
Memory-efficient Adaptive Subdivision for
Software Rendering on the GPU

Marshall Plan Scholarship End Report

Thomas Weber
Vienna University of Technology

April 30, 2014

Abstract

The adaptive subdivision step for surface tessellation is a key compo-
nent of the Reyes rendering pipeline. While this operation has been success-
fully parallelized for execution on the GPU using a breadth-first traversal,
the resulting implementations are limited by their high worst-case memory
consumption and high global memory bandwidth utilization. This report
proposes an alternate strategy that allows limiting the amount of necessary
memory by controlling the number of assigned worker threads. This makes
it possible to severely reduce the amount of necessary memory and place all
intermediate data in work-group local memory. The result is an implementa-
tion that scales to the performance of the breadth-first approach while offer-
ing three new advantages: significantly decreased memory usage, a smooth
and predictable tradeoff between memory usage and performance, and in-
creased locality for patch processing.

The implementation and evaluation of this work has been performed at
University of California, Davis. It was funded through a scholarship from
the Austrian Marshall Plan Foundation.

1



1 Introduction
The steady increase in the flexibility and performance of graphics hardware over
the years has made it feasible to implement increasingly sophisticated rendering
algorithms in real time. Among these is the Reyes rendering architecture [1],
which is commonly used in production rendering.

Using Reyes for real-time rendering is desirable because it allows scenes com-
posed of displaced higher-order surfaces to be rendered directly without any vis-
ible geometry artifacts. Surfaces are tessellated into sub-pixel sized polygons
during rendering and shaded on a per-vertex basis. This also allows high-quality
motion-blur and depth-of-field effects using stochastic rasterization.

Even though each stage of Reyes rendering has been successfully mapped
to the programmable features of the GPU, the adoption of Reyes for real-time
graphics applications has so far been hampered by practical considerations. While
image quality and rendering performance are quite relevant, one of the most im-
portant aspects in this regard is robustness. For instance, it is unacceptable that
a graphics pipeline can run out of memory for some unfortunate placement of
the camera. It is therefore important that all components of a Reyes pipeline can
guarantee a peak memory bound.

In this report, we present a method for performing high-performance adaptive
surface subdivision in parallel on the GPU while still guaranteeing a constant
memory consumption. Our approach preserves locality and allows us to store
intermediate surface data in work-group local memory.

This work is the result of a cooperation of the Vienna University of Technology
and University of California, Davis. The implementation and evaluation phase
were done at the UC Davis Department of Electrical and Computer Engineering
under supervision of professor John Owens. The funding for this research stay
was provided by the Austrian Marshall Plan Foundation.

2 Background & Previous Work
Reyes tessellates surfaces into micropolygons using a two-stage approach [1]. In
the first phase surfaces are recursively subdivided until they are smaller than a
given screen-space bound. After this the surfaces are uniformly evaluated to create
grids of polygons. The reason for separating tessellation into these two steps is
that it results in more uniformly sized polygons and better vectorization than either
step could achieve on its own [3].

2



p = 1 p = 20

p = 100 p =∞

Figure 1: Comparison of evaluation order of patches for different batch sizes.
Surfaces that are created in the same iteration are shaded in the same color. This
shows the locality-preserving property of our subdivision algorithm: surfaces that
are spatially close together are evaluated in the same iteration.

Applying only dicing would lead to problematic over- or under-tessellation
for parts of surfaces that are strongly distorted, for instance, due to perspective
projection. While doing full subdivision up to the micropolygon level is possible,
this leads to unnecessary over-tessellation since surfaces can only be halved. Hav-
ing dicing as a separate phase avoids this, since the optimal dicing rate for every
bounded surface can be chosen. Performing shading and rasterization on grids
instead of single polygons is also desirable for parallelization.

The dicing phase maps to hardware tessellation supported on recent graphics
APIs and GPUs [8]. This feature works well and is commonly used in current
games. Hardware tessellation also allows the selection of separate tessellation
levels for the inside and each boundary edge of a surface in order to avoid surface

3



cracks.

Programmable Tessellation on the GPU Over the past five years, many re-
searchers have used the programmable features of the GPU to implement high-
quality tessellation. Patney and Owens’s adaptive subdivision on the GPU trans-
formed the typical depth-first recursive traversal of split patches into a breadth-
first operation [12]. While this performs well on the GPU, using a breadth-first
traversal means that the peak memory consumption of this algorithm rises expo-
nentially with the number of splits [3,7,14]. Nevertheless several papers build on
this method.

Zhou et al. use breadth-first adaptive subdivision as part of a full GPU-based
interactive Reyes renderer called RenderAnts [14]. RenderAnts uses dynamic
scheduling to ensure bounded memory usage for fragment processing. However,
no such bound is given for adaptive subdivision. Patney et al. use the breadth-
first approach for crack-free view-dependent tessellation of Catmull-Clark subdi-
vision surfaces [11], and Eisenacher et al. adopt the same breadth-first approach
for parametric patch subdivision, but also consider surface curvature, resulting in
considerably fewer patches being created [2].

Fisher et al. present a method for efficiently avoiding surface cracks during
subdivision by using the tessellation scheme used in hardware tessellation [3].
They allow surfaces to be split along nonisoparametric edges to ensure integer
tessellation factors at all times. Their paper also discusses the scalability issues of
breadth-first subdivision and gives this as a reason for their decision to implement
their adaptive subdivision on the CPU using multithreading and balanced stacks.
This gives excellent memory scalability and good locality, but does not scale well
beyond a relatively small number of concurrent threads.

Tzeng et al. consider adaptive subdivision from a scheduling point of view [13].
They make use of persistent kernels and distribute the total work over many work-
groups. To ensure load balance, they advocate a scheduling strategy based on
work-stealing and work-donation. This approach has the advantage of avoiding
host-device interaction for enqueueing additional iterations. However, while gen-
eral memory consumption is greatly reduced with their approach, the peak mem-
ory usage remains unpredictable.

A method for the real-time tessellation of Catmull-Clark surfaces on the GPU
was presented by Nießner et al. [9]. They avoid having to fully subdivide all sur-
faces by directly tessellating regular faces as B-Spline surfaces and only applying
further subdivisions to faces containing an extraordinary vertex. This allows them

4



to greatly reduce the memory consumption. In a follow-up work, they discuss
how semi-sharp creases can be handled efficiently [10]. While their presented
methods work well, their approach is essentially an efficient implementation of
dicing Catmull-Clark surfaces, since the subdivision level for a single model has
to be constant.

In a different application domain, Hou et al. consider the problem of memory-
efficient parallel tree traversal during k-d tree construction [5]. With similar mo-
tivation to this work, they propose a partial breadth-first search traversal scheme
that only evaluates a limited number of leaves in a tree.

3 Adaptive Subdivision on the GPU
The classic Reyes pipeline implements adaptive subdivision as a recursive opera-
tion. Reyes estimates the screen-space bound of a surface to decide whether the
surface needs further subdivision or can be sent to the next pipeline stage for dic-
ing. If further subdivisions are necessary, Reyes splits the surface and recursively
calls bound-and-split on the new sub-surfaces. This process can be thought of as
the depth-first traversal of a tree (“split tree”). While this is easy to implement on
regular CPUs and requires minimal memory (O(N+k), where N is the number of
input surfaces and k is the maximum depth of the split tree), this approach is not
suitable for the GPU since it is inherently sequential.

Patney and Owens [12] parallelize Reyes’s split phase by transforming this
depth-first operation into a breadth-first traversal of the split tree. This way, a
single iteration of the adaptive subdivision can be implemented using a parallel
bound kernel, prefix sums, and a copy kernel. These are then iterated until all
patches have been successfully bounded. Figure 2 gives an overview on how this
approach works.

While this is simple to implement and yields excellent speedup, this approach
suffers from high peak memory usage. Since all nodes of a single depth in the
split-tree have to be held in memory, the worst-case memory consumption is the
number of possible leaves of a binary tree of maximum depth k. This is O(N ·
2k), where N is the number of input surfaces. Due to this exponential growth
in memory consumption, the static preallocation of memory for this operation
quickly becomes unfeasible.

5



Figure 2: Schematic overview of breadth-first subdivision. Each row represents
the state of the surface buffer during one iteration. Each patch can either be culled
(red), split (yellow), or drawn (green). For each split patch in the previous it-
eration, two new patches are generated in the following iteration. This always
happens for all patches in the surface buffer.

3.1 Adaptive Subdivision with Bounded Memory
Instead, we propose an adaption of this approach where the number of surfaces
processed at a given iteration is limited by a constant value p. The buffer of
surfaces is used as a parallel last-in-first-out data structure where surfaces are read
from the end of the buffer and any generated sub-surfaces are appended back to
the end. By using this approach, we can bound the peak memory consumption by
O(N+ p ·k). Figure 3 illustrates how this approach works, and Section 3.2 proves
this bound.

Adding the batch size p as a tweakable parameter in the subdivision process
allows us to balance between memory consumption and performance. Figure ??
in the Results section shows the impact the chosen batch size and the amount of as-
signed memory have on the overall subdivision time. As the batch size increases,
the subdivision time asymptotically approaches that of breadth-first subdivision.
Our approach also preserves locality, as can be seen in figure 1.

In our implementation, a bound kernel first copies the last p surfaces into a

6



Figure 3: Schematic overview of how our memory-bounded subdivision operates.
Unlike in figure 2, the number of active surfaces at each iteration is constant (in
this case, p = 4). The other surfaces are inactive and shaded in gray.

temporary buffer and estimates the screen-space bound for each of them. De-
pending on this bound the kernel decides an action to be taken on this surface
(draw, split, or cull), which is stored as a flag value in a separate buffer.

The temporary storage of surfaces is necessary to avoid surfaces being over-
written by split surfaces before they have been read. This is not necessary in
breadth-first subdivision, which uses a ping-pong buffer. While our temporary
storage requires one additional write operation, the performance cost is minimal.

We then apply a prefix-sum operation to these flag buffers to calculate write
locations. The split kernel checks the flag buffer and either copies the bounded
surface into the output buffer or applies a split operation and places the resulting
sub-surfaces at the end of the surface buffer. The accumulated flags from the
prefix sum are used to find the correct location in the output and surface buffers.

For a surface P, the split-results P′
0 and P′

1 are placed at address a0 = S+ fc ·
2+0 and a1 = S+ fc ·2+1 respectively, where S is the current size of the surface
buffer and fc is the prefix sum of the split flags. Using this particular order is
necessary to prove the memory bound of our algorithm.

Keeping the children of a surface that has been split close together also im-
proves locality. Figure 4 shows the difference between placing the sub-surfaces

7



in the order described by Patney and Owens [12] (NONINTERLEAVED) with our
approach (INTERLEAVED).

INTERLEAVED NONINTERLEAVED

Figure 4: Illustration of the effect the placement order after split has on the lo-
cality of generated patches. Surfaces created during the same iteration share the
same color. INTERLEAVED is the order described in this section while NONIN-
TERLEAVED uses the Patney-Owens order [12].

These operations are then repeated until the surface buffer is empty.

3.2 Proof: Peak Memory Bound
To prove our asserted peak memory consumption of O(N+ p ·k), we consider the
state of the ordered surface buffer St = {s0, . . . ,sn} at every iteration t ∈ N. If we
can show that

∀t ∈ N0 : ‖St‖< N + p · k (1)

then the general memory consumption must also be bounded, since the size of all
other buffers apart from St remains constant throughout execution.

The split level d : St → N0 gives the number of subdivisions that have so far
been applied to a given surface. For example, for a fresh input surface s, d(s) = 0.
If we split this surface into two sub-surfaces sl and sr, then d(sl) = d(sr) = 1. If
we split sl further into sll and slr, then d(sll)= d(slr)= 2 and so on. We also define
the operator Di(St) = ‖{s ∈ St |d(s) = i}‖, which gives the number of surfaces in
St that have subdivision level i.

8



We will prove this memory bound via induction. To do so we will show that
the following invariants are fulfilled at every iteration t:

∀s ∈ St : d(s)< k (2)
∀si,s j ∈ St , i < j : d(si)≤ d(s j) (3)

D0(St)≤ N (4)

∃m ∈ N1 :
∀i ∈ N1, i 6= m : Di(St)≤ p,
Dm(St)≤ 2p−∑ j>k D j(St)

(5)

(2) asserts that no surface in the surface buffer may have been divided more than
k times. This can be ensured by always culling or drawing surfaces that have
already received k−1 subdivisions. (3) requires that the surfaces in the buffer are
ordered by their subdivision level. (4) ensures that there can never be more than
the initial number of surfaces with subdivision level 0 in S.

Invariant (5) is the most important one. It requires that there always exists one
positive subdivision level m so that all other positive subdivision levels i 6= m must
occur at most p times in S. m may occur up to 2p times, but only if there exist
no surfaces with a higher subdivision level in the buffer. Otherwise the number of
these is subtracted from 2p to give the number of allowed occurrences of m.

The memory invariant (1) must be fulfilled when (2), (4), and (5) are fulfilled,
since there can be at most k subdivision levels which occur at least once; among
those, one can occur at most N times, one can occur at most 2p times, and the rest
can occur at most p times. It should be easy to see that all invariants are fulfilled
for S0.

Now we take a look at an arbitrary iteration t so that St fulfills all invariants.
When we take the last p items from St , potentially split them if they have a sub-
division level below k + 1, and append the split patches back at the end of the
surface buffer, we get St+1, the state of the surface buffer in the next iteration.

We can be sure that (2) is fulfilled for St+1 since we take special care to never
split surfaces that have already been split k+1 times. Similarly, (4) should be easy
to see, since we can only increase the subdivision level of surfaces, so D0(St+1)
can only be smaller than D0(St).

Since we know that St is sorted by subdivision level, we know that the p sur-
faces we took for subdivision must have the maximal amount of subdivisions for
St . By splitting them, we can only increase this, so the split surfaces we put back
at the end are guaranteed to be larger than all of the remaining ones. And thanks to

9



the specific order described in section 3.1, we can ensure that if two split surfaces
are in a specific order relative to each other, then the split products must also be
in that order, only with their subdivision level incremented by one. Thus (3) is
fulfilled for St+1.

To see that (5) is fulfilled, we must consider the special subdivision level m for
St . The range of surfaces with subdivision level m can start at most 2p elements
away from the end of the buffer. At most p surfaces of this range can be outside
the last p elements of the buffer. If we now remove the last p surfaces P and split
them in any way, the resulting subsurfaces must have a subdivision level greater
than m. This means that the number of remaining surfaces with tessellation level
m must now be ≤ p. m is no longer a special depth in St+1.

What remains to be seen is that there can be at most one new level m′ for
which there are more than p surfaces in St+1, and that it must be at the end of the
buffer. Since what remains of the old level m has ≤ p surfaces after the iteration,
and the other surfaces of St are known to have ≤ p, the new m′ can only belong
to the surfaces created from P. For any combination of non-overlapping ranges in
P, there can be at most one subset that contains more than p/2 surfaces. If this
range is x surfaces away from the end, then it can contain at most p− x surfaces.
If we now subdivide this range and maintain the order of the split products for this
range, they must form the subdivision level m′, fulfilling invariant (5). �

3.3 Storing Intermediate Surfaces in Work-Group Local Stor-
age

Section 3.1 describes an implementation that stores all surfaces (including inter-
mediate surfaces) in GPU global memory. We can improve the efficiency of our
implementation by storing intermediate surfaces in work-group local memory so
that all coordination of individual threads can be done on the work-group level.

Instead of having a single surface buffer in global memory, each work-group
keeps its own surface buffer in work-group local memory. Single iterations of the
subdivision algorithm described in section 3.1 are performed in a loop within the
work-group. Communication and flow control of threads within a work-group is
done using local memory, work-group-local prefix sums, and barriers. Surfaces
that have been successfully bounded are transferred to an output buffer in global
memory.

With this approach, no explicit host intervention is necessary to start another
iteration of the subdivision algorithm, thus global memory bandwidth is reduced.

10



Instead of having to read and write surface data to and from global memory, the
only times when surfaces need to be transferred out of local memory is during the
initial reading of input surfaces and when writing the final bounded surfaces to
the destination buffer.

We can deterministically store the entire intermediate surface buffer in work-
group local memory, since the amount of necessary memory for this derives from
our memory bound O(p · k), where p is the work-group size of this kernel. In
practice, this should be set to the native SIMD width.

As an example, for recent AMD GPUs, this is 64. Let’s say we allow a max-
imum subdivision level of 15. We would have to allocate enough shared memory
to store 64 · 15 = 960 surfaces. If one surface requires 24 B of storage, the total
amount of necessary shared memory would be just under 23 KiB. If this exceeds
the amount of available work-group local memory, then a small amount of global
memory can be allocated for spill buffers.

Our implementation uses a single global input queue to store work and per-
forms well for our test cases. While no load-balancing is necessary between
threads within a work-group, it is still possible that some work-groups run out
of work more quickly than others. In this case, a load balancing strategy similar
to the one described by Tzeng et al. [13] could be used, but this has not yet been
necessary in our implementation.

If the output buffer is full and there is still work to be done, then the ker-
nel must stop operation and return control back to the host so it can render the
generated patches. The content of the work-group local surface buffer needs to be
backed up to global memory so that it can be recovered once operation is resumed.

4 Results
We have implemented a simple Reyes renderer in OpenCL called Micropolis that
implements adaptive subdivision, dicing, shading, and micropolygon sampling as
kernels on the GPU.

The renderer supports several different methods for adaptive subdivision for
comparison. BREADTH uses the breadth-first approach of Patney and Owens [12].
BOUNDED is our base implementation with bounded memory. LOCAL is our
variant that stores intermediate patches in work-group local memory.

In case BREADTH runs out of memory, it allocates further memory on-the-
fly. This is necessary since the worst-case memory consumption of breadth-first
subdivision is so high that preallocation is not possible. This exact situation is

11



what we want to avoid with this work. The necessary time-overhead for this is not
part of the measured subdivision times because we allow for a certain number of
rendered frames before measurement.

TEAPOT BIGGUY KILLEROO HAIR

Nin 32 3 570 11 532 10 000
Nout 25 234 39 691 33 945 304 474
S 25 202 36 121 22 413 294 474

Table 1: Overview of the different test scenes used for performance analysis. Nin
and Nout are the numbers of surface patches before and after adaptive subdivision.
S is the number of surface splits performed during subdivision. The Big Guy
model was created by Bay Raitt. Killeroo NURBS model supplied by headus 3D
tools.

Table 1 shows the models we used for evaluating our renderer. The model
TEAPOT has a small number of very large patches. HAIR has a large amount of
very small patches. BIGGUY and KILLEROO are in between in terms of patch
count and size.

All benchmarks have been measured on a system with an AMD Radeon HD
7970 GPU and a 2.6GHz Intel Core i7 920 CPU. The graphics driver used was
Catalyst 14.3.

Table 2 lists the execution times for various combinations of adaptive sub-
division methods and test models. The scenes are rendered at a resolution of
1280×1024 and surfaces are split until they are smaller than 8 pixels along each
dimension. Table 1 shows the number of input and output patches as well as the
number of performed split operations for each model. The chosen batch size p for
BOUNDED is 10000. For LOCAL 32 work-groups of size 64 are used. This is the
number and size of the multiprocessors available in the HD 7970. The maximum
number of recursive subdivisions k has been set to 15.

Exact performance comparisons against previous implementations are difficult
because of different rendering parameters, but our overall performance appears
competitive modulo differences in hardware and rendering parameters:

12



BREADTH BOUNDED LOCAL

TEAPOT 3.89 3.89 3.69
BIGGUY 2.87 3.75 2.21
KILLEROO 2.41 2.70 1.87
HAIR 3.73 16.72 10.60

Table 2: Execution times of adaptive subdivision for different algorithms and
data sets. All values are in milliseconds. The batch size for BOUNDED is 10000.

• Patney and Owens give times for the adaptive subdivision of TEAPOT (6.99 ms)
and KILLEROO (3.46 ms) [12]. They perform fewer split operations (512×512
resolution with a 16-pixel bound) and use a significantly less powerful NVIDIA
GeForce 8800 GTX for measurement.

• Tzeng et al. [13] give overall frame render times for TEAPOT (51.81 ms),
BIGGUY (90.50 ms), and KILLEROO (54.11). They render at resolution
800× 800 and use a 16-pixel bound. Micropolis is considerably faster
with that configuration (TEAPOT: 5.88 ms, BIGGUY: 5.54 ms, KILLEROO:
5.94), although this is once again hard to compare since Tzeng et al.’s ren-
derer uses complex transparency and 16× multisampling.

BOUNDED performs reasonably well compared to BREADTH for all scenes
except HAIR. Figure 5 and figure 6 show the impact the chosen batch size has
on the subdivision performance of BOUNDED when being applied to the models
HAIR and TEAPOT respectively. To achieve performance similar to BREADTH

for HAIR, a batch size of about 250000 would need to be chosen. This would
require about 85 MiB of memory. But even 20 MiB of assigned memory gives a
reasonable speedup.

The memory consumption of BOUNDED with a batch size of 10000 is about
3 MiB. By comparison, the worst-case memory requirement for storing all patches
with breadth-first subdivision for a scene the size of HAIR would be 215 ·10000 ·
24 B = 7.3 GiB of memory. This is just for one of the two necessary ping-pong
buffers. Additional buffers of the same dimension are necessary for flags and
prefix sums.

The performance of LOCAL generally exceeds both BOUNDED and BREADTH

for most scenes, despite only requiring about 1 MiB of global memory. The
amount of necessary shared memory per work-group is about 20 KiB, well within
the capabilities of recent GPUs.

13



Figure 7 shows the impact the number of assigned work-groups has on the
subdivision time of HAIR with LOCAL. The reason for the dip in performance
just under the 100 work group mark isn’t entirely clear. We believe that this is due
to a change in how the graphics driver schedules work groups.

LOCAL’s chief performance advantage stems from reduced interactions with
the host: both BREADTH and BOUNDED incur significant overhead in enqueueing
new iterations. The only time LOCAL needs to return to the host is when the
output buffer for fully bounded surfaces has filled up and needs processing. In our
case, this happens every 10000 patches, so about 3–4 times in total for TEAPOT,
BIGGUY, and KILLEROO. HAIR requires 31 iterations of LOCAL, which is the
reason why HAIR performs worse on LOCAL than on BREADTH.

If LOCAL didn’t have to return control to the host whenever the output buffer
is full, it could subdivide HAIR within 4.07 ms. This is close to the performance
of BREADTH. We believe the reason why BREADTH is slightly faster on HAIR

is because the GPU’s hardware scheduler is doing a better job at occupying cores
and hiding memory latency, as it has more in-flight threads than in our persistent
kernel approach [6].

We could most easily improve the performance of all presented methods by
avoiding a return to the host for enqueueing additional kernels. In particular,
BOUNDED would benefit if the overhead of additional iterations were negligi-
ble. This is because for a GPU that can keep 20480 concurrent threads in flight, it
should make no difference whether it performs five consecutive 40000 item ker-
nels or one 200000 item kernel of the same operation.

The upcoming OpenCL version 2.0 supports device-side enqueueing of ker-
nels, which should allow reducing the overhead per iteration significantly. How-
ever there were no available implementations for OpenCL 2.0 on the GPU at the
time of writing. Another approach that should work with OpenCL 1.2 hardware
would be to enqueue consecutive iterations speculatively.

5 Conclusion and Future Work
This report has presented a method for implementing adaptive surface subdivision
on the GPU with a bounded peak memory consumption. The output order of gen-
erated surfaces also preserves locality. Our highest-performance implementation
stores intermediate patches in work-group local memory and uses persistent ker-
nels for control flow. With it, we achieve speedups over the traditional approach
with bounded (and substantially less) memory usage. We believe the performance

14



and memory advantages of our algorithm over previous GPU implementations of
bound-and-split may make adaptive surface subdivision more tractable for real-
time usage, in particular for constrained rendering environments like mobile plat-
forms.

The performance of our iterative version could be greatly improved by us-
ing device-side enqueue, as supported in the upcoming version 2.0 of OpenCL.
This might be competitive with the work-group local version. Integrating adap-
tive subdivision in a larger GPU graphics pipeline would also allow for interesting
optimizations that cull occluded surfaces during subdivision.

Work-group local subdivision would be very well suited as a component in
a concurrent producer-consumer pipeline. Instead of having to abort and recover
when the output buffer is full, the subdivision kernel can just idle until the pipeline
consuming stage is available again. Since later stages like shading and sam-
pling usually require considerably more computing time, even a small fraction
of the hardware resources dedicated for subdivision should be enough to keep the
pipeline going without it becoming the bottleneck.

Robust adaptive subdivision has many possible uses. Hanika et al. present
a method for ray-tracing polygons using a two-level approach with ray reorder-
ing [4]. This method may be well-suited for implementation on the GPU using
our described method for geometry generation.

The source code for Micropolis, the OpenCL Reyes renderer described in this
report, can be found at https://github.com/ginkgo/micropolis.

6 Acknowledgments
We would like to thank Anjul Patney, Stanley Tzeng, and Tim Foley for giving
valuable input on adaptive subdivision and efficient task scheduling on the GPU.
Another thank you goes to Nuwan Jayasena of AMD for providing us with test-
ing hardware and support. This work was made possible thanks to a generous
scholarship from the Austrian Marshall Plan Foundation.

15

https://github.com/ginkgo/micropolis


References
[1] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes image

rendering architecture. In Computer Graphics (Proceedings of SIGGRAPH
87), pages 95–102, July 1987.

[2] Christian Eisenacher, Quirin Meyer, and Charles Loop. Real-time view-
dependent rendering of parametric surfaces. In Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games, I3D ’09, pages 137–
143, 2009.

[3] Matthew Fisher, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley,
William R. Mark, and Pat Hanrahan. DiagSplit: Parallel, crack-free, adap-
tive tessellation for micropolygon rendering. ACM Transactions on Graph-
ics, 28(5):150:1–150:10, December 2009.

[4] Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch. Two-level
ray tracing with reordering for highly complex scenes. In Proceedings of
Graphics Interface 2010, GI ’10, pages 145–152, 2010.

[5] Qiming Hou, Xin Sun, Kun Zhou, Christian Lauterbach, and Dinesh
Manocha. Memory-scalable GPU spatial hierarchy construction. IEEE
Transactions on Visualization and Computer Graphics, 17(4):466–474,
April 2011.

[6] Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered harm-
ful: Wavefront path tracing on GPUs. In Proceedings of the 5th High-
Performance Graphics Conference, HPG ’13, pages 137–143, 2013.

[7] Charles Loop and Christian Eisenacher. Real-time patch-based sort-middle
rendering on massively parallel hardware. Technical Report MSR-TR-2009-
83, Microsoft Research, May 2009.

[8] Charles Loop and Scott Schaefer. Approximating Catmull-Clark subdivision
surfaces with bicubic patches. ACM Transactions on Graphics, 27(1):8:1–
8:11, March 2008.

[9] Matthias Nießner, Charles Loop, Mark Meyer, and Tony Derose. Feature-
adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM Trans-
actions on Graphics, 31(1):6:1–6:11, February 2012.

16



[10] Matthias Nießner, Charles T. Loop, and Günther Greiner. Efficient eval-
uation of semi-smooth creases in Catmull-Clark subdivision surfaces. In
Eurographics (Short Papers), pages 41–44, 2012.

[11] Anjul Patney, Mohamed S. Ebeida, and John D. Owens. Parallel view-
dependent tessellation of Catmull-Clark subdivision surfaces. In Proceed-
ings of the Conference on High Performance Graphics 2009, HPG ’09, pages
99–108, 2009.

[12] Anjul Patney and John D. Owens. Real-time Reyes-style adaptive surface
subdivision. ACM Transactions on Graphics, 27(5):143:1–143:8, December
2008.

[13] Stanley Tzeng, Anjul Patney, and John D. Owens. Task management for
irregular-parallel workloads on the GPU. In Proceedings of the Conference
on High Performance Graphics, HPG ’10, pages 29–37, 2010.

[14] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun, and Baining
Guo. RenderAnts: Interactive Reyes rendering on GPUs. ACM Transactions
on Graphics, 28(5):155:1–155:11, December 2009.

17



0 50000 100000 150000 200000 250000 300000
batch size

0

2

4

6

8

10

12

tim
e[

m
s]

20 40 60 80 100
memory[MB]

0 50000 100000 150000 200000 250000 300000
batch size

0

5000

10000

15000

20000

25000

30000

35000

sp
ee

du
p

20 40 60 80 100
memory[MB]

Figure 5: Achievable subdivision time and speedup for algorithm BOUNDED

depending on number of assigned processors and memory. The data set used for
testing was HAIR.

18



2000 4000 6000 8000 10000 12000
batch size

0

2

4

6

8

10

12
tim

e[
m

s]
1 2 3 4

memory[MB]

2000 4000 6000 8000 10000 12000
batch size

0

500

1000

1500

2000

2500

sp
ee

du
p

1 2 3 4
memory[MB]

Figure 6: Achievable subdivision time and speedup for algorithm BOUNDED

depending on number of assigned processors and memory. The data set used for
testing was TEAPOT.

19



20 40 60 80 100 120 140
batch size

5

10

15

20

25
tim

e[
m

s]

20 40 60 80 100 120 140
number of work-groups

5

10

15

20

25

30

sp
ee

du
p

Figure 7: Achievable subdivision time and speedup for algorithm BOUNDED

depending on number of assigned work groups. The data set used for testing was
HAIR.

20


	Introduction
	Background & Previous Work
	Adaptive Subdivision on the GPU
	Adaptive Subdivision with Bounded Memory
	Proof: Peak Memory Bound
	Storing Intermediate Surfaces in Work-Group Local Storage

	Results
	Conclusion and Future Work
	Acknowledgments

