Fachhochschul-Masterstudiengang
INFORMATION ENGINEERING & -MANAGEMENT ;l l
4232 Hagenberg, Austria

OBEROSTERREICH

Evolving Aquatic Robots for Payload
Transportation

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science in Engineering

Eingereicht von

Ing. René Draschwandtner MSc

Begutachter: FH-Prof. DI Dr. Stephan Winkler

August 2015

Iem nformation engineering und -management
IKM Fakultat Hagenberg

Eidesstattliche Erklarung

Ich erkldre eidesstattlich, dass ich die vorliegende Arbeit selbststdndig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt
und die den benutzten Quellen entnommenen Stellen als solche gekennzeich-
net habe. Die Arbeit wurde bisher in gleicher oder &hnlicher Form keiner
anderen Priifungsbehdrde vorgelegt.

Ort, Datum Name, Unterschrift

Contents

Eidesstattliche Erklarung

Acknowledgements
Kurzfassung
Abstract
1 Introduction
2 Methodology
3 Animat
3.1 Components and Layout,
3.2 Locomotion
3.2.1 Lateral Undulation
3.2.2 Undulatory Propulsive Force Generation
3.2.3 Joint Angle Calculation for Generating Propulsion . .
3.3 Turning Gaitso
3.4 Object Grasping Motion

Shape Visualizer

Machine Learning Methods

5.1
5.2

Evolutionary and Genetic Algorithms
Artificial Neural Networks

Simulation Environment

6.1 Open Dynamics Engine
6.2 Aquatic environment
6.3 Visualization
Experiments

7.1 Evolved Watersnake
7.2 ANN Watersnake

5EE ZI29E 988 N HEECEHswe = = 5 B 8 =

Contents

7.3 Turning
7.4 Drifting
7.5 Stopping

7.6 Insitu Turning
7.7 Watersnake Evolved with DEAP
7.8 Evolved Watersnake Head

7.9 Grasping

7.10 Evolved Watersnake with Grasped Object
7.11 Capture Target
7.12 Capture and Deliver Target

8 Conclusion and Future Work

A Software Versions
A.1 Local Machine
A.2 High Performance Computer

References

Literature . . .

Online sources

Acknowledgements

This work was carried out during my research visit at the department of
Computer Science and Engineering, Michigan State University. I want to
thank the Austrian Marshall Plan Foundation for funding my visit with the
Marshall Plan Scholarship (MPS) and the Upper Austrian Government for
granting me the Internationalization Program for Students (IPS).

I offer my sincerest gratitude to my supervisor, Prof. Philip K. McKin-
ley, at Michigan State University. Without his guidance, encouragement,
support and inspirational ideas this study would hardly have been com-
pleted. I am deeply grateful to my colleagues in Prof. Philip K. McKinley’s
research group Anthony Clark and Dr. Jared Moore. Both introduced me
to the field of evolutionary robotics and provided practical guidance for my
research activities. My sincere thanks also goes to my advisor at Univer-
sity of Applied Sciences Upper Austria, FH-Prof. Stephan Winkler, for his
guidance in the initial phase and the end of my research project.

Kurzfassung

In einer aquatischen Umgebung wird der Nutzlasttransport typischerweise
von Tauchrobotern, die mit Steuergerdten ausgestattet sind, durchgefiihrt.
Diese Masterarbeit untersucht Steuerstrategien fiir den Nutzlasttransport
mit schlangendhnlichen Robotern. Selbstentwickelte und evolvierte Steu-
ermechanismen werden verwendet, um ein effektives Roboterverhalten zu
erzeugen. Der Roboter wurde nach dem Vorbild einer Wasserschlange kon-
zipiert und besteht aus einer definierten Anzahl an starren Korpern (rigid
bodies) sowie motorisierten Gelenken. Der Nutzlasttransport ist in dieser
Masterarbeit wie folgt definiert: Fahigkeit des schlangendhnlichen Roboters
ein kugelférmiges Zielobjekt in einer aquatischen Umgebung auszuliefern.
Im Unterschied zu konventionellen Tauchrobotern, welche externe Arme und
Propeller besitzen, verformt der vorgestellte Roboter lediglich seine Gestalt
um vorwérts zu schwimmen und ein Objekt zu greifen. Dieser Ansatz bie-
tet mehrere Vorteile gegeniiber konventionellen Tauchrobotern. Erstens, die
Wahrscheinlichkeit der Umwelt Schaden zuzufiigen wird durch die Absenz
von Propeller und anderen externen Geréten reduziert. Zweitens, der Robo-
ter verfangt sich weniger leicht in umhertreibenden Gegenstinden. Drittens,
die Umwelt wird mit diesem Ansatz geschont, da der Roboter weniger Larm
verursacht. In dieser Masterarbeit werden alle Experimente mit Simulatio-
nen durchgefiithrt. Die komplexe Aufgabe des Nutzlasttransports wird in
folgende Teilaufgaben untergliedert werden: (1) anndhern an das Zielobjekt,
(2) greifen des Zielobjektes, (3) ausliefern des Zielobjektes. Diese Teilaufga-
ben werden zunéchst individuell untersucht und nachfolgend kombiniert um
die Nutzlasttransportaufgabe durchzufiithren.

In der Natur generieren Wasserschlangen einen Vorwartsantrieb indem
sie sinusoidale Wellen entlang ihres Korpers propagieren. In dieser Master-
arbeit verwenden die wasserschlangenahnlichen Roboter sinusoidale Bewe-
gungsmuster um Geschwindigkeit aufzubauen. Die Parameter der sinusoi-
dalen Bewegungsmuster werden mit genetischen Algorithmen optimiert, um
eine maximale Durchschnittsgeschwindigkeiten zu erzeugen. Zuséatzlich ver-
wendet der Lenkalgorithmus das so erzeugte Moment, um den Roboter in
Richtung des Zielobjektes zu steuern. Ein entwickelter Greifalgorithmus wird
ausgefiihrt, sobald sich der Roboter in der Nahe des Zielobjektes befindet.
Sobald das Objekt gegriffen wurde, fiihrt der Roboter erneut ein Schwimm-

Vi

Kurzfassung vii

/Lenkverhalten durch. Zum Schluss setzt der Roboter das Objekt innerhalb
einer Zielregion ab.

Eines der Ziele dieser Masterarbeit ist die Bewertung der Effektivitét
von evolutiondren Algorithmen zur Optimierung der Nutzlasttransportauf-
gabe. Viele wissenschaftliche Arbeiten im Bereich evolutionary computati-
on optimieren eine eng definierte Aufgabe. Im Gegensatz dazu kombiniert
diese Masterarbeit selbst entwickelte Losungen, mit Ergebnissen von evo-
lutiondren Laufen um ein komplexes Verhalten zu erzeugen, dass sich aus
mehreren Teilaufgaben zusammensetzt.

Abstract

Payload transportation in an aquatic environment is usually performed by
underwater robots equipped with controller boards. The focus of this thesis
is an investigation regarding control strategies for the payload transporta-
tion task as executed by a snake-like robot. Both engineered (hand-coded)
controllers and evolved controllers are employed to produce effective robotic
behaviors. The robot has been designed to resemble a water snake and com-
prises a number of rigid bodies (links) and actuated hinge-joints. For this
work, the payload transportation task is defined as: the ability for the snake-
like robot to deliver a spherical target object while operating in an aquatic
environment. In contrast to conventional aquatic robots, which are are of-
ten driven by propellers and utilize a robotic arms to grasp objects, the
snake-like robot swims and grasps objects by deforming the robot’s body
shape. This behavior is useful in the real world for several reasons. First,
the absence of propellers and external devices will reduce the likelihood of
damaging the environment and the robot itself. Second, the robot is less
likely to become tangled in debris while moving in the environment. Third,
the robot is less disruptive to the natural environment due to low acoustic
noise. All experiments in this thesis are conducted in simulation. Payload
transportation can be broken into the following sub-tasks: (1) approach the
target, (2) capture the target, (3) deliver the target. These three tasks are
first investigated individually and then combined to solve the entire payload
transportation problem.

In nature, water snakes propel themselves by propagating sinusoidal
waves along their bodies. Likewise the snake-like robots in this thesis em-
ploy sinusoidal locomotion patterns in order to generate forward velocity.
Sinusoidal parameters are optimized with a genetic algorithm to produce
maximum average speed. Additionally, the steering algorithm utilizes for-
ward momentum to direct the robot toward the target object. An engi-
neered “grasping” algorithm can be executed when the robot is near the
object. Once the robot has grasped the object, it executes a similar swim-
ming/turning behavior with the object in tow. Finally, the robot releases
the object at a destination zone.

A goal of this research is to assess the effectiveness of evolutionary algo-
rithms for optimizing payload transportation. Whereas many evolutionary

viii

Abstract ix

computation studies focus on solving single tasks, this thesis combines en-
gineered solutions with results from evolutionary runs to realize a complex
behavior including multiple sub tasks.

Chapter 1

Introduction

Conventional robots in an aquatic environment are often driven by an exter-
nal propeller and employ an exterior apparatus to capture a target object.
This thesis proposes a robot capable of both locomotion and grasping of a
target object without specialized hardware for either task. The robot mimics
serpentine locomotion by deforming its body which comprises a number of
rigid segments connected by motorized joints (e.g. using a servo moto.
Such a system, as depicted in Figure is presumably easier to construct
than a device with an external propeller and specialized grasping apparatus.

Figure 1.1: Example of a snake-like robot in a simulation environment.
(a) shows the robot while performing serpentine locomotion. (b) illustrates
forward movement with a grasped object.

Problem

The proposed robot requires complex control strategies in order to com-
bine locomotion and grasping tasks. Many researchers investigated robotic
snake-like locomotion patterns for generating forward propulsion (and
38]) or turning gaits ([66], [37], and [23]). Others, studied steering mech-
anisms for such robots (, , and), but a higher level control

1A servo motor is a motor with precise control of its angular position.

1. Introduction 2

for combing different locomotion patterns remains unexplored.

Sims first employed evolutionary computation for the design of
aquatic robots. In that study, morphology and a brain (e.g. implemented
with an artificial neural network) are evolved together in order to fulfill the
tasks: (1) swimming, (2) walking, (3) jumping, and (4) following an object.
Together with early work of Brooks and others, the field of evolution-
ary robotics was formed. This area of research has been extended by many
others (e.g. Lessin et al.) to evolve behavior like forward locomotion,
turn left, turn right. Bongard [4] found that the evolution of behavior should
involve both a robot’s body and its brain. Furthermore, Bongard [4] argues
that complex behavior should be evolved step-wise by starting with simple
tasks and progressing to more complex tasks. Creatures with evolved mor-
phology often outperform creatures with a fixed morphology, although they
use the same behavioral strategy to fulfill a given task . However, these
researchers evolve complex behavior which could be hand-coded by a human
engineer in less time.

Purpose

This thesis focuses on control strategies for the motorized joints in order to
generate effective locomotion and grasping behaviors. Solutions for simple
tasks are combined to generate complex behavior. Engineered solutions in
conjunction with solutions found through computational evolution. Specifi-
cally, problems that are difficult (or even impossible) to solve for a human
engineer (e.g. multidimensional parameter optimization for non-linear func-
tions) are solved by genetic algorithms. Tasks that can be implemented
faster through human intuition than by computational calculation utilize
engineered solutions.

Evolutionary robotics is not limited to computer simulations . A
robot’s sensory data can be presented either to an onboard controller or
transferred to an external personal computer which employs evolution. There-
fore, the concepts presented in this thesis may be used to design real world
robots. Empirical studies for evolved real world robot controllers are shown
in .

The goal of this thesis is to explore the integration of engineering and
evolutionary computation for so as to enable a robot to fulfill the task of
capturing and transporting an object to a target destination in an aquatic
environment. This complex task is divided into three subtasks: (1) approach
the object, (2) grasp the object, (3) deliver the object. This thesis should
answer following research questions:

1. How can snake-like locomotion be implemented in order to perform
propulsion?

2. How must the robot’s morphology be reconfigured to capture and
transport a target object?

1. Introduction 3

3. Which parts of the robotic design process should employ evolutionary
computation?

These questions are answered with the research methodology described
in Chapter [2| by conducting an extensive literature review of biological and
robotic snake-like locomotion as well as grasping in Chapter 3| Chapter
analyzes gaits proposed in the literature by using a visual implementation
presented in Chapter |4l Relevant machine learning methods are then de-
scribed in Chapter [5] Chapter [6] presents the employed simulation environ-
ment in this thesis. Experiments are described in Chapter |7} The conclusion
in Chapter (8| evaluates the outcomes of the experiments.

Chapter 2

Methodology

This thesis is based on empirical research conducted by means of experimen-
tation and observation. In silicd!] experiments are executed in a simulation
governed by a 3-D rigid body physics engine. Recorded simulation data is
used to perform a quantitative analysis with statistical methods. Further-
more, a qualitative assessment is conducted by observing the visualization of
a simulation. The research process is divided into the following consecutive
steps (based on [30]):
1. Specifying the problem and defining its scope.

2. Investigating solutions to related problems occurring in natural sys-
tems through literature review.

3. Formulating algorithms to leverage/mimic biological solutions for the
technological problem in experiments. The MATLAB script Shape Vi-
sualizer, described in Chapter [4], is used for algorithm design and as-
sessing algorithm effectiveness.

4. Implementing experiments on a local computer. Experiments can ei-
ther (1) be divided into a part that evolves parameter values for a
controller used in the physics simulation and a part that controls the
physics simulation with the evolved parameter values, or (2) use hand-
coded parameters for a controller in the physics simulation. In this the-
sis, a controller is responsible for the adjustment of animat (artificial
animal) locomotion parameters. A local computer with a Windows 7
operating system is used to encode and test the experiment. Microsoft
Visual Studio 2012 with Python Tools for Visual Studio 2.1 is used
as an integrated development environment for Python 2.7 encoded ex-
periments. Open Dynamics Engine (ODE), described in Section [6.1], is
applied to perform physics simulations. Neural network controllers are
created with the library MultiNEAT. DEAP (Distributed Evolution-
ary Algorithms in Python) is used for the evolution of a controller’s

YIn silico is a term to express a simulation executed on a computer.

(6;]

2. Methodology

Shape Visualizer
(MATLAB)

Deployed Experiment | ODE
% (Python)
iation a1t}

ant

MultiNEAT

DEAP

i

o Experiment Q/ HPC
(Python, Visual Studio) &
[] \
LR

'3'77:0

MultiNEAT

= !
E I

WebGl-Based Visualizer

Local Computer

Result Data Analysis
Seript

http://jaredmmoore.com

Figure 2.1: Overview of involved components. Shape Visualizer is used for
the algorithm design on a local computer. Experiments are implemented in
Python by using the libraries ODE, MultiNEAT and DEAP. Evolutionary
experiment runs are deployed on a HPC through a SFTP connection. Re-
sult data is retrieved after the evolutionary runs finished. The result data
is analyzed with MATLAB scripts and visualizations are generated by using
the WebGl-Based Visualizer at |http://jaredmmoore.com/WebGL_ Visualizer/|

visualizer.html

parameter values with highly standardized algorithms.

5. Conducting experiments that consist of evolutionary runs with 18
replicates on a high performance computer (HPC). Multiple replicates
(with different random number generator seeds) are used to produce
statistically significant evolutionary runs.

6. Analysis and processing of the generated result data on the HPC.
MATLAB is used to transform and prepare recorded simulation data.
Furthermore, it is used for the calculation and visualization of per-
formance indicators. Visualization tools, described in Chapter are
utilized to evaluate the behavior of an animat in the simulation envi-
ronment.

7. Interpret and summarize the analyzed data with statistical methods
which may inspire other experiments.

Figure depicts a system overview with all involved components.

Evolutionary runs are described in detail in Chapter |7} The following
sections contain short descriptions of tools mentioned in the research process
that are not further explained in other parts of this thesis. A complete list
of software tool versions can be found in Appendix

http://jaredmmoore.com/WebGL_Visualizer/visualizer.html
http://jaredmmoore.com/WebGL_Visualizer/visualizer.html

2. Methodology 6

MATLAB

MATLAB is an environment for numerical computation, visualization and
programming which can be used to analyze data, develop algorithms and cre-
ate applications . It contains built-in mathematical functions that enable
fast development of statistical tests, equation solvers and graph functions
. Data is stored in variables and handled with matrix manipulation func-
tions. A sequence of commands can be stored in MATLAB scripts. Functions
take input parameters, execute a sequence of commands in their own vari-
able environment and return a result. Data visualization can be programmed
with built-in two- and three-dimensional plotting functions. It provides easy
data import, data transformation and export functionality and is widely
used by engineers and scientists .

Python

Python is a high-level programming language that supports multiple pro-
gramming paradigms like object-oriented and functional programming .
It is an intuitive scripting language that utilizes an interpreter at run time
in order to generate an intermediate byte code that is executed by a vir-
tual machine. Data types are inferred at run time and memory is managed
automatically. Therefore, it can be used to rapidly develop highly readable
algorithms. Python is used by a large number of developers in the scientific
computing community .

Visual Studio with Python Tools for Visual Studio

Visual Studio is an integrated development environment (IDE) used to de-
velop computer and web applications on the operating system Microsoft
Windows . It supports various programming and scripting languages as
well tools for project management, software lifecycle management, cloud
applications and phone development . An intuitive interface with full
tool chain support, static code analysis and debugging capabilities for many
programming languages enable a researcher to rapidly develop reliable ap-
plications. Python Tools for Visual Studio (PTVS) is a plugin for Visual
Studio that turns it into a Python IDE . PTVS allows developers to use
Visual Studio’s capabilities for Python programming. It provides automatic
syntax and hierarchic analysis of Python code in conjunction with an
interactive Python console.

High Performance Computer

HPCs offer speed and capacity significantly greater than machines built for
commercial use . They generally utilize a massive number of processors
in order to solve computationally intensive problems. Processors can either
be distributed over many local machines, where each machine solves a self
contained sub task and reports its result back to a server, or placed in

2. Methodology 7

proximity (e.g. in a computer cluster) to work together without immense
data transfer overhead.

The HPC used to perform experiments for this thesis utilizes multiple
nodes consisting of many processors in spatial proximity in order to reduce
networking overhead. Each node performs one replicate of the evolutionary
run at a time, while each processor of the node is used to run one simulation
task at a time. One generation of the evolutionary run scatters its simulation
tasks over all processors of a node and gathers its results when the simulation
is finished. Depending on the utilization of the HPC and the number of
replicates, one node may compute all replicates serially or all replicates may
be computed in parallel over all nodes. In detail, the HPC used to perform
experiments consists of 10 nodes where:

e mnodes 1 until 6 each have 32 processors with 2400M H z per processor,
and

e nodes 7 until 10 each have 64 processors with 2100M H z per processor
with 64-bit registers. The HPC uses the Linux distribution SMP Debian 3.2.

Chapter 3

Animat

The investigated snake—lik animat moves in a simulated aquatic environ-
ment. This thesis investigates “underwater” locomotion with neutral buoy-
ancy as in [42], where authors focused on momentum generation for eel-like
robots. The robot of Crespi et al. is a near surface swimmer and gener-
ates locomotion patterns with a non-neutral buoyancy. While and
investigate the physics of locomotion generation, other researchers (, ,
and) have studied gait generation for steering a robot in a terrestrial
environment. This chapter utilizes the developed Shape Visualizer presented
in Chapter |4]in order depict the robot’s shape deformation.

3.1 Components and Layout

As described in Section terrestrial motion patterns can be applied to
aquatic locomotors. The animat is capable of moving in three degrees of
freedom (DOF), without touching the floor of the environment. Its body
consists of n identical rigid links connected with n — 1 actuated joints as
shown in Figure The animat’s undulatory motion can be compared
with the dynamics of a free-moving serial chain. As shown, components are
defined in the global coordinate system (X,Y, 7). The dimensions of a link
are given in (I x h x w), 1.5 x 0.5 x 0.5 units in this study. Joints are
indicated in Figure to show their role and function in the animat’s body
in the simulation. Adjacent links are placed consecutively after each other,
which would lead to collisions when a joint is rotated. To this end, adjacent
links are defined to be allowed to intersect with each other’s body. This
behavior emulates the flexible nature of natural organisms, whose bodies
are not simple 3D primitives.

Joints are used to describe the angular relation between two adjacent
links. As indicated in Figure two links rotate around the Y axis which

1Snake-like refers in to the behavior of elongated creatures that derive their movements
primarily from their main body form rather than limbs or fins.

3. Animat 9

A
S
n
/QC’
jointn-2 &
4
mn
link n-1 link n-2 oo link 0 -5
=
D
d=0 1=15 X R

Figure 3.1: Animat consisting of n links and n — 1 joints in a three di-
mensional global coordinate system (X,Y, Z). A joint connects two adjacent
links. Link and joint indexing starts from greatest X position and ends at the
smallest X position. The dimensions of each link are defined to be (I x b x w)
1.5x0.5x 0.5 units. A joint is defined to have no distinct dimensions (d = 0),
but is shown here to emphasize its role in the animat’s model.

describes the characteristics of a hinge joint. This thesis will use the term
joint as a synonym for hinge joint. Figure shows the actuation of a 2-link
joint. The initial link position in (a) defines the initial angular relation
between both links with 0° in the joint. A rotation with value 46 leads to a
rotation of +6/2 for link0 and —6/2 for link1 by the definition of a positive
counter-clockwise rotation. The angle 6 is restricted to be 6 € [—90°, +90°].
Each joint in an animat’s body defines its own local coordinate system in
order to describe the relation between two adjacent links.

In order to perform a rotation as shown in Figure a joint has to
apply a torque 7 (respectively —7) on link0 and linkl, as shown in Figure
In detail, the torque is calculated with = = r x F, where r is a vector
that defines the COM (center of mass) displacement from the joint origin,
in this case [/2, and F the force vector. The force vector is calculated with
F = mx*a, where m is the mass of the link and a is the vector of acceleration.
Hence, a certain force is required to rotate a link around the angle 6/2. This
force is usually limited by hardware properties, e.g. the maximum torque of
a servo motor. The aim of this thesis is not to build a fully realistic hardware
simulation. To this end, maximum forces have been set high enough to allow
smooth animat motion in the physics simulation.

The animat is defined to have a uniform form mass m distribution. In
other words, each link is defined to have the same mass m, while joints are
defined to have mass m = 0. This leads to a constant density, according
to the equation p = 77, because V is defined to be 1.5 x 0.5 x 0.5 for
each link. As previously mentioned, the animat is defined to have neutral
buoyancy. Buoyancy, or upthrust, is the contradicting force to gravity in a

3. Animat 10

+X

v

0°

link1l Q link0

(@)

(b)

Figure 3.2: Top view of a joint actuation in an animat consisting of two
adjacent links and one joint in the global coordinate system. (a) shows the
initial link position and the initial joint position at 0°. The joint is then
actuated by a value 6 which leads to a rotation of both links (b).

F “\
joint origin -
// -

e

// .‘/
N -
T

%

Figure 3.3: Top view of a link that is rotated around Y axis at the joint
origin with torque 7 and its resulting force F'. The dashed rectangular rep-
resents the estimated link position after applying torque 7 on the initial link
position indicated with a continuous line.

liquid. A body moves upward if buoyancy is greater than gravity and vice
versa. Neutral buoyancy generates neither upward nor downward thrust. A
body stays at the same vertical position if no external force is applied.

3. Animat 11

(¢) Sidewinding locomotion (d) Rectilinear crawling

Figure 3.4: Four most common snake gliding types. (a) Eastern garter snake
slithers through a muddy area [74] published in public domain. (b) Corn
snake moving in concertina mode [40] licensed under CC BY. (c¢) Sidewinding
rattlesnake reproduced with permission from AAAS. (d) Great basin
gopher snake rectilinear locomotion [76] reproduced with permission from
Filip Tkaczyk.

3.2 Locomotion

Snake-like creatures employ many unique locomotion patterns adapted to
specific environments. Movements can be categorized as creeping on the
ground, jumping up in the air, or gliding in the air by aerodynamically
deforming the animal’s body. The four most common gliding types of move-

ment identified in , , , can be classified into:

1. Lateral undulation: Lateral undulation is achieved by propagating
waves along the animal’s body, see Figure [3.4]a).

2. Concertina locomotion: Concertina locomotion is obtained by stretch-
ing and curving body parts. The curved body part stays at the same
position, while the stretched body part is moved forward, see Figure
BA(b).

3. Sidewinding locomotion: The lifting and curving of an animal’s
body parts, while the lifted body part is moved parallel to its lateral
orientation, is called sidewinding locomotion, see Figure c).

4. Rectilinear crawling: An animal performs rectilinear crawling when
it uses the edges of its body to pull itself forward, see Figure (d)

3. Animat 12

This thesis investigates animats in an aquatic environment and will focus
on lateral undulation.

3.2.1 Lateral Undulation

Lateral undulation is the wave-like movement of body parts in order to gen-
erate forward propulsion. This type of motion is also called serpentine move-
ment/crawling , , , for terrestrial snake movement. Lateral
undulation employed by aquatic swimmers is often referred to as anguil-
liform locomotion , or simply swimming for eel, lamprey and
other underwater snake-like animals.

Gray first conducted a qualitative analysis of lateral undulation with
several eel-like fish. He found that sinusoidal waves are propagated along the
fish’s body from head to tail with a wave length slightly less than the fish’s
body length. Each body part makes similar “tracks” or, in other words,
passes the same point in an n-dimensional coordinate system. Irregularities
in the environment, e.g. caused by ground friction (terrestrial) or hydrody-
namics (aquatic), push against the body which leads to forward propulsion.
Lateral undulation is therefore not suitable to generate forward movement
on a slippery surface or in vacuum. Figure depicts the principal
movement of a water snake-like animat with lateral undulation. The body
moves sinusoidally while generating propulsion. Each time step shows the
current spatial position. It moves distance; from time step t = 0tot = 1
and distances fromt =1 to ¢t = 2.

3.2.2 Undulatory Propulsive Force Generation

Forward motion cannot be generated by just moving an animal’s body parts
according to a sinusoidal wave. As previously stated, either ground friction
or hydrodynamics are required in order to generate positive propulsive force
in the transverse direction.

Aquatic drag forces have similar influences on the undulatory snake-like
mechanism as anisotropi ground friction properties \\ This means that
undulatory motion properties in a terrestrial environment can be transferred
to an aquatic environment and vice versa.

Gray explains the generation of propulsive force in an aquatic envi-
ronment in transverse body direction by the displacement of water. Figure
depicts the animat’s body surface which generates propulsive force. Wa-
ter is deflected along the animat’s body, generating two forces Fy and Fj,.
The water deflection force (Fy) is parallel to the body and the pressure force
(F}p) directs normal to the body, representing the pressure against the water

2 An environment where property values, e.g. viscosity or density, differ between two or
more measurements (e.g. spatially displaced) is called anisotropic.

3. Animat 13

compressed water

t=0
|
! direction of propulsion
|
o l

direction of wave

propagation

NN

P
distance; distancez

Figure 3.5: Lateral undulation of a water snake-like animat in an aquatic
environment. Compressed water is painted as blue grid at ¢ = 0. The sinu-
soidal wave travels from the head (right) and to the tail (left). This generates
a propulsion to the right. ¢ = 0, ¢t = 1, t = 2 define time steps in the animal’s
movement. The animal’s body moves from the left to the right with distances
distancey and distances between the time steps.

generated by a propagating wave. The accumulation of Fy, (force component
in Fy) and F), results in propulsive thrust.

Liljebéack et al. analyzed the propulsive force generation of a snake-
like robot in a terrestrial environment. The robot consists of n links and
n — 1 connecting joints and moves along a sinusoidal wave. The authors
examined the contribution of each link to the total propulsive force and
deduced that forward propulsion in the longitudinal direction is generated
by link movement in the transversal direction. They also showed that the
magnitude of the propulsive force increases by increasing the link velocity
in transversal direction or by increasing the link angle offset, as long as it
stays under 45°. Furthermore, they conclude that a link produces the highest

3. Animat 14

b lateral axis

/ longitudinal axis
Fa

transverse water
displacement

Figure 3.6: Propulsive force generated by moving the body according to a
sinusoidal wave. Water is deflected along the body and generates the force Fy.
Pressure is generated due to pushing against compressed water (F},) which
directs normal to the animat’s body. Force Fy, is the force component in Fy
that directs into the same direction as Fj,.

propulsive force from a given link velocity if the link angle is 8; = +45° to
the forward direction.

3.2.3 Joint Angle Calculation for Generating Propulsion

Hirose studied the body movement of biological snakes which led to
the mathematical formulation of the serpenoid curve. The planar serpenoid
curve describes a snake’s spatial and temporal body movement with:

xz(s) = /OS cos(a x cos(b* o)+ c* o) do, (3.1)
y(s) = /OS sin(a * cos(b* o) + c* o) do, (3.2)

where (x(s),y(s)) represents a point in the coordinate system, and s is the
arc length from the robot’s origin point. The variables a, b and ¢ are defined
as scalars. It is important to note that Equations and describe the
robot at a certain time instance.

Saito et al. derived a discrete approximation of Hirose ’s con-
tinuous serpenoid curve for n-link robots. The authors state that a snake’s
undulatory locomotion can be imitated by changing the relative angles of
the robot’s links with:

¢i(t) = axsin(wt + (1—1)8) + , (3.3)

where 7 represents the index of a robot’s joint as ¢ € 1,....,.n—1 and n =
number of links. The angular frequency w determines how fast a serpentine

3. Animat 15

Figure 3.7: 8-link animat with corresponding temporal sinusoidal joint angle
paths at a certain time step. The current shape of the animat is the result
of applying ¢; to the corresponding joint at ¢ = 0. Each joint has a distinct
joint angle course.

curve propagates along a robot’s body and is therefore mainly responsible for
forward locomotion speed. Furthermore, the variable « specifies the ampli-
tude of a joint’s angle, which is highly dependent on the robot’s surrounding
environment. A joint’s phase shift in respect to the first joint is calculated
with joint index -1 (i — 1) times phase shift constant (/). Saito et al.
found that § values can be roughly approximated with 27 /n. The offset
variable v biases joint angle values and can be used to change the robot’s
direction of motion. In detail, this variable can be used to veer the robot to
the left or to the right. Setting v = 0 leads to straight forward motion.
Variables a,, w and [are highly interdependent. E.g., increasing the value
of w while keeping a very small would not lead to an observable increase of a
robot’s forward velocity. For example, Yang et al. show experimentally
the relation between «, w with respect to a underwater snakelike robot’s
forward velocity. Yang et al. and Mclsaac and Ostrowski outline
the impact of the phase shift constant 8 on the robot’s forward velocity
respectively acceleration. Saito et al. , Hasanzadeh and Tootoonchi [23]
and Liljebéack et al. present methods to optimize «, w and [variables.
This thesis employs Equation in the notation

oi(t) = axsin(wt — if) + 7, (3.4)

where i defines the joint index with ¢ € 0,...,numberofjoints — 1. Calcu-
lated ¢; angles are applied to the robot’s n — 1 joints. Figure shows an
animat’s shape at ¢t = 0. The robot is actuating each joint according to its
joint angle course over time (as pointed out in the colorized course next to
the joints) in a sinusoidal manner. This is shown in Figure Links are

3. Animat 16

13 13
11 B 11
9 : 9
7 7
5r 5
3 : 3 <
N \‘.‘_.‘,Q/"-‘-N\ N M
-1r -1
-3 -3
-5 -5
-7 -7
-9 -9
-1 H -1
-13 -13
-26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 -26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0
X
(a) t =0s (b) t =1/4s
13 13
11 B 11
9 B 9
7+ 7
5F 5
3r B 3 B
-1r -1
-3r -3
-5 : -5
-7 -7
-9 -9
-1 -1
-13 -13,
-26 24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 -26 24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0
X
(c) t=2/4s (d) t =3/4s

Figure 3.8: 17-link animat that performs a forward locomotion gait with
parameters « = 0.1, w = 27, § = 27/16 and v = 0 for Equation in a
vacuum environment. (a)-(d) depict the time progress starting from 0 seconds
with step size 1/4 seconds.

actuated by the ¢; calculation in a vacuum environment. One sinusoidal
wave propagates along the animat’s body from right to left, producing a
propulsive force in the positive X direction.

It is noteworthy that Equation discretizes the spatial part (k) of a
two-dimensional traveling sinusoidal wave in the form

y(t,x) = Axsin(wt — kx) (3.5)

where t defines a certain time instance and x a certain spatial point. The
variable A describes the amplitude of the wave, w the angular frequency
responsible for temporal propagation and k the wave number (also known as
spatial frequency) responsible for spatial propagation. The relation between
Equation and Equation is shown in Figure (a). Quasi-continuous
x and discretized i values propagate along time. This Figure depicts the joint
angle progress of eight joints. Figure[3.9(b) shows the shift (ix27/8) of joint
index 0 and 1 on the projected angle(y) — time(x) plane. The start angle
values at time = 0 for joint indices 0 and 1 are 0 and —0.71 respectively.
By measuring all start angle values, one can deduce the initial shape of the

3. Animat

Qo
=)
C
<
<
s~
1 A
jointidx 0
jointidx 1
0.8
0.6
0.4
o 0.2
(@]
c
© 0
—
£
el

0 0.5 1 1.5 2 2.5 3
time (s)

(b)

Figure 3.9: Joint angle progress according to Equation with a = 1,
w = 2m, § =2x/7 and v = 0 and seven joints. (a) shows the joint angle (y-
axis) over time (z-axis) and space/jointindices (z-axis) in conjunction with
a two-dimensional quasi-continuous function according to Equation [3.5] with
a =1, w =27 and k = 27/7. The dashed black line at time = 0 represents
the starting angle for quasi-continuous joint indices. Each discrete joint index
1 =0,...,6 is colorized. (b) depicts the joint angle progress over time for joint
indices 0 and 1.

17

3. Animat 18

robot (black dashed line in Figure (a)) as exemplified in Figure

It is important to note that 8 can be interpreted as temporal sinusoidal
phase shift between joint indices as shown in Figure (b) and as spatial
angular displacement, e.g. black dashed line in Figure (a). By using the
approximation formula 27 /n, it is guaranteed that only one spatial sinusoidal
wave is propagated along the robot’s body . Hence, it is useful to compute
£ in multiples of 27 /n, because one can see immediately the number of
propagating body waves from the optimized value (e.g. a value of 1 produces
one distinct wave, a value of 2 two distinct waves and a value of 0.5 half a
wave).

An ANN can be used as an alternative to the discrete approximation of a
continuous serpenoid curve . As outlined in Chapter however one loses
the direct control with three parameters of the animat’s shape. Furthermore,
an ANN requires a clock input signal in order to produce an oscillating
output. The clock input signal could be omitted by using a Central Pattern
Generator (CPG) [26]. CPGs are able to produce a sinusoidal rhythm which
could represent the angle per joint per time step instead of calculating a
sinusoidal body wave. They are commonly used to generate cyclic gaits,
e.g., as used in [11] and . CPGs such as ANNs cannot be used to directly
modify joint actuation characteristics. An alternative to ANNs and CPGs
is presented in [28], where authors adjust the S value from Saito et al.’s
approximation formula in order to form an asymmetric snake body shape.
Joint actuation is handled similar to the method described in this chapter
(sinusoidal actuation) which means that no advantage would be gained for
this thesis.

3.3 Turning Gaits

Turning gaits for the animat are limited. In fact, relatively few researchers
have studied turning gaits in snake-like locomotion compared to regular
forward movement.

As previously described, the term v in Equation [3.4] can be used to turn
the animat to the left or to the right. The adjustment of variable ~ is called
circular motion [41], or the symmetrical line modulation method and
has been studied in , , and . The variable v adds a constant
bias to each calculated joint angle ¢;(t). This means that all joint angles in
an animat’s body skew to the left or the right depending on the sign of the
variable . Due to the fact that + is added to the sinusoidal motion, turning
is possible only if forward momentum is generated. This effect can be seen
in Figure [3.10 The same sinusoidal wave used in Figure propagates
along the animat’s body. An additional bias of v = 0.05 leads to a positive
joint angle tendency, which causes the links to turn more in the positive Z
direction than in the negative Z direction. This behavior produces a veer

3. Animat 19

131 13

- B 11

SR U O O DO W 0

7 7

5r 5

ST O U O O T .

N \._’_/M N et -

-1r -1

-3 -3

-5 -5

-7 -7

-9 -9
-1 H -1
-13 -13

-26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 —-26 -24 -22 -20 -18 -16 —14)212 -10 -8 6 -4 -2 0

(a) t =0s (b) t =1/4s

130 13

1t : 11

Elg B 9

7+ 7

5F 5

ol . [N O

o o , i

-1r -1

-3r -3

i s . FEERR N U
-7 -7

-9 -9
-1 -1

-13 -13,

-26 24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 -26 —24 -22 -20 -18 -16 714)212 -10 -8 6 -4 -2 0

(c) t=2/4s (d) t =3/4s

Figure 3.10: 17-link animat that performs circular motion with parameters
a =01 w=2r 8 =21/16 and v = 0.05 for Equation in an vacuum
environment. (a)-(d) depict the time progress starting from 0 seconds with
step size 1/4 seconds.

in positive Z direction if the animat is placed in an aquatic or terrestrial
environment. Consequently, the direction of turn can be changed by using
a negative sign for the v value.

Beyond veering, turning in a small area is a highly desirable behavior.
This movement complements other behaviors, increasing the overall agility
to the robot. Mclsaac and Ostrowski describe a turning gait without
forward movement generation for an odd number of animat links which
they called, a spinning gait. The spinning gait adjusts the variables 8 and
~ depending on the joint index ¢ with :

. Ji—=n/2 i<n/2
ﬁ<z7n){n/2—i—1—i i>n/2’ (36)

))+l i<n/2
i) = {—1 i>n/2’ 3.7

where n is the number of links. This approach treats the animat’s body as
two parts. Each body part propagates its own sinusoidal wave from inside

3. Animat 20

13 13
11 B 11
9 : 9
7 7
5 5
3 : 3
N 1 N 1
-1r -1
-3 -3
-5 -5
-7 -7
-9 -9
-1 H -1
-13 -13
-26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 -26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0
X
(a) t =0s (b) t =1/4s
130 13
1t : 11
9t : 9
7t 7
ol

-7 -7
-9 -9
-11F -1
-13 -13,
-26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 -26 24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0
X X
(c) t=2/4s (d) t =3/4s

Figure 3.11: 17-link animat that performs a spinning motion with parame-
ters a = 0.1, w = 27w, § = 27/16 and v = 0.3 for Equation in an vacuum
environment. (a)-(d) depict the time progress starting from 0 seconds with
step size 1/4 seconds.

joints to outside joints. Both sinusoidal waves generate a force directed to-
ward the middle of animat. These two forces would eliminate each other
if v would be set to 0. Setting v at the first sinusoidal wave to a positive
value in connection with a negative v at the second sinusoidal wave leads
to accumulated force in the same circular direction. This produces the prin-
cipal motion depicted in Figure One sinusoidal wave propagates from
the middle to the left. The other sinusoidal wave propagates in the opposite
direction. Together, these waves generate a force which leads the animat to
spin in counter clockwise direction if placed in an aquatic environment. Only
a half wave is observable per body part, because f = 27 /16 leads to one
full wave along the whole body. The direction of motion can be reversed by
changing the signs of the two v values simultaneously.

Meclsaac and Ostrowski [44] present the so called coil turning gait, which
requires forward momentum. The snake coils around itself while in active
forward motion. This result is achieved by propagating a fixed angle value
¢ along the animat’s body. In other words, if ¢; reached a trigger value, it
is held for a certain time. Afterwards, ¢; follows the sinusoidal curve again.

3. Animat 21

131 13
1Mr H 11
ol [L 0
7 7
5F 5
3r B 3
N 17\‘_.‘,01/"-‘\ N ! W
-1r -1
-3 -3
-5 -5
-7 -7
-9 -9
-1 N -1
-13 -13
-26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 O -26 —-24 -22 -20 -18 -16 —14)212 -10 -8 6 -4 -2 0
(a) t =0s (b) t =1/4s
131 13
1Mr H 11
7+ 7
5r 5
3r o 3
N T W o : : A
-1r -1
-3r -3
o R L = . . S
-7 -7
-9 -9
-1 -11
-13 -13
-26 -24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 O -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X X
(c) t=2/4s (d) t =3/4s

Figure 3.12: 17-link animat that performs a coil motion with parameters
a =01 w =2 =27/16 and v = 0 for Equation in an vacuum
environment. (a)-(d) depict the time progress starting from 0 seconds with
step size 1/4 seconds.

This produces the principal coil motion depicted in Figure Aquatic or
terrestrial drag forces turn the animat in the positive Z direction, assuming
that the animat has forward momentum in the positive X direction. After
a specified time the animat’s joints start to consecutively actuate again,
beginning from joint index 0.

Additional turning gaits such as the amplitude modulation method and
phase modulation method have been investigated by Ye et al. . These
gaits have not been used this thesis, because they would require additional
joint angle adjustment for little gain in agility.

3.4 Object Grasping Motion

The definition of the animat’s snake-like layout, as well as its body actuation
like a serial linked chain, limits the possibilities of grasping a target object.
Research in robotic grasping mainly focuses on emulating the two functions:
(1) restraining, and (2) manipulating of human hands [3]. In detail, a so-
called robotic fingertip grasp |3] holds an object with the ends of the robot’s

3. Animat 22

Algorithm 3.1: Move body links properly to envelope an object with
|graspjoints| + 1 links

1. GRASP(|joints|, |graspjoints|) > joint; = Osy
2: s « 360°/|joints| + 1) > set all fs - form a circle
3: moveanimat(0s) > e.g. simulation step
4: for i in |joints| — 2 and i < [joints| — |graspjoints| do

5: 05(0:5) < 0 > set Os [0:jointindex)
6: 051i:1joints|] < 360°/(|joints| +1 — i) > set Os [i:]joints|)
7 moveanimat(0s)

8: end for

9: end

fingers . The proposed animat could utilize this approach to attach to
an object by using the start and the end link to clamp a target object,
but it would not be able to subsequently move with target object. Hence,
an object enveloping/surrounding mechanism as described in , , ,
and is used to grasp the object with one part of the animat’s body
while retaining the other body part for actuation. Trinkle et al. utilize
the two end parts of a 3-link chain like robot to grab a polygonal object.
The robot’s middle part is mounted to another device which stabilizes the
grasping motion. Hirose describes a gripper made out of two separate
chains to fully surround an object of arbitrary shape. Lenarci¢ et al.
adapt the previously mentioned idea of a robotic finger, which consists of 3
links and 3 joints where one joint is connected to a fixed surface. In contrast
to the fingertip grasp the links are used to partially surround and clamp a
circular object. Pandolfi et al. presents a biologically inspired method
that surrounds an object with one part of the robot’s multi-link body as
many times as possible.

Algorithm [3.1]is proposed in order to fully surround a target object while
retaining |graspjoints| + 1 links for actuation. The algorithm starts with
forming a circle around the animat’s COM. The target object is captured
if it is positioned within the circle. Afterwards, each iteration straightens
one more joint by setting § = 0°. Hence, each iteration has to increase 6
values of the “grasping” joints in order to remain a circle. This means that
the circle is tightened with each iteration. The target object moves within
the tightened circle assuming mp << my4 where mo is the target object’s
mass and m 4 is the animat’s mass and the circumference of the target object
is embraceable by |graspjoints| + 1 links. Figure depicts the animat’s
body movement when applying Algorithm

3. Animat

—6f

=2r

_4f

—6r

2t

_4f

—6r

B4 T2 S0 8 6

-2+

_4t

-6

—2r

_4t

-6

3

4 12 10 8 6 -4 -2 0 2

Figure 3.13: 8-link animat that applies Grasping Algorithm with
|graspjoints| = 3 starting from an initial position (a) at ¢ = 0. (b) shows
the formed circle at ¢t = 1. (¢)-(f) depict the tightening of the circle in which

a target object can be placed.

23

Chapter 4

Shape Visualizer

This chapter presents the developed MATLAB script Shape Visualizer which
models a mutable robotic shape after the animat’s layout definition in Sec-
tion The visualization of an animat’s shape by using only its joint angle
values is beneficial for the evaluation of theoretical motion patterns, as inves-
tigated in Chapter [3| E.g., collisions can be detected before the simulation
with a physics engine has been started.

The animat’s body can be approximated as a n-link serial chain. There-
fore, the proposed shape visualizer geometrically calculates the link positions
(z_start,z__start,z_end,z_end) in a two-dimensional coordinate system
of a loose n-link serial chain and ¢ = n — 1 joints with an uniform mass
distribution. The rotation of a point P = (z,z) around the Y-axis by the
angle 6 is performed with:

Proatea(P,6) = Ry * P — (;OZEZ; ‘Cz’(bg)) ; (ﬁ) (4.1)

and the translation by the vector V' = (v, v,) is calculated as:

Piransiatea(P,V) = P + V = (I) + (“”) = (””x). (4.2)

z Uy Z+ v,

Figure (a) depicts an initial shape of an 8-link chain in a planar co-
ordinate system with X- and Z- axis for the shape analyzer algorithm. As
shown, the algorithm assumes a link length of 1.5 units which results in a
total length of 10.5 units for a 8-link chain. The 8-link chain contains seven
joints indexed with ¢ = 0, ..., 6. Link and joint indexing starts from the most
positive X position and continues to the most negative X position. Posi-
tions link__start; and link__end; overlap with the link__end;_1 respectively
link__end; 1 position, except link__starty and link_end;. Those represent
the start (respectively, the end) of the chain and are therefore not connected
to other links. The initial shape in Figure a) is useful for describing a
chain, but it is not a requirement for the algorithm to work properly. A

24

4. Shape Visualizer 25

link_endo link_starto

jointo linko

v

F 3

(b)

Figure 4.1: Geometric transformation of an 8-link chain from an initial
position (a) and applying a angle 6 value to joint index 3 (b) under the
assumption of a link length of 1.5 units. (a) exemplifies the position of jointg,
linkg, link__starty and link__endy as well as the indexing of the joints. (b)
depicts the applied angle 6 value to joint index 3 while all other angles keep
the value 0°.

chain’s initial shape in the two-dimensional coordinate system may be de-
fined differently.

Each joint is positioned between two adjacent links (link__end;
= link__start;—1) and defines its own coordinate system. The joint’s coordi-
nate system is used to indicate the angle 6 between two adjacent links. An
angle 0 is defined as # € [—180° +180°]. A 6 value of 0° indicates that
both links form a straight line, which leads to a maximum distance between
link__start; and link_end;—1. Setting the angle 6 to 360° (or its integer
multiples) leads to an overlapping of both links. Positive angle values lead
to a link rotation in positive Z direction and negative angle values result in
a rotation in negative Z direction, by assuming the initial link positions in
Figure [4.1)a).

Figure b) shows the result of setting the angle at joint index 3 3 to
a positive value, while keeping all other joint angles at 0°. It can be seen
that the algorithm rotates the leading link, here links, with +6/2 and the

4. Shape Visualizer 26

trailing link, here linky, with —6/2 in order to apply a total angle of 6.
Consecutively, the algorithm iterates through all leading links (here links,
link, and linky) and through all trailing links (here links, linkg and linkz).
In each iteration the algorithm performs a rotation with +6/2 respectively
—0/2 as well as a translation in order to keep the serial chain connected.

The halving of 8 at links and link, describes a special case and is the
consequence of two reasons: (1) the angle 6 has been applied for the middle
joint of the chain, namely joint 3, and (2) the algorithm assumes equal mass
distribution over all links. In order to perform a loose serial link coupling,
the algorithm calculates the angle 8 proportion from for all leading and all
trailing links, by weighting its mass with the equations:

Oreading (0, |trailing links|) = 0 x ([trailing_links| 4+ 1)/|links|, ~ (4.3)
Otraiting (0, |leading_links|) = 6 x (|leading_links| + 1)/|links|. (4.4)

Equations and can be interpreted as “the lighter part of the chain is
rotated with a greater angle around its joint” and vice versa. Consequently,
if angle 0 in Figure (b) would have been applied at another joint, then
weighting Equations[4.3]and [4.4] would have resulted in unequal angle values
other than 6/2.

Figure[4.1(b) depicts the geometric displacement of a chain’s links when
applying an angle value > 0° on joint 3. Due to demonstration purposes,
it does not show a displacement of the center of mass (COM) which shall
be compensated in order to show the accurate motion of a loose n-link
serial chain. Consider that, if the COM would displace without terrestrial
or hydrodynamical friction just by moving angles, then it would lead to a
propulsion in an vacuum environment. This thought experiment is physically
invalid and must be compensated by the algorithm. Therefore, the algorithm
assumes that the COM stays always at the same position as defined by the
initial chain position. This is implemented by storing the COM position
(COMpefore) before the links are rotated around a joint. After the rotation
has been executed, the new COM (COMyer) is calculated and reset to
COMjefore by translating all link positions with COMyefore — COM tier-

Algorithm summarizes all steps for calculating the chains’s new
shape. The algorithm takes the current start and end positions of all links
links and the desired angle change per joint A#; as parameters. An angle
change of 0° means no change. Hence, the angle of the joint stays the same
as it was prior the algorithm call. Angle changes of # 0° force a rotation of
the joint.

The visualization is done by drawing lines from linkstart to linkend
for all links. Figure depicts the visualization of three different shapes in
(b), (c) and (d) by using (a) as initial position. COM stays at the initial
position (—6,0) in Figure [4.2(b), (c) and (d). Hence, no propulsion force is
generated. Point (—6,0) is the result of averaging X and Y positions of all

4. Shape Visualizer 27

Algorithm 4.1: Transforms the chain’s shape with Af joint angles

1: SHAPETRANSFORMATION(links, Afs) > link; = (linkstart;, linkend,)
Returns the updated links
2 for each Af; in Afs do > ¢..jointindex
3 COMbefOTe < getCOM()
4 Oreading < Ab; * (|trailing links| + 1) /|links|
5: Otraiting < A0; x (|leading links| + 1)/|links|
6: adjlinkieqding < RotateLeading(link;, Oicading)
7 adjlinkyyaiting < RotateTrailing(link;i1, Oraiting)
8 leading links < RotateTranslate(link;_1..linko, Ojcading)
9: trailing_links < RotateTranslate(link;o..linkiqst, Otraiting)
10: links < Concatenate(leading links, adjlinkicqding,
11: adjlinkiyqiting, trailing _links)
12: COMafte,« — getCOM()
13: links < Translate(links, COMpefore — COMagtier)
14: end for
15: return links
16: end
6 6
4 4
2 2
N 0 N 0 \/
> . L 5 . ,
4 4
S412-108 6 4 2 0 2 412108 6 4 2 0 2
X X
(a) initial position (b) set joint angle 3
6 6
4 4
2 2
2 - , -2 - _—
-4 -4
Sa12 108 6 -4 2 0 2 Sz 108 6 -4 2 0 2
X X
(c) circle (d) sine curvature

Figure 4.2: Four different chain shapes. (a) uses joint angles 0s =
(0°,0°,0°,0°,0°,0°,0°) and defines the initial position for (b), (c¢) and (d).
(b) sets joint angle 65 to 90°. (c) forms a circle by setting all joint angles to
360°/(|links + 1|). (d) utilizes the function 6; = 1 % sin(0 + 27 /7 *i)+ 0 to
calculate joint angles.

4. Shape Visualizer 28

link positions linkgsart, linkenq. In general, the visualization enables the user
to test motion behavior and shape deformation algorithms. As previously
mentioned, the visualization is also used to identify possible link collisions
before starting a physics simulation.

Chapter 5

Machine Learning Methods

This chapter describes the two machine learning methods, genetic algorithms
and artificial neural networks, applied in this research; details of specific
experiments are described in Chapter Genetic algorithms are used in
two ways. First, they are used to evolve the robot’s actuation parameters
directly. Second, the artificial neural networks (a statistical learning model
explained in more detail in Section are generated by the NEAT library
which employs genetic algorithms for evolution.

5.1 Evolutionary and Genetic Algorithms

Evolutionary algorithms (EAs) mimic natural evolution with the goal to
generate effective solutions for computational problems . They utilize a
population of individuals to test many possible solutions, refining them over
time through a combination of selection, mutation and crossover. Individu-
als that outperform others, propagate their “genes” through the population.
A fitness function measures individual performance (also called fitness) de-
ciding which individuals of a population are eligible for recombination with
other individuals and/or mutation. Recombination generates a new indi-
vidual (child) from the characteristics of two or more parent individuals.
Mutation alters a child’s characteristics at the gene level. The children pro-
duced this way, comprise a new population and the process repeats over
generations.

Recombination and mutation are called variation operators. They pri-
marily create diversity in a population. Selection pressure increases the fit-
ness among the individuals in a population. Evolutionary algorithms are
stochastic, which means that the genes of more fit individuals have a higher
chance to be propagated to the next generation.

Genetic algorithms (GAs) are a subset of EAs. A GA is generally con-
sidered as an optimization method , although it was originally conceived
by Holland to study adaptive behavior. The goal is to find a set of

29

5. Machine Learning Methods 30

Algorithm 5.1: Simple GA work flow from and .

Start with a randomly generated population of individuals.
Calculate the fitness of all individuals.
Repeat until n offspring individuals are generated:
Select parent individuals from the population.
Apply recombination operator with probability p. to two parents in
order to generate an offspring.
Mutate the offspring with probability p;,.
: Replace the current population with all generated offspring individuals.
8: Increase the generation counter and go to step 2 if the number of maxi-
mum generations has not been reached.

U

parameters 1, ..., T, which minimizes or maximizes a function f(x1,...,2y,)
(also called fitness function). These functions are usually nonlinear implying
that each parameter can not be treated independently . Specifically, the
interaction of parameters may affect the output of function f. Goldberg
identified three main types for solving such problems: (1) calculus-based, (2)
enumerative, and (3) random. A GA overcomes the shortcomings of calculus-
based methods which depend on the existence of derivatives in the solution
space and enumerative methods which lack in efficiency, by using random-
ness to guide a highly exploitative search in the parameter (z1, ..., z,) space.
A simple GA work flow is specified in Algorithm

An individual is represented by a chromosome. A specific position in the
chromosome is called an allele and describes a parameter . Commonly used
chromosome encoding forms are bit-strings (binary encoding) and real value
sets. In this thesis, individuals represent sinusoidal parameters i.e., ampli-
tude, frequency, phase shift. Individuals in Chapter[7]employ amplitude, fre-
quency, phase shift alleles either separately per joint (Sections and ,
or combined for all joints i.e., each joint has the same amplitude, frequency
and phase shift value (Sections and[7.10). The individual’s rep-
resentation highly affects the implementation of the variation operators. For
example, Recombination of binary representations might be implemented as
n-point crossover. In the simplest form (one-point crossover), two (or more)
individuals swap their bit-string starting from a specific index (determined
e.g., via a random number generator) until the end of the string. In contrast,
real valued representations can be implemented by arithmetically combin-
ing two (or more) values at an allele, e.g. through calculating of an average.
Another common implementation is the simulated binary crossover (SBX)
proposed by Deb and Agrawal . It utilizes a polynomial probability dis-
tribution for the calculation of the child’s allele value, with the result that
the SBX provides the same search power as binary crossovers for binary rep-
resentations. Experiments in this thesis employ either one-point crossover by

5. Machine Learning Methods 31

swapping real valued parameter strings similar to a bit-string as described in
Sections [7.1] and or SBX in Sections and Mutation at
a binary encoded chromosome flips a few bits in a bit-string, (e.g., 0000100
might be mutated to 0100100). The mutated position in the bit-string is
determined randomly according to a uniform distribution. It is common for
real value encoded individuals to employ a random number distribution in
order to change the value itself instead of determining the index of an allele,
as employed in experiments described in Sections[7.1and[7.2] Deb and Goyal
proposed a widely utilized implementation with a polynomial probabil-
ity distribution, which is employed in experiments described in Sections
and

As previously mentioned, selection is used to increase the overall fitness
in a population. Therefore, the selection of an individual is dependent on
its fitness. One common selection method is tournament selection, which
does not require a global ordering of the population according to its fit-
ness. Therefore, it is conceptually simple and executes quickly. A number k
of individuals is randomly chosen (with or without replacement) from the
population to participate in the tournament. The best (highest fitness) of
the k individuals is selected for variation. This process is repeated until
enough individuals for the next generation’s population have been selected.
Tournament selection is utilized in all experiments that perform evolution in
this thesis. The fitness function reflects the distance traveled in a simulation
(either the Euclidean distance or the distance in X direction).

GAs are a powerful tool to search for solutions to complex problems by
employing concepts from natural evolution. This method can also discover
innovative (within the boundaries of the solution space) approaches to prob-
lems that are either not solvable by calculus methods or require too much
computation time for an exhaustive search.

5.2 Artificial Neural Networks

Artificial neural networks (ANNs) are learning models inspired by the bi-
ological nervous systems of animals and humans . They are applied as
function approximators with a number of input and output signals. Specif-
ically, an ANN is implemented as an interconnected network consisting of
input, hidden and output neurons. The structure of the network is called
its topology. Fach connection between neurons has an assigned weight that
indicates the importance of the connection and a direction of signal prop-
agation (e.g. from nodey to nodeyy1). Hence, each node has input and
output signals. In each time step, each node processes its input signals by
accumulating the product of the input signal and its weight. Afterwards, a
neuron-specific activation function (sigmoid function is commonly used)
is applied to calculate the output of a neuron. If the neuron is an input or

5. Machine Learning Methods 32

hidden layer neuron then the output is the input to another neuron at the
next time step. Otherwise, it is an output neuron and therefore produces
an output signal for the neural network at a time step. On robots, output
signals are typically used to drive actuators. A memory can be implemented
with recurrent node connections, but it also makes the ANN time variant. To
summarize, the connection weight, the connections between nodes, and the
activation functions characterize the ANN and can be adjusted (or evolved)
in order to generate a different output signal from a given input signal.
Learning methods provide input signals to an ANN, evaluate the generated
output and adjust the ANN characteristics according to a cost function (e.g.
difference between input and output signal value).

This thesis utilizes the NeuroEvolution of Augmenting Topologies (NEAT)
library which uses GAs in order to evolve the parameters of an ANN .
Neuroevolution searches for a behavior in the solution space and belongs to
the class of reinforcement learning methods. Specifically, the cost function
is derived from evaluation in an external environment (a physics simulation
environment in this thesis).

In NEAT an ANN is encoded as a linear representation of the network
connectivity in the chromosome. Specifically, the genotype consists of Node
Genes that indicate all input and output Nodes of the ANN as well as Con-
nection Genes that represent the internal connection of the ANN. Connec-
tion Genes include a inbound and an outbound pointer as well as a real val-
ued weight, a boolean enabled/disabled bit, and a innovation number. Mu-
tation occurs by adding a new gene to the Connection Genes list. Crossover
is implemented by lining up the genes according to their innovation num-
bers and merging all other genes. Competing convention are avoided by
using the innovation number as historical marker (homology). NEAT also
includes a mechanism for the protection of innovation by defining “species”
within a population that share the same fitness value. Therefore innovative
structures with low fitness values can survive. NEAT’s minimizing topology
approach prevents the ANN from undesired growth.

The NEAT implementation MultiNEAT is a C++4 library with Python
bindings which provides an API. Experiments in this thesis call API func-
tions to initially configure the library (e.g. shown in Section, force the in-
ternal evolutionary calculation of one generational step, retrieve the evolved
ANN and allow the injection of the fitness value determined via an ODE
simulation.

LCompeting conventions describe the problem of individuals which produce the same
output value, but have different encodings.

Chapter 6

Simulation Environment

In order to reproduce behavior of a real world system on a computer, a
physics-based simulation environment is used. This thesis utilizes the Open
Dynamics Engine (ODE), a rigid-body dynamics library, to test hand-coded
and evolved controllers for an animat in an aquatic environment. ODE is
utilized by many institutions and research laboratories with applications in
in robotics simulation (e.g., humanoid or biomimetic) and comparison
with other libraries like MATLAB [2]. Data recorded during simulation is
used to analyze the motion and control of physical entities and to generate
visualizations.

It is important to clarify and describe the influence of the term reality gap
for work in the field of evolutionary robotics. The reality gap occurs when a
well performing simulation designed controller is transferred to a real world
robot. It may be observed that the controller has a weaker performance in
reality compared to the performance in the simulation. Researchers address
the reality gap by e.g., assessing an evolved controller with its transferability
to the real world or providing online self modeling mechanisms to adapt
unforeseen conditions for aquatic robots .

6.1 Open Dynamics Engine

ODE is a free, open source physics simulation engine. It is written in C++
but it includes Python bindings . ODE is often used to simulate artic-
ulated rigid bodies, e.g., legged creatures, in a virtual reality. The virtual
reality is characterized by a user’s physics settings and configurations. A
user can, for example, create a terrestrial or an aquatic environment. The
virtual world consists only of rigid bodies, which cannot deform or change
in shape. Objects can optionally be connected by joints, and depending on
the joint-type, the motion of two objects will be coupled. Objects in the sim-
ulation follow the Newtonian laws of physics [16]. This means that (1) if the
net force applied on an object is equal 0 then its velocity remains constant,

33

6. Simulation Environment 34

Anch
nehor Axis ?

Body 1 Body 2 Bady1 Body1 Anchor Body 2

Body 2

Axis 1

(a) Ball-socket joint (b) Slider joint (c) Hinge joint (d) Universal joint

Figure 6.1: Four different ODE joints and their characteristics of force
transfer between bodies. Reproduced with permission from .

(2) an object is accelerated if the net force is unequal 0, and (3) a force from
object A exists in opposite magnitude on object B if they touch each other.
ODE uses a first order semi-implicit integrator to calculate each physics step
[73], and body constraint forces (forces due to a joint) are calculated with
an implici integrator. External forces, e.g. in order to accelerate an object,
use an explici integrator. Inaccuracy in implicit integrators can result in
a reduction of energy, while inaccuracy in explicit integrators increases the
system’s energy, which can lead to a so called “explosion” . In order to
create realistic simulations a user has to select an appropriate simulation
time step and make sure that objects don’t accelerate too fast. Der and
Martius tested ODE’s usability in terms of stability and accuracy with
a 16-link snake-like animat placed in a vacuum environment (and no grav-
ity). They show that the simulation remains stable and accurate over hours
of simulation time.

A rigid body has the following states: position, velocity, orientation, and
angular velocity. Furthermore it has a mass, a position of the center of the
mass, and an inertia matrix, which do not change over time. The shape of
the body (e.g. sphere, or box) is defined as a geometric object, and is used
for collision detection.

A joint defines a relationship between two bodies in ODE in order to
connect two bodies. ODE allows the creation of five different joint-types: (1)
ball and socket joint, (2) hinge joint, (3) slider joint, (4) universal joint, (5)
hinge-2 joint. Figure shows the most common joints (1-4). Joints either
be passive or actuated with an angular motor. The angular motor allows the
control of two bodies’ relative velocities. For example, an ODE hinge joint
applies a torque to each body to accelerate them to the desired angular
velocity within one simulation time step. Angular motors are parametrized
with a maximum force property when they are created. This means that the
applied force/torque can be capped by the maximum force property, which
effectively limits the maximum linear/angular velocities.

LODE’s implicit integration methods solve an equation by using the current state and
a number of subsequent states of a system.
2Explicit methods calculate a system’s state using only the current state of a system.

6. Simulation Environment 35

\ \ \ \
(a) t =0 (b) t = 0.75 () t=1 (d)t=15

. -

e

Figure 6.2: Visualization of four time steps (t =0, ¢t = 0.75,t =1, t = 1.5)
from Algorithm The ball is colorized in purple and the ground plane is
grid shaded. (a) depicts the initial position (X = 0,Y = 1,Z = 0) of the ball.

It is also necessary to declare which objects will be considered by ODE’s
collision algorithm. This is done with the so called near_callback function,
which is called for all pair-wise combinations of bodies, and handles collisions
by following user-defined scheme. Specifically, a user can define a bounce
factor and the friction coefficient between two objects.

Russell Smith provides this structure for a typical ODE simulation:
Create the simulation “world.”

Create and initialize the placement of all bodies.
Create joints and their attachment to bodies.
Define joint parameters.

Define a collision “world” and collision objects.

Create joint groups.

NS Uk N

While in simulation:

(a) Apply forces to bodies and parametrize joints if necessary.

(b) Call collision detection handler call and create collision points.
(c) Execute ODE simulation step.

(d) Remove all collision points after simulation step.

8. Destroy all simulation objects.

This structure has been used to create a simple ODE test program outlined
in Algorithm It defines a ball object in a terrestrial environment (gravity
in the vertical direction) that falls from a height of 1 unit and bounces on
the ground plane. No aerodynamic drag is applied. The downward accelera-
tion (due to gravity) is transformed to upward motion when the ball hits the
ground plane (bounce = 1). Therefore, the ball bounces without loss of mo-
mentum. A spherical body is defined to collide with the ground. A collision
point is created at the lowest Y point of the sphere and the corresponding
point on the plane in the collision handler. ODE then handles the collision
between the sphere and the plane in the simulation step (world.step()). This
procedure is shown in Figure

6. Simulation Environment 36

Algorithm 6.1: ODE example implementation of a bouncing ball

1: BOUNCINGBALL

2 > Create terrestrial environment

3 world < ode.World()

4: world.setGravity((0,—9.81,0)) > (Xaccel, Yaccel,Zaccel)
5: > Create ground plane

6 space < ode.Space()

7 ground < ode.GeomPlane(space, (0.,1.,0.),0) > (s,(X,Y,Z),dist)
8 contact__group <+ ode.JointGroup()

9: > Create ground plane

10: sphere < ode.Body(world)

11: sphere.setPosition((0.,1,0.)) > (Xpos,Ypos,Zpos)
12: mass < ode.Mass()

13: mass.setSphere(100,0.1) > (density,radius)
14: > Do simulation

5. fort = 0, t < SIMUTIME; t + = STEP do

16: > contact_ group is set in near_ callback handler

17: space.collide((world, contact__group), near__callback)

18: world.step(t)

19: contact__group.empty()

20: end for

21: Destroy()

22: end

6.2 Aquatic environment

ODE does not provide an out-of-the-box method to run simulations with
aerodynamic or hydrodynamic forces. A hydrodynamic model in conjunc-
tion with a buoyancy force is utilized to create an aquatic environment in
ODE. Hydrodynamic simulations in this thesis utilize the hydrodynamic
model implementation presented in and (described by Algorithm
. Specifically, a counteracting force is applied to each face of a moving
object in the simulation. The force is calculated in direct relation to an ob-
ject’s velocity. Therefore, this model is applicable for slow moving objects
only, e.g., robotic fish from and . Buoyancy is defined to eliminate
gravity in all ODE simulations. Hence, acceleration in the Y direction is
parametrized with —9.81 (m/s?)+9.81 (m/s?) = 0 (m/s?). An object keeps
the same vertical position if no forces in the Y-direction are applied.

6. Simulation Environment 37

Algorithm 6.2: Adapted hydrodynamic model implementation from .

1: for all body do

2 lin_vel « getLinearV elocity(body)
3 body__rot < get BodyRotation(body)
4 for all face do

5: area < face__area
6

7

8

9

norm < (face_normal x body rot)
force < norm x lin_vel x area x drag_ coef f
if force > 0 then

: addForce(force)
10: end if
11: end for
12: end for

6.3 Visualization

A qualitative validation of simulations is vital for interpreting the recorded
simulation data. For instance, one might want to compare two simulations
by just measuring an object’s total distance traveled. A simulation “ex-
plosion,” as described in Section would clearly disrupt the result of
an object’s distance traveled. The “explosion” would be observable in the
visualization and actions can be taken to avoid or correct the problem.
Moore et al. provide a WebG browser application named WebGl-
Based Visualizer for visualizing the outcome of a simulation. It augments
a simulation from an adjustable point of view in a web browser rather just
observing a generated video. Zooming, rotating, play forward/backward,
colorizing objects, setting time and playback speed are the main capabili-
ties of this application. A demonstration of the application can be found at
http://jaredmmoore.com/WebGL_Visualizer /visualizer.html] Figure[6.3|shows
the visualization of a hexapodlz_q simulation.

3WebGL is a JavaScript library that allows the rendering of graphics within a web
browser.
1A hexapod is a six legged robot.

http://jaredmmoore.com/WebGL_Visualizer/visualizer.html

6. Simulation Environment

Figure 6.3: Visualization of a hexapod with the WebGli-Based Visualizer.
Reproduced with permission from .

38

Chapter 7

Experiments

Experiments conducted employ GAs to optimize parameters associated with
human designed control strategies. The overall task of object transportation
consists of the following three consecutive subtasks: Experiments are divided
as follows in order to the fulfill the goal of this thesis:

1. Approach the target object from the robot’s initial position.
2. Grasp a target object.
3. Approach the final destination with the captured target object.

The robot has full information relevant to the task in all experiments.
Specifically, it has the global positions of the target, its links and the desti-
nation region. Furthermore, the robot uses the current angular position of
its joints. The utilization of simulated sensors would not change the overall
behavior of the robot. However, they would increase the complexity of the
experiments and are therefore omitted.

Experiments are presented in chronological order. First, basic locomo-
tion in the aquatic environment is tested. The experiment in Section
asserts the feasibility of employing GAs with a robot in the computer simu-
lation environment described in Chapter [6] Furthermore, parameter ranges
for sinusoidal locomotion (from [56]) are determined in this experiment. Lo-
comotion with an evolved ANN and morphology-related parameter (input
frequency for the ANN, a more detailed explanation is provided in the ex-
periment description) is analyzed in Section

Second, more complex movements are evaluated and environmental pa-
rameters are adjusted. The experiment in Section tests a turning gait
with the generation of forward momentum, and reveals an effective algo-
rithm to approach a target position. Environmental parameters are adjusted
in Section[7.4]in order to provide a realistic aquatic environment. Section [7.5]
tests a simple stopping motion, by reverse actuating the robot’s joints. Turn-
ing behavior tested in Section provides the opportunity for subsequent
experiments to employ turning without forward momentum.

39

7. Experiments 40

Third, DEAP library is introduced for evolutionary runs in conjunction
with a object grasping algorithm. The evolutionary library DEAP is utilized
for evolving forward locomotion parameters in Section This experiment
asserts the usability of DEAP in conjunction with the employed aquatic
simulations. Therefore, it is used in all subsequent experiments. Forward
locomotion with two different robotic “heads” that may hold an object is
evolved in Sections[7.8] The proposed object grasping algorithm from Section
is experimentally tested in Section[7.9] A composition of object grasping
and evolved forward locomotion is presented in Section

Finally, subtasks from previous experiments are composed in order to
fulfill the goal of this thesis. The experiment from Section combines
forward locomotion, approaching a target and grasping in one task. Addi-
tionally, a more accurate target approach algorithm compared to Section[7.3]
is presented. Section shows a composition of all sub tasks in order to
approach, grasp and deliver a target object to a destination region.

For the sake of completeness, the experiments can also be divided into
experiments/treatment according to the robot’s task:

o Forward Locomotion: Sections and

o Turning/Stopping: Sections and

« Grasping: Section [7.9]

« Payload Transportation: Sections [7.8] and
The explored behaviors are combined in Section[7.11]and[7.12]in order to ful-
fill the goal of this thesis by (1) approaching, (2) grasping, and (3) delivering
an object.

Statistics are calculated according to established guidelines in the evolu-
tionary computation community described by Wineberg . Evolutionary
fitness and evolved controller parameters are analyzed by assessing perfor-
mance over multiple generations, with multiple replicates. A replicate is the
repetition of the same encoded experiment with a unique seed value for
the random number generator. Multiple replicates are used to avoid wrong
conclusions from a lucky coincidence of coherent parameter values, which
therefore cannot be generalized to compare an algorithm with others. In
this thesis, the performance over generations is visualized with the mean
over all replicates (per generation) and its confidence interval (CI) as well as
the minimum-maximum range between the best and worst performing indi-
vidual per generation. The mean in conjunction with its 95% CI is used to
visually compare different algorithms or experimental setups. An intuitive
interpretation of the CI is given by Cumming and Finch :

The CI is a range of plausible values for the mean. Values outside
the CI are relatively implausible.

If the CIs of two data sets do not overlap, then it would be a rare occurrence
that the means of the two data sets have identical values . The data set

7. Experiments 41

with the higher mean can be said to be perform better with a confidence
level of 95% if the CIs of the data sets do not overlap . The minimum-
maximum range is calculated in order to show the worst/best performing
individual of a replicate per generation. It is used to identify unexpected
behavior of individuals, as described in Chapter 7| Independence tests are
performed with the non parametricﬂ Wilcoxon Rank-Sum Tests (WSR). Two
samples are tested if they belong to the same population (null hypothesis)
or not (alternative hypothesis) with a significance level of a« = 5%. If the
resulting p — value of the WSR is smaller than or equal to the significance
level, then the null hypothesis has to be rejected. A rejection of the null
hypothesis means that in this case that two data sets do not belong to the
same population. Therefore, statements like dataset; performs better than
datasety can be made.

7.1 Evolved Watersnake

This section describes the first evolutionary experiment performed with the
tools described in Chapter [2| Therefore, the purpose of this experiment is
to ascertain the feasibility of simulations from a software engineering per-
spective. In order to automate deployment and retrieval of results from the
HPC, tools and scripts have been developed in addition to the simulation
and evolution software. Initially, a hand-coded (without the usage of a li-
brary) conventional GA is used to maximize the robot’s linear velocity.

Purpose

This experiment shows the feasibility of conducting evolutionary runs with
an automated toolchain. Evolutionary experiments are prototyped on a lo-
cal PC and then deployed on the HPC. Result data is retrieved after the
evolutionary run ends and then used to analyze the experiment. Forward-
swimming locomotion parameters for an eight-link robot are evolved and
limits of parameter ranges are determined in order to define the borders of
the solution space in subsequent experiments.

Implementation

A simulation is performed by creating an articulated robot in an aquatic
environment with a time step of 0.005 seconds and a total simulation time
of 20 seconds. The robot comprises eight links and seven joints, Each joint
is characterized as triplet of parameters («, f, —f) (see Equation, where
w = 2x*7x* f is the angular velocity of a joint. It is important to note that
is implemented with a negative sign, which dictates the direction of travel
(this will be elaborated in a subsequent section). The robot’s link density

'Non parametric means that the statistic does not assume an underlying distribution
of the data, e.g. Gaussian distribution.

7. Experiments 42

p = 7 is defined to be 0.1 (mass_units/length_units®) which leads to a
total mass m of (8 0.1 % (1.5 0.5*0.5)) = 0.3 (mass_units). Links are
placed consecutively after each other in positive X direction. The front face
(outer position of the first element) is set to X = 0 and the rear face (outer
position of last element) to X = 12. Furthermore, the Y position is lifted by
0.5 and the Z position is shifted by 0.25. The maximum joint force is set to
10 (force_units).

This GA implementation is parametrized with a population size of 120
individuals and conducts evolution over 1000 generations. Each individual’s
genome consists of 21 alleles, where each allele is defined as a robot’s joint
parameter. Each joint parameter triplet (o, f, 5) is placed consecutively in
the form: a9, fo, 5o, @1, fis Bis .5 ag, fe, Bs. Amplitude param-
eters («) range from 0.001 to 2, frequency parameters (f) from 0.001 to 4
and phase shift from 0 to 2 x 7 (5). The genome’s alleles are initialized ac-
cording to a uniform distribution within the corresponding parameter range.
For each individual, an ODE simulation is conducted with the given param-
eters. Specifically, the first joint actuates according to Equation [3.4] with the
first three alleles in the genome and so on. Fitness is evaluated with:

fitness(d) = sign(endpositiony) * \/d?x + &2 + d, (7.1)

where d is the distance between starting position and end position in the
coordinate system and X, Y, Z indicate the distance in the respective dimen-
sion. This fitness function rewards for the total Euclidean distance traveled
in positive X direction and penalizes movement in negative X direction.
For each new child, two parents are chosen from the population with tour-
nament selection (with replacement) and a tournament size of k = 2 for each
new child. One-point crossover is performed with 100% crossover probabil-
ity. The crossover point is determined according to a uniform distribution
in the 21-parameter genome. This means, that the crossover point may be
positioned within a triplet that characterizes the joint. The crossover oper-
ation concatenates all first parent’s parameters before/equal the crossover
point and all second parent’s parameters after the crossover point. It returns
an intermediate individual which is then processed in the mutation opera-
tion. The mutation probability is set to 1% per allele. Mutation is performed
according to a uniform distribution within the previously mentioned joint
parameter range.

Results

The fitness progress in Figure[7.1]shows that the mean of the best individuals
from each of the 18 replicates converges to 53.34 units, whereas the mean
of the average individuals converges to 50.18 units. The 95% CIs overlap
each other, but the best individuals perform significantly better than the
average individuals (p < 0.05 with WRS). Maximum values (upper dashed

7. Experiments 43

line) indicate the best fitness over replicates and minimum values (lower
dashed line) represent the worst fitness respectively. Therefore, the best
performing parameter configuration can be found at the highest maximum
fitness value from the best performing individuals in this case 68.07. This
evolutionary algorithm finds the best joint parameters in the last generation
with a fitness of 68.07. Furthermore the minimum-maximum range is used
to check plausibility of the evolutionary run. It indicates the performance
range of the replicates. The actual maximum values of the best performing
individuals are greater than the average individuals, which is required for
the evolutionary run to be plausible.

Mean, CI and minimum-maximum range performance values show a fast
increase in fitness within the first 50 generations. Hence, initial randomized
parameters perform worse than the adjusted parameters after generation
50. The rise of all performance values assert the effectiveness of the GA. In
contrast, a poorly configured GA may show that fitness values stay at the
same level or vary widely. This would happen, for example, if the crossover
or mutation operators do not lead to an effective variation of the individuals’
genomes. A small but steady fitness increase after generation 50 shows that
the GA cannot rapidly narrow the solution space. This may be caused by
the evolution of 21 different parameters. The GA constantly improves the
configuration of the 21 parameters over 1000 generations. This indicates that
the GA quickly finds “good” solutions, but has difficulties in finding the best
solution.

Figure shows the parameter distribution of the best individuals per
replicate in generation 999. Parameters «, f and S show no tendency to
reach their upper or lower limits given the parameter ranges defined in the
GA implementation. This indicates that the chosen parameter range has
reasonable borders for the GA’s solution space. Figure (a) depicts that
amplitude values at the front of the robot (joints 4, 5 and 6) are greater
than those at the end (joints 3, 2, 1 and 0). This means that the front of the
robot exhibits more motion than at the end. In other words, a semi-rigid tail
is evolved. Frequency values in Figure (b) are mainly distributed around

4 (Hz). Values at the front of the robot show a narrower distribution to
2.4 (Hz) than those at the end of the robot. This can be explained by the
fact that amplitude values at the end of the robot have a smaller amplitude.
Hence, the impact of the frequency to the locomotion behavior at the end
of the robot is smaller. Figure [7.2c) depicts the distribution of phase shift
B values around 7. Phase shift values (multiplied by joint index) determine
the spatial offset of a sine wave (see Section and correspond to the
direction of the robot’s movement. In contrast to the animat in Chapter |3} 3
is implemented with a negative sign, so values around 7 result in movement
in forward movement in positive X direction.

This effect can be observed in Figure which shows the movement
of the evolved robot at different time steps. The actuation of joints with

7. Experiments 44

Fitness progress

Fitness
Ay

—&— Mean max fitness
I CI max fitness

— — Range max fitness
—e— Mean avg fitness
[_ICl avg fitness

- -—--Range avg fitness

T 1 [

L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 999
Generation

Figure 7.1: Evolutionary fitness progression for the forward locomotion
experiment with a robot that consists of seven joints. 21 joint parameters
are evolved as described in Section The mean of the best individual per
generation (Mean maz fitness) and the mean of the average individual per
generation (Mean avg fitness) over 18 replicates are significantly different
(p < 0.05 with WRS). Shaded areas represent the 95% confidence interval.
Red dashed lines describe the best and the worst performing individual per
generation over all 18 replicates. The area between generations 699 and 951
has been omitted, because it contains no relevant information (although all
performance indicators are constantly increasing).

evolved parameters from the best individual of generation 999 in replicate
6 (fitness 66.00), shows a movement in positive X direction. One can see
in Figure [7.3b)-(f) that the joints at the end of the robot (left part of the
robot) behave similar to a fish tail.

Conclusion

This experiment has been conducted with an automated toolchain. Other
experiments described in this thesis rely on scripts developed for this exper-
iment. Specifically, an experiment revision gets checked out from a reposi-
tory on a local PC zipped and transferred to the HPC. A script on the HPC
automatically runs the experiment and prepares the resulting data for col-
lection from a specified directory. Afterwards, the results are gathered with

7. Experiments

Figure 7.2: Parameter distribution of all best individuals per replicate in
generation 999. 21 parameters are evolved for a seven joint robot. Seven
amplitude («) (a), seven frequency (f) (b) and seven phase shift () (c)
parameters are shown within its according parameter range defined in Section
Joint number 0 is situated at the back of the robot and 7 at the front.

Max fithess amplitude distribution per joint

2f -]
1.8¢ I
1.6¢ ,
o 1.4f - L ,
3 1.2t B —
= qr A
os T
<o6f | T
0.4¢
0.2F
o+ L +
0 1 5
Jomt number
(a)
Max fithess frequency distribution per joint
S — - _ T
36 | i
N 3.2r } T
L 28 g
L
L | i
S 160 an w 1
®12F | ‘ ‘ 1 L]
woost | i s g
04r |
ok L
0 T 23 7 5 5
Joint number
(b)
Max phase shift distribution per joint
6.28f __ - N - — -
= 5.5} |
® 471f 1
= 3.93f 1
& 3.141 E
D 2.36¢ [
LT !
gl o
0.79¢ 1 |
i L
2 Z

Joint number

()

45

an SFT client. Visualizations have been generated with the visualization
tool described in Section

The experiment’s fitness progress shows a quick increase at the begin-
ning followed by a slow and steady convergence until over the remaining
generations. The quick fitness increase indicates a dependency between the
parameters. The relatively slow and steady convergence suggests that the
solution space is too big for this GA implementation. Hence, a reduction of

®The secure file transfer protocol (SFTP) allows the transmission of data between

computers.

7. Experiments 46

Figure 7.3: Example of an evolved eight link forward swimming robot
with the GA implementation described in Section (a) shows the ini-
tial position of the robot. Then (b)-(f) depict the temporal progress of the
robot at different time steps. A sinusoidal wave propagates through the
robots body which causes movement to the right. The actuation of the outer
left joint causes its adjacent links to act as tail. A video can be seen at

https://youtu.be/OFid7-1-3u8|

21 parameters for evolution will be considered in subsequent experiments.
The distribution of evolved parameters shows a reasonable choice for the
solution space borders. Fundamentally, this experiment demonstrates that
evolution can successfully generate parameters for forward movement.

7.2 ANN Watersnake

This experiment utilizes an ANN for the joint actuation of a robot. ANNs
are evolved with a modified version of the NEAT algorithm (see Section
which includes variation operators for morphology-related parameters.
Analysis of this experiment leads to the conclusion that ANNs do not provide
advantage when compared with the direct joint actuation encoding from

Section

Purpose

This experiment shows the feasibility of actuating a robot with an evolved
ANN in conjunction with an evolved oscillating input signal (frequency f
for the ANN input signal).

Implementation
A simulation similar to Section that in is performed by creating an
articulated robot in an aquatic environment with a time step of 0.005 seconds

https://youtu.be/OFid7-1-3u8

7. Experiments 47

and a total simulation time of 20 seconds. In contrast to the simulation
defined in Section joint actuation values are calculated and set every
fourth time step in order to increase simulation speed. Therefore, actuation
values are updated every 0.02 seconds. The robot consists of eight links
and seven joints where each joint is actuated according to the output signal
of an ANN. Its density is set to 6.25 (mass_units/length_units®) which
results in a total mass of 5 (mass_units). A robot’s link dimensions are
exceptionally set to 1.25 x 0.5 x 0.5 units (standard dimensions for this
thesis are defined in Chapter . Links are placed consecutively after each
other in negative X direction. The front face (outer position of the first
element) is set to X = 4.375 and the rear face (outer position of the last
element) to X = —4.375. Therefore, the COM of the robot is situated at
X = 0. Furthermore, the robot’s Y position is lifted by 1 units whereas the
Z remains at 0 units. The maximum joint force is set to 100 (force units).

This experiment utilizes an ANN controller in order to actuate the
robot’s joints. Therefore, the ANN has seven output signals (one for each
joint). Input values consist of the robot’s seven current joint angles states,
a sinusoidal wave form, and a constant bias of 1 as input signals. The sine
wave is defined as:

input(f,t) = sin(2xmx f * t), (7.2)

where ¢ is the elapsed simulation time and f is a fixed frequency defined at
the beginning of a simulation.

In this experiment, frequency (f) is seen as a morphology parameter
that characterizes the robot and the ANN as brain that controls the ac-
tual joint actuation. Lessin et al. outline the importance of evolving the
morphology of a robot and its brain in parallel. They show that the evolu-
tion of a robot’s morphology together with its brain produces systems that
significantly outperform robots whose morphology and brain are evolved
separately. To this end, the ANN and the frequency are evolved in parallel
for this experiment. The genome is configured to consist of two parts: ANN
and f. One part represents the ANN and the other part is a scalar fre-
quency (f) value. This experiment utilizes two different variation methods
in parallel during an evolution step in parallel. First, NEAT is used with
the parameters outlined in Table for the variation of the ANN part in
the genome. Second, custom crossover and mutation operators are used for
the variation of the frequency part in the genome. Specifically, the crossover
operator uses one point crossover with a 100% probability. It is implemented
to return either the scalar value of the first or the second individual accord-
ing to a uniform distribution. Mutation of an individual is performed with
10% probability, sampling values from between 0.01 and 4 using a uniform
distribution.

The evolutionary run is parameterized with a population size of 120 in-
dividuals and conducts evolution over 1000 generations. NEAT is initialized

7. Experiments 48

Table 7.1: NEAT paramters for the experiment described in Section

Parameter ‘ Value H Parameter ‘ Value‘
NN input values 9 NN output values 7
CompatTreshold 50 CompatTresholdModifier 0.3
YoungAgeTreshold 15 SpeciesMaxStagnation 1000
OldAgeTreshold 35 MinSpecies 1
MaxSpecies 25 RouletteWheelSelection False
RecurrentProb 0.25 OverallMutationRate 0.33
MutateWeightsProb 0.90 WeightMutationMaxPower | 10
WeightReplacementMaxPower 50 MutateWeightsSevereProb | 0.5
WeightMutationRate 0.75 MaxWeight 20
MutateAddNeuronProb 0.4 MutateAddLinkProb 0.4
MutateRemLinkProb 0.05 CrossoverRate 0.4
ActivationFunction SIGMOID || seed 0
Randomized Weights true randomrange 1.0

with the parameters in Table to process 120 individuals and zero hid-
den nodes at the beginning. The parameter f is initialized with a sample
from a uniform distribution in the range between 0.01 and 4. Then, an ODE
simulation is executed with a robot which is parameterized with a genome.
Each individual’s fitness is evaluated with Equation from Section
and is then passed to NEAT, which internally performs an evolutionary
step. NEAT triggers signals that indicate which individuals have been mod-
ified during an evolutionary step. All individuals that have been modified in
NEAT are used for the variation of frequency (f) with the crossover and mu-
tation operators previously mentioned. Afterwards, the genome is evaluated
again and the next evolution step is performed.

Results

The fitness progress in Figure shows that the mean of the best individ-
uals of 18 replicates converges to a fitness of 10.09 units, whereas the mean
of the average individuals converges to 6.03 units. Best individuals perform
significantly better than average individuals (p < 0.05 with WRS). A direct
comparison between the fitness values from this experiment with the exper-
iment described in Section, the is not applicable, due to the differences
in the simulation setup (e.g. masses and sizes of links). In contrast to the
experiment in Section 95% CIs do not overlap each other and exhibit
smaller areas. Furthermore, minimum-maximum ranges do not overlap each

7. Experiments 49

Fitness progress

—4— Mean max fitness
[CI max fitness

— — Range max fitness
—e— Mean avg fitness
[_ICl avg fitness
-—--Range avg fitness

e ————

Fitness
[e:]
T
|

(2}
)

,bm“m“’\h \‘/\\“\'Mwlr
Ao~y Y S e i eaS

,-\,.nw ! ‘J‘ e

Ay /‘w“
3 . ¥t pad ¥ ’
Wt v'v.A.(lr“‘"'J\\“']“'\“ VAN T

m
s ,
b ve sy A il S

| | | | | | | | | | | | | | | | 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400999
Generation

Figure 7.4: Evolutionary fitness progression for forward locomotion exper-
iment with a robot that consists of seven joints. Joints are actuated by an
ANN. The mean of the best individual per generation (Mean max fitness)
and the mean of the average individual per generation (Mean avg fitness)
over 18 replicates are significantly different (p < 0.05 with WRS). Shaded
areas represent the 95% confidence interval. Red dashed lines describe the
best and the worst performing individual per generation over all 18 repli-
cates. The area between generations 400 and 951 has been omitted, because
it contains no relevant information.

other after generation 10 and are situated narrower to its corresponding
mean fitness values.

Figure illustrates the ANN’s input sine frequency progress for best
performing individuals. It shows a convergence to 0.63 (Hz). A wide minimum-
maximum range and CI between generation 30 and 247 indicate a shallow
search process in the solution space. Different frequencies (f) are tested and
values between 0.74 (Hz) and 0.5 (Hz) are found to provide the best per-
formance. No significant performance increase can be seen in Figure at
generation 247. This means that few ANNs used frequencies differing from
0.63 (Hz).

The ANN’s output angle values have been recorded during the simu-
lation. This enables the analysis of the ANN’s temporal output as shown
in Figure Principal joint angle values are extracted via selecting the
dominant frequency from a Fast Fourier Transformatio (FFT) generated

3A Fast Fourier Transformation is used to extract frequency information from a time

7. Experiments 50

NN input frequency progress

—— Mean frequency
[Cl frequency
— — Range frequency

Input frequency (Hz)

.
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

| 1
0 20 40 60 8 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400999
Generation

Figure 7.5: Best individual’s ANN input frequency progress for the sine
function formulated in Equation Its mean values over 18 replicates
are shown accordingly with its 95% confidence interval and its minimum-
maximum range. The area between generations 400 and 951 has been omit-
ted, because it contains no relevant information.

power spectrum (sample time = 0.02 seconds). The principal frequency is
then used with Equation in order to print the output of a reference sine
function. This reference sine function enables the is used for a qualitative
evaluation if this one principal frequency approximates the course of the
output joint angle. The best individual from replicate 0 at generation 999
has been chosen for this evaluation, because other best individuals exhibit
similar behaviors. Principal frequencies calculated for joint 0 to 6 all result
in 0.59 (Hz). A frequency of 0.59 (Hz) is used to depict green reference sig-
nals in Figure The green reference signal approximates the actual joint
angles in blue without a phase shift. This leads to the conclusion that the
evolved output signals follow a sinusoidal form with a principal frequency
of 0.59 (Hz). The evolved principal ANN output frequency is slightly less
than the evolved input frequency of 0.63 (Hz).

Figure shows the movement of an ANN actuated robot at different
time steps. In contrast to the experiment from Section no rigid tail-like
behavior at the last segments can be observed.

data set.

7. Experiments 51

Joint 0 Joint 1 Joint 2
odr) h i A 0.4 NN Y n 04 . o
_ N N I N n N . \ [\ [_ N N\ N / \ A
EO-H\\ "/\\ ANV guz‘/\ I 1\\) [“H‘ g o2 (1) \ \ \
s LUV TV IV s s UAVAYAYRY T 5 e VA AY
el A YAV YA H FIVEIV VA AR £ V/ MYURYY
g VA A ANV g2\ LA AN AL Y VAR VARV\VERIVARTAVIRTAY
g0z’ || \/ \ / \/ \ YR S o4t \/V v v v v v S 04
VA VARVAVERVAVARVAVERVAVARY
04 2 4 6 8 10 08 2 4 6 8 10 08 2 4 6 8 10
Time (s) Time (s) Time (s)
Joint 3 Joint 4 Joint 5
04 04 0.4
- A A \ \ \ = o2l [mm MmN
Uozl\ \ \ \ | \ T 02l T 02 / [[\ ,\ I
e AN NN N B VA 2 AV
=) Y 2 |\ | A g o0 \ / \
S 9 (/| / [\ o of | | | | =) \/ \ / \ \
s | [[\ g | .\ < \ / \ \
s \ [\ | [s \ I\ 8 02 W VA
£ \ [\/ | [< |/ \) \ £ \ \ \\Y) \V /
s -0z |y v} v / (VERRAY) Ch B, VARV A\ S 04
04 2 4 6 8 10 04 2 4 6 8 10 08 2 4 6 8 10
Time (s) Time (s) Time (s)
Joint 6
04
= N N A\
o 1\ [\ \
g 0'2‘1‘ A “/ ‘ original signal
% o \\ ‘\ \ (‘ u\ a’sin(2*x*principalireq))
- \ [N A
g2 |\ VLA
S \/ \/ \/
v
-04
) 2 4 6 8 10
Time (s)

Figure 7.6: ANN output angle course (blue) per joint for the first 10 seconds
of the simulation. The green angle course illustrates the sine function from
Equationwhere f = 0.59 (Hz) is the principal frequency per joint. This
figure depicts the best individual from replicate 0 at generation 999 with
fitness 10.01.

Conclusion

Results show the feasibility of evolving an ANN for robot joint-actuation.
However, configuration of the NEAT algorithm requires more experimenta-
tion (i.e., more implementation time) than the direct encoding from Section
A wrong configuration of NEAT may result in sub-optimal output. Fur-
thermore, due to the nature of ANNs, one cannot predict the output of
the simulation, in contrast to the direct actuation encoding. Qualitative as-
sessment of the visualizations show an effective forward swimming behavior
similar to the experiment described in Section

7.3 Turning

This experiment investigates the basic turning motion discussed in Section
In contrast to previous experiments, all joints use the same «, f, § and
~ parameter values for actuation.

Purpose
This experiment shows the feasibility of steering the robot to a specific target
position by adjusting the 7 (bias) parameter from Equation Specifically,

7. Experiments 52

Figure 7.7: Example of an evolved eight link forward swimming robot actu-
ated with an ANN as described in Section (a) shows the initial position
of the robot. (b)-(f) depict the temporal progress of the robot at different
time steps. A sinusoidal wave propagates through the robots body which
causes movement to the right. Furthermore, a slight movement downwards

is observable. A video can be seen at [https://youtu.be/LelpLSut-UY}

it shall be validated if the robot can reach targets in all quadrants in an
Fuclidean coordinate system from the same initial position.

Implementation

In this experiment, a similar simulation setup to Section is used. In
contrast, the simulation time is set to 30 seconds and a target object is
placed in the simulation environment. Specifically, the object is a sphere
with radius 1 (length__unit) at a designated position X, Z and a mass of
0.42 (mass_units) Furthermore, the robot’s joints actuate with the same
parameters «, f, 8 from Equation [3.4] where w = 2 % 7 x f.

The steering algorithm is implemented by adjusting the v parameter
value from Equation[3.4] As the robot has no distance sensors, full informa-
tion about the target’s as well as the robot’s position in the global coordinate
system is provided to the algorithm. In order to steer the robot to the des-
ignated target position, the algorithm utilizes the state machine depicted
in Figure State transitions between the states: (1) Move forward, (2)
Turn left, (3) Turn right, and (3) Stop, are initiated by either crossing a
distance or an angle threshold. An Euclidean distance between the robot’s
“head link” (linkg) and the target position less or equal 2 (length_units)
changes the state to Stop. Otherwise (Euclidean distance is greater than 2
(length__units)), the angle between the robot’s direction of motion and the

https://youtu.be/Le1pLSut-UY

7. Experiments 53

Move Angle
<«—p| Turn left
Forward

Distance Angle
Distance Angle

Stop > Turn right

Distance

Figure 7.8: State machine utilized by the steering algorithm implemented
in Section The robot changes its state if a distance (distance between
the robot and the target) or angle (angle between the robot’s direction of
motion and the target position) threshold is reached.

shortest path between its COM and the target is calculated. Specifically,
two two-dimensional vectors a and b are defined. Vector a specifies a line
between the robot’s COM and its “head link” which determines the direction
of motion. The latter vector b defines a line between the COM and the tar-
get position. Due to the fact that arcsin(z) returns values in [-7, +75] and
arccos(x) [0, 4], neither the cross product formula a x b = |al||b|siné
nor the dot product formula a e b = |a||b|cosf can be used to calculate

an angle from 0° to 360° directly. Therefore,

sin(x)

angle(x) = arctan2 (7.3)

cos(x)
is used which returns angles in (—m, 47|, where cos(z) is the dot product
between both vectors and sin(z) the cross product. In this implementation,
the cross product is determined by calculating the determinant of the two
vectors as described in [77]. Afterwards the angle is smoothed over time with
a moving average filter?| (window size 300). The smoothed angle is used to
choose between the three remaining states:

e angle < 10° Turn left,
e angle > 10°: Turn right,
o else: Move forward.

4A moving average filter is a low pass filter used to remove high frequencies in a data
set. It calculates average over the last n..window size data points.

7. Experiments 54
Target @ X,Z (10.00,10.00) Target @ X,Z (-10.00,10.00)
151 151
- Avg body position
101 + Head position 10
Target
5F 5r
(U or
-5 51
- Avg body position
-10- -10[- Head position
Target
_15 1 i 15 i 1 1 H i
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Target @ X,Z (10.00,-10.00)

Target @ X,Z (-10.00,—10.00)

+ Avg body position - Avg body position
10+ - Head position 10+ - Head position
Target Target
5 5r
N o0 N o0
-5r -5F
-10 -10
-15 L -15 !
-15 -10 -5 0 5 10 15 -15 -10 15

Figure 7.9: Robot approaching a target object at four different locations.
Top left shows a target positioned in the first, top right a target in the
second, bottom left a target in the fourth and bottom right a target in the
third quadrant.

Each state defines its own hand-chosen «, f, 8 parameter values which are
used by all joints to actuate. Following values have been used in this exper-
iment:

e Move forward: a = 0.6, f=1, 6227“, v =0,
e Turnleft: « =0.6, f=1, 6:27”, v = 40.05,
e Turn right: « = 0.6, f=1, 6:27“, v = —0.05,
oStop:a:O,fIO,ﬁ:%W,’YZO-
Parameters from Stop state halt the robot immediately without any drifting.
Therefore, the robot performs locomotion only until the the target is reached.

Results

Four simulations have been started with target object locations (X, Z): (1)
(10,10), (2) (-10,10), (3) (10,—10), (4) (—10,10), in order to validate if
it the algorithm is capable of reaching targets in all four quadrants of the
Cartesian coordinate system. As in Figure[7.9] the robot’s COM, “head” link
and the object’s positions have been recorded during the simulations. The
robot’s COM exhibits a steady movement (blue), while the head position
varies in a sinusoidal form. Furthermore, the figure shows that the target
is reached in all four quadrants from the same initial position. In each sub-

7. Experiments 55

figure, the robot’s initial direction of motion points to the right (positive
X). It changes to the left (negative X) during simulation time for targets
positioned in the second and third quadrant.

Actuation of joints with the same «, f, 8 parameters results in consistent
snake-like motion as detailed in Section[3.2.3] see Figure[7.10] A target object
in the form of a ball is successfully approached in all four quadrants.

Conclusion
The results show that the adjustment of the ~ parameter leads to turn-
ing motion. Targets in all quadrants have been reached. Furthermore, the
snake-like motion of the robot is smooth and can be employed in subsequent
experiments.

7.4 Drifting

The previous experiments did not consider the effect of a “realistic” momen-
tum while the robot was moving in the aquatic environment. Straightening
the robot’s joints, i.e., setting all its joint angles to zero, led to an abrupt
stop of the robot. Therefore, parameters of the robot or the aquatic envi-
ronment need to be refined in order to provide more realistic motions, where
momentum affects robot movement.

Purpose

This experiment produces drifting behaviors after the robot stops its actu-
ation. Momentum increases as the robot accelerates. It is decreased by drag
forces or when the robot reverses its direction of movement. The goal of this
experiment is to change simulation properties in a manner that the robot
shows a “realistic” drifting behavior when it stops. Additionally, a simple
optimization for the robot’s frequency parameter shall be conducted after
the adjustment of the simulation properties.

Implementation
Behavior before and after changes on simulation properties are compared.
To this end, two simulations are executed: One with simulation properties
used in all previous experiments so far and the other with proposed changes.
A simulation similar to Section [7.1]is performed, but joints are actuated
with the parameters «, f, 8 from Equation where w = 2 % 7 % f. The
robot starts to move from its initial position with the parameter values
a=1, f=06, g = 27” Hence, it moves in positive X direction until
t = 10 (seconds) simulation time. After 10 seconds, the robot applies the
parameters a« =0, f=0.6, 5= 27” This means, that the robot sets each
joint to 0°. No joint actuation occurs from this time on. Drag forces stop
the robot by reducing its forward velocity.

7. Experiments 56

(1)t =2

Figure 7.10: Example of an eight link robot that approaches four different
target locations: (1) first quadrant at X = 10, Z = 10 in (a)-(c), (2) second
quadrant at X = —10, Z = 10 in (d)-(f), (3) third quadrant at X = 10,
Z = —10 in (g)-(i) and (4) fourth quadrant at X = —10, Z = —10 in (j)-
(1). Each approach to the target is depicted with the robot’s the temporal
progress between its initial position and the end of simulation time. The
robot steers to the target location and stops immediately when it is reached.
A video can be seen at |https://youtu.be/tdCnS7xTcug|

Three changes are applied in order to alter the robot’s drifting behavior.
First, the parameterization of the hydrodynamics algorithm (Algorithm|6.2)
has been changed such that forces are only applied to planes that are not
“hidden” behind the robot’s body (e.g., the face at the end in X direction
of the robot does not cause friction as long as the robot moves in posi-
tive X direction). Second, the maximum joint forces have been increased

https://youtu.be/tdCnS7xTcu8

7. Experiments 57

Figure 7.11: Visualization of a eight link robot that is put in stop mode
after moving 10 seconds forward in positive X direction. Maximum joint
forces are set to 100 (force_units). (a) shows the robot while actuating its
joints, (b) the beginning of the stopping behavior and (c) the stopped robot.

A video can be seen at [https://youtu.be/UNVnnD9f_PI|

to 1000 (force_units). This allows higher angular velocity for each joint
(i.e., a higher momentum of the robot, because calculated joint angles may
not be fully applied without this change if the required force is greater than
100 (force_units)). Third, the robot’s joint actuation frequency (f) param-
eter is set to 2 (Hz).

Frequency (f) optimization is implemented via a parameter sweep com-
paring the robot’s distance traveled with different parameter values. Simu-
lations are started with the parameter values: (1) 0.2 (Hz), (2) 0.4 (Hz),
(3) 0.6 (Hz), (4) 1.0 (Hz), (5) 2.0 (Hz), (6) 3.0 (Hz), (7) 4.0 (Hz).

Results

The robot’s COM positions have been recorded during all simulations. A
sphere has been placed at position X = 10, Z = —10 in order to enable a
visual comparison of distances traveled.

A visualization of the simulation without property changes in Figure
shows a robot that moves near to the ball during the first 10 sec-
onds of simulation time. Then it starts to apply the stopping behavior.
The robot straightens out its joints and immediately stops. This behavior
can also be seen in Figure a). The figure shows that the robot experi-
ences a short delay in distance at the beginning. Afterwards, the distance
continuously increases until the stop behavior is applied. It reaches a dis-
tance of 0.9 (body_lenghts). After the stopping behavior is applied, the
robot increases its traveled distance for 2 seconds until it reaches a value
of 0.96 (body_lenghts). No change in distance can be seen after 12 seconds
simulation time. The velocity progress in Figure (b) show a fast speed
increase at the beginning of the simulation. After 1.42 seconds, an apparent
variation of speed between 0.08 and 0.1 body_ lenghts/seconds is observ-
able. This suggests that maximum joint forces may be low for this robot.
After 10 seconds, a steady decline in velocity can be seen.

https://youtu.be/UNVnnD9f_PI

7. Experiments 58

Distance progress Veloctiy progress

0.9F

o
N

o
©
o

I
o
o

= 06 —— Original
Stop signal

—— Original
Stop signal

le

o

(S
Body lengths/s
=] =]
R S

o
o
o

o
o

Time (s) Time (s)

(a) (b)

Figure 7.12: Distance progress (a) and velocity progress (b) of a eight
link robot which is put into a stop mode after 10 seconds simulation
time (red line). Distance is measured in body lengths and velocity in
body lengths/seconds.

Figure 7.13: Visualization of a eight link robot that is put in stop mode
after moving 10 seconds forward in positive X direction. Only planes that
are not hidden behind the robot’s body are used for the hydrodynamics cal-
culation. Maximum joint forces are set to 1000 (force_ units). (a) shows
the robot while actuating its joints, (b) the beginning of the stopping be-
havior and (c) the stopped robot. The solid gray region represents an area
beyond the measurement grid in the visualization. There is no difference in
physics between the grid and the solid gray area. A video can be seen at
https://youtu.be/nhTjkA9_CUs|

A visualization of the simulation with the mentioned property changes
can be seen in Figure[7.13] The robot outreaches the sphere at X = 10, Z =
—10 by far. In fact, it almost reaches visualization’s measurement grid border
at 75 (length_units) while actively actuating, see Figure[7.13|b). Then the
robot applies a stopping behavior and starts to drift. It crosses the border of
the measurement grid as visualized in Figure (c) Compared to Figure
a drifting behavior is clearly observable. The different drifting behav-

https://youtu.be/nhTjkA9_CUs

7. Experiments 59

Distance progress Veloctiy progress

o7 L
T \ — Original
,,,,, - \
8 T 06l / \ Stop signal
7 -~ | \ Property changes
\(
0.5
6 / \
£ @ / \
25 o4/ \
<@ c f \
] / \
347 —— Original '~ 03 / \
8 Stop signal g / \
3r Property changes o /
0.2r |
2r ”w
t
1 0.1 k
0 0

0 5 10 15 20 0 5 10 15 20
Time (s) Time (s)

(a) (b)

Figure 7.14: Distance progress (a) and velocity progress (b) comparison of
a eight link robot which is put into stop mode after 10 seconds simulation
time (red line). The blue line indicates values from the original simulation
without property changes and the green line values after property changes
in the simulation.

ior between the two simulations can also be seen in Figure Specifically,
Figure [7.14]a) depicts the distance progress of a simulation without (blue)
and with property changes (green). The simulation with property changes
reaches a distance of 5.72 (body_lengths) after 10 seconds of simulation
time. Therefore, it exhibits a distance more than 5 times greater than the
simulation without changes. Also, drifting is more prominent after 10 sec-
onds of simulation time. The robot shows a drifting behavior until the end of
simulation time and it reaches a total distance of 8 (body_lengths). Veloc-
ity reaches a value of 0.69 (body lengths/seconds) in Figure[7.14[b) and is
therefore more than 6 times greater than in the simulation without changes.
Furthermore, the velocity progress does not exhibit an apparent variation
anymore. The green line indicates that the robot has still velocity, and there-
fore forward momentum, at the end of the simulation.

Seven simulations have been executed with different frequency (f) pa-
rameter values in order to conduct a simple optimization. The result is
depicted in Figure A frequency of 2 (Hz) causes the greatest distance
traveled (5.72 (body__lengths) after 10 seconds) as well as the greatest veloc-
ity (0.69 (body _lengths/seconds) after 10 seconds). Frequencies of 0.2 (Hz)
and 0.4 (Hz) show a spike at 10 seconds of simulation time, see Figure
b). After 10 seconds all joints are immediately straightened out to 0°,
which causes forward velocity. Both frequencies have a low total forward ve-
locity at this time, which causes the robot to propel for a short time. Other
frequencies have higher velocities at this time in the simulation. Hydrody-

7. Experiments 60

Distance progress

Veloctiy progress

)

o

Body lengths
=

W

Figure 7.15: Distance (a) and velocity (b) progress comparison of a eight
link robot which is put into stop mode after 10 seconds simulation time (red
line). Dotted lines represent different frequency (f) value settings.

namic drag forces counteract this effect in this case.

Conclusion

The changes of the simulation properties: (1) increase of maximum joint
forces, (2) call of the hydrodynamics algorithm with only “active” faces
for drag forces, and (3) adjustment of the actuation frequency, cause an
increase of the robot’s velocity which leads to a higher momentum. The robot
exhibits a drifting behavior when it is put in a stop mode. This behavior
can be expected in an aquatic environment. A simple frequency parameter
optimization shows that the highest velocity is reached with 2 (Hz).

7.5 Stopping

Stopping a robot can be achieved by providing a counteracting force to its
momentum. Momentum is generated by increasing a robot’s velocity, which
is achieved by actuating its joints. If the joint actuation is then halted (“stop
mode” in Section, drag forces counteract the momentum. Therefore the
momentum reduces until the robot has come to a standstill. In order to
reduce the amount of time required to come to complete stop, the robot’s
joints can be actuated in a “reverse” manner. This means that the robot
propels itself in the opposite direction of its momentum.

Purpose
This experiment shows that a reverse actuation of a robot’s joints lead to a
counteracting force of its momentum (i.e., faster stopping).

7. Experiments 61

Figure 7.16: Visualization of a eight link robot that applies reverse joint
actuation while drifting in one direction. (a) shows the robot while actuating
its joints, (b) the drifting robot, and (c) the robot applying joint actuation in
reverse order. The robot ultimately comes to a standstill after actuating its

joints in reverse order. A video can be seen at fhttps://youtu.be/-g_yagHO8us|

Implementation

The simulation consists of an articulated robot in an aquatic environment
similar to Section Changes from Section are applied in order to
provide a “realistic” aquatic simulation environment. The robot actuates its
joints with the same parameters «, f, 8 from Equation[3.4] where w = 27« f.
Maximum joint forces are set to 10000 (force_units).

The robot starts to move from its initial position with the parameter
values « = 1, f =2, 5 = 27” It moves in positive X direction until
5 (seconds) simulation time. Then it drifts by straightening out its joints
between the time stamps 5 and 9 seconds. Subsequently, the robot actuates
its joints in the opposite direction by reversing its joint order from 9 to
9.25 seconds. Afterwards, it straightens out its joints again.

Results

Forward actuation at the beginning of the simulation is similar to the exper-
iment described in Section The robot almost reaches the visualization’s
grid border at 75 (length_units) as shown in Figure[7.16(a). Then it drifts
for 4 seconds. The end of the 4 seconds drifting is depicted in Figure|7.16(Db).
Afterwards, the robot actuates its joints in reverse order (see Figure|7.16(c))
for a short period of time and straightens out its joints again. The robot’s
forward momentum is reduced. This means that the robot can come to a
standstill in less time than the drifting robot from Section

Conclusion

The time until the robot comes to a standstill can be reduced by actuating
its joints in reverse order as long as moment in the opposite direction exists.
In this experiment, the time span of reverse actuating has been adjusted
by executing the simulation several times. For each simulation the time
span has been reduced until the robot showed a stand still behavior in the

https://youtu.be/-g_yagHO8us

7. Experiments 62

visualization.

7.6 In situ Turning

The turning motion described in Section adjusts the v parameter value
of Equation Scuh a turning motion generates forward velocity in the
robot’s direction of movement. In contrast, the experiment described here
investigates a turning motion without the generation of forward (or reverse)
velocity. Thereby expanding the number of experimentally tested behaviors..

Purpose
This experiment shows the feasibility of turning a robot without generating
forward locomotion.

Implementation

The simulation consists of an actuating robot in an aquatic environment
with a time step of 0.005 seconds and a total simulation time of 10 seconds.
Joint actuation values are calculated and set every fourth time step in order
to increase simulation speed. Therefore, actuation values are updated every
0.02 seconds (similar to Section [7.2)). The robot is defined to consist of 17
links and 16 joints. The robot’s total mass is set to 318.75 (mass_ units).
A robot’s link dimensions are set to 1.5 x 0.5 x 0.5 units. Links are placed
consecutively after each other in negative X direction. The front face (outer
position of the first element) is set to X = 0 and the rear face (outer position
of the last element) to X = —25.5. Therefore, the COM of the robot is
situated at X = —12.75. Furthermore, the robot’s Y position is lifted by
1 units whereas Z remains at 0 units. Maximum joint forces are set to
100000 (force_wunits).

Joint actuation angles are calculated according to Equation as de-
scribed in Section A so-called spinning gait is generated by computing
the parameter values § and v with Equations and This spins the
robot on its COM around the Y axis. A visualization of a robot in a vac-
uum environment is shown in Figure Initial parameter values are set
to: =02, f=1,5=2 y=0.3.

Results

After a simulation starts, the robot turns around the Y axis (vertical) in
counter-clockwise direction as shown in Figure It can be seen that two
half sine waves travel from the middle of the robot (COM) to the outside
links. Each in opposite direction. Both half sine waves force the robot to spin
in place by stretching (Figure[7.17(c)) and contracting (Figure [7.17(b)) its
links in the appropriate manner, while the robot’s COM stays at the same
location. Therefore, no forward velocity is generated.

7. Experiments 63

Figure 7.17: Example of an 17 link robot applying the spinning gait de-
scribed in Section (a) shows the initial position of the robot. (b) depicts
the robot with contracted joints and (c) with straightened joints at subse-
quent time stamps. This causes the robot to spin around the Y axis. A video

can be seen at |https://youtu.be/Q6puZfnDEhY|

Conclusion

The results show that the robot can be turned without the generation of
forward motion. Two sine waves travel in opposite direction through the
robot’s body, each propelling the robot in the same angular counter clock-
wise direction. The direction can be modified by changing the sign of the
~ parameter. In situ turning can be used for hand-coded robot control in
subsequent experiments that require a turning behavior without forward
velocity, e.g. for steering the robot’s direction to a position in which it can
touch a target.

7.7 Watersnake Evolved with DEAP

DEAP, a Python library, provides standardized functionality for evolution-
ary algorithms . Use of the library can reduce code complexity and help
to improve source code quality. As an initial test, a forward swimming robot
is evolved with DEAP.

Purpose

This experiment shows the feasibility of using DEAP for optimizing the
robot’s sinusoidal locomotion parameters. Furthermore, the usability of DEAP
compared to that of a hand-coded implementation are discussed quantita-
tively. Evolved parameters will be used for simple forward swimming tasks
in subsequent experiments.

Implementation

The simulation setup for this experiment is similar to that in Section
This implementation utilizes the DEAP library in order to codify a GA for
sinusoidal parameter optimization. Selection, crossover and mutation oper-
ators are called from DEAP’s tool module, which provides a set of standard

https://youtu.be/Q6puZfnDEhY

7. Experiments 64

functions for selecting, moving and modifying individuals and is designed to
be used in conjunction with DEAP’s toolbox module. The toolbox module
provides functionality to build the basic structure of evolutionary algorithms
(in this case a GA). For instance, it allows the registration of variation op-
erators and genome creators.

The GA is parameterized with a population size of 120 individuals and
conducts evolution over 1000 generations. Each individual’s genome consists
of 3 alleles, where each allele is defined as a robot’s joint parameter in the
form: «, f, B. The amplitude parameter («) ranges from 0.1 to 1.5, the
frequency parameter (f) from 0.1 to 3 (Hz) and phase shift (8) from 0 to
2 % m (rad). The genome’s alleles are initialized according to an uniform
distribution within the corresponding parameter range. For each individual,
an ODE simulation is conducted with the given parameters. Specifically, all
joints actuate according to Equation[3.4] Only the joint index i is responsible
for different joint angles for different joints. Fitness is evaluated with:

fitness(d) = dx (7.4)

where d is the distance between starting position and end position in the
coordinate system. Therefore, the fitness function only rewards traveling in
positive X direction and penalizes movement in negative X direction. Move-
ment in Z and Y is omitted with this fitness function. From the population,
120 parents are chosen with tournament selection (without replacement)
and a tournament size of k = 3. Afterwards, a simulated binary crossover
(see Section is performed with 90% crossover probability. The simulated
binary crossover implementation takes an upper bound, a lower bound, and
a crowding degree argument. A “high” crowding degree produces children
resembling to their parents, while a “small” crowding degree produces chil-
dren more different from their parents. Upper and lower bounds are set to
the according limits of the actuation parameter (o, f, w) ranges and the
crowding degree to a value of 20. This procedure returns an intermediate
individual which is then processed in the mutation operation. The muta-
tion probability of an intermediate individual is set to 33.3%. Mutation is
performed as polynomial mutation with upper and lower bounds set to the
actuation parameter limits and a crowding degree of 20.

Results

The fitness progress in Figure shows that the mean of the best indi-
viduals of 18 replicates converges to a fitness of 97.20 units, whereas the
mean of the average individuals converges to 80.92 units. Both 95% Cls are
close to their corresponding mean values. The CI of the average individual
data set is small over all generations. This effect is even more prominent in
the best individuals data set, where the CI is barely visible in the plot after
generation 10. This result indicates a low variance for each data set over

7. Experiments 65

Fitness progress

—— Mean max fitness
[CI max fitness

— — Range max fitness
—e— Mean avg fitness
[_ICl avg fitness
-—--Range avg fitness

Fitness

L L L L L L L L L L L L L L L L L L L
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995999
Generation

1
©
o -Lé—ls

Figure 7.18: Evolutionary fitness progression for the forward locomotion
experiment implemented with DEAP that consists of a 16 joint robot. 3
joint parameters are evolved as described in Section The mean of the
best individual per generation (Mean mazx fitness) and the mean of the av-
erage individual per generation (Mean avg fitness) over 18 replicates are
significantly different (p < 0.05 with WRS). Shaded areas represent the 95%
confidence interval. Red dashed lines describe the best and the worst per-
forming individual per generation over all 18 replicates. The area between
generations 100 and 990 has been omitted, because it contains no relevant
information.

all replicates. Evolutionary runs exhibit the same fitness progress indepen-
dent from its random number seed configuration. Maximum values indicate
the best fitness over replicates and minimum values represent the worst fit-
ness respectively. The best performing individual is the maximum value in
the data set of the best performing individuals. In this case, the maximum
values quickly converge to 97.20 units. They overlap with the mean after
generation 10. In other words, each replicate generates a very well perform-
ing individual. The individuals with lowest fitness from the best individuals
data set are greater than the highest values from the average individuals
data set at every generation. Therefore, best individuals perform signifi-
cantly better than the average individuals. For the sake of completeness, a
statistical significance test results in p < 0.05 with WRS.

Mean, CI and minimum-maximum range performance values show a fast
increase of fitness within the first 10 generations. The rise of all performance
values shows an effective parameter search process in the solution space.

7. Experiments 66

A relatively low visible variance of the mean in the best individuals data
set indicates that the GA cannot find better performing individuals in the
solution space. The average individuals data set shows an expected variance
over all generations. This means that search in the solution space is ongoing
until the end of the evolutionary run.

Figure shows the progress of the parameters «, f and 8 of the best
individuals. Amplitude («) converges to 0.46, frequency (f) to 2.00 and
phase shift to 0.68. The minimum-maximum range of all three parameters
narrow to its average value until they are almost invisible during the first
100 generations. This effect is even more prominent for the CI. Therefore,
well performing parameters are found very fast in early generations. No
significant variance is observable after the first 100 generations.

Figure shows the movement of an evolved robot at different time
steps. The actuation of joints with evolved parameters from the best indi-
vidual of generation 999, shows a movement in positive X direction.

Conclusion

A direct comparison to the forward swimming experiment from Section
is not applicable due to the differences in the experiment setup, although
both experiments evolve forward moving robots. Despite this fact, one can
see that fitness values increase much faster in this experiment.

The usage of DEAP reduces development time and effort by providing
ready to use functionality for evolutionary algorithms. It can be configured
to utilize a ODE simulation for the evaluation of an individual. Due to pro-
vided standardized functionality it improves the quality of the evolutionary
implementation. For these reasons, subsequent experiments will use DEAP
for the implementation of evolutionary runs.

7.8 Evolved Watersnake Head

Previous experiments investigated a robotic behavior where all joints have
been used for actuation, namely forward moving, stopping and turning. In
contrast, this experiment uses a certain number of joints to enclose a planar
area with a geometric form which is assumed to be able to hold an object in
subsequent experiments. Specifically, the robot folds its leading joints at the
beginning of the simulation. A GA is utilized to evolve actuation parameters
after the robot has finished with folding its so called “head.”

Purpose

This experiment shows how the form of a robot’s head impacts its forward
moving behavior. Therefore, its fitness progress is compared between two
different “head” forms. The comparison implies analysis of the evolved pa-
rameter values. Additionally, this experiment shows, whether the robot can

7. Experiments

Figure 7.19: Progress of amplitude («) (a) frequency (f) (b) and phase shift
(8) (c) parameters in the best individuals data set from the evolutionary run
described in Section[7.7} Shaded areas represent the 95% confidence interval.
Red dashed lines describe the minimum and maximum values per generation
over all 18 replicates. The area between generations 100 and 990 has been

~
s
>
[}
=3
@
[

Phase shift (rad)

S

@

8
T

Amplitude

Max fitness amplitude progress

——Mean max fitness
Cl max fitness

— — Range max fitness

Generation
(a)
Max fitness frequency progress

2.9F,
271

S S S R SO S S R
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995999

25\
\
v
23] Mo,
21 VA~ \

191 —~/
1.7
151
131
11
09
07
05|
03
o1

——Mean max fitness

[EICI max fitness
— — Range max fitness|

T T S S S S SR N
0 5 10 15 20 25 30 35 40 45 50 5 60 65 70 75
Generation

Max fitness phaseshift progress

——Mean max fitness
[CI max fitness
5.5 | —— Range max fitness

471

3.93

©
S
T

L A
85 90 95 990 995999

Generation

()

T T T S T SO RO SO R
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995999

omitted, because it contains no relevant information.

67

7. Experiments 68

@t=0 (b)t=

—_
—
o
~
~+

|
[\

Figure 7.20: Example of an evolved 17 link forward swimming robot
with the GA implementation described in Section (a) shows the ini-
tial position of the robot. Then (b)-(c) depict the temporal progress of the
robot at different time steps. A sinusoidal wave propagates through the
robots body which causes movement to the right. A video can be seen at
https://youtu.be/A3CZqODXDCA]

Figure 7.21: Example of an evolved 17 link forward swimming robot and
a square head with the GA implementation described in Section (a)
shows the robot while folding its head. (b) depicts the initial position after
before the robot begins to actuate. (c) illustrates the actuating robot at
an certain time step. A sinusoidal wave propagates through the robots tail

which causes movement to the right. A video can be seen at |https://youtu.

Ibe/EOFdDCacgso}

keep the form of the head during the whole simulation.

Implementation

This experiment uses the same initial simulation setup as in Section
At the beginning of the simulation, all robot joints are straightened out
to 0°. Within the first three seconds of simulation time, the robot forms
a planar “head” by setting the angles of the first eight joints accordingly.
This implementation folds two different heads in the form of a square, and
a circle as shown in Figure b) and Figure b) respectively. Each
head form is investigated in a separate simulation. First, the square head
actuates joints 1,3,5 to —90° while keeping joints 0,2,4,6 at 0°. Joint 7 is
set +45° to orient the head in to positive X direction. Second, the circle
head actuates joints 0 to 6 uniformly with —@ = —51.43°. It also utilizes

https://youtu.be/A3CZqODXDCA
https://youtu.be/EOFdDCacgso
https://youtu.be/EOFdDCacgso

7. Experiments 69

Figure 7.22: Example of an evolved 17 link forward swimming robot and
a circular head with the GA implementation described in Section . (a)
shows the robot while folding its head. (b) depicts the initial position after
before the robot begins to actuate. (c) illustrates the actuating robot at
an certain time step. A sinusoidal wave propagates through the robots tail

which causes movement to the right. A video can be seen at |https://youtu.

Ibe/rD7Mek5fkdA|

joint 7 to orient the head in positive X direction by setting its angle to
+45°. After three seconds, joints 8 to 16 actuate with the same parameters
a, f and 8 according to Equation where w = 2 x w x f. This experiment
utilizes the GA implementation from Section to evolve the parameters
a, f and § after the head has been formed.

Results

The mean of the best individuals of 18 replicates converge to a fitness
of 24.07 units, whereas the mean of the average individuals converges to
21.48 units for the square headed robot, see Figure According to Fig-
ure the mean of the best individuals converge to 23.18 units and the
mean of the average individuals to 20.49 units with a circular folded head.
CIs of best individuals and average individuals data sets are close to their
mean values in either figure. This indicates a low variance for each data
set over all replicates. Evolutionary runs exhibit the same fitness progress
independent of its random number seed configuration. Maximum values in-
dicate the best fitness over replicates and minimum values represent the
worst fitness respectively. No visible difference between the overall best in-
dividual and the mean of the best individuals is observable in both figures
after generation 10. Hence, each replicate generates a very well performing
individual. The overall best individual from the square folded robot attains
a fitness of 24.07 units and circular folded 23.18 units. Individuals with
lowest fitness from the best individuals data set are always greater than the
highest values from the average individuals data set in for both simulation
configurations. Best individuals are therefore performing significantly better
than the average individuals (for the sake of completeness: p < 0.05 with
WRS).

https://youtu.be/rD7Mek5fkdA
https://youtu.be/rD7Mek5fkdA

7. Experiments 70

Fitness progress

32~

i —— Mean max fitness
] [CI max fitness

— — Range max fitness
4 —e— Mean avg fitness
[_ICl avg fitness
-—--Range avg fitness

L L L L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 990 995999
Generation

Figure 7.23: Evolutionary fitness progression for forward locomotion imple-
mented with DEAP that consists of a 16 joint robot using its first nine joints
to fold a square head. 3 joint parameters are evolved as described in Section
The mean of the best individual per generation (Mean mazx fitness) and
the mean of the average individual per generation (Mean avg fitness) over 18
replicates are significantly different (p < 0.05 with WRS). Shaded areas rep-
resent the 95% confidence interval. Red dashed lines describe the best and
the worst performing individual per generation over all 18 replicates. The
area between generations 100 and 990 has been omitted, because it contains
no relevant information.

Similar to the results of forward swimming robot in Section mearn,
CI and minimum-maximum range performance values show a fast increase
of fitness within the first 10 generations. This indicates an effective GA
search process in the solution space at early generations. A relatively low
visible variance in the best individuals data sets indicates that the GA is
not able to find better performing individuals in the solution space after a
early convergence. The prominent minimum-maximum range for the average
performing data sets suggests an active search in the solution space until the
end of the evolutionary run.

Figure shows the progress of the parameters «, f and 3 of the best
individuals for a square folded head and Figure for a circular folded
head. Amplitude (o) converges to 0.73, frequency (f) to 1.72 (H z) and phase
shift (8) to 0.92 (rad) for the square headed robot. Evolved parameter values
for the circular headed robot are very similar (o = 0.75, f = 1.79 (Hz),

7. Experiments 71

Fitness progress
36~

B AL S et S Tl S R)
'\.~—\,7./‘~._,-/‘-_—_,\,\.—~' TN TSN e L SNt T e D - 3uuple I p-E b,

—4—Mean max fitness
[CI max fitness

— — Range max fitness
—e— Mean avg fitness
[_ICl avg fitness
-—--Range avg fitness

L L L L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 990 995999
Generation

Figure 7.24: Evolutionary fitness progression for forward locomotion imple-
mented with DEAP that consists of a 16 joint robot using its first nine joints
to fold a circle head. 3 joint parameters are evolved as described in Section
The mean of the best individual per generation (Mean mazx fitness) and
the mean of the average individual per generation (Mean avg fitness) over 18
replicates are significantly different (p < 0.05 with WRS). Shaded areas rep-
resent the 95% confidence interval. Red dashed lines describe the best and
the worst performing individual per generation over all 18 replicates. The
area between generations 100 and 990 has been omitted, because it contains
no relevant information.

B = 0.93 (rad)). Both simulation configurations exhibit progress at the
beginning, but after generation 10, no visible difference between the mean
and the CI is observable for all three parameters. Minimum-maximum ranges
for parameters f (b) and § (c) are completely hidden after 10 generations.
In contrast, parameter a (a) shows a steady visible difference through the
last generation.

Figure depicts the movement of a robot with a square head and
Figure a robot with a circular head respectively. Both simulation con-
figurations exhibit a prominent sinusoidal actuation for all non folded joints.
The folded head keeps its form during the whole simulation.

Conclusion
Fitness values of both simulation configurations are very similar. They can-
not be directly compared to the forward swimming robot experiment from

7. Experiments

Amplitude

Max fitness amplitude progress

Cl max fitness

——Mean max fitness

N19
I

T R S S|
10 15 20 25 30 35 40

Generation

(a)

Max fitness frequency progress

——Mean max fitness

I max fitness
— — Range max fitness|

S S S
45 50 55 60 65 70 75 80 85 90 95 990 995999

Il

Phase shift (rad)
© P
P8

©

@

8
T

S T S S S S
10 15 20 25 30 35 40 45 50 55 60 65 70 75

Generation

(b)

Max fitness phaseshift progress

——Mean max fitness
[EICI max fitness
— — Range max fitness

T
80 85 90 95 990 995999

Figure 7.25: Progress of amplitude («) (a) frequency (f) (b) and phase shift
(8) (c) parameters in the best individuals data set from the evolutionary run
described in Section for a robot with a square head. Shaded areas rep-
resent the 95% confidence interval. Red dashed lines describe the minimum
and maximum values per generation over all 18 replicates. The area between
generations 100 and 990 has been omitted, because it contains no relevant

information.

T T S S S S S N
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995999

Generation

()

72

7. Experiments

Max fitness amplitude progress

——Mean max fitness
Cl max fitness

Amplitude

P O S S S S W
0 5 10 15 20 25 30 35 40 45 50 55 _BO 65 70 75 80 85 90 95 990 995999
Generation

(a)

Max fitness frequency progress

21k
\
T |

09k ——Mean max fitness
[CI max fitness

— — Range max ftness|

T T S S S R S S R
0 5 10 15 20 25 30 35 40 45 50 55 _60 65 70 75 80 85 90 95 990 995999
Generation
Max fitness phaseshift progress
—4—Mean max fitness

[EICI max fitness
5.5 | —— Range max fitness

Il

Phase shift (rad)
© P
P8

©

@

8
T

T S S S S SO S S
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995999
Generation

()

Figure 7.26: Progress of amplitude («) (a) frequency (f) (b) and phase shift
(8) (c) parameters in the best individuals data set from the evolutionary run
described in Section[7.8]for a robot with a circle head. Shaded areas represent
the 95% confidence interval. Red dashed lines describe the minimum and
maximum values per generation over all 18 replicates. The area between
generations 100 and 990 has been omitted, because it contains no relevant
information.

73

7. Experiments 74

Section [7.7} due to different simulation setups. Additionally, evolved param-
eters show similar values for both types of snake heads. Therefore, it can be
concluded that the form of the robot’s head does not significantly change
the forward moving behavior.

7.9 Grasping

The previous experiment demonstrates forward locomotion with a robot
that uses parts of its body to surround an object. This next experiment
investigates the formation of the surrounding shape in order to “capture”
an actual object. Specifically, the proposed algorithm from Section is
utilized to grasp a sphere.

Purpose
This experiment evaluates the effectiveness of the proposed grasping algo-
rithm from Section

Implementation

A simulation consists of an articulated robot and a stationary target in an
aquatic environment with a time step of 0.005 seconds and a total simulation
time of 10 seconds. Joint actuation values are calculated and set every fourth
time step in order to increase simulation speed. Therefore, actuation values
are updated every 0.02 seconds. The robot is defined to consist of 8 links
and 7 joints, and the target object is a sphere with radius 1 length_unit
at the initial position X = —4, Z = —2. The robot’s total mass is set to
150 (mass__units) and the target object’s to 0.42 (mass__units). The robot’s
link dimensions are set to 1.5x0.5x 0.5 units. Links are placed consecutively
in negative X direction. The front face (outer position of the first element)
is set to X = 0 and the rear face (outer position of the last element) to
X = —25.5. Therefore, the COM of the robot is situated at X = —12.75.
Furthermore, the robot’s Y position is lifted by 1 units whereas Z remains
at 0 units. Maximum joint forces are set to 10000 (force_units).

The robot keeps its joints straightened out with 0° during the first second
of the simulation. Afterwards, the robot employs Algorithm The robot
forms a circle around the object (see Figure a) and (b)) and tightens it
every second. In this experiment, the circle is tightened four times. Hence,
four links surround the target object. It is important to note that this imple-
mentation works only if the object is smaller than the resulting area formed
by the folded part of the robot. The robot does not actuate its joints after
the grasping algorithm has been executed. Therefore, it keeps its position
for the remaining time of the simulation.

7. Experiments 75

Figure 7.27: Example of an eight link robot that employs the grasping
algorithm from Section in order to grasp a spherical target object. (a)
depicts the initial position of the robot and the target object. (b) shows
the robot while enclosing the object with a full circle. (c) illustrates the
tightened circle with the target object in it. A video can be seen at

|/ /youtu.be/Jy3CFmlecOc|

Results

Figure[7.27]shows that the robot successfully surrounds and grasps the target
object. It starts to form a circle around the target object and tightens the
circle once every second, until the target is completely surrounded by four
links. One can see that the robot changed its orientation (compare Figure

7.27(a) and (c)).

Conclusion

Results show the effectiveness of the proposed engineered grasping algo-
rithm. In this experiment, the target object has been placed at a location
which allows the robot to grasp it from its initial position. Therefore, sub-
sequent experiments can utilize this algorithm for grasping tasks, once the
robot has reached a location near the target.

7.10 Evolved Watersnake with Grasped Object

This experiment combines locomotion and grasping behaviors from previous
sections. A target object is placed at a specific location, so that the robot is
able to grasp it from its initial position. Sinusoidal locomotion parameters
will be evolved after a target object has been grasped.

Purpose
This experiment shall show if the implemented GA can successfully find
parameters for forward swimming with a grasped object.

Implementation
This experiment uses the same initial simulation setup as in Section

https://youtu.be/Jy3CFm1ecOc
https://youtu.be/Jy3CFm1ecOc

7. Experiments 76

Additionally, a sphere is placed into the environment at the position X =
—12, Z = —3 as target object. Its mass is set to 0.42 (mass_units).

The robot surrounds the target object at the beginning of the simulation
by forming a circle around its COM. Afterwards, it iteratively tightens the
circle 13 times until the target object touches four links. Each iteration step
is executed with a delay of 0.12 seconds in the simulation. Therefore, the
grasping process is finished after 1.68 seconds. After 3 seconds of simulation
time, the robot starts to actuate its remaining joints according to Equation
8.4 with «, f and 3, where w = 2 * f. In this case, joints 0,1, 2 are set to
+90° (output of the grasping algorithm Algorithm and joint 3 is used
to turn the head into the robot’s principal direction of motion by setting it
—45°. Parameters o, f and § are evolved with the GA implementation from

Section

Results

Figure shows that the mean of the best individuals of 18 replicates
converges to a fitness of 24.92 units, whereas the mean of the average indi-
viduals converges to 13.51 units. The 95% CI of the best individuals data
set narrows to its mean value during the first 20 generations until it is not
visible in the figure. Additionally, the minimum-maximum range exhibits a
similar tendency, but it can be visually distinguished from the mean value
until the last generation of the evolutionary run. Therefore, the best indi-
viduals over all replicates exhibit the same fitness progress independent of
the random number seed configuration. CI and minimum-maximum range
from the average individuals data set show an inverted behavior. They are
very close to the mean at the beginning and expand until generation 5. Af-
terwards they keep the same wide range until the end of the evolutionary
run. This means, that the GA’s search in the solution space is ongoing until
the end. The worst performing individuals from the average individuals data
set exhibit a visually distinct progress. They are considerably lower than the
mean value and show a notable variance. This hypothesis may indicate that
the solution space is difficult to search. For example, it might contain many
local minima to be explored by the GA. In other words, the adjustment of
the three parameters «, f and 3 is fragile, in that a small modification of
one parameter may reduce the fitness tremendously. This is supported by
the relatively wide Cls and minimum-maximum ranges in Figure (best
individuals data set) compared to previous experiments. Although, the mean
values of amplitude (), frequency (f) and phase shift (3) converge to 0.62,
1.78 and 0.73 one can see a prominent minimum-maximum range. These
results indicate that the GA cannot narrow down the parameter values and
repeatedly tries values in this range. The analysis of the dependency be-
tween a-f-f in generation 999 from the best individuals data set (depicted
in Figure shows one outlier, namely replicate 5. Although the other

7.

Fitness

Experiments

Fitness progress

—

. —_- . . . '\ /' . . .
B N A Y R A N W R\ INL SN T

7

[Undy I K N P EY R PR A ! \
2= 1 \I| N | | |~¥=Meanmaxfimess 3/ i ¥ a4 YRRV i
e FER AT + + | [EICI max fitness K VYT
-6yl Y ‘, \ . . | —— Range max fitness I
-8 N I | —e—Mean avg fitness il
ng I |[Jclavg fitness %
Z1al | |-—--Range avg fitness
-1611 | | | | | | | | | | | | | | | | | | | L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995 999

Generation

Figure 7.28: Evolutionary fitness progression for the forward locomotion
experiment with a grasped target object that consists of a 16 joint robot.
The parameters «, f and § are evolved as described in Section The
mean of the best individual per generation (Mean maz fitness) and the mean
of the average individual per generation (Mean avg fitness) over 18 replicates
are significantly different (p < 0.05 with WRS). Shaded areas represent the
95% confidence interval. Red dashed lines describe the best and the worst
performing individual per generation over all 18 replicates. The area between
generations 100 and 990 has been omitted, because it contains no relevant
information.

replicates converged to relatively similar values (a ~ 0.61, f ~ 1.82 (Hz)
and 8 ~ 0.75 (rad)), replicate 5 evolved to a = 0.80, f = 1.11 (Hz) and
B = 0.35 (rad). Both parameter settings result in approximately the same
fitness value. Otherwise, the minimum-maximum range of the best individ-

uals data set at generation 999 in Figure would show a discrepancy. See

figure for a robot that is grasping and swimming.

Conclusion
Results show that the GA can successfully evolve parameters for a forward
swimming robot with a grasped object. Evolution finds quickly well per-
forming parameters, although the solution space seems to be more complex

compared to previous experiments.

7. Experiments

Figure 7.29: Progress of amplitude («) (a) frequency (f) (b) and phase shift
(8) (c) parameters in the best individuals data set from the evolutionary run
described in Section[7.10} Shaded areas represent the 95% confidence interval.
Red dashed lines describe the minimum and maximum values per generation
over all 18 replicates. The area between generations 100 and 990 has been

Amplitude

Max fitness amplitude progress

—4—Mean max fitness
Il max fitness
— — Range max fitness|

S S S S S SR
5 10 15 20 25 30 35 40 45 50 55 _60 65 70 75
Generation

(a)

Max fitness frequency progress

P b m—
80 8 90 95 990 995999

——Mean max fitness
[EICI max fitness
— — Range max fitness|

3.93]

Phase shift (rad)
©
=

2.36|

Generation

(b)

Max fitness phaseshift progress

T S R SO S S R A
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 990 995999

——Mean max fitness
[CI max fitness
— — Range max fitness

T T T S T SO RO SO R
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 990 995999

Generation

(©)

omitted, because it contains no relevant information.

78

7. Experiments 79

117

S oo
=)
= . .
£
g 07
s A

0.5¢

0.3t

01t

0.10.30.50.70.91.11.31.51.71.92.12.32.52.72.8 0 079 157 236 314 393 471 55 628
Frequency (Hz) Phase shift (rad)

[0 ¢ 1 ¢2 ¢3 ¢4 ¢5 -6 «7 «8 9 10 ¢ 11 12 ¢« 13 « 14 15 o 16 o 17|

Figure 7.30: Parameter dependency of the best individuals for each of the
18 replicates in the last generation from the evolutionary run described in
Section The dependency amplitude (a)-frequency (f) is depicted on
the left and amplitude («)-phase shift (8) on the right.

Figure 7.31: Example of an evolved 17 link robot that grasps a target object
and swims forward with the object. Locomotion parameters are evolved with
an GA. The implementation is described in Section|[7.10} (a) shows the robot
while forming a circle around the object. (b) shows the robot while tightening
the circle. (c) illustrates the robot actuation its joints sinusoidally with a
fully tightened circle and the target object in it. A video can be seen at

https://youtu.be/kLRpDrxdSA4}

7.11 Capture Target

The previous target approach experiment (described in Section [7.3) does
not include a mechanism to grasp a target object. In this next experiment,
the robot approaches and grasps or captures, a target.

https://youtu.be/kLRpDrxdSA4

7. Experiments 80

Purpose

This experiment shows the feasibility of capturing a target object in all four
quadrants of the Cartesian coordinate system. Additionally, a continuous
steering algorithm shall be implemented in order to replace the state machine
from Section [7.3]

Implementation

The experiment uses the same simulation setup as the experiment described
in Section In order to evaluate the functionality in every quadrant,
the target object (a sphere) is placed at following four locations (X, Z): (1)
(30,30), (2) (—30,30), (3) (30,—30), and (4) (—30,—30). Each location is
tested with a separate simulation run.

Locomotion is performed with a = 0.7, f = 0.9, 8 = 0.8 according to
Equation([3.4] where w = 2%« f. The steering algorithm from the experiment
described in Section has been used to approach the target. In contrast,
this implementation utilizes a continuous direction adjustment instead of a
state machine. Therefore, v is used to steer the robot into a desired direction.
It is calculated with:

—0.2
v(angle) = — * angle, (7.5)

where angle is calculated with Equation In order to smooth the angle
between the robot’s direction motion and the shortest path to the target,
an average filter with window size 30 is utilized. The distance between the
robot and the target object (called comdist) is calculated as the Euclidean
distance between the robot’s COM and the target position. If the robot
reaches a region near to the target object (comdist < arclength, where
arclength = 25.5 units) one following two paths is executed:

o comdist < M: The robot can reach the target if it forms a circle

(w) Therefore, the grasping algorithm as experimentally

tested in Section is executed. The direction of the grasping (to
the left, or to the right) has been determined in the other execution
path.

e else: The robot cannot reach the target if it would form a circle. Hence,
it steers further to the target object. Additionally, the direction of the
grasping is determined in this execution path. If the (unfiltered) 6
value is greater than or equal to 0 then the robot grasps to its left,
otherwise it grasps to its right.

The robot keeps its joint angles constant after the grasping algorithm has
been performed until the end of the simulation. Therefore, the robot does not
actively move with the grasped target. That last subtask will be addressed
in Section

7. Experiments 81

60 60

40 40

Target
20+ : . 201 : « Avg body position
N of N oF

20+ : Target 20+
+ Avgbody position

L L L L L | L L L L L |
—60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

Target Target
20 : « Avgbody position 20} : « Avgbody position
N or N of
—20 | \ : -20 / :

L L L L L i L L L L L i
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

X X

Figure 7.32: Robot approaching and capturing a target object at four dif-
ferent locations. Top left shows a target positioned in the first, top right a
target in the second, bottom left a target in the fourth and bottom right a
target in the third quadrant.

Results

Four different simulations were conducted in order to validate whether the
algorithm is capable to capture a target in all four quadrants in the Cartesian
coordinate system. The robot’s COM and the object’s position have been
recorded during the simulations. The former is visualized in Figure
One can see that the robot successfully approaches every target position
by examining the robot’s movement of the COM (blue line). The robot
has to turn its body in the top right and the bottom left figures in order
to successfully approach the target. After the robot has reached a certain
region, it executes the grasping algorithm which causes the target object
(green line) to move slightly.

This behavior can also be seen in the simulation visualization in Figure
The robot approaches all four targets from the same initial position
and successfully grasps them (see (c), (f), (i) and (1)). (d)-(f) and (j)-(1) show
the robot’s turning behavior at the beginning of the simulation in order to
approach the target.

Conclusion

This experiment shows that the proposed continuous steering algorithm suc-
cessfully enables the robot to approach the target object. Furthermore, it is
shown that the target can be successfully grasped following the approach.

7. Experiments 82

|
] 5E TN
| ...U\\\A‘:ﬁ
Hs i HHWH\\,,“
JHHRH AR A R T
V‘/IVV!IIIIAIIVYIII z‘ll;\ll\\\ \

(t=0

Figure 7.33: Example of an 17 link robot that captures a target at four
different target locations: (1) first quadrant at X = 30, Z = 30 in (a)-(c), (2)
second quadrant at X = —30, Z = 30 in (d)-(f), (3) fourth quadrant at X =
30, Z = —30in (g)-(i) and (4) third quadrant at X = —30, Z = —30in (j)-(1).
Each is depicted temporally starting from a position at the beginning of the
simulation until the target is successfully captured. The robot steers to the
target location (marked with a green arrow in (a), (d), (g) and (j)) and starts
the grasping algorithm. A video can be seen at https://youtu.be/8iONnOtIILk|

£
i
H
T

Therefore, this implementation can be used for the final experiments.

https://youtu.be/8iONn0tlILk

7. Experiments 83

7.12 Capture and Deliver Target

Previous experiments investigated performance of three individual tasks:
(1) forward locomotion in order to reach a target, (2) grasping the target,
and (3) forward locomotion with a payload in order to reach a destination.
The experiment described in Section already combined (1) and (2). In
contrast, the experiment described here combines all three individual tasks.

Purpose

This experiment shall combine all individual tasks in order to perform target
collection and delivery. In order to improve robustness, if the robot fails to
grasp the target on the first attempt, it will try again. As described below,
the robot will keep trying until it has captured the object.

Implementation

This experiment uses the same simulation setup as the experiment described
in Section[7.11} Furthermore it uses partly the same source code for the joint
angle calculation. Due to the fact, that the grasping algorithm failed to grasp
the target object at X = —40, Z = 40 in a preliminary simulation, this
implementation uses the four target locations (X, Z): (40,40), (—40,40),
(40, —40), and (—40, —40) in order to capture and consequently handle this
case. The ultimate target destination is defined to be circular (radius =
8 units) area around X = 0, Z = 0. This is the region in which the target
object should be situated at the end of the simulation.

As in the experiment described in Section locomotion parameters
for forward swimming without a payload are set to a = 0.7, f = 0.9, 8 =
0.8 for Equation where w = 2 % 7w * f. This experiment utilizes the
implementation for capturing a target object as described in Section

After the robot has approached the target and executed the grasping
algorithm, a check is performed to verify that the target object has actually
been caught by the robot. It might be the case that the target is “kicked”
away by the robot during the execution of the grasping algorithm. To this
end, the current position of the target is compared with the link positions
(links 0—3, defined by the grasping algorithm) which are involved for holding
the object. If one of the target’s X /Z coordinates is greater or less than all
of the involved link coordinates, then the target object is not captured,
because it is positioned outside of the grasping “arm”. Otherwise, the object
is successfully grasped and therefore captured. In that case the robot uses the
same steering procedure as described for approaching the target in order to
turn itself into the right direction for returning to the destination region. The
robot calculates the angle between its COM and the ultimate destination
region at X = 0, Z = 0 and adjusts the ~ variable accordingly. Forward
propulsion is generated by actuating joints 3 to 15 sinusoidally with the
values a = 0.61, f =1.82, 5 =0.75.

7. Experiments 84

60 60 :
]
ol « Avg body position ,7 w0l _ﬁ":-:.m:" i

20+ : R R 20}

—20- : : 20+ : Target
+ Avgbody position

_60 L L L L L | _60
—60 -40 -20 —

o
>

60 60

40t 40f

Target Target
201 : + Avg body position 20 : « Avg body position

.........

_60 L i i i i ; _60 i i i i i ;
-60 -40 -20 20 40 60 -60 -40 -20 0 20 40 60

X

xo

Figure 7.34: Robot capturing and delivering a target object. The target
object is placed at four different locations. Top left shows a target positioned
in the first, top right a target in the second, bottom left a target in the fourth
and bottom right a target in the third quadrant. The destination region is
always positioned at X =0, Z = 0.

In the case that the object has not been successfully grasped, the robot
performs reverse locomotion (by applying a negated S value from the si-
nusoidal parameters) until it is twice the robot’s arclength away from the
target object (Euclidean distance from the robot’s COM to the target ob-
ject). Then it starts the target capture procedure all over again. Therefore,
the robot tries to capture the target until it is actually captured until the
end of the simulation, if necessary.

The robot drops the target object if the Euclidean distance between
target object destination (X = 0, Z = 0) is less than 4 units. Afterwards,
the robot starts to actuate its joints in reverse direction (negated [value)
which causes locomotion in the opposite direction. The robot swims in this
direction until the simulation ends.

Results

Four different simulations have been started, one for each designated target
position in order to validate if the algorithm can gasp and carry a object
from each quadrant. The robot’s COM and the object’s position have been
recorded during the simulations. This is visualized in Figure The robot
(blue) approaches the target (green) in each simulation, grasps it, and starts
to approach the destination region (gray), which appears as a blue “sling”

7. Experiments 85

around the target’s initial position. The approach to the destination then has
a curved form, but all four cases reach the destination region. Afterwards,
the robot drops the object and moves away from the destination region. The
object stays within the destination region until the end of simulation (green
dots remain in the gray area).

A temporal progress for each simulation is visualized in Figure
Subfigures (a), (d), (g) and (j) show the approaching robot. Subfigures (b),
(h) and (k) depict a successful grasping procedure. Subfigure (e) illustrates a
failing grasping procedure. The target object is situated outside of grasping
links. In this case, the robot swims away from the target object and restarts
the target capturing procedure. It is successful after one retry. Consequently,
the robot approaches the destination region, where it drops the target and
swims away into the opposite direction. Subfigures (c) and (1) depict the
moment of dropping the target object. Subfigure (i) shows a time instance
in which the robot swims away from the destination region, after it has
dropped the target.

Conclusion

Results show that the experiment successfully combines all individual tasks,
namely approaching the target, grasping the target, approaching the desti-
nation with payload and releasing the target in the destination area. Further-
more, a successful reattempt at capturing the object after an initial failure
is demonstrated.

7. Experiments 86

(J)t=0 k)t=1 | Ht=2

Figure 7.35: Example of an 17 link robot that captures a target at four
different target locations: (1) first quadrant at X = 40, Z = 40 in (a)-(c),
(2) second quadrant at X = —40, Z = 40 in (d)-(f), (3) third quadrant at
X =40, Z = —40in (g)-(i) and (4) fourth quadrant at X = —40, Z = —40in
(j)-(1) and delivers it to the destination region (gray area). Fach is depicted
temporally starting from a position at the beginning of the simulation until
the target is successfully delivered to the destination region. The robot steers
to the target location (marked with a green arrow in (a), (d), (g) and (j))
and starts the grasping algorithm. Afterwards, it steers to the destination
region. The target is released when the destination region has been reached.
A video can be seen at |https://youtu.be/Sd7TRQM8XG_s}

https://youtu.be/Sd7RQM8XG_s

Chapter 8

Conclusion and Future Work

The Experiments in Chapter [7| demonstrate the feasibility of the methodol-
ogy proposed in this thesis, namely combining human engineering with evo-
lutionary computation in order to address complex problems e.g., capturing
and transporting an object in an aquatic environment. Locomotion parame-
ters for the aquatic robot are evolved with a GA. The grasping method and
a steering controller are human designed. The literature review in Chapter
shows that locomotion of biological creatures can be approximated with
sinusoidal wave propagation through a robot’s body. Many publications em-
ployed this approach to create snake-like robots, but none compose smaller
subtasks into a complex task, as demonstrated here.

The robot’s design requires sinusoidal actuation of its links/joints in or-
der to generate forward propulsion. Therefore, the number of links used for
locomotion must at least be greater or equal than three. Three additional
links are necessary to surround a object. Thus, a robot must have at least
six links. The experiments in Chapter [7| demonstrate effective forward lo-
comotion (without a grasped object) using eight links. Forward locomotion
with a grasped object is implemented with a 17-link robot. These numbers
are chosen in order to provide a clearly observable sine wave propagation
through the robot’s body. A deformation of the robot’s shape by its motor-
ized joints is sufficient for the given tasks. More complex shapes could be
achieved by bending the robot’s body. Risi et al. propose a method that
can deform a robot’s links in a manner similar to a biological ribosome by
using compositional pattern producing networks. This might be useful if the
robot should is required to transport much larger objects. Joints might then
have three degrees of freedom, enabling the robot to surround a target in
three dimensions.

In the experiments described here, GAs are used to optimize sinusoidal
locomotion parameters in the conducted experiments. These experiments
show the evolution of forward locomotion parameters. While basic swim-
ming locomotion for snake-like robots is well understood, locomotion for an

87

8. Conclusion and Future Work 88

encumbered robot is not a straightforward extension. Locomotion parame-
ters for a robot grasping an object are difficult to optimize and potentially
unintuitive to human engineers.

While GAs excel in optimization tasks, specifying an appropriate repre-
sentation is difficult in tasks such as grasping and steering. In these cases
it is often faster to develop a basic form through an engineered solution.
The GAs can be then employed to optimize parameters for the engineered
behavior, thereby exploiting the strengths of both engineering and evolution.

Terrestrial undulatory locomotion in robotics is extensively discussed in
the literature. However, only a few publications apply the sinusoidal motion
pattern to aquatic snake-like robots. This thesis shows the effectiveness of
this gait in a computer simulation. The task of capturing and transporting a
payload to a destination area can be applied to real world tasks like rescuing
an arbitrary shaped object floating in the water. A rescue team on a boat
could launch the robot, which would then swim to the object, grasp it, and
deliver it to a destination area.

This thesis might also be the starting point for applications of the snake-
like robot in field of microrobotics (dimensions less than 1 (mm)) or nano-
robotics (dimensions close to 1 (nm)). The scales of nanorobotics and mi-
crorobotics would require an aquatic physics simulation that handles phys-
ical effects of a low Reynolds numbe as discussed by Purcell for the
locomotion of microorganisms. Simulated robots (with external propulsion
designed for in vivo applications) that perform object transportation in such
an environment are investigated in @, and . These papers employ GAs
for the evolving a robot’s controller in order to keep the protein level of an
human organ high enough. In addition Lenaghan et al. emphasizes the
advantage of evolution in biological and therefore nanorobot design. Such
a nanorobot could be used in targeted drug delivery for cancer treatment
, for example. Robots with a snake-like embodiment have already been
built for in vivo applications in the form of a worm that can stretch and
contract its body ﬂgﬂ If this robot would include motorized joints, then it
would be possible to provide active undulatory locomotion. Parameters for
the locomotion could be optimized as described in this thesis.

The Reynolds number quantifies the relation between momentum and viscosity.

Appendix A

Software Versions

This chapter is used to document software versions that have been used to
generate and analyze data on the local machine and the HPC.

A.1 Local Machine

Operating system: Microsoft Windows 7 Professional 64-bit, 6.1.7601
Service Pack 1 Build 7601

Visual Studio: Microsoft Visual Studio Ultimate 2012, Version 11.0.61030.00
Update 4, Microsoft .NET Framework Version 4.5.51209, with following
packages:

Visual Studio 2012 Code Analysis Spell Checker 04940-004-0038003-02121
Microsoft® Visual Studio®2012 Code Analysis Spell Checker

Portions of International CorrectSpell™spelling correction system ©1993 by
Lernout € Hauspie Speech Products N.V. All rights reserved.

The American Heritage®Dictionary of the English Language, Third Edition
Copyright ©1992 Houghton Mifflin Company.

Electronic version licensed from Lernout & Hauspie Speech Products N.V.
All rights reserved.

NuGet Package Manager 2.6.40627.9000

NuGet Package Manager in Visual Studio. For more information about
NuGet, visit hitp://docs.nuget.org/.

Python Tools for Visual Studio 2.1.21008.00

Python Tools for Visual Studio provides IntelliSense, projects, templates,
Interactive windows, and other support for Python developers.

Python Tools for Visual Studio - Profiling Support2.1.21008.00

Profiling support for Python projects.

MATLAB: 7.10.0.499 (R2010a)
Python: Python 2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit

89

A. Software Versions 90

(Intel)] with following modules:
angles==1.1
cffi==0.9.0
Cython==0.22
deap==1.0.1
euclid==0.1
matplotlib==1.4.2
MultiNEAT==0.1
numpy==1.7.1
ode==0.12
parse==1.6.6
progressbar==2.3
pyLexe==0.6.9
pycparser==2.10
PyEmail==0.0.1
pygame==1.9.1
pymunk==4.0.0
pyparsing==2.0.3
python-dateutil==2.4.0
scipy==0.15.1
six==1.9.0
solidpython==0.1.1

Windows 7, Visual Studio 2012 and MATLAB have been used with licenses
from University of Applied Sciences Upper Austria.

A.2 High Performance Computer

Operating system: #1 SMP Debian 3.2.65-1+deb7ul 286_64 GNU/Linux

Python: Python 2.7.3 (default, Mar 13 2014, 11:03:55) [GCC 4.7.2] with
following modules:
apt-rapian-index==0.45
Beautiful Soup==3.2.1
Brlapi==0.5.7

chardet==2.0.1

cups==1.0

Cython==0.22

deap==1.0.2

defer==1.0.6
feedparser==5.1.2
foconst==0.7.2
gnome-app-install==0.4.7-nmul

A. Software Versions

GnuPGlInterface==0.3.2
hitplib2==0.7.4
lazr.restfulclient==0.12.0
lazr.uri==1.0.3
louis==2.4.1
Mako==0.7.0
MarkupSafe==0.15
MultiNEAT==0.1
numpy==1.6.2
oauth==1.0.1
Open-Dynamics-Engine==0.1
pexpect==2.}
PIL==1.1.7
progressbar==2.3
pycurl=="7.19.0
Pyste==0.9.10
python-apt==0.8.8.2
python-debian==0.1.21
python-debianbts==1.11
pyrdg==0.19
reportbug==6.4.4
reportlab==2.5
simplejson==2.5.2
SOAPpy==0.12.0
unattended-upgrades==0.1
uTidylib==0.2
wadllib==1.3.0
zope.interface==3.6.1

References

Literature

1]

Michael Affenzeller, Stephan Winkler, Stefan Wagner, and Andreas
Beham. Genetic Algorithms and Genetic Programming: Modern Con-
cepts and Practical Applications. 1st. Chapman & Hall/CRC, 2009
(cit. on p. [30).

Yuhi Awa and Kobayashi Kobayashi. “Kinematics Simulation by Using
ODE and MATLAB”. In: Proceedings of the Internation Conference on

Instrumentation, Control and Information Technology (SICE). Sept.
2007, pp. 3090-3094 (cit. on p.[33).

Antonio Bicchi and Vijay Kumar. “Robotic Grasping and Contact:
A review”. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). Vol. 1. Apr. 2000, 348-353 vol.1

(cit. on p. [21).

Josh Bongard. “The "What’, '"How’ and the "Why’ of Evolutionary
Robotics”. In: New Horizons in Evolutionary Robotics. Vol. 341. Stud-
ies in Computational Intelligence. Springer Berlin Heidelberg, 2011,
pp. 29-35 (cit. on p. 2).

Rodney Brooks. “A Robot that Walks; Emergent Behaviors from
a Carefully Evolved Network”. In: Neural computation 1.2 (1989),
pp. 253-262 (cit. on p. [2).

Adriano Cavalcanti. “Assembly Automation with Evolutionary
Nanorobots and Sensor-Based Control applied to Nanomedicine”. In:
Proceedings of the 2nd IEEE Conference on Nanotechnology (NANO).
Aug. 2002, pp. 161-164 (cit. on p. .

Adriano Cavalcanti and Robert Freitas. “Nanorobotics Control De-
sign: A Collective Behavior Approach for Medicine”. In: IEEE Trans-
actions on NanoBioscience 4.2 (June 2005), pp. 133-140 (cit. on p. .

Adriano Cavalcanti, Tad Hogg, and Bijan Shirinzadeh. “Nanorobotics
System Simulation in 3D Workspaces with Low Reynolds Num-
ber”. In: Proceedings of the International Symposium on Micro-

92

References 93

[10]

[11]

[12]

[13]

NanoMechatronics and Human Science (MHS). Nov. 2006, pp. 1-6
(cit. on p. [88).

Francesco Cepolina and Rinaldo Michelini. “Robots in Medicine: A
Survey of In-body Nursing Aids”. In: Proceedings of the 35th Interna-
tional Symposium on Robotics International Symposium on Robotics.
2004 (cit. on p. [38).

Lara Cowan and Ian Walker. ““Soft” Continuum Robots: The Inter-
action of Continuous and Discrete Elements”. In: Proceedings of the
Eleventh International Conference on the Simulation and Synthesis
of Living Systems (ALIFE 11). MIT Press, Cambridge, MA, 2008,
pp. 126-133 (cit. on p. [22).

Alessandro Crespi, Konstantinos Karakasiliotis, Andre Guignard, and
Auke Jan Ijspeert. “Salamandra Robotica II: An Amphibious Robot
to Study Salamander-Like Swimming and Walking Gaits”. In: Trans-
actions on Robotics 29.2 (2013), pp. 308-320 (cit. on pp. 18).

Geoff Cumming and Sue Finch. “Inference by Eye: Confidence Inter-
vals and How to Read Pictures of Data”. In: American Psychologist
60.2 (2005), p. 170 (cit. on p.[40).

Kalyanmoy Deb and Ram Bhushan Agrawal. “Simulated Binary
Crossover for Continuous Search Space”. In: Complex systems 9.2

(1995), pp. 115-148 (cit. on p.[30).

Kalyanmoy Deb and Mayank Goyal. “A Combined Genetic Adaptive
Search (GeneAS) for Engineering Design”. In: Computer Science and
Informatics 26 (1996), pp. 30-45 (cit. on p. .

Ralf Der and Georg Martius. “Model Learning”. In: The Playful Ma-
chine. Vol. 15. Cognitive Systems Monographs. Springer Berlin Hei-
delberg, 2012, pp. 183-200 (cit. on p. [34).

Ralf Der and Georg Martius. “The LpzRobots Simulator”. In: The
Playful Machine. Vol. 15. Cognitive Systems Monographs. Springer
Berlin Heidelberg, 2012, pp. 293-308 (cit. on p. .

Jack Dongarra, lian Duff, Danny Sorensen, and Hank van der Vorst.
Numerical Linear Algebra on High-Performance Computers. Software,
Environments, and Tools. Society for Industrial and Applied Mathe-
matics, 1998 (cit. on p.[6).

Evan Drumwright, John Hsu, Nathan Koenig, and Dylan Shell. “Ex-
tending Open Dynamics Engine for Robotics Simulation”. In: Sim-
ulation, Modeling, and Programming for Autonomous Robots. Ed. by
Noriaki Ando, Stephen Balakirsky, Thomas Hemker, Monica Reggiani,
and Oskar von Stryk. Vol. 6472. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 38-50 (cit. on p. .

References 94

[19]

[20]

[21]

22]

23]

[30]

Agoston Eiben and James Smith. Introduction to Evolutionary Com-
puting. SpringerVerlag, 2003 (cit. on p. .

Félix- Antoine Fortin, Francois-Michel De Rainville, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. “DEAP: Evolutionary Al-
gorithms Made Easy”. In: Journal of Machine Learning Research 13

(July 2012), pp. 2171-2175 (cit. on p. [63).

David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. 1st. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989 (cit. on p. .

James Gray. “Studies in Animal Locomotion: I. The Movement of
Fish with Special Reference to the Eel”. In: Journal of Fxperimental
Biology 10.1 (1933), pp. 88-104 (cit. on p. [12).

Shahir Hasanzadeh and Ali Tootoonchi. “Ground adaptive and opti-
mized locomotion of snake robot moving with a novel gait”. In: Au-

tonomous Robots 28.4 (2010), pp. 457470 (cit. on pp. .

Shigeo Hirose. Biologically Inspired Robots: Snake-Like Locomotors
and Manipulators. Oxford University Press, 1993 (cit. on pp.

14,22,

John Henry Holland. Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control and
Artificial Intelligence. Cambridge, MA, USA: MIT Press, 1992 (cit.

on p. [29).
Scott Hooper. “Central Pattern Generators”. In: eLS. John Wiley &
Sons, Ltd, 2001 (cit. on p. .

Brian Hunt, Ronald Lipsman, and Jonathan Rosenberg. A Guide to
MATLAB: For Beginners and Ezperienced Users. 3rd ed. Cambridge
University Press, 2014 (cit. on p. @

Hadi Kalani, Alireza Akbarzadeh, and Javad Safehian. “Traveling
Wave Locomotion of Snake Robot along Symmetrical and Unsym-
metrical body shapes”. In: Proceedings of the 41st International Sym-
posium on Robotics (ISR) 2010 and the 6th German Conference on
Robotics (ROBOTIK). June 2010, pp. 1-7 (cit. on p. [18).

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. “Cross-
ing the Reality Gap in Evolutionary Robotics by Promoting Transfer-
able Controllers”. In: Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation (GECCO). Portland, Oregon,
USA: ACM, 2010, pp. 119-126 (cit. on p. [33).

C.R. Kothari. Research Methodology: Methods and Techniques. New
Age International (P) Limited, 2004 (cit. on p. [4).

References 95

[31]

[33]

[34]

[35]

[37]

Rudolf Kruse, Christian Borgelt, Frank Klawonn, Christian Moewes,
Matthias Steinbrecher, and Pascal Held. Computational Intelligence:
A Methodological Introduction. Springer Publishing Company, Incor-

porated, 2013 (cit. on p. .

Scott Lenaghan, Yongzhong Wang, Ning Xi, Toshio Fukuda, Tzyhjong
Tarn, William Hamel, and Mingjun Zhang. “Grand Challenges in Bio-
engineered Nanorobotics for Cancer Therapy”. In: IEEE Transactions
on Biomedical Engineering 60.3 (2013), pp. 667-673 (cit. on p. .

Jadran Lenarci¢, Tadej Bajd, and Michael Stanisi¢. “Robot Grasp”. In:
Robot Mechanisms. Vol. 60. Intelligent Systems, Control and Automa-
tion: Science and Engineering. Springer Netherlands, 2013, pp. 291—

311 (cit. on p. 22).

Dan Lessin, Don Fussell, and Risto Miikkulainen. “Adapting Morphol-
ogy to Multiple Tasks in Evolved Virtual Creatures”. In: Proceedings
of The Fourteenth International Conference on the Synthesis and Sim-

ulation of Living Systems (ALIFE 14). 2014 (cit. on pp. .

Dan Lessin, Don Fussell, and Risto Miikkulainen. “Open-ended Be-
havioral Complexity for Evolved Virtual Creatures”. In: Proceedings
of the 15th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO). New York, NY, USA: ACM, 2013, pp. 335-342 (cit.
on p. .

Pal Liljeback, Kristin Ytterstad Pettersen, @yvind Stavdahl, and Jan
Tommy Gravdahl. “Analysis and Synthesis of Snake Robot Locomo-
tion”. In: Snake Robots. Advances in Industrial Control. Springer Lon-
don, 2013, pp. 6387 (cit. on pp. .

Pal Liljeback, Kristin Ytterstad Pettersen, @yvind Stavdahl, and Jan
Tommy Gravdahl. “Analysis of Snake Robot Locomotion Based on
Averaging Theory”. In: Snake Robots. Advances in Industrial Control.

Springer London, 2013, pp. 131-151 (cit. on pp. .

Pal Liljebéack, Kristin Ytterstad Pettersen, @yvind Stavdahl, and Jan
Tommy Gravdahl. Snake Robots: Modelling, Mechatronics, and Con-
trol. Springer London, 2012 (cit. on pp. .

Hod Lipson. “Evolutionary Design and Open-Ended Design Automa-
tion”. In: Biomimetics. CRC Press, 2005, pp. 129-155 (cit. on p. .

Hamidreza Marvi and David Hu. “Friction enhancement in concertina
locomotion of snakes”. In: Journal of The Royal Society Interface 9.76
(2012), pp. 3067-3080 (cit. on p. [L1).

Kenneth Mclsaac and James Ostrowski. “A Framework for Steering
Dynamic Robotic Locomotion Systems”. In: The International Journal
of Robotics Research 22.2 (Feb. 2003), pp. 83-97 (cit. on pp.

19).

References 96

[42]

Kenneth Mclsaac and James Ostrowski. “Motion Planning for Anguil-
liform Locomotion”. In: IEEE Transactions on Robotics and Automa-

tion 19.4 (Aug. 2003), pp. 637-652 (cit. on pp. [19).

Wes McKinney. Python for Data Analysis: Data Wrangling with Pan-
das, NumPy, and IPython. 1st ed. O'Reilly Media, 2012 (cit. on p. @

Kenneth Mclsaac and James Ostrowski. “A Geometric Approach to
Anguilliform Locomotion: Modelling of an Underwater Eel Robot”.
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). Vol. 4. May 1999, pp. 2843-2848 (cit. on p. .

Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge,
MA, USA: MIT Press, 1998 (cit. on p. .

Jared Moore. “Exploring Joint-Level Control in Evolutionary
Robotics”. PhD thesis. Michigan State University, 2015 (cit. on p. .

Jared Moore, Anthony Clark, and Philip McKinley. “Evolution of Sta-
tion Keeping As a Response to Flows in an Aquatic Robot”. In: Pro-

ceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation (GECCO). Amsterdam, The Netherlands: ACM, 2013,
pp. 239-246 (cit. on p. [36).

Jared Moore, Anthony Clark, and Philip McKinley. “Evolutionary
Robotics on the Web with WebGL and Javascript”. In: Proceedings
of the Workshop on Artificial Life and the Web 2014, held in con-

junction with the 14th International Conference on the Synthesis and
Simulation of Living Systems. ALIFE 14. New York, New York, 2013

(cit. on pp. .
Stefano Nolfi and Dario Floreano. The Biology, Intelligence, and

Technology of Self-Organizing Machines. Cambridge, MA, USA: MIT
Press, 2000 (cit. on p. [2).

Camilla Pandolfi, Tanja Mimmo, and Renato Vidoni. “Climbing
Plants, a New Concept for Robotic Grasping”. In: Biomimetic and
Biohybrid Systems. Ed. by Nathan Lepora, Anna Mura, Holger Krapp,
Paul Verschure, and Tony Prescott. Vol. 8064. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2013, pp. 418-420 (cit. on
p.[22).

Geeta Patel, Gayatri Patel, Ritesh Patel, Jayvadan Patel, and Mad-

habhai Patel. “Nanorobot: A versatile tool in nanomedicine”. In: Jour-
nal of drug targeting 14.2 (2006), pp. 63—67 (cit. on p. .

E. M. Purcell. “Life at low Reynolds number”. In: American Journal

of Physics 45.1 (1977), pp. 3-11 (cit. on p. .

References 97

[53]

[54]

[55]

[56]

Sebastian Risi, Daniel Cellucci, and Hod Lipson. “Ribosomal Robots:
Evolved Designs Inspired by Protein Folding”. In: Proceedings of the
15th Annual Conference on Genetic and Fvolutionary Computation
(GECCO). Amsterdam, The Netherlands: ACM, 2013, pp. 263-270
(cit. on p. [87).

Matthew Rose, Anthony Clark, Jared Moore, and McKinley Philip.
“Just Keep Swimming: Accounting for Uncertainty in Self-Modeling
Aquatic Robots”. In: Proceedings of the 6th International Workshop

on Evolutionary and Reinforcement Learning for Autonomous Robot
Systems (ELARS). Taormina, Italy, 2013 (cit. on pp. .

Martino Sabia and Cathy Wang. Python Tools for Visual Studio. Com-
munity experience distilled. Packt Publishing, 2014 (cit. on p. @

Masashi Saito, Masakazu Fukaya, and Tetsuya Iwasaki. “Serpentine
Locomotion with Robotic Snakes”. In: Control Systems Magazine,

IEEE 22.1 (Feb. 2002), pp. 64-81 (cit. on pp.
)

Gene I Sher. Handbook of Neuroevolution Through FErlang. Springer
Science & Business Media, 2012 (cit. on p. [31).

Karl Sims. “Evolving Virtual Creatures”. In: Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH). New York, NY, USA: ACM, 1994, pp. 15-22 (cit. on
pp- 2 [37).

Mike Snell and Lars Powers. Microsoft Visual Studio 2012 Unleashed.
2. Sams Publishing, 2012 (cit. on p. @

Kenneth Stanley and Risto Miikkulainen. “Evolving Neural Networks
Through Augmenting Topologies”. In: Evolutionary Computation 10.2
(June 2002), pp. 99-127 (cit. on p. .

Aksel Transeth and Kristin Pettersen. “Developments in Snake Robot
Modeling and Locomotion”. In: Proceedings of the 9th International
Conference on Control, Automation, Robotics and Vision (ICARCV
'06). Dec. 2006, pp. 1-8 (cit. on pp. [12).

Jeffrey Trinkle, Jacob Abel, and Richard Paul. “An Investigation of

Frictionless Enveloping Grasping in the Plane”. In: The International
Journal of Robotics Research 7.3 (June 1988), pp. 33-51 (cit. on p. .

Darrell Whitley. “A Genetic Algorithm Tutorial”. In: Statistics and
Computing 4 (1994), pp. 65-85 (cit. on p. [30).

Mark Wineberg. “Statistical Analysis for Evolutionary Computation:
An Introduction”. In: Proceedings of the 2014 Conference Compan-
ion on Genetic and Evolutionary Computation Companion (GECCO).
Vancouver, BC, Canada: ACM, 2014, pp. 345-380 (cit. on pp. .

References 98

[65]

[66]

Ke Yang, Xu-yang Wang, Tong Ge, and Chao Wu. “Simulation Plat-
form for the Underwater Snake-Like Robot Swimming Based on
Kane’s Dynamic Model and Central Pattern Generator”. In: Jour-
nal of Shanghai Jiaotong University (Science) 19.3 (2014), pp. 294—
301 (cit. on pp. .

Changlong Ye, Shugen Ma, Bin Li, and Yuechao Wang. “Turning and
Side Motion of Snake-like Robot”. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA 2004). Vol. 5.

Apr. 2004, pp. 5075-5080 (cit. on pp. 21).

Online sources

[67]

[68]

Encyclopedia of Mathematics. Inner product. URL: |http:// www .
lencyclopediaofmath.org /index.php?title=Inner_ product&oldid=29549
(visited on 06/27/2015) (cit. on p. [53).

Encyclopedia of Mathematics. Vector algebra. URL: |http:/ / www .
lencyclopediaofmath.org /index. php?title=Vector_algebra&oldid=18802
(visited on 06/27/2015) (cit. on p. [53).

Microsoft. Python Tools for Visual Studio. URL: |http:/ /microsoft |
lgithub.io/PTVS/] (visited on 06/09/2015) (cit. on p. [6).

Microsoft. Visual Studio. URL: |https://msdn.microsoft.com| (visited on
06/09/2015) (cit. on p. [6)).

Elizabeth Pennisi. Sidewinder robots slither like snakes. 2015. URL:
[http: //www.sciencemag.org| (visited on 06/21/2015) (cit. on p.[11)).

Python Software Foundation. About Python. URL: |https://www.python.|

org/about/| (visited on 06/09/2015) (cit. on p.|[6).

Russell Smith. Open Dynamics Engine User Guide. URL: |http://ode.
org/ode-latest-userguide.html| (visited on 06/11/2015) (cit. on pp.

35).

Hillebrand Steve. Fastern garter snake slithers through a muddy area.
2015. URL: |http: / / www . public - domain - image . com| (visited on
06/21/2015) (cit. on p.[L1).

The MathWorks, Inc. MATLAB The Language of Technical Com-
puting. URL: |http://www.mathworks.com /help /matlab/| (visited on
06/09/2015) (cit. on p.[6).

Filip Tkaczyk. Great Basin Gopher Snake using Rectilinear Locomo-
tion. 2015. URL: |http://www.youtube.com| (visited on 06/21/2015)

(cit. on p. [11).

http://www.encyclopediaofmath.org/index.php?title=Inner_product&oldid=29549
http://www.encyclopediaofmath.org/index.php?title=Inner_product&oldid=29549
http://www.encyclopediaofmath.org/index.php?title=Vector_algebra&oldid=18802
http://www.encyclopediaofmath.org/index.php?title=Vector_algebra&oldid=18802
http://microsoft.github.io/PTVS/
http://microsoft.github.io/PTVS/
https://msdn.microsoft.com
http://www.sciencemag.org
https://www.python.org/about/
https://www.python.org/about/
http://ode.org/ode-latest-userguide.html
http://ode.org/ode-latest-userguide.html
http://www.public-domain-image.com
http://www.mathworks.com/help/matlab/
http://www.youtube.com

References 99

[77] Eric Weisstein. “Cross Product.” From MathWorld. URL: http://
I[mathworld . wolfram . com / CrossProduct . html| (visited on 06/27/2015)

(cit. on p. [53).

http://mathworld.wolfram.com/CrossProduct.html
http://mathworld.wolfram.com/CrossProduct.html

	Eidesstattliche Erklärung
	Acknowledgements
	Kurzfassung
	Abstract
	Introduction
	Methodology
	Animat
	Components and Layout
	Locomotion
	Lateral Undulation
	Undulatory Propulsive Force Generation
	Joint Angle Calculation for Generating Propulsion

	Turning Gaits
	Object Grasping Motion

	Shape Visualizer
	Machine Learning Methods
	Evolutionary and Genetic Algorithms
	Artificial Neural Networks

	Simulation Environment
	Open Dynamics Engine
	Aquatic environment
	Visualization

	Experiments
	Evolved Watersnake
	ANN Watersnake
	Turning
	Drifting
	Stopping
	In situ Turning
	Watersnake Evolved with DEAP
	Evolved Watersnake Head
	Grasping
	Evolved Watersnake with Grasped Object
	Capture Target
	Capture and Deliver Target

	Conclusion and Future Work
	Software Versions
	Local Machine
	High Performance Computer

	References
	Literature
	Online sources

