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I. Introduction 

 

A common goal in the data collection process is to share results with other researchers and 

the public. Access to a shared data source allows for results to be replicable and improved upon. 

Data sharing and integration with other sources can lead to improved knowledge production and 

amplify the impact of the research. However, sharing data collected under the promise of 

confidentiality can be restrictive. This is particularly true of spatial data, as location is a strong 

personal identifier. In 2012, researchers at the Carinthia University of Applied Sciences built an 

Energy Web GIS Portal for the collection and reporting of energy consumption data in the 

Hermagor District of Carinthia, Austria (Paulus et al. 2014). The portal offers a standardized 

questionnaire, spatial visualization, and download and reporting tools. In keeping with data 

confidentiality, the energy demand maps for private households offered by the portal display data 

aggregated to grid-like statistical units with data suppressed where population number is not high 

enough to protect anonymity. As an alternative to the suppression and aggregation of data, 

obfuscation approaches involve the slight alteration of point data to protect both spatial patterns 

and personal identities. Geomasking obfuscation techniques offer the potential to both preserve 

privacy and maintain underlying spatial distributions better than large-scale aggregation. This 

study evaluates the effectiveness of the recognized obfuscation techniques of grid masking, 

random perturbation, and weighted random perturbation in maintaining distributional integrity in 

the Hermagor energy data, and also evaluates the performance of a new masking procedure, 

Voronoi masking.  

An important question for the utility of masking is whether the masked data are fit for 

decision support. This is a more complex test for the fitness of the data compared to simply the 

degree to which the masked data fit the general spatial pattern of the original data points. In order 
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to provide value to researchers and decision-makers, the masked data must respond to research 

questions with similar accuracy to the original data. This study statistically tests the clustering of 

household energy consumption and evaluates the performance of the obfuscated data compared 

to the original unmasked data. The greater significance of this research is that it is a first step in 

determining if masked data can serve to replace original data in decision support systems.  

II. Background 

 

Over the past ten years, there has been a surge in interest in the concept of locational privacy, 

or geoprivacy, among the geographic community (Zandbergen 2014). Geoprivacy is generally 

understood as the individual right to determine how, if, and when one’s personal location 

information is shared with other parties (Kwan et al. 2004; AbdelMalik et al. 2008; Elwood and 

Leszczynski 2011; Kar et al. 2013). The links between location and other available data, while 

generating sensitivity to breaches of privacy and confidentiality, have great utility for emergency 

response, navigation, disaster relief, health, and social research purposes (Duckham and Kulik 

2007). Location data sharing is also crucial to many popular location-based services, some of 

which could not exist without exact coordinate locations (Vicente et al. 2011). Furthermore, 

limits on access to fine-level data are found to impede accurate spatial analysis for proper health 

research, according to a survey of health professionals (AbdelMalik et al. 2008). Given the 

advantages of precise spatial data, the ability of individuals to control their spatial footprints can 

be put at risk.  Kounadi and Leitner (2014) write that the disclosure of location information as a 

breach of geoprivacy can come from new geospatial technologies, laws that do not stringently 

protect privacy, and negligence by authors and publishers. 
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Legal Geoprivacy Protections  

The right to geoprivacy is closely tied to concepts of information privacy and data protection. 

Legal privacy expert Sjaak Nouwt (2008) asserts that the concept of a reasonable expectation of 

geoprivacy exists within the European legal framework and has been recognized by the 

European Court of Human Rights. Having a “reasonable expectation” of geoprivacy means that 

in realms where individuals can reasonably expect privacy with regard to their location 

information, their locations cannot lawfully be disclosed. Information privacy in Austria is 

safeguarded under the Data Protection Act of 2000, or Datenschutzgesetz 2000, which has 

stipulations restricting further use of data collected in surveys and by other means, such as sensor 

networks. The act protects personal privacy with regard to data collected from research subjects 

and video surveillance. For example, video surveillance implementations must be documented 

with the Data Protection Administration, and data must be deleted after 72 hours.  

In survey research, a permit can be obtained from the Data Protection Authority to use 

personally identifiable data for scientific analyses. If a permit is granted, data must be recoded 

without delay so that data subjects are unidentifiable as soon as is acceptable for analysis. 

Improper use of the data is punishable by an administrative penalty of up to €25,000 or 1 year in 

prison if the intention of data mishandling and personal identification is determined to be for 

harm. Despite protective laws and rulings, however, a 2010 report by the EU Agency for 

Fundamental Rights finds that data protection authorities are not well-equipped to investigate or 

intervene in privacy violations (European Agency for Fundamental Rights 2010). Data retention 

is a contentious concept in Europe. The EU Data Retention Directive of 2006 ordered member 

states to store citizen telecommunications data for at least six months, allowing police to access 

IP address data and all text messages when permitted by a court. The European Court of Justice 
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invalidated this directive in 2014 as interfering with the rights to privacy and data protection of 

European citizens. In this ruling, privacy was deemed more essential than the benefits of 

sweeping personal information for law enforcement. 

Obfuscation for Privacy Preservation 

If legal protections are not adequate for protection of confidentiality in surveys, it is up to 

authors and publishers to ensure that location data are protected. Obfuscation through 

geographical masks is being evaluated as a method to protect locational privacy when mapping 

sensitive data (Kounadi and Leitner 2014). Obfuscation degrades the quality of geographical data 

by introducing inaccuracy, increasing imprecision, or maintaining vagueness in terms used to 

describe location (Duckham and Kulik 2007). Aside from affine transformations, which 

translate, re-scale, or rotate a point pattern, grid masking and random perturbation are the most 

thoroughly documented masking techniques (Kwan et al. 2004; Leitner and Curtis 2004; 

Kounadi and Leitner 2014). Random perturbation displaces points a random distance and 

direction within a specified distance threshold. Grid masking, a variant of point aggregation, 

obfuscates points by snapping them to the centroid or vertex of the nearest grid cell of set size. 

Donut masking, which is similar to random perturbation in randomizing distance and direction, 

limits the area of displacement by enforcing a minimum distance. Donut masking has primarily 

been evaluated in masking sensitive health data (Hampton et al. 2010; Allshouse et al. 2010). 

These masking techniques are generally preferred over aggregation to administrative units for 

preserving the balance between spatial pattern and privacy. It is argued that aggregation can 

adversely impact cluster detection and lead to inaccurate or misleading results (Kwan et al. 2004; 

Kounadi and Leitner 2014). 
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The Energy Web GIS Portal built by researchers at the Carinthia University of Applied 

Sciences in 2012 releases spatial data regarding household energy consumption in the Hermagor 

District aggregated to statistical units (Paulus et al. 2014). The statistical units are grid cells of 

125 meters, and data are repressed in cells where there are not enough households to maintain 

confidentiality. This research tests whether masking techniques can preserve spatial patterns that 

would be important for energy analysis and be as protective of privacy as aggregation. A first 

objective is the exploration of how well obfuscation techniques preserve the integrity of original 

point data and preserve household anonymity in Hermagor. A second research question is 

occupied with how masked point data may be used to answer realistic research questions 

regarding energy consumption. These results are an important first step in testing the fitness of 

masked data for decision-making. 

III. Methods 

 

This section describes the methods implemented to test the changes in underlying spatial 

structure during obfuscation and the preservation of household anonymity. Figure 1 depicts the 

overview of the analysis starting from the original point address data down to the masked point 

data and resulting statistical comparisons.  
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Figure 1. Overview of obfuscation analysis 

 

Study Area 

     This study employs energy use data collected for every household in the Hermagor district of 

Carinthia in southern Austria. The district of Hermagor is situated in southwestern Carinthia, and 
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the data are centered in the Hermagor borough. Compared to study regions in other masking 

research (Kwan et al. 2004; Leitner and Curtis 2004), Hermagor has a very low population 

density. The total population in the district as of the first quarter of 2014 is 18,547, and the 

population density is 22.95 persons per square kilometer (STATCube - Statistical Database of 

Statistics Austria 2014). The lower population density in this region makes individual residences 

more vulnerable to identification. The data set for this study includes 1,945 residential records in 

the District of Hermagor. Data points are situated on the centroids of the physical buildings with 

the number of primary residents at each building included as a variable.  

     The mean warm water energy consumption for each household in the data set is 2.71 

megawatt hours per annum with a standard deviation of 2.16 MWh/a. Per capita, the mean warm 

water energy consumption is 0.97 MWh/a with a standard deviation of 0.69 MWh/a. The highest 

per capita warm water energy consumption is in the central part of the district, as well as towards 

the northeast of the region. Figure 2 displays the kernel density estimation (KDE) of the original 

data points for warm water energy consumption with cell size of 250 meters. The southern 

portion of the district is primarily uninhabited in the Schwarzwald mountain region, which 

explains the absence of household data towards the south. 
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Figure 2. Kernel density estimation of per capita warm water energy consumption, Hermagor 

Spatial Analysis of Original Data 

     A principal question for the utility of masked data is how it can be applied in decision-making. 

Can masked point data be used to accurately answer research questions in place of original point 

data? This study focuses first on the original data (ODP) with methods typically used by an energy 

analyst in a decision-making process. This study relies on testing the original data first for spatial 

patterns and subsequently applying identical methods to the masked data sets for comparison. The 

test research question applied for this study is to determine the locations of clusters of high and 

low energy consumption by household. 

     Some obfuscation studies have focused solely on preservation of spatial pattern as a test of 

maintaining the integrity of spatial data. For example, Shi et al. (2009) generate kernel density 
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surfaces of original and masked point data and then test for Pearson’s correlations between the 

rasters. The current study departs from these spatial pattern correlation tests by utilizing more 

robust measures of difference. Underlying point distributions are evaluated using the metrics of 

clustering, nearest neighbor distance, and spatial autocorrelation.  

     As a first step, exploratory statistics (ES) are run on the original data points (ODP), including 

the mean and median centers with standard deviations. A nearest neighbor hierarchical cluster 

analysis (CA) is performed to determine the number of first order clusters present in the original 

data, the density of the clusters, and their standard deviational ellipses. The distance to the k nearest 

neighbors (DK) for each point is also calculated. This provides a step towards spatial weighting 

for masking, where the distance threshold is varied according to how vulnerable to identification 

each point is based on its neighbors. The concept of k-anonymity in privacy research refers to 

ensuring that each individual cannot be distinguished from k-1 other individuals in the data 

(Sweeney 2002). Hampton et al. (2010) prepare spatial weights in their donut masking study to 

vary the distance thresholds by the radii required to reach k neighbors around each original point. 

Semivariogram analysis (SA) tests for spatial autocorrelation in the original data set. If the energy 

consumption data are spatially autocorrelated, a similar correlation should ideally be present in the 

masked patterns. These techniques provide the baseline for determining clusters of high warm 

water energy consumption and for quantifying the underlying spatial distributions of the original 

data. 

Geomasking Techniques 

     The next step in the analysis is to obfuscate the original residence data points. Statistics 

Austria releases spatial data aggregated to statistical units, so called regional statistical units. 

These units represent regularly spaced vector grid cells of 100, 125, or 250 meters side length, 
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omitting information where there are too few households falling in a unit. In this case study, the 

statistical units are sized at 125 meters. Aggregations such as these reduce the spatial resolution 

of data and thereby reduce the ability of researchers to detect underlying patterns, such as disease 

risk (Hampton et al. 2010; Kwan et al. 2004). Zandbergen (2014) echoes that spatial analysis 

techniques, including cluster detection and point pattern analysis, become less accurate with 

aggregated data. Similarly, Luo et al. (2010) note that the smoothing effects of aggregation 

adversely impact the estimations of statistical models compared to data of finer resolutions. The 

modifiable areal unit problem (MAUP), which states that patterns witnessed on an aggregated 

level do not match those found at finer resolutions, makes it difficult to analyze phenomena that 

move across boundaries. Aggregation to grid cells is preferable to aggregation to larger 

geographies such as tracts or zip codes for the preservation of spatial pattern. However, the size 

of the grid cells used for aggregation can cause points to be moved or smoothed across a greater 

distance than is actually necessary to preserve privacy. Geomasking offers a solution that can 

allow researchers to maintain a fine point resolution for analysis while also moving the points the 

bare minimum distance necessary to maintain confidentiality. 

     The masking techniques employed in this study include: 

• Grid masking 

• Voronoi masking 

• Random perturbation 

• Weighted random perturbation.  

 

     Grid masking (GM) involves snapping each original data point to the centroid of grid cells of 

a given size (Curtis et al. 2011; Leitner and Curtis 2004; Krumm 2007). This method is most 

similar to the aggregation technique the Austrian government uses in summarizing points into 
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grid-like statistical units. If the statistical units used for the energy survey results (125 meters by 

125 meters) were converted to points, they would closely resemble a grid-masked version of the 

original data points with a distance threshold of 125 meters. This study tests grid masking with a 

distance threshold of 125 meters as representative of the currently implemented official statistical 

unit aggregation. Since all of the analyses in this study are based on point data, this is necessary 

for uniformity.  

     This study introduces a new form of obfuscation referred to here as Voronoi masking (VM). 

Voronoi polygons, or Thiessen polygons, define areas where the boundaries are equidistant 

between the surrounding points, or where inside the polygons is closer to the corresponding point 

than to any other point. In Voronoi masking, each point is snapped to the edges of the Voronoi 

polygons, making them equidistant between original point data. An advantage of this technique 

is that where the density of original points is higher, the points are moved a shorter distance on 

average, resulting in patterns that more closely resemble the original data set. Another advantage 

of Voronoi masking is that some points in adjacent polygons will be snapped to the same 

location, which can increase the k-anonymity for those points. Finally, if the data set 

incorporates all residences in a study area, no relocated point is placed on an actual residence. 

None of the relocated points remain in their original locations, or at the centroids of other 

residences. This permits no false identification of household points. In areas of sparse data 

points, it is expected that some points will be moved large distances with this method, which 

could disrupt patterns. However, if there are at least two households close to each other in a 

remote region, the points will potentially be moved a shorter distance than they would be with 

other masking techniques that do not account for underlying settlement patterns. Sample results 

of Voronoi masking are shown in Figure 3.  
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(a)        (b) 

Figure 3. Original point data (a) and points obfuscated by Voronoi masking (b) 

 

     A third masking technique for this study is random perturbation (RP). Like with grid 

masking, this is applied uniformly with a 125-meter distance threshold. In random perturbation, 

each point is relocated a random distance within a distance threshold and in a random direction 

(Kwan et al. 2004). A fourth measure is weighted random perturbation (WRP), where the 

distance threshold varies according to the distribution of residences. The weighted distances are 

based on the radii generated in the DK process, or the distance to k nearest neighbors in the 

original point data set. The weights are thus local measures that vary from point to point.  

     These random perturbation methods are supported by previous research, but have yet to be 

tested in a rural Austrian environment. Kwan et al. (2004) implement weighted random 

perturbation, deriving the weight from the population density of the Census tracts where the 

points resided, dividing the densities into ten equal interval classes and assigning a weighting 

factor from 1 to 5.5 from highest to lowest density. Allshouse et al. (2010) also weight the 

distance thresholds in their donut masking study based on the number of households and area of 

the Census block group of the original points. The maximum distance threshold is determined by 

displacement by a specified maximum number of k households. Actual k-anonymity in the 

Allshouse et al. study is measured as the number of households with a shorter distance to the 
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original household point than the distance between the original and masked point. Allshouse et 

al. use a minimum k of 5 households for illustration purposes. This study finds that the average 

distance to the 5th nearest neighbor in the original spatial data (ODP) is 117 meters. Since grid 

masking (GM) and random perturbation (RP) are applied at a blanket distance of 125 meters, a 

k=5 households threshold is set for WRP so that the average distance of displacement 

approximates that of the other methods. The distance of displacement is randomized between 0 

and the distance to the 5th nearest neighbor for each point. 

Spatial Analysis of Masked Data 

     Just as with the original data points (ODP), spatial analysis techniques are implemented on 

the obfuscated data. These include nearest neighbor hierarchical cluster analysis (CA), the 

determination of distance to k-nearest neighbors (DK) as a test of how anonymous the masked 

data are, and semivariogram analysis (SA) for spatial autocorrelation. These results are compared 

to those of the original dataset. Difference maps of kernel density for household warm water 

energy consumption are included for the comparison. The metrics here help to assess differences 

in the measured patterns of warm water energy consumption between the ODP and masked 

results. 

 

Point Similarity Analysis 

     The final step of the process is a statistical point similarity analysis (PSA). This step 

implements cross-K functions to test between the original and masked point patterns. These tests 

run simulations to see if the similarities between the point patterns are due to random chance or 

are statistically similar. Kwan et al. (2004) implement the cross-k function in their masking 

study, which tests whether differences observed between point patterns are significantly similar 
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or different compared to random simulations. The cross-k functions here are run with 99 

simulations to test a confidence envelope at the 99% confidence interval. 

IV. Results 

 

     This study employs four principal obfuscation techniques: grid masking (GM), Voronoi 

masking (VM), random perturbation (RP), and weighted random perturbation (WRP). Figure 4 

displays an example subset of original data and obfuscated results from the masking techniques 

used in this analysis. Visually in this example, GM appears to least preserve the spatial pattern 

exhibited by the original data, while VM and WRP maintain the outer shape of the original data 

extent better than RP. GM is thus expected to least preserve the spatial integrity of the original 

data points. 
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Figure 4. Masking technique examples 
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Exploratory Statistics (ES) 

     The mean center of the original data points is found at (2999.7, 164876.4)1 along Gailtal 

Straße between Major Troje Weg and Friedhofweg Hermagor. This is nestled between the 

northern and southern settlement patterns, which run east-west along the district. The median 

center of the original data points is situated north of the mean center along Gailtal Straße at 

(3071.2, 165050.9). The mean centers, median centers, and standard deviational ellipses between 

the ODP and masking results are within two meters of each other and do not vary much 

according to technique. The mean and median center results are shown in Figure 5. The VM 

mean and median centers are among the closest to those of the original data points at less than 

one meter away. Two meters of distance between the mean and median centers is not enough of 

a difference to underscore any major change in underlying spatial pattern between the unmasked 

and masked data. 

a)       b) 

Figure 5. Mean centers (a) and median centers (b) of original and obfuscated data 

                                                           
1 Projected in MGI Austria GK Central 
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     The standard deviational ellipses for each masked point pattern also exhibit low variation and 

on a map appear to completely overlap. The first standard ellipse statistics are shown in Table 1. 

The rotation of the ellipse only varies .01 degrees for random perturbation (RP), and even less 

for the other methods compared to the original data. The vertical and horizontal standard 

distances vary most for grid masking (GM) compared to the other methods, but are still within 5 

meters of the unmasked standard deviational ellipse. For these general summary statistics, there 

are only very small differences between the unmasked and masked data sets. Further 

examination of the clustering patterns and spatial relationships is needed to determine the 

similarity of the underlying patterns. 

Table 1. First standard deviational ellipse statistics by obfuscation method, distance in meters 

 X Standard Distance Y Standard Distance Rotation 

    

Unmasked (ODP) 1625.97 6639.41 88.09 

Grid masking (GM) 1630.42 6640.55 88.09 

Voronoi masking (VM) 1627.21 6639.82 88.09 

Random perturbation (RP) 1625.95 6637.51 88.08 

Weighted random perturbation (WRP) 1626.29 6640.17 88.09 

 

Difference Maps 

      The difference maps displayed in Figure 6 were creating using kernel density estimations of 

the warm water energy consumption by household. A cell size of 100 meters and a search 

distance of 250 meters were used to smooth patterns and make them visible at the scale of the 

entire district of Hermagor. The absolute value of the difference between the ODP and masked 

result rasters for warm water energy consumption is the value depicted in the maps. All 

difference maps are symbolized with the same breaks. GM and RP demonstrate the highest 

levels of divergence from the ODP kernel estimation. RP also has the worst performance with 
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the few isolated points at the south of the region. The errors appear more widespread in RP, 

which is expected with the random displacement of all points to some random distance. 

     The clear best performance for this metric comes from the VM density surface. There are few 

visible cells for VM that reach the top category for highest difference from the ODP kernel 

density raster. Weighted random perturbation (WRP) also fares better than GM and RP due to 

shorter-distance displacements of points where there is a high point density. A problem area 

where all the methods resulted in great difference from the ODP is in the town of Tröplach, 

where the error is centered on a few sparse data points with high warm water energy 

consumption. There is a similar area of error in the eastern portion of the town of Hermagor, 

where there are no data points, but the nearby points have higher consumption records. This 

result may say more about errors with interpolation rather than errors resulting from obfuscation, 

however. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Difference maps for kernel density estimation of household warm water consumption 



 

Distance to k-Nearest Neighbors (DK) 

     The concept of k-nearest neighbors is implemented both as a means of comparing spatial 

pattern across obfuscation methods and evaluating privacy. Obfuscation must balance between 

maintaining a similar number of neighbors around each point to maintain pattern, while 

simultaneously increasing the number of neighbors to enhance k-anonymity. Table 2 depicts the 

mean distance in meters to the 1st, 5th, 10th, and 20th nearest neighbors in the original and masked 

data sets. The original unmasked point data in Hermagor have a mean distance of 44 meters to 

the 1st, 116 meters to the 5th, 192 meters to the 10th, and 329 meters to the 20th neighbor.  

     Random perturbation (RP) and weighted random perturbation (WRP) increase the distance to 

the nearest 1, 5, 10, and 20 neighbors. This decreases k-anonymity when k-anonymity is 

measured within a masked dataset, rather than against true housing patterns. Grid masking (GM) 

and Voronoi masking (VM) exhibit lower average distances to the 1st nearest neighbors (24 

meters and 17 meters, respectively) due to the tendency of these methods to snap very close 

points together. With RP and WRP, no masked points share identical coordinates, which explains 

the higher average distances to the 1st nearest neighbors. At 10 and 20 nearest neighbors, the 

average distances for GM and VM to the kth nearest neighbors are closer to the results of the 

ODP, although VM maintains lower average distance to all four neighbor totals tested. This is 

because for Voronoi masking, even the most remote points are snapped to one other point if they 

are not along bounding geometry for the data set. For the k-anonymity measure of privacy then, 

VM maintains privacy better than the other obfuscation methods and the original data pattern. 
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Table 2. Mean distance (meters) to k-nearest neighbors by masking method 

  Neighbors  

 1 5 10 20 

     

Unmasked (ODP) 43.8 116.8 192.0 328.8 

Grid masking (GM) 24.4 116.5 201.9 335.1 

Voronoi masking (VM) 16.9 109.7 188.6 326.5 

Random perturbation (RP) 50.6 129.3 199.6 335.6 

Weighted random perturbation (WRP) 52.0 122.9 192.6 329.6 

 

Semivariogram Analysis (SA) 

     The semivariogram analysis (SA) is intended to compare the semivariogram patterns of the 

original data set with those of the masked data sets, including the nugget, range and sill. 

Semivariograms often exhibit an upward trend that levels out as the distance increases. This 

pattern is characteristic of spatial autocorrelation, where points that are closer together are more 

similar than points that are farther apart. A global test for spatial autocorrelation (Moran’s I) with 

inverse distance in the original data points is significant with 99% confidence and a z-score of 

2.67. This pattern is based on warm water energy consumption by household. A summary of the 

Moran’s I results for warm water energy consumption in the original and masked data sets is 

shown in Table 3. 

Table 3. Mean distance (meters) to k-nearest neighbors by masking method 

 Moran’s I z-score p-value 

    

Unmasked (ODP) 0.044 2.673 0.008 

Grid masking (GM) 0.034 2.518 0.012 

Voronoi masking (VM) 0.026 1.192 0.233 

Random perturbation (RP) 0.027 4.569 0.000 

Weighted random perturbation (WRP) 0.009 1.803 0.071 
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     The warm water energy consumption point patterns for the unmasked and random 

perturbation (RP) reach significance for clustering at the p < 0.01 level. The z-scores for grid 

masking (GM) and weighted random perturbation (WRP) suggest that they exhibit globally 

clustered patterns with GM significant at the p < 0.05 level and WRP weakly significant at the p 

< 0.10 level. Voronoi masking (VM) is the only point pattern for which there is a decidedly 

random global distribution of warm water energy consumption points. One explanation for this is 

the snapping of somewhat distant points with varying warm water energy consumption from 

neighboring Voronoi polygons to be right atop each other. This snapping therefore appears to 

erase some spatial autocorrelation that existed before points with varying consumption levels 

were snapped to each other. 

     Knowing that the original data points (ODP) are globally clustered, but that not all the 

masked point patterns exhibit clustering, the semivariograms are expected to show some 

differences between the different point patterns. A subset of 400 points was selected from the 

original data set to examine the semivariogram. This random selection represents approximately 

20% of the total data set and was chosen to examine finer patterns within the autocorrelated data. 

The same subset of features was then selected from the masked data sets to produce 

semivariograms for comparison. The original data were transformed by the normal score, and 

given the average nearest neighbor measurement of 43.8 meters, were given a lag size of 43.8 

meters with 12 lags to match. Without modeling the nugget (giving the nugget a value of 0), the 

partial sills of these values are shown in Table 4. The model type of the semivariograms is 

spherical, and the graphs are displayed in Figure 7. 
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(a) ODP 

 

(b) GM 

 

(c) VM 
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(d) RP 

 

(e) WRP 

Figure 7. Semivariograms with lag size of 43.8 meters and 12 bins 

Table 4. Partial sill values for semivariograms 

 Partial sill 

  

Unmasked (ODP) 0.952 

Grid masking (GM) 1.008 

Voronoi masking (VM) 1.069 

Random perturbation (RP) 1.179 

Weighted random perturbation (WRP) 0.952 
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     The averaged values for all the semivariograms appear to approximate horizontal lines. This 

suggests that there is little spatial correlation in the data and that data points that are far away 

from given points have similar values. The grid masking semivarigoram appears most different 

from the other graphs with sparser points plotted at the specified lag parameters. This is likely 

due to the snapping of dissimilar points to each other. The partial sill of the WRP 

sermivariogram is identical to that of the original data points at 0.952, suggesting a closer 

approximation of the semivariogram model to the ODP than any of the other masking 

techniques. Random perturbation exhibits the highest partial sill value, and the plotted binned 

points appear more randomized along the semivariogram model than in the other masked 

representations. Directional influences did not appear in the semivariograms when tested. Due to 

the horizontal trend of the semivariograms, this test did not offer insights into whether 

obfuscation would impact exhibited spatial correlation in this manner. 

Cluster Analysis (CA) 

     The next step in the analysis was a nearest neighbor hierarchical spatial clustering test, 

computed in CrimeStat. The parameters set for this test were a random nearest neighbor distance 

and a minimum threshold of 20 points per cluster. This minimum cluster size was selected to 

limit the quantity of clusters produced and view more generalized cluster patterns. First standard 

deviational ellipses of the resulting first order clusters for the original and masked data were 

overlaid in GIS. The original data points (ODP) generated 20 first order clusters, encompassing 

an average of 27.7 points each. The clustering statistics for the original and masked data are 

shown in Table 5.  
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Table 5. Cluster attributes from nearest neighbor hierarchical clustering 

 

First order 

clusters 

Mean cluster 

points 

Mean cluster 

density 

    

Unmasked (ODP) 20 27.7 0.00045 

Grid masking (GM) 17 28.0 0.00103 

Voronoi masking (VM) 21 28.0 0.00102 

Random perturbation (RP) 13 27.6 0.00093 

Weighted random perturbation (WRP) 20 27.4 0.00105 

 

     The ODP, VM, and WRP results all produced a similar number of clusters, and the mean 

number of points in each output cluster is similar. RP produced the fewest first order clusters at 

13, which is 7 fewer clusters than the ODP generated. Random perturbation, through random 

changes in distance and direction, does not tend to snap any nearby points together, as grid 

masking and Voronoi masking do, which can lead to comparatively less dense clustering patterns 

at fine scales. With a smaller number of clusters detected, RP without weighting may prove a 

less useful obfuscation technique for cluster analysis than the other masking methods. With 

weighted random perturbation, clusters are more likely to remain intact, as with a higher number 

of neighbors, a point is only moved a short distance. The mean density of the clusters detected 

for all of the obfuscation methods was higher than the mean cluster density for the ODP, 

indicating that the masking techniques tend to strengthen the cohesion of existing clusters. 

     The map in Figure 8 highlights similarities and differences of the locations and sizes of output 

clusters. For most of the ODP cluster ellipses shown, the VM ellipses appear to best approximate 

their location and size. This is particularly true of the northern portion of the map, where only the 

VM cluster ellipses match up with those of the ODP, and no other ellipses are closeby. Outliers 

by location for the group are emphasized towards the west by grid masking and weighted 

random perturbation. Unweighted RP fares the worst in this map, as RP ellipses are absent in 
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many cases where there is an ODP cluster. Based on the cluster analysis, VM demonstrates the 

best performance in approximating the underlying cluster patterns of the ODP. 

 

Figure 8. Subset of standard deviational ellipses for first order nearest neighbor hierarchical 

clusters 

 

Point Similarity Analysis (PSA) 

     The point similarity analysis involved a cross-k analysis between the ODP and each of the 

obfuscated data sets. To set up the data for the cross-k function, the ODP were subsequently 

merged with each masked data set. The ODP points were set as the type i events with the masked 

data set as type j events so that the cross-k was run four times, once for each masking method. 

The cross-k function tests the degree to which the masked points are clustered around the ODP. 

Border correction was implemented using the administrative boundary of the Hermagor district. 
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     The first set of results from the cross-k demonstrates strong clustering between all four 

masked data sets and the ODP. These results are shown in Figure 9. The point distributions of 

the i and j events are highly similar in all four resulting graphs, far exceeding the theoretical 

distributions to be found with random points, particularly with border correction. Differences 

between the masking techniques in this regard are difficult to detect from the plots. From low to 

high distances, the cross-k demonstrates that the underlying point distributions remain highly 

linked to each other. 

     The graphs displayed in Figure 10 plot the results of the cross-k for each obfuscation 

technique along with the simulation envelopes. The number of random simulations chosen for 

these data sets was 99 to demonstrate results at the p<0.01 confidence level. The results again 

show significant dependence between the ODP and masked data sets. At the scales of these plots, 

slight differences in performance between these masking techniques are difficult to detect. This 

suggests that cross-k plots and measuring the dependence between masked data sets may not 

capture finer differences in underlying spatial pattern. It places confidence in the masking 

techniques that the results should be spatially dependent on the original data points, but the 

methods may not be ideal for highlighting difference. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Cross-k analysis graphs 
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Figure 10. Cross-k graphs with envelopes based on 99 simulations 
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V. Conclusions 

     This study tested the performance of four obfuscation techniques in preserving the underlying 

spatial patterns of warm water energy consumption in the Hermagor District of Carinthia, 

Austria. Grid masking (GM), random perturbation (RP), and weighted random perturbation 

(WRP) all have previous documented uses in masking studies, but have not until this study been 

tested on an energy data set for all households in a single region. A major contribution of this 

study is the evaluation of Voronoi masking (VM) as an obfuscation technique. Between all the 

tests of underlying spatial pattern, VM outperforms the other obfuscation methods for preserving 

point distributions.  

 

Similarity of Obfuscated Results 

     For exploratory statistics, the mean and median centers for VM are closer to the ODP means 

and medians compared to the other obfuscation techniques. This overall result is reaffirmed with 

a more complex examination of difference maps from a kernel density estimation of the original 

and masked data points. Voronoi masking and weighted random perturbation exhibit less 

variation from the kernel density rasters of the ODP. This is expected, since both of these 

methods are better tailored to the underlying spatial structure of data, moving points smaller 

distances where the density of points is higher. This better maintains patterns in concentrated 

areas as well as maintains the k-anonymity of the masked points. 

     One test where the other masking measures performed better than VM in matching the ODP 

results was with a global Moran’s I, where the ODP pattern was clustered. VM did not reach 

significance for clustering, but the GM and RP data did. The semivariogram analysis did not 

provide much insight in this regard, since the trend of the data was primarily horizontal. In the 

nearest neighbor hierarchical cluster analysis, however, VM again best approximated the results 
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of the ODP, more closely matching the number of first-order clusters, their mean number of 

points, and their location. Grid masking and random perturbation fared more poorly in these 

regards. In the point similarity analysis, conducted using a cross-k analysis to test the 

dependence between the ODP and the obfuscated data, all the results exhibited significant spatial 

dependence. This remained true when 99 simulations were run to test significance. Given the 

almost identical nature of the cross-k plots among obfuscation methods, the overall similarity 

between all masked points and the ODP is confirmed. However, the results suggest that a 

different point similarity test would be best to uncover slight variations in the levels of 

dependence between the point structures. 

Performance of Grid Masking as Representing Statistical Units 

     An objective of this study was to determine how well masking would fare for privacy and 

pattern preservation compared to the currently implemented technique of aggregation to 125-

meter statistical units. The grid masking used in this study, which snapped the ODP to the 

centroids of 125-meter grid cells, best approximates this aggregation technique and serves as its 

proxy in this analysis. The results for GM present convincing evidence that this aggregation is 

more disruptive of spatial patterns than alternative masking techniques. GM demonstrated 

greater departure from the ODP kernel density patterns, as shown in the KDE difference maps 

for warm water energy consumption. In the nearest neighbor cluster analysis, grid masking 

resulted in fewer clusters detected, and the cluster ellipses tended to be offset from the ODP 

ellipses. Performing a cluster analysis based on such an aggregated pattern is more likely to lead 

to inaccurate results that could impact decision support. If cluster analysis is a key part of 

analysis, this study recommends an obfuscation technique that is more tailored to underlying data 

structure, such as VM or WRP. 
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Privacy Preservation 

 

     Another key part of this research was determining how well each obfuscation technique 

preserved privacy as measured by k-anonymity. This measure relies on the distance to the kth 

nearest neighbor. As this study included all residences in the study area, this is a truer measure of 

k-anonymity than would be measured based on a data set that only included a percentage of the 

population. VM and GM both lowered the average distance to the 1st nearest neighbor. This is 

because both techniques tend to snap points to each other, placing them at identical locations. 

This preserves privacy by making a viewer of the data less likely to deductively infer which 

household a given data point originates from. The greater the number of nearby neighbors, the 

less power is available for such inferences. As the number of neighbors increased to 10 and 20, 

VM continued to outperform the other masking techniques, even GM, for lowest average 

distance to the kth nearest neighbor. 

     A next step for research on Voronoi masking is an evaluation of how it could possibly be 

reversed to reveal identities. While it outperforms the other obfuscation methods for the metrics 

of spatial pattern and privacy tested in this study, an obfuscation method is only valuable it 

cannot be reversed and deciphered. The advantage for privacy in random perturbation and its 

weighted cousin is that the randomization makes the resulting pattern challenging to reverse 

engineer to find actual identities for data records. The pattern in VM is not random, and is starkly 

based on underlying spatial structure. More research is needed in reverse engineering of masking 

techniques and the ability to infer identities.  
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