
Chemical Engineering

DEM simulation of granular material in
a four-bladed mixer

Report for the Austrian Marshall Plan Foundation

Author:

Benedict j. s. Benque

Supervisor:

Prof. Johannes Khinast

April 21, 2016



Abstract

The flow of dry and wet granular material in simple geometries cannot be pre-
dicted accurately enough for design or optimization processes in its industrial
applications. To better understand the granular behavior, the effect of various
geometrical, operational and material parameters on the velocity field, mixing
behavior and torque were studied by simulating a bed of monodisperse spherical
beads in a four-bladed cylindrical mixer using DEM simulations.

The cohesive forces at different liquid contents were implemented using a simple
model proposed by Mikami et al. [13], and the computational performance of
the DEM simulation was enhanced by decreasing the shear modulus. In the
observed range, the torque and torque fluctuation were proportional to the fill
height and were highly sensitive to the static friction. The torque decreased
for higher blade clearances due to the lower shear rates below the blades. The
effect of the liquid content on the torque was low, whereas the mixing improved
with higher cohesion.
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1 Introduction

1.1 Motivation

The flow of dry and wet granular material, though relevant for numerous in-
dustrial branches such as the pharmaceutical and food industry, is not yet un-
derstood well enough to reliably predict its behavior. While fluid flows can be
described using sets of first-principle equations with a known initial state and
boundary conditions, no such tools are available for granular systems. Tradi-
tionally, heuristic methods are used for the design, scale-up and problem-solving
of granular processes [15, p. 1ff].

While the behavior of granular flows in simple geometries such as shear flows or
Couette flows has been studied extensively, less data is available on geometries
commonly used in industrial processes. One of the most universally employed
geometry is the cylindrical mixer agitated with an impeller. Although it is
typically used to create homogeneous blends of granular material, it is in some
cases used to improve the heat and mass transfer, e.g. in agitated drying [15,
p. 3ff]. The flow patterns and shear rates as well as the influence of the geometry,
the operating parameters and the particle properties in these agitated mixers
have been studied by Brenda Remy [15].

1.2 Flow regimes

The rheological behavior of granular materials cannot be described as easily as
that of fluid flows, since the correlation between stress and strain rates is not
readily available [15, p. 4ff]. The local stress conditions determine whether a
granular material behaves like an elastic solid or like a fluid. While in its elastic-
solid state, it can support high loads. Since much of the load is distributed
between the frictional bonds between the particles, the capacity is limited by
these bonds [7].

Once enough bonds have been overcome, the granular material starts to flow
in blocks consisting of many particles. These move along shear bands which
approximately follow the stress characteristics of the material [7]. These shear
bands are, however, not infinitesimally thin planes but rather zones with a depth
in the order of ten particles. In these bands, the particles form force chains, i.e.
structures that support the bulk of the stress [2]. As long as the movement is
slow enough, the particles will stay in frictional contact with their neighbors.
This regime is called quasistatic [7]. In this state, the bulk material can be
considered a continuous plastic solid [2].

If, on the other hand, the speed is increased, the material will reach a state in
which the particles move freely and without staying in contact with their initial
neighbors. This is commonly called the rapid-flow regime. In this regime,
the stress τij correlates to the square of the shear rate γ, as demonstrated in
equation 1. ρP is the particle density, R the particle radius, and fij is a tensor-
valued function of the solid fraction v [7].

τij = ρPR
2fijγ

2 (1)
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The motion of a single particle in this regime can be described as the sum of
the mean bulk velocity vector and a seemingly random velocity component. In
analogy to the random thermal motion on a molecular level, the mean-square
value of the random velocities is usually called granular temperature. Like
the molecular temperature, the granular temperature generates pressure and
governs the internal transport rates of mass, momentum, and energy. There
are, however, fundamental differences between the molecular and the granular
temperature. The granular temperature is lost almost instantaneously once
no more energy is supplied to the system to make up for the energy lost in
dissipation [7].

In an attempt to bridge the gap between the quasistatic and the rapid-flow
regimes, Campbell [2, p. 219ff] proposed a model that considered the elastic
properties of the material. He then divided the whole granular flow field into
an elastic-quasistatic regime and an inertial regime. The former is governed
by elastic forces while the latter is controlled mainly by inertial forces. In the
transition regime (elastic-inertial), the forces are of the same order of magnitude.
[2, p. 219ff]

In their study of the intermediate flow regime, Tardos et al. [24] suggested a
dimensionless shear rate γ∗ as shown in equation 2, wherein dP is the particle
size and g is the gravitational acceleration. The dimensionless shear rate was
then used to describe different regimes of powder flow.

γ∗ = γ

√
dp
g

(2)

Their analysis of experimental data led to the conclusion that the torque and
stress of a powder in an unconfined flow were independent of the shear rate.
For confined Couette flows, however, he found that the dimensionless shear
stress was dependent on γ∗ n, wherein n appeared to be related to the particle
concentration C. At very low shear rates - i.e., in the quasistatic regime - the
index n was 0, effectively rendering the system independent of the shear rate.

At higher dimensionless shear rates (intermediate regime), Tardos et al. con-
sidered the correlation to be τ ∝ (γ∗)n with n starting below one and rising to
one as the shear rate increased. At very high shear rates (γ∗ > 3), the particle
bed was in the rapid granular flow regime and followed τ ∝ (γ∗)2 .

The experimental data provided by Remy [15, p. 146ff] for bladed mixers showed
the same shear-independent behavior for dimensionless shear rates γ∗ < 0.1. It
can be explained by the predominant mechanism for momentum transfer in the
quasistatic regime, which is the formation of force chains. At low rotational
speeds, the average number of these chains does not change for different speeds.

At higher shear rates (γ∗ > 0.1), the shear stress scaled linearly with the shear
rate [15, p. 146ff]. Extrapolating the stress to a shear rate of γ∗ = 0 led to
an offset of the stress, similar to the relation used to describe Bingham fluids:
τσr = τy + κγo, with τy being the yield stress and κ the apparent viscosity [15,
p. 147].

For the quasistatic regime, Coulomb’s law of friction can be used to describe the
material behavior. In this equation, τ is the shear stress, σ = 1/3(τθθ+τrr+τyy)
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is the normal stress (for an estimation, the hydrostatic pressure can be used),
tanφ is the bulk friction coefficient and Cf is a cohesiveness parameter [19].

τ = σ tanφ+ Cf (3)

1.3 Cohesion

1.3.1 Regimes

Cohesive forces are attractive forces between the particles. Their origin may be
van der Waals-forces, electrostatic charges or capillary forces. For uncharged
wet particles that exceed diameters of several hundred micrometers, the capillary
forces caused by liquid bridges govern the cohesive behavior [1].

Different regimes can be described as the liquid content increases [14]:

Pendular: At low liquid contents, liquid bridges form between the particles.
This results in capillary attraction. For spherical particles, the upper limit
of this regime is a liquid volume fraction of 23 % [26].

Funicular: Some of the pores are completely filled with liquid while liquid
bridges remain at some of the contact points. Both contribute to the
capillary forces.

Capillary: All pores are completely filled with liquid. The liquid surface still
forms menisci and the liquid pressure is lower than the ambient pressure.
Capillary attraction exists.

Slurry/droplet: The particles are surrounded by liquid, the liquid surface
is convex. The liquid pressure is equal to or higher than the ambient
pressure. No capillary attraction exists.

Only the pendular regime was studied in this work.

1.3.2 Pressure and force in a liquid bridge

For the pendular case, the pressure difference from the ambient pressure Pa to
the pressure in the liquid bridge Pl between two identical smooth spheres can be
described by the Young-Laplace-equation (equation 4), where γ is the surface
tension. This case is depicted in figure 1. The curvature term in parentheses
in the Young-Laplace equation is positive when the meniscus is drawn back
into the liquid, resulting in a liquid pressure that is lower than the ambient
pressure [14].

∆P = Pa − Pl = γ

(
1

r1
+

1

r2

)
(4)

As gravitation is a dominant force in many systems, the capillary force is often
compared to gravity by calculating the capillary length a (see equation 5). For
length scales much smaller than a, the capillary forces dominate the system.
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Figure 1: Liquid bridge between two spheres

Length scales significantly larger than a occur in systems that are governed by
gravitation [14].

a =

√
2γ

ρlg
(5)

The attractive force between the two particles is the sum of the surface tension
and the pressure difference, as shown in equation 6, where ∆P is given by
equation 4.

Fbridge = 2πr2γ + πr22∆P (6)

1.3.3 Bond number

The Bond number gives the ratio of the maximum cohesive force FC to the
gravitational force FG (see equation 7). It can be described as a measure of the
cohesiveness of the system [14].

Bo =

∣∣∣∣FCFG
∣∣∣∣ =

2πRγ

(4/3)πR3ρg
=

3γ

2R2ρg
(7)

Li et al. [9] formulated a more extensive granular Bond number that includes the
wetting angle θ. The indexm stands for the smaller particles in non-homogenous
particle beds.

Bo =

∣∣∣∣FCFG
∣∣∣∣ =

2πR∗γ [cos(θ)]m
(4/3)πg[R3ρ]m

=
3γR∗ [cos(θ)]m

2g[R3ρ]m
(8)

At low shear rates, the Bond number indicates whether cohesion plays a signif-
icant role in the system [15].
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1.3.4 Cohesion number

At high shear rates, the ratio of the maximum cohesive force to the collision
force becomes the relevant parameter. At values higher than one, cohesive forces
play an important role in the system [15].
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1.4 Rigid bed theory

The rigid bed theory describes the movement of the cylindrical particle bed
in a tank under the assumption that it moves like a solid body at the blade
rotational speed ω. The speed of a particle at the distance r from the center is

v = rω (9)

Taking into consideration the shaft diameter leads to the following equation for
the average speed of a particle in the bed:

|v̄| = 1

(R2
tank −R2

shaft)π

∫ Rtank

Rshaft

(2πr)(ωr)dr

|v̄| = 2

3
ω

(
R3

tank −R3
shaft

R2
tank −R2

shaft

)
(10)
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2 Methods

2.1 Cohesion model

The DEM simulation needed an explicit calculation of the force Fbridge from
the particle radius R, the liquid volume V , the surface tension γ, the contact
angle β and the separation distance h. Also, the rupture distance hrupture and
the viscous resistance Fviscous needed to be calculated [14]. The relation used
in the simulations was proposed by Mikami et al. [13].

It calculated the liquid bridge force between particles from a regression expres-
sion based on numerical simulations of the Young-Laplace equation (equation 4).

A normalized capillary force F̂ c was defined as

F̂ c =
F c

2πRγ
(11)

where γ is the surface tension. The expression for the calculation of F̂ c was

F̂ c = exp(Aĥ+B) + C (12)

The parameters A, B and C for particle-particle interactions were calculated as
follows:

A = −1.1V̂ −0.53 (13)

B = (−0.34 ln(V̂ − 0.96)θ2 − 0.019 ln V̂ + 0.48 (14)

C = 0.0042 ln V̂ + 0.0078 (15)

For particle-wall-interactions, the following equations were used [22]:

A = −1.9V̂ −0.51 (16)

B = (−0.016 ln(V̂ − 0.976)θ2 − 0.012 ln V̂ + 1.2 (17)

C = 0.013 ln V̂ + 0.18 (18)

θ is the contact angle of the liquid bridge. The dimensionless liquid bridge
volume is

V̂ =
V

R3
(19)

and the dimensionless separation distance between the particle surfaces is

ĥ =
h

R
(20)

The distance at which the pendular bridge broke was determined according to
an equation by Lian et. al. [10].

ĥc = R∗(0.62θ + 0.99)V̂ 0.34 (21)
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The influence of the viscosity can be described by the Capillary number [18]:

Ca =
ηU

γ
(22)

η is the dynamic viscosity of the liquid and U is the characteristic velocity. At
the highest rotational speed used in the simulations (200 rpm), the tip speed was
0.94 m s−1. For a granular system with water at 20 ◦C, the resulting capillary
number is 0.013. Since the capillary forces appeared to be very small compared
to the capillary forces, they were neglected in the simulations.

Furthermore, the cohesive forces were assumed to only apply as long as the
particles were in physical contact. This simplification avoided the high com-
putational demands of considering forces between particles that were up to the
rupture distance apart from each other.

2.2 Discrete element method

The discrete element method (DEM) was used to describe the particulate system
by integrating Newton’s equations of motion beginning with the initial state. A
sufficiently small time step was chosen for the simulation so that particles could
be assumed to interact only with their neighbors. Therefore, only pairwise
interactions of neighboring particles were be taken into account to calculate
each particle’s position, velocity, and the resulting forces. The particle motion
was then described by equations 23 and 24 [17].

mi
dvi
dt

=
∑
j

(FNij + FTij ) +mig (23)

Ii
dωi
dt

=
∑
j

(Ri × FTij ) + τrij (24)

These equations use the mass mi, the radius Ri, the moment of inertia Ii, the
velocity vi, the angular velocity ωi and the gravitational acceleration g. The
contact force was accounted for by equation 25, based on the work done by Tsuji
et al. [25] [17].

FN = −k̃nδ
3/2
n − γ̃nδ̇nδ

1/4
n (25)

In this equation, k̃n is the normal stiffness coefficient, δn is the normal displace-
ment and γ̃n is the normal damping coefficient. The normal stiffness coefficient
was calculated as shown in equation 26.

k̃n =
E
√

2R∗

3(1− ν2)
(26)

with the particle’s Young modulus E, which describes the response to uniaxial
stress. It was calculated from the shear modulus G and the Poisson ratio ν as
shown in equation 27 [11]. The effective radius R∗ of the contacting particles
was obtained from equation 28.
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E = 2G(1 + ν) (27)

R∗ =
RiRj
Ri +Rj

(28)

Equation 29 yields the normal damping coefficient under the assumption of a
constant coefficient of reconstitution e [20].

γ̃n = − ln e√
ln2 e+ π2

(29)

The other force needed to evaluate equations 23 and 24 is the tangential force,
which was calculated from equation 30.

FT = −k̃tδt − γ̃tδ̇tδ
1/4 (30)

k̃t is the tangential stiffness coefficient, δt is the tangential displacement, and γ̃t
is the tangential damping coefficient which was assumed to be equal to the nor-
mal damping coefficient. k̃t was calculated using the shear modulus G according
to the work done my Mindlin [5] as shown in equation 31.

k̃t =
2
√

2R∗G

2− ν
δ
1/2
n (31)

The tangential displacement was obtained from equation 32.

δt =

∫
vtreldt (32)

The relative tangential velocity of the colliding particles resulted from the fol-
lowing equation.

vrel = (vi − vj) · s+ ωiRi + ωjRj (33)

s denotes the tangential decomposition of the unit vector connecting the center
of the particle.

The tangential force is limited by the Coulomb condition:

FT < µs|FN | (34)

In case the tangential force obtained from equation 30 was higher than the
Coulomb limit, the tangential displacement was set to δt = FT

/kt [17].
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2.2.1 Rayleigh Time step

The Rayleigh time step is the time needed by a shear wave to propagate through
a particle, and is, therefore, the maximum time step for a quasistatic DEM
simulation. Equation 35 shows how the Rayleigh time step was evaluated by
EDEM. R is the radius of the biggest particle, ρ is the particle density, G stands
for the shear modulus and ν is the Poisson’s ratio [21].

TR =
πR
√
ρ/G

0.1631ν + 0.8766
(35)

For systems that are not in the quasistatic regime, time steps of around 0.2TR
(at coordination numbers ≥ 4) to 0.4TR (at low coordination numbers) are
recommended by the EDEM documentation [21].

As TR scales with 1/
√
G, the time step increases for lower values of the shear

modulus [21].

2.3 Stiffness modification for reduced computational time

The Hertz-Mindlin model implemented in EDEM calculated the normal contact
forces Fn according to equation 36. kHM is the normal stiffness, δn the normal
overlap, cHM the normal damping coefficient (a function of the coefficient of
restitution e), vn is the normal relative velocity and ~n is the unit vector from
the center of the colliding particle [11].

~Fn = ~Fn,k + ~Fn,d =
(
kHMδ

3/2
n + cHM~vnδ

1/4
n ~n

)
~n (36)

The stiffness kHM was calculated as follows:

kHM =
4

3
E∗
√
R∗ (37)

The effective radius R∗ of the particles was calculated as shown in equation 28.
The effective Young’s modulus E∗ follows equation 38, wherein ν is the Poisson’s
ratio.

1

E∗
=

1− ν2i
Ei

+
1− ν2j
Ej

(38)

A reduction of the shear modulus G leads to a reduction of the Young’s modu-
lus, as can be seen in equation 27, and of the stiffness kHM. The lower stiffness
then allows for larger time steps in the simulation, thus reducing the computa-
tional time. No general recommendation can be given for the value of G [11].
Instead, the momentum of the colliding particles has to be taken into account.
Therefore, a comparison of the normal overlap instead of the shear modulus was
suggested [11].

A study conducted by Malone and Xu [12] suggested that even for the normal
overlap, no general limit can be stated. The amount of overlap that can be
permitted without significantly changing the behavior depends on the system
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and on which variables are of interest. Typical values for reported acceptable
overlaps lie in the range of 0.1 % to 1 %. In the case of cohesive systems, low
values for the stiffness lead to defluidization, whereas a high contact stiffness
results in smooth fluidisation [12].

For a system similar to the geometry 1 described in appendix A.1, Brenda
Remy [17] allowed the maximum normal overlap to reach 4 %, with an average
normal overlap of < 1%.

2.3.1 EDEM simulation of two-particle collisions

The normal overlap was observed in simple EDEM simulations of one particle
moving at speed vcol colliding with a stationary particle.

The effect of the time step on the resolution (i.e. the amount of time steps per
collision) was studied at different values for the shear modulus and at various
collision velocities. The collision speeds were 0.12 m s−1 to 0.96 m s−1. Since no
fully elastic collisions were allowed to occur in the stirred tank simulations, this
assumption was an overestimation.

The reference speed for particles in the stirred tank simulations was the impeller
tip speed vtip. In the case of the geometry 1, the investigated collision speed
range of 0.12 m s−1 to 0.96 m s−1 correlated to an rpm range of 12.5 rpm to
100 rpm. To achieve a good resolution of the collisions, a minimum amount
of 20 time steps per collision was assumed to be necessary. A low resolution
(few time steps per collision) led to high overlaps and, subsequently, high normal
forces and accelerations. These caused exit speeds that were significantly higher
than the ones suggested by the coefficient of restitution, and in some cases even
surpassed the collision speed.

The amount of time steps for each collision was approximately inversely pro-
portional to the relative time step under the studied conditions (see figure 2).

Therefore, the necessary relative time step to fulfill the resolution criterion could
easily be estimated from the two-particle simulations at different speeds and
shear moduli. It is shown in figure 3, which is valid for particle diameters of
2 mm and 3 mm. For a simulation that needed to be conducted at a given shear
modulus and rotational speed, the tip speed was calculated from the geometry.
The maximum allowed percentage of the Rayleigh time step that still resulted in
a resolution of at least 20 time steps per collision could be read at the intersection
of the shear modulus with the line for the collision speed.

2.3.2 Choosing the shear modulus from the settling behavior

EDEM simulations were conducted to determine the lower limit of the shear
modulus to still be able to depict the system without significant deviation from
the expected height of the particle bed. A given amount of particles was allowed
to settle without any blade rotation in the geometry 1. The steady-state values
for the overlap as well as the actual filling height were observed at different
values for the shear modulus G. As shown in figure 4, the bed height is low at
low shear moduli and levels off at a shear modulus of the order of magnitude
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Figure 2: Number of time steps during two-particle collision versus relative time
step

Figure 3: Necessary relative time step for the two-particle collision
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Figure 4: Height of the particle bed in the geometry 1 for different shear moduli

1× 106 Pa. This suggests that any shear modulus above that value is able to
depict the system without a significant error in the bed height.

The torque of the system at different shear moduli in the range of 2.6× 104 Pa
to 8.6× 108 Pa was also observed at a rotational speed of 50 rpm and a friction
of µs = 0.1. The torque increased with higher shear moduli until leveling off at
a shear modulus of roughly 1× 107 Pa.

2.3.3 Effect of the shear modulus on the velocity profile

In the geometry 1 at a blade clearance of 5 mm and a fill level that just covered
the blade, 2 mm particles were stirred at 50 rpm. The static friction was set
to µs = 0.1. The velocity profile was studied for different shear moduli in the
range of 2.6× 104 Pa to 2.6× 108 Pa. The results are shown in figure 5.

It was observed that lower shear moduli led to the particle bed behaving more
like a rigid bed. This could be traced to the longer collision time and lower
collision frequency for softer particles. They tended to stay in contact longer
during a collision, whereas stiffer particles had more collisions per time interval
due to the small overlaps and the resulting short contact times.

2.3.4 Effect of the stiffness on the collision velocity and number of
collisions

A dimensionless normal collision speed was defined as vn/ωRblade, where ω was
the rotational speed and Rblade the blade radius.
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Figure 5: Velocity profile in the geometry 1 mixer at 50 rpm for different shear
moduli G (µs = 0.1)

The distribution sum of the dimensionless normal collision speed was studied
for simulations of glass beads at a fill level that just covered the blades in the
geometry 1 at a rotational speed of 50 rpm and with a static friction of µs = 0.1.
The results for different shear moduli G can be seen in figure 6. At high shear
moduli, the distribution moves towards higher collision speeds.

The number of collisions rises as the particles become stiffer. This might be
traced back to the lower overlap and the resulting short contact times for stiff
particles. Softer particles, on the other hand, tend to remain in contact for a
long time, resulting in a lower number of contacts in the same time span.

2.3.5 Monitoring of the normal overlap

For all simulations within the scope of this work, the maximum and the average
value for the normal overlap were documented. The maximum overlap was
sensitive to the simulated time span while the average normal overlap provided
a more robust tool for the comparison of simulations.

The average overlap δavg showed a linear dependence of the simulation time step
tsim. The correlation to the shear modulus G and the impeller speed ω could
be described by a power law:

δavg = a · f(G) + b ·Gc · ω · tsim (39)

The shear modulus was, however, set to the same value (G = 8.6× 106 Pa for
most simulations and equation 39 was simplified to:
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Figure 6: Normal collision speed distribution sum at different shear moduli

δavg = a′ + b′ · ω · tsim (40)

For simulations in both geometries, the sensitivity of the overlap to the fill height
of the tank was analyzed. In the quasistatic regime, the average normal overlap
rose almost linearly with the fill height in the observed H/D (fill height to tank
diameter) range of 0.32 to 1.30 (see figure 7). In the intermediate regime, the
sensitivity of the overlap to the bed height was very low for H/D-ratios of up
to roughly 0.7 and increased sharply for higher fill heights (see figure 8). This
suggests that in this regime, the average overlap is dominated by shear forces
for low fill heights and by the weight of the particle bed at high levels.

2.4 Bulk density and friction

The bulk density was calculated for different height elements from the number
N of particles in that height element and the volume Vhe of each height element
under consideration of the volume taken up by the shaft and blades:

ρbulk =
Nd3p(π/6)ρp

Vhe
(41)

The bulk friction (see section 1.2) was calculated for simulations in the qua-
sistatic regime by determining the normal stresses σ and the shear stresses τ
in different areas of the particle bed. Time-averaged values during steady-state
conditions in the horizontal slice at the tank floor at different fill heights were
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Figure 7: Average normal overlap at different fill heights (geometry 2, 10 rpm,
dp = 3 mm)

Figure 8: Average normal overlap at different fill heights (geometry 2, 200 rpm,
dp = 3 mm)
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used for the linear regression to obtain the bulk friction coefficient tanφ and
the cohesiveness parameter Cf .

2.5 Steady state

To judge whether steady state was reached, the kinetic energy of the particle
bed was observed:

Ekin =
∑

mi ∗ v2i (42)

The system was assumed to be at steady state once the long-term average of
the kinetic energy was reached.

2.6 Mixing

To evaluate the mixing in the simulations, the monodisperse particle bed was
studied visually. Before the onset of the impeller motion, the particle bed was
horizontally divided into two same-sized fractions of particles of different colors.
The mixing quality at any given time step could easily be estimated visually. In
addition, the relative standard deviation (RSD) of the entire particle bed was
determined [17]. To that avail, the simulation domain was divided into a sample
grid.

RSD =
σconc
Mconc

(43)

σconc was the standard deviation of the particle concentration of one of the
particle fractions over all the sample cells and Mconc was the overall mean
particle concentration, which amounted to Mconc = 0.5 for each of the particle
fractions. The RSD of the system is sensitive to the size of the sampling grid [3,
p. 447], and typically the size of the sampling grid in pharmaceutical processes
is chosen to be the size of the product (e.g. the unit dose) [4, p. 110f]. Brenda
Remy [15, p. 43] cited a grid size of about 5 particle diameters for a similar
geometry. Within the scope of this work, a cubic grid with a grid size of 10 mm
was chosen.

2.7 Power spectrum

The power spectrum of the shear stress data from the simulations was analyzed.
The power spectrum Sxx,j of the Signal x at the frequency j can be calculated
as

Sxx,j = 2
∆2

T
XjX

∗
j (44)

In this equation, ∆ denotes the sampling interval and T is the duration of
the signal recording. Xj is the Fourier transform of x, and X∗j is its complex
conjugate. [8]
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The Nyquist frequency, which is half the sampling frequency of the simulation
(see equation 45), is the highest frequency that can be observed at a given
sampling rate. [8]

fNyquist =
1

2∆
(45)

All simulations were set to a sampling rate of 0.1 s−1, and the resulting Nyquist
frequency was fNyquist = 5 s−1.
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Figure 9: Blade design (a) Figure 10: Blade design (b)

3 Effect of the geometry

3.1 Blade shape

Simulations were run at blade clearances reaching from 0.1 mm to 40 mm. For
blade clearances significantly higher than the particle diameter, a simple blade
design was employed (see blade design a in figure 9). At blade clearances similar
to or lower than the particle diameter, this blade design led to very high contact
forces between the lower front edge of the blade and the particles. As a result,
the overlap became very high and particles started to pass through the vessel
wall and leave the simulation.

To avoid these high contact forces, a different blade design was introduced (see
design b in figure 10). At low clearances, the blades swept particles from the
floor rather than pushing them down. The shape, as well as the rounded edges,
led to more stable simulations.

3.2 Wall clearance

A wall clearance similar in value to the particle diameter led to very high overlaps
between the blades and the particles and subsequently to high contact forces
and particle velocities. To avoid this effect, the ratio of the wall clearance to
the particle diameter was either kept higher than two (e.g. 2.5 in the geometry
1) or significantly below one (e.g. 0.67 in the geometry 2).

3.3 Blade clearance

The influence of the distance of the blades from the bottom was studied. The
friction µs of the particles was varied from 0.1 to 1.

At a bottom clearance of 5 mm and a fill level of 30 mm, the whole particle bed
was moved by the impeller. This motion called the particle bed to rise to a
height of up to 45 mm as the rotational speed was set to up to 200 rpm.

At a bottom clearance of 40 mm and a fill level of 60 mm, a stagnant region
formed at the bottom of the tank. In the quasistatic regime, the stagnant region
measured 35 mm of the particle bed regardless of the friction (see figure 11).
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In the intermediate regime (200 rpm), the fill level rose to 80 mm. The high-
friction simulations in that regime still showed a clear distinction between the
moved part of the bed and the stagnant region (see figure 12). The simulations
with a friction of µs = 0.1 on the other hand showed a wider transition zone
from the moved bed to the stagnant region (see figure 13).
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(a) At 0 revolutions (b) At 5 revolutions

Figure 11: Side view of the reactor (40 mm blade clearance, 10 rpm, µs = 0.1)

(a) At 0 revolutions (b) At 5 revolutions

Figure 12: Side view of the reactor (40 mm blade clearance, 200 rpm, µs = 1.0)

(a) At 0 revolutions (b) At 5 revolutions

Figure 13: Side view of the reactor (40 mm blade clearance, 200 rpm, µs = 0.1)
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Figure 14: Torque vs dimensionless shear rate at different blade clearances
(µs = 1.0)

5 mm blade clearance 40 mm blade clearance
obtuse 357 Pa 766 Pa
acute 795 Pa 1126 Pa

Table 1: Average pressure at tank bottom, geometry 1 (µs = 1.0, 200 rpm)

Figure 14 shows the torque over the dimensionless shear rate γ∗ for different
blade clearances at a static friction of µs = 1.0. For both blade orientations -
acute and obtuse - the torque was distinctly lower for simulations with a blade
clearance of 40 mm than for those with a clearance of 5 mm. The low blade
clearance led to a high shear rate in the thin particle layer below the blade, thus
resulting in a high torque on the impeller.

3.4 Blade orientation

As can be seen in figure 14, the torque exerted on the cylinder was approximately
twice as high in the case of the acute blade orientation than with the obtuse
orientation. This correlated with the pressure exerted on the tank bottom by
the blades (see table 1). It changed only little with the rotational speed but
was dependent on the blade clearance and the blade orientation. The pressure
more than doubled in the geometry with a blade clearance of 5 mm when the
blade orientation was switched from obtuse to acute, while in the 40 mm case
it only increased by 50 %. It is assumed that the larger blade clearance in the
latter case led to more load being taken by the walls instead of the bottom of
the tank.
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Figure 15: Torque vs fill height at 10 rpm (blade clearance 0.1 mm, geometry 2)

3.5 Fill level

The geometry 2 simulations were studied at different fill levels (number of par-
ticles ranging from 6400 to 32 000, fill level 30 mm to 122 mm) with and without
cohesive forces (i.e., with and without liquid). The resulting torque values for
the dry simulations can be seen in figure 17.

Figure 15 shows the increase in impeller torque as the fill level increases in the
quasistatic regime (γ∗ = .018) for the geometry 2. Figure 16 shows the same
relation in the intermediate regime (γ∗ = 0.366).

The increase in pressure at higher fill heights resulted in higher torque fluctua-
tions. Figure 19 shows the torque fluctuation T ′ = T−T̄ for different fill heights
at 10 rpm. The increase in the standard deviation of T ′ with the fill height is
shown in figure 20.
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Figure 16: Torque vs fill height at 200 rpm (Blade clearance 0.1 mm, geometry
2)

Figure 17: Torque vs γ∗ at different fill levels in the geometry 2 (µs = 0.5,
Bo = 0)
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Figure 18: Torque vs γ∗ at different fill heights (Blade clearance 0.1 mm, geom-
etry 1, Bo = 0)

Figure 19: Torque fluctuation at different fill heights (geometry 2, 10 rpm,
µs = 0.5, geometry 2, Bo = 0)
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Figure 20: Standard deviation of (T − T̄ ) vs fill height (geometry 2, 10 rpm,
µs = 0.5, geometry 2, Bo = 0)
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4 Effect of the static friction

The static friction coefficient µs was varied between 0.1, 0.5 and 1 and was
always set to identical values for the particle-particle and the particle-wall in-
teraction.

A study [16] used shear cell analyses to experimentally determine the friction
of glass beads. For the uncoated beads used in the experiments in that study,
a friction of µs = 0.32 was obtained. It was further shown that a static friction
of µs = 0.5 in the DEM simulation of a similar geometry provided comparable
results. A different study [6] reported the friction of spherical glass beads at
diameters of 1 µm to 800 µm in a shear cell to be in the range of 0.44 to 0.47.

Another study [23] showed that sliding frictions of both 0.3 and 0.5 yielded good
results for the simulations of a bladed vertical tank mixer when compared to
experiments. Increasing the friction from µs = 0.2 to 0.3 had a significant effect
on the simulation while the change of the velocity profile was less pronounced
between values of 0.3 and 0.5.

Figure 21 shows the velocity profile of the particles in the geometry 1 at 50 rpm
and 5 mm blade clearance. The simulation with a high static friction coefficient
(µs = 1.0) yielded a velocity distribution profile that was shifted towards slower
speeds compared to the one predicted by the rigid bed theory. A reduction of
the coefficient of friction by one order of magnitude led to a velocity profile
that was close to that of the ideal rigid bed. The same effect was observed by
Stewart [23]. At low frictions, the particles tended to move as one block, while
at higher frictions they were significantly slowed down by the walls and the
tank bottom. This observation held true for the whole simulated rpm range of
10 rpm to 200 rpm. This led to faster mixing at higher frictions (see figure 22).

The impeller torque scaled with µs (see figure 23). It is noteworthy that for
very low rotational speeds (down to 1 rpm), the torque started to rise with
decreasing speed. This behavior is indicative of the stick-slip regime and was
especially pronounced in high friction-simulations.
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Figure 21: Velocity profiles at different values for the static friction µs in the
geometry 1 at 50 rpm and with 5 mm blade clearance

Figure 22: RSD over revolutions for geometry 1 simulations (50 rpm, obtuse
blade orientation, G = 8.6× 106 Pa) at different frictions µs
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Figure 23: Torque vs γ∗ for the geometry 1 at 50 rpm and 5 mm blade clearance
at different frictions
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5 Wet simulations

The dimensionless liquid bridge volume V̂ , the surface tension γ of the liquid
and the liquid wetting angle θ were set in the preferences file for the cohesion
model. While the liquid bridge volume V̂ = 0.04 and the wetting angle θ = 0
were left unchanged, the surface tension γ was varied to change the cohesiveness
of the system.

The Bond number of the system was then evaluated using the relation suggested
by Li et al. [9] (see section 1.3.3).

Simulations were run at Bo = 0 (dry system) Bo = 2.25, and Bo = 5.07. The
coefficient of friction was left at µs = 0.5 for all the simulations.

Figures 24, 25 and 26 show the torque for the dry and wet simulations at
different fill heights. The torque curves were very similar for the dry and wet
simulations. Simulations at low fill levels had distinct quasistatic regimes as
predicted by Tardos (see section 1.2). At h/D ratios higher than roughly 0.5,
the quasistatic regime was not observed in the simulated range anymore.

The mixing is shown in figure 27 and 28. It can be noted that the best mixing
occurred in the simulation with the highest Bond number. Furthermore, the
particle bed lagged behind the blades in all the simulations, i.e. the bed did not
rotate as fast as the blades.

In the range of the blades, the power spectrum of the shear stress showed a
dominant frequency of around four times the rotational speed of the impeller,
independent of the fill height and the Bond number. This frequency is equiv-
alent to the frequency of blade passes of the four-bladed impeller. The second
dominant frequency was at eight times the impeller frequency, i.e. twice the
blade pass frequency.
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Figure 24: Torque vs γ∗ at different fill heights (geometry 2, Bo = 0)

Figure 25: Torque vs γ∗ at different fill heights (geometry 2, Bo = 2.25)
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Figure 26: Torque vs γ∗ at different fill heights (geometry 2, Bo = 5.07)

(a) 0 rev (b) 1 rev, Bo = 0

(c) 1 rev, Bo = 2.25 (d) 1 rev, Bo = 5.07

Figure 27: Top view of the reactor (geometry 2, 10 rpm)
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(a) 0 rev (b) 1 rev, Bo = 0

(c) 1 rev, Bo = 2.25 (d) 1 rev, Bo = 5.07

Figure 28: Side view of the reactor (geometry 2, 10 rpm)
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A Appendix

A.1 Geometry

The dimensions of the simulated mixers are listed in table 2 and table 3.

A.2 Simulation parameters

Table 4 shows the input parameters for the particles in the simulations.

Dimension Value
Tank diameter D 100 mm
Shaft diameter Dshaft 25 mm
Blade diameter Dblade 90 mm
Height of blades hblade 19.2 mm
Blade clearance from bottom 0.1 mm to 40 mm
Particle diameter dp 2 mm

Dimensionless geometry number Value
Tank diameter/particle size 50
Blade diameter/tank diameter 0.9
Blade clearance/particle diameter 2.5 to 20
Wall clearance/particle diameter 2.5

Table 2: Dimensions of the geometry 1
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Dimension Value
Tank diameter D 94 mm
Shaft diameter Dshaft 25 mm
Blade diameter Dblade 90 mm
Height of blades hblade 19.2 mm
Blade clearance from bottom 0.1 mm to 1 mm
Particle diameter dp 3 mm

Dimensionless geometry number Value
Tank diameter/particle size 31.3
Blade diameter/tank diameter 0.9
Blade clearance/particle diameter 0.033 to 0.333
Wall clearance/particle diameter 0.667

Table 3: Dimensions of the geometry 2

Variable Symbol Value
Rolling friction coefficient µr 0.005
Static friction coefficient µs 0.1 to 0.5
Particle density ρ 2.2 g l−1

Shear modulus G 2.6× 106 Pa to 2.6× 1010 Pa
Coefficient of restitution e 0.6
Particle diameter d 2 mm and 3 mm
Poisson’s ratio ν 0.25

Table 4: Simulation parameters
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