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Abstract

Discovering interesting findings is a challenging task. Besides the number and size

of different datasets their complexity is the most demanding factor. Cancer genomics

is a prime example for this. Visual analytics as the combination of data mining al-

gorithm with human visual exploration is commonly used to tackle this challenge.

However, discovering the pattern isn’t the end of the analysis process. The find-

ing needs to communicated, presented, published, and be reproducible in order to

advance the own science. In this report we present CLUE. A new concept for captur-

ing, labeling, understanding and explain visualization driven explorations. Besides

the generic approach, a new open source web visualization platform Caleydo Web is

introduced, implementing the CLUE concept and targeting at the biomedical domain.
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Chapter 1

Introduction

Over the last few decades many scientific fields have been confronted with tremendous

amounts of data and continuously increasing annual growth rates. Therefore, the grand

challenge has shifted from the acquisition of the data to its analysis [Nie09, TC05]. Be-

sides the sheer amount of data, particularly its complexity poses a problem for state-

of-the-art analysis techniques. It is necessary to discover features and patterns across

heterogeneous datasets from different sources, on distinct levels of scale, and of various

types (tables, text, graphs, etc.) [KKEM10]. Integrative cancer genomics, for instance, is

a prime example where analysts are confronted with such large and heterogeneous data.

While automated methods scale to large datasets, they are limited for solving knowledge

discovery tasks in scenarios that include a variety of datasets that need to be investigated

together. For gaining new insights, where, for instance, multiple complex relationships

contribute to an effect and dominant effects can obscure weaker but highly relevant pat-

terns, human analysts need to be included in the analysis process. Only humans, with

their ability of sense-making, paired with background knowledge and intuition, can judge

whether an effect is relevant in a particular context. The young science of Visual Analytics

incorporates this idea.

However, new challenges arise when bringing humans back in the loop. A key point in

the scientific process is reproducibility, especially in the biomedical domain. A recent

review showed that it was not possible to reproduce the findings from almost 90% of over
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50 cancer genomics studies [BE12]. This highlights the need for all stages of the analysis

to be reproducible, interpretable, and communicable, including the visual analysis. While

automated methods are easy to track, log, and therefore reproduce, humans with their

creativity and mental processes are much harder to track and require advanced tools and

concepts.

1.1 Approach

In this report we introduce the CLUE concept. CLUE is general applicable concept

for capturing, labeling, understanding, and explaining visualization-driven explorations.

Recording a provenance graph containing all actions performed during the visual analy-

sis builds the basis of this concept. On top of it, analysts can annotate individual stages

retaining their findings and explaining their decisions. Based on this annotated graph,

editors can select individual key points of the analysis and form a story out of it. Finally,

the resulting story can be presented, shared, and be the starting point of a new analysis.

1.2 Outlook

The remainder of this report is as follows. It starts with a introduction into the problem

domain and a task analysis (Chapter 2). Then, the CLUE concept is introduced and how

it relates to the author’s core research topic: Guided visual exploration of heterogeneous

data (Chapter 3). Afterwards, Caleydo Web is presented, a visual analytics platform for

biomedical data implementing the CLUE concept (Section 4.1). Moreover, a first pro-

totype of StratomeX.js is explained in detail (Section 4.2). StratomeX.js is a port of a

successful visualization technique for cancer subtype analysis [SLG+14] enhanced with

the CLUE concept and built using Caleydo Web. In addition, a prototype of an advanced

animation concept using particles is introduced allowing tracking complex presentation

changes effectively (Section 4.3). Finally, The last Chapter 5 of this report consists of a

discussion, conclusion and possible future work.
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Chapter 2

Background

Scientists never work alone. They are in a group with whom they discuss their findings,

present their findings in a paper for the public, and use and continue the work of oth-

ers. So, findings needs to be communicated, presented, understandable, and reproducible.

Figure 2.1 illustrates a simple workflow of Anne, a scientist in the biomedical domain.

Heterogeneous Data
(mRNA, mutation, clinical, ...)

Reviewer
Reader

Anne's colleaques

Anne

Figure 2.1: A possible workflow in the visual analysis of biomedical data.

She analyses her heterogeneous data from various data sources and of various types using

visual analytics tools. This is an iterative process. Some of the tested hypotheses may

be rejected but some may lead to interesting findings. The resulting findings needs to

be presented to her colleagues, e.g., using a PowerPoint presentation. Depending on the
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quality of the findings they may be published in a journal like Nature Methods. So, high

quality figures with annotations explaining the findings are needed. Readers may want to

work on top of the findings. Thus, a clear description how to reproduce the findings is

essential.

This figure motivates the need for sophisticated tools supporting Anne in her work. The

key to traceability and reproducibility lies in the collection of information about the pro-

cessed data, the applied visual and computational tools, and their parameters over time.

We refer to this bundle of information as provenance graph.

2.1 Task Analysis

Based on Figure 2.1 and our experience in the problem domain, we found following tasks

that a system supporting reproducibility at all stages should support:

T I: Record Analysis Actions The key for reproducibility is recording all analysis ac-

tions performed by the users. This includes among others the selected datasets, the

visualization technique to show them, and the current selection, in total the whole

provenance graph.

T II: Filter Interesting Results During the analysis the user may find interesting pat-

terns but also several uninteresting ones. A task of the user it to filter the interesting

results within the provenance graph to focus on the important elements and skip the

dead branches.

T III: Annotate Findings Most of the findings don’t stand for them own. Users need to

explain the finding by annotating them. Depending on the finding the annotation

relates to a whole dataset, a collection of individual data items, a single data item,

or a relation between multiple ones.

T IV: Export Findings Exporting annotated findings is an important task for communi-

cating them. Typical examples are exports to image formats like PNG or PDF.
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T VI: Share Findings Besides exporting the finding to a static snapshot in an image, the

finding itself needs to be sharable. This allows other to take a look the finding and

persist it along with its provenance.

T VII: Modify and Continue Findings Having a shared finding, the last task is allow-

ing modifying and continuing the work on it. This ensures that other scientists can

use the data, processing, and the finding itself for their own work, without starting

from scratch.

2.2 Challenges

The defined tasks raise several challenges. Recording and tracking all actions is foremost

a technical challenge, since it requires that the whole visual analytics tool is designed for

it. In addition, provenance information can be collected on different levels. From user

interaction and click behavior to semantic elements. For example, clicking a button can

be stored as that the user clicked at the specific position on the screen or the resulting

action, like adding a new dataset to the analysis. The former one is easier to track since

it is a very general applicable approach. However, it provides no semantic information

about the actions itself, hampering the understanding of the resulting provenance graph.

The latter approach provides meaningful actions. However, they have to specialized and

integrated in the system.

Exporting, sharing and modifying findings are other challenging tasks. A possible way to

export the finding is not to export it as an image, but to export an embedded simplified

version of the finding displayed in the tool itself. The advantages are manifold. Analysts

could switch between presenting and analyzing the data easily. For example, if during the

discussion of the presented the findings some new aspects come up, can they be directly

tested. Individual parts of the findings could be changed on the fly during the presentation,

like the selection of specific items. Animations between different steps of the analysis can

be performed in a meaningful way, instead of a static series of exported images.
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The pure size of the provenance graph is another challenge. Since all actions are recorded

the graph grows quite fast. One challenge is how to visualize the graph itself, such that

it scales to a large number of nodes but still be understandable to the user. One way is

using semantic aggregation and the identification of common sub structures. For example,

performing the same standard analysis steps on different datasets can be grouped together.

Finally, presenting finding in a structured and automated way is not trivial. Analysts

commonly use tools like PowerPoint or KeyNote for presenting their results. However,

they are designed for showing simple animations, text, and images, and not complex

sequences of heterogeneous visual analyses. The balance has to be found between the

simplicity and flexibility of the presentation possibilities and the feature richness a visual

analytics tool should provide.
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Chapter 3

CLUE Concept

The CLUE concept is a general concept for Capturing, Labeling, Understanding, and

Explaining visualization-driven explorations. It covers the full spectrum from visual ex-

ploration of the data to presenting the results to colleagues or other consumers. This

spectrum builds an exploration-presentation continuum.

3.1 Exploration-Presentation Continuum

As described in Chapter 2 finding interesting patterns is not the end of the analysis pro-

cess. Findings need to be reproducible, understandable, and communicable to others.

Four different stages within the exploration-presentation continuum can be identified and

are shown in Figure 3.1 with an accompanying example from the movie maker domain.

zcL2http://ftparmy3com/images/imtoo8video8cutter8013jpg

interactive
exploration

story2editing
zannotationB2selectionL

stepped2storytelling
zinteractive8movieL

animated
storytelling

zcL2http://img3pr3com/release8file/1210/446750/tlc_screenshots0013png
6Fritz2Lang2et2Curt2Courant62
by2Bundesarchiv_Bild_102808538

Figure 3.1: Illustration of the exploration-presentation continuum with an accompanying
example from the movie maker domain.
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EP I: Interactive Exploration This is the typical visual exploration task during an anal-

ysis. The analyst explores the data and tries to find interesting pattern, i.e., findings.

Some of them are interesting some are not, but all of them are part of the analysis

process. As Thomas A. Edition once said: ”I have not failed. I’ve just found 10,000

ways that won’t work.” failures are also important part of an analysis. This stage

is similar to the task of a movie director. The director has the freedom to explore

different setup and constellations. Some takes may fail, but you only need one good

one.

EP II: Story Editing After one or more interesting findings are found the next step is

to prepare them in order to present them. A story needs to be defined by selecting

interesting intermediate steps for explaining the final finding. This is similar to the

cutter’s task during a film production. She has to select, cut, and order individual

scenes building the story of the movie.

EP III: Stepped Storytelling Presenting the findings can be done in two different favors.

In stepped storytelling consumers have some degree of influence on the story. For

example, they can select in which direction the presentation should continue on a

branching point. Another way is altering the story during the presentation, e.g.,

changing the currently selected elements or the way a dataset is presented. Some

modifications will influence the story itself, some won’t. Interactive movies as you

may find them on some DVDs are corresponding examples in the movie maker

domain. These kinds of movies allow the users to influence the movie, by letting

the consumer choose between different options. A simple example is choosing

between alternative endings.

EP IV: Animated Storytelling The last stage on the exploration-presentation contin-

uum is animated storytelling. At this state the findings are presented in a fully

automated way, similar to a classical movie. It may be annotated with explanations

or links to further resources. Youtube videos have similar capabilities. Consumers

watch them and Youtube video creators have the possibility to include popups and

annotations to their movie, allowing some degree of interactivity.
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The exploration-presentation continuum expresses that there is no separation between ex-

ploring the data and presenting them. Both have smooth transitions between each other.

Users can explore their data and by selecting their state share and present it immediately.

Similarly, when presenting some interesting findings, users can quickly jump back to ex-

ploration if some ideas pop up during discussing the results. Another aspect which is not

mentioned yet, is how guidance can play a vital role within the exploration-presentation

continuum.

3.2 Guided Visual Exploration of Heterogeneous

Data

The main objective of the author’s core research topic is to develop an interactive visu-

alization tool for guided exploration, hypotheses confirmation, and communication

in the area of cancer genomics. Guided exploration allows analysts to find patterns and

relationships in the data that would have remained undiscovered using traditional visual

data mining approaches. Hypotheses confirmation covers the important aspect of verify-

ing analysts intentions by evidence contained in the data. Finally, the found results need

to be communicable, such that other analysts can understand, use, and reproduce them.

Although the research focuses on cancer genomics as application, the planned techniques

will be applicable for any other domain where researchers need to make sense of large

and heterogeneous data.

Guidance Continuum

Based on Schulz et al. [SSMT13] analyst’s guidance types build a continuum ranging

from no guidance to annotated animation. Figure 3.2 illustrates the continuum with an

accompanying example from the navigation domain. The more guidance is provided to

the user the less freedom she has. The following five different characteristics can be

distinguished:

15



(c) http://greatpreneurs.com/(c) google.com

no guidance orienteering steering storytelling annotated
animation

us
er

's
 fr
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Figure 3.2: Illustration of the guidance continuum with an accompanying example from
the car navigation domain. User’s freedom decreases with increasing guidance.

G I: No Guidance The simplest guidance approach is to provide no guidance at all to

the user. While this ensures that users have total freedom in their choices, they may

overlook interesting patterns in their data. This is similar to drive into the blue and

randomly choice a side at a crossing. While this may lead you to unexpected places,

you may miss fascinating ones right around the corner.

G II: Orienteering A first guidance approach is to give the analysts orientation. This

includes an overview over previous choices and future options in terms of analysis

steps, data selections, or processing options. Coming back to the car navigation

example this is similar to equip the driver with a map.

G III: Steering A more direct approach of guidance is to steer the analysts to interesting

patterns in their data. However, in this stage the guidance is rater static, similar to

a suggestion. Like looking up a route to a target, printing it out, and use it. The

driver may decide to use a different route, e.g. due to a traffic jam. However, the

route doesn’t adapt accordingly.

G IV: Storytelling As the name suggests storytelling is about telling a story to the user

and guiding her to an interesting pattern in her data. The user still has full con-

16



trol, however, the system can adapt to changes or different choices made by the

user. This is similar to a car navigation system using GPS in which the system and

guidance adapt according the actual environment and choices.

G V: Annotated Animation The other extreme end of guidance is an annotated anima-

tion in which the system takes full control over the analysis and presents interesting

pattern to the user. This is similar to using a self-driving car where the user just

enters the target address and the cars drive to this address autonomously.

3.3 Relevance

The CLUE concept addresses the communication aspect of the core research topic. So, it

tries to answer the question how to present the findings to others efficiently and effectively.

Two roles exist in the exploration-presentation continuum: Analyst performs then visual

exploration and prepares the presentation. Consumer listens to the presentation and just

views what the data look like. Figure 3.3 shows the relevance of individual roles within

the continuum.

interactive
exploration

story editing
(annotation, selection)

stepped storytelling
(interactive-movie)

animated
storytelling

re
le

va
nc

e

analyst's exploration consumer's presentation

analyst's guidance of consumer

Figure 3.3: Role (analyst, consumer) relevance within the exploration-presentation con-
tinuum. In addition, the analyst becomes more and more the guide for the consumer.

An interesting aspect of Figure 3.3 is that the analyst becomes more and more the guide

for the consumer the more the continuum shifts to the presentation stage. By selecting

aspects of the visual exploration and combining them to a story the analyst preselects and

guides the consumer to interesting parts. However, in this scenario a human is the guide

for another human. In previous approaches automated methods and statistics were used

to guide the user.
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3.4 Related Work

3.4.1 Storytelling

Telling a story using visualization becomes more and more an important part of visual-

ization research. Kosara and Mackinlay [KM13] see storytelling even as ”the next logical

step”. Several papers—including [Fig14, MLF+12, LHV12, KSJ+14, GP01]— already

use or promote the advantages of storytelling approaches in different domains. Even

commercial visualization platforms begin to include storytelling aspects in their products.

For example, Tableau 1 recently added a storytelling feature allowing creating a series of

plots, annotating, and presenting them.

Wohlfart and Hauser [WH07] published a very relevant paper about ”Story Telling for

Presentation in Volume Visualization”. In their work they not only promote the use of

storytelling approaches for scientific volume visualization but also include concepts how

and to what degree consumers can manipulate the presentation. This is similar to our

exploration-presentation continuum (see Section 3.1) in which users can freely switch

between exploring and presenting their data. However, in their paper they focus on a

single dataset at a time, i.e. one volume visualization. In this work we focus on the

presentation of multiple heterogeneous datasets, which may be partly dependent on each

other.

3.4.2 Provenance Graph

Recording and exploring provenance graphs of visual analytics system is used more than

a decade ago. VisTrails [BCS+05] is the most prominent example of integrating a prove-

nance graph in a scientific visualization system. The basic approach is to record all param-

eter settings and user choices that lead to the current volume visualization. The resulting

graph can then be used for implementing an undo-mechanism. In addition, comparing dif-

ferent states of the provenance graph allow to quickly investigate the effects of changed

parameter settings.

1http://www.tableau.com/
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Besides, this implementation of a provenance graph, Kreuseler et al. explore and define a

history model for visual data mining [KNS04]. They extend the definition of a visual data

mining system with history functionality and discuss how different operations depend on

each other.

Heer et al. implement in their work on ”Graphical Histories for Visualization: Support-

ing Analysis, Communication, and Evaluation” [HMSA08] an extension to the commer-

cial Tableau product integrating graphical history and undo functionality. They show the

graphical history using small thumbnails which the user can annotate, bookmark, and nav-

igate to. Apart from that, the authors examine how provenance graphs can be compressed

by merging nodes together. While their work is an important ground work, the CLUE

concept focuses not only on the recording and exploring of provenance graph but how it

can be used for presenting ones findings. To sum up, none of the existing work neither in

storytelling nor provenance graph visualizations covers the full range from exploring data

to presenting the found results in a similar and comprehensive way.
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Chapter 4

Approach

This chapter explains how the CLUE concept is implemented. It starts with the descrip-

tion of a new visualization platform called Caleydo Web. Besides the key aspects of the

platform the underlying architecture is explained in detail. Afterwards, this chapter focus

on StratomeX.js a port of a successful existing visualization technique for cancer sub-

type analysis enhanced with CLUE concepts and implemented on top of Caleydo Web.

The last part introduces a new animation concept and prototype using particles for easier

tracking of individual elements.

4.1 Caleydo Web

Significant breakthroughs in the acquisition but also in the storage of scientific data have

shifted the grand challenge in many science domains to data analysis [Nie09]. A prime ex-

ample for this shift is molecular biology, where large initiatives like The Cancer Genome

Atlas project and emerging technologies such as single cell gene sequencing produce vast

amounts of heterogeneous data. Visual analysis is a key approach for making sense of the

data. However, with datasets from different sources, with different meanings, on distinct

levels of scale, and of various types (tables, text, graphs, etc.), there is the need for new

visual analysis platforms that tackle these new challenges. Caleydo Web is a new open

source visual analytics platform for biomedical data.
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4.1.1 Key Aspects

From our experience working with domain collaborators and designing visualization sys-

tems in the past [LSKS10, LSS+12] we identified six key aspects that a visual analysis

platform for biological data needs to support (see Figure 4.1):

Big 
Heterogeneous 

Data

Identifier
Management

Multiple 
Coordinated 

Views

Integrated 
Data 

Analysis

Adaptability

Provenance
and

Collaboration

Figure 4.1: Six key aspects of Caleydo Web

A I: Data Scale and Heterogeneity Not only is the size of individual datasets increas-

ing, there is also a growing number of publicly available datasets that researches

want to integrate. Taken together, we observe that the size, complexity, and het-

erogeneity increases beyond current analysis and visualization capabilities. The

data spectrum ranges from clinical and expression data, over epigenetic data, to full

genome sequence information. Challenges include selecting, accessing, processing,

and interactively visualizing the data.

A II: Identifier Management An important aspect when integrating datasets from vari-

ous sources is the mapping of identifiers between different annotation systems (e.g.,

Entrez, DAVID). Mappings, however, can be 1:1, 1:n, n:m, or even more complex

if they are based on partially overlapping gene locations. Also, entities of differ-

ent types (e.g., gene, protein, samples) that can be defined on different levels of

granularity (e.g., chromosome, gene, base pair) lead to additional challenges.
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A III: Multiple Coordinated Views (MCV) The integrated analysis of multiple inter-

connected datasets can lead to new insights, yet it is often sensible to show differ-

ent datasets as independent views, as the visualization can then be chosen to best

represent the data. The coordination of these views provides the links between the

datasets. The MCV system needs to visually link the data entities across the various

annotation systems and granularity levels involved.

A IV: Provenance and Collaboration A recent review showed that it was not possi-

ble to reproduce the findings from almost 90% of over 50 cancer genomics stud-

ies [BE12]. This highlights the need for all stages of the analysis to be reproducible,

interpretable, and communicable, including the visual analysis. Integrated support

for provenance tracking, sharing of results, communication, and collaboration are

essential.

A V: Integrated Data Analysis The integration of algorithms, statistics, and machine

learning approaches like clustering or dimensionality reduction are crucial for most

applications of visual analysis platforms to biomedical data. The back and forth be-

tween analysts and algorithms should be as tight and swift as possible. For instance,

when a data query cannot provide immediate feedback due to the complexity of the

query or the size of the data, the system should report intermediate results which

the analyst can use to judge the correctness and suitability of the parameterization

and adjust them if necessary [MPG+14]. Data mining algorithms can also be used

for guiding analysts to interesting patterns in the data proactively [SLG+14].

A VI: Adaptability The last key aspect deals with the adaptability to changing environ-

ments. A visualization framework needs to be flexible enough to allow for, e.g., the

addition of new data types, storage backends, visualization techniques, or process-

ing algorithms. The platform should also support the creation of customized setups

that are tailored to a specific application use case.
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4.1.2 Related Work

BioJS

BioJS [GGS+13]1 is a library for representing biological data. Figure 4.2 shows a screen-

shot of their homepage. Its core is a small event-driven architecture that can be extended

via plugins that are collected in a public registry. Interfaces are not defined by the library

but described within a plugin’s documentation only. This allows easy setup and creation

of plugins for a range of different data types (A VI and A I). However, developers aim-

ing at using multiple plugins in a setup with multiple coordinated views have to handle

the synchronization and data mapping between individual plugins manually—hampering

A II and A III. Moreover, the library focuses on the visualization of data only, not how it

is accessed or processed (A V). Dealing with large datasets in web-based frameworks is

particularly challenging, since transferring the whole dataset to the client is not an option.

Figure 4.2: Screenshot of the BioJS website: http://biojs.net

Caleydo

Caleydo [LSKS10] is a standalone visualization framework for biological data and the

predecessor of the proposed framework. Caleydo supports A II and A III, however, it

lacks support for large datasets (A I), since it is a client-only application in which all

datasets are loaded into main memory. Moreover, it has only rudimentary support for

provenance (A IV) via a simple undo mechanism and the integrated data processing (A V)

1http://biojs.net/
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is limited to a fixed set of hard coded algorithms, such as various clustering algorithms.

Figure 4.3 shows a screenshot of their homepage including references to various projects

implemented using Caleydo.

Figure 4.3: Screenshot of the Caleydo website: http://caleydo.org

4.1.3 Architecture

CLUE is based on a client-server architecture with a plugin mechanism on both sides.

Client and server are coupled loosely via REST and WebSocket interfaces such that indi-

vidual components can be replaced. By default, a web browser-based client and a Python

server are used. Alternative possible clients include an R client for using the server API as

centralized data access, or server components written in different programming languages

like Java.

The plugin architecture uses a runtime environment with lazy-loaded plugins implement-

ing extensions on one or both ends. The types of extensions include visualizations, data

providers, data types, data formatters, or applications. An application is a customized and

specialized arrangement of plugins for a specific purpose. For example, StratomeX.js, is

a web-based reimplementation of the Caleydo StratomeX [SLG+14, LSS+12] technique.

Figure 4.4 illustrates the interplay between the individual components. We are also work-

ing on a public registry in which plugins can be published, explored, and shared.
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Figure 4.4: Architectural overview of Caleydo Web. Italic labels indicate work in
progress. Grey boxes represent Caleydo Web’s core, dark orange boxes major plugin
types, and light orange boxes custom plugins.

This architecture allows integrating all key aspects listed in Section 4.1.1. Large data (A I)

can be handled by the web-client/server architecture. Depending on the data size, only

partial, aggregated, or transformed data is transferred to the user. Mapping between differ-

ent annotations (A II) is implemented using a graph database. Visualization plugins select

items within their dataset and the platform takes care of converting the selection into their

corresponding items in other visible datasets. By using a plugin-based approach, CLUE

is very flexible in terms of contained visualization techniques, dataset types, storages, and

so on—addressing A VI. MCV setups (A III) are implemented by enforcing a minimal

interface to visualization plugin-ins including the location of individual data points. This

allows the platform to create visual links across unknown representations. A command

design pattern is used for managing provenance information (A IV). For the last aspect

A V, we plan to use R, Python, and Refinery2 for executing workflows. Intermediate re-

sults and feedback on the web-client are implemented using WebSocket communication.

2http://www.refinery-platform.org/
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4.1.4 Implementation

CLUE (http://caleydo.org) is open source under the BSD license and hosted on

https://github.com/Caleydo. The client runtime of CLUE is implemented in

TypeScript and JavaScript using HTML5. This allows visualization plugin developers to

use their favorite technology, such as D3[BOH11], HTML Canvas, or WebGL. The server

runtime of CLUE is implemented in Python using the Flask3 framework. First individ-

ual plugins provide access to data storage files in HDF4 or CSV format, and databases

including Neo4j5. We plan to integrate an R interface for more complex data processing

operations.

Registry

The plugins are organized in a public registry where they can be explored, searched, and

installed. The registry is an enhanced version of the repository manager used by Node.js;

NPM6. Individual plugins are described using a simple JSON file, called package.json.

Besides name, version, and dependencies of the plugin, we enhance the description with

entries for registering extensions points and defining external dependencies.

Plugin mechanism

Caleydo Web uses a plugin mechanism extensively. The core of Caleydo Web is just a

container for managing and accessing plugins. All actual features are plugins. For exam-

ple, the server implementation itself is just a plugin. This allows us to develop, improve,

or replace individual plugins in a flexible way. During startup the plugin metadata are

parsed and one unified plugin registry is built. Individual plugin can contribute to mul-

tiple extensions. An extension type is the placeholder for one more multiple implemen-

tations. Common extension types are visualization techniques, data storage accessors, or

data parser. Each extension point description consists of the following elements:

3http://flask.pocoo.org/
4http://www.hdfgroup.org/
5http://neo4j.com/
6http://npmjs.org
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• type

The extension type this plugin contributes to. This is a string identifier chosen by

the plugin providing the extension point.

• id

A unique id identifying this extension within the extension type. This allows refer-

ring to one specific extension implementation depending on the scenario.

• module

The name of the code module, i.e. the script, implementing the extension, relative

to the plugin directory.

• ...

Besides the minimal elements for describing an extension, additional attributes can

be defined depending on the extension type. For example, visualization technique

extensions provide additional elements regarding the supported data types and the

size of the visualization.

An important aspect of the plugin mechanism used in Caleydo Web is that code modules

are just loaded when they are actually needed the first time. On the one hand, this ensures

a fast startup, since only the descriptions need to be loaded and not all scripts. On the

other hand, it introduces delays for loading scripts on demand during runtime. The latter

one alleviates since Caleydo Web is designed for asynchronism anyhow.

External Dependencies

Besides dependencies between plugins, e.g., a visualization plugin depends on the core

plugin, plugins can have dependencies to external libraries. In the current version, four

different external dependency types are supported: Web, Python, Node, and Debian. Dur-

ing plugin resolution the individual dependencies are collected and installed.
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Web Web dependencies, like javascript libraries including D37 or JQuery8 are manage-

ment using Bower9. Bower is a web dependency management tool allowing to quickly

using web libraries. The required dependencies are defined in the bower.json which

will be generated during dependency resolution.

Python Python dependencies, like numpy10, are resolved using the pip11 a python de-

pendency manager. Similarly to Bower a special file named requirements.txt is

generated during dependency resolution.

Node Dependencies for the Javascript server running in the Node12 runtime are resolved

using the package manager of node: NPM13.

Debian Some external dependencies for Python or Node require that operating system

specific packages are installed. For example, numpy produces errors when installed as

standard dependency using pip. Debian packages are installed using the Advanced Pack-

aging Tool (APT) 14.

Development Environment

In heterogeneous frameworks consisting of multiple components written in different pro-

gramming languages, ensuring a consisted and controlled development environment is

essential. In Caleydo Web we make use of Vagrant15. Vagrant is a tool for configuring

virtual development environments. In our case, we set up a Debian virtual machine, in

which Caleydo Web runs. The advantages compared to a local installation are manifold.

A virtual machine allows a controlled environment regarding the operation system and

installed packages. The local host system, i.e. the developer’s machine, is not polluted

by libraries needed by Caleydo Web, since all dependencies are installed just within the

7http://d3js.org
8http://jquery.com
9http://bower.io

10http://www.numpy.org
11https://pip.pypa.io
12https://nodejs.org/
13http://npmjs.org
14http://wiki.debian.org/Apt
15https://www.vagrantup.com
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virtual machine. Multiple version of Caleydo Web can be checked out in parallel, since

each of them has its own virtual machine. The setup of the developer environment can be

automated due to the controlled environment. In the end, after checking out the repository,

executing vagrant up will initialize the whole environment.

4.2 StratomeX.js

StratomeX.js is a Caleydo Web-based reimplementation of Caleydo StratomeX [LSS+12],

a cancer subtype visualization technique. Figure 4.5 shows a screenshot of the application

with annotations indicating individual plugins of Caleydo Web, highlighting its reuse-

ability. A demo version is available at http://caleydo-web.herokuapp.com/

stratomex.js.

Provenance 
Graph Vis

Selection
Management

List of available Datasets

Heatmap 
Plug-In

Histogram 
Plug-In

Visual 
Linking

Figure 4.5: Screenshot of StratomeX.js based on Caleydo Web. Individual components of
Caleydo Web are annotated.

4.2.1 Selection Management

The selection management consists of two parts. The visible one is shown in Figure 4.5

and consists of view showing all currently selected items. The hidden complex manage-

ment takes care about the currently selected elements across multiple dataset. Individual
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visualizations interact only with their corresponding dataset. So, if the user selects the

third line in table A, the corresponding third row in the data table A will be selected ac-

cordingly. However, the selection management takes care of converting the third row to

its corresponding row identifier, looks up all matching entries in all other visible datasets

and selects them. In this example this could mean that automatically also the seventh row

of table B will be selected and the corresponding visualization notified. This allows a

flexible selection of items across different annotation systems and data tables.

4.2.2 Dataset Manager

The list of available datasets is presented at the bottom of Figure 4.5. Besides the name of

the datasets its type, the number of items per item dimension, and the contained idtypes

are shown. An idtype is a semantic concept of a data item, including patient, gene, protein,

and samples. In the example figure a dummy dataset with itypes A and B is used.

4.2.3 Visualization Plugins

Individual visualizations within blocks of a StratomeX column are implemented using

plugins. In Figure 4.5 two examples are given, one showing a dataset as a heatmap, one

as a histogram. Users can freely choose between different visualizations for the dataset

using a toolbar. Figure 4.6 shows a list of the currently available visualization plugins.

4.2.4 Visual Linking

An important aspect of StratomeX is the visual links between columns, indicating the

set overlaps between individual clusters. In this example the visual linking is a general

component of Caleydo Web by connecting multiple instances of the same data-item across

visualizations. In this example this is not done on a per data-item level but on a more

granular set level.

Due to the plugin mechanism locating data-items within visualizations is not trivial. In

Caleydo Web each visualization plugin has to provide an API for accessing the position

and size of a specific data-item. For example, in Figure 4.6 the heatmap plugin would
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Figure 4.6: Overview of the currently available visualization plugins in Caleydo Web:
Heatmap, Dot Plot, Box Plot, Bar Plot, Table, Histogram, and Pie Chart

return the relative position and size of a cell when requesting a combination of row and

column or the size of a whole column/row if just one dimension is queried respectively.

Similarly the histogram plugin would return the position and size of the corresponding

histogram bin.

4.2.5 Provenance Graph Visualization

Each action within StratomeX.js is tracked and contributes to a provenance graph. In the

current version we distinguish five different action categories:

Dataset Action all actions related to a dataset, like adding, subsetting, and removing

them.

Visualization Action all actions about how to visualize a dataset, e.g., which visualiza-

tion technique, or setting specific parameter of a technique.

Selection Action the user selections, i.e. the collection of data-items the user selects
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Processing Action operations performed on the datasets, e.g. clustering algorithm.

Annotation Action all annotations added, edited, or removed from/to the analysis.

Subway Metaphor

The provenance graph visualization shown in Figure 4.5 on the right is based on a subway

station metaphor. Figure 4.7 shows an example of the subway map of London. Colored

tubes indicate lines and circles stations.

Figure 4.7: Underground map of London used as inspiration for the provenance graph
visualization

The provenance graph visualization uses a similar idea. Lines indicate the lifetime of

different items, like datasets, visualizations, or selections. For example, start and end of a

line indicate adding and removing of a specific dataset respectively. Stations encode oper-

ation applied with a tube, like selecting or changing the visualization technique. Stations

connection multiple tubes are actions involving multiple items at one time, like combining

two datasets or creating a visualization for one dataset.
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4.3 Particle Swarm

Besides the development of a new visualization platform we investigated how we can

better explain how individual data items are represented in different visualizations. Bed-

erson and Boltman[BB99] show in their user study that ”animations improves the users’

ability to reconstruct the information space.” Similarly, Archambault et al. [APP11] con-

cluded that animations are preferred when accuracy is more important than speed. So,

animations are the way to go. Heer et al. show in their fundamental work on animated

transitions [HR07] how different visualization techniques can be converted into other rep-

resentation using animated transitions.

We decided to follow a particles idea inspired by a bee swarm. A particle represents

one data-item, e.g. a patient, gene, or sample. They do not visually encode associated

attributes, like patient’s gender, but just a patient entity. Data are encoded by positioning

particles. For example, placing particles at their corresponding position between two

orthogonal axis results in a scatterplot visualization.

4.3.1 Related Work

Microsoft SandDance

Microsoft SandDance 16 is a system that uses particles for generating large scale plots.

The screenshot (Figure 4.8) shows a map of the US with encoded data. However, the

shape of the US is just a result of plotting individual particles at their corresponding

longitude/latitude position. The map itself is not rendered.

This can also be seen in the outback of the US where the number of particles is low and

therefore the shape not identifiable. The particles reflect the population density essen-

tially. This is a general drawback of the method that is just works with a large number of

particles. Using animation the particles can convert to other type of visualizations includ-

ing barcharts. However, the basic approach does only work for one set of particles at a

time and is not designed for aggregated visualization techniques like box plots in which

16http://research.microsoft.com/en-us/projects/sanddance/
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Figure 4.8: Screenshot of Microsoft Sandance c© Microsoft. The map is built from indi-
vidual data particles.

an individual data item is not represented anymore.

Visual Sedimentation

Visual sedimentation [HVF13] is an approach in which individual data elements deposit

on a structure and are absorbed finally. This technique is inspired by sedimentation in na-

ture. Figure 4.9 shows a collection of examples using the visual sedimentation approach.

Figure 4.9: Examples of the visual sedimentation technique [HVF13]

Individual particles are attracted to their target position in which they finally merge to a

34



solid representation. However, in contrast to nature also the other way around is possible.

Particles can be extracted from a solid sediment and drop off again. Visual sedimentation

is useful for the visualization of real-time time-series data where you have a continuous

stream of data attributes that sediment on some aggregated visualizations like a bar chart.

4.3.2 Concept

Having the idea in mind that one particle represents one data-item at a time; we played

with possible animation sequences and applications of this idea. Figure 4.10 shows three

sketches how a particle swarm can be used for creating three different visualizations types:

scatterplot, histogram, and boxplot.

Scatterplot

Histogram

Box Plot

patients patients patients

Figure 4.10: Concept sketches of the particles idea for creating a scatterplot, histogram,
and box plot based on a particle swarm

All of them have in common that particles fan out from their hive (top left) to their posi-

tion within the visualization itself and afterwards fly back to their hive again. However,

depending on the visualization type different actions are performed for creating the actual

visualization. Moreover, all visualizations are defined using a general frame, indicating

their general setup but not encoding any data. In the scatterplot case the basic frame con-
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sists of two axis and particles leave a visual mark at the corresponding position according

to the given axes. Histograms and Box plots are defined by their general known structure

of multiple bins and the characteristic box plot shape respectively. In these visualizations

particles don’t leave a visual mark but are used for defining the target position of the

given frame. In the histogram case, particles sediment on their corresponding histogram

bin. Afterwards, the bins are shrunk according to their actual height.

Particle Grouping

The swarm metaphor allows advanced visual operations on the set of particles itself. In

Figure 4.11 a sketch is shown how a swarm of patient particles can be split up in two

different swarms based on a categorical attribute. In this case patients are split up accord-

ing to their associated gender. This basic idea can be generalized to other set operations

including intersections and unions of different swarms.

patients

male

female

gender+ =
male

female

patient's gender

Figure 4.11: Concept sketch of splitting a particle swarm according to a categorical
attribute into multiple ones.

Multiple Particle Types

Up to now, only one particle swarm type at a time is used. For example, Figure 4.10

shows several examples based on a single particle swarm: patients. However, this general

concept allows using multiple swarms of different types at the same time. For example

Figure 4.12 shows an example in which two particle swarms (blue patients and red genes)

are used for building a gene expression heatmap.

The two swarms sediment on a heatmap grid. The resulting intersection points within the

grid encode their corresponding value, i.e. the gene expression value of the given patient
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patients genes
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x
gene

Figure 4.12: Concept sketch of arranging two particle swarms of different types in one
heatmap and building a combined new swarm type out of it.

for a specific gene. In this example only some cells are filled. In the regular case all cells

have meaningful values.

Another possible application of particle swarms is to use two types for creating a new

one, by joining two particles together. This idea is also included in Figure 4.12 on the

right. Based on a user selection of two cells highlighted in orange, the related particles

(red and blue) join and build a new particle type (violet) representing a combination of

one specific gene for one specific patient. The resulting new particle swarm can then be

used in the same way as all the existing ones.

4.3.3 Examples

A first demo prototype of the particles idea is available at http://caleydo-web.

herokuapp.com/particles. Figure 4.13 and Figure 4.14 show two image se-

quences of animations using the particles prototype. The former one starts with a col-

lection of particles surrounding their hive. Moving the hive let the particles slowly follow

the movement. By clicking on an axis the particles start to align them at their correspond-

ing position according to their associated value. After the animation ends the result is a

dot plot in which density indicates the number of data items at a specific value.

Figure 4.14 shows a second example of using the particles metaphor for building a his-

togram. By selecting the corresponding empty histogram frame for a specific attribute,
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Figure 4.13: Animation sequence showing a particle swarm deposit on an axis forming
a dot plot

the particles fly to their corresponding bin and position in a regular grid. The final heights

of the histogram bins show the distribution of the data items in the selected attribute.

Figure 4.14: Animation sequence showing a particle swarm deposit on empty bins form-
ing a histogram

4.3.4 Discussion

While the general approach looks fancy, the practical applications are limited. Scalability

is a major issue. On the one hand, the visual impact of potential millions of particles.

On the other hand, the computational effort for computing the position and movement of

particles. While static positions and animated transitions between them are easier to com-

pute, organic movements are very complex. One approach is using a physic simulation in

the background in which individual particles repulse from each other and are attracted to

their target position. However, the complexity for computing the physical simulation is

enormous. In the worst case, every particle has to be compared with every other particle

for computing a proper repulsion. Using advanced techniques like quadtrees can speed

up the computation but the general complexity remains.
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Another problem is duplicity and linking between particles. If the same data-item is visu-

alized multiple times particles need some way to be cloned since one particle represents

an individual data-item. Two different approaches are tested. The first one uses real clones

of particles, such that multiple versions of the same particles exists. The second approach

allows only one particle at a time but particles can leave static marks at visualizations.

The former one has the advantage that the concept of a particle remains the same across

all visualizations. The disadvantage is the management of multiple clones, e.g., which

clone should be used for creating another visualization, how to merge clones, and so on.

The advantage of the second approach is that there is always just a single instance rep-

resenting a data-item. However, the particles have no direct impact on the visualizations

but just their marks. This hampers the animation from one visualization to another one.

In the end, using particles for representing individual data-items results in fancy anima-

tions but have only limited practical use in a standalone version. One exception is using

particles for positioned attributes, like geo locations on a map. We are currently investigat-

ing how the particles idea can be adapted for improving the transitions between different

story steps in CLUE.
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Chapter 5

Conclusion

This last chapter is used for reflecting the work described in this report. Besides, a dis-

cussion about the introduced concepts and approaches, possible future work is discussed.

The end of this chapter and report is a short summary.

5.1 Discussion

Several aspects of this work can be discussed. In this report only two aspects (CLUE and

Caleydo Web) are discussed in detail:

5.1.1 CLUE

Capture Semantic Provenance

A general problem when capturing the actions performed during the analysis is the se-

mantic level that will be captured. Low level events like user clicks are easy to track and

can be done in a generic way for different visual analytics tools. However, click traces

have only limited information about what the action is about e.g., clicking a button at po-

sition (x,y) doesn’t provide the information about the effects of this click. For example, it

could be a selection of a data-item or adding a new dataset to the analysis. This hampers

interpreting the provenance graph drastically. Further, the provenance graph grows very

fast when capturing these low level actions. So, a higher level needs to be captured. How-

ever, this requires a deep integration in the visual analysis tool that can only be ensured

for tools created with CLUE from scratch.
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Replay Actions

Besides recording the actions taken by the user, replaying isn’t trivial either. Actions have

to be extracted to commands which can be triggered automatically. However, replaying all

actions from the start of the analysis to get the final state isn’t effective. A combination of

snapshots of the whole current state with incremental actions may be a possible tradeoff.

Another challenge is the changing environments. Especially in visualizations the available

screen size can influence the presentation tremendously. Different screen sizes, program

versions, available resources need to be taken into account.

State Transition

Users can select one or more states of the provenance graph to create a story out of it. The

resulting annotated story is then the basis for a presentation. A challenging task is how to

implement the state transitions between the states. The simplest approach is using hard

cuts, i.e. no transition at all and just show the following state. While this is commonly

done when having a series of screenshots, it is difficult to track the changes and keep

the relation between individual states. The other extreme approach is to lookup the path

connecting both states in the provenance graph and replay the actions along the path.

While this ensures a smooth transition, it may require several actions to be executed that

need time. A possible way for speeding the transition up is to eliminate unnecessary steps,

e.g., adding datasets which are removed afterwards in the path. Another way is trying to

parallelize actions, e.g. changing multiple parameters at the same time. Both approaches

require that the provenance graph is rewritten and modified partially. This requires a deep

understanding of the individual actions and how they relate to each other.

Figure 5.1 shows an example of a provenance graph with four selected story points (a).

(b) to (d) show possible animation paths. In (b) all intermediate steps are executed and

partially reverted for getting from 3 to 4. In (c) a hard cut between 3 and 4 is performed,

reducing the number of animation steps. Finally in (d) an alternative hard cut is performed

in which the same intermediate story point 1 is visited twice as a common starting point.
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Figure 5.1: Example provenance graph (a) with four selected story points. (b) to (d)
show alternative animation paths. (b) reverts all actions and replays them while the other
use hard cuts instead.

Using particles for animation is another approach for explaining how individual items

evolve and relate within different visualizations. As explained in Section 4.3 a particle

represents a single data-item, e.g. a patient or a gene. Particles move from one repre-

sentation into another allow tracking individual items across visualizations. However, the

scalability of this approach is limited. If organized in an organic way it requires heavily

computational effort. Moreover, aggregated visualizations like box plots are problematic

since individual items aren’t shown anymore.

Interactive Story Manipulation

A key idea of the CLUE concept is that analysis and presentation are interleaved and just

two extreme of the same continuum - see Section 3.1. Therefore, users can move along

the continuum smoothly. Difficulties arise when the selected and prepared story should

be changed on the fly. While some changes won’t affect the story, some will. This heavily

depends on the story to tell. For example, changing the number of bins in a histogram

doesn’t influence the result, if the dataset is not further used. However, if a specific bin is

extracted, changing the number of bins prohibits the rest of the story to understand, since

the extraction doesn’t make any sense anymore.
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It depends on the actual situation whether one change is a modification of the current

state or the start of a new analysis branch. On the one hand, some modifications like a

new selection of items can be applied on top of the existing one and won’t affect the story.

On the other hand, adding a new dataset or removing an existing one, will change the

story potentially. In the end the system can try to detect whether the current change will

break the story and warn the user that her modification will create a new analysis branch.

However, this is not a trivial task either.

5.1.2 Caleydo Web

Scalability

Scalability is a common issue for all platforms. How does the platform scale to a large

number of user, data items . . . . The number of users is not an issue for Caleydo Web

through its target audience. The target audience is a group of biologist and bioinformati-

cians working together in a team. Therefore, we expect a total number of less than 30

users at a time per instance. This small number of active users can still be handled by a

single server without the need for load balancing.

Caleydo Web ensures scalability in the number of data items by several measures. First,

it uses a client-server architecture allowing that the whole data storage is centralized on a

powerful server. This avoids that all the data needs to be hosted and transferred to each

client. The idea is to just transfer the data the client currently needs. Depending on the

visualization it can be the raw data or aggregated and transformed versions of it. For

example, for rendering a boxplot only a few statistical measures are needed instead of the

whole dataset. A different option is to render a preview of the visualization on the server

and deliver this non-interactive image till the real visualization has been loaded. This

ensures responsiveness of the system and fast results. A common example is rendering a

heatmap on the server in a image texture. Depending on the available screens space and

data size this may include data sampling and grouping. The resulting heatmap texture is

then used as a background image on which the current selection is added as an additional

layer.
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Asynchronicity and Delays

Transferring data to the client, loading plugins, and computing visualizations takes time.

Therefore, asynchronous operations are an important aspect of Caleydo Web. Placehold-

ers, cached previews, and meta information till the final result is available are countermea-

sure for handling delays due to asynchronous operations. Another aspect of Caleydo Web

is automatic conversion between different annotation system like Entrez or DAVID. This

ensures that data items selected in one annotation system are also highlighted in datasets

using a different one. However, due to possible server lookup operations this may create

delays between the selection of one element in a dataset and the highlighting in all related

ones. Besides caching of mappings, user feedback has to be given such that she will be

notified about possible delays.

5.2 Future Work

Besides continuing the ongoing work, several interesting aspects of the CLUE concept

can be thought of:

The first one is to integrate guidance at all stages. Guidance at the exploration level

can help analysts identifying more findings faster. The main challenges are that the user

shouldn’t be manipulated in her choice but just guided. You need to avoid that the an-

alyst stops thinking and just relies on the suggestions. Guidance on the story editing

level is about identifying interesting sub results and how to reproduce them automati-

cally. Another possible way of guidance is helping the user what is not interesting at all

and therefore reduce the size of the provenance graph dramatically.

Another possible future work is about analyzing the provenance graph itself. Based on

one or multiple provenance graphs of multiple session and users, fascinating observations

could be made. For example, like commonly repeated pattern which are executed over

and over again, loops within the graph, in which users come back to the same state where

they started, and so on. Furthermore, analyzing provenance graphs of visualization-driven

exploration can help improving how users are guided. In the current version most guid-
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ance is based on statistical measure to identify interesting patterns in the data. Another

possible way is providing guidance based on existing provenance graphs and the extracted

pattern within them.

Finally, since Caleydo Web is plugin based, extensions are improvements are easily pos-

sible. One long time goal is to build a community around it, such that bioinformaticians

from all over the work contribute and extend the platform with their own data, visual-

ization techniques, and applications. This would not only speed up the development of

Caleydo Web but also increase the number of users, its variety, and application scenarios.

5.3 Summary

In this report ongoing work on the CLUE concept is introduced. It is a general concept

for capturing, labeling, understanding, and explaining visualization-driven explorations.

Besides this theoretical concept the Caleydo Web visualization platform is explained in

detail including its key aspects and architecture. Particles were an attempt for realizing

animations within visual analysis ensuring traceability of individual elements during the

analysis. Finally, StratomeX.js, a port of an existing visualization technique, demon-

strated the applicability and possibilities of the CLUE concept and Caleydo Web. The

current state already shows promising results which are improved in the future.
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