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Abstract

The availability of multiple "omics" datasets from the same sample allows
for a more complete understanding of pathway behavior in human diseases.
However, pathway discovery is often based on flat gene lists which com-
pletely ignore the network topology of the pathways. Many methods use
variations of Fisher’s Exact Test to determine a data set’s enrichment for
a pathway while others consider only the ranks of the genes. More recent
methods provide an approach to account for pathway structure but are
computationally intensive and limited in their application. We propose an
integrated pathway analysis approach where we combine feature (genes,
proteins, CNV, etc.) scores from a multivariate analysis with an importance
score for each feature in each pathway. These scores take into account the
significance of each feature in the measured data sets as well as their topo-
logical importance within each pathway. We use two different measures
for a feature’s topological importance in a pathway and present results
comparing enrichment in tumor and stroma microarray data from high
grade serous ovarian cancer
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1. Project Description

1.1. Background

Rapid advances in high throughput technologies have enabled quantification
of multiple biological molecules at genome scale and reducing costs makes
these accessible to most laboratories. Whilst many laboratories have applied
genome wide gene expression profiling (transcriptomics), the network of
biological pathways driving a phenotype is complex and challenging to
unravel with data from a single omic screen. Increasingly, laboratories
apply a multiple omics approach, generating data on multiple biological
molecules, including mRNA, microRNA (miRNA), proteins, lipids, glycans,
phosphoproteins and the epigenome.

The Cancer Genome Atlas (TCGA) has generated multiple molecular profiles
per tumor, including gene expression on microarray platforms (Affymetrix
GeneChip, Agilent microarrays), next generation RNA-sequencing (RNA-
seq), profiles of protein expression, miRNA expression, exome and whole
genome DNA sequencing to derive DNA mutations, copy number varia-
tion and loss of heterozygosity [36, 90]. Joint analysis of these data may
provide unprecedented insights in the molecular mechanism and biologi-
cal complexity of cancer, and lead to the discovery of new biomarkers of
progression and response to therapy. However there are limited methods
to perform integrated data analysis of multiple omics data and inferring
driver biological pathways from individual data sets is challenging.
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1. Project Description

1.2. Methods

Dr. Culhane sugests the implementation and application of a dimension
reduction approach, multiple co-inertia analysis (MCIA), for integrated
analysis of several omics datasets. Based on a covariance optimisation
criterion, MCIA enables the simultaneous projection of several datasets with
matched cases into the same dimensional space. MCIA finds successive
principal axes (eigenvectors) from individual principal component analyses
that maximize a covariance function and it calculates the contribution of
each individual to overall structure (i.e. to what extent each gene deviates
or agrees with what the majority of genes support).

MCIA can be applied to meta-analysis of multiple omics datasets, where
the number of features exceeds the number of observations. Datasets may
have different numbers of features. MCIA reveals the features (eg genes)
among multiple datasets that have highest correlation and variance. The
output from MCIA is a matrix of eigenvectors for each data type which
are projected and visualized in the same scale and represent the most
variant features with the highest correlation. The simultaneous projection of
multiple datasets on the same scale makes it possible to extract the union
of concordant features across datasets, and thus is useful for omics data
integration.

Through their work on integrative omics analysis, Tomescu et al. [125], show
the relevance of integrative analysis techniques and highlight the need for
multiple analysis methods. DI Tomescu’s experience in the application and
understanding of integrative analysis methods, especially the co-inertia
analysis [33], shown in the study of P. falciparum (the parasite causing the
most severe form of malaria), make her the most suitable candidate for the
implementation of MCIA.

Pathway discovery is essential to progressing biomarker discovery. This is
challenging when data from only one molecular level (eg gene expression)
is available since many genes are regulated post-transcriptionally and gene
expression may not correlate with protein activity [64]. Whilst multiple
approaches that test which pathway enrichment of a given list of genes (or
proteins) have been described, the simplest being a one tailed Fisher exact
test or hypergeometric distribution, others account for the rank of genes
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1.3. Specific aims

[123]. Traditional methods [123] for determining functional pathway en-
richment treat pathways as a list of elements, while ignoring their inherent
connectivity. Recent methods such as FunNet [102], PARADIGM [118, 129]
and multi-level ontology analysis MONA [115] provide an approach to inte-
grate multiple data types in the context of pathways but are computationally
intensive or are limited in their application.

Dr. Culhane and DI Tomescu suggest the development of a network based
pathway eigenanalysis approach which integrates multiple data types via
MCIA, and collects and combines the most variant set of features (eg genes,
proteins, miRNAs) from each platform and projects these onto a network
of biological pathways such that the most variant pathway, which is most
likely to perturb the network, can be extracted.

Using the network of pathways curated by the Reactome project [31] scores
will be assigned to pathway elements based on their contribution to the
information flow in the network. This flow-based approach [105] rewards
both highly linked hubs and bottlenecks nodes which may have few con-
nections but bridge different clusters within the network. The dynamical
importance for a given pathway will then be quantified by correlating the
scores from the network analysis with the MCIA principal component.

1.3. Specific aims

Aim 1: Develop an eigenanalysis approach based on MCIA to predict
the dynamical importance of functional pathways and apply it as a new
integrated analysis method to multiple omics ovarian cancer data.

Aim 2: Implementation of the eigenanalysis method as a platform indepen-
dent Bioconductor/R package.

This is an innovative project that will develop a new computational ap-
proach to pathway discovery and it addresses current bottlenecks in the
field of cancer research. We apply a simple linear algebra eigenanalysis ap-
proach that is scalable and potentially computationally efficient in pathway
discovery across multiple high throughput omics data.
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1. Project Description

Aim 1

Aim 1 consists of the development of an eigenanalysis approach to predict
the dynamical importance of Reactome pathways through integrated analy-
sis of multiple omics data and it’s application to the TCGA serous ovarian
cancer data. The following steps are required:

• Extract eigenvectors of dynamical importance from Reactome path-
ways: i) Download flat files of the Reactome database [31], ii) build a
network adjacency matrix using the Bioconductor graph package, iii)
calculate the information flow associated with the network adjacency
matrix which is defined as the largest eigenvalue of the adjacency
matrix [105]. Steps ii) and iii) will be applied to extract eigenvalues
associated with each pathway in Reactome. In addition, the dynamical
importance of each pathway in the network will be calculated as the
relative change in the largest eigenvalue of the network adjacency ma-
trix upon its removal. For each pathway exclude its nodes, repeating
steps ii) and iii), to discover the change in the entire network upon
removal of the pathway. This provides an objective quantification of
the relative importance of each pathway in the network.

• Extract eigenvectors of the most covariant features in the high grade
serous ovarian cancer: Download TCGA ovarian data (microarray,
RNA-Seq gene expression, proteomics, miRNA, etc) and apply MCIA
to these datasets. The eigenvector associated with the first eigenvalue
from each dataset of features will be concatenated to build a union of
all features (gene, proteins, miRNAs).

• Score Reactome pathways: Multiply the Reactome pathway eigenvec-
tors from the first step with the most variant ovarian cancer eigenvector
in the second step to produce a single value which ranks the Reactome
pathways by the amount of information flow in the network and by
the variance of the omics data.

The above steps briefly outline the approach. Additionally, the method
will be applied to synthetic or well-known data to score its performance
compared to PARADIGM [118, 129], probably the most popular network-
based pathway approach that can be applied to multiple omics data.
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1.3. Specific aims

Aim 2

Aim 2 consists of the implementation of the eigenanalysis in a platform
independent Bioconductor/R package. R package creation and submission
should be straightforward. Dr. Culhane is experienced in creation of Biocon-
ductor packages, having written three Bioconductor packages previously
[33, 52, 117]. DI Tomescu is experienced with the script language R/Bio-
conductor as well as with Windows and UNIX based operating systems,
making the platform independent package creation straightforward.
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2. Introduction

The ultimate goal of science is the understanding of the world by discovering
the underlying laws that govern it. This is, of course, highly complicated.
Human kind has achieved major breakthroughs but the are still a lot of
questions to be answered. For example: physicists can explain our every
day world with Einstein’s theory of relativity but if they have to explain the
world of atoms, molecules, laser or superconductors they need the quantum
theory. Is there a theory that is able to unify these two?

Light is another well known example: Sometimes it is considered to be
a weave and sometimes a particle. Or maybe it is neither a weave nor a
particle, it is something that has just not been discovered yet. Even if these
examples point to unanswered questions, they illustrate the need to observe
a system under various conditions in order to completely understand it.

The same effect governs biology. According to the central dogma of molec-
ular biology, in order to understand an organism as a whole one has to
have knowledge about at least three levels of abstraction: deoxyribonucleic
acid (DNA), ribonucleic acid (RNA) and proteins. Only by integrating these
three types of data it is possible to better understand the organism under
study. And these are probably the minimal requirements: detailed ques-
tions can only be addressed by tailored measurements of specific levels of
abstraction.

Integrative analysis, as it is understood by bioinformaticians today, refers
to the process of combining data which originated from diverse sources,
such as different subjects, species, tissues and cells; various levels of regu-
lation including DNA, RNA, proteins, metabolites and kinases; different
experimental platforms, such as Agilent and Affymetrix or multiple time
points.
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2. Introduction

Integrative analysis is a rapid growing research field today. This is due to
the unprecedented wealth of available data which is caused by technological
improvements and, at the same time, dropping costs for experiments. While
at the end of the year 2000, according to [46], there were only 1760 published
articles on integrative analysis, in September 2014 the number exploded to
18500 publications.

The goal of an integrative analysis is data discovery on one hand and data
exploitation on the other hand. Some of the used methods provide also the
opportunity of data visualization which promotes the overall understanding
of the problem.

Integrative Analysis or the Story of the Blind Men and the Elephant

To emphasize the indispensability of integrative analysis I would like to
bring to the reader’s attention the story of the blind men and the elephant
(see Figure 2.1). This story originates in the indian culture where different
versions are known and was introduced to the western world by the Ameri-
can poet John Godfrey Saxe I. In this story a king sends a group of blind
men to touch an elephant to describe what it feels like. Depending on what
part of the elephant was examined, the men arrive to different conclusions:
it feels like a wall, a spear, a snake or a tree. The moral from the story is
the need for different observations which only together are able to correctly
describe the whole system. The situation is similar in molecular biology: the
complete understanding of an organism is based on measurements done on
different layers of regulation such as DNA and RNA.

Currently it is possible to observe and measure biological systems on may
different levels, such as: DNA, RNA, protein and metabolite level. If only
one of these levels is considered, the researcher’s conclusions are similar to
those of the blind men in Saxe’s poem. Only by integrating more and more
levels, the derived knowledge about the system mirrors more and more the
biological truth and will eventually lead to complete understanding of the
biological system.

In order to have different point of views or various observations of the
system under study one has to have access to the corresponding data sets.
These sets can be either publicly available or they must be generated within
the same study. As mentioned above, one driving force of the development
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Figure 2.1.: The story of the blind men and the elephant. Illustration by D’Aulaire and
poem by John Godfrey Saxe I.
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2. Introduction

of integrative data analysis is the increasing amount of available data sets.
These sets would not be so abundant if the technology needed to generate
them would not have developed so fast and the costs would not have
dropped so quickly. Section 2.1 introduces the different types of data that
are currently used in integrative analysis while section 2.2 provides an
overview of various types of integrative analysis methods.

2.1. Omics Data

Omics data refers to data generated by omics technologies such as genomics,
transcriptomics, proteomics and metabolomics. These technologies received
their names due to their study of the geneome, transcriptome, proteome or
metabolome. The suffix ome is used in molecular biology to form nouns
having the meaning “all constituents considered collectively”, while omics
represents a variant of the suffix oma [140]. Oma originated from the Greek
ωµα which is a sequence composed of ω, a letter belonging to the word
stem and µα, a genuine Greek suffix used for abstract nouns.

The different types of omics data are presented in the following subsections.
Genomics is the first data type that is introduced, accompanied by a short
summary of the major discoveries of molecular biology that led to the vast
research field as we know it today. The introduction is continued with
transcriptomics, followed by proteomics.

2.1.1. Genomics

According to the World Helth Organisation (WHO) “Genomics is defined
as the study of genes and their functions, and related techniques”.

The first experiments on what we call today genes, were performed by
the father of modern genetics, Gregor Mendel. As a monk he used the
monastery gardens to conduct experiments in which he crossed various pea
plants with different colors, shapes and heights. He observed [81] that traits
are passed down to the children and children’s children in a predictable
way through, what today are called, genes.
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2.1. Omics Data

Figure 2.2.: Photograph 51 by Rosalind Franklin showing an X-ray image of the DNA.
Figure published in [42]

The next important milestone was the discovery of DNA by Friedrich
Miescher in 1869 [84]. Unfortunately the did not know that the new molecule
he had isolated from white blood cells, which contained hydrogen, oxygen
as well as a stable phosphorus to nitogen proportion and which he called
“nuclein” was actually the DNA.

In 1952 Rosalind Franklin used X-ray crystallography to study DNA struc-
ture. She took pictures of crystallized DNA fibers with phosphates on the
outside of what appeared to be a helical structure. She published her find-
ings [42] together with the famous “photograph 51” (see Figure 2.2) in the
same issue of Nature where Watson and Crick presented their 3D model of
the DNA.

After various hypotheses regarding the structure of the DNA, such as the
three chains model of Pauling and Corby [97], Watson and Crick proposed
their 3D model for the DNA [139] as we know it today: double helix
structure with antiparallel strands; sugars and phosphates on the outside;
paired bases on the inside with hydrogen bounds linking adenine (A) to
thymine (T) and cytosine (C) to guanine (G). Additionally, they also noticed
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2. Introduction

Figure 2.3.: Aminoacids table. The direction of reading for the genetic code (inner side) of
the proteins (outer side) starts at 5’ and goes to 3’. Public domain figure.

that “the specific pairing we have postulated immediatly suggests a possible
copying mechanism for the genetic material.”

The next step in the development of our knowledge about genes was the
understanding of protein synthesis from RNA. In 1961 Marshall Nirenberg
designed an experiment in which synthetic mRNA containing exclusively
uracil (U), a base encountered only in the RNA, was added to a cell-free
Escherichia coli extract including DNA, RNA, ribosomes and other machinery
for protein synthesis. Deoxyribonuclease (DNase) was added to brake down
the DNA and to ensure that only the synthetic poli-U mRNA was used for
protein synthesis. By radioactive labeled amino acids they discovered [92]
that the genetic code (see Figure 2.3) for phenylalanine was UUU (three
consecutive uracil bases). This was the stating point in elucidating the other
codes on which protein synthesis is based.

The next mystery waiting to be solved was the base sequence in the DNA.
In 1975 Sanger et al. proposed a method in which the DNA was denaturated
through exposure to high temperatures which leads to the separation of
the two strands. His procedure continues with four parallel and similar

12



2.1. Omics Data

Figure 2.4.: Cover image of the Nature and Science issues where the human genome was
published. The first draft of the human genome was published simultaneously
by two teams: one in Nature and one in Science. Nature cover author: ; Science
cover author: Ann Elliott Cutting

steps in which polymerase and dideoxynucleotides triphosphates (ddNTP)
are added to the mixture. In each of the four parallel processes another
chain-inhibitor of the DNA polymerase is used: ddGTP, ddATP, ddTTP
and ddCTP; one for each base. All ddNTP lack the 3’-OH group leading
to the termination of the elongation process. In this way each of the four
parallel process yields sequences ending in the same base. In order to read
the sequenced DNA piece one has to use electrophoresis. The method was
published [114] in same year as Sanger et al. sequenced the bacteriophage
Φ X174 [112] followed by the bacteriophage λ [113] in 1982.

Another key tool for molecular biology is the polymerase chain reaction
(PCR). Developed in 1983 by Mullis Kary, the PCR [109] is used to in vitro
amplify the DNA. The chain reaction refers to the cyclic structure of the
amplification by using the product of one round as the starting point for
the next amplification cycle. This also implies the exponential nature of the
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2. Introduction

reaction. Today, PCR is a widely used technique for: diagnosis of genetic
diseases; identification of viruses and bacteria and validation of genetic
fingerprints.

Almost 20 years later, Fleischmann et al. sequenced the first free living
organism Haemophilis influenza Rd. [41] which marked the beginning of
the omics era. This is also the moment when molecular biology started to
change from a data poor to a data rich research field.

Sanger sequencing, with a series of enhancements, was the method of choice
until the mid 2000s. Automation was probably one of the most important
developments leading to the sequencing of the first human genome in 2001

within The Human Genome Project.

The Human Genome Project started in 1990 and was the result of various
discussions that originated in 1984 when the US Department of Energy
(DOE), the National Health Institute (NIH) and a number of international
groups started discussions about the study of the human genome. Two years
later a recommendation about the development of a human genome map
was made by the US National Research Council. 15 years were allocated for
the completion of the project and in 1990 the plan for the first years was
published. The major goals were: development of technologies to study the
DNA, mapping and sequencing of the human genome and the study of
the intrinsically related ethical, legal and social issues. In 2001 The Human
Genome Consortium [72] (see Figure 2.4) as well as Venter et al. [132] from
Celera Genomics Corporation published, at the same time, the first draft of
the human genome.

One year before the human genome was published, the joint efforts of
groups at the University of California, Berkeley, and Lawrence Berkeley
National Laboratory as well as Craig Ventor from Celera Genomics Cor-
poration resulted in the report [1] of the genome sequence of the model
organism fruit fly (Drosophila melanogaster). The fruit fly is very important
as a model organism for the identification of human gene functions.

The Genome of yet another important model organism, the mouse, was
published [139] in 2002 by the Mouse Genome Sequencing Consortium. The
mouse (Mus musculus) plays a very important role in the study of human
disease due to the 90% similarity [139] to the human genome.

14



2.1. Omics Data

Figure 2.5.: Central dogma of molecular biology. Digram by Francis Crick as it was pub-
lished in [30].

The Human Genome Project was announced to be finished in 2003. This
was two and a half years before the planed end with a large part of the
project’s budget not having been spent.

Our knowledge about the genes almost exploded compared to it’s begin-
nings in a monastery garden where a monk crossed peas with different
phenotypes. A large amount of the discovered information was concentrated
in Crick’s Central Dogma of Molecular Biology [30].

In his publication, Crick describes the genetic information flow in a biologi-
cal system by stating that genetic information (sequential information) can
not be transfered from protein to protein or back to DNA. The article also
included a diagram (see Figure 2.5) of the possible and probable direction
of genetic information.

According to Crick, there are three types of possible information transfers in
a biological system: general (DNA→ DNA, DNA→ RNA, DNA→ protein),
special (RNA → DNA, RNA → RNA, DNA → protein) and unknown
(protein→ DNA, protein→ RNA, protein→ protein) transfers. The general
transfers were believed to normally occur in most of the cells, the special
transfers were observed only under special conditions and the unknown
transfers were believed to be impossible. The positive formulation is known
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2. Introduction

Figure 2.6.: The two main processes involved in gene regulation: transcription (left) and
translation (right). Public domain graphics.

as: “DNA makes RNA, RNA makes protein” which emphasizes the two
processes which govern the protein production in a biological system:
transcription and translation.

The synthesis of RNA by using DNA as a template is called transcription
[68]. Through this process, in which the DNA bases A,T,C,G are translated
to A,U,C and G, three types of RNA are created: messenger RNA (mRNA),
transfer RNA (tRNA) and ribosomal RNA (rRNA). In case of mRNA, the
process of transcription is divided in two subprocesses: synthesis and pro-
cessing. A graphical representation is shown in Figure 2.6.

The synthesis of proteins based on an mRNA template is called translation
[68]. A protein is created by the translation of the mRNA bases (A,U,C,G)
into the corresponding sequence of amino acids of a polypeptide. This
process is graphically shown in Figure 2.6.

The translation of DNA into RNA and RNA into proteins constitutes the
process of gene regulation. Even if the human genome is completely se-
quenced, the exact functions of the genes are not completely understood.
The mechanism of gene regulation are so complex that they have to be
studied for each gene or gene family separately. The most promising way
would be to measure the genes of interest on all available levels (DNA, RNA
and protein) and integrate theses data sets into a common analysis.

All these mile stones in the history of molecular biology led the research
filed as we know it today and make it possible for us to access large amounts
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2.1. Omics Data

Figure 2.7.: Illustration of the Central dogma of molecular biology (adapted from [59]).

of information that we need to answer

2.1.2. Transcriptomics

Transcriptomics is the technology used to study the transcriptome which
is defined by Velculescu et al. in [131] as the entirety of all expressed
genes and their expression level for a defined population of cells. They also
emphasize that due to the mostly static nature of the genome, as opposed
to the transcriptome which changes depending on cell types, tissues and
measurement time points, the transcriptome is the link between the genome
of an organism and its phenotype.

Early technologies used to asses gene expression at mRNA level included:
Northern blotting [8], differential display [77] or dotblot analysis [75]. One
drawback shared by all of the above is their inability to measure large
amounts of transcripts simultaneously which is the key requirement for
transcriptome profiling.
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2. Introduction

The first mammalian transcriptome was profiled in 1991 by Craig Venter’s
group at NIH [2] by using serial analysis of gene expression (SAGE). It
represented one of the earliest application of the Sanger sequencing method
[114] and was composed of two steps as described in Figure 2.8: “First, a
short sequence tag (9–11 bp) is generated that contains sufficient informa-
tion to identify uniquely a transcript, provided that it is derived from a
defined location within that transcript. Second, many transcript tags can
be concatenated into a single molecule and then sequenced, revealing the
identity of multiple tags simultaneously”. SAGE was also used to conduct a
global analysis of the pancreas transcriptome [130] including 1000 manually
sequenced tags.

This is the time when microarrays were born. One of the earliest publications
shows the microarray analysis of Arabidopsis thaliana which included 48

cDNAs (complementary DNA) with an average length of 1.0 kb. Microarrays,
which are based on complementary probe hybridization, developed into the
method of choice for transcriptome analysis and dominated the next twenty
years of molecular biology research.

According to the Glossary of Genetic Terms [89] provided by the National
Human Genome Research Institute of NIH, microarrays are defined as: “Mi-
croarray technology is a developing technology used to study the expression
of many genes at once. It involves placing thousands of gene sequences in
known locations on a glass slide called a gene chip. A sample containing
DNA or RNA is placed in contact with the gene chip. Complementary base
pairing between the sample and the gene sequences on the chip produces
light that is measured. Areas on the chip producing light identify genes that
are expressed in the sample.”

In general, microarray technology is based on the following steps: probe
purification, reverse transcription of mRNA to cDNA, labeling, hybridiza-
tion, washing steps, scanning of the array, normalization and analysis. These
steps are summarized in Figure 2.9.

Microararys can be divided in spotted and in in situ synthesized arrays.
While in spotted microarrays the probes are oligonucleotides, cDNA or PCR
products that correspond to mRNAs which are synthesized and afterwards
spotted onto a glass slide, in the synthesized version the probes are short
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2.1. Omics Data

Figure 2.8.: Serial analysis of gene expression: method used for the caracterization of the
first mammalian transcriptome.
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2. Introduction

sequences designed to match parts of an open reading frames (ORF) which
are directly synthesized on the array surface.

Additional disjoint categories are one-channel and two-channel microarrays.
In two-channel or two-color microarrays, two samples can be compared. For
this, the arrays are hybridized with cDNA from the samples that were pre-
viously labeled with two fluorescent dyes. Afterwards the array is scanned
with the dye-corresponding wavelengths and the ratio of the two intensities
can be used to identify differentially expressed genes.

Although the name might suggest it, one-channel or one-color microarrays
do not measure expression levels of a gene but rather two one-colour
microarrays are used to measure ratios between two samples that were
processed in the same experiment. This is at the same time an advantage
of this microarray category: easier comparison of samples from different
experiments. Another advantage is that an erroneous sample does not affect
raw data from non-erroneous samples. Nevertheless, this technology has a
disadvantage also: compared to the two-color microarrays, twice as many
arrays are needed to conduct the same experiment.

Microarrays are widely used and their applications include but are not
limited to: gene expression profiling [18, 37], mutational analysis [53], drug
discovery and development [34], cancer research [15, 25, 50, 126], microbial
applications [35, 122].

Mcroarrays dominated the research community because they stand for high
throughput technology at a very reasonable price [136]. However, there
are limitations that have to be taken into account: cross-hybridization can
lead to high background levels which will cause erroneous data [94]; the
dynamic detection range is limited by saturated and background signals;
comparison between distinct microarrays requires detailed knowledge and
the use of fancy normalization techniques; the most striking disadvantage
being the use of an already existing genome sequence [136].

The end of the microarray era started with the second-generation or next-
generation sequencing (NGS) technology [119]. As emphasized by Wang
and colleagues in [136], NGS based approaches directly determine the cDNA
sequence in contrast to microarray based methods that use already existing
genome information.
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Figure 2.9.: Microarray work flow.Public domain figure.
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Even if Sanger sequencing was used for cDNA [44] and expressed sequence
tag (EST) sequencing [16] the low throughput, high costs and being non-
quantitative led to the development of tag based methods such as SAGE
[130], cap analysis of gene expression (CAGE) [70, 121] and massively
parallel signature sequencing (MPSS) [17] which are high throughput and
provide precise gene expression levels. Nevertheless, these technologies
also suffer from limitations such us high costs, use of short read tags
that can not be uniquely mapped to the genome as well as non-isoform
specificity[136]. As a response to these demands, next generation sequencing
was developed.

Generally speaking, the process of next generation sequencing can be di-
vided into the following steps: template preparation, sequencing and imag-
ing, and data analysis. Grada and Weinbrecht in [47] describe these steps in
detail and provide additional information on this technology.

An outstanding review [78] of NGS technology was written by Mardis
summarizing the history of sequencing and providing a detailed list of
advantages of NGS over Sanger sequencing such as: The DNA to be se-
quenced is used to construct a library of fragments that have synthetic and
platform specific adapters covalently bound through DNA ligase making
cloning unnecessary. The fragment amplification is digital and happens in
situ on a solid surface, a bead or flat glass microfluidic channel rather than
in microtiter plate wells. Sequencing and detection are simultaneous pro-
cesses in NGS as opposed to Sanger sequencing. Additionally, the capacity
of these steps, of hundreds of thousands of billions of reactions, enables
the generation of huge data sets. Another crucial difference between the
two technologies is the read length which was determined by gel-related
factors in Sanger sequencing while in NGS it is a function of signal-to-noise
ratio. This is specific for each NGS platform [14, 23, 79] but in general
one can state that NGS produces shorter reads than Sanger sequencing.
Additional information on NGS technology and platforms can be found in
[56, 78, 82, 100, 104, 120].

Based on NGS, a new method was developed for the identification and
quantification of transcriptomes: RNA-seq (RNA-sequencing) [80, 88]. Gen-
erally speaking, the work flow of RNA-seq is composed of the following
steps [136]: RNA is converted to a cDNA library containing fragments with
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adapters attached to one or both ends; each molecule undergoes a high
throughput (single- or paired-end) sequencing step resulting in 30-400bp
long reads; alignment of the reads to a reference transcript or de novo as-
sembly which results in a genome-scale transcription map including the
transcriptional structure and the gene expression level. During the sequenc-
ing step, NGS technologies such as Ilumina IG (formally known as Solexa)
[14], Applied Biosystems SOLiD [23] and Roche 454 Life Sciences [79] are
used, although Illumina IG seems to be the most used [128] platform.

Some of the most noteworthy advantages [23, 40, 136] of RNA-seq are:
single-base level reconstruction of new and already known transcripts,
broad dynamic range and reproducibility.

The applications of such a powerful technique are wide and include [40]:
transcriptome profiling of non-model organisms [29, 133], model transcripts
identification [106], study of RNA modification [13, 98] and quantification
of allele-specific gene expression [108].

2.1.3. Proteomics

In order to include the next level of regulation into an integrative analysis
one has to interrogate not only genes but also their products: the proteins.
In this way, the analysis will capture the mechanisms of translational and
transcriptional regulation.

The term proteomics was defined [48] as the large-scale characterization
of the entire protein complement of a cell line, tissue, or organism and
began to be used starting with 1995 [10, 138, 142]. Nevertheless, studies that
deserved the name proteomics have been conducted since 1975, when the
two dimensional gel, developed by O’Farrell [93], was used in studies in
which mouse [67] and guinea pig [116] protein mappings were conducted.
An example of a two dimensional gel of proteins from Bacillus subtilis can
be seen in Figure 2.10.

A huge limitation of the two dimensional gel was that the proteins could
not be identified, just separated and visualized. One of the earliest attempts
to overcome this disadvantage was the Edman degradation [38] used for
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Figure 2.10.: Example of a two dimensional gel. Figure released under GNU Free Docu-
mentation License.

the sequencing of proteins. Later, the group around Stephen Kent devel-
oped microsequencing techniques [4, 5, 6] for electroblotted proteins which
represented a huge step forward.

The next major breakthrough in protein identification was the development
of the Mass Spectrometry (MS) technology [9]. This breakthrough was
achieved by the ability to quantify and identify proteins which was used in
the study of protein interaction networks [24] and by revealing the protein
composition of cellular organelles [11, 143]. Figure 2.11 shows a schematic
view of a simple mass-spectrometer.

In general, proteomics involves the identification of proteins from a mixture.
A detailed description of possible applications is given in [20]: identifica-
tion of the coding gene, computation of differential expression or further
characterization such as detection of post-translational modifications. Any
additional characterization is performed by MS with study dependent frac-
tionation: electrophoretic in case of intact proteins or chromatographic for
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peptides. The major MS platforms currently used are matrix-dependent laser
desorption/ionization (MALDI) and electrospray ionization. Downstream analy-
sis includes protein identification through search engines like Mascot [58]
which will generate statistically significant peptides matches but also pep-
tide quantification through isotope-labeling or label-free comparisons. As
examples we mention here the chemically labeling [107] (iTRAQ) and stable
isotope labeling with amino acids in culture (SILAC) [95].

Like the transcriptome and in contrast to the genome which is believed
to be more or less constant, the proteome is highly variable and changes
depending on time point and cell type resulting in a wide dynamic range
[27]. This variability is obvious when one thinks about a caterpillar and a
butterfly: they share the same genome but their appearances are distinct
due to differences in the proteome. These differences are not only due to
the translational process but also to post-translational modifications such
as: phosphorylation, ubiquitination, methylation, acetylation, glycosylation,
oxidation and nitrosylation.

Similar to the human genome project there also exists a human proteome
project (HPP). HPP is coordinated by the Human Proteome Organization
and it’s goal is to study all of the proteins produced by the human genome.
HPP has been divided into two subprojects: the chromosome-centric HPP
[96] and the biological/disease driven HPP [3].

Applications of proteomics include drug discovery such as crizotinib [127]
which is successfully used in the treatment of lung cancer, biomarkers
discovery for various diseases such as schizophrenia [71] or breast cancer
[76] and comparative proteogenomics [51] with focus on improving gene
prediction and identification of rare post-translational modifications.

Recently, two major studies of the human proteome were published [65,
141]. While Kim et al. report the identification of 17.294 proteins resulted
from high-resolution Fourier-transform mass-spectrometry profiling of 30

histologically normal samples, Wilhelm et al. present a mass-spectrometry-
based draft of the human proteome through the analysis of human tissues,
cell lines and body fluids.

25



2. Introduction

Figure 2.11.: Principals of a simple mass-spectrometer. Public domain figure.

2.1.4. Other Omics Data Sets

In the previous sections the most well studied omics data types were pre-
sented. Other omics data types include, but are not limited to metabolomics,
glycomics, lipidomics and localizomics. An overview of the various omics
data types is shown in Figure 2.12.

Similar to the other omics types, metabolomics refers to the study of the
complete set of metabolites or the metabolome. This set of metabolites consti-
tutes the response of the cell, tissue, organ or organism to the transcriptome
and proteome [63].

Lipidomics refers to the study of the complete set of lipids present at a
certain time point in a cell, tissue, organ or organism. Additionally, kinomics
have to be mentioned which study the complete kinome.

Through technological improvements new technologies will emerge that
will enable us to measure the complete microbiology and chemistry of an
organism. In this way an unprecedented view of a system under study will
be possible.
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Figure 2.12.: Overview of omics data. Figure adapted from [63].
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2.2. Integrative Data Analysis

Continuous technological improvements facilitate the availability of large
amounts of omics data, resulting from the simultaneous characterization on
different levels (genome, transcriptome, proteome and metabolome) of an
organism or an experimental condition. Regulatory mechanisms captured
in this way provide a complex multi-level view of the system under study.
In order to exploit the measured data to the maximum, one has to integrate
all available data sets into a single analysis framework. Methods that apply
analysis techniques simultaneously to more than one data set are called
integrative analysis methods. The data sets can characterize one organism
on different levels [39], or they can be measured on the same omics level
but on different organisms/platforms [7, 73].

Integrative analysis methods provide a deeper understanding of the system
under study through the meaningful combination of multi-level omics data.
The integrated omics data differ from study to study. There are studies that
integrate, for example, gene expression and methylation data [135], somatic
mutations, copy number and gene expression data[85], chromatin maps and
gene expression profiles [69], genotypic variation at DNA level and gene
expression data [22], CHIP-seq and RNA-seq data [45], transcriptomics and
proteomics data[28, 39, 74].

With transcriptomic and proteomic data, most analysis techniques are
based on the direct correlation between transcripts and proteins. Cox
and colleagues [28] present different approaches based on correlation and
clustering. Other correlation-based studies have also been performed in
[19, 21, 26, 49, 74, 87, 137]. Statistical methods based on correlations are
presented in [66, 91]. The premise of a direct correlation between transcripts
and proteins is not valid in eucaryotic organisms, due to post-transcriptional
and post-translational regulation [39, 55]. Other approaches are based on net-
work analysis [61, 62] and statistical methods such as analysis of variation,
clustering and gene set enrichment [54, 124, 134].

Piruzian et al. [101] revealed similarities in regulation at transcriptomic
and proteomic levels and identified potential key transcription factors and
new signaling pathways for psoriasis using a network based approach,
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which employed overconnection analysis, hidden node analysis and rank
aggregation.

Perco et al. [99] integrated transcriptomics and proteomics on the level of
protein interaction networks. They started with the modest overlap between
the data sets, which increased substantially on the level of protein interaction
networks and in this way, amplified the joint functional interpretation of
the omics data sets. In a study by Hahne and colleagues [54] analysis of
variation, k-means clustering and functional annotation were applied to
transcriptome and proteome data from salt-stressed B. subtilis cells. They
showed a well-coordinated induction of gene expression and changes of the
protein levels as the result of a severe salt shock.

Verhoef et al. characterized the changes associated with ρ-hydroxybenzoate
production in the engineered P. putida strain S12, integrating genes and
proteins as well as cluster and pathway analysis [134].

In [124], Takemasa et al. applied gene ontology analysis (GO) to transcrip-
tome and proteome data from human colorectal cancer samples, which led
to a better understanding of functional inference at the physiological level
and to potential drug targets.

Other integrative approaches can be found in [57, 63, 144] for omics data in
general and in [55] for transcriptome and proteome data in particular.

Omics data alone are not enough when it comes to the fundamental ques-
tions of molecular biology. In order to exploit the available data one has to
combine them in a meaningful way. Integrative data analysis addresses this
need.
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This chapter summarizes the used methods and presents the obtained re-
sults. In section 3.1 Reactome, the data base which provides the network
based pathway information and the R package graphite which was designed
to facilitate the interaction with Reactome through the use of R are intro-
duced.

3.1. The pathway data base Reactome

The focus of this section is the network analysis of Reactome. By employ-
ing the R package graphite, inspection of the Reactome pathways was
performed. Additionally, three repositories that provide data on human
protein/genetic/molecular interactions were investigated.

Within Reactome, we examined each pathway as well as the union of all
pathways in one single network. STRING, a protein-protein interaction data
base, proved to also (in addition to Reactome) possess the mathematical
properties needed for our further analysis. Taking into account two different
repositories would both enlarge the assessment power of the method and
provide a comparison framework.

In order to integrate the information from the two repositories, the nodes
of the networks have to be ranked. Two different measurement techniques
(dynamical importance and betweenness) are investigated and applied to
the largest strongly connected component of Reactome and STRING as well
as to the 166 strongly connected Reactome pathways.
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Figure 3.1.: Overview of the Reactome content: species, proteins, complexes, reactions and
pathways. Figure adapted from [103].

3.1.1. Using the R package graphite to access pathways
from Reactome

According to the Reactome homepage [103], Reactome [31] is a “free, open-
source, curated and peer reviewed pathway database”. It includes path-
ways for a number of organisms of interest such as Homo sapiens, P. falci-
parum, Sacharomyces cerevisiae, Mus musculus. Figure 3.1 shows the number
of proteins, complexes, reactions and pathways for each species. A detailed
overview of the species, proteins, complexes, reactions and pathways is
included in the Appendix A.1. At the time point of the analysis, Reactome
contained 1240 pathways for Homo sapiens.

The R package graphite [110] can be used to access Reactome pathways. The
package includes pathways from different databases including Reactome
(BioPax format), KEGG (KGML format), BioCarta (BioPax format), NCI
(BioPax format) and SPIKE. For the BioPax format a pathway is identified
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through the xml tag pathway. Additionally, a number of rules are applied
[111] to translate a Reactome pathway into a graphite pathway. The basic
conversion rules are shown in Figure 3.2. Additional simplification rules are
shown in A.2 and A.3. These rules are very important because the structure
of the converted pathway is the basis of our further analysis.

An example of a Reactome pathway from graphite can be seen bellow:

1 > reactome [[3]]

2 "Abacavir metabolism" pathway from reactome

3 Number of nodes = 4

4 Number of edges = 3

5 Type of identifiers = native

6 Retrieved on = 2014 -04 -02

7

8 >plot(graph.edgelist(as.matrix(reactome [[3]] @edges[,c

(1,2)]), directed = T))

The graphical display of the pathway can be achieved by using the plotting
function shown on line 8. The simplistic result of this call can be seen on
Figure 3.3

At the time point of the analysis, igraph included 1240 pathways for H. sapiens
while the most recent Reactome version (47) provides 1491 pathways.

1 > library("graphite")

2 > packageVersion("graphite")

3 [1] 1.8.1

4 > length(reactome)

5 [1] 1240

Email contact with Gabriele Sales (package maintainer) revealed that there
are no scripts used for the translation of Reactome pathways into graphite.
They used a combination of department intern tools that can not be shared.
However, we were offered the possibility of individual translation of po-
tentially not included (due to the new release of Reactome) pathways. It
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Figure 3.2.: Basic conversion rules from a Reactome pathway to a graphite network. Figure
addapted from [111].

was also mentioned that an update will be available together with the next
Bioconductor release.

3.1.2. Pathway Connectivity

In order to assess the dynamical importance of the pathways, the largest
eigenvalue of the adjacency matrix has to be a real valued number. Ac-
cording to the Perron-Frobenius Theory, this can be ensured if the graph
representing the pathway is strongly connected. A directed graph is called
strongly connected if there is a path in each direction between each pair of
vertices in the graph. A directed graph is weakly connected if replacing all of
its directed edges with undirected edges produces a connected (undirected)
graph. In other words, a directed weakly connected graph becomes strongly
connected when directed edges are replaced by undirected edges.

Employing the R package igraph [32] we assessed that from the 1280 path-
ways 166 are strongly connected and 902 are weekly connected using the
following script:

1 rm(list = ls())
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Figure 3.3.: Abacavir metabolism. Graphic output generated with the R package igraph.

2 library("graphite")

3 library("igraph")

4

5 isStronlyConnected = function(reactome.pathway){

6 edges = as.matrix(reactome.pathway@edges[,c(1,2)])

7 reactome.graph = graph.edgelist(edges , directed =

TRUE)

8 strongly.connected = is.connected(graph = reactome.

graph ,

9 mode = "strong")

10 return(strongly.connected)

11 }

12

13 pathways.sc = lapply(X = reactome , FUN =

isStronlyConnected)
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Statistical Summary of the Pathways in graphite.

The distribution of the number of nodes and edges in each pathway can be
seen in Figure 3.4. Additionally, the summary statistics for the number of
nodes and ages are shown:

1 Min. 1st Qu. Median Mean 3rd Qu. Max.

2 1.00 9.00 20.50 51.98 52.00 1874.00

3

4 Min. 1st Qu. Median Mean 3rd Qu. Max.

5 1.0 20.0 127.5 1631.0 731.0 89160.0
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Figure 3.4.: Distribution of nodes and edges per pathway as provided by the graphite
package.

Largest Strongly Connected Component

Since only 166 pathways were identified as strongly connected, we assess
the size of the largest strongly connected component if all pathways are
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combined into one large pathway. According to our analysis, this component
includes 4675 of the total 7166 vertices.

3.1.3. Inspection of Other Data Repositories for Interaction
Networks Using ARepA.

ARepA is an acronym for Automated Repository Acquisition, and is de-
signed as a command-line tool to easily fetch ’omics data from multiple
heterogeneous repositories and process them in a standardized way. It’s
main features include gene ID standardization and file standardization (R
readable, tab-delimited format). Currently, ARepA fetches human data from
the following repositories: STRING, BioGRID, GEO, and IntAct.

BioGrid is an online interaction repository with data compiled through com-
prehensive curation efforts. It includes protein and genetic interactions.

IntAct provides a freely available, open source database system and anal-
ysis tools for molecular interaction data. All interactions are derived from
literature curation or direct user submissions and are freely available.

STRING is a database of known and predicted protein interactions. The
interactions include direct (physical) and indirect (functional) associations;
they are derived from four sources: genomic context, high-throughput
experiments, conserved coexpression, previous knowledge. STRING quanti-
tatively integrates interaction data from these sources for a large number
of organisms, and transfers information between these organisms where
applicable.

The downloaded data files was imported into R. In order to compare the
networks from the different repositories, Table 3.1 was created:
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Reactome STRING IntAct BioGrid
graph directed undirected undirected directed
vertices 7166 16893 4975 6116

edges 280086 324075 9689 18768

weak 6954 16867 4518 5769

strong 4675 16867 4518 1

Table 3.1.: Comparison of different repositories.

The largest strongly connected components can be found in STRING and
Reactome. The interactions in STRING include known and predicted inter-
actions. This probably explains the huge difference in the number of nodes
of the largest strongly connected component.

3.1.4. Ranking methods

In order to be able to rank the nodes in the pathways we have to apply a
certain measurement technique. In this scenario we chose two methods: the
dynamical importance and the betweenness of nodes.

While the dynamical importance of a node focuses on the change in the
largest eigenvalue of the corresponding adjacency matrix upon it’s removal,
the betweenness is based on the number of shortest paths passing through
that node.

These two distinct techniques allow us to take into account different aspects
of the pathways under study and compare the obtained results.

Dynamical Importance

The dynamical importance as it was used here was defined and described
in [105]: For a network, Ik, the dynamical importance of node k is defined
as the change in the largest eigenvalue λ of the corresponding adjacency
matrix upon it’s removal (3.1).

Ik ≡
∆k
λ

(3.1)
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Additionally, Restrepo and colleagues ([105]) provide Îk, an approximation
for Ik, that decreases the computation time for large networks (3.2).

Îk =
vkuk

vTu
, (3.2)

where vk and uk are the kth components of the left and right eigenvectors v
and u corresponding to the largest eigenvalue λ.

According to the Perron-Frobenius theory [83], the dynamical importance of
the nodes under study is a real value (Ik ∈ R) iff the corresponding network
is strongly connected.

The implementation of the dynamical importance in R uses the function
eigen which computes the left and right eigenvectors of the adjacency matrix
of the network and it is shown bellow:

1 dynamicalImportance = function(g){

2 if(!is.igraph(g))

3 stop("Not an igraph object")

4

5 ad.mat = as.matrix(get.adjacency(g))

6 ad.mat = ad.mat + matrix(data = 1/(dim(ad.mat)[1]),

ncol = dim(ad.mat)[1],nrow = dim(ad.mat)[2])

7 r.ev = eigen(ad.mat)$vectors [,1]

8 l.ev = eigen(t(ad.mat))$vectors [,1]

9

10 tmp1 = abs(r.ev)*abs(l.ev)

11 tmp2 = t(abs(r.ev))%*%abs(l.ev)

12 dyn.imp = tmp1/as.numeric(tmp2)

13 names(dyn.imp) = V(g)$name

14 return(dyn.imp)

15 }

For very big graphs, like the merged Reactome graph, the computation time
is very high. One possible way of decreasing it would be to use the power
method (lines 27 and 28) to compute the left and right eigenvectors:
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1 myPowerCalcEV = function(mat){

2 accuracy = 10

3 b = as.matrix(runif(dim(mat)[2]),nrow = dim(mat)[2],

ncol = 1)

4 diff = rep(100,dim(mat)[2])

5 while( length(which(diff > 10^(-1*accuracy))) >1){

6 cat(".")

7 tmp = mat%*%b

8 b.new = (tmp)/(norm(tmp ,"f"))

9 diff = abs(b-b.new)

10 b = b.new

11 }

12 return(b)

13 }

14

15 dynamicalImportancePM = function(g){

16 if(!is.igraph(g))

17 stop("Not an igraph object")

18

19 ad.mat = as.matrix(get.adjacency(g))

20 ad.mat = ad.mat + matrix(data = 1/(dim(ad.mat)[1]),

ncol = dim(ad.mat)[1],nrow = dim(ad.mat)[2])

21 r.ev = myPowerCalcEV(ad.mat)

22 l.ev = myPowerCalcEV(t(ad.mat))

23

24 tmp1 = abs(r.ev)*abs(l.ev)

25 tmp2 = t(abs(r.ev))%*%abs(l.ev)

26 dyn.imp = tmp1/as.numeric(tmp2)

27 names(dyn.imp) = V(g)$name

28 return(dyn.imp)

29 }
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Betweenness

The betweenness Bk of node k was defined by L. Freeman [43] as the
number of shortest paths between any two nodes i and j going through
node k divided by the total number of shortest paths between i and j.

Bk = ∑
i,j 6=k

#spikj

#spij
(3.3)

The R package igraph [32] provides the functionality needed to compute the
betweenness.

In summary, using the P package igraph and the self implemented function
to compute the dynamical importance, the two network centrality measures
can be computed as:

1 dyn.imp.reactome = dynamicalImportancePM(reactome.as.

igraph)

2 bet.ness.reactome = betweenness(reactome.as.igraph)

3.1.5. Preliminary Results

The dynamical importance and betweenness of the largest strongly con-
nected components from Reactome and STRING as well as the strongly
connected pathways from Reactome were computed.

For the largest strongly connected component in Reactome and STRING,
the dynamical importance of each node is plotted against the square root of
the product between the in and out degree of that node. Figure 3.5 shows
the results for Reactome while Figure 3.6 presents the results for STRING.

We notice that the dynamical importance displays a more linear dependence
on the geometric mean of the in and out degrees of the nodes. In contrast, the
betweenness shows a less linear dependence. It seems that the betweenness
does not directly depend on the degrees of the nodes.
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Figure 3.5.: Reactome: dynamical importance and betweenness.

Figure 3.7 shows the largest dynamical importance and the largest between-
ness of each of the 166 strongly connected pathways in Reactome plotted
against the number of nodes and edges in that pathway.

In Figures 3.5,3.7 and 3.6 the plotted betweenness is one higher than the
computed one. The betweenness has high values and by adding one we do
not change the conclusions drown from the figures. But adding one helps
to visualize a betweenness equal to zero on a logarithmic axis.

In conclusion, there are nodes with betweenness equal to zero and there are
pathways with the largest betweenness equal to zero. Such pathways are
shown in Figure 3.8.
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Figure 3.6.: STRING DB: dynamical importance and betweenness.
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Figure 3.7.: The largest dynamical importance and betweenness of the strongly connected
pathways in Reactome.
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By analyzing the shown networks, the reason for the zero betweenness is
the high connectivity of the networks. The shortest path never has to go
through a node: Due to the high connectivity there are always alternatives
that are shorter.

In such cases we will use the in and/or out degree of the nodes as a measure
to rank them. This will ensure that the nodes are equally important in their
pathway, but the larger a pathway of this kind is, the more important a node
will be.
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Figure 3.8.: The largest dynamical importance and betweenness of the strongly connected
pathways in Reactome.
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3.2. Multiple Co-Inertia Analysis and the
TGF-beta receptor signaling in EMT Pathway

This section is mostly dedicated to the deeper understanding of the multiple
co-inertia analysis (MCIA). Additionally, the scoring resulting from the
betweenness and dynamical importance were compared on the TGF-beta
receptor signaling in EMT (epithelial to mesenchymal transition) pathway.

3.2.1. Multiple Co-Inertia Analysis

MCIA is an integrative analysis method based on an ordination method
like principal component analysis (PCA), correspondence analysis (CA) or
non-symmetric correspondence analysis (NSCA) that transform the data
into a comparable space.

Ordination methods

The mathematical analysis starts with the investigation of the statistical
triplet (X, Q, D). X is the matrix containing the measurements of genes
(rows) in different conditions (columns). We assume X to have n rows and
q columns. Q (p× p) is an inner product used to measure distance between
n points in Rp. D (n× n) is a inner product used to measure relationships
between p points in Rn.

The purpose of the analysis determines Q and D. In case of the centered
PCA applied on the covariance matrix of X, Q = Ip the p× p identity matrix
and D = 1

n In the n× n identity matrix. Additionally, X has to be normed
by the columns mean: X = [xij − m(xj)], where m(xj) is the mean of the
jth column. If PCA is carried out on the correlation matrix of X than Q

and D remain unchanged and X =
[

xij−m(xj)

sd(xj)

]
, where sd(xj) is the standard

deviation of the jth column of X.
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In case of the NSCA, Q is a diagonal p × p matrix containing the row
weights ri. D is the n × n identity matrix showing equal weights for all
columns. X =

[
pi j
rj
− cj

]
, where pij =

xij
N , N is the sum over all entries in

X. The row weights ri =
xi+
N , where xi+ the row sum. The column weights

cj =
x+j
N , where x+j the column sum.

In order to visualize the rows and columns of X in the same space, a duality
plot is computed. For this, both rows and columns are projected into a
smaller hyperspace following the steps:

• Diagonalization of the inertia operators WKQ = XTDXQ and WKD =
XQXTD

Q = ETE D = BTB Cholesky decomposition

Ω = BXT ⇒ ΩTΩ = EXTBTBXET ⇒ ΩTΩ = VΛVT

Ω = BXT ⇒ ΩΩT = BXETEXTBT ⇒ ΩΩT = UΛUT

• Computation of principal axis and principal components

F = ETV A = E−1V A are the principal axis

G = BTU K = B−1U K are principal components

• Projection into the smaller hyperspace

L = XQA ... projection of the rows of X onto the principal axis

C = XTDK ... projection of the columns of X onto the principal components

3.2.2. Multiple Co-Inertia Analysis - Mathematical
Description

MCIA operates on K statistical triplets (Xk, Qk, D) with k = 1, ..., K. Xk are
a set of transformed matrices, Qk are a set of (pk × pk) diagonal matrices
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containing the row weights of Xk. D is a n× n identity matrix. From all
matrices Xk a matrix X is computed: X = [ω1X1|ω2X2|...|ωK, XK], where ωk
is the inverse sum of the eigenvalues of XK.

MCIA is defined as the analysis that computes k vectors u1
k in Rpk and an

auxiliary variable v1, D normed in Rn, that maximize:

g(u1, u2, ..., uK, v) =
K

∑
k=1

ωk(XkQkuk|v)2
D

In a second step, the vectors u2
k normed in Rpk and the auxiliary variable v2

normed in Rn that maximize the same function g and are orthogonal to u1
k

and v1 are computed.

In the s step, the function g is maximized and:

(vj|vs)D = 0 and (uj
k|u

s
k)Qpk

= 0 (1 ≤ j < s, 1 ≤ k < K)

First order solution

For a fixed vector v, D normed in Rn, the use of the Cauchy-Schwartz
inequality shows that (XkQkuk|v)2

D is maximized by ||XT
k Dv||2Qk

for uk =
XT

k Dv
||XT

k Dv||Qk
.

It can be shown that since v maximizes g it also maximizes:

K

∑
k=1

ωk||XkQkv||2Qk
= vTD

(
K

∑
k=1

ωkWkD

)
v

v is the first D normed principal component of the matrix X. Additionally,

the axes u1
k, Q normed in Rpk are the normalized vectors XT

k Dv
||XT

k Dv||Qk
.
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Second order solution

• Consider P1
k , the Qk orthogonal projections of u1

k into the vector space
of Rpk .

• Define a new matrix Z = [Z1, Z2, ..., ZK], where Zk = Xk − XkP1
k

T

• Compute the MCIA first order solution for the matrix Z.

S order solution

• Consider Ps−1
k , the Qk orthogonal projections of us−1

k into the vector
space of Rpk .

• Define a new matrix Z = [Z1, Z2, ..., ZK], where Zk = Xk − XkPs−1
k

T

• Compute the MCIA first order solution for the matrix Z.

3.2.3. TGF-beta receptor signaling in EMT Pathway

In order to examine in more detail the effects of the ranking imposed by the
two selected methods we apply them to the Reactome pathway TGF-beta
receptor signaling in EMT. The structure of the network can be seen Figure 3.9.
We notice that this is a strongly connected network with 15 nodes and 313

edges. We chose this pathway because it is a strongly connected, cancer
related pathway with a small enough number of nodes so that it can be
displayed easily.

A short description of the pathway is available in Reactome: “In normal cells
and in the early stages of cancer development, signaling by TGF-beta plays
a tumor suppressive role, as SMAD2/3:SMAD4-mediated transcription
inhibits cell division by downregulating MYC oncogene transcription and
stimulating transcription of CDKN2B tumor suppressor gene.

In advanced cancers however, TGF-beta signaling promotes metastasis by
stimulating epithelial to mesenchymal transition (EMT). TGFBR1 is recruited
to tight junctions by binding PARD6A, a component of tight junctions. After
TGF-beta stimulation, activated TGFBR2 binds TGFBR1 at tight junctions,
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TGF−beta receptor signaling 
 in EMT (epithelial to mesenchymal transition)

TGFB1
UBB

TGFBR1

TGFBR2

RHOA

FKBP1A

RPS27A

UBA52

PRKCZ

ARHGEF18

PARD3 SMURF1

PARD6A

CGN

F11R

Figure 3.9.: The TGF-beta receptor signaling in EMT pathway

and phosphorylates both TGFBR1 and PARD6A. Phosphorylated PARD6A
recruits SMURF1 to tight junctions.

SMURF1 is able to ubiquitinate RHOA, a component of tight junctions
needed for tight junction maintenance, leading to disassembly of tight
junctions, an important step in EMT.”

The results of the ranking based on dynamical importance and betweenness
can be seen in Tables 3.3 and 3.2.

We notice that the highest ranked gene is in both cases TGFBR1. Addition-
ally, the dynamical importance ranks 7 genes as second: RHOA, PRKCZ,
ARHGEF18, PARD3, PARD6A, CGN and F11R. The betweenness ranks only
CGH second followed by the other 6 genes ranked second by the dynamical
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Figure 3.10.: Ranking of the nodes in the TGF-beta receptor signaling in EMT.

importance. Both methods rank TGFBR2 and TGFB1 next. These two genes
are equally important based on their betweenness but not to their dynamical
importance. The rest of the genes have a betweenness of zero but a slightly
lower dynamical importance as the last ranked gene. The betweenness of
zero is caused by the smaller number of in/out edges compared to the other
genes.

The rankings derived from the betweenness and dynamical importance
scores are very similar, especially for the high ranked genes. For the low
ranked genes it seems that the betweenness tends to assign scores equal to
zero while the dynamical importance still provides a viable ranking. This
relationship can also be seen in the dependence of the ranking scores on the
geometric mean of the in and out degrees in Figure3.10.
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Rank Gene dyn. imp.
1 TGFBR1 0.07227

2 RHOA 0.07206

2 PRKCZ 0.07206

2 ARHGEF18 0.07206

2 PARD3 0.07206

2 PARD6A 0.07206

2 CGN 0.07206

2 F11R 0.07206

3 TGFBR2 0.07084

4 TGFB1 0.07077

5 SMURF1 0.06521

6 RPS27A 0.06038

7 UBB 0.05966

7 UBA52 0.05966

8 FKBP1A 0.03679

Table 3.2.: Dynamical importance.

Rank Gene betweenness
1 TGFBR1 0.84809

2 CGN 0.83367

3 RHOA 0.82891

3 PRKCZ 0.82891

3 ARHGEF18 0.82891

3 PARD3 0.82891

3 PARD6A 0.82891

3 F11R 0.82891

4 TGFB1 0.6724

4 TGFBR2 0.6724

5 UBB 0

5 FKBP1A 0

5 RPS27A 0

5 UBA52 0

5 SMURF1 0

Table 3.3.: Betweenness.
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3.3. Eigenanalysis of mRNA and RNAseq Omics
Data

This section was dedicated to applying the multiple co-inertia analysis
(MCIA) to The Cancer Genome Atlas (TCGA) data and downstream integra-
tive pathway enrichment analysis based on the already derived dynamical
importance and betweenness scores.

3.3.1. The Cancer Genome Atlas data

Gene expression of tumors from ovarian cancer patients were profiled using
Affymetrix customized platform HG U133 plus 2.0 and RNA-sequencing
on Illumina HiSeq platform. Data were downloaded from the NCI-TCGA
data portal. The Affymetrix data was normalized and summarized by
lowess. A pre-processing pipeline (RSEM) was applied to the Illumina
RNA-sequencing data to determine the transcript expression levels. The
alignment and gene expression quantification in RNAseq were obtained by
MapSplice and RSEM. In our analysis missing values were replaced with a
positive value far smaller than the lowest expression value in the dataset
(10e-10) and then, the expression values were log10 transformed. 266 out
of 489 patient samples were present across both datasets and included in
the analysis. Only genes mapping to an official gene symbol were retained
and duplicated genes were excluded. In the RNA sequencing dataset 20.135

genes were detected and those with more than 15 missing values were
removed, yielding 12.042 and 15,840 gene expressions in Affymetrix and
RNASeq respectively.

3.3.2. Multiple Co-inertia Analysis

A typical omics dataset is a matrix where the number of features exceeds
the number of measurements (row and columns of the matrix, respectively).
Prerequisite for MCIA is a set of tables where either features or measure-
ments are matched and have equal weights. MCIA is performed in two
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Figure 3.11.: MCIA result
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steps to represent features or measurements as points along several axes.
In the first step, a one table ordination method, such as PCA, COA or non-
symmetric correspondence analysis is applied on each dataset separately,
which transforms data into the same comparable space.

The second step is MCIA. MCIA maximizes the correlation of each individ-
ual table with a consensus reference structure through synthetic analysis,
which finds a set of reference axes sequentially. In order to find the solution
for the first dimension, MCIA determines a single reference axis (referred
to as common component ν1) and a set of auxiliary axes for each table
(u11 . . . u1K) so as to maximize the sum of the co-variances between each of
the auxiliary axes u1k and the ν1. The first order solutions of u11 to u1K and
ν1 are given by the first principal component of the concatenated weighted
matrix. The subsequent solutions are found with residual matrices from
the calculation of the first order solution with the constraint that the rest
order axes are orthogonal with the previous sets. These steps are repeated
so that the desired number of axes (principal components, dimensions) are
generated.

As a result, MCIA provides a simultaneous ordination of columns (measure-
ments) and rows (features) of multiple tables within the same hyperspace,
with features or measurements sharing similar trends will be closely pro-
jected.

3.3.3. Analysis Results

In this section, the results of MCIA and of the integrated pathway enrich-
ment analysis will be shown.

MCIA

Figure 3.11 shows the results of MCIA. The upper left plot shows all sam-
ples projected onto the common MCIA space. One sample is represented
by a circle (coordinates in the microarray space) connected to a triangle
(coordinates in the RNAseq space). The color red represents the samples
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where there was a recurrence after chemotherapy while black samples did
not show recurrence.

The upper right plot shows the variable space. Here, each gene in the two
data set is shown. The triangles code the genes in the RNAseq data and the
circles code genes in the microarray set. It looks like the RNAseq dominates
the microarray data.

The lower left plot shows the eigenvalues of the concatenated matrix. We
notice that the first and highest eigenvalue only accounts for 12 % of
the variance. The lower right plot shows the pseudoeigenvalues of the
microarray and RNAseq data.

Integrated pathway enrichment analysis

In order to perform the integrated pathway enrichment analysis the con-
tribution of each gene to the computed MCIA axis has to be extracted.
Additionally, the scores computed by the dynamical importance and/or
betweenness are needed. These will account for the overall importance of
each gene in the already annotated Reactome pathways.

Figure 3.12 shows histograms of the contribution of each microarray gene
(upper left plot) and RNAseq gene (upper right plot) as well as the dynami-
cal importance (lower left) and betweenness (lower right) scores.

All scores have been normalized and transformed so that they map to the
same range and can be multiplied with each other. The normalization was
done by dividing all scores through the maximum and adding one. In this
way all scores are in the interval [1, 2].

We notice that there is a difference in the histograms of the MCIA scores.
The mRNA MCIA scores seem to be higher since more RNAseq features
have low values as compared to the number of mRNA features with values
in the same range. It also noteworthy that the betweenness scores are lower
than the dynamical importance scores.

After the MCIA scores were combined with the dynamical importance and
betweenness scores the top 5% genes were used for pathway enrichment
analysis. The same analysis was also performed on only the MCIA top 5%
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Figure 3.12.: Histograms of MCIA, dynamical importance and betweenness scores.
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ranked genes. These results can be seen in Figure 3.13, 3.14 and 3.15. The
colors of the bars code for the p value and a map of color-to-p value is
shown on the right of each plot. The length of the bars show the number of
genes in a pathway.

We notice that through the combination of the MCIA scores with the network
scores, the number of enriched pathways increases. This means that through
the multiplication with the dynamical importance and the betweenness
scores genes that were not so important in a pathway according to MCIA
become important and lead to the enrichment of that pathway.

Additionally, it is also noteworthy that the inclusion of the betweenness
scores yields results that are closer to the results form the MCIA alone. This
is not the case for the inclusion of the dynamical importance scores. This
is due to the way the two network scores influence each gene. Form these
results it seems that the betweenness scores and the MCIA rank the genes
in a similar way. On the other hand, the dynamical importance seems to
complement the MCIA results.

A detailed examination of the results of the MCIA scores alone (Figure 3.13)
show different enriched pathways such as: signal tranduction, FGFR based
pathways, G-alpha signaling pathways, various metabolic pathways and
GPRC based pathways. A large amount of the pathways are based on the
FGF family.According to Reactome, Signaling through FGFR is summarized
as: “The 22 members of the fibroblast growth factor (FGF) family of growth
factors mediate their cellular responses by binding to and activating the
different isoforms encoded by the four receptor tyrosine kinases (RTKs)
designated FGFR1, FGFR2, FGFR3 and FGFR4. These receptors are key
regulators of several developmental processes in which cell fate and differ-
entiation to various tissue lineages are determined. Unlike other growth
factors, FGFs act in concert with heparin or heparan sulfate proteoglycan
(HSPG) to activate FGFRs and to induce the pleiotropic responses that lead
to the variety of cellular responses induced by this large family of growth fac-
tors. An alternative, FGF-independent, source of FGFR activation originates
from the interaction with cell adhesion molecules, typically in the context of
interactions on neural cell membranes and is crucial for neuronal survival
and development. Upon ligand binding, receptor dimers are formed and
their intrinsic tyrosine kinase is activate causing phosphorylation of multiple
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Figure 3.13.: Pathway analysis of the MCIA top 5% ranked genes.
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tyrosine residues on the receptors. These then serve as docking sites for
the recruitment of SH2 (src homology-2) or PTB (phosphotyrosine binding)
domains of adaptors, docking proteins or signaling enzymes. Signaling
complexes are assembled and recruited to the active receptors resulting in a
cascade of phosphorylation events. This leads to stimulation of intracellular
signaling pathways that control cell proliferation, cell differentiation, cell
migration, cell survival and cell shape, depending on the cell type or stage
of maturation.”

Additionally, G alpha signaling events such as: G alpha (i) signaling events
(“The classical signalling mechanism for G alpha (i) is inhibition of the cAMP
dependent pathway through inhibition of adenylate cyclase. Decreased
production of cAMP from ATP results in decreased activity of cAMP-
dependent protein kinases.”), G alpha (s) signaling events (“The general
function of the G alpha (s) subunit (Gs) is to activate adenylate cyclase,
which in turn produces cAMP, leading to the activation of cAMP-dependent
protein kinases (often referred to collectively as Protein Kinase A). The
signal from the ligand-stimulated GPCR is amplified because the receptor
can activate several Gs heterotrimers before it is inactivated.”) and G alpha
(q) signaling events (“The classic signalling route for G alpha (q) is activation
of phospholipase C beta thereby triggering phosphoinositide hydrolysis,
calcium mobilization and protein kinase C activation. This provides a path
to calcium-regulated kinases and phosphatases, GEFs, MAP kinase cassettes
and other proteins that mediate cellular responses ranging from granule
secretion, integrin activation, and aggregation in platelets. Gq participates in
many other signalling events including direct interaction with RhoGEFs that
stimulate RhoA activity and inhibition of PI3K. Both in vitro and in vivo,
the G-protein Gq seems to be the predominant mediator of the activation of
platelets.”) were enriched.

The enriched pathways based on the MCIA and the betweenness scores also
include signaling through FGFR, but in addition other pathways such as:
signaling by EGFR, constitutive PI3K/AKT Signaling in cancer and extracel-
lular matrix organization were enriched. Signaling by EGFR is described as:
“The epidermal growth factor receptor (EGFR) is one member of the ERBB
family of transmembrane glycoprotein tyrosine receptor kinases (RTK).
Binding of EGFR to its ligands induces conformational change that unmasks
the dimerization interface in the extracellular domain of EGFR, leading to
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Figure 3.14.: Integrated pathway analysis of MCIA and betweenness scores
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receptor homo- or heterodimerization at the cell surface. Dimerization of
the extracellular regions of EGFR triggers additional conformational change
of the cytoplasmic EGFR regions, enabling the kinase domains of two EGFR
molecules to achieve the catalytically active conformation. Ligand activated
EGFR dimers trans-autophosphorylate on tyrosine residues in the cytoplas-
mic tail of the receptor. Phosphorylated tyrosines serve as binding sites for
the recruitment of signal transducers and activators of intracellular sub-
strates, which then stimulate intracellular signal transduction cascades that
are involved in regulating cellular proliferation, differentiation, and survival.
Recruitment of complexes containing GRB2 and SOS1 to phosphorylated
EGFR dimers either directly, through phosphotyrosine residues that serve
as GRB2 docking sites, or indirectly, through SHC1 recruitment, promotes
GDP to GTP exchange on RAS, resulting in the activation of RAF/MAP
kinase cascade. Binding of complexes of GRB2 and GAB1 to phosphorylated
EGFR dimers leads to formation of the active PI3K complex, conversion of
PIP2 into PIP3, and activation of AKT signaling. Phospholipase C-gamma1

(PLCG1) can also be recruited directly, through EGFR phosphotyrosine
residues that serve as PLCG1 docking sites, which leads to PLCG1 phospho-
rylation by EGFR and activation of DAG and IP3 signaling. EGFR signaling
is downregulated by the action of ubiquitin ligase CBL. CBL binds directly
to the phosphorylated EGFR dimer through the phosphotyrosine Y1045 in
the C-tail of EGFR, and after CBL is phosphorylated by EGFR, it becomes
active and ubiquitinates phosphorylated EGFR dimers, targeting them for
degradation.”

One of the most encouraging pathway is constitutive PI3K/AKT Signaling
in cancer which is described in Reactome as: “Class IA PI3K is a heterodimer
of a p85 regulatory subunit (encoded by PIK3R1, PIK3R2 or PIK3R3) and
a p110 catalytic subunit (encoded by PIK3CA, PIK3CB or PIK3CD). In the
absence of activating signals, the regulatory subunit stabilizes the catalytic
subunit while inhibiting its activity. The complex becomes activated when
extracellular signals stimulate the phosphorylation of the cytoplasmic do-
mains of transmembrane receptors or receptor-associated proteins. The p85

regulatory subunit binds phosphorylated motifs of activator proteins, which
induces a conformational change that relieves p85-mediated inhibition of
the p110 catalytic subunit and enables PI3K to phosphorylate PIP2 to form
PIP3. The phosphoinositide kinase activity of PI3K is opposed by the phos-
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phoinositide phosphatase activity of PTEN. PIP3 acts as a messenger that
recruits PDPK1 (PDK1) and AKT (AKT1, AKT2 or AKT3) to the plasma
membrane. PDPK1 also possesses a low affinity for PIP2, so small amounts
of PDPK1 are always present at the membrane. Binding of AKT to PIP3

induces a conformational change that enables TORC2 complex to phospho-
rylate AKT at a conserved serine residue (S473 in AKT1). Phosphorylation
at the serine residue enables AKT to bind to PDPK1 and exposes a con-
served threonine residue (T308) that is phosphorylated by PDPK1. AKT
phosphorylated at both serine and threonine residues dissociates from the
plasma membrane and acts as a serine/threonine kinase that phosphory-
lates a number of cytosolic and nuclear targets involved in regulation of cell
metabolism, survival and gene expression.

Signaling by PI3K/AKT is frequently constitutively activated in cancer. This
activation can be via gain-of-function mutations in PI3KCA (encoding cat-
alytic subunit p110alpha), PIK3R1 (encoding regulatory subunit p85alpha)
and AKT1. The PI3K/AKT pathway can also be constitutively activated by
loss-of-function mutations in tumor suppressor genes such as PTEN.

Gain-of-function mutations activate PI3K signaling by diverse mechanisms.
Mutations affecting the helical domain of PIK3CA and mutations affecting
nSH2 and iSH2 domains of PIK3R1 impair inhibitory interactions between
these two subunits while preserving their association. Mutations in the
catalytic domain of PIK3CA enable the kinase to achieve an active confor-
mation. PI3K complexes with gain-of-function mutations therefore produce
PIP3 and activate downstream AKT in the absence of growth factors. While
AKT1 gene copy number, expression level and phosphorylation are often
increased in cancer, only one low frequency point mutation has been repeat-
edly reported in cancer and functionally studied. This mutation represents
a substitution of a glutamic acid residue with lysine at position 17 of AKT1,
and acts by enabling AKT1 to bind PIP2. PIP2-bound AKT1 is phospho-
rylated by TORC2 complex and by PDPK1 that is always present at the
plasma membrane, due to low affinity for PIP2. Therefore, E17K substitution
abrogates the need for PI3K in AKT1 activation.

Loss-of-function mutations affecting the phosphatase domain of PTEN
are frequently found in sporadic cancers, as well as in PTEN hamartoma
tumor syndromes (PHTS). PTEN can also be inactivated by gene deletion
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or epigenetic silencing, or indirectly by overexpression of microRNAs that
target PTEN mRNA (Huse et al. 2009). Cells with deficient PTEN function
have increased levels of PIP3, and therefore increased AKT activity.

Because of their clear involvement in human cancers, PI3K and AKT are tar-
gets of considerable interest in the development of small molecule inhibitors.
Although none of the currently available inhibitors display preference for
mutant variants of PIK3CA or AKT, several inhibitors targeting the wild-
type kinases are undergoing clinical trials. These include dual PI3K/mTOR
inhibitors, class I PI3K inhibitors, pan-PI3K inhibitors, and pan-AKT in-
hibitors. While none have yet been approved for clinical use, these agents
show promise for future therapeutics. In addition, isoform-specific PI3K
and AKT inhibitors are currently being developed, and may provide more
specific treatments along with reduced side-effects.” In addition to the
FGFR and G alpha signaling events, when the MCIA scores are combined
with the dynamical importance scores other promising pathways are found:
beta-catenin independent WNT signaling which is described in Reactome
as “Humans and mice have 19 identified WNT proteins that were originally
classified as either ’canonical’ or ’non-canonical’ depending upon whether
they were able to transform the mouse mammary epithelial cell line C57MG
and to induce secondary axis formation in Xenopus. So-called canonical
WNTs, including Wnt1, 3, 3a and 7, initiate signaling pathways that desta-
bilize the destruction complex and allow beta-catenin to accumulate and
translocate to the nucleus where it promotes transcription. Non-canonical
WNTs, including Wnt 2, 4, 5a, 5b, 6, 7b, and Wnt11 activate beta-catenin-
independent responses that regulate many aspects of morphogenesis and
development, often by impinging on the cytoskeleton. Two of the main
beta-catenin-independent pathways are the Planar Cell Polarity (PCP) path-
way, which controls the establishment of polarity in the plane of a field of
cells, and the WNT/Ca2+ pathway, which promotes the release of intracel-
lular calcium and regulates numerous downstream effectors.”, chemokine
receptors bind chemokines “Chemokine receptors are cytokine receptors
found on the surface of certain cells, which interact with a type of cytokine
called a chemokine. Following interaction, these receptors trigger a flux of
intracellular calcium which leads to chemotaxis. Chemokine receptors are
divided into different families, CXC chemokine receptors, CC chemokine
receptors, CX3C chemokine receptors and XC chemokine receptors that
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Figure 3.15.: Integrated pathway analysis of MCIA and dynamical importance scores
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correspond to the 4 distinct subfamilies of chemokines they bind.”, inte-
grin cell surface interactions “The extracellular matrix (ECM) is a network
of macro-molecules that underlies all epithelia and endothelia and that
surrounds all connective tissue cells. This matrix provides the mechanical
strength and also influences the behavior and differentiation state of cells
in contact with it. The ECM are diverse in composition, but they gener-
ally comprise a mixture of fibrillar proteins, polysaccharides synthesized,
secreted and organized by neighboring cells. Collagens, fibronectin, and
laminins are the principal components involved in cell matrix interactions;
other components, such as vitronectin, thrombospondin, and osteopontin,
although less abundant, are also important adhesive molecules.

Integrins are the receptors that mediate cell adhesion to ECM. Integrins
consists of one alpha and one beta subunit forming a noncovalently bound
heterodimer. 18 alpha and 8 beta subunits have been identified in humans
that combine to form 24 different receptors.

The integrin dimers can be broadly divided into three families consisting of
the beta1, beta2/beta7, and beta3/alphaV integrins. beta1 associates with 12

alpha-subunits and can be further divided into RGD-, collagen-, or laminin
binding and the related alpha4/alpha9 integrins that recognise both matrix
and vascular ligands. beta2/beta7 integrins are restricted to leukocytes
and mediate cell-cell rather than cell-matrix interactions, although some
recognize fibrinogen. The beta3/alphaV family members are all RGD re-
ceptors and comprise aIIbb3, an important receptor on platelets, and the
remaining b-subunits, which all associate with alphaV. It is the collagen
receptors and leukocyte-specific integrins that contain alpha A-domains.”
and gastrin-CREB signaling via PKC and MAPK “Gastrin is a hormone
whose main function is to stimulate secretion of hydrochloric acid by the
gastric mucosa, which results in gastrin formation inhibition. This hormone
also acts as a mitogenic factor for gastrointestinal epithelial cells. Gastrin has
two biologically active peptide forms, G34 and G17.Gastrin gene expression
is upregulated in both a number of pre-malignant conditions and in estab-
lished cancer through a variety of mechanisms. Depending on the tissue
where it is expressed and the level of expression, differential processing of
the polypeptide product leads to the production of different biologically
active peptides. In turn, acting through the classical gastrin cholecystokinin
B receptor CCK-BR, its isoforms and alternative receptors, these peptides
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trigger signalling pathways which influence the expression of downstream
genes that affect cell survival, angiogenesis and invasion”
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3.4. Eigenanalysis of Tumor and Stroma Omics
Data

The availability of multiple omics datasets from the same sample allows for
a more complete understanding of pathway behavior in human diseases.
However, pathway discovery is often based on flat gene lists which com-
pletely ignore the network topology of the pathways. Many methods use
variations of Fisher’s Exact Test to determine a data set’s enrichment for
a pathway while others consider only the ranks of the genes. More recent
methods provide an approach to account for pathway structure but are
computationally intensive and limited in their application. We propose an
integrated pathway analysis approach where we combine feature (genes,
proteins, CNV, etc.) scores from a multivariate analysis with an importance
score for each feature in each pathway. These scores take into account the
significance of each feature in the measured data sets as well as their topo-
logical importance within each pathway. We use two different measures
for a feature’s topological importance in a pathway and present results
comparing enrichment in tumor and stroma microarray data from high
grade serous ovarian cancer.

3.4.1. Motivation

The goal is to overcome the disadvantages of using flat gene lists for gene
set enrichment analysis by accounting for the network topology of the
pathways. The network topology plays a crucial role when computing the
enrichment score of the toy pathway shown in Figure 3.16. The enrichment
score should be higher when C and D are active as opposed to when F and
G are active since the information flow through C and D is the largest in
the network. This can be achieved by ranking the nodes according to their
network centrality.
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Figure 3.16.: Toy example: effect of network position of activated genes.

3.4.2. Data sets

Affymetrix U133 Plus 2.0 microarrays were used to analyse 38 tumor and
stroma samples from high grade serous ovarian cancer [86]. For the pathway
analysis we employed the curated pathway data base Reactome [31] which
includes 1389 pathways and 6773 genes for homo sapiens.

3.4.3. Workflow

The work flow of the analysis is divided in two parts. In the first part
(see Figure 3.18) the enrichment of the pathways is computed through the
combination of the MCIA and the network gene scores for each pathway. In
the second part the connectivity between the enriched pathways is computed
through the combination of the MCIA scores with the network scores from
the whole Reactome.

Pathway Scores

In order to compute the pathway enrichment first the MCIA has to be
applied to the tumor and stroma data sets. The results of the analysis can be
seen in Figure 3.17. In this figure, each sample is represented by a segment.
Each end of a segment represents a data set. The blue circle represents the
profile of the sample in the tumor data set and the brown triangle represents
the profile of the sample in the stroma data set. The shorter the segment is,

68



3.4. Eigenanalysis of Tumor and Stroma Omics Data

Figure 3.17.: MCIA result of the tumor and stroma data.
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Figure 3.18.: Workflow of the Eigenanlysis

the better agree the tumor and the stroma profile. If the profiles would be
identical the length of the segment would be zero. We notice that there are
sample with a high agreement between the tumor and the stroma profile
(22,34,13) but there are also sample where the two profiles are very different
(33,21,27).

Additionally, for each pathway in Reactome, the dynamical importance and
the betweenness scores are computed. The R script written for this task can
be found in the Appendix A.1. After all scores are computed these need to
be combined. The combination of the scores was done in different ways:
multiplication, correlation and spearman correlation. The R script used for
the score combination was was included in the Appendix A.2.

A boxplot for the combined scores shows how these vary depending on the
combination and normalization method as well as on the MCIA axis used
for scoring. Each subplot of Figure 3.19 shows the influence of one from the
ten MCIA axis used for the analysis. Additionally, in each subplot one can
see the boxplots of (in this order):
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Figure 3.19.: Boxplots of pathway scores computed by multiplication of the normalized
(through the sum or the maximum value) MCIA scores by the dynamical
importance and the betweenness scores.

• tdins: tumor scores combined with the dynamical importance, normal-
ized by the sum of the scores

• tbens: tumor scores combined with the betweenness, normalized by
the sum of the scores

• tdinm: tumor scores combined with the dynamical importance, nor-
malized by the maximum value of the scores

• tbenm: tumor scores combined with the betweenness, normalized by
the maximum value of the scores

• sdins: stroma scores combined with the dynamical importance, nor-
malized by the sum of the scores

• sbens: stroma scores combined with the betweenness, normalized by
the sum of the scores

• sdinm: stroma scores combined with the dynamical importance, nor-
malized by the maximum value of the scores

• sbenm: stroma scores combined with the betweenness, normalized by
the maximum value of the scores

It is obvious that when the scores are combined through multiplication,
there is a clear difference in the range of the pathway enrichment scores
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between the tumor and the stroma data. This difference can not be observed
when the pathway enrichment is computed through pearson correlation or
spearman correlation. The spearman correlation has the advantage of not
being altered by outliers. Figures of pathways scores computed with these
two methods are shown in the Appendix A.4 and A.5.

Pathway Connectivity

This analysis will not just deliver a flat list of enriched pathways, it will
compute the connectivity of each pathway to the other enriched pathways
and show them as a network. For this the connectivity between each pair
of enriched pathways has to be computed. The end network of pathways
will contain the top 10% connected pathways. The connectivity between two
pathways is computed as follows:

First, all Reactome pathways are merged into a giant pathway. For this
giant pathway, the dynamical importance and the betweenness of each gene
is computed. Since the dynamical importance can be computed only for
strongly connected pathways, we add to the adjacency matrix of the network
one over the total number of genes. The next step is to combine through
multiplication the rectome scores with the MCIA scores of the genes. The R
script used for the computation of the network connectivity is included in
the Appendix A.3.

In order to evaluate the network structure of the resulted enriched pathway,
the assortativity of the network is examined. The assortativity [60] is defined
as the correlation of the degrees of the directly linked nodes of a network.
The value range between -1 and 1. Hong et al. showed that biological
networks tend to have a negative assortativity while social networks tend to
have a positive assortativity. In case of random networks the assortativity is
around zero.

Based on different score combination methods as well as pathway selection
method the assortativity of the network of enriched pathways was computed
and is shown in Table 3.4. The different combination methods (see page 70)
for the pathway enrichment score are shown in the columns. The rows of
the table show the computation method for the connectivity of the enriched
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tdins sdins tbens sbens tdinm sdinm tbenm sbenm
mult, amount 0.17 0.27 0.60 1.00 0.02 0.59 -0.12 0.589

mult, procent 0.23 0.27 0.67 1.00 0.02 0.64 -0.15 0.51

p.corr, amount -0.07 0.40 -0.04 0.50 -0.07 0.40 -0.04 0.50

p.corr, procent -0.08 0.46 -0.32 0.15 -0.08 0.46 -0.32 0.15

s.corr, amount -0.18 -0.12 -0.02 -0.15 -0.18 -0.12 -0.02 -0.15

s.corr, procent -0.18 -0.09 -0.38 -0.28 -0.18 -0.09 -0.38 -0.28

Table 3.4.: Table with the assortativity of differently computed networks of enriched path-
ways.

pathways. If the number of pathways in the end network is computed as
the top 26 or the top 10% is indicated by the words ammount and procent.

It can be noticed that if the pathway enrichment is computed by multiplica-
tion, the assortativity is almost always positive and very high. This indicates
that the computed network of pathways does not show a biological-like
behavior. If the pathway connectivity is measured with the pearson or the
spearman correlation the assortativity becomes negative. The most nega-
tive values (which indicate biological-like network structure) are reached
when the pathway enrichment is computed from the betweenness and the
normalization is by dividing through the sum.

For these normalization and combination methods the computed network of
enriched pathways is shown. Figure 3.20 shows the resulted network for the
tumor data with the pathway scores computed based on the betweenness.
The corresponding network for the stroma data is shown in Figure 3.21.
In the Appendix A.6 and A.7the resulted networks of tumor and stroma
with pathway scores based on the dynamical importance are shown. For
comparison reasons the resulted network for tumor and stroma, computed
by score multiplication are shown in Appendix A.8 and A.9.

By examining Figures A.8 and A.9 we notice what the assortativity of
a network expresses. As already mentioned, biological networks have a
negative assortativity. This means that nodes with a high connectivity tend
to connect to nodes with a low connectivity and vice versa. If a network has
a positive assortativity highly connected nodes tend to be linked to other
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Figure 3.20.: Network of enriched pathways for the tumor data. Enrichment computed
based on the betweenness

highly connected nodes and nodes with a low connectivity are linked to
nodes with a similar connectivity.

A detailed inspection of the pathway network of the tumor data reveals that
there are chromosome centered pathways like: deposition of new CENPA-
containing nucleosomes at the centromere (“Eukaryotic centromeres are
marked by a unique form of histone H3, designated CENPA in humans. In
human cells newly synthesized CENPA is deposited in nucleosomes at the
centromere during late telophase/early G1 phase of the cell cycle. Once de-
posited, nucleosomes containing CENPA remain stably associated with the
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centromere and are partitioned equally to daughter centromeres during S
phase. A current model proposes that pre-existing CENPA at the centromere
drives recruitment of new CENPA, however this has not been proved. The
deposition process requires at least 3 complexes: the Mis18 complex, HJURP
complex, and the RSF complex. HJURP binds newly synthesized CENPA-H4

tetramers before deposition and brings them to the centromere for deposi-
tion in new CENPA-containing nucleosomes. The exact mechanism of depo-
sition remains unknown.”), senescence associated secretory profile (“The
culture medium of senescent cells in enriched in secreted proteins when
compared with the culture medium of quiescent i.e. presenescent cells and
these secreted proteins constitute the so-called senescence-associated secre-
tory phenotype (SASP), also known as the senescence messaging secretome
(SMS). SASP components include inflammatory and immune-modulatory
cytokines (e.g. IL6 and IL8), growth factors (e.g. IGFBPs), shed cell surface
molecules (e.g. TNF receptors) and survival factors. While the SASP ex-
hibits a wide ranging profile, it is not significantly affected by the type of
senescence trigger (oncogenic signalling, oxidative stress or DNA damage)
or the cell type (epithelial vs. mesenchymal). However, as both oxidative
stress and oncogenic signaling induce DNA damage, the persistent DNA
damage may be a deciding SASP initiator. SASP components function
in an autocrine manner, reinforcing the senescent phenotype, and in the
paracrine manner, where they may promote epithelial-to-mesenchymal tran-
sition (EMT) and malignancy in the nearby premalignant or malignant cells.
Interleukin-1-alpha (IL1A), a minor SASP component whose transcription is
stimulated by the AP-1 (FOS:JUN) complex, can cause paracrine senescence
through IL1 and inflammasome signaling. Here, transcriptional regulatory
processes that mediate the SASP are annotated. DNA damage triggers ATM-
mediated activation of TP53, resulting in the increased level of CDKN1A
(p21). CDKN1A-mediated inhibition of CDK2 prevents phosphorylation
and inactivation of the Cdh1:APC/C complex, allowing it to ubiquitinate
and target for degradation EHMT1 and EHMT2 histone methyltransferases.
As EHMT1 and EHMT2 methylate and silence the promoters of IL6 and
IL8 genes, degradation of these methyltransferases relieves the inhibition of
IL6 and IL8 transcription. In addition, oncogenic RAS signaling activates
the CEBPB (C/EBP-beta) transcription factor, which binds promoters of IL6

and IL8 genes and stimulates their transcription. CEBPB also stimulates
the transcription of CDKN2B (p15-INK4B), reinforcing the cell cycle arrest.
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CEBPB transcription factor has three isoforms, due to three alternative
translation start sites. The CEBPB-1 isoform (C/EBP-beta-1) seems to be
exclusively involved in growth arrest and senescence, while the CEBPB-2
(C/EBP-beta-2) isoform may promote cellular proliferation (Atwood and
Sealy 2010 and 2011). IL6 signaling stimulates the transcription of CEBPB,
creating a positive feedback loop. NF-kappa-B transcription factor is also
activated in senescence through IL1 signaling. NF-kappa-B binds IL6 and
IL8 promoters and cooperates with CEBPB transcription factor in the induc-
tion of IL6 and IL8 transcription. Besides IL6 and IL8, their receptors are
also upregulated in senescence and IL6 and IL8 may be master regulators
of the SASP. IGFBP7 is also an SASP component that is upregulated in
response to oncogenic RAS-RAF-MAPK signaling and oxidative stress, as
its transcription is directly stimulated by the AP-1 (JUN:FOS) transcription
factor. IGFBP7 negatively regulates RAS-RAF (BRAF)-MAPK signaling and
is important for the establishment of senescence in melanocytes.”) and PRC2

methylates histones and DNA (“Polycomb group proteins are responsible
for the heritable repression of genes during development. Two major fami-
lies of Polycomb complexes exist: Polycomb Repressive Complex 1 (PRC1)
and Polycomb Repressive Complex 2 (PRC2). PRC1 and PRC2 each appear
to comprise sets of distinct complexes that contain common core subunits
and distinct accessory subunits. PRC2, through its component EZH2 or, in
some complexes, EZH1 produces the initial molecular mark of repression,
the trimethylation of lysine-27 of histone H3 (H3K27me3). How PRC2 is
initially recruited to a locus remains unknown, however cytosine-guanine
(CpG) motifs and transcripts have been suggested. Different mechanisms
may be used at different loci. The trimethylated H3K27 produced by PRC2

is bound by the Polycomb subunit of PRC1. PRC1 ubiquitinates histone
H2A and maintains repression.”).

There are also metabolism centered pathways such as: pyruvate metabolism
and citric acid cycle (“Pyruvate metabolism and the citric acid (TCA) cycle
together link the processes of energy metabolism in a human cell with one
another and with key biosynthetic reactions. Pyruvate, derived from the
reversible oxidation of lactate or transamination of alanine, can be converted
to acetyl CoA. Other sources of acetyl CoA include breakdown of free fatty
acids and ketone bodies in the fasting state. Acetyl CoA can enter the citric
acid cycle, a major source of reducing equivalents used to synthesize ATP, or
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enter biosynthetic pathways. In addition to its role in energy generation, the
citric acid cycle is a source of carbon skeletons for amino acid metabolism
and other biosynthetic processes. One such process included here is the
interconversion of 2-hydroxyglutarate, probably derived from porphyrin
and amino acid metabolism, and 2-oxoglutarate (alpha-ketoglutarate), a
citric acid cycle intermediate.”) and metabolism of lipids and lipoproteins
(“Lipids are hydrophobic but otherwise chemically diverse molecules that
play a wide variety of roles in human biology. They include ketone bodies,
fatty acids, triacylglycerols, phospholipids and sphingolipids, eicosanoids,
cholesterol, bile salts, steroid hormones, and fat-soluble vitamins. They func-
tion as a major source of energy (fatty acids, triacylglycerols, and ketone
bodies), are major constituents of cell membranes (cholesterol and phos-
pholipids), play a major role in their own digestion and uptake (bile salts),
and participate in numerous signaling and regulatory processes (steroid
hormones, eicosanoids, phosphatidylinositols, and sphingolipids). Because
of their poor solubility in water, most lipids in extracellular spaces in the
human body are found as complexes with specific carrier proteins. Regu-
lation of the formation and movement of these lipoprotein complexes is a
critical aspect of human lipid metabolism, and lipoprotein abnormalities are
associated with major human disease processes including atherosclerosis
and diabetes. The central steroid in human biology is cholesterol, obtained
from animal fats consumed in the diet or synthesized de novo from acetyl-
coenzyme A. (Vegetable fats contain various sterols but no cholesterol.)
Cholesterol is an essential constituent of lipid bilayer membranes and is the
starting point for the biosyntheses of bile acids and salts, steroid hormones,
and vitamin D. Bile acids and salts are mostly synthesized in the liver.
They are released into the intestine and function as detergents to solubi-
lize dietary fats. Steroid hormones are mostly synthesized in the adrenal
gland and gonads. They regulate energy metabolism and stress responses
(glucocorticoids), salt balance (mineralocorticoids), and sexual development
and function (androgens and estrogens). At the same time, chronically el-
evated cholesterol levels in the body are associated with the formation of
atherosclerotic lesions and hence increased risk of heart attacks and strokes.
The human body lacks a mechanism for degrading excess cholesterol, al-
though an appreciable amount is lost daily in the form of bile salts and
acids that escape recycling. Aspects of lipid metabolism currently annotated
in Reactome include lipid digestion, mobilization, and transport; fatty acid,
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triacylglycerol, and ketone body metabolism; peroxisomal lipid metabolism;
phospholipid and sphingolipid metabolism; cholesterol biosynthesis; bile
acid and bile salt metabolism; and steroid hormone biosynthesis. ”).

Additionally, pathways of the extracellular matrix are enriched: extracel-
lular matrix organisation (“The extracellular matrix is a component of all
mammalian tissues, a network consisting largely of the fibrous proteins
collagen, elastin and associated-microfibrils, fibronectin and laminins em-
bedded in a viscoelastic gel of anionic proteoglycan polymers. It performs
many functions in addition to its structural role; as a major component of
the cellular microenvironment it influences cell behaviours such as prolifer-
ation, adhesion and migration, and regulates cell differentiation and death.
ECM composition is highly heterogeneous and dynamic, being constantly
remodeled and modulated, largely by matrix metalloproteinases (MMPs)
and growth factors that bind to the ECM influencing the synthesis, crosslink-
ing and degradation of ECM components (Hynes 2009). ECM remodeling is
involved in the regulation of cell differentiation processes such as the estab-
lishment and maintenance of stem cell niches, branching morphogenesis,
angiogenesis, bone remodeling, and wound repair. Redundant mechanisms
modulate the expression and function of ECM modifying enzymes. Abnor-
mal ECM dynamics can lead to deregulated cell proliferation and invasion,
failure of cell death, and loss of cell differentiation, resulting in congenital
defects and pathological processes including tissue fibrosis and cancer.”)
and collagen biosynthesis and modifing enzymes (“The biosynthesis of
collagen is a multistep process. Collagen propeptides are cotranslationally
translocated into the ER lumen. Propeptides undergo a number of post-
translational modifications. Proline and lysine residues may be hydroxylated
by prolyl 3-, prolyl 4- and lysyl hydroxylases. 4-hydroxyproline is essential
for intramolecular hydrogen bonding and stability of the triple helical col-
lagenous domain. In fibril forming collagens approximately 50% of prolines
are 4-hydroxylated; the extent of this and of 3-hydroxyproline and lysine
hydroxylation varies between tissues and collagen types. Hydroxylysine
molecules can form cross-links between collagen molecules in fibrils, and
are sites for glycosyl- and galactosylation. Collagen peptides all have non-
collagenous domains; collagens within the subclasses have common chain
structures. These non-collagenous domains have regulatory functions; some
are biologically active when cleaved from the main peptide chain. Fibrillar

78



3.4. Eigenanalysis of Tumor and Stroma Omics Data

Figure 3.21.: Network of enriched pathways for the stroma data. Enrichment computed
based on the betweenness

collagens all have a large triple helical domain (COL1) bordered by N and C
terminal extensions, called the N and C propeptides, which are cleaved prior
to formation of the collagen fibril. The C propeptide, also called the NC1

domain, is highly conserved. It directs chain association during intracellu-
lar assembly of the procollagen molecule from three collagen propeptide
alpha chains. The N-propeptide has a short linker (NC2) connecting the
main triple helix to a short minor one (COL2) and a globular N-terminal
region NC3. NC3 domains are variable both in size and the domains they
contain.”)

A closer look at the pathway network enriched in stroma shows a number
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of transaltional pathways as well as signaling centered pathways. Inter-
esting pathways are: signaling by GPCR (“G protein-coupled receptors
(GPCRs; 7TM receptors; seven transmembrane domain receptors; heptaheli-
cal receptors; G protein-linked receptors [GPLR]) are the largest family of
transmembrane receptors in humans, accounting for more than 1% of the
protein-coding capacity of the human genome. All known GPCRs share a
common architecture of seven membrane-spanning helices connected by
intra- and extracellular loops. The extracellular loops contain two highly-
conserved cysteine residues that form disulphide bonds to stabilize the
structure of the receptor. They recognize diverse messengers such as light,
odorants, small molecules, hormones and neurotransmitters. Most GPCRs
act as guanine nucleotide exchange factors; activated by ligand binding,
they promote GDP-GTP exchange on associated heterotrimeric guanine
nucleotide-binding (G) proteins. There are two models for GPCR-G Protein
interactions: 1) ligand-GPCR binding first, then binding to G Proteins; 2)
"Pre-coupling" of GPCRs and G Proteins before ligand binding. These in turn
activate effector enzymes or ion channels. GPCRs are involved in a range
of physiological roles which include the visual sense, smell, behavioural
regulation, functions of the autonomic nervous system and regulation of
the immune system and inflammation.”), potassium channels (“Potassium
channels are tetrameric ion channels that are widely distributed and are
found in all cell types. Potassium channels control resting membrane po-
tential in neurons, contribute to regulation of action potentials in cardiac
muscle and help release of insulin form pancreatic beta cells. Broadly K+
channels are classified into voltage gated K+ channels, Hyperpolarization
activated cyclic nucleotide gated K+ channels (HCN), Tandem pore domain
K+ channels, Ca2+ activated K+ channels and inwardly rectifying K+ chan-
nels.”), L13a-mediated translational silencing of Ceruloplasmin expression
(“While circularization of mRNA during translation initiation is thought
to contribute to an increase in the efficiency of translation, it also appears
to provide a mechanism for translational silencing. This might be achieved
by bringing inhibitory 3’ UTR-binding proteins into a position in which
they interfere either with the function of the translation initiation complex
or with the assembly of the ribosome (Mazumder et al 2001). Translational
silencing of Ceruloplasmin (Cp) occurs 16 hrs after its induction by INF-
gamma. Although the mechanism by which silencing occurs has not yet
been determined, this process is mediated by the L13a subunit of the 60s
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ribosome and thought to require circularization of the Cp mRNA. Between
14 and 16 hrs after INF gamma induction, the L13a subunit of the 60s ribo-
some is phosphorylated and released from the 60s subunit. Phosphorylated
L13a then associates with the GAIT element in the 3’ UTR of the Cp mRNA
inhibiting its translation.”)

Different pathways were shown to be enriched in tumor and stroma. Some
are already linked to cancer, the other require further investigation. All
shown pathway descriptions were taken from Reactome [103].

The described method is currently being summarized into an R package.
We are working on the platform independent implementation. We plan to
publish the R package together with the manuscript which describes the
eigenanalysis of dynamically important pathways in multiple omics cancer
data.
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Methods and Results

1 #### R script to compute the dynamical importance and

the betweenness for each pathway in reactome

2

3 rm(list = ls())

4 source(paste (.path ,"src\\ dynamicalImportance.R",sep =

""))

5 library(graphite)

6 library(igraph)

7

8 rankGenesInPathway = function(pwy , rank.method){

9 edges = pwy@edges; edges

10 rank = rep(0,length(pwy@nodes))

11 names(rank) = pwy@nodes

12

13 if(dim(edges)[1] != 0)

14 {

15 help1 = unique(edges[which(edges$direction == "

undirected"),c(1,2)]); help1

16 help2 = unique(edges[which(edges$direction == "

undirected"),c(2,1)])

17 colnames(help2) = c("src","dest"); help2

18 help3 = unique(edges[which(edges$direction == "

directed"),c(1,2)]); help3

19
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20 all.edges = as.matrix(unique(rbind(help1 ,help2 ,

help3))); all.edges

21 pwy.graph = graph.edgelist(all.edges , directed =

T)

22

23 if(rank.method == "di")

24 rank = dynamicalImportance(pwy.graph)

25 if(rank.method == "be")

26 rank = betweenness(pwy.graph)

27 }

28 return(rank)

29 }

30

31 load(file = paste(.res.dir.RData , "reactome_pathways_

as_symbols_with_nodes.RData", sep = ""))

32

33 dyn.imp = lapply(X = reactome.pathways ,FUN =

rankGenesInPathway , rank.method = "di")

34 save(dyn.imp , file = paste(.res.dir.RData ,"dyn_imp_

per_path_with_nodes.RData",sep = ""))

35

36 bet.ness = lapply(X = reactome.pathways ,FUN =

rankGenesInPathway , rank.method = "be")

37 save(bet.ness , file = paste (.res.dir.RData ,"bet_ness_

per_path_with_nodes.RData",sep = ""))

38

39

40 load(file = paste(.res.dir.RData , "reactome_pathways_

as_symbols_with_nodes_and_edges.RData", sep = ""))

41

42

43 dyn.imp = lapply(X = reactome.pathways ,FUN =

rankGenesInPathway , rank.method = "di")

44 save(dyn.imp , file = paste(.res.dir.RData ,"dyn_imp_

per_path_with_nodes_and_edges.RData",sep = ""))

45
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46 bet.ness = lapply(X = reactome.pathways ,FUN =

rankGenesInPathway , rank.method = "be")

47 save(bet.ness , file = paste (.res.dir.RData ,"bet_ness_

per_path_with_nodes_and_edges.RData",sep = ""))

Listing A.1: R script to compute the dynamical importance and the betweenness for each
pathway in reactome

1 ##### R script to combine MCIA scores with the

dynamical importance and the betweenness scores for

each pathway in reactome

2

3 rm(list = ls())

4 source("set_paths_for_current_project.R")

5 load(file = paste (.res.dir.RData ,"all_scores.RData",

sep =""))

6

7 di.nm = apply(X = dyn.imp.scores ,MARGIN = 2,FUN =

function(col){ if(max(col) != 0) col/max(col)+1

else col})

8 be.nm = apply(X = bet.ness.scores ,MARGIN = 2,FUN =

function(col){if(max(col) != 0) col/max(col)+1 else

col +1})

9 di.ns= apply(X = dyn.imp.scores ,MARGIN = 2,FUN =

function(col){if(sum(col) != 0) col/sum(col)+1

else col})

10 be.ns = apply(X = bet.ness.scores ,MARGIN = 2,FUN =

function(col){if(sum(col) != 0) col/sum(col)+1 else

col +1})

11

12 #range(di.nm);range(di.ns)

13 #range(be.nm);range(be.ns)

14

15 n.axis = dim(mcia.scores.stroma)[2]

16

17 pathway.scores.per.axes = list()

18

19 for(axis in 1:n.axis){
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20 #axis = 1

21 mcia.axis = axis

22 #hist(mts)

23 #hist(dyn.imp.scores [,1])

24

25 mts = mcia.scores.tumor[,paste("Axis",mcia.axis ,sep

="")]

26 mss = mcia.scores.stroma[,paste("Axis",mcia.axis ,

sep="")]

27

28 range(mts)

29 range(mss)

30

31

32 # multiplication

33

34 tdi.ns = sweep(x = di.ns , MARGIN = 1,STATS = mts ,

FUN = "*")

35 sdi.ns = sweep(x = di.ns , MARGIN = 1,STATS = mss ,

FUN = "*")

36

37 tbe.ns = sweep(x = be.ns , MARGIN = 1,STATS = mts ,

FUN = "*")

38 sbe.ns = sweep(x = be.ns , MARGIN = 1,STATS = mss ,

FUN = "*")

39

40 tdi.nm = sweep(x = di.nm , MARGIN = 1,STATS = mts ,

FUN = "*")

41 sdi.nm = sweep(x = di.nm , MARGIN = 1,STATS = mss ,

FUN = "*")

42

43 tbe.nm = sweep(x = be.nm , MARGIN = 1,STATS = mts ,

FUN = "*")

44 sbe.nm = sweep(x = be.nm , MARGIN = 1,STATS = mss ,

FUN = "*")

45

46 # pearson correlation
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47

48 tdi.ns.c = apply(X = di.ns,MARGIN = 2,FUN = cor ,y =

mts)

49 sdi.ns.c = apply(X = di.ns,MARGIN = 2,FUN = cor ,y =

mss)

50

51 tbe.ns.c = apply(X = be.ns,MARGIN = 2,FUN = cor ,y =

mts)

52 sbe.ns.c = apply(X = be.ns,MARGIN = 2,FUN = cor ,y =

mss)

53

54 tdi.nm.c = apply(X = di.nm,MARGIN = 2,FUN = cor ,y =

mts)

55 sdi.nm.c = apply(X = di.nm,MARGIN = 2,FUN = cor ,y =

mss)

56

57 tbe.nm.c = apply(X = be.nm,MARGIN = 2,FUN = cor ,y =

mts)

58 sbe.nm.c = apply(X = be.nm,MARGIN = 2,FUN = cor ,y =

mss)

59

60 # spearman correlation

61

62 tdi.ns.cs = apply(X = di.ns ,MARGIN = 2,FUN = cor ,y

= mts , method = "spearman")

63 sdi.ns.cs = apply(X = di.ns ,MARGIN = 2,FUN = cor ,y

= mss , method = "spearman")

64

65 tbe.ns.cs = apply(X = be.ns ,MARGIN = 2,FUN = cor ,y

= mts , method = "spearman")

66 sbe.ns.cs = apply(X = be.ns ,MARGIN = 2,FUN = cor ,y

= mss , method = "spearman")

67

68 tdi.nm.cs = apply(X = di.nm ,MARGIN = 2,FUN = cor ,y

= mts , method = "spearman")

69 sdi.nm.cs = apply(X = di.nm ,MARGIN = 2,FUN = cor ,y

= mss , method = "spearman")
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70

71 tbe.nm.cs = apply(X = be.nm,MARGIN = 2,FUN = cor ,y

= mts , method = "spearman")

72 sbe.nm.cs = apply(X = be.nm,MARGIN = 2,FUN = cor ,y

= mss , method = "spearman")

73

74 overall.pathway.scores = data.frame(tdins = colSums

(tdi.ns),

75 tbens = colSums(tbe.ns),

76 tdinm = colSums(tdi.nm),

77 tbenm = colSums(tbe.nm),

78 sdins = colSums(sdi.ns),

79 sbens = colSums(sbe.ns),

80 sdinm = colSums(sdi.nm),

81 sbenm = colSums(sbe.nm),

82 tdinsc = tdi.ns.c,

83 tbensc = tbe.ns.c,

84 tdinmc = tdi.nm.c,

85 tbenmc = tbe.nm.c,

86 sdinsc = sdi.ns.c,

87 sbensc = sbe.ns.c,

88 sdinmc = sdi.nm.c,

89 sbenmc = sbe.nm.c,

90 tdinscs = tdi.ns.cs,

91 tbenscs = tbe.ns.cs,

92 tdinmcs = tdi.nm.cs,

93 tbenmcs = tbe.nm.cs,

94 sdinscs = sdi.ns.cs,

95 sbenscs = sbe.ns.cs,

96 sdinmcs = sdi.nm.cs,

97 sbenmcs = sbe.nm.cs)

98 rownames(overall.pathway.scores) = colnames(dyn.imp

.scores)

99

100 pathway.scores.per.axes[[mcia.axis]] = overall.

pathway.scores

101 }
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102

103 save(pathway.scores.per.axes , file = paste(.res.dir.

RData , "pathway_scores_for_all_mcia_axes.RData",

sep = ""))

Listing A.2: R script to combine MCIA scores with the dynamical importance and the
betweenness scores for each pathway in reactome

1 # get resulted pathways

2 rm(list = ls())

3 source("set_paths_for_current_project.R")

4

5 load(paste (.res.dir.RData ,"all_scores_for_net_connet_

calc.RData", sep = ""))

6 load(file = paste (.res.dir.RData , "pathway_scores_for

_all_mcia_axes.RData", sep = ""))

7

8 res.paths.a1 = pathway.scores.per.axes [[1]]

9 str(res.paths.a1)

10

11 use.procent = T; p = 0.01

12 use.amount = T; n.paths = 26

13

14 selected.pathways.procent = list()

15 selected.pathways.amount = list()

16

17 # select pathways

18 for(i in 1:dim(res.paths.a1)[2]){

19 curr.scores = res.paths.a1[,i]

20 names(curr.scores) = rownames(res.paths.a1)

21 if(use.procent){

22 qs = quantile(x = curr.scores , probs = c(p, 1-p),

na.rm = T); qs

23 sel.paths = curr.scores[which(curr.scores < qs

[1]| curr.scores > qs[2])]; sel.paths; length(

sel.paths)

24 selected.pathways.procent [[i]] = names(sel.paths)

25 names(selected.pathways.procent)[i] = colnames(
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res.paths.a1)[i]

26 }

27 if(use.amount){

28 nn1 = round(n.paths/2,0); nn1

29 nn3 = dim(res.paths.a1)[1]; nn3

30 nn2 = nn3 - nn1+1; nn2

31

32 help = sort(x = curr.scores , decreasing = F)

33 sel.paths = help[c(1:nn1 ,nn2:nn3)]; sel.paths;

length(sel.paths)

34

35 selected.pathways.amount [[i]] = names(sel.paths)

36 names(selected.pathways.amount)[i] = colnames(res

.paths.a1)[i]

37 }

38 }

39

40 save(selected.pathways.amount , selected.pathways.

procent , file = paste(.res.dir.RData , "selected_

pathways.RData", sep = ""))

41

42

43 ##### compute connectivity between pathways

44 rm(list = ls())

45

46 computeConnectivity = function(ps , mcia.scores ,

reactome.scores){

47

48 p1 = ps[1]; #cat("p1 = ", p1 , "\n");

49 p2 = ps[2]; #cat("p2 = ", p2 , "\n");

50

51 con = rep(0,dim(mcia.scores)[2])

52

53 names(con) = colnames(mcia.scores)

54 if(p1 == p2)

55 return(con)

56
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57 rp1 = reactome.pathways [[as.character(p1)]]; #rp1

58 rp2 = reactome.pathways [[as.character(p2)]]; #rp2

59

60 nodes1 = rp1@nodes; nodes1

61 nodes2 = rp2@nodes; nodes2

62

63 mg = intersect(rownames(mcia.scores), names(

reactome.scores))

64 cn = intersect(intersect(nodes1 ,nodes2),mg); cn

65

66 #cat("cn: ", cn, "\n")

67

68 if(length(cn) >0){

69 help.stats = matrix(reactome.scores[cn], ncol =

1, nrow = length(cn));

70 help.x = matrix(mcia.scores[cn ,], nrow = length(

cn), ncol = dim(mcia.scores)[2])

71 colnames(help.x) = colnames(mcia.scores)

72 con = colSums(sweep(x = help.x, MARGIN = 1, STATS

= help.stats ,FUN = "*")); #con

73 }

74 return(con)

75 }

76

77 # prepare result for visualisation

78

79 computeCytoscapeRes = function(path.con , axis , cyto.

file){

80

81 cytoscape.res = data.frame(SRC = "from", INT = "pp"

, DEST = "to", stringsAsFactors = F)

82

83 for(i in 1: length(path.con)){

84 ps.list[i]

85 if(path.con[[i]][ axis]!=0){

86 help = c(ps.list[[i]]$x, "pp",ps.list[[i]]$y);

help
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87 cytoscape.res = rbind(cytoscape.res , help)

88 }

89 }

90

91 cytoscape.res = cytoscape.res[-1,]

92 path.con.graph = graph.edgelist(el = as.matrix(

cytoscape.res[,c(1,3)]), directed = FALSE)

93

94 png(file = paste(.res.dir.figures ,strsplit(cyto.

file , split = "_")[[1]][1] ,".png", sep = ""),

width = 1200, height = 700)

95 plot(path.con.graph , main = strsplit(cyto.file ,

split = "_")[[1]][1])

96 dev.off()

97

98 degree.path.con.graph = degree(graph = path.con.

graph , mode = "total")

99 if(sd(degree.path.con.graph) != 0){

100 igraph.assortativity = assortativity.degree(graph

= path.con.graph ,directed = T)

101 cat("igraph.assortativity",igraph.assortativity ,

"\n")

102

103 my.assortativity = cor(degree.path.con.graph[

cytoscape.res[,1]],

104 degree.path.con.graph[cytoscape.res[,3]], method

= "pearson")

105 cat("my.assortativity = ", my.assortativity , "\n"

)

106

107 }

108 else{

109 cat("All nodes have the same degree: ", unique(

degree.path.con.graph ), "\n")

110 my.assortativity = NA

111 }

112
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113 write.table(cytoscape.res , file = paste (.res.dir.

RData ,cyto.file , sep = ""),

114 quote = T, row.names = FALSE , col.names = T, sep =

"\t")

115 return(my.assortativity)

116 }

Listing A.3: R script to compute connectivity of enriched pathways
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Figure A.1.: Overview of the Reactome content: species, proteins, complexes, reactions and
pathways. Figure adapted from [103].
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Figure A.2.: Example of simplification rules from a Reactome pathway to a graphite net-
work: simplifying sequentially catalyzed processes. Figure addapted from
[111].

Figure A.3.: Example of simplification rules from a Reactome pathway to a graphite net-
work: simplifying mixed groups. Figure addapted from [111].
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Figure A.4.: Boxplots of pathway scores computed by the pearson correlation of the nor-
malized (through the sum or the maximum value)

MCIA scores and the dynamical importance and the betweenness scores.

Figure A.5.: Boxplots of pathway scores computed by the pspearman correlation of the
normalized (through the sum or the maximum value)

MCIA scores and the dynamical importance and the betweenness scores.
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Figure A.6.: Network of enriched pathways for the tumor data. Enrichment computed
based on the dynamical importance.
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Figure A.7.: Network of enriched pathways for the stroma data. Enrichment computed
based on the dynamical importance.
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Figure A.8.: Network of enriched pathways for the tumor data. Enrichment computed by
multiplication.
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Figure A.9.: Network of enriched pathways for the stroma data. Enrichment computed by
multiplication
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