
Modeling and Implementation of Dynamic Data-Driven Application

Systems

by

Kishan Sudusinghe

Research outcome report submitted to the Marshal Plan Foundation
via Salzburg University of Applied Science, in fulfillment
of the requirements for the Marshal Plan Scholarship

2014

Table of Contents

1 Introduction 1

2 Background and Related Work 5
2.1 Core Functional Dataflow . 5
2.2 Topological Patterns . 6
2.3 Related Work . 7

3 Modeling Framework and Dynamic Multi-Mode Scheduling 9
3.1 Adaptive Classification . 9
3.2 Modeling Methodology . 10
3.3 Dynamic, Multi-Mode Scheduling . 13

4 Case Study: Face Detection 16
4.1 Application Design and Experimental Setup 16
4.2 Experimental Results . 19

5 Conclusion 23

6 Acknowledgement 24

Bibliography 25

ii

Abstract

In this report, we investigate new design methods for data-driven digital signal

processing (DSP) systems that are targeted to resource- and energy-constrained

embedded environments, such as UAVs, mobile communication platforms and wire-

less sensor networks. Signal processing applications, such as keyword matching,

speaker identification, and face recognition, are of great importance in such envi-

ronments. Due to critical application constraints on energy consumption, real-time

performance, computational resources, and core application accuracy, the design

spaces for such applications are highly complex. Thus, conventional static meth-

ods for configuring and executing such embedded DSP systems are severely limited

in the degree to which processing tasks can adapt to current operating conditions

and mission requirements. We address this limitation by developing a novel design

framework for multi-mode, data driven signal processing systems, where different

application modes with complementary trade-offs are selected, configured, executed,

and switched dynamically, in a data-driven manner. We demonstrate the utility of

our proposed new design methods on an energy-constrained, multi-mode face detec-

tion application.

Chapter 1

Introduction

Embedded systems are often deployed and configured to handle multiple ap-

plication tasks concurrently across different subsets of processing resources. In the

domain of embedded signal processing, modern platforms consist of multiple process-

ing cores that can concurrently support DSP- (digital signal processing)- intensive

functions such as multimedia (e.g., face recognition, speaker identification, pattern

recognition) and wireless communication (e.g., GSM, digital radio, NFC, Bluetooth),

as well as control-oriented functions, such as those associated with user interfaces

and file management (e.g., see [1]). With the increasing need for efficient and robust

development of embedded systems, it is important to utilize and effectively manage

the limited resources available in these computing devices dynamically in the context

of data characteristics and operating conditions. Static modeling and management

of execution constraints, including those involving energy consumption, real-time

performance, computational resources, and core application accuracy, is not ef-

fective in designing efficient embedded systems that must adapt to time-varying

requirements. Thus, in this report, we develop and demonstrate new techniques

for dynamic, data-driven modeling, scheduling, monitoring, and execution of DSP

applications running on resource-limited embedded platforms.

Dataflow modeling techniques are widely used to model, schedule and imple-

1

ment DSP systems [1]. Adaptive Stream Mining (ASM) is an important subclass

of DSP applications where real-time knowledge extraction and classification are of

high importance [2]. Unlike traditional data mining systems, where data is stored

statically and mined through queries on the static (or slowly changing) data, ASM

data arrives continuously and must be processed in real-time. Statically config-

ured approaches to ASM processing do not scale well, with scalability problems

getting worse as ASM nodes become distributed and mobile. Furthermore, inte-

grating diverse application subsystems or diverse configurations of the same subsys-

tem (multi-mode operation) for trade-off optimization or information integration re-

quires adhering to global constraints on resource utilization and performance, while

managing different quality-of-service characteristics of the subsystems. Therefore,

novel design and implementation techniques that deviate from traditional, statically-

oriented stream mining system design are needed to address the growing need for

performance- and energy-optimized implementation of ASM in the context of dy-

namic, data-driven, and multi-mode processing scenarios. A conceptual design flow

for this class of targeted multi-mode scenarios is illustrated in Figure 1.1.

This work represents a novel integration of dataflow based design methods for

signal processing with the paradigm of Dynamic Data-Driven Application Systems

(DDDAS). High-level, signal-processing-oriented dataflow models of computation al-

low designers to systematically formulate the design flow for a DSP system, and to

integrate hardware, software, and application constraints into such design flows [1].

DDDAS is a paradigm that rigorously integrates application system modeling, in-

strumentation, and dynamic, feedback-driven adaptation of model and instrumen-

2

Figure 1.1: Data-driven, multi-mode embedded system design flow.

tation parameters based on measured data characteristics [3]. In this work, we

combine the methodology of dataflow-based DSP system design with the DDDAS

paradigm to address the novel constraints and challenges of real-time, multi-mode

ASM processing on embedded platforms. Our proposed new design framework pro-

vides a structured approach for design, implementation and optimization of ASM

systems under stringent platform constraints and dynamically-changing application

requirements and data characteristics.

This report is written and organized based on the work published in [4]. To

address the design and implementation of multi-mode ASM systems, we apply in this

report our recently developed dataflow modeling technique called Hierarchical Core

Functional Dataflow (HCFDF) [5]. In particular, we present a novel application

of HCFDF to efficiently model and manage multi-mode application scenarios. In

3

this modeling approach, dynamic adaptation is represented through hierarchical

inclusion of a special kind of actor (dataflow-based software component) called a

decision actor. Such hierarchical use of decision actors is employed to switch among

application subsystems based on data-driven demands involving performance-energy

tradeoffs.

We also apply the HCFDF model to develop new methods for performance-

energy-aware, dynamic scheduling of application subsystems. These scheduling tech-

niques are geared towards efficient, context-aware adaptation of embedded DSP sys-

tems in multi-mode design scenarios. We integrate our new scheduling techniques

with DDDAS concepts to introduce a unique model-based design environment for

data-driven resource, constrained DSP applications. This design environment is

prototyped and demonstrated by building on the Lightweight Dataflow for Dynamic

Data-Driven Application Systems Environment (LiD4E), which is a tool for ex-

perimentation with and optimization of dataflow-based design methods for ASM

systems [5].

4

Chapter 2

Background and Related Work

2.1 Core Functional Dataflow

Core functional dataflow (CFDF) is a dynamic dataflow model that provides

highly expressive semantics for the design of applications with structured dynamic

behavior [6]. In CFDF, an actor (dataflow graph functional component) is specified

as a set of operational modes. In each mode, an actor consumes and produces fixed

numbers of tokens on its input and output ports, respectively. These numbers of

tokens consumed and produced are called the consumption and production rates

of the associated input and output ports, respectively, and the associated modes.

Consumption and production rates for CFDF actor modes can be arbitrary non-

negative integers.

During execution, a CFDF actor operates in a unique current mode of the ac-

tor, which can be maintained as part of the actor state. Each actor has an associated

enable function, which can be called by a run-time scheduler. The enable function

returns a Boolean value indicating whether or not there is sufficient data available

on the actor input ports to fire the actor in its current mode. The invoke function of

an actor consumes data for execution based on the associated current mode. When

an actor is invoked, it executes its current mode, produces and consumes data, and

updates its current mode (i.e., sets the mode to be used in its next firing).

5

The enable function need not always be called before invoking an actor — in

particular, it need not be called if static analysis of the graph can determine that

the required data for the given actor mode will be available at the desired point of

invocation. On the other hand, dynamic or quasi-static scheduling techniques may

make use of the enable function to help ensure data availability in the absence of

static guarantees [6].

2.2 Topological Patterns

For large-scale models of signal processing applications, the underlying dataflow

graph representations often consist of smaller substructures that repeat multiple

times. A method for scalable representation of dataflow graphs using topologi-

cal patterns was introduced in [7]. Topological patterns, such as the ring, but-

terfly, and chain patterns, are pervasive in signal processing applications, including

multi-dimensional signal processing systems, where processing of large scale dataflow

structures is common. Topological patterns enable concise representation and direct

analysis of sub-structures in the context of high level DSP specification languages

and design tools. Modeling based on topological patterns also provides a scalable

approach to specifying regular functional structures that is formally integrated with

the framework of dataflow. This integration allows not only for specification of

functional patterns, but also for their analysis and optimization as part of the larger

framework of dataflow. For more details on modeling and design based on topolog-

ical patterns, we refer the reader to [7].

6

2.3 Related Work

As mentioned in Chapter 1, the work presented in this report is rooted in core

concepts of the DDDAS paradigm [3], and of dataflow-based design for DSP systems

(e.g., see [8, 1]). In DSP-oriented dataflow modeling, applications are represented

in terms of dataflow graphs, where graph vertices (actors) represent signal process-

ing tasks of arbitrary complexity, and edges represent logical FIFO communication

channels between pairs of actors. In this work, we apply dataflow as a programming

model with semantics that are carefully matched to the targeted DSP application

domain — i.e., dynamic, data-driven signal processing systems [1, 5], and more

specifically, adaptive stream mining systems. This modeling approach differs from

uses of dataflow as a compiler intermediate representation (e.g., see [9]), and as a

form of computer architecture [10].

The work presented in this report builds upon our previous work on adaptive

stream mining systems for multimedia applications [5]. The work presented in this

report goes beyond our previous work by investigating design and implementation

problems for multi-mode applications, and by developing new scheduling techniques

for mapping applications onto embedded platforms while monitoring and managing

dynamically-changing data characteristics and operational constraints.

Various studies on embedded stream mining have focused on performance

optimizations for specific applications (e.g., see [11, 12, 13]). Similarly, the works

of [13, 12] provide generalized scheduling and design strategies respectively, but focus

on statically configured systems, without emphasis on handling time-varying data

7

characteristics. Work presented in this report is distinguished from these prior efforts

in our focus on multi-mode application systems, and the integrated application of

dataflow and DDDAS principles to such a multi-mode context.

Another relevant direction of prior work has involved the incorporation of data-

driven adaptability to individual signal processing functional components (dataflow

actors and their underlying algorithm parameters). For example, the works pre-

sented in [14, 15, 16] have studied such capabilities for speech processing applica-

tions. Here, adaptability is achieved by dynamically updating the key signal flow

graph components, such as Hidden Markov Models (HMMs), linear predictive cod-

ing (LPC) blocks, and Mel-Frequency cepstral coefficients (MFCC) within a given

speech recognition application [15, 14]. The methods can provide useful building

blocks (parameterized actor and subsystem designs) for the directions that we pur-

sued in [4]. However, the approach that we pursued in [4] is more flexible in terms

of data-driven operation since we consider adaptation of application models glob-

ally (at the dataflow graph and scheduling level) as well as locally (at the level of

individual actors or subsystems).

8

Chapter 3

Modeling Framework and Dynamic Multi-Mode Scheduling

3.1 Adaptive Classification

In this chapter, we demonstrate the utility of the LiD4E environment and the

underlying HCFDF model of computation with a case study centering on an ASM

system for face detection.

Adaptive classification systems are in general comprised of multiple classifiers

with different parameters or performance goals (e.g., see [17]). In this context, we

define “adaptive” as the ability of a system to change its operational parameters

based on feedback or external input to maximize the effectiveness of the classifi-

cation system, and select strategic combinations of classifiers dynamically through

systematic processes to account for input data, operational constraints, and classi-

fier characteristics. We define a “non-adaptive system” as one that operates using

only one (static) set of parameters.

Support vector machines (SVMs) are supervised learning models that can

be used for classification purposes (e.g., see [18]). A trained SVM classification

model takes input data and calculates a value, which can then be thresholded to

determine the class of the data. Conceptually, an SVM model is a representation of

the training examples as hyperplanes with different classes separated by the widest

gap allowed in the mapped space. The examples that are used to construct this

9

“maximum margin” are known as support vectors (SVs). Nonlinear classification

using SVMs can be effective for the task of face detection [19]. One of the most

popular kernels in this context is the Gaussian radial basis function, defined by

k(xi, xSV) = exp(−γ‖xi − xSV ‖
2), where x represents the data point and γ is a

parameter that can be configured. By using the kernel trick (i.e., the method for

mapping observations to an inner product space), an SVM model can be trained

efficiently on the data. Cross-validation can be used to determine optimal parameter

values for each SVM based on the needs of the application.

3.2 Modeling Methodology

In this section, we discuss the modeling methods applied in our new design

environment for data-driven DSP systems, and we demonstrate how they can be

applied to the design of multi-mode application systems. These modeling methods

are supported by the the LiD4E design tool, which is introduced in Chapter 1, and

provides a foundation for our prototyping of and experimentation with the meth-

ods described in this report. While the underlying modeling foundation (HCFDF

semantics) reviewed in this section has been developed in our previous work [5],

our application of HCFDF semantics to multi-mode applications is a novel aspect

described in this report.

A key feature of LiD4E is the provision for signal processing pipelines (i.e.,

chains of signal processing modules, such as classifiers, digital filters and transform

operators) that can be data dependent and dynamically changing. LiD4E employs

10

hierarchical core functional dataflow (HCFDF) semantics as the specific form of

dynamic dataflow [5]. Through its emphasis on supporting structured, application-

level dynamic dataflow modeling, HCFDF provides a formal, model-based frame-

work through which applications in DSP and related domains can be designed and

analyzed precisely in terms of integrated principles of DDDAS and dataflow.

In HCFDF graphs, actors are specified in terms of sets of processing modes,

where each mode has static (dataflow rates) — i.e., each mode produces and con-

sumes a fixed number of data values (tokens) on each actor port. However, different

modes of the same actor can have different dataflow rates, and the actor mode

can change from one actor execution (firing) to the next, there by allowing for dy-

namic dataflow behavior (dynamic rates). Additionally, HCFDF allows dataflow

graphs to be hierarchically embedded (nested) within actors of higher level HCFDF

graphs, thereby allowing complex systems to be constructed and analyzed in a scal-

able manner. The design rules prescribed for hierarchical composition in HCFDF

graphs ensure that actors at each level in a design hierarchy conform to the seman-

tics of HCFDF or some restricted subset of HCFDF semantics, such as cyclo-static

dataflow (CSDF) or synchronous dataflow (SDF) [20, 21]. For further details on

HCFDF semantics, we refer the reader to [5].

As demonstrated in [5], HCFDF modeling enables run-time adaptation of sig-

nal processing topologies, including dataflow graphs that are constructed using ar-

bitrary combinations of classifiers, filters, and transform units. Through the inclu-

sion of a special HCFDF design component called an adaptive classification module

(ACM), the designer can invoke multiple operating modes at run-time, and selection

11

of such operating modes can be driven based on system feedback — e.g., based on

instrumentation that monitors data characteristics, and guides selection based on

desired trade-offs among performance, accuracy, and energy consumption.

To apply such a hierarchical, DDDAS-based dataflow design methodology to

the multi-mode application scenarios described in this report, we represent a system

design as a set of mutually exclusive application modes SM = {µ1, µ2, . . . , µN},

where each µi represents a set of application subsystems that are active during

the corresponding mode together with the configurations (actor-, application- and

schedule-level parameters) that are to be applied to the subsystems whenever µi

executes. This is illustrated in Figure 3.1. Although execution across the µis is

carried out sequentially, based on an ordering that can be determined dynamically,

execution within each µi can consist of concurrent executions of an arbitrary number

of HCFDF-based subsystems (dataflow subgraphs), and parallelism can be exploited

within and across these concurrently executing subsystems.

Additionally, in our proposed design environment, the µis can share HCFDF

subgraphs among them to promote code reuse, and reduce program memory re-

quirements. For example, if a common speech processing subsystem is invoked in

multiple application modes, it can be referenced from each of those modes, while

having separate parameter settings, if desired, across the different modes that em-

ploy it. This leads, for example, to a design representation of information fusion

alternatives as parameterized subsets of dataflow subgraphs, where each subgraph

can be specialized to a particular type of information source (e.g., image, video,

network event streams, speech, or high fidelity audio).

12

Figure 3.1: Modeling multi-mode DDDAS designs using HCFDF graphs.

3.3 Dynamic, Multi-Mode Scheduling

To integrate system-level, dynamic, data-driven operation into the targeted

class of signal processing applications, we develop in this section an adaptive schedul-

ing strategy for dynamic configuration and scheduling of multi-mode HCFDF graphs.

The scheduling approach developed here is capable of dynamically adapting the se-

lected application mode (e.g., high performance, high accuracy processing versus

low energy, approximate processing) based on the overall health status of the tar-

get platform (e.g., available battery capacity), as well as on the data processing

scenario (e.g., high-performance, alarm-driven scenarios versus low energy, standby

scenarios).

The general scheduling approach, which we call the DHMM (DDDAS-HCFDF

Multi-Mode) scheduler, involves a set of measurements m1, m2, . . . , mk — from the

target platform, operating environment or system output — that are to be taken

13

at discrete times during execution. Here, each measurement mi corresponds to a

distinct metric (e.g., instantaneous power consumption, remaining battery capac-

ity, selected frequency content values for some kind of sensor data, or processing

resource utilization as a percentage of available platform resources, to name a few

possibilities). A natural way to schedule these measurements is just after each itera-

tion of the executing application mode, since dataflow graph iteration is a commonly

used concept of time window in the analysis of signal processing oriented dataflow

programs (e.g., see [1]). Here, an application iteration can be defined to mean the

processing period for a set of data frames (e.g., with one frame associated with each

monitored sensor) for the current application mode, or can be parameterized to cover

some number F of frame sets, where F can be adjusted dynamically to control to

trade-offs among measurement overhead, adaptation frequency, and reactivity (the

speed with which system reconfiguration can track changes in the measured data).

The sequence of measurement vectors, {(m1(i), m2(i), . . . , mk(i)) | i = 1, 2, . . .},

obtained by this application-iteration-level instrumentation process drives a state

machine SDHMM , where the states are in one-to-one correspondence with the ap-

plication modes, and each state σ has an associated function (i.e, a computational

function, not just a mathematical function) fσ. The purpose of each function fσ is

to compute parameter values for the mode associated with the state σ based on the

newly observed instrumentation data (measurement vector), and any state variables

that are maintained for σ. The state machine SDHMM thus plays a central role in

relating the instrumentation subsystem, which generates the measurement vectors,

to the available application modes and their underlying dataflow subgraphs.

14

The design of the instrumentation subsystem — including selection of the met-

rics {mi}— along with the design of the state machine SDHMM are important aspects

of our overall adaptive scheduling methodology. The instrumentation subsystem and

SDHMM together with the HCFDF-based application- and mode-level dataflow sub-

graphs that they control lead to a precise, formally rooted, and platform-independent

design framework for integrating DDDAS, dataflow, and multi-mode signal process-

ing principles. In Chapter 4 we concretely demonstrate the DHMM scheduling

methodology on a multi-modal, DDDAS-driven, design and implementation case

study involving image processing.

We would like to emphasize that the objective of the DHMM scheduling

methodology is not to introduce a new specialized scheduling algorithm for mapping

dataflow graphs but rather to provide a systematic framework with which differ-

ent schedules or scheduling algorithms can be integrated to provide DDDAS-driven,

multi-mode integration for collections of signal processing subsystems (dataflow sub-

graphs). In particular, the “mode-level schedules” that are are used to execute spe-

cific application modes under specific mode parameter settings are not part of the

DHMM framework specification. Such schedules can be derived by hand, statically

by a software synthesis tool, at run-time or using a combination of synthesis-time

and run-time techniques. Such separation of concerns between scheduling and sys-

tem specification is a fundamental objective for dataflow-based signal processing

environments (e.g., see [1]), and for model-based design tools in general.

15

Chapter 4

Case Study: Face Detection

4.1 Application Design and Experimental Setup

In this case study, we experiment with three SVM classifiers designed with

different performance goals: high accuracy, low runtime, and low false positive rates.

This experimentation is carried out through HCFDF-based modeling of multi-modal

SVM classification using the three classifiers in conjunction with the framework of

Figure 4.1, and dynamic selection of the classifier to use based on situational goals.

We design, implement, and experiment with this ASM system using the LiD4E

environment.

In this section, we demonstrate our proposed multi-mode, DDDAS-driven de-

sign approach, and our associated DHMM scheduling framework with a multi-mode

application case study involving face detection. The metric vector that we consider

in the instrumentation subsystem consists of a single component m1, which corre-

sponds to battery capacity, and the state machine SDHMM is designed to gradually

trade-off processing accuracy for energy efficiency as battery capacity drops from

full to empty. Thus, we demonstrate how the targeted embedded system adapts in

response to periodically measured data on system health, along with an underlying

model of the design space across alternative classifier configurations.

Our experiments were performed through simulation on an Intel Core i7-2600K

16

Figure 4.1: Lightweight Dataflow for DDDAS Envrionment

CPU (3.40GHz, 15GB RAM) running the Ubuntu 12.04 LTS operating system.

The simulation — including HCFDF-based functionality for the DHMM scheduler,

multi-mode application subsystems, and instrumentation subsystem — was imple-

mented using the LiD4E environment [5]. In particular, the C-based application

programming interfaces (APIs) of LiD4E were employed; thus, our experimental

system implementation can be viewed as a C language realization that employs

LiD4E APIs to achieve the desired forms of high level dataflow semantics.

The experiments reported on in this section can be viewed as providing initial

demonstration and validation of the multi-mode, DDDAS design methodology pre-

sented in this report. More complex experiments — e.g., involving multi-dimensional

instrumentation spaces (metric vectors with multiple components) and implemen-

tations on embedded platforms — are a useful direction for future work.

The face detection application that we experiment with in this report is based

17

on an application introduced in [5], with modifications incorporated to integrate

the DHMM scheduling framework with the metric m1 described above for battery

capacity, and a state machine SDHMM that is designed to provide decreasing levels of

processing accuracy and energy consumption as the battery level decreases. These

alternative accuracy/energy trade-offs are captured discretely through three sepa-

rate states (application modes) in SDHMM . The three modes correspond to three

distinct classifier configurations, which can be viewed, respectively, as configura-

tions that provide maximum energy efficiency; a trade-off among accuracy, energy

efficiency, and false positive rates; and a minimum false positive rate. We refer

to these modes as M1, M2, and M3. Here, energy efficiency is measured in terms

of the amount of energy consumed per classification operation (mode invocation).

Thus, M1 has the lowest energy consumption, M3 has the highest, and M2 has an

intermediate level of energy consumption.

The accuracy and false positive rates for a set of executed classification opera-

tions are defined, following standard convention, as follows. Suppose that C classi-

fication tasks are performed, and among these, c1, c2, c3, c4 tasks represent the true

positives, true negatives, false positives, and false negatives (c1 + c2 + c3 + c4 = C),

respectively. Then we define the associated classification accuracy as (c1 + c2)/C,

and the false positive rate (FP rate) as c3/C. In many kinds of operational scenarios

— e.g., where FPs are much more costly compared to false negatives — the FP rate

is viewed as being more important than maximizing accuracy (at least up to some

allowable degradation in accuracy).

The scheduler state machine SDHMM is parameterized with a two-element vec-

18

tor, ν ∈ V , called the threshold vector. Here, V , the set of permissible values for

ν, is defined by V = {(x, y) | 0 ≤ y ≤ x ≤ 1}. Given an initial battery capacity

J , transitions between modes are carried out in SDHMM by starting initially in M3,

transitioning to M2 once the battery capacity falls below x×J , and then transition-

ing to M1 (the most energy efficient mode) once the battery capacity falls to y× J .

Certain boundary conditions in V lead naturally to special cases in the trajectory of

modes. For example, if x = 1, then we transition immediately to M2, and if x = y,

then M2 is effectively skipped.

In our experiments, we use F = 1 as the iteration length (see Section 3.3),

meaning that the DHMM scheduler makes its next assessment about whether to

switch modes after each new image is processed. The SVM classifier parameters for

all three application modes were developed using MATLAB, trained using the MIT

CBCL face database [22], and then ported to C in the LiD4E environment.

4.2 Experimental Results

In our simulation setup, we estimate the energy consumption of a classification

task as being proportional to the latency, and we assume that the target platform

consumes negligible energy consumption during idle periods through use of power-

saving sleep capabilities. More specifically, we assume a constant average power

consumption ρ across all modes so that the battery energy drained for a given mode

invocation is estimated as ρ × τ(µ), where τ(µ) is the average latency (processing

time), as measured for mode µ. This model is used to simulate draining of the

19

battery from full capacity to empty capacity. This simulated draining process in

turn creates a stream of battery capacity data, which is used to drive the DHMM

adaptation process implemented by SDHMM . This is a relatively simple model of en-

ergy consumption; application of more sophisticated energy models is an interesting

direction for further work.

Table 4.1 shows experimental results for several different threshold vectors.

The number of processed images (third column) gives a measure of the overall energy

efficiency across the lifetime of the system (i.e., until the battery is fully drained).

The three threshold vectors at the bottom (labeled SDF1, SDF2, and SDF3) each

correspond to execution of a single mode for the entire input stream (no state tran-

sitions). Such implementations represent statically-structured implementations that

do not employ multi-mode/DDDAS capabilities, and can be implemented as syn-

chronous dataflow (SDF) graphs, without use of more dynamic features, including

HCFDF modeling or the proposed DHMM scheduler.

Intuitively, the DHMM-based system provides a way to achieve configurable,

graceful degradation of classification quality (accuracy and FP rate) as the battery

expires. This can be important, for example, if a mission lasts significantly longer

than expected. The results in Table 4.1 help to quantify this kind of graceful degra-

dation, and also demonstrate another important advantage of the DHMM-based

approach: the approach allows for finer-grained control over the overall design eval-

uation space (i.e., in this case, the space involving energy efficiency, accuracy, and

FP rate). By varying the threshold vector, the designer or a run-time system can

steer the overall system performance (across the entire mission) towards a specific

20

System Threshold Number of Accuracy False Positive

Vector Processed Rate

Images

ν1(0.9,0.2) 1338 99.23% 17.68%

ν2(0.7,0.4) 1545 98.53% 21.93%

DHMM ν3(0.7,0.05) 901 97.83% 12.92%

ν4(0.6,0.1) 915 97.26% 14.89%

ν5(0.5,0.25) 1111 97.13% 19.73%

ν6(0.1,0.05) 424 87.95% 10.18%

SDF1 (0,0) 2890 99.56% 26.19%

SDF2 (1.0,0) 1052 99.71% 11.64%

SDF3 (1.0,1.0) 256 78.31% 0%

Table 4.1: Experimental results

21

Pareto-optimal point in the space that represents the best trade-off for the appli-

cation. Thus, rather than being confined by just the trade-offs provided by the

individual classifiers (i.e., the last three rows in Table 4.1 for this case study), the

designer or run-time system has a large amount of control in steering the overall

performance into other regions of the underlying design evaluation space. These

capabilities — configurable and graceful degradation and the production of new,

Pareto-optimal operating alternatives — represent significant advantages derived

by applying the multi-mode, DDDAS techniques discussed in this report.

22

Chapter 5

Conclusion

In this report, we have discussed an approach to design and implementation

of multi-mode, data driven signal processing systems. We have developed meth-

ods for modeling and designing such systems using integrated principles of dynamic

data driven application systems (DDDAS) and high-level, dynamic dataflow mod-

els of computation. We have introduced a scheduling framework, called the DHMM

(DDDAS-HCFDFMulti-Mode) scheduler, for instrumentation-driven, adaptive schedul-

ing in multi-mode signal processing systems. Through a case study of an energy-

constrained, multi-mode face detection system, we have demonstrated and quantified

significant advantages of our proposed new methods. Useful directions for future

work include (1) extensions to multiple sensing modalities, such as integrated image

and speech processing, and (2) experimentation with instrumentation subsystems

that produce multidimensional outputs (e.g., channel quality in addition to power

consumption).

23

Chapter 6

Acknowledgement

This research was sponsored in part by the Austrian Marshall Plan Foundation,

and the DDDAS program under US Air Force Office of Scientific Research (AFOSR).

24

Bibliography

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook
of Signal Processing Systems, Springer, second edition, 2013, ISBN: 978-1-
4614-6858-5 (Print); 978-1-4614-6859-2 (Online).

[2] R. Ducasse and M. van der Schaar, “Finding it now: Construction and configu-
ration of networked classifiers in real-time stream mining systems,” in Handbook

of Signal Processing Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leu-
pers, and J. Takala, Eds., pp. 97–134. Springer, second edition, 2013.

[3] F. Darema, “Grid computing and beyond: The context of dynamic data driven
applications systems,” Proceedings of the IEEE, vol. 93, no. 2, pp. 692–697,
2005.

[4] K. Sudusinghe, I. Cho, M. van der Schaar, and S. S. Bhattacharyya, “Model
based design environment for data-driven embedded signal processing sys-
tems,” in Proceedings of the International Conference on Computational Sci-

ence, Cairns, Australia, June 2014, pp. 1193–1202.

[5] K. Sudusinghe, S. Won, M. van der Schaar, and S. S. Bhattacharyya, “A novel
framework for design and implementation of adaptive stream mining systems,”
in Proceedings of the IEEE International Conference on Multimedia and Expo,
San Jose, California, July 2013, 6 pages in online proceedings.

[6] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Func-
tional DIF for rapid prototyping,” in Proceedings of the International Sympo-

sium on Rapid System Prototyping, Monterey, California, June 2008, pp. 17–23.

[7] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya, “Scalable represen-
tation of dataflow graph structures using topological patterns,” in Proceedings

of the IEEE Workshop on Signal Processing Systems, San Francisco Bay Area,
USA, October 2010, pp. 13–18.

[8] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the

IEEE, pp. 773–799, May 1995.

[9] W. Najjar, B. Draper, W. Bohm, and R. Beveridge, “The cameron project:
High-level programming of image processing applications on reconfigurable
computing machines,” in Proceedings of the PACT Workshop on Reconfigurable

Computing, 1998.

[10] J. B. Dennis, “Dataflow supercomputers,” IEEE Computer Magazine, vol. 13,
no. 11, November 1980.

[11] U. Ramacher, “Software-defined radio prospects for multistandard mobile
phones,” IEEE Computer Magazine, vol. 40, no. 10, pp. 62–69, 2007.

25

[12] J. Pisharath, N. Jiang, and A. Choudhary, “Evaluation of application-aware
heterogeneous embedded systems for performance and energy consumption,” in
Proceedings of the IEEE Real-Time Technology and Applications Symposium,
2003, pp. 124–132.

[13] F. König, D. Boers, F. Slomka, U. Margull, M. Niemetz, and G. Wirrer, “Appli-
cation specific performance indicators for quantitative evaluation of the timing
behavior for embedded real-time systems,” in Proceedings of the Design, Au-

tomation and Test in Europe Conference and Exhibition, 2009, pp. 519–523.

[14] G. Chollet, K. McTait, and D. Petrovska-Delacrétaz, “Data driven approaches
to speech and language processing,” in Nonlinear Speech Modeling and Appli-

cations, pp. 164–198. Springer, 2005.

[15] G. Aradilla, J. Vepa, and H. Bourlard, “Improving speech recognition using a
data-driven approach,” Tech. Rep. IDIAP-RR 05-66, IDIAP Research Institute,
April 2005.

[16] H. Ney, D. Mergel, A. Noll, and A. Paeseler and, “Data driven search or-
ganization for continuous speech recognition,” IEEE Transactions on Signal

Processing, vol. 40, no. 2, pp. 272–281, 1992.

[17] R. Ducasse, D. Turaga, and M. van der Schaar, “Adaptive topologic optimiza-
tion for large-scale stream mining,” IEEE Journal on Selected Topics in Signal

Processing, vol. 4, no. 3, pp. 620–636, June 2010.

[18] C. J. C. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Knowledge Discovery and Data Mining, vol. 2, no. 2, 1998.

[19] B. Heisele, P. Ho, J. Wu, and T. Poggio, “Face recognition: component-based
versus global approaches,” Journal of Computer Vision and Image Understand-

ing, vol. 91, no. 1–2, pp. 6–21, 2003.

[20] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static
dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 397–
408, February 1996.

[21] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceedings of

the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[22] “CBCL face database #1,” http://cbcl.mit.edu/software-datasets/

FaceData2.html, 2010.

26

