight
matrix representation of motif 𝑖 (see section 3.5 for details). (2) The binding
evidence among enriched and depleted hexamers is

𝑠𝑖 =
∑︁

𝑗

𝑒𝑗

𝑟(𝑒𝑗)
−
∑︁

𝑗

𝑑𝑗

𝑟(𝑑𝑗)
, (2.5)

where 𝑒𝑗 is the score of the 𝑗th enriched hexamer, 𝑑𝑗 is the score of the 𝑗th
depleted hexamer, and 𝑟(𝑥) returns the rank of hexamer score 𝑥, hexamers
with a score (𝑒𝑖 or 𝑑𝑖) below zero are discarded. Each hexamer’s contribu-
tion to the overall score 𝑠𝑖 is proportional to its rank. The enrichment (or
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depletion, respectively) of highly scored hexamers (strong binding evidence)
has more weight than the one of poorly scored hexamers.

Staged Monte Carlo tests: The null distribution of motif scores (raw
scores) depends on the position weight matrix, which makes it necessary to
normalize scores in order to be able to compare scores from different motifs
in a meaningful way. Monte Carlo tests are performed to obtain an empirical
null distribution of motif scores for each motif. Scores are normalized by sub-
tracting the mean and dividing by the standard deviation of the empirical
score distribution. Furthermore, the empirical score distribution is used to
obtain an estimate of the two-sided p-value of the raw score (see section 3.6).
In order to significantly reduce the execution time of the Monte Carlo tests
without reducing the number of permutations, the tests are implemented in
a staged fashion: At first (stage 1), the null distributions of the scores of
all 175 motifs in Transite are generated with only 100 permutations. Raw
scores are normalized and empirical p-values are calculated based on this
rough estimate. Only motifs with a score-associated p-value estimate whose
lower bound of the confindence interval is less or equal to 0.01 are consid-
ered in stage 2 (see section 3.6 for details on confidence intervals of p-value
estimates). In stage 2, another Monte Carlo test is performed, this time with
1000 permutations. And for the final stage of Monte Carlo tests, stage 3, only
motifs with a lower bound of 0.001 of their p-value estimates are considered.
Stage 3 Monte Carlo tests are performed with 5000 permutations.
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Figure 2.5: Staged Monte Carlo test: The procedure of the staged Monte
Carlo test is illustrated with the aid of three generic motifs, motif 1, motif 2
and motif 3, the histograms of their empirical score distributions and their
observed raw scores (dashed red lines). The score of motif 1 is not signifi-
cant, whereas scores of motifs 2 and 3 are significant and highly significant,
respectively. The raw score of motif 1 falls in the main body of the null distri-
bution in stage 1, thus, unlike motif 2 and motif 3, motif 1 is not considered
in stages 2 and 3. Similarly, the score of motif 2 is not significant enough
to be considered in stage 3. In this way the bulk of the time-consuming
permutations are spent on motifs with significant scores.

2.5.2 Transcript-based TSMA

The transcript-based approach skips the k-merization step and instead scores
the transcript sequence as a whole with a position specific scoring matrix.

For each sequence in foreground and background sets and each sequence
motif, the scoring algorithm evaluates the score for each sequence position
(by applying the algorithm described in section 3.5). Positions with a relative
score greater than a user-defined threshold (0.9 is usually used - 90% of the
theoretical maximum of the given position weight matrix) are considered
hits, i.e., putative binding sites.

By scoring all sequences in foreground and background sets, a hit count
for each motif and each set is obtained, which is used to calculate enrichment
values and associated p-values in the same way in which motif-compatible
hexamer enrichment values are calculated in the k-mer-based approach. P-
values are adjusted with one of the methods in section 3.3.

An advantage of the transcript-based approach is the possibility of de-
tecting clusters of binding sites. This can be done by counting regions with
many hits using positional hit information or by simply applying a hit count
threshold per sequence, e.g., only sequences with more than some number
of hits are considered. Homotypic clusters of RBP binding sites may play a
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similar role as clusters of transcription factors [18].

2.6 Spectrum Motif Analysis
The essential differences between TSMA and Spectrum Motif Analysis (ab-
breviated as SPMA) are the way how foreground sets are defined (see sec-
tion 2.4) and how results are visualized. Apart from these two differences,
k-mer-based and transcript-based SPMA are using the same algorithms that
are described in the previous section.

SPMA helps to illuminate the relationship between RBP binding evi-
dence and the transcript sorting criterion, e.g., fold change between treat-
ment and control samples.

2.6.1 Transite spectrum plots

Spectrum plots are compact graphical representations of the results of a
SPMA run. A spectrum plot visualizes scores and associated p-values of
an RBP motif across the spectrum of transcripts (subdivided into 40 bins,
i.e., foreground sets). The numerical values of the scores and p-values are
represented as colors, which supports the human interpretation of spectrum
plots.

There are three different types of spectrum plots: (1) k-mer enrichment
spectrum plots visualize k-mer enrichment values and combined enrichment
p-values of the compatible k-mers of a given motif. (2) k-mer-based motif
score spectrum plots visualize motif scores (see 2.5.1) and their p-values.
(3) Transcript-based hit enrichment spectrum plots depict hit enrichment
values and associated p-values.

The automatic evaluation of spectrum plots is described in section 2.7.
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Figure 2.6: Spectrum plot: (A) Color representation of the motif scores
per bin (depending on the type of spectrum plot, the score* is k-mer en-
richment value, k-mer-based motif score, or transcript-based hit enrichment
value). (B) Color-coded associated p-values (can be one of the following:
combined k-mer enrichment p-values based on Fisher’s exact tests, empirical
p-values obtained by Monte Carlo sampling, or hit enrichment p-value by
Fisher’s exact test).

2.7 SPMA: Evaluating spectrum plots
Unbiased k-mer-based or transcript-based SPMA (see section 2.6) generate
one spectrum plot for each RBP motif in the motif database. With currently
175 motifs, it is imperative to provide a means to automatically identify
spectrum plots that exhibit a defined, non-random pattern. The following
section describes methods available in Transite for separating spectrum plots
with a coordinated pattern—a pattern that might be indicative of an under-
lying biological process—from spectrum plots without a clear trend, which
are more likely to occur by chance. An example of the former is depicted in
panel A of figure 2.7, the latter in panel B of the same figure. In this thesis
the labels non-random and random are used to assign spectrum plots to one
of the two categories.

A spectrum consists of three vectors, 𝑠 ∈ R𝑛, 𝑏 ∈ [1, 𝑛]𝑛, and 𝑝 ∈ R𝑛.
𝑠 is a vector of scores (RBP target enrichment values, mean of enrichment
values of RBP-associated k-mers, or RBP scores, respectively), 𝑏 contains
bin numbers (𝑛, the number of bins, usually 40), and 𝑝 contains p-values.
𝑝𝑖 is the significance of score 𝑠𝑖 in bin 𝑏𝑖.

Two different methods have been developed to obtain a spectrum score
𝑥, given 𝑠, 𝑏, and 𝑝: (1) A local consistency score, which quantifies the
local noise of the gradient in the spectrum, and (2) an approach using the
adjusted 𝑅2 value of a polynomial regression model, fitted to the gradient.
Moreover, the coefficient of the linear term of the polynomial model can
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A

B

Figure 2.7: Groups of spectrum plots: (A) Non-random spectrum: En-
richment values form a gradient along the spectrum of ordered transcripts.
(B) Random spectrum: Enrichment values do not follow a clear trend with
respect to bin number.

be used to automatically distinguish between spectra with increasing and
decreasing linear relationships as illustrated in figures 2.9 and 2.10.

2.7.1 Local consistency score

One way to quantify the meaningfulness of a spectrum plot is to calculate
the deviance between the linear interpolation of the scores of two adjoining
bins and the score of the middle bin, for each position in the spectrum.
The lower the score, the more consistent the trend in the spectrum plot.
Formally, the local consistency score 𝑥𝑐 is defined as

𝑥𝑐 = 1
𝑛

𝑛−2∑︁
𝑖=1

⃒⃒⃒⃒
𝑠𝑖 + 𝑠𝑖+2

2 − 𝑠𝑖+1

⃒⃒⃒⃒
. (2.6)

In order to obtain an estimate of the significance of a particular score 𝑥′
𝑐,
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Monte Carlo sampling is performed by randomly permuting the coordinates
of the scores vector 𝑠 and recomputing 𝑥𝑐. The probability estimate 𝑝 is
given by the lower tail version of the cumulative distribution function (see
equation 3.29), where 𝑇 equals 𝑥𝑐 in equation 2.6.

2.7.2 Polynomial regression model

An alternative approach to assess the consistency of a spectrum plot is
via polynomial regression. In a first step, polynomial regression models of
various degrees are fitted to the data, i.e., the dependent variable 𝑠 (vector
of scores), and orthogonal polynomials of the independent variable 𝑏 (vector
of bin numbers). Secondly, the model that reflects best the true nature of
the data is selected by means of the F-test. And lastly, the adjusted 𝑅2 and
the sum of squared residuals are calculated to indicate how well the model
fits the data. These statistics are used as scores to rank the spectrum plots.

In general, the polynomial regression equation is

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖 + · · · + 𝛽𝑚𝑥𝑚

𝑖 + 𝜖𝑖, (2.7)

where 𝑚 is the degree of the polynomial (usually 𝑚 ≤ 5), and 𝜖𝑖 is the error
term. The dependent variable 𝑦 is the vector of scores 𝑠 and 𝑥 to 𝑥𝑚 are
the orthogonal polynomials of the vector of bin numbers 𝑏.

Orthogonal polynomials are used in order to reduce the correlation be-
tween the different powers of 𝑏 and therefore avoid multicollinearity in the
model (see figure 2.8). This is important, because correlated predictors lead
to unstable coefficients, i.e., the coefficients of a polynomial regression model
of degree 𝑚 can be greatly different from a model of degree 𝑚 + 1.

The orthogonal polynomials of vector 𝑏 are obtained by centering (sub-
tracting the mean), QR decomposition, and subsequent normalization [19].

Given the dependent variable 𝑦 and the orthogonal polynomials of 𝑏 𝑥
to 𝑥𝑚, the model coefficients 𝛽 are chosen in a way to minimize the deviance
between the actual and the predicted values characterized by equation 2.9,
where 𝐿(actual value, predicted value) denotes the loss function.

ℳ(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + · · · + 𝛽𝑚𝑥𝑚 (2.8)

ℳ = argmin
ℳ

(︃
𝑛∑︁

𝑖=1
𝐿(𝑦𝑖, ℳ(𝑥𝑖))

)︃
(2.9)

Ordinary least squares is used as estimation method for the model coef-
ficients 𝛽. The loss function of ordinary least squares is the sum of squared
residuals (SSR) and is defined as follows

SSR(𝑦, 𝑦) =
𝑛∑︁

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (2.10)
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Figure 2.8: Ordinary and orthogonal polynomials: (A) The ordinary
polynomials of degrees 1 to 5 are highly correlated. Moreover, polynomials
of high degree can lead to floating point underflow of model coefficients. (B)
Correlation between orthogonal polynomials is strongly reduced.

where 𝑦 are the observed data and 𝑦 the model predictions.
Thus the ordinary least squares estimate of the coefficients 𝛽 (including

the intercept 𝛽0) of the model ℳ is defined by

𝛽 = argmin
𝛽

⎛⎝ 𝑛∑︁
𝑖=1

⎛⎝𝑦𝑖 − 𝛽0 −
𝑚∑︁

𝑗=1
𝛽𝑗𝑥𝑗

𝑖

⎞⎠2⎞⎠. (2.11)
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A

B

Figure 2.9: Spectrum with increasing linear relationship: (A) RBP
binding evidence correlates with expression, i.e., positively regulated stabil-
ity. (B) Linear approximation of the gradient.

A

B

Figure 2.10: Spectrum with decreasing linear relationship: (A) RBP
binding evidence anticorrelates with expression, i.e., negatively regulates sta-
bility. (B) Linear approximation of the gradient.



2. Transite pipeline 23

A

B

Figure 2.11: Spectrum with convex relationship: (A) RBP binding ev-
idence increases in transcripts on either end of the spectrum. (B) Quadratic
approximation of the gradient.

A

B

Figure 2.12: Spectrum with concave relationship: (A) RBP bind-
ing evidence decreases in transcripts on either end of the spectrum. (B)
Quadratic approximation of the gradient.
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A

B

Figure 2.13: Inherently inconsistent spectrum: (A) Enrichment values
do not follow a clear trend with respect to bin number. (B) No polynomial
model decreased the SSR to an extent that justified the increase in complexity
(degrees of freedom) compared to the null model.

Model selection via F-test

After polynomial models of various degrees have been fitted to the data,
the F-test is used to select the model that best fits the data. Since the SSR
monotonically decreases with increasing model degree (model complexity),
the relative decrease of the SSR between the simpler model and the more
complex model must outweigh the increase in model complexity between
the two models. The F-test gives the probability that a relative decrease
of the SSR between the simpler and the more complex model given their
respective degrees of freedom is due to chance. A low p-value indicates that
the additional degrees of freedom of the more complex model lead to a better
fit of the data than would be expected after a mere increase of degrees of
freedom.

The F-statistic is calculated as follows

𝐹 = (SSR1 − SSR2)/(𝑝2 − 𝑝1)
SSR2/(𝑛 − 𝑝2)

, (2.12)

where SSR𝑖 is the sum of squared residuals and 𝑝𝑖 is the number of pa-
rameters of model 𝑖. The number of data points, i.e., bins, is denoted as
𝑛.
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𝐹 is distributed according to the F-distribution with 𝑑𝑓1 = 𝑝2 − 𝑝1 and
𝑑𝑓2 = 𝑛 − 𝑝2.

Goodness-of-fit statistics

After a model has been selected, the adjusted 𝑅2 is calculated as an addi-
tional way to evaluate the goodness of fit.

The 𝑅2 statistic is 1 minus the ratio between the SSR (see equation 2.10)
and the total sum of squares (TSS). TSS is given by

TSS =
𝑛∑︁

𝑖=1
(𝑦 − 𝑦𝑖)2, (2.13)

where 𝑦 is the mean of the observed data.
Because SSR decreases with every additional degree, 𝑅2 increases. This

behavior is undesirable as it favors models of high complexity which overfit
the data. The adjusted 𝑅2 corrects the 𝑅2 statistic based on the residual
degrees of freedom.

adjusted 𝑅2 = 1 − SSR/(n − k)
TSS/(n − 1 ) , (2.14)

where 𝑛 is the number of data points and 𝑘 is the number of model param-
eters, i.e., the number of fitted coefficients.

2.8 Single Transcript Motif Analysis
For researchers interested in RBP binding sites in one specific transcript,
Transite offers the Single Transcript Motif Analysis (STMA). In STMA the
RBP motifs in Transite are utilized to score each position of the sequence
of a single transcript. The computational representation of motifs and the
scoring algorithm are described in section 3.5. Positions with a score higher
than a relative threshold (e.g., 90% of the theoretical maximum score) are
called hits. Hits in the transcript-based fashions of TSMA and SPMA are
defined in an analogous manner.

Unfortunately, the identification of individual hits in a single transcript
is an error-prone process with low specificity. This is not only true for the
identification of potential RBP binding sites, but also for binding sites of
transcription factors and kinases. The latter having the advantage of a bigger
alphabet (20 amino acids instead of four bases). For an RBP sequence motif
of length six (most motifs are six to eight nucleotides long), one would expect
a perfect score (100% of theoretical maximum score) roughly every 4000
positions, because there are 4096 (46) different hexamers. In many motifs
more than one hexamer yields a perfect score, which makes the inherent
false positive rate even worse.
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TSMA and SPMA are less affected by this drawback, because of the
stabilizing effect of looking at thousands of sequences at once and focusing
on ratios of hit occurrences (i.e., enrichments) in foreground and background
sequences instead of absolute hit counts.

Positional evolutionary conservation scores are incorporated into STMA
in order to discern low quality hits from high quality hits. Conservation
scores are retrieved from the UCSC genome browser conservation track.
Basewise conservation is based on the alignment of 7 vertebrate genomes by
PhyloP [20] and PhastCons [21].

PhyloP conservation score: This method evaluates the scores for each
position independently. Scores are signed -log p-values. A positive score in-
dicates conserved, a negative score fast-evolving nucleotides.

PhastCons conservation score: A method based on a hidden Markov
model that estimates the probability of each nucleotide to be part of a con-
served region, thus the score ranges from 0 to 1. Unlike PhyloP, PhastCons
considers the conservation of neighboring nucleotides, leading to a smoother
score gradient.



Chapter 3

Materials and Methods

This chapter briefly covers existing statistical methods that are either used
directly in the Transite pipeline or in the process of analyzing the results
of Transite runs. The context of their application is explained in chapters 2
and 4. Furthermore, the two databases of RBP binding preferences are in-
troduced.

3.1 Motif databases
Transite incorporates sequence motifs of RBP binding sites from two data-
bases:
CIS-BP Catalog of Inferred Sequence Binding Preferences [22]
RBPDB a database of RNA-binding specificities [23]

Together they contribute 175 sequence motifs of varying lengths (between
six and 18 nucleotides). All motifs were obtained using in vitro techniques for
determining RNA targets. The majority of motifs were determined by either
systematic evolution of ligands by exponential enrichment (SELEX) [24] or
RNAcompete [25]. The RNA binding specificities of only two RBPs were
obtained by electrophoretic mobility shift assays (EMSA) [26].

3.2 Methods for combining p-values
The following section describes methods to combine the significance (p-
values) of enrichment values of a set of k-mers that are associated with
an RNA-binding protein. These methods are used to obtain a single p-value
for the overall significance of enriched or depleted RBP-associated k-mers.

In general, the methods of this section can be applied to combine the
results of independent significance tests. They are commonly used in meta-
analysis, where the goal is to systematically assess and integrate findings of
a number of studies about a common body of research.

27
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The problem can be specified as follows: Given a vector of 𝑛 p-values
𝑝1, ..., 𝑝𝑛, find 𝑝𝑐, the combined p-value of the 𝑛 significance tests. Most
of the methods introduced here combine the p-values in order to obtain a
test statistic, which follows a known probability distribution. The general
procedure can be stated as:

𝑇 (ℎ, 𝐶) =
𝑛∑︁

𝑖=1
ℎ(𝑝𝑖) * 𝐶 (3.1)

The function 𝑇 , which returns the test statistic 𝑡, takes two arguments. ℎ
is a function defined on the interval [0, 1] that transforms the individual
p-values, and 𝐶 is a correction term.

3.2.1 Fisher’s method

Fisher’s method (1932) [27], also known as the inverse chi-square method is
probably the most widely used method for combining p-values. Fisher used
the fact that if 𝑝𝑖 is uniformly distributed (which p-values are under the
null hypothesis), then −2 log 𝑝𝑖 follows a chi-square distribution with two
degrees of freedom. Therefore, if p-values are transformed as follows,

ℎ(𝑝) = −2 log 𝑝, (3.2)

and the correction term 𝐶 is neutral, i.e., equals 1, the following statement
can be made about the sampling distribution of the test statistic 𝑇𝑓 under
the null hypothesis:

𝑡𝑓
𝐻0∼ 𝜒2

2𝑛, (3.3)
where 𝑛 is the number of p-values.

3.2.2 Stouffer’s method

Stouffer’s method [28], or the inverse normal method, uses a p-value trans-
formation function ℎ that leads to a test statistic that follows the standard
normal distribution by transforming each p-value to its corresponding nor-
mal score. The correction term scales the sum of the normal scores by the
root of the number of p-values.

ℎ(𝑝) = Φ−1(1 − 𝑝) (3.4)

𝐶 = 1√
𝑛

(3.5)

𝑡𝑠
𝐻0∼ 𝑁(0, 1), (3.6)

where Φ−1 is the inverse of the cumulative standard normal distribution
function.

An extension of Stouffer’s method with weighted p-values is called Lip-
ták’s method [29].
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3.2.3 Mudholkar and George’s method

The logit method by Mudholkar and George [30] uses the following trans-
formation:

ℎ(𝑝) = − ln(𝑝/(1 − 𝑝)) (3.7)

When the sum of the transformed p-values is corrected in the following
way:

𝐶 =

√︃
3(5𝑛 + 4)

𝜋2𝑛(5𝑛 + 2) , (3.8)

the test statistic 𝑡𝑚 is approximately t-distributed:

𝑡𝑚
𝐻0∼ 𝑡5𝑛+4 (3.9)

3.2.4 Edgington’s method

Edgington’s method [31] is an additive procedure to combine p-values.

ℎ(𝑝) = 𝑝 (3.10)

The sampling distribution of the test statistic 𝑡𝑒 under the null hypoth-
esis is given by combinatorics:

𝑃𝑟(𝑡𝑒) =
⌊𝑡𝑒⌋∑︁
𝑟=0

(−1)𝑟

(︂
𝑛

𝑟

)︂
(𝑡𝑒 − 𝑟)𝑛

𝑛! (3.11)

3.2.5 Tippett’s method

In Tippett’s method [32] the smallest p-value is used as the test statistic 𝑡𝑡

and the combined significance is calculated as follows:

𝑃𝑟(𝑡𝑡) = 1 − (1 − 𝑡𝑡)𝑛 (3.12)

3.3 Methods for adjusting p-values
When multiple statistical tests are performed in order to identify non-
random events in a large pool of events, it is imperative to adjust either
the p-values themselves or the significance level 𝛼, which is the probability
of making a type I error (incorrectly rejecting the null hypothesis). Failure
to do so leads to alpha error accumulation, i.e., many false positives.

Without accounting for alpha error accumulation in the hexamer enrich-
ment step described in section 2.5.1, the enrichment values of on average 204
out of 4096 hexamers would be deemed significant between randomly chosen
sets of sequences (assuming 𝛼 = 0.05). This is an immediate consequence



3. Materials and Methods 30

of the number of tests (4096 in this case) and the probability of making a
wrong decision per test (𝛼).

Transite supports several methods to adjust p-values in order to avoid
the multiple testing problem, all of which take a vector of p-values 𝑝 ∈ R𝑛

and return a vector of adjusted p-values 𝑞 ∈ R𝑛. The 𝑖th smallest or largest
p-value is denoted by 𝑝(𝑖), depending on whether the method belongs to the
step-down (ordered from lowest to highest) or step-up (highest to lowest)
group. The methods can be categorized according to the definition of type
I error they control.

3.3.1 Familywise error rate controlling methods

The familywise error rate (FWER) is defined as

FWER = 𝑃𝑟(𝑉 > 0), (3.13)

where 𝑉 is the number of false positives in 𝑛 tests (i.e., “the family”).
Methods controlling the FWER guarantee that FWER ≤ 𝛼.

Holm’s method

The adjusted p-values [33] obtained by Holm’s method are defined as

𝑞(𝑖) = max
𝑗≤𝑖

(︀
min

(︀
(𝑛 − 𝑗 + 1)𝑝(𝑗), 1

)︀)︀
, (3.14)

where 𝑝(𝑗) is the 𝑗th lowest p-value and thus characterizing Holm’s approach
as a step-down method.

Hochberg’s method

Hochberg’s method is the step-up version of Holm’s method (𝑝(𝑖) is highest
p-value) and is uniformly more powerful [34].

𝑞(𝑖) =
{︃

𝑝(𝑛) for 𝑖 = 𝑛

min
(︀
𝑞(𝑖+1), (𝑛 − 𝑖 + 1)𝑝(𝑖)

)︀
otherwise

(3.15)

Bonferroni’s method

Bonferroni corrected p-values [35] are given by

𝑞𝑖 = min(𝑝𝑖 * 𝑛, 1). (3.16)

It is the oldest and most conservative correction.
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3.3.2 False discovery rate controlling methods

The false discovery rate (FDR) is defined as

FDR = 𝐸

(︂
𝑉

𝑉 + 𝑆

)︂
, (3.17)

where 𝑉 is the number of false positives and 𝑆 the number of true positives
in 𝑛 tests.

Methods controlling the FDR are less conservative than the ones con-
trolling the FWER.

Benjamini and Hochberg’s method

Similar to Hochberg’s method for controlling the familywise error rate, this
method is defined as a step-up adjustment [36]:

𝑞(𝑖) =
{︃

𝑝(𝑛) for 𝑖 = 𝑛

min
(︀
𝑞(𝑖+1),

𝑛
𝑖 𝑝(𝑖)

)︀
otherwise

(3.18)

Compared to the FWER controlling method, the multiplier is less conserva-
tive (𝑛

𝑖 to 𝑛−𝑖+1), leading to smaller adjusted p-values. This method can be
used if the components (i.e., p-values) of 𝑝 are independent and uniformly
distributed.

Benjamini and Yekutieli’s method

If there are dependencies among the p-values or if independency cannot be
guaranteed, Benjamini and Yekateuli’s method [37] can be used instead:

𝑞(𝑖) =
{︃

𝛾𝑝(𝑛) for 𝑖 = 𝑛

min
(︀
𝑞(𝑖+1), 𝛾 𝑛

𝑖 𝑝(𝑖)
)︀

otherwise
(3.19)

where 𝛾 =
∑︀𝑛

𝑖=1
1
𝑖 .

3.4 Similarity coefficients for binary data
This section introduces three coefficients that quantify the similarity be-
tween two binary vectors. In this thesis they are used to compare the results
of two different analysis approaches in Transite (see section 4.3).

The two binary vectors can also be represented as a contingency table
of two binary attributes. The agreement (or disagreement, respectively) of
the two attributes is captured in four numbers, 𝑎, 𝑏, 𝑐 and 𝑑, which corre-
spond to the cells of the four-fold table 3.1. Three commonly used similarity
coefficients for binary data are defined on the basis of 𝑎, 𝑏, 𝑐 and 𝑑.

The attributes spectrum label (fold change) and spectrum label (p-value)
will be introduced in section 4.2 and their meaning is not important to
describe the general concept of similarity coefficients.



3. Materials and Methods 32

Table 3.1: Contigency table with Transite spectrum label attributes

spectrum label (fold change)
spectrum label (p-value) non-random random
non-random 𝑎 𝑏
random 𝑐 𝑑

3.4.1 Matthews correlation coefficient

It is also known as 𝜑 coefficient. The MCC is for binary data the equivalent to
the Pearson product-moment correlation coefficient for continuous data [38],
and is defined as

𝑥 =(𝑎 + 𝑏) * (𝑎 + 𝑐) * (𝑏 + 𝑑) * (𝑐 + 𝑑) (3.20)

MCC =
{︃

𝑎𝑑 − 𝑏𝑐 for 𝑥 = 0
𝑎𝑑−𝑏𝑐√

𝑥
otherwise

(3.21)

MCC can be tested for significance using the 𝜒2 distribution with one degree
of freedom:

(𝑎 + 𝑏 + 𝑐 + 𝑑) * MCC 2 𝐻0∼ 𝜒2
1. (3.22)

3.4.2 Simple matching coefficient

The simple matching coefficient is the ratio of concordant labels to all labels
and is naturally defined as

SMC = 𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
. (3.23)

3.4.3 Jaccard similarity coefficient

Unlike MCC and SMC , Jaccard similarity coefficient does not include the
quantity 𝑑, i.e., the cases labeled as random by both approaches.

JSC =
{︃

1 for 𝑎 = 𝑏 = 𝑐 = 0
𝑎

𝑎+𝑏+𝑐 otherwise
(3.24)

3.5 Motif representations
Position specific scoring matrices (PSSM) are used to represent sequence mo-
tifs. Transite inherits PSSMs describing RBP binding sites from two sources
(see section 3.1). Motif databases provide PSSMs in one of three types:
Position frequency matrices (PFM), position probability matrices (PPM),
or position weight matrices (PWM). Internally, Transite algorithms work
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exclusively with PWMs in order to make subsequent calculations more effi-
cient.

The elements of a PFM represent absolute frequencies of each nucleotide
at each position. In general, PFMs are not bound to a specific alphabet (A,
C, G, and U in this case), but can also be used with other types of sequences,
e.g., protein sequences. How PPMs and PWMs are derived from PFMs is
stated in equations 3.26 and 3.27.

PFM⏞  ⏟  ⎡⎢⎢⎢⎣
A C G U

1 𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4
2 𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4
...

...
...

...
...

𝑛 𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,3 𝑥𝑛,4

⎤⎥⎥⎥⎦ 𝑓1 

PPM⏞  ⏟  ⎡⎢⎢⎢⎣
A C G U

1 𝑦1,1 𝑦1,2 𝑦1,3 𝑦1,4
2 𝑦2,1 𝑦2,2 𝑦2,3 𝑦2,4
...

...
...

...
...

𝑛 𝑦𝑛,1 𝑦𝑛,2 𝑦𝑛,3 𝑦𝑛,4

⎤⎥⎥⎥⎦ 𝑓2 

PWM⏞  ⏟  ⎡⎢⎢⎢⎣
A C G U

1 𝑧1,1 𝑧1,2 𝑧1,3 𝑧1,4
2 𝑧2,1 𝑧2,2 𝑧2,3 𝑧2,4
...

...
...

...
...

𝑛 𝑧𝑛,1 𝑧𝑛,2 𝑧𝑛,3 𝑧𝑛,4

⎤⎥⎥⎥⎦
(3.25)

The conversion functions 𝑓1 (from PFM to PPM) and 𝑓2 (from PPM to
PWM) are applied to each element of the matrix.

𝑓1(𝑥, 𝑖, 𝑗) = 𝑥𝑖,𝑗∑︀
𝑘 𝑥𝑖,𝑘

, (3.26)

where 𝑥 is a PFM, and 𝑖 and 𝑗 are its indices.

𝑓2(𝑦, 𝑖, 𝑗) = log2
𝑦𝑖,𝑗

𝑝𝑗
(3.27)

where 𝑦 is a PPM, and 𝑝𝑗 is the a priori probability of nucleotide 𝑗. In
Transite, nucleotides are assumed to be equiprobable (Pr(A) = Pr(C) =
Pr(G) = Pr(U) = 0.25).

Laplace smoothing: Laplace smoothing (also known as additive smooth-
ing) is applied to avoid zeros in PFMs and PPMs. Zeros might occur if the
number of sequences on which the PSSM is based, is too small to contain
at least one occurrence of each nucleotide per position. In this case, pseudo-
counts are introduced [39].

Scoring algorithm: After Laplace smoothing was applied and PFMs and
PPMs were converted to PWMs, the scoring algorithm itself is trivial: In
order to obtain the score of a hexamer with a PWM of length six, the
elements in the PWM that correspond to the correct nucleotide per position
are added up. If this score is above zero, the hexamer is more likely to be
found in the binding site described by this PWM rather than in a random
sequence of length six.
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3.6 Monte Carlo tests
Permutation tests are a means to determine the statistical significance of
a test statistic with an unknown null distribution. Since no assumptions
are made about the underlying distribution of the statistic, permutation
tests belong to the group of nonparametric tests. The null distribution of
the statistic is obtained empirically by calculating all possible values of the
statistic by rearrangement of the labels of the observations (data points).
Each unique ordering of the labels is called a permutation, hence the name.
Labels are categorical variables that subdivide the set of observations into
groups, e.g., treatment and control. In order to build the sampling distri-
bution of the test statistic 𝑇 based on 𝑛 labeled observations, 𝑇 needs to
be calculated for 𝑛! permutations of the observation labels. The upper tail
probability of the actual test statistic, i.e., the test statistic 𝑇 calculated
with the actual observations 𝑥, here denoted 𝑇 (𝑥), is given as follows:

𝑃𝑟(𝑇 (𝑥)) =
∑︁

𝑦:𝑇 (𝑦)≥𝑇 (𝑥)
𝑃𝑟(𝑦), (3.28)

where 𝑦 are the permuted observations.
Since the number of permutations grows factorially with the number of

observations, calculating 𝑇 for all permutations is infeasible even for small
numbers of 𝑛. Therefore, instead of building the complete null distribution,
a sample of the distribution is picked randomly to determine an estimate of
the probability of 𝑇 (𝑥). This process is called Monte Carlo sampling. The
estimate is determined by the empirical cumulative distribution functions
(lower-, upper- and two-tailed probability):

𝑃𝑟(𝑇 (𝑥)) =

𝑛∑︀
𝑖=1

1 (𝑇 (𝑦𝑖) ≤ 𝑇 (𝑥)) + 1

𝑛 + 1 (3.29)

𝑃𝑟(𝑇 (𝑥)) =

𝑛∑︀
𝑖=1

1 (𝑇 (𝑦𝑖) ≥ 𝑇 (𝑥)) + 1

𝑛 + 1 (3.30)

𝑃𝑟(𝑇 (𝑥)) =

𝑛∑︀
𝑖=1

1 (|𝑇 (𝑦𝑖)| ≥ |𝑇 (𝑥)|) + 1

𝑛 + 1 , (3.31)

where 1 is the indicator function and 𝑛 is the sample size, i.e., the number
of performed permutations.

One is added to both the numerator and the denominator to avoid p-
values of zero when the actual test statistic is smaller than all of the test
statistics of the permuted data [40].

A confidence interval around 𝑝, i.e., 𝑃𝑟(𝑇 (𝑥)), can be calculated based
on the cumulative probabilities of the binomial distribution. This interval is
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referred to as Clopper-Pearson interval [41]. The exact confidence limits 𝑐𝑙

and 𝑐𝑢 satisfy the following equations:
𝑛∑︁

𝑖=𝑛1

(︂
𝑛

𝑖

)︂
𝑐𝑖

𝑙(1 − 𝑐𝑙)𝑛−𝑖 = 𝛼/2 (3.32)

𝑛1∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑐𝑖

𝑢(1 − 𝑐𝑢)𝑛−𝑖 = 𝛼/2, (3.33)

where 𝑛1 is the number of cases where 𝑇 (𝑦𝑖) ≥ 𝑇 (𝑥) (see equation 3.30). If
𝑛1 = 0, the lower confidence limit is 0, whereas if 𝑛1 = 𝑛, the upper limit is
1.



Chapter 4

Results

This chapter contains evaluations of aspects of the newly developed Transite
pipeline (see chapter 2), as well as its applications. The evaluation of sort-
ing approaches for SPMA can be found in section 4.3 and the evaluation of
permutation approaches for TSMA and SPMA is contained in section 4.5.
Section 4.6 presents the combined results of Transite analyses of gene ex-
pression data from cisplatin-treated samples in five different cell lines. Brief
comments about the development of the Transite R package and the website
can be found in sections 4.7 and 4.8, respectively.

4.1 Transite configuration
Transite analysis runs can be customized in various ways. This section de-
scribes the settings with which the results of this chapter were generated.

P-value adjustment method: The Benjamini-Hochberg procedure was
used to adjust (1) differential expression p-values obtained by limma, (2)
k-mer enrichment p-values calculated by Fisher’s exact tests, (3) k-mer en-
richment p-values approximated by 𝜒2 tests, (4) empirical p-values of the
geometric mean of motif-associated hexamer enrichment values obtained by
Monte Carlo tests, (5) empirical p-values of motif scores obtained by Monte
Carlo tests, and (6) target site enrichment p-values obtained by Fisher’s
exact tests. These six categories of adjusted p-values can be related to the
steps of the Transite pipeline schematic in figure 2.1: P-values of category
(1) belong to step three, categories (2) to (5) occur in the hexamer-based
fashion of steps five (TSMA) and six (SPMA), and p-values of category (6)
are generated in the transcript-based fashion of the aforementioned steps.

P-value combining method: Fisher’s, Stouffer’s, Tippett’s, and Mud-
holkar and George’s methods were used in parallel to calculate combined k-
mer enrichment p-values of all hexamers associated with a particular motif.

36
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No method is universally superior to all others. Their applicability depends
on the pattern of evidence, that is to say how the total evidence is dis-
tributed across the individual p-values. Edgington’s method was discarded
due to its generally very poor power [42].

Significance threshold for differentially expressed genes: 0.05, after
adjustment method was applied.

k-mer length: 𝑘 = 6. Although Transite can operate with heptamers
and octamers as well, hexamers are recommended. The results of heptamer-
based and octamer-based runs are similar to hexamer-based runs and do not
justify the tremendous increase in run time (𝒪(4𝑘)).

Significance threshold for k-mer enrichment: 0.01 - after p-value
adjustment method was applied.

Number of k-mer enrichment permutations: 5000. In case Bonfer-
roni, the most conservative p-value adjustment method is used, 5000 permu-
tations are still enough to get significant results with 175 motifs ( 1

5001 *175 =
0.034993).

Significance threshold for motif scores: 0.05 - after p-value adjust-
ment method was applied.

Transcript sorting approach: By fold change, for general explanation
see section 2.4.2, sorting approaches are compared in section 4.3.

Threshold for PWM hits: 90% of the theoretical maximum score.

Maxmimum number of hits per transcript: 5, transcripts with more
than five potential binding sites contribute only five hits to the target hit
enrichment calculation (see section 4.4).

Number of bins: 40, see next section.

4.1.1 Choice of bin number

In this section the influence of the number of bins on the SPMA result is
examined. The bin number determines in how many foreground sets the
sorted “spectrum” of transcripts is subdivided. This procedure is described
in more detail in section 2.4.2.

The results of 32 transcript-based SPMA runs with various bin num-
bers (including 40—the Transite default bin number setting—in bold face)
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Figure 4.1: Influence of bin number on transcript-based SPMA
spectra: This figure shows 32 rows of spectrum plots with bin numbers
ranging from 7 to 1000. The left column contains a color representation
of transcript-based SPMA target enrichment values from blue (underrepre-
sented) to red (overrepresented) and the right column depicts their corre-
sponding p-values, where a dark green hue indicates high significance.

are shown in figure 4.1. The results were obtained with the GEO series
GSE46493, which serves as an exemplary data set. The spectrum plots depict
enrichment values of potential targets of the RNA-binding proteins CPEB2
and CPEB3 motif M012_0.6. This motif was selected because its spectrum
yielded the highest adjusted 𝑅2 value in the transcript-based SPMA run
with 40 bins.

In addition to the SPMA run with 40 bins, motif M012_0.6 scored first
place (out of 175) in 25 of 31 SPMA runs with varying bin numbers. It
yielded the second highest adjusted 𝑅2 in runs with 15, 30, 85 and 100
bins, the fifth highest runs with eight and nine bins, and sixth place in the
SPMA run with seven bins. In general, the obtained spectra of M012_0.6 and
other motifs did not change significantly as a function of bin number. Conse-
quently, the spectrum characteristics (adjusted 𝑅2, consistency score, slope),
on which the identification of non-random spectra is based, did not change
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substantially. Spectrum characteristics were especially stable between runs
with bin numbers in the range of 20 to 60. This becomes apparent when
spectra of the same motif but with different bin numbers are juxtaposed as
in figure 4.1. The conclusion is always the same, irrespective of the num-
ber of bins: the number of potential target sites of RNA-binding proteins
CPEB2 and CPEB3 in 3’ UTRs of transcripts is negatively proportional
to the fold change of said transcripts. Considering the specifics of the gene
expression experiment at hand (GEO series GSE46493), one could draw the
less abstract conclusion, that CPEB2/CPEB3 targets are downregulated in
U2OS cells after doxorubicin treatment.

Returning to the question of the appropriate bin number, the analysis
showed that there is a range of acceptable bin numbers, of which 40 is one
of them. In most cases the general trend is apparent with as few as ten bins,
but at least 20 bins are recommended due to difficulties arising from fitting a
polynomial to too few observations, which is essential to identify meaningful
spectra (see section 2.7.2). Since run time increases linearly with the bin
number, there is little reason to choose numbers higher than 50. Another
reason to discard high bin numbers is reduced interpretability. Especially
spectrum plots with more than 100 bins tend to be less convenient to inter-
pret due to their jagged gradient.

4.2 Spectrum labeling
A single run of transcript-based SPMA produces 175 spectrum plots (one
for each RBP currently in Transite) and the hexamer-based approach is even
more elaborate with twice as many spectrum plots (175 hexamer enrichment
spectrum plots and 175 hexamer-based motif score spectrum plots). Visual
inspection of each one is tedious at best, if not infeasible. Therefore, it is
imperative to provide some sort of quality metric to introduce a ranking for
spectrum plots, which in turn can be used to focus the user’s attention on
the most interesting, i.e., non-random, spectrum plots. The inner workings
of the quality metrics are described in section 2.7. In essence, two spectrum
characteristics serve as quality metrics: adjusted 𝑅2 and the p-value of the
consistency score. They can be used to introduce the necessary ranking for
spectrum plots, which then allows the Transite user to visually inspect the
spectrum plots of the top end of the list (to present the presumably more
interesting ones first). If the goal is to judge the agreement between several
SPMA runs, a binary label per spectrum plot (non-random, random) is used.
These labels are based on whether predefined constraints are met. This way
the comparison is not influenced by potentially biased visual inspection.

Spectrum plots that meet the following constraints are labeled non-
random (and random otherwise):

• adjusted 𝑅2 ≥ 0.4,
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• consistency score p-value < 0.1,
• at least 4 out of 40 bins with significant (𝛼 = 0.05) p-values.
These thresholds are not rigorously derived with regard to any statistical

property, but rather local, i.e., pertaining to this thesis, conventions similar
to the (global) convention that a p-value less than 0.05 is deemed significant.
They were established by visually categorizing blinded spectrum plots, i.e.,
spectrum plots without motif labels. The thresholds are selected to be as
close as possible to the manual assignment of non-random-random labels.

4.3 Comparison of sorting approaches
As described in section 2.4.2, there are two predefined ways to sort tran-
scripts in order to subdivide them into a number of bins that define the
foreground sets of SPMA. (1) sort according to the transcript fold change
(FC) and (2) according to the signed log p-value.

In order to investigate how the transcript sorting approach influences
the result of SPMA, i.e., the specta of which RBPs are identified as non-
random (“spectrum label”), transcript-based SPMA runs of 28 data sets
were performed with both the fold change sorting and the p-value sorting
approach. The results were subsequently compared using similarity coeffi-
cients to quantify the agreement between the spectrum labels obtained by
the two sorting approaches for each data set.

If a spectrum met the constraints defined in section 4.2, it was labeled
non-random, and random otherwise. On this level, the results of one SPMA
run were represented by a 175-dimensional binary vector, where each com-
ponent indicates the label of one of 175 spectra (one spectrum for each RBP
motif in Transite).

Similarity coefficients for binary data were used to quantify the similarity
between two 175-dimensional vectors, representing the results of the two
sorting approaches for the same data set.

Only the results of the (deterministic) transcript-based SPMA runs were
examined, because the stochasticity introduced by Monte Carlo tests in
hexamer-based SPMA runs could potentially conceal the differences between
the sorting approaches.

In panels A and B of figure 4.2 one can appreciate that the ratios be-
tween non-random (positive and negative slope, respectively) and random
spectrum labels of the two approaches are similar, but fold change sorted
SPMA deems slightly more spectra non-random. Among spectra with posi-
tive slope, 247 were labeled non-random in p-value sorted SPMA, compared
to 304 with fold change sorted SPMA. Among negative slope spectra the two
approaches are more similar with 292 to 311 non-random labels. In total,
there were 4900 spectrum labels (28 data sets, 175 spectra per data set),
the vast majority of which were labeled random by both approaches (89%
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Figure 4.2: Agreement between p-value and fold change sorting
approaches: The pie charts in panels A and B depict the fractions of non-
random spectra with positive, non-random spectra with negative slope and
random spectra for the p-value approach (panel A) and the fold change
approach (panel B). (C) Venn diagram of spectra with non-random label.
(D) Agreement between spectrum labels of the two approaches, blue hues
indicate agreement, red hues disagreement.

of p-value sorted spectra and 87% of fold change sorted spectra).
The overall agreement between the two approaches is visualized in panels

C and D of figure 4.2. Counting the label decisions of both approaches in all
4900 cases, we arrive at the contigency table 4.1, which yields the following
similarity coefficients: a highly significant MCC of 0.76, a SMC of 0.95,
and a JSC of 0.65. According to the general rule of thumb for correlation
coefficients, it can be interpreted as a moderate (JSC ) to strong (MCC ,
JSC ) positive association between the results of p-value sorted and fold
change sorted SPMA.

The heat map in figure 4.3 represents the similarity coefficients for the
spectrum label assignments of all 28 data sets, separated in spectra with
positive and negative slope. The slope separation is a cautionary measure,
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Table 4.1: Spectrum labels of p-value and fold change sorted SPMA

spectrum label (fold change)
spectrum label (p-value) non-random random
non-random 455 84
random 160 4201

GSE44292_2 BTB − GSE44292_8 BTB
GSE44292_6 BTB − GSE44292_12 BTB
GSE48609_2 BTB − GSE48609_8 BTB

GSE48609_4 BTB − GSE48609_10 BTB
GSE48609_6 BTB − GSE48609_12 BTB

GSE6410_2 BTB − GSE6410_4 BTB
GSE44292_4 BTB − GSE44292_10 BTB

GSE6930_4 BTB − GSE6930_8 BTB
GSE24202_4 BTB − GSE24202_10 BTB
GSE26599_6 BTB − GSE26599_12 BTB
GSE38545_2 BTB − GSE38545_8 BTB

GSE24202_6 BTB − GSE24202_12 BTB
GSE26874_2 BTB − GSE26874_4 BTB
GSE13477_2 BTB − GSE13477_4 BTB

GSE6930_2 BTB − GSE6930_6 BTB
GSE24202_2 BTB − GSE24202_8 BTB

GSE28844_6 BTB − GSE28844_12 BTB
GSE38545_6 BTB − GSE38545_12 BTB

GSE7880_2 BTB − GSE7880_6 BTB
GSE7880_4 BTB − GSE7880_8 BTB

GSE26599_4 BTB − GSE26599_10 BTB
GSE38545_4 BTB − GSE38545_10 BTB
GSE46493_2 BTB − GSE46493_4 BTB
GSE66493_2 BTB − GSE66493_4 BTB
GSE28681_2 BTB − GSE28681_4 BTB
GSE26599_2 BTB − GSE26599_8 BTB

GSE28844_4 BTB − GSE28844_10 BTB
GSE28844_2 BTB − GSE28844_8 BTB

MCC SMC JSC MCC SMC JSC

positive slope negative slope

Figure 4.3: Similarity coefficients between sorting approaches: Col-
ors represent similarity coefficients from zero (white) to one (dark blue).
There are no negative coefficients. The red line to the right hand side of
the heat map rows indicate SPMA runs without non-random labeled spectra
(𝑎 = 𝑏 = 𝑐 = 0).

which prevents hidden mislabelings, i.e., the spectra of one RBP motif are
labeled non-random in both approaches, but exhibit opposite gradients. In
the case where all spectra are labeled random by both approaches (𝑎 = 𝑏 =
𝑐 = 0), MCC is zero, whereas SMC and JSC are one. Intuitively, the latter
is closer to the notion of similarity that is appropriate here.

In order to get an even closer look at the differences and similarities be-
tween the two sorting approaches, the correlation between spectrum charac-
teristics (adjusted 𝑅2, consistency score p-value and slope) was examined.
For this purpose the characteristics of two exemplary data sets—one with a
strong spectrum label similarity between the sorting approaches, the other
with a weaker similarity—and their correlation are depicted in figures 4.4
and 4.5. The long stretches of highly correlated adjusted 𝑅2 and slope values
are due to the fact that most spectra do not exhibit a gradient that can be
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Figure 4.4: Similarity coefficients of a data set with strong spec-
trum label association between p-value and fold change approaches:
Pearson’s product-moment correlation coefficients for the three measures are
0.89 (A), 0.52 (B) and 0.93 (C).
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Figure 4.5: Similarity coefficients of a data set with a weak to mod-
erate spectrum label association between p-value and fold change
approaches: Pearson’s product-moment correlation coefficients for the three
measures are 0.68 (A), 0.30 (B) and 0.59 (C).

approximated with a polynomial well enough to yield statistically significant
coefficients (see section 2.7.2 about model selection), leading to adjusted 𝑅2

and slope values of zero.
In conclusion, signed p-value and fold change sorting approaches yield

similar, but not equivalent SPMA results. In general, more spectra are la-
beled non-random when the latter is used. A disadvantage of the sorting by
p-value is the fact that some transcripts with statistically significant (differ-
ential expression) p-values lack a large enough fold change to be biologically
meaningful.
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4.4 Adverse effects of transcripts with multiple
hits

In transcript-based TSMA and SPMA the score for RBP binding evidence
is the (putative) target site enrichment between foreground and background
sets and its p-value. The procedure is explained in section 2.5.2 in detail,
but in short, all target sites in all transcripts of the foreground set are
added up and compared to the number of target sites of all transcripts in
the background set. Fisher’s exact test is then used to obtain a p-value,
i.e., the significance of the observed enrichment. One of the assumptions of
Fisher’s exact test is the independence of the observations. In this case the
assumption states that whether one target site is in the foreground set does
not depend on any other target site. While this assumption holds true on a
transcript level (fold changes of transcripts are assumed to be independent
from each other), the target sites of a single transcript are not independent
from another. If one target site of a certain transcript is in the foreground
set, all other target sites of that transcript are also in the foreground set.

A solution to completely avoid the interdependence of target sites of
the same transcript would be to count only one site per transcript. But
according to previous studies [43], the number of binding sites per tran-
script is an indicator of the strength of the regulatory effect, e.g., the more
ELAVL1/HuR binding sites a transcript exhibits, the more highly stabi-
lized it is. This finding suggests to preserve the number of binding sites per
transcript. In order to find a tradeoff between the number of false-positives
due to interdependences between binding sites and the maximum number
of recognized putative binding sites (i.e., hits) per transcript, the number of
expected false-positives was obtained as a function of the maximum number
of recognized hits per transcript. Transcript-based SPMA was performed on
transcripts of the GPL570 platform with random fold change values. In this
case one would expect only insignificant target site enrichments. SPMA runs
were carried out with maximum number of recognized hits per transcript val-
ues ranging from 1 to 30, and unbounded. If this number is 15 or higher,
on average around 250 out of 7000 bins (40 bins per motif, 175 motifs) turn
out to have significant enrichment values, which can be considered false-
positives. The number of false-positives highly correlates with the number
of hits per transcript. The data are displayed in figure 4.6. As a result, a
maximum of 5 hits per transcripts were chosen as the ideal setting.

Important to note is, that none of the 24,500 spectra (175 spectra per
run, 10 runs per setting, 14 settings) was labeled non-random as defined
by the criteria in section 4.2. In that sense there were no false-positives,
regardless of the maximum hits per transcripts setting. The false-positives
at bin enrichment level did not exhibit a coherent pattern on the spectrum
level.
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Figure 4.6: False-positives due to interdependencies: The numbers
were obtained by 10 transcript-based SPMA runs per maximum number of
hits per transcript setting with transcripts of the GPL570 platform with ran-
dom fold change values. Error bars indicate 95% confidence intervals. The
right panel is a zoom-in of the left panel.

4.5 Permutation approaches for Monte Carlo tests
This section contains an evaluation of the three different permutation ap-
proaches for the Monte Carlo sampling procedure, which is used to obtain
the null distribution of the geometric mean of motif-associated hexamer en-
richment values. The null distribution is required to determine empirical p-
values in hexamer-based TSMA and SPMA. The theoretical underpinnings
of Monte Carlo tests are described in section 3.6.

To be completely independent of any preexisting pattern in real sequenc-
ing data, this analysis used simulated data, consisting of 10,000 random
sequences, each 1600 nucleotides long, with equal proportions of all four
nucleotides.

The sequences were divided into 100 folds, where the first fold con-
tained the first hundred sequences, the second fold the second hundred,
and so forth. The sequences were broken into hexamers and their enrich-
ment values were calculated between each fold (foreground sets) and all folds
(background set), which is analogous to the enrichment value calculations in
hexamer-based SPMA. Lastly, the geometric mean of enrichment values of
motif-associated hexamers were calculated for three exemplary motifs (LC1,
M031_0.6, M152_0.6). This was done for each fold, yielding 100 enrichment
means per motif.

When empirical p-values of the enrichment means were obtained by
Monte Carlo tests, one would expect them to be uniformly distributed be-
tween 0 and 1—given that the sequences and the subdivision into folds were
random, i.e., the null hypothesis was true.

The aim is to decide which of the three approaches comes closest to the
expected uniform distribution of enrichment value p-values.

The three motifs, which are presented in the next section, were selected
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Table 4.2: Multiple sequence alignment of associated hexamers of LC1 motif
compared with the alignment of random hexamers

LC1 hexamers random hexamers
AUUUAU –-AUUUAU- AACUAC –-AACUAC–-
AUUUUU -AUUUUU–- ACAGGG ––ACAGGG–
UAUUUA –UAUUUA– ACCUAU –-ACCUAU–-
UAUUUU UAUUUU–– AUUUCA -AUUUCA––-
UGUUUU –-UGUU-UU CACUAU –-CACUAU–-
UUAUUU -UUAUUU–- CGUUGC CGUUGC–––
UUCUUU -UUCUUU–- GAGGUA ––-GAGGUA-
UUGUUU –UUGUU-U- GCAAAC GCAAAC–––
UUUAUU ––UUUAUU GGAACU -GGAACU––-
UUUCUU UUUCUU–– GUGUGA ––-GUGUGA-
UUUGUU -UUUGUU–- UAAUGU –-UAAUGU–-
UUUUGU UUUUGU–– UAGCCG –UAGCCG––
UUUUUA –UUUUUA– UCCCUC –UCCCUC––
UUUUUC –UUUUUC– UGGUGG –––UGGUGG
UUUUUG –UUUUUG– UUCAAU –-UUCAAU–-
UUUUUU -UUUUUU–- UUUCAU –UUUCAU––

as to represent the span of motifs in the Transite database; unspecific (i.e.,
many motif-associated hexamers) U-rich motifs (LC1), specific U-rich motifs
(M031_0.6), and motifs with a balanced distribution of nucleotides in their
associated hexamers (M152_0.6). LC1 was specifically chosen to examine
how the permutation approaches perform with respect to interdependent
sets of motif-associated motifs. Such interdependencies are a result of partly
overlapping hexamers, as illustrated by the multiple sequence alignments in
table 4.2.

4.5.1 Permutation approaches

P1: Choose k hexamers randomly

One way to obtain samples of the null distribution is to choose a different
set as motif-associated hexamers and calculate the geometric mean of their
enrichment values. For example the null distribution of enrichment means
of motif LC1 was obtained by randomly choosing 16 hexamers, calculating
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their geometric mean, and repeating this process 10,000 times.
𝑥⏞  ⏟  ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AAAAAA1
AAAAAC2
AAAAAG3

...
GGUUUU4094
GUUUUU4095
UUUUUU4096

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
shuffle
 

𝑟1⏞  ⏟  ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AAAAAA1
AAAAAC2
AAAAAG3

...
GGUUUU4094
GUUUUU4095
UUUUUU4096

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. . .

𝑟𝑛⏞  ⏟  ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AAAAAA1
AAAAAC2
AAAAAG3

...
GGUUUU4094
GUUUUU4095
UUUUUU4096

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

where 𝑥 is a vector of hexamer enrichment values with motif-associated hex-
amers in green, and 𝑟1 to 𝑟𝑛 are its permutations, namely, the permutations
of the motif-associated hexamer labels (or equivalently, permutations of the
enrichment values).

P2: Shuffle nucleotides motif matrix

The second permutation approach introduces randomness by shuffling the
components of the row vectors of the motif matrix. The idea is to avoid
choosing k hexamers randomly, but to change the underlying motif ma-
trix and derive a new set of hexamers in the same way the original motif-
associated hexamers were derived. That way, the structure of interdepen-
dencies between the initial set of hexamers is assumed to be similar to the
new set of hexamers, which were also derived from one (permuted) motif.

This process is illustrated with colored position probability matrices be-
low.

𝑥⏞  ⏟  ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A C G U

1 0.4 0.3 0.1 0.2
2 0.1 0.1 0 0.7
3 0.1 0.4 0.1 0.3
4 0.4 0.4 0.1 0.1
5 0.1 0 0 0.9
6 0 0 0.1 0.9
7 0.3 0.1 0.1 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
shuffle
 

𝑟1⏞  ⏟  ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A C G U

1 0.3 0.4 0.2 0.1
2 0.1 0.1 0 0.7
3 0.1 0.4 0.3 0.1
4 0.1 0.4 0.4 0.1
5 0.1 0.9 0 0
6 0.1 0 0 0.9
7 0.5 0.3 0.1 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. . .

𝑟𝑛⏞  ⏟  ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A C G U

1 0.2 0.4 0.3 0.1
2 0.7 0.1 0 0.1
3 0.4 0.4 0.3 0.1
4 0.1 0.4 0.4 0.1
5 0.9 0 0 0.1
6 0.1 0.9 0 0
7 0.5 0.1 0.1 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.2)

P3: Permute foreground sets

The most rigorous and time-consuming approach to permute the data is to
keep hexamers and motifs as they are and permute the foreground/back-
ground assignments of transcripts instead. Each permutation requires the
recomputation of the hexamer enrichment values.
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foreground set

random foreground set 1

random foreground set n

Condition 1

Condition 2

. .
 .

Figure 4.7: Permute foreground/background assigment: For each
permutation, a new set of foreground transcripts (with equal cardinality) is
selected. For example, if the actual foreground set consists of 103 transcripts
with the highest fold change, one of 10,000 permutations is to choose 103
transcripts by random, use them as foreground set, and recompute hexamer
enrichment values based on the new foreground/background assignment.

Figure 4.7 illustrates the process.

4.5.2 Comparison of permutation approaches

The p-value distributions for the three exemplary motifs and the three per-
mutation approaches are displayed in figures 4.8 to 4.10. Two tests were ap-
plied to assess which of the three approaches generates uniformly distributed
and overall insignificant p-values. The empirical p-value distributions were
compared to a uniform distribution using the Kolmogorov-Smirnov test,
where the p-value is the probability that a sample at least as extreme as the
observed one was randomly drawn from a uniform distribution. And sec-
ondly, Fisher’s combined p-value (see section 3.2.1) was calculated to obtain
the overall significance of the empirical p-values. In case the permutation ap-
proach is valid, both tests yield insignificant p-values. Substantial deviations
from the uniform distribution can also be seen by eye.

Permutation approach P1 tends to produce far too many highly signif-
icant p-values, especially when there are interdependencies between motif-
associated hexamers (see panel D of figure 4.8). Permutation approach P2
may be appropriate for motifs with a balanced distribution of nucleotides in
their associated hexamers, but performs poorly when used with specific U-
rich motifs. Permutation approach 3 yields uniformly distributed and overall
insignificant p-values (when used with random sequences), regardless of the
structure of the motif.

In conclusion, permutation approach P3 outperforms the other two by
far.
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Figure 4.8: P-value distributions of motif LC1: Panels A to C are
histograms of 100 p-values obtained by the aforementioned permutation
approaches. (A) P-value distribution of P1, Fisher’s combined p-value:
0.000344, Kolmogorov-Smirnov test with 𝐻0 “p-values are uniformly dis-
tributed”: 𝑝 = 0.041747. (B) P2: Fisher’s combined p-value: 1, KS test:
𝑝 < 0.000002. (C) P3: Fisher’s combined p-value: 0.815129, KS test: 𝑝 =
0.173931. In panel D the 𝑙𝑜𝑔2 transformed p-values of all three approaches
are plotted, which facilitates the identification of very low p-values.
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Figure 4.9: P-value distributions of motif M031_0.6: (A) Fisher’s
combined p-value: 0.001428, Kolmogorov-Smirnov test p-value: 0.023154.
(B) Fisher’s combined p-value: 0.000211, Kolmogorov-Smirnov test p-value:
0.019478. (C) Fisher’s combined p-value: 0.215873, Kolmogorov-Smirnov test
p-value: 0.443363.
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Figure 4.10: P-value distributions of motif M152_0.6: (A) Fisher’s
combined p-value: 0.01236, Kolmogorov-Smirnov test p-value: 0.133287.
(B) Fisher’s combined p-value: 0.567851, Kolmogorov-Smirnov test p-value:
0.992219. (C) Fisher’s combined p-value: 0.786305, Kolmogorov-Smirnov test
p-value: 0.70824.
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4.6 RBPs and cisplatin
This section presents Transite analysis results of gene expression data from
five different cell lines treated with the chemotherapeutic drug cis-diammine-
dichloroplatinum(II), also known as cisplatin.

Cisplatin is a DNA-damaging agent that induces genotoxic stress. The
alkylating agent predominantly causes the formation of intrastrand (but
also interstrand) cross-links between two guanine residues [44] that in turn
activate the DNA-damage response, which ultimately triggers apoptosis or
cellular senescence [45].

4.6.1 Cell lines

A549 human non-small cell lung cancer cells

In GEO series GSE6410, A549 cells were treated with 50 µM of cisplatin
for 1 hour. Control samples were treated with drug-free media for the same
amount of time. After further 10 hours in drug-free media, gene expression
changes were investigated using Affymetrix Human HG-Focus Target Array
(GEO platform GPL201) [46].

SK-OV-3 human ovarian cancer cells

GEO series GSE38545 investigates the transcriptional response of three hu-
man ovarian cancer cell lines to cisplatin. Dosage and duration of the cis-
platin treatment were selected in a cell line specific manner to study the
cisplatin-induced apoptotic death in each cell line. Illumina HumanRef-8
Expression BeadChips (GEO platform GPL7192) were used to investigate
changes in expression.

NIH-OVCAR-3 human ovarian cancer cells

See previous section.

TOV-21G human ovarian cancer cells

See previous section.

U87 human primary glioblastoma cells

In GEO series GSE66493, U87 cells were treated with cisplatin for 24 hours
at their IC50 concentration. The microarray platform Affymetrix Human
Gene 1.0 ST Array (GEO platform GPL6244) was used.
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4.6.2 Sample clustering

As a preliminary step, the samples of the three GEO series were clustered
as described in section 2.1. The heatmaps of the sample distance clustering
are shown in figure 4.11.

Based on Euclidean distance, the triplicates of cisplatin-treated samples
of A549 cells cannot be separated from the triplicates of control samples
of the same cells. This is a strong indication that the gene expression data
from the GSE6410 data series is too noisy to yield significant results.

A B C

control
cisplatin-treated

control (SK-OV-3)
cisplatin-treated (SK-OV-3)
control (NIH-OVCAR-3)
cisplatin-treated (NIH-OVCAR-3)
control (TOV-21G)
cisplatin-treated (TOV-21G)

control
cisplatin-treated (6 hours)

treated with ruthenium-based compound (6 hours)
cisplatin-treated (24 hours)

treated with ruthenium-based compound (24 hours)

Figure 4.11: Sample distance heatmaps: (A) Treatment and control
samples of GEO series GSE6410 are scattered, which renders subsequent anal-
ysis useless. (B) Treatment and control samples of the various cell lines of
GEO series GSE38545 divide into meaningful (but noisy) groups. (C) In GEO
series GSE66493, the sample labels are perfectly recapitulated in the sample
distance clustering, where sample triplicates form definable 3 × 3 blocks in
the distance heatmap.

4.6.3 Differential gene expression analysis

Differentially expressed genes were identified using the methodology de-
scribed in section 2.3.

The overlap of differentially expressed genes between the cell lines is
depicted in figure 4.12. A549 cells were discarded due to the weak discrim-
ination between treatment and control samples, and—as a result—the low
number of statistically significantly upregulated (six) and downregulated
(two) genes.
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Figure 4.12: Overlap between sets of upregulated and downregu-
lated genes of cisplatin-treated cell lines: (A) Statistically significantly
upregulated genes (B) Statistically significantly downregulated genes

4.6.4 Transcript Set Motif Analysis

TSMA was performed on the 3’ UTR sequences of upregulated and down-
regulated transcripts. The overlap between differentially expressed genes of
the cell lines is shown in figure 4.13. Apart from U87 cells, there were no
significantly over- or underrepresented RBP binding sites in upregulated
transcripts (see panels A and B of figure 4.13). In downregulated tran-
scripts, however, we found a consensus of 20 overrepresented RBP motifs
across cell lines (panel C in the same figure, and tables 4.3 and 4.4), eight of
which describe binding sites from RBPs of the ELAVL/Hu family. Because
HuR/ELAVL1 is the only ubiquitously expressed member of that family—
HuB/ELAVL2 and HuC/ELAVL3 are neuronal-specific— it can be assumed
that ELAVL1 acts as the major regulator, which also recognizes and binds
to ELAVL2 and ELAVL3 sites. [47, 48]. It has been shown previously that
cisplatin treatment hinders ELAVL1 activity, causing its mRNA targets to
decay [49]. This finding is recapitulated in silico by TSMA. Figure 4.14 shows
overrepresented ELAVL binding sites in downregulated transcripts. Put dif-
ferently, ELAVL mRNA targets are downregulated after cisplatin treatment,
as expected. Similar to ELAVL1, HNRNPC is involved in 3’-UTR-mediated
mRNA stabilization [50]. Moreover, it is found to be a regulator of homolo-
gous recombination based DNA repair [51], which is the only adequate mech-
anism to repair cisplatin-induced interstrand cross-links [52]. Binding sites
for alternative splicing regulators SRSF1, SRSF4, and SRSF6 [53] are statis-
tically significantly underrepresented in downregulated transcripts. Under-
representation in downregulated transcripts is usually linked to overrepre-
sentation in upregulated transcripts, albeit insignificant overrepresentation.
The role of these splicing regulators in the context of cisplatin-induced DNA
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damage is unclear. The distribution of SRSF4/SRSF6-motif-associated hex-
amers in downregulated transcripts of different cell lines is shown in fig-
ure 4.15.
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Figure 4.13: Overlap between sets of upregulated and downreg-
ulated genes of cisplatin-treated cell lines: (A) Statistically signifi-
cantly overrepresented binding sites in upregulated transcripts (B) Statisti-
cally significantly underrepresented binding sites in upregulated transcripts
(C) Statistically significantly overrepresented binding sites in downregulated
transcripts (D) Statistically significantly underrepresented binding sites in
downregulated transcripts
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Table 4.3: Consensus RBPs with overrepresented binding sites in downreg-
ulated transcripts after cisplatin treatment

motif ID RBPs
782_8497264 ELAVL2
784_7972035 ELAVL2
LC1 ELAVL1
M012_0.6 CPEB3, CPEB2
M025_0.6 HNRNPC
M075_0.6 TIA1
M077_0.6 U2AF2
M079_0.6 CELF3
M108_0.6 ELAVL1, ELAVL3
M112_0.6 ELAVL1, ELAVL3
M120_0.6 CPEB3
M124_0.6 ELAVL3
M127_0.6 ELAVL1, ELAVL3
M149_0.6 CPEB3, CPEB4
M150_0.6 RALY
M156_0.6 TIA1
M158_0.6 HNRNPCL1
M227_0.6 PTBP1, PTBP2, ROD1
M228_0.6 PTBP1, PTBP2, ROD1
M232_0.6 ELAVL1, ELAVL3

Table 4.4: Consensus RBPs with underrepresented binding sites in down-
regulated transcripts after cisplatin treatment

motif ID RBPs
M061_0.6 SAMD4A, SAMD4B
M151_0.6 HNRNPH2, HNRNPH1, HNRNPF
M153_0.6 LIN28A, LIN28B
M154_0.6 SRSF1
M334_0.6 SRSF4, SRSF6
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Figure 4.14: ELAVL2 motif (motif id: 782_8497264) in downreg-
ulated transcripts: Motif-associated hexamers are predominantly found
among enriched hexamers. (A) SK-OV-3 cells (B) NIH-OVCAR-3 cells (C)
TOV-21G cells (D) U87 cells
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Figure 4.15: SRSF4/SRSF6 motif (motif id: M334_0.6) in downreg-
ulated transcripts: Motif-associated hexamers are predominantly found
among depleted hexamers. (A) SK-OV-3 cells (B) NIH-OVCAR-3 cells (C)
TOV-21G cells (D) U87 cells
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4.6.5 Spectrum Motif Analysis

There was no overlap between the four cell lines, especially U87 cells showed
a different behavior with only one RBP motif meeting the requirements to
be labeled non-random (see section 4.2). However, there was a substantial
overlap between NIH-OVCAR-3 and TOV-21G cells, 36 non-random spec-
trum plots that were common to both cell lines, 15 specific to NIH-OVCAR-3
cells, and 14 specific to TOV-21G cells. Representative examples of spectrum
plots are shown for RBPs exhibiting decreasing linear relationship between
differential regulation after cisplatin and abundance of binding sites across
all transcripts (see figure 4.16), and an increasing linear relationship (see
figure 4.17).

A

B

Figure 4.16: Spectrum plots of ELAVL2 motif (motif id:
782_8497264): Transcripts were sorted according to their fold change (most
downregulated after cisplatin treatment on the left, most upregulated on the
right), they exhibit a gradient of ELAVL2 binding sites. (A) NIH-OVCAR-3
cells (B) TOV-21G cells
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A

B

Figure 4.17: Spectrum plots of SRSF4/SRSF6 motif: (A) NIH-
OVCAR-3 cells (B) TOV-21G cells

4.7 R package Transite
Transite was developed in R 3.2. The package development process was
streamlined by devtools [54].

Function documentation files were generated with the documentation
system roxygen. Vignettes were created with rmarkdown and knitr.

Functions from the parallel R standard library package were used
to parallelize tasks like k-mer enrichment calculation and k-mer-based and
transcript-based score calculation.

Computationally expensive algorithms or algorithms that cannot be vec-
torized were implemented in C++. These include the transcript-based scor-
ing algorithm, the local consistency score Monte Carlo test, and the k-mer-
based scoring algorithm. The C++ code integration was facilitated by the
R package Rcpp [55].

In order to further decrease run-time, hash tables were used to cache (1)
motif scores of all hexamers, and (2) transcript-based hit counts for sequence
regions (5’ UTRs, intronic regions, 3’ UTRs) of all human and murine RefSeq
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identifiers.

4.7.1 Package dependencies

Three CRAN packages are listed in the imports section of the package de-
scription file:
dplyr 0.4.2 A Grammar of Data Manipulation
ggplot2 1.0.1 An Implementation of the Grammar of Graphics
Rcpp 0.12.0 Seamless R and C++ Integration

And one package from Bioconductor is imported:
Biostrings 2.36.4 String objects representing biological sequences, and

matching algorithms

4.8 Transite website
The aim of the Transite website is to make the functionality of the Transite
R/Bioconductor package available to a broader circle of scientists, including
people outside the R community.

It will be available at http://transite.mit.edu. The software will be
hosted on servers provided by the David H. Koch Institute for Integrative
Cancer Research at Massachusetts Institute of Technology.

The website was developed in R with the reactive web application frame-
work shiny [56] from RStudio. The components of the graphical user inter-
face were provided by shiny and shinyBS, which serves as an R wrapper
for the Twitter Bootstrap HTML/CSS/JavaScript components.

4.8.1 Requirements

Apart from Transite and the R standard library package grid, the following
R packages from the CRAN package repository are required for the Transite
website:
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shiny 0.12.2 Web Application Framework for R
shinyBS 0.61 Twitter Bootstrap Components for Shiny
shinyjs 0.1.0 Perform Common JavaScript Operations in Shiny Apps

using Plain R Code
knitr 1.11 A General-Purpose Package for Dynamic Report Gener-

ation in R
DT 0.1 A Wrapper of the JavaScript Library ’DataTables’
rmarkdown 0.8 Dynamic Documents for R (requires pandoc)
gridExtra 2.0.0 Miscellaneous Functions for "Grid" Graphics
dplyr 0.4.2 A Grammar of Data Manipulation
ggplot2 1.0.1 An Implementation of the Grammar of Graphics
scales 0.3.0 Scale Functions for Visualization
stringr 1.0.0 Simple, Consistent Wrappers for Common String Opera-

tions
mailR 0.4.1 A Utility to Send Emails from R

The package rmarkdown relies on the stand-alone document converter
pandoc to convert markdown to HTML documents.

These R/Bioconductor packages are used to retrieve and handle sequence
data and identifiers of platform transcripts:
TxDb.Hsapiens.UCSC.hg38.knownGene 3.1.2

Annotation package for TxDb object(s)
TxDb.Mmusculus.UCSC.mm10.knownGene 3.1.2

Annotation package for TxDb object(s)
BSgenome.Hsapiens.NCBI.GRCh38 1.3.1000

Full genome sequences for Homo sapiens (GRCh38)
BSgenome.Mmusculus.UCSC.mm10 1.4.0

Full genome sequences for Mus musculus (UCSC version mm10)
org.Hs.eg.db 3.1.2 Genome wide annotation for Human
org.Mm.eg.db 3.1.2 Genome wide annotation for Mouse
BSgenome 1.36.3 Infrastructure for Biostrings-based genome data

packages
AnnotationDbi 1.30.1 Annotation Database Interface
GenomicFeatures 1.20.3 Tools for making and manipulating transcript

centric annotations
Biostrings 2.36.4 String objects representing biological sequences,

and matching algorithms
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Table 4.5: Human microarray platform backgrounds for TSMA

Platform GEO accession
Affymetrix Human Genome U133 Plus 2.0 GPL570
Affymetrix Human Genome U133A GPL96
Affymetrix HT Human Genome U133A GPL3921
Affymetrix HT Human Genome U133B GPL9197
Affymetrix Human 35K SubC GPL98
Affymetrix Human 35K SubB GPL99
Affymetrix Human 35K SubC GPL100
Affymetrix Human 35K SubD GPL101
Affymetrix Human Genome U133A 2.0 GPL571
Affymetrix Human Genome U133B GPL97
Affymetrix Human Genome U95A GPL91
Affymetrix Human Genome U95B GPL92
Affymetrix Human Genome U95C GPL93
Affymetrix Human Genome U95D GPL94
Affymetrix Human Genome U95E GPL95
Affymetrix Human X3P GPL1352
Illumina HumanHT-12 v3.0 expression beadchip GPL18461
Illumina HumanRef-8 WG-DASL v3.0 GPL8432
Illumina HumanWG-6 v2.0 expression beadchip GPL13376

4.8.2 Features

The three major features, Transcript Set Motif Analysis, Spectrum Motif
Analysis and Single Transcript Motif Analysis are accessible via the hori-
zontal main menu. The feature-specific pages provide forms to configure and
customize Transite runs (see figures 4.18 and 4.19). After the user filled in the
form and submitted the analysis run, the web application writes the Transite
job description to an rmarkdown file, which includes all the necessary com-
mands and settings for the Transite run. As soon as enough resources are
available, a separate process executes the job. Upon completion, the Transite
analysis report is sent to the e-mail address provided by the submitter. The
report consists of an HTML document with figures, created with pandoc,
rmarkdown, knitr, and DT, and supplemental text-based, tab-delimited data
tables of intermediate and final results.

For TSMA, the user is asked to upload a text file with two columns:
an identifier column with either RefSeq identifiers or gene symbols (HGNC
symbols for human transcripts, MGI symbols for murine transcripts), and a
group label column to identify the transcript groups, i.e., nominal labels like
upregulated, downregulated. Furthermore, it is necessary to select a matching
background gene set. Several human and murine microarray backgrounds are
predefined (see tables 4.5 and 4.6). If the correct background is not part of
the list, a custom background file can be uploaded.

SPMA requires a text file with an identifier column and a value column
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Table 4.6: Murine microarray platform backgrounds for TSMA

Platform GEO accession
Affymetrix Mouse Genome 430 2.0 GPL1261
Affymetrix Murine 19K SubA GPL77
Affymetrix Murine 19K SubB GPL78
Affymetrix Murine 19K SubC GPL79
Affymetrix HT Mouse Genome MG-430A GPL8759
Affymetrix HT Mouse Genome MG-430B GPL8760
Affymetrix Mouse Genome 430A 2.0 GPL8321
Affymetrix Mouse Expression 430A GPL339
Affymetrix Mouse Expression 430B GPL340
Affymetrix Murine Genome U74A Version 2 GPL81
Affymetrix Murine Genome U74B Version 2 GPL82
Affymetrix Murine Genome U74C Version 2 GPL83
Affymetrix Murine 11K SubA GPL75
Affymetrix Murine 11K SubB GPL76
Affymetrix Murine Genome U74A GPL32
Affymetrix Murine Genome U74B GPL33
Affymetrix Murine Genome U74C GPL34
Illumina MouseWG-6 v2.0 expression beadchip GPL6887
Illumina MouseRef-8 v2.0 expression beadchip GPL6885

with an ordinal attribute like fold change, which will be used for sorting the
transcripts. The definition of the background gene set is not necessary, since
they are inherently defined by the main text file.
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Figure 4.18: TSMA form with k-mer-based analysis approach.
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Figure 4.19: SPMA form with transcript-based analysis approach.
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Figure 4.20: Motif database webpage: Displays all motifs in the Transite
database in searchable and sortable table.



Chapter 5

Discussion

Transite is a computational method for the analysis of RBP-mediated mRNA
stability changes in various cellular processes. Hypotheses are generated re-
garding the role of RBPs in these changes by using existing knowledge of
RBP binding preferences in combination with the vast body of publicly
available gene expression data. Subsequent independent experimental vali-
dation of these hypotheses are required. Instead of relying on the analysis
of a single data set from one cell line, it is advisable to include as many cell
lines and independent data sets as possible. The consensus results are less
prone to idiosyncratic behavior pertaining to a specific cell line - treatment
combination, thus reducing the risk of false positives.

Transite results depend on the published sequence motifs that describe
the binding preferences of RBPs. Some RBPs have not been described yet,
others might be described incorrectly. Another limitation to the approach
described in this thesis is the possibility that the RBP-induced change of
mRNA abundance is overshadowed by a simultaneous change of its tran-
scription rate.

Popular alternatives to the frequently used Fisher’s conditional exact
test are unconditional exact tests by Barnard [57] and Boschloo [58], which
are uniformly more powerful for 2 × 2 contingency tables [59, 60]. Unlike
conditional tests, which assume both row and column margins of the con-
tingency table to be known in advance, unconditional tests assume either
the row or the column margin, or—using a multinomial model—only the
total sample size. Both Barnard’s and Boschloo’s tests are computationally
demanding compared to Fisher’s exact test [61], which is why the latter is
used in Transite.

With a few minor adjustments the Transite pipeline can also be used to
investigate the distribution of complementary sequences of microRNA seed
regions in transcripts. This topic was intentionally left out, since it would
go beyond the scope of this thesis.
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Chapter 6

Conclusion and Outlook

The aim of this study is to develop a computational method for identifying
RBPs as key post-transcriptional players in the concerted regulation and
function of cellular processes. Based on previous work [17] in the Michael
B. Yaffe laboratory, the analytical pipeline Transite has been devised to
provide insights into the regulatory role of RBPs in various cellular processes
by leveraging gene expression data and current knowledge of RBP binding
preferences. A comprehensive analysis of RBPs in the context of cisplatin
treatment has been carried out using gene expression data from five different
cancer cell lines. Transite will be available as an R package to enable a
seamless integration in preexisting workflows.

The Transite website will be deployed on http://transite.mit.edu. After
the successful completion of unit and load tests, and a beta testing phase
with members of the Michael B. Yaffe laboratory, the website will be avail-
able to the general public. Furthermore, the Transite R package will be
submitted to the R bioinformatics package repository Bioconductor [62].
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