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Introduction 

I here describe the research project which was the main focus of my work during my research visit in 

Boston. I was, moreover, able to establish further collaborations leading to two additional projects under 

way with researchers from the Department of Mathematics and Statistics of the Boston University and 

the Center for Regenerative Medicine in Boston. All this work is joined by the common theme of the 

application of multi-layer network approach to patient stratification and on finding factors responsible for 

stem cell differentiation into lungs. 

Big Data science 

Bioinformatics seeks insight from a multitude of data collected in the biomedical sciences. The 

multitude of data collected in the biomedical sciences (Benton, 1996; Mushegian, 2011) increasingly 

comes from high-throughput experiments and data sets are of genomic scale. The identification and 

interpretation of biologically relevant patterns in these data, however, remains a bottleneck for both 

basic and applied research, and has been rate limiting in the translation of experimental advances to 

the clinic. 

Data integration 

A lot of hope is now being placed in the integrated analysis of measurements from different sources 

(Searls, 2005), i.e., the joint analysis of different data types. Analyses incorporating multiple sources of 

evidence have proven to be very informative for modelling biological systems (Hartemink, Gifford, 

Jaakkola, & Young, 2002; Hecker, Lambeck, Toepfer, van Someren, & Guthke, 2009; Nariai, Tamada, 

Imoto, & Miyano, 2005). With the addition of more measured variables, also more independent 

measurement samples (e.g., patients) are required for meaningful analysis. It is partly due to the high 

cost of such large-scale experiments that cancer research has been at the forefront of collecting 

sufficiently many matched profiles, including systematic studies of gene expression and the activities of 

novel regulators like microRNAs, the accumulation of somatic mutations, the prevalence of DNA 

methylation, as well as copy number variation (CNV), all of which are known to play key roles in this 

disease. An efficient integrated analysis needs to address: (1) the technical challenge of linking 

heterogeneous data sources and third party analysis tools, and  (2) the inference problem of identifying 

biomedically relevant patterns in extremely high-dimensional spaces (tens of thousands of variables) 

vis-a-vis moderately small sample sizes (hundreds of patients). 

Reproducibility through automation of analyses 

Many published research findings are false or exaggerated, and an estimated 85% of research 

resources are wasted (Ioannidis, 2014). It has thus been recognized that it is necessary to improve the 

reproducibility of research, which constitutes one of the key factors for increasing the proportion of true 

research findings. Reproducibility in science requires publication of not just the paper manuscript but 

also the original measurement data, all code of analysis software, and the exhaustive documentation 

typically needed to independently regenerate the results. Only that makes the analyses reusable and 

enables other researchers to validate if one can build on the analyses conclusions, employed 

algorithms, and the measurement data (Hothorn & Leisch, 2011). Usually multiple tools are applied at 

multiple stages in bioinformatics analyses, which can follow a sequential order, or include iterative 

elements and other flow control, including conditional execution. Such a multi-step analysis is 

commonly referred to as a workflow. Scientific Workflow Systems should aid in carrying out such 

procedures making the whole analysis reproducible through automated execution, documentation, and 

testing.  



Building on my earlier work on light-weight modular workflow systems (Köster & Rahmann, 2012; 

Romano, 2008) for the control of the development cycle and data provenance, I have introduced a 

policy based specification of rules and requirements allowing in-flow enforcement of consistency 

constraints for audit and quality control. These, for instance, enabled the highly parallel execution of 

model-based optimization of assays for genome-scale transcript expression profiling experiments. 

Unexpected behaviour of both third party software, inconsistencies in heterogeneous external data 

sources, and a shared cluster environment could thus be isolated from the main analysis logic. For data 

integration, the workflow systems that I have developed will support quality control and systematic 

processing of the original data sources to unified scales and in general help in performing the 

computational analyses described below. In particular, I have employed complementary use-cases 

from sequence analysis and comparative genomics for validation of my methodological work. 

Cancer research 

We focus on the analysis of a large collection of Kidney Renal Clear Cell Carcinoma data (KIRC). KIRC 

is also known as clear cell Renal Cell Carcinoma (ccRCC) and a large set of studies is available from 

the public ICGC / TCGA (www.icgc.org) data archives. Even though kidney cancer is the 7th 

(www.cancerresearchuk.org) most common cancer in males in the UK alone, and its incidence has 

increased by over 25% in the last decade, it has received relatively little attention in the scientific 

literature (Figure 1) and remains to be better characterized. 

Figure 1: Number of publications (in PubMed online library) for selected cancers 

 

 

 

 

 

 

 

The data recently compiled for this cancer covers an unusually large number of patients and data types 

(Figure 2). In particular, we search for pathways dysregulated in KIRC, playing a key role in cancer 

progression. Comparing tumour and normal tissue samples, the effect of the disease can be directly 

studied. 

Figure 2: Sample numbers per cancer in ICGC (USA) database 

  



Testing for gene set enrichment 

Gene expression analysis has become a key tool for functional genomics, aiming to decode the 

blueprint of genomic DNA. Often, differential expression studies yield hundreds to thousands of 

affected genes. Testing for an enrichment of genesets of known functions is one of the most popular 

approaches to interpreting results (Khatri, Sirota, & Butte, 2012). This identifies, for instance, specific 

GeneOntology or KEGG pathways that are enriched in the affected genes. 

The incorporation of additional molecular profiling data promises to further improve our ability to detect 

enriched pathways. Jointly analysing different data types could more sensitively identify canonical 

pathways from MSigDb that were expected from the literature than when each data type was analysed 

separately (Tyekucheva et al., 2011). In a recent publication Verbeke et al (Verbeke, Eynden, et al., 

2015) propose a method for ranking pathways through a network-based data integration approach. 

Even in this most recent publication, and even though the authors show that the method yields results 

in agreement with a previous approach, no thorough benchmark is applied. This reflects well 

acknowledged challenges of benchmarking in the absence of a ‘ground truthâ€™ in the field 

(Alexeyenko et al., 2012; Glaab, Baudot, Krasnogor, Schneider, & Valencia, 2012) A key objective of 

my research work was therefore to develop and establish such an objective benchmark to fill this 

unaddressed need. 

Latent Pathway Identification Analysis (LPIA) 

It has been shown that network approaches can be helpful for understanding diseases better (Barabási, 

2007; Papin et al., 2004; Silverman & Loscalzo, 2012, p. 2013; Wang et al., 2014). Latent pathway 

identification analysis (LPIA), introduced by Pham et al (Pham et al., 2011), combines measurements 

and existing knowledge by integrating structured information from several sources. Building on this, we 

here introduce and validate a novel network-based data integration approach for identifying metabolic 

pathways implicated by differential expression analysis and changes in DNA copy number variation 

(CNV). This way we shortlist biological functions that may be responsible for the observed patterns of 

complex transcriptional dysregulation in KIRC.  

Originally, LPIA was designed to integrate measurements of gene expression with information about 

pathways from the KEGG database and functions from the GeneOntology database into a single 

annotated interconnected network of pathways. The method utilizes a stepwise approach where the 

final nodes represent pathways and the edges between nodes are weighted according to the strength 

of evidence for differential expression in genes relevant to the biological functions in which the 

corresponding biological pathways are involved. A statistical hypothesis testing framework is then used 

to determine pathways for which the network-wide evidence suggests significant changes in expression 

relevant to the phenotype of interest, and facilitates ranking of pathways. This way, the underlying 

cellular mechanisms of action in several studies have already been identified, including studies of 

prostate cancer metastasis (Pham et al., 2011). 

We now incorporate evidence from complementary sources and thus support extended data-

integration. In this work, we focus on adding CNV data. We examine two probabilistic approaches for 

data integration, testing for (1) all of the data sources showing a differential effect for the gene, or (2) at 

least one of the data sources showing a differential effect for the gene. Moreover, we implement 

parallel execution support for multi-core environments, which aids fast method prototyping, tests of 

different algorithm parameters / input sets, and tests of robustness (sub-sampling). 

 



Methods 

Data sources 

The data used in the presented work was downloaded from the ICGC Data Portal v15.1, project: 

Kidney Renal Clear Cell Carcinoma - TCGA, US (https://dcc.icgc.org/projects/KIRC-US). We use the 

Sequence-based Gene Expression (EXP-S) data for, initially, 518 donors and Copy Number Somatic 

Mutations (CNSM) data for, initially, 522 donors. In our initial approach we only used matched Primary 

solid Tumor and Solid Tissue Normal samples, also matched between expression and CNV donors, 

resulting in 55 matched donors. We matched the samples through the column submitted_sample_id 

and using the codes described in Code Tables Report, under Sample Type (https://tcga-

data.nci.nih.gov/datareports/codeTablesReport.htm) using the Clinical Data file. 

Further we extended the dataset by the normal-unmatched tumour samples. These amounted to a total 

of 483 tumour and 55 normal samples - patient data that was available for both the gene expression 

and CNV data. 

Data preparation 

Sequencing based Gene Expression Profiling 

We perform a TMM normalization (Robinson & Oshlack, 2010) and Voom transformation (Law, Chen, 

Shi, & Smyth, 2014) on the level 3 raw read counts - column raw_read_count, as described in the 

limma user guide (http://www.bioconductor.org/packages/release/bioc/html/limma.html). 

Somatic Copy Number Variation 

We match the CNV segments with a specific gene using the R package ‘GenomicRanges’ (Lawrence et 

al., 2013). We try two approaches for the mapping: (1) we use the segment lengths as they are, and (2) 

we assume that the genes are also influenced by the copy number variations 20.000 bases upstream 

and 5.000 bases downstream. As we don’t observe change in the final results we decide to use the (1) 

straightforward approach.  

Usually more fragments are matched to the same gene. In such case we calculate a mean of the log2 

segment mean values for the specific gene. Ultimately, we arrive at one CNV value per gene which is 

used further for calculating the effect size for the gene. 

Effect size calculations 

We use standard linear models to compute empirical Bayes regularized t-statistics for each 

data type. Specifically, we employ the R limma (Smyth, 2004) package for the effect size calculations 

of each data type. We run the data through lmFit, contrasts.fit, and finally the eBayes functions. As it is 

nontrivial to decide what is the right prior to use for an analysis we first apply the eBayes function with a 

default prior of 0.01 to obtain raw p-values, for the purpose of moderating t-values. Then, a more 

precise estimate for the prior is set by convex estimation from the corresponding raw, 

unadjusted p-values. We then rerun the eBayes function and calculate the obtained log-odds ratios B 

for a differential signal between tumour and control samples for each data type. From the B values we 

calculate the posterior probabilities of a differential effect occurring for a gene. 

Network construction 

https://dcc.icgc.org/projects/KIRC-US
https://tcga-data.nci.nih.gov/datareports/codeTablesReport.htm
https://tcga-data.nci.nih.gov/datareports/codeTablesReport.htm
http://www.bioconductor.org/packages/release/bioc/html/limma.html


Gene sets 

We use 186 KEGG (Kanehisa & Goto, 2000) pathways as provided in the Molecular Signatures 

Database (MSigDB), C2: curated gene sets, Gene sets derived from the KEGG pathway database. We 

reformat the gene sets file for use in LPIA as described by Pham et al (Pham et al., 2011). 

GO terms 

We download the gene_association.goa_human.gz (16-Apr-2014 07:47, 5.3M) from 

http://biomirror.aarnet.edu.au/biomirror/geneontology/gene-associations/ and use it to create our GO 

terms collection. We again reformat the file for LPIA after Pham et al (Pham et al., 2011): We map the 

genes to their Entrez names with a custom file downloaded from http://www.genenames.org/cgi-bin/ 

and select only biological processes with the sizes between 15 and 350. 

Compilation of Reference Pathway Lists 

Positive reference 

We performed a literature search for KEGG (Kanehisa & Goto, 2000) pathways found to be 

dysregulated in clear cell Renal Cell Carcinoma (ccRCC). We found 62 pathways (Chen et al., 2013; 

Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; Tun et al., 2010; Zaravinos et 

al., 2014; ZENG et al., 2014) out of the total of 186 KEGG pathways. 

Negative reference 

From the set of 186 KEGG pathways we selected pathways that should theoretically not be 

dysregulated in ccRCC, resulting in 26 pathways out of the total of 186 KEGG pathways. We based the 

selection on manual literature search and are aware that it does not necessarily have to be fully correct. 

Clinical annotation 

Initially, we divided the matched samples in two groups based on their clinical annotation: (a) 34 

samples classified as ‘remission, alive’ and (b) 21 samples showing ‘progression’, including both ‘alive’ 

and ‘deceased’ patients. We did not consider the 5 ‘remission, deceased’ patients because of potential 

confounding co-morbidities or misclassifications.  

However, after multiple analyses it became apparent that due to the little number of matched patients 

available our sampling approach would not yield informative results and decided on using all the 55 

matched, and further the 483 unmatched, samples as one group. 

Setup of the tools used for evaluation  

In case a default setting of a tool is changed we specify it below. 

KEGGprofile (Zhao et al., 2015) is a hypergeometric test for pathway enrichment, with no evidence 

considered but only the set membership, where the input is a list of selected genes of interest. The 

genes in the list are selected as 0.95 percentile of the posterior probabilities of each gene being 

differentially expressed. We also tested other approaches for gene list selection, choosing all the genes 

that had the posterior probabilities above 0.5, 0.75, 0.9, 0.95 and 0.99. KEGGprofile with genes 

selected with these alternative approaches performed significantly worse in all the cases (data not 

shown). 

http://biomirror.aarnet.edu.au/biomirror/geneontology/gene-associations/
http://biomirror.aarnet.edu.au/biomirror/geneontology/gene-associations/
http://biomirror.aarnet.edu.au/biomirror/geneontology/gene-associations/
http://www.genenames.org/cgi-bin/
http://www.genenames.org/cgi-bin/


RTopper (Tyekucheva et al., 2011) accepts expression levels and/or CNV estimates as input. The 

genes are then ranked based on the model fit measured by logit-link regression and finally a one-sided 

Wilcoxon rank-sum test is performed for gene set enrichment. 

GSEA (Subramanian et al., 2005) is used in the ‘Preranked’ mode, as advised in the GSEA online 

manual for RNA-Seq data, where a preranked list of genes (ranking inclusive) is used as input. Such an 

approach simply enables both the single- and multi-track data analysis if the integrated data is used for 

preparing the ranked list of genes. This way it is possible to use the gene expression data alone or the 

previously integrated data as a list of genes ranked by evidence - posterior probabilities. Finally, as 

advised in the online manual, the “classic” Kolmogorov-Smirnov-­like statistic is used for the gene set 

enrichment. 

Results 

Clinical data lets us relate molecular signatures to cancer remission or progression, or survival. We, 

therefore, considered splitting the matched samples in two groups based on their clinical annotation: (a) 

34 samples classified as ‘remission, alive’ and (b) 21 samples showing ‘progression’. We concluded, 

however, that the sample sizes for each group were too small to arrive at meaningful, unbiased results 

and therefore decided to first analyse all 55 patients as one group. 

The integrative approaches we test are probabilistic but with different assumptions. As each data type 

needs special consideration, we first focus on gene expression and CNV, as these are expected to be 

most directly related but our framework allows for simple integration of any number of data types which 

enable calculating a size effect per gene. 

We examine two questions: (i) Whether CNV data can be exploited meaningful within the tested 

frameworks analysing posterior probabilities that all the data sources together support a differential 

effect for the gene. We also tested a setup with posterior probabilities that at least one data source 

supports a differential effect for the gene but the results proved to be poor and/or random (analysis not 

shown here). (ii) Whether extending the analysed data by adding more samples can improve the results 

of a gene set enrichment test. 

In a standard gene set enrichment experiment only gene expression is analysed. On the other hand, 

CNV data alone is known to be noisy. (Kuijjer et al., 2012; Louhimo et al., 2012) It has been suggested 

that the combined gene expression and CNV analysis should have a better predictive power (Lu et al., 

2011). We therefore combined evidence from gene expression profiling with copy number somatic 

mutation to test if a better performance can be achieved. We compute a joint posterior probability of a 

gene being differentially affected using our suggested integrative approach. 

To combine evidence of all the data sources indicating a differential effect for the gene we compute an 

estimate of the posterior probability of both gene expression and copy number somatic mutation of 

showing a differential effect: 

𝑃𝑎𝑙𝑙 = ∏𝑁
𝑖=1 𝑃𝑖, (1) 

Second, we test whether at least one (any) of the data sources shows a differential effect for the gene, 

where we compute an estimate for the posterior probability of either gene expression or copy number 

somatic mutation showing an effect:  

𝑃𝑎𝑛𝑦 = 1 − ∏𝑁
𝑖=1 (1 − 𝑃𝑖), (2) 



Extending LPIA 

We developed, and evaluated eLPIA (Figure 1) - extension of the weighted network construction in 

LPIA for incorporating multiple additional complementary measurement types. Moreover, we accelerate 

analysis by optimizing the original LPIA algorithm to support parallel execution for multi-core 

environments. The integrative approaches we test are probabilistic but with different assumptions. As 

each data type needs special consideration, we first focus on gene expression and CNV, as these are 

expected to be most directly related but our framework allows for simple integration of any number of 

data types which provide a size effect per gene. 

Figure 3: (A) LPIA original design; (B) eLPIA - with additional data type and parallelized execution (figures reproduced from 

and modified after the original LPIA paper by Pham et al (Pham et al., 2011)) 

 

Adding the support for parallel execution for multi-core environments involved rewriting the software 

and incorporating the Perl Parallel::ForkManager. The main iteration of the centrality scores 

calculations is ran first and afterwards all the, e.g., 1000, iterations needed for performing the bootstrap 

resampling for ranking the pathways can be run simultaneously, depending on the number of threads 

available. This version will be made available upon publication of the full-length manuscript reporting 

our analyses. 

Dysregulated pathways detection 

Now we focus on the question whether CNV data can be exploited meaningful within the LPIA 

framework. We test: (a) LPIA analysing the Posterior probabilities of differential gene expression and 

CNV alone, (b) eLPIA analysing Posterior probabilities that all the data sources together support a 

differential effect for the gene, and (c) eLPIA analysing the Posterior probabilities that at least one data 

source supports a differential effect for the gene. 

It was shown that alternative preprocessing of RNA-Seq data in TCGA improves the results of the 



analysis as compared to data normalized within the TCGA consortium (Rahman et al, 2015). We thus 

applied the state-of-the-art Voom+TMM normalization in order to yield possibly more accurate results. 

We TMM-normalize (Robinson & Oshlack, 2010) and Voom-transform (Law et al., 2014) the gene 

expression raw read counts and use standard linear models to compute empirical Bayes regularized t-

statistics for each data type. An estimate for the prior is set by convex estimation from the unadjusted 

p-values. The obtained log-odds ratios (B values) then represent the differential signal between tumour 

and control for each data type. From the B values we calculate the posterior probabilities of a 

differential effect occurring for a gene. We then use these posterior probabilities as input for LPIA. 

Therefore, we perform all the experiments twice - first on the original TCGA-normalized and later on the 

TMM/Voom-normalized data.  

Analysing the original TCGA-normalzied data 

(a) LPIA analysing the Posterior probabilities of differential gene expression and CNV 

alone 

Initially, we performed the established LPIA analysis on KIRC data, separately for gene expression 

data, and separately for copy number somatic mutation data. The resulting pathways (Table 1) largely 

comply with previous studies already at this analysis step, with 73% (80% in top 10) matching known 

KIRC-dysregulated pathways for the gene expression analysis and 40% (40%) for the CNV analysis in 

the top 15 mostly dysregulated pathways. 

Table 1: Top 15 KEGG pathways found by the standard LPIA approach; pathways in blue are found in literature as related to 

clear cell Renal Cell Carcinoma (Chen et al., 2013; Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; 

Tun et al., 2010; Zaravinos et al., 2014; ZENG et al., 2014). 

 

It has been suggested that the combined gene expression and CNV analysis should have even better 

predictive power (Lu et al., 2011). We therefore extended the LPIA framework by integrating data 

sources in the step of computing gene weights for the construction of pathways, combining evidence 

from gene expression profiling with copy number somatic mutation data. We compute a joint weight per 

gene using our suggested integrative approaches. 

(b) eLPIA analysing Posterior probabilities that all the data sources together support a 

differential effect for the gene. 



First, we tested whether all the data sources indicated a differential effect for the gene. We compute an 

estimate of the posterior probability of both gene expression and copy number somatic mutation of 

showing a differential effect (equation 1), resulting in eLPIA yielding pathways shown in Table 2. 

Table 2: Top 15 KEGG pathways found by approach (ii); pathways in blue are found in literature as related to clear cell Renal 

Cell Carcinoma (Chen et al., 2013; Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; Tun et al., 2010; 

Zaravinos et al., 2014; ZENG et al., 2014). 

 

(c) eLPIA analysing the Posterior probabilities that at least one data source supports a 

differential effect for the gene. 

Second, we test whether at least one (any) of the data sources shows a differential effect for the gene. 

We compute an estimate for the posterior probability of either gene expression or copy number somatic 

mutation showing an effect (assuming independence, in first approximation, see equation 2). Among 

the top ranked pathways we find many which are not currently annotated in the literature (Chen et al., 

2013; Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; Tun et al., 2010; 

Zaravinos et al., 2014; ZENG et al., 2014) (Table 3). 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Top 15 KEGG pathways found by approach (iii); pathways in blue are found in literature as related to clear cell Renal 

Cell Carcinoma (Chen et al., 2013; Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; Tun et al., 2010; 

Zaravinos et al., 2014; ZENG et al., 2014). 

 

The results returned by this approach seem very far from the reference literature findings, returning 

many pathways unlikely to be dysregulated in KIRC. 

Analysing the TMM/Voom-normalzied data 

(a) LPIA analysing the Posterior probabilities of differential gene expression and CNV 

alone 

Again we perform the established LPIA analysis on KIRC data, separately for gene expression data, 

and separately for copy number somatic mutation data. The resulting pathways (Table 4) largely 

comply with previous studies already at this analysis step, with 60% matching known KIRC-

dysregulated pathways for the gene expression analysis and 40% for the CNV analysis in the top 15 

mostly dysregulated pathways. 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Top 15 KEGG pathways found by the standard LPIA approach; pathways in blue are found in literature as related to 

clear cell Renal Cell Carcinoma (Chen et al., 2013; Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; 

Tun et al., 2010; Zaravinos et al., 2014; ZENG et al., 2014). 

 

(ii) eLPIA analysing Posterior probabilities that all the data sources together support a 

differential effect for the gene. 

First, we tested whether all the data sources indicated a differential effect for the gene. We compute an 

estimate of the posterior probability of both gene expression and copy number somatic mutation of 

showing a differential effect (equation 1), resulting in eLPIA yielding pathways shown in Table 5, with 

67% matching known KIRC-dysregulated pathways. 

Table 5: Top 15 KEGG pathways found by approach (ii); pathways in blue are found in literature as related to clear cell Renal 

Cell Carcinoma.{Chen et al., 2013(Huang et al., 2014)The Cancer Genome Atlas Research Network, 2013(Tun et al., 

2010(Zaravinos et al., 2014)ZENG et al., 2014) 

 

(iii) eLPIA analysing the Posterior probabilities that at least one data source supports a 

differential effect for the gene. 

Second, we test whether at least one (any) of the data sources shows a differential effect for the gene. 

We compute an estimate for the posterior probability of either gene expression or copy number somatic 



mutation showing an effect (assuming independence, in first approximation, see equation 2). 

As in the previous TCGA-normalized data results among the top ranked pathways we find many 

pathways which are not currently annotated in the literature (Chen et al., 2013; Huang et al., 2014; The 

Cancer Genome Atlas Research Network, 2013; Tun et al., 2010; Zaravinos et al., 2014; ZENG et al., 

2014) (Table 3), with only 33% matching known KIRC-dysregulated pathways. 

Table 3: Top 15 KEGG pathways found by approach (iii); pathways in blue are found in literature as related to clear cell renal 

cell carcinoma (Chen et al., 2013; Huang et al., 2014; The Cancer Genome Atlas Research Network, 2013; Tun et al., 2010; 

Zaravinos et al., 2014; ZENG et al., 2014). 

 

The results returned by this approach are again very far from the reference literature findings, returning 

additionally many pathways unlikely to be dysregulated in KIRC. 

Assessing performance 

We performed evaluation of the eLPIA algorithm, comparing its performance to three established gene 

set enrichment analysis tools, each using a different approach for the enrichment calculations and/or 

integration method: KEGGprofile (Zhao, Guo, & Shyr, 2015), RTopper (Tyekucheva et al., 2011) and 

GSEA (Subramanian et al., 2005). We used the same tools for both the single- (gene expression) and 

multi-track (gene expression + CNV) data analysis. 

We randomize the data by subsampling, where we randomly sample 36 patients from the group of 55 

matched normal-tumour samples 21 times (not more, due to computational cost). We use two 

complementary subsampling approaches, where (1) compute the Positive Predictive Value against a 

positive reference list of pathways, subsampling normal paired with shuffled normal samples, and (2) 

we compute the Positive Predictive Value (PPV) against a negative reference list of pathways, 

subsampling the matched normal-tumour samples. The PPV is calculated according to formula (3) and 

always for the top 30 pathways reported by a tool to be dysregulated. 

𝑃𝑃𝑉 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
, (3) 

where true positives stands for the number of pathways that are correctly found to be dysregulated in 

KIRC according to literature and false positives is the number of pathways (3.1) from the positive 

reference set that are still found in the data even after the data set is made meaningless by shuffling 

the data, or (3.2) that are are found to be dysregulated but should not according to a negative reference 



list. 

(1) Normal vs shuffled normal 

With this approach we are testing if the method can be ‘cheated’ into finding positive reference 

pathways even if the data is meaningless - after subsampling normal paired with shuffled normal 

samples. If a tool finds pathways from the positive reference in the normal vs shuffled normal data it is 

assumed to be incorrect. We perform a gene set enrichment analysis with each of the tools, including 

eLPIA and repeat this 21 times. With the results we re-calculate the PPV according to equation 3.1. 

Figure 4: PPVs for Normal vs shuffled normal approach; ‘i’ in front of a tool’s name indicates that it shows the results of the 

integrated data run, otherwise the results are shown for the gene expression alone 

 

There seems to be a visual trend of data integration increasing the PPV. None of the results are, 

however, significant. Tools seem to be performing similarly well and it is impossible to find the superior 

algorithm. Therefore, we tested another approach. 

(2) Matched normal-tumour 

We now employ a negative reference set. With this approach we are testing if the method finds truly 

wrong pathways - negative reference pathways, in meaningful data. Here the PPV is calculated 

according to equation 3.2. 

Figure 2: PPVs for Matched normal-tumour approach; ‘i’ in front of a tool’s name indicates that it shows the results of the 

integrated data run, otherwise the results are shown for the gene expression alone 

 



Apart from KEGGprofile, all the tools again seem to be performing similarly well and it is impossible to 

find a significantly superior algorithm. 

We performed extensive benchmarking using data set extended by unmatched samples which can be 

accessed in the Supplementary file. 

Extended benchmarking 

After our two benchmarking approaches with the matched data resulted in almost no differences in all 

of the methods performance we now test if adding more data - unmatched samples, will show a 

difference in the performance. We sample 101 patients from the groups of 483 tumour and 55 

unmatched normal samples. For sake of computational cost we leave eLPIA method out of the further 

analyses, assuming that only if there is any space left for performance improvement does it make 

sense to actually compare our novel method.  

We run each of the gene set enrichment tools 101 times. Initially, with the results we again calculated 

the PPV on the top 30 pathways. This way the calculations were still not yielding any more useful 

benchmarking results. Therefore, we decided to employ another measure of performance - sensitivity, 

and not use the 30 top pathways for calculations but rather base the pathway selection on an eFDR 

threshold set for each method individually to the same level. 

We thus performed extensive performance evaluation of three established gene set enrichment 

analysis tools now employing two measures of performance: (i) sensitivity 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
, (4) 

where true positives stands for the number of pathways that are correctly found to be dysregulated in 

KIRC according to literature and the false negatives is the number of pathways from the positive 

reference list that are not found by a method to be dysregulated. 

And (ii) Positive Predictive Value (PPV) (3.2), where false positives is the number of pathways that are 

found to be dysregulated but should not according to a negative reference list. 

For each method each of the sensitivities and PPV values are calculated on results returned at a 10% 

eFDR level. To make the results between methods comparable the q-value threshold for achieving the 

10% eFDR is adjusted for each method and each approach - single- and multi-track data runs, 

separately. 

Comparing runs with matched to runs with unmatched samples 

We examine how adding (i) an additional data type and (ii) more data - unmatched samples, changes 

the performance of a tool.  

We randomize the data by sub-sampling. For the matched samples runs we randomly sample 36 

patients from the group of 55 matched normal-tumour samples. For the dataset extended with the 

addition of unmatched samples we take all the 483 tumour patients and sample 483 times from the 55 

unmatched normal samples. We perform a gene set enrichment analysis with each of the tools and 

repeat this 101 times. With the results we calculate the sensitivity and PPV. 

 

 



Figure 1: Sensitivity (in colour) and PPV (in grey) at 10% eFDR, for M-: Matched data results compared with U-: Unmatched 

data; “i” in front of a tool’s name indicates that it shows the results of the integrated data run, otherwise the results are shown 

for the gene expression alone; GSE tools: Kp = KEGGprofile, Grnk = GSEA-Preranked, RTop = RTopper 

 

We observe that the addition of more data (here a 10-fold increase in sample size) is generally 

beneficial and performance of a specific tool for a specific setup increases with increased number of 

samples. This is not apparent when considering the PPV of a method but becomes evident when 

sensitivity is examined. On the other hand, integrating additional data type - CNV, seems to mostly, 

apart from KEGGprofile, not change a method’s performance when matched samples are considered. 

In case of using more (unmatched) samples the decrease of performance with integrated CNV is 

clearly visible. 

We further focus only on the extended data set, using the unmatched samples. 

Signal reduction in runs on extended data 

We next investigated the relative performance of different methods in the detection of more subtle 

signals. Here, for the sake of computing power, we sample 101 patients from the total of 483 tumour 

samples and sample 101 times from the 55 unmatched normal samples. We perform a gene set 

enrichment analysis with each of the tools and repeat this 101 times. With the results we calculate the 

sensitivity and PPV. The tumour samples signals were down-mixed by admixture of normals and vice 

versa. E.g., 100% means that we used "pure" tumour signal for the run - no down-mixing, whereas 80% 

means that we mixed 80% of tumour sample signal with 20% of normal sample signal for the “tumour” 

sample and 20% of tumour sample signal with 80% of normal sample signal for the “normal” sample. 

 

 

 

 

 

 

 



Figure 2: Sensitivity (in colour) and PPV (in grey) at 10% eFDR, for Unmatched data results; left panel: analysis of expression 

data alone, right panel: analysis of integrated data; “sim 100” stands for 100% tumour sample (no down-mixing), “sim 80” 

stands for 80% down-mixing, etc. 

 

A diluted signal seems to influence performance of the methods that are based on unweighted lists of 

genes. Interestingly, for the most sophisticated method - RTopper, both the sensitivity and PPV 

decrease only slightly and mostly insignificantly with diluted signal. 

Discussion 

Pathways found to be dysregulated by LPIA 

As shown the results returned by the second integrative approach, where we tested whether at least 

one (any) of the data sources (gene expression or CNV) shows a differential effect for the gene, were 

so far from the reference literature findings, returning additionally many pathways unlikely to be 

dysregulated in KIRC, that here we only focus on evaluating the pathways returned by our first 

proposed integrative approach - where we test whether all the data sources indicated a differential 

effect for the gene. 

...in the TCGA-normalized data 

Individual results from gene expression alone match pathways previously reported in the literature well 

(73% of the top 15), and this is an independent validation of LPIA as an effective method for the 

inference of pathways. We find four new pathways: The ‘Ribosome’ pathway unspecifically reflects cell 

protein production activity. More interestingly, it is proven that the mTOR signaling pathway is active in 

ccRCC (Robb et al., 2007) and its inhibition may have disease-modifying effects in both ccRCC (Battelli 

& Cho, 2011) and neurodegenerative disorders (Wong, 2013) linking the 'Huntingtons Disease' 

pathway with KIRC. The ‘Peroxisome’ novel specific pathway may be of direct interest, considering that 

it is well known that lipid biosynthesis is largely dysregulated in ccRCC (Drabkin & Gemmill, 2012) and 

peroxisomes play a key role in lipid metabolism (del Río, 2013). ABC transporters are widely expressed 

in cancer cells and are a known to cause resistance to chemoterapeutic drugs, and are thus a 

suggested target for cancer therapy (Szakács et al., 2006), making the ‘ABC Transporters’ pathway a 

plausible candidate for investigation in kidney cancer. 

We expected that the interpretation of the joint analyses would be more challenging but it in fact it 



yielded results in even a higher concordance with the reference. Requiring a signal from both CNV and 

gene expression yields a slightly better concordance with pathways earlier reported to be associated 

with KIRC (80% of the top 15 pathways). Two of the novel dysregulated pathways identified as of 

potential interest are the ‘Ribosome’ and 'Huntingtons Disease' pathways similar to the findings by the 

gene expression profiling alone. However, the third pathway identified by this joint analysis - 

‘Lysosome’, is different. Lysosomes, known for being the waste disposal system of a cell, are believed 

to be both pro- and anti-oncogenic (Kirkegaard & Jäättelä, 2009) with an important function of 

facilitating cell death even in cancer cells where the classical apoptosis pathway becomes dysfunctional 

(Jäättelä, 2004) thus becoming of increased interest in oncology. 

In summary, the combined analysis seems to partially confirm the findings by the gene expression 

profiling analysis alone and also yield additional interesting outcome. 

Results from CNV alone recover a smaller set of pathways reported to be involved (40% of the top 15). 

This can be understood as a result of two effects: (1) most of the pathways currently reported in the 

literature have been derived from gene expression analyses, and (2) much fewer genes (54-77% fewer) 

show a significant differential signal in the CNV data. Interestingly, some of the pathways found to be 

dysregulated in the KIRC CNV data suggest a less specific connection to KIRC, yielding pathways 

linking to more, seemingly unrelated, cancer types, like melanoma, glioma or lung cancer. 

Requiring a signal from CNV or gene expression data recovers a much smaller number of pathways 

earlier reported (59% of the top 15). Notably, while the number of pathways that have not been 

identified before is close to an analysis of CNV alone, the pathways differ but we again see pathways 

related to other types of cancers, with glioma, melanoma or leukemia. The question arises whether 

these are false positives or new discoveries of biological relevance. 

...in the TMM/Voom-normalized data 

Individual results from gene expression alone match pathways previously reported in the literature well 

(60% of the top 15), and this is an independent validation of LPIA as an effective method for the 

inference of pathways. We find six new pathways: The ‘Proximal tubule bicarbonate reclamation’ 

seems a plausible candidate as it is involved in maintaining the right pH of the tubule lumen. It is known 

that acidic environment is important to cancer progression because it protects cancer cells from 

immune system (Pinthus, 2011; Kanehisa & Goto, 2000). ‘Endocytosis’ pathways is long known to be 

derailed in cancer cells, as an effect of multitude of oncogenic alterations (Mosesson et al., 2008), 

leading to functional dysregulation of multiple receptors thus enabling cancer to grow (Mellman & 

Yarden, 2013). ABC transporters are widely expressed in cancer cells and are known to cause 

resistance to chemotherapeutic drugs, and are thus a suggested target for cancer therapy (Szakács et 

al., 2006), making the ‘ABC Transporters’ pathway a plausible candidate for investigation in kidney 

cancer. It is well known that restriction of amino acids like phenylalanine can inhibit growth and 

metastasis of cancer (Y.-M. Fu et al., 1999). Furthermore, death of, e.g., prostate cancer cells is closely 

related to changes in glucose metabolism, which can be influenced by the aforementioned amino acid 

restriction (Y.-M. Fu et al., 2010). Thus the ‘Phenylalanine Metabolism’ pathway might in fact be worth 

closer investigation. ‘Axon Guidance’ and ‘Neuroactive Ligand Receptor Interaction’ pathways are, 

however, unexpected. On the other hand, pathways of neurodegenerative diseases, like Alzheimer's 

and Parkinson's, have been previously reported to be dysreguated in ccRCC (Huang et al., 2014). The 

neural degeneration of kidney cancer patients remains thus to be further examined. 

We expected that the interpretation of the joint analyses would be more challenging but in fact it yielded 

results even in a higher concordance with the reference. Requiring a signal from both CNV and gene 



expression yields a slightly better concordance with pathways earlier reported to be associated with 

KIRC (67% of the top 15 pathways). One of the novel dysregulated pathways identified as of potential 

interest is ‘Proximal tubule bicarbonate reclamation’ pathway similar to the findings by the gene 

expression profiling alone. However, the four additional pathways identified by this joint analysis are 

different. The ‘Ribosome’ pathway unspecifically reflects cell protein production activity. 'Base Excision 

Repair' is essential for the cell to remain healthy, repairing the damaged DNA, removing damaged 

nucleotides able to cause mutations. Interestingly the defects in the base excision repair system have 

been associated with both neurological disorders and cancer (Wallace et al., 2012). Furthermore, it has 

been proven that the mTOR signaling pathway is active in ccRCC (Robb et al., 2007) and its inhibition 

may have disease-modifying effects in both ccRCC (Battelli & Cho, 2011) and neurodegenerative 

disorders (Wong, 2013) linking the 'Huntington’s Disease' pathway with KIRC. We also found ‘Calcium 

Signaling Pathway’ to be dysregulated in ccRCC. Dysregulation of the intracellular Ca2+ signalling, 

being essential in modulating diverse cellular functions, has been suggested as a driving factor for 

malignant phenotypes emergence (Chen et al., 2013b). Serum calcium is also used as one of the 

prognostic risk factors for categorizing metastatic RCC patients into risk groups (Motzer et al., 1999). 

The original LPIA algorithm was designed to be very specific and therefore the FDR is very high in the 

ranked pathways. Interestingly, together with the reduction of the number of newly found pathways after 

the integration also the FDR drops by 10% showing that also the certainty in the results is increased. 

In summary, the combined analysis seems to partially confirm the findings by the gene expression 

profiling analysis alone and also yield additional interesting outcomes. These are interesting candidates 

for further investigation and we hope our findings will extend our understanding of the mechanisms of 

cancer and improve diagnosis. 

Results from CNV alone recover a smaller set of pathways reported to be involved (40% of the top 15). 

This can be understood as a result of two effects: (1) most of the pathways currently reported in the 

literature have been derived from gene expression analyses, and (2) much fewer genes (54-77% fewer) 

show a significant differential signal in the CNV data. Interestingly, some of the pathways found to be 

dysregulated in the KIRC CNV data suggest a less specific connection to KIRC, yielding pathways 

linking to more, seemingly unrelated, cancer types, like melanoma, glioma or lung cancer. 

Requiring a signal from CNV or gene expression data recovers a much smaller number of pathways 

earlier reported (33% of the top 15). Notably, while the number of pathways that have not been 

identified before is close to an analysis of CNV alone, the pathways differ but we again see pathways 

related to other diseases, e.g., glioma, leukemia and prion disease. The question arises whether these 

are false positives or new discoveries of biological relevance. 

Summary 

Our initial evaluation of LPIA has proven that using a positive and negative pathway reference enables 

the use of an evaluation metric - PPV, which might be helpful in assessing performance of the gene set 

analysis tools but alone is unable to show a method’s superiority. We were able to confirm that on the 

small data set investigated in this paper all the compared tools perform similarly well. We confirmed 

that LPIA / eLPIA is in fact as reliable as other established methods. The inevident superiority of eLPIA 

might have been expected as the algorithm was designed to detect very small dysregulation in data, 

whereas cancer samples tend to be highly differentiated from normal samples and the high 

dysregulaton can be spotted by other tools. In fact, the reliability of LPIA was already shown in the 

original publication (Pham et al., 2011). Here we were able to confirm that the extended framework is 

still as reliable. Benchmarking our method has proven, however, to be enormously difficult and this 

challenge is in line with earlier observations (Alexeyenko et al., 2012; Glaab et al., 2012; Verbeke et al., 



2015). Even after extending the data set in order to give better power in assessing tool performance / 

improvements our extensive analyses have shown that on this particular data set showing a superiority 

of a novel method is impossible as there is simply no space left for improvement. Thus identification of 

more sensitive benchmarks or more powerful data sets remains an area of active research. Other 

advantages that our novel framework presents are independence of any artificially thresholded set of 

genes of interest - as needed in hypergeometric tests; ease of integrating any additional differential 

data type - which is the foundation of our framework; and insensitivity to ties in the gene list, which is an 

evident issue when running methods that take a ranked list of genes as input. Notably, the 

parallelization of the LPIA algorithm was essential in performing the evaluation as the subsampling 

involved multiple re-runs of the analysis. 

Moreover, we have shown that the choice of normalization method for the data analysed leads to a 

method yielding different results. This was not the focus of our experiment but should be considered 

closely when performing bioinformatics analyses. 

Benchmarking gene set enrichment methods 

Our benchmarking approach has further shown that using a positive and negative pathway reference 

enables the use of an additional evaluation metric - sensitivity, together with PPV, which help in 

assessing performance of the gene set analysis tools.  

We have compiled a reference set of pathways expected to be involved in clear cell Renal Cell 

Carcinoma (ccRCC) from the literature and proposed a systematic test of robustness, reproducibility, 

sensitivity, and specificity for benchmarking gene set enrichment approaches. We could show that 

cohort size is a strong driver of performance in general. In the data set examined, cohort size was the 

strongest determinant of performance. In-silico mixtures of real samples that attenuated cancer-

relevant signals showed that method choice became crucially important for weaker signals. From the 

most attenuated gene expression signal alone, RTopper already successfully identified the reference 

pathways with a sensitivity of ~50%, maintaining this rate when CNV data was added. This suggests 

that the reliable performance of a modern algorithm for pathway enrichment testing is robust but 

advantages from integrating different molecular profiling data types are not apparent on this dataset.  

Conclusions 

It has been shown that the integration of multiple data types alone (Tyekucheva et al., 2011) or 

network-based analysis alone (Pham et al., 2011) can improve the power of pathway enrichment 

analyses. Most recent analyses report that a combination of data integration and networks could further 

improve survival rate prediction (Wang et al., 2014). To date, such an approach has not yet been 

systematically investigated in the context of pathway enrichment analysis. In a recent publication 

Verbeke et al (Verbeke et al., 2015) propose a method for ranking pathways through network-based 

data integration. While the authors discuss that their method yields results in agreement with a previous 

approach, no thorough benchmark is applied. This reflects well acknowledged challenges of 

benchmarking in the absence of a ‘ground truth’ in the field (Alexeyenko et al., 2012; Glaab et al., 2012; 

Verbeke et al., 2015). To address this open need, I have compiled manually curated pathway lists to 

serve as positive and negative reference sets for advanced analysis methods applied to an extensive 

multi-track data collection on KIRC of the TCGA/ICGC repositories of cancer profiling experiments. 

We could then apply these to validate our novel implementation of modern pathway enrichment 

analysis employing network-based data integration. Control-treatment samples were first analyzed with 

regard to differential effect. The result was then directly applied to weight the edges of the network of 

pathways. This way we could avoid using thresholds or binarization of datasets in the process of 



network creation, making the most use of the information encoded in the measurements. Notably, on 

the compiled benchmark set, the new method performs at least as well as methods only integrating 

multiple -omics data types or approaches to integration only employing network-based structures. This 

suggests that pathway enrichment analysis is more robust and less sensitive to inputs and method 

choice than other analysis tasks like survival prediction. The compilation of more sensitive benchmark 

frameworks for assessing more subtle advances in pathway enrichment performance of course remains 

an area of active research. 
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