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Abstract

The thesis aims at efficient methodologies for obtaining accurate biomedical images by

mathematical/algorithmic development, computer implementation and practical evalu-

ation of the novel methodology of superiorization. The underlying idea is the following:

in many biomedical imaging applications, there exist efficient iterative algorithms that

produce constraints-compatible images for given constraints. Often, the algorithm is

perturbation resilient in the sense that, even if a number of changes are made at the

end of each iterative step, the algorithm still produces a constraints-compatible image.

Superiorization exploits this property by using the perturbations to steer the algorithm

to an image that is not only constraints-compatible, but also preferable according to

an optimization criterion reflecting some biomedically desirable property.

The specific aim of this master’s thesis is the comparison of iterative algorithms with

and without superiorization for image reconstruction from projections. The compar-

ison is performed for two algorithms that are used very frequently in CT: algebraic

reconstruction technique (ART) and simultaneous algebraic reconstruction technique

(SART). Although both algorithms have been used in a lot of scientific papers, the

performance of the two algorithms compared to each other has never been evaluated -

not even in their non-superiorized versions.

The project is jointly organized by The City University of New York (CUNY) and the

Salzburg University of Applied Sciences (SUAS) and should also deepen the academic

cooperation between the two institutions. The project was supported by the Austrian

Marshall Plan Foundation.
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1 Introduction

This thesis compares the performance of two iterative algorithms with and without su-

periorization for image reconstruction from projections. The examined algorithms are

algebraic reconstruction technique (ART) and simultaneous algebraic reconstruction

technique (SART). Both algorithms are used very frequently in the field of comput-

erized tomography. The comparison of their performance has never been subject of

scientific work. The aim of this thesis is to close this gap1.

The algorithms will be compared - using statistical hypothesis testing - against each

other in their superiorized and non-superiorized versions. As a gold standard, the

implementation of ART using generalized Kaiser-Bessel window functions (blobs) from

[6] was defined.

The superiorization methodology is a heuristic solver for a large class of constrained

optimization problems. The constraints come from the desire to produce a solution that

is compatible to requirements provided by physically or otherwise obtained constraints.

The underlying idea is that many iterative algorithms for finding such a solution are

perturbation resilient in the sense that, even if certain kinds of changes are made at

the end of each iterative step, the algorithm still produces a constraints-compatible

solution. This property is exploited by using permitted changes to steer the algorithm

to a solution that is not only constraints-compatible, but is also desirable according to

specified optimization criteria [7].

All implementations, data generation and evaluation were done in SNARK142. As

SART has not been available in SNARK, it has been implemented and incorporated as

new standard algorithm. The same is valid for the weighted squared distance (WSQD)

as stopping criterion and figure of merit.

1Publication in peer-reviewed journal together with Prof. Gabor Herman is currently in preparation.
2For more details on SNARK see www.dig.cs.gc.cuny.edu.

http://www.dig.cs.gc.cuny.edu/software/software.html
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2 Computerized Tomography

Computerized tomography (CT) is a common methodology for image creation. It aims

at obtaining information regarding the exact positions of different matter inside an

object. It was discovered in the field of diagnostic medicine but is also used in numerous

non-medical imaging applications e.g. nondestructive testing [17]. CT produces images

by taking cross-sections (slices) from the obtained data by measuring the attenuation

of x-rays along a large number of lines through the cross-section. The resulting image

is then reconstructed from the measured data. Figure 2.1 shows the reconstruction

of a cross-section through the upper body of a human from its projection data. The

different organs (materials) are visible through several gray levels which result from

the different densities of the organs.

Figure 2.1.: Typical CT image [6, p. 6]

The set-up for acquiring computerized tomography images is shown in Figure 2.2. A

narrow beam (ray) is passed from the source to the detector through the object. The

measured value at the detector depends on the total amount and type of material

placed anywhere along the path of the ray. Different materials block different amounts

of the ray. One projection consists of the measurement of a number of parallel rays.

In order to be able to reconstruct a complete CT image more projections (300-1000)

are required. The divergent projections are generated by rotating source and detector

around the fixed object. As a result of the rotation, acquired projections are taken

from various angles. Figure 2.3a visualizes how the different projections are taken.
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It shows three different projections taken form three distinct angles resulting in three

measurements with different density distributions. Each measurement is related to the

specific position (translation and rotation) of the source and the detector.

Figure 2.2.: CT data acquisition [18, p. 443]

The actual image is reconstructed by applying all projections back on the image region.

Figure 2.3b illustrates how the concept of backprojection works. Every projection is

smeared along the path at which it was actually acquired. The result is a blurry version

of the original image. Sub-image 2.3a shows the backprojection using three projections,

sub-image 2.3b shows the result after applying all projections.

Projection 1

Projection 2

Projection 3

(a) Different projection angles for CT data
acquisition [18, p. 445]

Projection 1

Projection 3

Projection 2

a) Using 3 projections b) Using many projections

(b) Using backprojection to generate a CT Image [18, p.
446]

Figure 2.3.: Projection and backprojection of CT images

The mathematical solution to the reconstruction problem of images from its projections
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has been published in a paper by Johann Radon in 1917 [14], but all main advances

in the field of tomographic imaging originated with Hounsfield’s invention of the x-ray

computed tomographic scanner for which he received a Nobel prize in 1972, see [2], [6],

[9] and [18].

2.1 Data Collection

The aim of CT is the reconstruction of a clean image of the exact position of different

materials within an object. The necessary data is collected by the measurement of rays

which are fired through the object of interest. As mentioned above, the reconstruction

of a CT needs a lot of ray information. Figure 2.4 schematically shows the set-up for

one source detector pair. Source and detector are positioned in the same plane as the

cross-section to be imaged. The ray passes the reconstruction region in a distance of

l from the origin and crosses the y-axes in an angle of θ. The reconstruction region

defines the area, in which the object of interest can be located. It is not allowed,

that any part of the object is located outside of the reconstruction region. In order to

get reliable measurements, it is necessary, that the material within the reconstruction

region (except of the object of interest) is homogeneous.

y

x

Reconstruction
RegionZ = 0

Z = D

0

l

Detector

Source

θ

Z = Zs

Z = Zd

E

θ

Figure 2.4.: CT data collection (adopted from [6, p. 30])

The actual measurement is done by counting the photons that reach the detector. This
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number is influenced by the object of interest within the reconstruction region as the

different materials inside it block different amounts of the ray. The actual stored value

is the ray measurement relative to the result of a calibration measurement without the

object of interest, confer [2] and [6].

2.1.1 CT Data

In vacuum, all x-ray photons leaving the source in direction of the detector, will reach

it. If a material is placed between the source and the detector, some of the photons

might be removed from the ray by absorption or scattering. The amount of removed

photons depends on the material which is in the path of the ray and the energy of the

photon. The linear attenuation coefficient is used as a measurement of absorption.

Definition 2.1. The linear attenuation coefficient µte of a tissue t at energy e is

defined as follows. Let ρ be the probability that a photon of energy e, which enters a

uniform slab of tissue t of unit thickness, on a line L perpendicular to the face of the

slab, will not be absorbed or scattered in the slab. It is defined as

µte = − ln ρ , (2.1)

where ln denotes the natural logarithm [6].

In order to be able to extract the influence of the object of interest from the measure-

ments, the linear attenuation is taken relative to a calibration measurement with an

empty region of interest. The relative value is called the relative linear attenuation.

Definition 2.2. The relative linear attenuation αte at any point of space is defined

as

αte = µte − µae , (2.2)

where t is the tissue occupying the point of space during the actual measurement and a

is the material occupying the point during the calibration measurement [6].

As the material inside the reconstruction region is homogeneous, µae is constant in

that region. Furthermore, since the complete objects of interest must be inside of

the reconstruction region, the relative linear attenuation outside of the reconstruction

region is 0.
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The actual measurements stored by CT scanners are integer values of the type Hounsfield

unit.

Definition 2.3. The Hounsfield unit (HU) of a tissue t at energy e is defined as

H = µte − µwatere

µwatere

· 1000 , (2.3)

where µte is the linear attenuation coefficient of the tissue t and µwatere is the linear

attenuation coefficient of water [9].

The value of Hounsfield units is in the range between -1000 and 3000. The HU of water

is H = 0 and the value H = −1000 corresponds to the linear attenuation coefficient of

air µaire which is approximately 0.

When we take cross-sections of the body, we divide the cross-section into equal, square-

shaped blocks and reference them as volume elements (voxels). The CT number is

proportional to the average relative linear attenuation in a voxel. A picture element

(pixel) is the representation of a voxel in a 2D image. Its gray level is proportional to

the CT number of the corresponding voxel. See [6] and [9] for further details.

2.1.2 Polychromaticity vs Monochromaticity

As defined in Definition 2.1, the attenuation at any point depends on the material

at that point and the energy distribution of the ray. In CT, the energy spectrum

is not constant (polychromatic) and it changes as the ray passes through the object.

As a result of this, the attenuation at a point may vary depending on the direction

of the ray that passes it. If there would be only one energy level (monochromatic),

this would not be the case and every point would have a unique attenuation, and

the construction of the attenuation distribution would be well defined. In order to

simplify the development of mathematical procedures, it is assumed that there is only

one energy level. Therefore the CT number assigned to a voxel is only a property of

the tissue occupying the voxel and it is independent of the position within the region

of interest.

Definition 2.4. The monochromatic ray sum m for a fixed position of the source
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and detector pair at a specific, monochromatic energy e is defined as:

m = − ln Am
Cm

, (2.4)

where Cm denotes the calibration measurement and Am the actual measurement. The

set of all source and detector pair positions is called monochromatic projection

data [6].

As stated above, the actual energy level changes when a ray passes through an object.

This change can be caused by beam hardening or scattering. Due to these changes, the

polychromatic measurements differ from the ideal monochromatic measurements.

Definition 2.5. The polychromatic ray sum m for a fixed position of the source

and detector is defined as:

p = − ln Ap
Cp

, (2.5)

where Cp denotes the calibration measurement and Ap the actual measurement. The

set of all source and detector pair positions is called polychromatic projection data

[6].

Beam hardening arises from the fact that - when a ray passes through an object -

preferably low-energy photons are absorbed. As a result the average energy of a photon

of the ray at the detector is higher than the average photon energy of the ray leaving the

source. Attenuation by scattering occurs because some energy of the ray is deflected

onto a new path and therefore the energy of the ray is reduced. The scatter angle is

random, but most of the x-rays are scattered in the forward direction. Both - beam

hardening and scattering - causes artifacts in the reconstruction. A more detailed

description of the effects can be found in [9].

As Herman points out in [6] it is not possible to uniquely determine the monochromatic

projection data from the polychromatic projection data, but the approximation of it

leads to diagnostically usable CT numbers. All details of this section can be found in

[6] and [9].
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2.2 Reconstruction Algorithms

"CT is the reconstruction of a clean image of the density from digital com-

putational operations on measurements of emanations that have passed

through the body." [2, p. 356]

In order to be able to create a mathematical model for image reconstruction from

projections, the following assumptions have been made:

• There is only one energy level (monochromaticity).

• The cross-sections (slices) are infinitely thin.

• For all source-detector-pairs, all x-ray photons travel in the same straight line in

the infinitely thin slice (perfectly calibrated system).

As a result of the second assumption, the difference between voxel and pixel disappears

and therefore the gray level of any point (x, y) is proportional to the linear attenuation

µe(x, y).

Theorem 1. Let L be the straight line that is the path of all the x-ray photons for

a particular source-detector pair, and let m be the corresponding monochromatic ray

sum. Based on the definition of the linear attenuation coefficient (see Definition 2.1),

it is proven in [6, p. 260] that the monochromatic ray sum can be calculated as:

m '
∫ D

0
µe(x, y)dz , (2.6)

where z is the distance of the point (x, y) on the line L and the limits of the integration

are defined as shown in Figure 2.4. 0 is the point where the ray enters the reconstruction

region, D is the point where the ray leaves the reconstruction region [6].

Since µe(x, y) = 0 outside of the reconstruction region (see Section 2.1.1) these points

do not need to be considered.

In general this problem has been solved by Radon in 1917 [14]:

Theorem 2. Let l denote the distance of the line L from the origin and let θ denote

the angle made with the x-axis by the perpendicular drawn from the origin to L (see
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Figure 2.4) and let m(l, θ) denote the integral of µe(x, y) along the line L, then

µe(x, y) = − 1
2π2 lim

ε→0

∫ ∞
ε

1
q

∫ 2π

0
m1(x cos θ + y sin θ + q, θ) dθ dq , (2.7)

where m1(l, θ) denotes the partial derivative of m(l, θ) with respect to l [6].

Details of the proof can be found in Appendix B.1.

This formula implies, that the distribution of the linear attenuation in an infinitely

thin slice is uniquely determined by the set of all of its line integrals and generally

solves the problem of the reconstruction of cross-sections from its line integrals. But

computerized tomography (CT) does not fulfill these requirements and therefore some

difficulties arise:

• When measuring data with a CT scanner only a finite set of line integrals are

measured and therefore the measured data is not sufficient for a reconstruction

with Radons formula.

• The measurements of the CT scanner are only estimates. Inaccuracies arise due

to beam hardening, scattering, detector inaccuracies, etc. For further details on

the different error sources see [6] and [9].
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3 Basic Concepts of Reconstruction Algorithms

This chapter discusses the prerequisites for image reconstruction from projections. Ad-

ditionally, the two main types of reconstruction methods, namely transfer methods and

series expansion methods, are explained.

3.1 Image and Image Function

Definition 3.1. An image is defined by

• the image region which is a square with its origin in the center of the coordinate

system and

• an image function f of two variables whose value is zero outside the image

region [6].

y

x

Image Region

f(0, 0)

n

n

Pixel

r
φ

E

Figure 3.1.: Definition of an Image

Figure 3.1 shows an image. The image region is the square light gray area. The center

of the image region is at the origin of the coordinate center. The image function at

that point is called f(0, 0). The size of its digitization is n x n and therefore it holds

n2 picture elements (pixels). E is the radius of the circumscribed circle of the image

region.
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In computerized tomography the image region is also called reconstruction region and

the gray level of the pixel at (x, y) is proportional to the relative linear attenuation

(see Definition 2.1).

It is often more convenient to use polar coordinates and to describe the image I as

a function of (r, φ). r and φ are defined as shown in Figure 3.1: r =
√
x2 + y2 and

φ = arctan y
x
.

The relationship between the (r, φ) (see Figure 3.1) and the (l, θ) space (see Figure

2.4) is shown in Figures 3.2 and 3.3. The point (r, φ) lies on the straight L. l is the

distance of L to the origin, and therefore the points (r, φ) and P form a right triangle

with the origin. l can be expressed as:

l = r cos (θ − φ) (3.1)

y

x

r

φ

l

θ

L

θ − φ

(r, φ)

P = (r cos (θ − φ), θ)

0

Figure 3.2.: Relationship (part I) between (r, φ) and (l, θ) space (adapted from [6, p. 104])

All points P that corresponds to the lines through (r, φ) are located on the circle defined

by the origin and the point (r, φ). In Figure 3.2 this circle is visualized with a dashed

line. In the (l, θ) space this circle is the sinusoidal l = r cos (θ − φ). The point P is the

point on the sinusoidal at θ. The sinusoid is visualized in Figure 3.3 [6].

Definition 3.2. It is assumed that the image function f is square integrable.
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2π

3π
2

π

π
2

−

3π
2

−π

−

π
2

0 E−E
r−r

l = r cos (θ − φ)

(l′, θ′)
θ = θ ′

θ

l

Figure 3.3.: Relationship (part II) between (r, φ) and (l, θ) space (adapted from [6, p. 104])

This means that ∫ 2π

0

∫ E

0
f(r, φ)2r dr dφ (3.2)

exists and its value is a real number [6].

From Definition 3.2 it follows that the difference between two arbitrary images can be

calculated.

Definition 3.3. The difference d of two images is defined as

d(f1, f2) =
√∫ 2π

0

∫ E

0
(f1(r, φ)− f2(r, φ))2r dr dφ , (3.3)

where f1 and f2 are image functions [6].

In case of computerized tomography the image function is interpreted as the relative

linear attenuation at the point (r, φ) which is 0 outside of the reconstruction region

(see Section 2.1).

f(r, φ) = 0 if |r cosφ| > E or |r sinφ| > E (3.4)
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3.2 Radon Transform

The Radon transform is a two-dimensional transformation which was introduced by

Radon [14] in 1917.

Definition 3.4. The Radon transform of f is defined for real number pairs (l, θ)

as follows:

Rf(l, θ) =


∫ ∞
−∞

f
(√

l2 + z2, θ + tan−1
(
z

l

))
dz ,if l 6= 0∫ ∞

−∞
f
(
z, θ + π

2

)
dz ,if l = 0

(3.5)

Rf(l, θ) is the line integral of f along the line L, where z is the distance along the line

L (see Figure 2.4) [6].

As visually shown in Figure 3.4, the following variants of the Radon transform are

equal:

Rf(l, θ) = Rf(−l, θ + π) = Rf(l, θ + 2π) (3.6)

L

l θ

x

y

(a) Rf(l, θ)

L

−l θ + π

x

y

(b) Rf(−l, θ + π)

L

l θ + 2π

x

y

(c) Rf(l, θ + 2π

Figure 3.4.: Equivalents of the Radon transform

Equation (3.4) implies that the Radon transform outside of the image region is 0.

Rf(l, θ) = 0, if |l| ≥ E. (3.7)

Due to (3.6) and (3.7), Rf is completely defined by its values at the points (l, θ) with

−E < l < E and 0 ≤ θ < π [6].

For more details on the Radon transform see [6] and [15].
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3.3 Projection Data

In CT the locations in the (l, θ) space correspond to the lines, for which the CT scanner

collects measurements. It is assumed, that there are 2N + 1 parallel measurements

with a step size of d. To cover the complete reconstruction region Nd must be greater

than the radius of the circumscribed circle of the reconstruction region E. After the

projection data has been collected for all 2N + 1 lines, the source and detector are

rotated by an angle of ∆, and again data for 2N + 1 lines is collected. This is repeated

for a total of M views where M∆ = π. Figure 3.5 shows the location of the collected

data (values of the line integrals) in the (l, θ) space. (id,m∆) refers to one measurement

value. It lies on the intersection of the straight lines l = id and θ = m∆ where

−N ≤ i < N and 0 ≤ m ≤M − 1.

Θ

L
0

π

π
2

∆

2∆

m∆

(M − 1)∆

−E Ed 2d Ndid−Nd

(id,m∆)

Figure 3.5.: Location of points in the (l, θ) space (adapted from [6, p. 106])

The input data (projection data) of a reconstruction algorithm are estimates of the

values Rf(l, θ) for a finite number of I pairs of (l, θ): (l1, θ1), . . . , (lI , θI).

Definition 3.5. The I-dimensional column vector y is called measurement vector.

Its i-th component yi is the estimation of the i-th measurement of the CT scanner. It

is defined as

yi = Rif = Rf(li, θi) . (3.8)

For reconstruction algorithms it is assumed that the method of data collection is fixed

and therefore the set (l1, θ1), . . . , (lI , θI) is fixed as well. The reconstruction problem is
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given the data y, estimate the image f .

The estimation of the image f is denoted as f ∗. More details can be found in [6].

3.4 Transform Methods

One way to define the estimate f ∗ is to give a formula, that expresses the value of

f ∗(r, φ) in terms of r, φ, y1, . . . , yI . Such a formula may be a "discretized" inversion

formula of its Radon transform Rf . Reconstruction methods based on this approach

are referred to as transform methods.

Definition 3.6. The inverse Radon transformation R−1p(l, θ) is the inverse of

the Radon transformation Rf(r, φ). It reproduces the original function f(r, φ) from its

Radon transformed values. By this,

f(r, φ) = R−1Rf(r, φ) (3.9)

When p(l, θ) = Rf(r, φ) then the inverse Radon transformation is defined as

R−1p(l, θ) = 1
2π2

∫ π

0

∫ ∞
−∞

p1(l, θ)
r cos (θ − φ)− l dl dθ , (3.10)

where p1(l, θ) is the first partial derivative of p(l, θ) with respect to l [6].

The inverse Radon transformation can also be expressed as a sequence of simpler

operators:

The first operator DY denotes the partial differentiation with respect to the first vari-

able of a function of two real variables. The function value of a pair of any two real

numbers (l, θ) is

DY p(l, θ) = p1(l, θ) = lim
∆l→0

p(l + ∆l, θ)− p(l, θ)
∆l (3.11)

assuming that the limit on the right-hand side exist.

The next operator is the Hilbert transform HY q with respect to the first variable of

the function q. It is defined for any number pair (l, θ) as

HY q(l′, θ) = − 1
π

∫ ∞
−∞

q(l, θ)
l′ − l

dl . (3.12)
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Since its integrand becomes infinite at l = l′, this is an improper integral and it has to

be evaluated in the Cauchy principal value sense:

HY q(l′, θ) = − 1
π

lim
ε→0

(∫ l′−ε

−∞

q(l, θ)
l′ − l

dl +
∫ ∞
l′+ε

q(l, θ)
l′ − l

dl

)
. (3.13)

The last operator Bt is the so called backprojection whose value is defined at any point

(r, φ) by

Bt(r, φ) =
∫ π

0
t(r cos (θ − φ), θ) dθ . (3.14)

Figure 3.2 visualizes backprojection. The term r cos (θ − φ) (see (3.1)) describes the

function of the dashed circle through the origin and the point (r, φ). All possible lines

through (r, φ) can be described using the point itself and any point on the dashed

circle. Setting the integral limits to 0 and π results in a half circle and therefore (3.14)

considers all line integrals L through (r, φ).

When combining all three operators the result is - apart from a factor − 1
2π - the inverse

Radon transform as defined in Definition 3.6.

BHY DY (r, φ) = − 1
π

∫ π

0

∫ ∞
−∞

p1(l, θ)
r cos (θ − φ)− l dl dθ (3.15)

Therefore the inverse Radon transformation of a function p can be interpreted as a

sequence of the following operations:

1. partial differentiation of p with respect to the first variable,

2. a Hilbert transform with respect to the first variable,

3. a backprojection and

4. a normalization with the factor − 1
2π .

R−1 = − 1
2πBHY DY (3.16)

Definition 3.7. In computerized tomography, the inverse Radon transformation is

interpreted as

R−1p(r, φ) = 1
2π2

∫ π

0

∫ E

−E

p1(l, θ)
r cos (θ − φ)− l dl dθ , (3.17)

where E is the radius of the circle circumscribing the reconstruction region (see Figure
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2.4).

In order to get an exact reconstruction of the reconstruction region, the precise values

for all p(l, θ) need to be available. As this is not the case, the reconstruction is just an

estimate for the obtained projection data. The algorithms used are based on (3.16) or

are alternative representations of the inverse Radon transform R−1, see [6] [15].

3.5 Series Expansion Methods

The series expansion approach differs from the transform methods described in the

previous section as the problem itself is discretized at the very beginning: the image

reconstruction is translated into finding a set of numbers - the so called image vector

- for a defined set of basis functions.

Definition 3.8. For any specific image region the fixed set B of functions {b1, . . . , bJ},

bi = bi(r, φ), is called basis functions. For any image f with the specified image

region, there exists a linear combination of the basis functions that produces an adequate

approximation f ∗ for f .

One possible basis function is the so called pixel basis function as defined in (3.18).

The image region is divided into n x n square pixels (see Figure 3.1). The numbering

of the basis function is the same as for the image vector x (see Figure 3.6). The pixel

basis function has the value 1 if (r, φ) is inside of the j-th pixel and 0 otherwise. The

pixel basis function has J = n2 components.

bj(r, φ) =


1 , if (r, φ) is inside the j-th pixel,

0 , otherwise
(3.18)

Another commonly used basis function are generalized Kaiser-Bessel window functions

(blobs). Blobs are more complex and require more computational effort for the image

reconstruction but deliver more accurate results. More details on blobs can be found

in [12].

Definition 3.9. The n x n digitization f̂ of the image f using a set of basis

functions b is defined as

f̂(r, φ) =
J∑
j=1

xjbj(r, φ) , (3.19)
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where xj is the average value of f inside the j-th pixel and bj is the j-th basis function

(component) of B.

Once the basis functions are defined, any digitized image f̂ of the specified image region

can be represented as a linear combination of the basis functions (bj)Jj=1. The image f̂

is uniquely determined by the choice of the coefficients xj for 1 ≤ j ≤ J . The vector x

with its j-th component xj is denoted as the image vector.

Definition 3.10. The image vector x is the digitized representation of an image

region. It divides the image region into n x n pixels where n has to be an odd num-

ber. The image vector is J = n2 dimensional. Each component of the image vector

represents one pixel. The numbering of the pixels is defined in Figure 3.6 [6].

x1 xn

xn+1 x2n

d

d

n

n

xJ

x2

Figure 3.6.: Numbering of the components of the image vector (adapted from [9, p. 276])

Independent of the choice of the basis functions, for any image f there is only one

image f̂ with

d
(
f, f̂

)
≤ d

(
f, f̂i

)
, (3.20)

where f̂ is a linear combination of the basis functions and f̂i is any other linear com-

bination of the same basis functions.

Furthermore, if the basis functions are linearly independent, then there is a unique

image vector x that fulfills (3.19) for this f̂ .
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In the best case, the series expansion approach would aim to find the image vector

for which the approximation f̂ is closest to f . But as the digitized projection data

normally does not uniquely determine the image f , the aim is to find a sufficient close

image vector regarding to some optimization criterion.

In order to show how image reconstruction is translated into a discrete problem two

properties of Ri defined in (3.8) are necessary:

1. The Radon transform is Ri linear

Ri(c1f1 + c2f2) = c1Rif1 + c2Rif2 (3.21)

2. If two images f1 and f2 are close to each other, then their two Radon transforms

are Rif1 and Rif2 close to each other as well.

For further details on those two properties see [6].

The above properties imply that the Radon transform of the discretized version Rif̂

of the image f will be approximately the same as the Radon transform of the original

image Rif .

Rif ' Rif̂ =
J∑
j=1

xjRibj (3.22)

As bj are user-defined functions, usually they are chosen in a way that the calculation

of Ribj is computational easy. For example when pixel basis functions (see (3.18)) are

used, Ribj is just the length of the intersection of the j-th pixel with the ray of the

i-th source-detector pair. ri,j is denoted to the calculated value of Ribj.

ri,j ' Ribj (3.23)

By combining the definition of the measurement vector y and its components yi as the

measured estimate of Ri (see Definition 3.5) and (3.22) and (3.23), we get for 1 ≤ i ≤ I

yi '
J∑
j=1

ri,jxj . (3.24)

Definition 3.11. The projection matrix R is the matrix whose (i, j)-th element is
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ri,j where ri,j is defined by (3.23) [6].

Definition 3.12. The error vector e is the I-dimensional column vector whose i-th

component ei is the difference the i-th component of the measurement vector and the

calculated sum ∑J
j=1 ri,jxj (see (3.24)) [6].

By using the above Definitions 3.11 and 3.12 combined with (3.24), the reconstruction

problem can be stated as

y = Rx+ e . (3.25)

Based on (3.25), the series expansion approach solves the following discrete reconstruc-

tion problem:

given the data y, estimate the image vector x.

If the estimation for the solution of the discrete reconstruction problem is the vector

x∗, then the estimated reconstruction f ∗ of the image f is

f ∗ =
J∑
j=1

x∗jbj , (3.26)

see [6].

3.6 Optimization Criterion

The optimization criterion is used to estimate the image vector of the series expansion

methods. In order to get a good estimation for the image vector in (3.25), the error

vector e needs to be known. There are different approaches to find e. The aim is

always to choose an image vector x as the solution of (3.25) for which the value of

some function φ1(x) (optimization criterion) is minimal. If there is more than one

image vector x, that minimizes φ1(x), then a secondary criterion φ2(x) is used to find

the best vector. Some proposed optimization functions are:

• prior probability density functions,

• least squares or

• total variation (TV).

For more detailed information on optimization criteria see [6].
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4 Algebraic Reconstruction Algorithms

The following sections discuss algebraic reconstruction algorithms which are series ex-

pansion methods (see Section 3.5). Furthermore two algorithms - algebraic reconstruc-

tion technique (ART) and simultaneous algebraic reconstruction technique (SART) -

are discussed in more details.

All series expansion methods are iterative algorithms which try to solve discrete recon-

struction problems in the form of y = Rx+ e (see (3.25)). They produce a sequence of

image vectors x(0), x(1), . . . which should convert to the required estimate x∗. y is the

given measurement vector and e is the so called error vector and denotes the difference

of the reconstruction Rx and the actual measurements [6].

For algebraic algorithms the reconstruction problem y = Rx + e from (3.25) can also

be written as system of equations. As previously defined, there are J pixel in the

picture region (see Figure 3.6) and the projection data consists of M projections with

2N + 1 rays per projection. This makes a total sum of Z = M ∗ (2N + 1) rays. The

corresponding system of equations is

y1 = r1,1x1 + r1,1x2 + · · ·+ r1,JxJ

y2 = r2,1x1 + r2,1x2 + · · ·+ r2,JxJ
...

yZ = rZ,1x1 + rZ,1x2 + · · ·+ rZ,JxJ

(4.1)

A picture region with J pixel leads to a system with J degrees of freedom. And

therefore, the image represented by the image vector x may be considered as a single

point in a J-dimensional space. Every equation of the system represents a hyperplane.

If a unique solution exists, the intersection of all hyperplanes is a single point and

represents the solution.

For the sake of simplicity, the problem is explained for the two-dimensional case where
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the hyperplanes are represented as straight lines:

y1 = r1,1x1 + r1,1x2

y2 = r2,1x1 + r2,1x2

(4.2)

There are a lot of different algorithms to solve such a problem. Figure 4.1 shows

the Kaczmarz method. The starting point of the algorithm is some arbitrary initial

guess. This arbitrary point is then projected onto the first hyperplane resulting in a

point G, which is now projected onto the next hyperplane resulting in point H. This

iterative projection process is continued until the actual intersection point is reached.

The vector x(0) represents the initial guess, x(1) and x(2) the current estimations after

the first, respectively the second projection.

x

y

H

G

x(0)

x(1)

x(2)
y2

= r2,1
x1

+ r2,1
x2

y 1
=
r 1
,1
x 1

+
r 1
,1
x 2

initial
guess

Figure 4.1.: Kaczmarz method of solving algebraic equations (adapted from [9, p. 278])

Mathematically, the projection onto the i-th hyperplane can be described by

x(k+1) =


x(k) + ri

yi−〈x(k),ri〉
〈ri,ri〉 , 〈ri, ri〉 6= 0

x(k) , 〈ri, ri〉 = 0
, (4.3)
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where ri is the i-th line (ri,1, ri,2, . . . , ri,J) of the projection matrix R and 〈∗, ∗〉 is the

inner product. For more details on (4.3) see [9, p. 278ff]. Tanabe proofed in [19]

that if there exists a unique solution for the system of equations, then the series x(kZ)

converges to x∗.

lim
k→∞

x(kZ) = x∗ (4.4)

For further details confer [5], [6] and [9].

4.1 Algebraic Reconstruction Technique

A variety of different suggestions for the implementation exists for the ART algorithm.

The following form shows a version of ART that is better suited for implementations

than (4.3).

Definition 4.1. The iterative step of ART is defined as

x
(k+1)
j = x

(k)
j + ri,j

yi − y(k)
i

J∑
j′=1

r2
i,j′

, (4.5)

where yi is the measured ray-sum of the i-th ray, y(k)
i the calculated ray-sum of the i-th

ray after the k-th iteration and ri,j is the (i, j)-th component of the projection matrix

R [6].

The calculated ray-sum can be written as

y
(k)
i =

〈
x(k), ri

〉
(4.6)

=
J∑
j=1

x
(k)
j ri,j (4.7)

The equation (4.5) can be interpreted as an iteration step k + 1 adding a correction

term ∆x(k+1)
j to the output of the previous (k-th) step. The correction term

∆x(k+1)
j = x

(k+1)
j − x(k)

j = ri,j
yi − y(k)

i

J∑
j′=1

r2
i,j′

. (4.8)

is the difference of the measured ray-sum yi and the current computed ray-sum y
(k)
i
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normalized by ∑J
j′=1 r

2
i,j′ .

Figure 4.2 visualizes the fundamental operation principle of ART. All projection rays

are represented as planes in the Z-dimensional space (M projections with 2N + 1 rays

each). Their intersection represents the required estimate x∗. For a better understand-

ing, the hyperplanes are visualized as straight lines in R2.

arbitrary
initial guess

x(1)

x(2)

x(3)

L1

L2

L3

L4

L5

x(0)

x∗

Figure 4.2.: Update step for ART

Starting with an arbitrary initial guess x(0), the current image vector is projected

onto the next selected ray. With every projection-step, the current estimate is getting

closer to the required estimate x∗. This can be seen by the progressive reduction of

the distance from x(1), x(2) and x(3) to x∗. The iterative process is continued until a

specified stopping criterion is reached. It is easy to see, that the order in which the

beams are selected is decisive for the speed at which the algorithm converges. The

closer the angle between two consecutive used rays is to 90◦, the faster the result

improves. If the two rays are exactly perpendicular to each other, the exact result can

be achieved with only two projections-steps. In practical applications, the selection of

the order of the rays is random.

A common technique to improve the performance of an ART algorithm is to introduce a

so called relaxation parameter λ(k) to control the amount of the error correction. After

introducing relaxation into the iterative step of (4.5) combined with the definition of
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Value Movement regarding to the projection hyperplane Lk
λ(k) < 0 move away from Lk
λ(k) = 0 there is no movement
0 < λ(k) < 1 movement towards Lk, Lk is not reached
λ(k) = 1 projection onto Lk, new estimate x(k+1) ∈ Lk
1 < λ(k) < 2 movement past Lk, but x(k+1) is closer to Lk than x(k)

λ(k) = 2 mirroring, the distance of x(k+1) is the same as for x(k)

λ(k) > 2 movement past Lk, but x(k+1) is further away from Lk

Table 4.1.: Influence of the relaxation parameter λ(k)

the correction term in (4.8), the iterative step of ART can be written as

x
(k+1)
j = x

(k)
j + λ(k)∆x(k)

j , (4.9)

where the correction ∆x(k+1)
j is the difference between the resulting image vector x(k+1)

j

and the previous image vector x(k)
j . It can be interpreted as the distance of the vector

x
(k)
j to the projection plane and thus includes a right angle to it.

The influence of different relaxation parameters λ(k) for a projection of x(k) with respect

to the hyperplane Lk is explained in Table 4.1. Values of λ(k) < 0 or λ(k) > 2 move the

new value x(k+1) further away from the projection plane than x(k). Values of λ(k) = 0 or

λ(k) = 2 keep the same distance to Lk. Therefore the relaxation parameter λ(k) should

be restricted to 0 < λ(k) < 2.

Figure 4.3 visualizes the basic principle of relaxation. It shows the projection of an

initial image vector x(0) with respect to three different planes {L1, L2, L3} where every

projection uses a different relaxation parameter λ(k). The dashed gray circle represents

the distance of current estimate x(0) to the solution x∗. If λ(k) is chosen 0 or 2 the

projected points will be located on this circle. The projection on L1 uses a relaxation

parameter λ(1) = 1. Therefore the projected image vector x(1) is on the hyperplane L1.

The projection on L2 with λ(2) = 2 results in a mirrored x(2) which lies on the dashed

gray distance circle. The projection on L3 uses an arbitrary λ(3) = 1.7 which means

that its result x(3) passes L3 but is closer to it than the previous estimate x(0).

A well-chosen relaxation parameter can lead to a faster convergence of the algorithm

and will make it more robust against noise.

Detailed information about this chapter can be found in [4], [5], [6] and [9].
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L2

L3

λ3 = 1.7

λ2 = 2

L1

λ1 = 1

x(0)

x(1)

x(2)

x(3)

Figure 4.3.: Impact of the relaxation parameter

4.2 Simultaneous Algebraic Reconstruction Technique

The SART algorithm is based on the ART algorithm. The main difference is that

instead of projecting the current estimate on only one hyperplane, it is projected (in a

weighted form) onto all hyperplanes simultaneously. The result of x(k) of the iteration

is the average of all those projections.

Definition 4.2. The iterative step of SART is defined as

x
(k+1)
j = x

(k)
j + 1

I∑
i=1

ri,j

I∑
i=1


ri,j

yi −
J∑

j′=1
ri,j′x

(k)
j′

J∑
j′=1

ri,j′


, (4.10)

where yi is the measured ray-sum of the i-th ray, y(k)
i the calculated ray-sum of the i-th

ray after the k-th iteration and ri,j is the (i, j)-th component of the projection matrix

R [9].

Figure 4.4 shows one iterative step of the SART algorithm. Starting with an arbitrary

initial guess, the current estimation of the image will be projected on every hyperplane

simultaneously. The result of the current iteration xk is the average of all projections.

Please be aware, that - for a better understanding - the algorithm has been simplified

and therefore the visualization is not 100% accurate. The simplification is that the
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arbitrary
initial guess

x(1)

L1

L2

L3

L4

L5

x∗

Figure 4.4.: Update step for SART

unweighted projection onto the hyperplane is visualized. The projection actually used

in the visualization is stated in (4.11). The weight factor can be seen when comparing

(4.10), (4.11) and (4.12).

x
(k+1)
j = x

(k)
j + 1

I∑
i=1

ri,j

I∑
i=1


ri,j

yi −
J∑

j′=1
ri,j′x

(k)
j′

J∑
j′=1

r2
i,j′


(4.11)

x
(k+1)
j = x

(k)
j + 1

I∑
i=1

ri,j

I∑
i=1


ri,j

J∑
j′=1

ri,j′

J∑
j′=1

r2
i,j′

yi −
J∑

j′=1
ri,j′x

(k)
j′

J∑
j′=1

ri,j′


(4.12)

As for ART, the performance of the SART algorithm can be improved by introducing

a relaxation parameter λ(k). The new update step is then

x
(k+1)
j = x

(k)
j + λ(k) 1

I∑
i=1

ri,j

I∑
i=1


ri,j

yi −
J∑

j′=1
ri,j′x

(k)
j′

J∑
j′=1

ri,j′


. (4.13)

The value of λ(k) is again restricted to 0 < λ(k) < 2.
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All details on SART can be found in [1], [8] and [9].
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5 Superiorization

The superiorization methodology is a heuristic approach to optimization. The ba-

sic idea is, that in many existing applications, there exist computationally-efficient

iterative algorithms which produce constraint compatible solutions for some given con-

straints. These constraints might be physical properties of the object of interest or

any other constraints obtained from any other source. In computerized tomography

the constraints come from the detector readings of the CT scanner. Furthermore, a lot

of these algorithms are perturbation resilient, which means that even if some kinds of

changes are made at the end of each iteration, the result is still constraint compatible.

This property is used in superiorization to steer an algorithm to a solution that is not

only constraint compatible, but is also superior according to a specified optimization

criterion.

Superiorization is a general approach, which provides a totally automatic procedure

that turns an iterative algorithm into its superiorized version. It is applicable to many

iterative procedures and optimization criteria. The methodology is called heuristic, as

it is not guaranteed, that it will lead to the optimal solution of the problem.

The approach of designing an algorithm in a way that it uses alternating steps of dif-

ferent nature to get better results is well established. But none of the existing solutions

provides a framework that automatically incorporates an optimization criterion into an

existing iterative algorithm. Therefore superiorization is having the potential of saving

a lot of time and effort for researchers.

In this chapter all declarations and definitions, that are required for the superioriza-

tion methodology, are provided. As this thesis deals with image reconstruction from

projections in the field of computerized tomography, all examples are meant to be for

image reconstruction of CT scans [7].

5.1 Problem sets, proximity function and ε-compatibility

In medical physics optimization is usually performed in a Euclidian space RJ . In

practice, the solution space is further restricted to be an nonempty subset Ω of RJ .

In the field of image reconstruction the result of an optimization is the image vector
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x (see Definition 3.10). As images normally only contain positive values, Ω might be

restricted to Ω = RJ
+.

Definition 5.1. The problem set T is the set of all problems T ∈ T where each T is

the description of the constraints of one particular problem [7].

In computerized tomography each T is the problem of reconstructing the picture for

a particular patient at a particular time. T is the set of all possible reconstruction

problems.

Definition 5.2. The proximity function Pr on the problem set T is defined as

function from the solution space into the positive real numbers PrT (x) : Ω 7→ R+. It

indicates how incompatible the solution x is with the given constraints of T ∈ T. x is

said to be perfectly constraint compatible with the problem T if PrT (x) = 0 [7].

When reconstructing CT images, PrT (x) could be the norm-distance ‖y −Rx‖ of the

reconstruction problem in (4.1), where y is the measurement vector of the CT scan

(see Definition 3.5), R is the projection matrix (see Definition 3.11) and x is the image

vector. Another legitimate choice for the proximity function is the weighted squared

distance (see Section 7.5).

Definition 5.3. A problem structure 〈T,Pr〉 is defined as the combination of a

nonempty problem set T and a proximity function Pr [7].

Definition 5.4. The solution x ∈ Ω for a problem T ∈ T is ε-compatible regarding

a problem structure 〈T,Pr〉 when PrT (x) < ε, where ε is a non-negative number [7].

The ε-compatibility is needed, as in practical applications all measurements are noisy.

Therefore it is unlikely that a perfect reconstruction x for the problem T ∈ T exists. ε

is the threshold for the proximity function Pr, below which a image reconstruction x

is acceptable (PrT (x) < ε). The proximity function can be interpreted as the stopping

criterion of an iterative algorithm, confer [7].

5.2 Algorithms and Output

The concept of algorithms is defined in the general context of problem structures.

For technical reasons which will be explained in Section 5.4, an additional set ∆ is
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introduced such that Ω ⊆ ∆ ⊆ RJ . Both Ω and ∆ are assumed to be known and fixed

for any particular problem structure 〈T,Pr〉.

Definition 5.5. An algorithm P assigns to each problem T ∈ T an operator PT : ∆ 7→ Ω

[7].

Definition 5.6. A iterative process (or iterative algorithm) produces a (potential)

infinite sequence

(
(PT )k (x)

)∞
k=0

= x, PT (x) , PT (PT (x)) , . . . (5.1)

where x is any initial point x ∈ Ω and PT is an algorithm as defined in Definition 5.5

[7].

The two reconstruction algorithms ART and SART described in chapter 4 are itera-

tive processes as defined above. The updatestep is the algorithm P and the iterative

execution of the updatestep is the iterative process.

Definition 5.7. For a problem structure 〈T,Pr〉, a T ∈ T, an ε ∈ R+ and a sequence

RS =
(
xk
)∞
k=0

, the output O (T, ε, RS) is used to denote the x ∈ Ω that has the

following properties:

• PrT (x) ≤ ε,

• there is a non-negative integer K such that xK = x, xK ∈ RS and

• for all non-negative integers k < K, the proximity function PrT (x) > ε.

If there exists such an x then O (T, ε, RS) is defined, otherwise it is undefined [7].

If RS is a (infinite) sequence of points that is produced by an algorithm that solves the

problem T without termination criterion, then O (T, ε, RS) is the output produced by

that algorithm when the termination criterion PrT (x) ≤ ε is added to it. The point x

donates the first ε-compatible point within the sequence RS, which was reached after

K iterations, see [7].

5.3 Bounded Perturbation Resilience

An iterative algorithm P is bounded perturbation resilient for a problem structure

〈T,Pr〉 if the sequence
(
(PT )k (x)

)∞
k=0

generated by it still converges - even if the
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result of every step is perturbed. For real applications bounded perturbation resilience

is not sufficient, as it can only be used for problems T ∈ T, for which a perfectly

constraint compatible solution - which means that the proximity function PrT (x) = 0

- exists. As the data of real applications is mostly noisy, this is not the case. Therefore

bounded perturbation resilience has been extended to strongly perturbation resilience.

Definition 5.8. An algorithm P for a problem structure 〈T,Pr〉 is strongly pertur-

bation resilient if, for all T ∈ T

• there exists an ε ∈ R+, such that O
(
T, ε,

(
(PT )k (x)

)∞
k=0

)
is defined for every

x ∈ Ω and

• for all ε ∈ R+, such that O
(
T, ε,

(
(PT )k (x)

)∞
k=0

)
is defined for every x ∈ Ω,

also O (T, ε′, RS) is defined for every ε′ > ε and for every sequence RS =
(
xk
)∞
k=0

of points in Ω generated by

xk+1 = PT
(
xk + βkυ

k
)
, for all k ≥ 0 , (5.2)

where βkυk are bounded perturbations, meaning that the sequence (βk)∞k=0 of non-

negative real numbers is summable (that is ∑∞k=0 βk <∞), the sequence
(
υk
)∞
k=0

of vectors in RJ is bounded and, for all k > 0, xk + βkυ
k ∈ ∆ [7].

The properties of Definition 5.8 states that all perturbed sequences contains a ε′-

compatible point, when for every problem T and any non-negative number ε an ε-

compatible solution for every initial point x ∈ Ω (and ε′ > ε) exists. This means that

the perturbed version of the algorithm produces a ε′-compatible output O (T, ε′, RS),

confer [3] and [7].

5.4 Optimization criterion and non-ascending vector

Additionally to the constraint optimization problem of the previous sections, it might

be desirable, to improve the reconstruction towards a secondary criterion which is

denoted as optimization criterion φ.

Definition 5.9. An optimization criterion φ is a function φ : ∆ 7→ R which

indicates how good a point x ∈ ∆ fulfills the desired conditions. A point x1 ∈ ∆ is

considered superior to another point x2 ∈ ∆ when φ (x1) < φ (x2) [7].
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Some valid optimization criteria are listed in Section 3.6. In the context of superi-

orization φ1 are the given constraints of T ∈ T and φ2 is the optimization criterion

φ.

The main idea of superiorization is to use the perturbations of (5.2) to steer a strong

perturbation resilient algorithm, which produces constraint-compatible solutions, into a

superiorized algorithm. The new algorithm not only produces a constraint-compatible

output, the output is also expected to be superior regarding the secondary optimization

criterion φ. This is achieved by adding bounded perturbations βkυk to the solution

vector xk. The optimization criterion φ will have the property φ(x+ βkυ
k) ≤ φ(x). In

order to achieve this, υk must be a non-ascending vector.

Definition 5.10. A vector υ ∈ RJ for a given function φ : ∆ 7→ R and a point x ∈ ∆

is called a non-ascending vector for φ at x if

• ‖υ‖ ≤ 1 and

• there exists a δ > 0 such that for all β ∈ [0, δ]

(x+ βυ) ∈ ∆ and φ(x+ βυ) ≤ φ(x) [7].

As (x+ βυ) ∈ ∆ can be outside of Ω, it is important, that the algorithm P is defined

as P : ∆ 7→ Ω. This guarantees, that the final result of the superiorized version of the

algorithm is still in the defined solution space Ω.

Note that independent of the optimization criterion φ and the point x, the zero-vector

(all components are 0) is always a non-ascending vector. This is a useful property

for proving the convergence of the algorithm, but in order to have an improvement

regarding the optimization criterion, the vector υ should have the property φ(x+βυ) <

φ(x) rather than φ(x+ βυ) ≤ φ(x), see [7].

5.5 Superior Version of an Algorithm

In this section it is described how an iterative algorithm P can be automatically turned

into its superiorized version. The original, unsuperiorized version of the algorithm is

stated in algorithm 1.

In lines 1-2 the variables are initialized. k is the number of the current iterations and

x is the initialization of the result vector. The loop in line 3-6 is executed until the

proximity function Pr(xk) reaches a value that is smaller than a defined value ε. The
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loop includes the execution of the iterative step PT (xk) (line 4).

Algorithm 1 Algorithm P

1: set k = 0
2: set xk = x
3: while Pr(xk) > ε do
4: set xk+1 = PT (xk)
5: set k = k + 1
6: end while

Theorem 3. Let Ω and ∆ be the underlying sets for a problem structure 〈T,Pr〉 where

Ω ⊆ ∆ ⊆ RJ , P : ∆ 7→ Ω is an iterative, strong perturbation resilient algorithm for

〈T,Pr〉 and φ : Ω 7→ R. Algorithm 2 is called the superiorized version of the algorithm

P . It produces for any problem T ∈ T and any point x ∈ Ω a sequence RST =
(
xk
)∞
k=0

.

The result sequence RS of the superiorized algorithm is ε′-compatible and expected to

be superior to the original algorithm P with regard to the optimization criterion φ [7].

The proof of the theorem can be found in [7].

The superiorized version shown in algorithm 2 depends on the initialization of the

initial vector x ∈ Ω, a positive integer N , which defines the number of executions

of the superiorization step, and it needs a summable sequence (γl)∞l=0 of positive real

numbers. One example of such a sequence could be γl = al where 0 < a < 1.

In the lines 1-3 the variables are initialized. k is the number of the current iteration,

l is the integer sequence for picking values from (γl)∞l=0, and x0 is the initial result

vector. Every run of the loop started in line 4 represents one iteration. It is performed

as long as the proximity function Pr is bigger than a defined threshold ε. During one

iterative step, there is one application of the original algorithm PT but N executions

of the inner loop (line 7-20) where superiorization is performed.

In the superiorization part n is the counter for the inner superiorization loop (line

10-19), whereas xk,n is the current solution, υk,n is the non-ascending vector and βk,n
is a positive real number picked from (γl)∞l=0 (l is increased in every iteration of the

superiorization loop). In that innermost loop, increasingly smaller perturbations are

added to the previous solution until the conditions z ∈ ∆ and φ(z) ≤ φ(xk), where xk

is the solution of the previous iteration, are satisfied.
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Algorithm 2 Superiorized Version of Algorithm P (adapted from [7, 14])
1: set k = 0
2: set xk = x
3: set l = −1
4: while Pr(xk) > ε do
5: set n = 0
6: set xk,n = xk

7: while n < N do
8: set υk,n to be a non-ascending vector for φ at xk,n
9: set loop = true
10: while loop do
11: set l = l + 1
12: set βk,n = γl
13: set z = xk,n + βk,nυ

k,n

14: if z ∈ ∆ and φ(z) ≤ φ(xk) then
15: set n = n+ 1
16: set xk,n = z
17: set loop = false
18: end if
19: end while
20: end while
21: set xk+1 = PTx

k,N

22: set k = k + 1
23: end while

After N superiorization steps have been performed, the original algorithm PT is applied

on xk,N . This produces a constraint-compatible output which can be expected to

be superior to the output of the algorithm without superiorization regarding to the

optimization criterion φ. This means that φ(xk,N) ≤ φ(xk). A more detailed description

of the superiorization methodology can be found in [7].

5.6 Adapted Version of the Superiorized Algorithm

The superiorization algorithm 2 is a general approach to improve any iterative algo-

rithm by performing perturbations in the form of xk,n+1 = xk,n + βk,nυ
k,n within every

iteration. As long as the perturbation term βk,nυ
k,n does not result in an acceptable

value, the inner while loop (10-19) is executed and the variable l - which controls βk,n
- will be increased. If l is very large, βk will be very small. As a result of this, the

perturbations βk,nυk,n will be small as well and they will not have an significant impact

on the reconstruction anymore. As the mathematical proof of superiorization relies on

the fact that (βk)∞k=0 is a summable sequence, which is in the proof of algorithm 2 in
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[7] only the case when (βk)∞k=0 is a subsequence of (γl)∞l=0, it is not possible to reset l.

If it would be possible to reset l, the influence of superiorization might be held on a

higher level.

The adoption of the superiorization algorithm proposed in algorithm 3 offers the pos-

sibility to reset the l-value after every iteration and still fulfills all mathematical con-

ditions for its convergence.

Line 5 holds the main change: the integer index l for picking the next element from

the sequence (γl)∞l=0 is reset to l = k, where k is the number of the current iteration.

Another minor change is that the incrementation of l is moved back to line 18. This

change is just of cosmetic nature and is not related to the modification of the algorithm

itself. Therefore it will not be mentioned in the further discussion.

Algorithm 3 Adapted version of the superiorized algorithm
1: set k = 0
2: set xk = x
3: while Pr(xk) > ε do
4: set n = 0
5: set l = k
6: set xk,n = xk

7: while n < N do
8: set υk,n to be a non-ascending vector for φ at xk,n
9: set loop = true
10: while loop do
11: set βk,n = γl
12: set z = xk,n + βk,nυ

k,n

13: if z ∈ ∆ and φ(z) ≤ φ(xk) then
14: set n = n+ 1
15: set xk,n = z
16: set loop = false
17: end if
18: set l = l + 1
19: end while
20: end while
21: set xk+1 = PTx

k,N

22: set k = k + 1
23: end while

According to [7], for the proof, that the new algorithm with its changes still fulfills

theorem 3 (and therefore still converges), it is sufficient to show that xk+1 of every

iteration can be written in the form xk+1 = xk + βkυ
k where (βk)∞k=0 is a summable
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sequence of positive real numbers and
(
υk
)∞
k=0

is bounded.

Proof. In comparison to the proof of the existing algorithm in [7], the proposed algo-

rithm requires a sequence (γl)∞l=0 of positive real numbers which is not only summable

but also monotonously decreasing. Although this is a stricter restriction it does not

change anything in practice as the proposed sequence of [7] γl = al where 0 < a < 1

fulfills that condition anyway.

The results of the superiorization steps of each iteration (loop in line 7-20) can be

written as
xk,1 = xk + βk,0υ

k,0

xk,2 = xk,1 + βk,1υ
k,1

... ... ...

xk,N = xk,N−1 + βk,N−1υ
k,N−1

(5.3)

which can be accumulated to

xk,N = xk +
N−1∑
n=0

βk,nυ
k,n . (5.4)

If βk is defined as

βk = βk,0 = γk (5.5)

this results in the required monotonously decreasing summable sequence (βk)∞k=0 of

positive real numbers by the definition of (γl)∞l=0.

By using βk as defined in (5.5), the iterative step of (5.4) can be rewritten to:

xk+1 = xk,N = xk +
N−1∑
n=0

βk,nυ
k,n

= xk +
N−1∑
n=0

βk
βk
βk,nυ

k,n

= xk + βk
N−1∑
n=0

βk,n
βk

υk,n

(5.6)

As a result of this υk must be

υk =
N−1∑
n=0

βk,n
βk

υk,n . (5.7)
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As l is increased whenever the algorithm passes line 18, it is obvious, that βk,n ≤ βk

for every 0 < n < N , and therefore βk,n

βk
≤ 1. Each

∥∥∥υk,n∥∥∥ ≤ 1 by the definition of the

non-ascending vector. As a result of those two limitation
∥∥∥υk∥∥∥ ≤ N and therefore the

sequence
(
υk
)∞
k=0

is bounded. �

It is important to mention, that the new version of superiorization presented in algo-

rithm 3 is not necessarily an improvement of the existing algorithm 2, but is just an

additional option how superiorization can be applied. As superiorization is a general

approach which works independent of the choice of algorithm P and optimization cri-

terion φ will be used, it is not possible to make a general statement on which of the two

algorithms is better. Both versions will work for all suitable algorithms P optimization

criterion φ. The advantage of the new version is, that it emphasizes superiorization, a

drawback is that it tends to longer execution times. At the end, the operator needs to

decide which of the versions is better suited for his particular problem.

A good compromise to the two algorithms might be to set l at the beginning of every

iteration (line 5) to a random number between the current iteration k and the value

of l from the last iteration (lk = rand(k, lk−1)). This should reduce the execution time

while still keeping the effect of superiorization on a higher level than in algorithm 2.

The proof of the convergence is the same as the one for setting l = k.
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6 Implementation

6.1 SNARK

SNARK is a software package for reconstruction of 2D images from their 1D projec-

tions. SNARK14 - the current version of it - provides a total framework for recon-

struction from projections for both, simulated and real data. It provides the pos-

sibility to create projection data for parallel and divergent projection geometry and

offers frequently used reconstruction algorithms. The source code is freely available at

www.dig.cs.gc.cuny.edu and can easily be extended with user defined functionality as

described in [4] and [10].

All features implemented during the work for this thesis are needed in order to be able

to perform the experiment described in chapter 7.

6.2 Simultaneous Algebraic Reconstruction Technique

The simultaneous algebraic reconstruction technique is a series expansion reconstruc-

tion algorithm (see Section 3.5). As described in Chapter 4, it tries to solve the

reconstruction problem y = Rx + e (3.25) by performing a projection of an estimated

result image onto the system of equations. This projection is executed iteratively until

a defined stopping criterion is reached.

As SART was not available in SNARK, it has been implemented and incorporated

into the latest version of it. The implementation has been done according to the

descriptions in Section 4.2. SART is available for pixel and blobs basis functions. The

only configuration parameter available is the relaxation parameter λ of (4.13).

6.3 Weighted Squared Distance

The weighted squared distance (WSQD) (see Section 7.5) is a quadratic distance mea-

sure. As it is proven that SART minimizes the WSQD (see [8]), it has been chosen as

distance measure for the experiment.

For the experiment WSQD is needed as a stopping criterion and as a figure of merit.

As both options have not been available in the existing SNARK version, they have

been implemented and incorporated into SNARK14.

http://www.dig.cs.gc.cuny.edu/software/software.html
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7 Comparison of ART and SART

This chapter deals with the comparison of iterative algorithms with and without su-

periorization for image reconstruction from projections. It compares the algebraic

reconstruction technique (ART) with the simultaneous algebraic reconstruction tech-

nique (SART) using pixel basis functions as defined in (3.18). Both algorithms are

frequently used in CT image reconstruction. As a figure of merit (FOM) the average

value of the image-wise region of interest (IROI) (see Section 7.2) is used.

As a gold standard, the ART version using generalized Kaiser-Bessel window functions

(blobs) as described in [6] is used, refer to Section 7.7.2 for details.

The creation of the projection data, the reconstruction of the images and the evaluation

is done in SNARK14.

7.1 Test Image Set

In order to be able to evaluate the relative efficacy of two or more reconstruction

algorithms against each other, it is necessary to have a large enough sample set of

statistical independent projection data. SNARK with its Experimenter (see Section

7.6 and [10]) offers the possibility to generate as much random test images as needed for

a sample set. In medical imaging such specially designed images are called phantoms.

A commonly used phantom - the head phantom - is shown in Figure 7.1a [10].

7.2 Methods of Image Comparison

When reconstructing an image from simulated projection data, the quality of the re-

constructed image can be measured by comparing it to the digitization of the generated

projection data. Both, the reconstructed image and the digitization of the phantom

must be of the same size.

Visual evaluation is subjective and therefore not suited for academic purposes. A more

accurate technique is to compare sequences of pixels (rows or columns) which pass

through interesting features of the image. One way to evaluate the quality of a recon-

struction is to compare the densities of the original and the reconstructed phantom.

Figure 7.1 shows how the values for such a comparison are taken: Figure 7.1a shows
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(a) A head phantom with local
inhomogeneities
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Figure 7.1.: A head phantom and its density distribution at a specified column CT images

the phantom. In order to clearly see the features in the interior of the skull, all values

below 0.204 are represented as black and all values above 0.21675 are represented as

white. This way, the density values of the plot are stretched to the interesting region

and the small features are made visible. The black line indicates along which column

the density values have been taken. Figure 7.1b visualizes these density values as line

graph. The actual comparison is done by comparing the graph of the original phantom

with the graph of the reconstructed image.

Distance measures can be used to measure how close a reconstruction is to its original

phantom. As single numbers cannot take care of all ways in which two images may

differ, such values have to be used carefully. Nevertheless, if the values are used care-

fully, the numbers can provide a rough measure of the closeness of the reconstruction

to the original phantom [6].

Definition 7.1. The normalized root mean square distance d of two n x n im-

ages is defined as

d =

√√√√√√√√√
n∑
u=1

n∑
v=1

(tu,v − xu,v)2

n∑
u=1

n∑
v=1

(tu,v − t)2
, (7.1)

where tu,v is the v-th pixel of the u-th row from the digitization of the phantom, and xu,v
the reconstruction of the same pixel. t is the average density of the digitized phantom.

The normalized root mean square distance d is sensitive to large differences of a small
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amount of pixels.

Definition 7.2. The normalized mean absolute distance r of two n x n images

is defined as

r =

n∑
u=1

n∑
v=1
|tu,v − xu,v|

n∑
u=1

n∑
v=1
|tu,v|

, (7.2)

where tu,v is the v-th pixel of the u-th row from the digitization of the phantom, and

xu,v the reconstruction of the same pixel [6].

In comparison to the normalized root mean square distance, the normalized mean

absolute distance r is not sensitive to a large errors. It emphasizes the importance of

a lot of small deviations of the density values, confer [6].

7.2.1 Task-Oriented Comparison of Algorithm Performance

Task-oriented comparison of algorithm performance is a methodology based on statis-

tical hypothesis testing (SHT). It allows to evaluate the relative efficacy of reconstruc-

tion methods for a given task. The evaluation methodology answers the following basic

question: given a specific medical problem, what is the relative merit of two (or more)

image reconstruction algorithms in presenting images that are helpful for solving the

problem?

The method consists of four steps:

1. generation of random samples,

2. reconstruction from the data by each of the algorithms,

3. assignment of an appropriate figure of merit (FOM) to each reconstruction and

the

4. calculation of statistical significance based on the assigned FOM by which the null

hypothesis that the reconstructions are equally helpful for solving the problem

at hand can be rejected.

In order that the comparison of algorithms is relevant to a particular task, the steps

must be adopted to the actual task. Especially, the FOM must be chosen appropriately.

In this thesis the image-wise region of interest (see Section 7.3 for details) is used as



7. Comparison of ART and SART 43

figure of merit. It was especially designed for comparing the performance of various CT

reconstruction algorithms in detecting small low-contrast tumors in the human brain.

For all details on task-oriented comparison of algorithm performance see [6].

7.3 Image-wise region of interest

The image-wise region of interest (IROI) is a figure of merit for comparing the perfor-

mance of various CT reconstruction algorithms in detecting small, low-contrast tumors

in the human brain. Therefore it needs specially developed test data. The test data

used in this thesis is based on the head phantom shown in Figure 7.1a.

For the comparison, a large number of pairs of potential tumor sites are specified. All

sites are symmetrically placed in the left and right half of the brain which means that

every tumor site in the left half has an exact counterpart in the right half. Those two

sites are considered as one pair. In every pair exactly one of the two possible sites holds

a tumor with equal probability for either side. Figure 7.2a shows such a generated head

phantom. The generated tumors are clearly visible. In the reconstruction shown in

Figure 7.2b the tumors are hard to see. That behavior of the reconstruction algorithm

is intended: the performance of a reconstruction algorithm can be measured best when

the detection of the evaluated features is possible but difficult.

(a) A random sample for the algorithm
comparison

(b) The reconstruction of the random sample

Figure 7.2.: Test images for a task-oriented comparison of algorithm performance using IROI

A set of phantoms created as described above is statistically relevant as - additionally to
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the introduced, randomly populated tumor-sites - Gaussian distributed noise is added

as local inhomogeneities.

Definition 7.3. The image-wise region of interest (IROI) is defined as

IROI =

B∑
b=1

(αrt (b)− αrn(b))√√√√ B∑
b=1

(
αrn(b)− 1

B

B∑
b′=1

αrn(b′)
)2

B∑
b=1

(αpt (b)− αpn(b))√√√√ B∑
b=1

(
αpn(b)− 1

B

B∑
b′=1

αpn(b′)
)2

, (7.3)

where B is the total number of tumor-site pairs. αrt (b) is the average density of the

tumor site of the b-th pair actually holding the tumor, and αrn(b) for the non-tumor

site. αpt (b) and αpn(b) are defined respectively for the original phantom [6].

For the IROI only pixels that belongs to the specified tumor sites are from interest.

Therefor, (7.3) restricts the pixel used to those that belong to the specified tumor site

pairs. αt is the calculated average density of all pixels of the site actually holding the

tumor, and αn is the average density of the non-tumor site.

The nominator is the exact same calculation for the reconstruction as the denominator

is for the phantom. Therefore the IROI = 1 for a perfect reconstruction.

In the reconstruction part of the equation (nominator), ∑B
b=1 (αrt (b)− αrn(b)) is the

signal of the tumor and
√∑B

b=1

(
αrn(b)− 1

B

∑B
b′=1 α

r
n(b′)

)2
is the standard deviation of

the regions with no tumors in it. This can be interpreted as the level of noise. The

division using the standard deviation can be considered as normalization. The same

applies to the phantom part (denominator).

Experiments with human observers showed that the results of the image-wise region of

interest correlates well with the human perception, see [6].

7.4 Total Variation Minimization

Total variation (TV) is a popular secondary optimization criterion. Using TV results in

smoothing the final image while - to some extend - it preserves its edges. Total variation
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Figure 7.3.: Selection of Pixel for TV evaluation

is simple to implement, reasonably fast and delivers good results even for very noisy

images. Currently it is considered as a state-of-the-art algorithm for removing noise

from images.

Definition 7.4. Let T be the set of all indices of pixel except the ones in the rightmost

column and the bottom row of a square n x n pixel image. Then the total variation

(TV) is defined as the function

TV (x) =
∑
i∈T

√(
xr(i) − xi

)2
+
(
xb(i) − xi

)2
, (7.4)

where xr(i) is the pixel right to the current pixel and xb(i) the one below it [6] [17].

Figure 7.3 visualizes the position of the mentioned pixels from (7.4) within the recon-

struction region. The light gray pixels at the right side and the bottom are not part

of T , but they still contribute to the TV as either the right pixel xr(i) or the bottom

pixel xb(i). The only pixel, which does not contribute to the TV, is pixel xJ . Further

information can be found in [6], [16] and [17].

7.5 Weighted Squared Distance

In order to be able to objectively compare the reconstruction results of the different

algorithms, they must all be stopped at the same quality. Therefore a criterion to

measure the reconstruction quality must be available. One possible criterion is the
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weighted squared distance.

Definition 7.5. Let y = (yi)Ii=1 be the set of all measured ray integrals of a CT data

acquisition, and x = (xi)Ji=1 be the current estimation of the image reconstruction, then

the weighted squared distance (WSQD) is defined as

Pr(x) =
I∑
i=1

yi − J∑
j=1

ri,jxj

2

J∑
j=1

ri,j

, (7.5)

where ri,j is the (i, j)-th element of the projection matrix R [8].

Jiang and Wang proved in [8] that SART minimizes the weighted squared distance.

7.6 SNARK Experimenter

SNARK Experimenter is an execution mode of SNARK that allows to compare two

or more reconstruction algorithms in a statistically sound manner. It supports the

task-oriented comparison of algorithm performance as described in Section 7.2.1. All

details on how to use SNARK Experimenter can be found in [4] and [10].

7.7 The Experiment

The experiment carried out in this thesis is a statistically rigorous comparative evalu-

ation of the following iterative methods for image reconstruction from projections:

• ART using blobs

• ART without superiorization, using pixel basis functions

• ART with superiorization, using pixel basis functions

• SART using blobs

• SART without superiorization, using pixel basis functions

• SART with superiorization, using pixel basis functions

The experiment is executed as a task-oriented comparison between the algorithms. All

algorithms are used to reconstruct 30 different, randomly generated projection data

sets. The results are the basis of the comparison. As SNARK with its Experimenter

offers a framework, that is capable of doing this, there is very little manual work



7. Comparison of ART and SART 47

involved. The main time factor is the execution time of the reconstruction runs.

As described in Section 7.2.1 the steps of the experiment are the

1. generation of random phantoms, the

2. reconstruction from the data by each of the algorithms, the

3. calculation of the figures of merit and the

4. statistical evaluation of the results.

All SNARK input files can be found in the Appendix.

7.7.1 Data generation

In order to obtain statistically significant results, we need to obtain a large number

of generated phantoms. The number of phantoms generated for this experiment is 30.

The samples are fully automatically generated by the SNARK Experimenter according

to the description in Section 7.3.

The data is generated using the standard (divergent) projection geometry as shown

in Figure 7.4. All line rays of one projection start at a common point (the source

position). The source has a fixed distance to the origin. The 2N + 1 detectors are

equally spread on the detector strip where the detector strip is wide enough, that

the whole reconstruction region is covered for all projections (source positions). The

needed area is intimated as dashed circle. Source and detector strip are rotated around

the image region by an angle of ∆. This is repeated for a total of M views where

M∆ = 2π, confer [6] and [10].

7.7.2 Image reconstruction

The image reconstruction is done based on the data of the phantoms generated in the

previous step. In [6], a particular version of ART using blobs - namely that with re-

laxation parameter λk = 0.05 and efficient ordering1 - provided a better reconstruction

performance than all other settings against which it has been compared. Therefore it

has been defined as reference (gold standard) for the experiment in this thesis.

The reference algorithm will be reconstructed in five iterations through the data. All

other algorithms will be stopped when they reach a proximity function smaller or
1A ray selection method provided by SNARK (see [6, p. 209] for details)
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Figure 7.4.: Standard (divergent) projection geometry [6, p. 78]

even to a fixed ε. As proximity function the weighted squared distance has been

defined. ε is determined by averaging the WSQD from the 30 runs of ART using blobs.

Using a defined ε as stopping criterion will ensure, that the reconstruction of the four

other reconstructions have a proximity value equal or slightly better than the reference

algorithm, which makes the results comparable.

In analogy to the book [6], the relaxation parameter for the ART algorithms has been

chosen as constant value λk = 0.05. ART uses efficient ordering. Our experiments

showed that for SART a choice of a constant λk = 1.8 provides good results. Both

algorithms use a non-negativity restriction.

The reconstruction region will be initialized for all algorithms with an estimate of the

average density of the image based on the projection data (see [4] for further details).

In the algorithms the initialization is referred to as x.

The superiorized versions of the algorithms depend on the choice of the secondary

optimization criterion φ, the positive integer N (which defines the number of superior-

ization steps performed before every execution of the iterative step), the choice of the

summable sequence γl and the handling of l (see Section 5.6).
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Some of the parameters depend on the implementation and are therefore predetermined

by SNARK:

• the summable sequence used in SNARK is γl = b · al where 0 < a < 1 and

0 < b ≤ 1.

• SNARK offers three ways of handling l which are explained ins Sections 5.5 and

5.6.

Algorithm handling of l
superiorized no reset of l (algorithm 2)
ATL1 reset to l = k (algorithm 3)
ATL2 reset to lk = rand(k, lk−1)

Table 7.1.: Possible handlings of l

The secondary optimization criterion φ for all algorithms is the total variation. The

superiorization parameters for ART and SART have been designated in tests executed

prior to the actual experiment. The used settings are:

Parameter ART SART
N 3 2
a 0.4 0.6
b 1.0 1.0

Table 7.2.: Superiorization parameter used in experiment

7.7.3 Figures of Merit

The algorithms will be evaluated using the following figures of merit

• number of iterations needed

• runtime

• image-wise region of interest

• total variation

• weighted squared distance.

IROI and TV are evaluated using task-oriented comparison of algorithm performance,

the other FOMs are taken from one of the 30 executions of the experiment.
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7.7.4 Statistical Hypothesis Testing

Statistical hypothesis testing as described in [6] is the calculation of the statistical

significance that the null-hypothesis of equal performance can be rejected. Here, we

employ one-sided tests. The null hypothesis is, that the expected average values (for a

defined number of reconstructions) of the two algorithms are the same. The alternative

hypothesis is, that the average FOM value of the algorithm, for which the experimen-

tally observed average is higher, is in fact higher. Based on the results of the FOMs

of the different reconstruction runs, the p-value can be calculated. The p-value is the

probability of observing a difference between the reconstruction performances (accord-

ing to the FOM) of the two algorithms that is as high or higher than the observed

difference if the null hypothesis that the two algorithms are equally efficacious were

true. The smallness of the p-value measures the significance, by which we can reject

the null hypothesis in favor of the alternative.

In our case the figure of merit is the image-wise region of interest and the number of

reconstruction runs is defined with 30. See [6], [7] and [13] for further details.

7.8 Evaluation

As explained in Section 7.7.2, the weighted squared distance reference value ε for

stopping the reconstruction algorithms was taken as the average from 30 runs of ART

with blobs reconstructions - each with 5 iterations. This resulted in a stopping value

of ε = 2.24496. In order to ensure that every algorithm - even if it does not reach the

defined stopping value - terminates, the maximum number of iterations was set to 200.

The resulting data will be evaluated in the following ways:

• ART with blobs against all other algorithms

• ART vs SART using the same superiorization settings

• ART/SART unsuperiorized vs superiorized

• ART/SART superiorized vs superiorized

All experiments have been performed on a system with the following configuration:



7. Comparison of ART and SART 51

Parameter Value
Linux Distribution Red Hat Enterprise Linux Workstation release 6.5 (Santiago)
Architecture x86_64
CPU model Intel(R) Core(TM) i7-2600S CPU @ 2.80GHz
CPU op-mode 64-bit
CPU(s) 4 (8 Threads)
CPU MHz 2.80 GHz
Total memory 3.799.548 kB
Hard disk Toshiba MK5061GSYN 500GB SATA 3GB/s 7200rpm

Table 7.3.: Execution System

7.9 Results

Table 7.4 shows the reconstruction results for all algorithms. It is obvious that the

SART algorithms require a lot more iterations in order to reach ε than the ART algo-

rithms. This is particular evident for SART with blobs. This algorithm was stopped

after the maximum number of 200 iterations and not due to reaching ε. This can also

be seen on the WSQD value of 2.6329 which is higher than the above defined stopping

value of ε = 2.24496. SART with pixel basis functions needed approximately 17 times

more iterations than ART with pixel.

Algorithm Iterations Runtime IROI φ (TV) WSQD
Phantom - - - 454.087 -
ART with blobs 6 42.512 0.18067 525.746 1.9952
ART unsuperiorized 6 14.905 0.15406 497.495 2.0413
ART superiorized 6 15.945 0.15532 486.841 2.0398
ART ATL1 6 15.267 0.15362 451.211 2.0373
ART ATL2 6 15.783 0.15615 467.743 2.0373
SART with blobs 200 1351.224 0.18446 432.626 2.6329
SART unsuperiorized 104 253.440 0.17542 468.527 2.1906
SART superiorized 104 243.992 0.17509 466.536 2.1909
SART ATL1 104 245.160 0.17449 462.711 2.1902
SART ATL2 104 247.003 0.17464 463.357 2.1903

Table 7.4.: Reconstruction Results for all Algorithms

As a result of the higher number of iterations also the runtime of the SART algorithms is

higher than the one for ART. Table 7.5 shows the detailed comparison of the execution

times. The duration of one SART iteration is slightly better than for ART for every

algorithm type. The column "Relation" holds the value of how long one SART iteration

needs compared to one ART iteration in percent (the duration of ART equals to 100%).
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Type ART SART RelationIter Total Per Iter Iter Total Per Iter
with blobs 6 42.512 7.085 200 1351.224 6.75612 95.3 %
unsuperiorized 6 14.905 2.484 104 253.440 2.437 98.1 %
superiorized 6 15.945 2.658 104 243.992 2.346 88.3 %
ATL1 6 15.267 2.545 104 245.160 2.357 92.6 %
ATL2 6 15.783 2.631 104 247.003 2.375 90.1 %

Table 7.5.: Comparison of runtimes: ART vs SART

More interesting are the results for IROI and TV. All SART reconstructions result

in better IROI values than their ART counterparts. If well-chosen parameters for

superiorization are used, it improves the performance with regards to IROI and TV

for ART, whereas SART is very resistant to improvements by superiorization with TV

as secondary optimization criterion. If the influence of total variation optimization is

too high, the IROI values deteriorate noticeably.

The influence of superiorization can be steered by modifying either of the parameters

N , a or b. As described before, N is the number of superiorization steps performed

in between every iterative step. If N is increased, more superiorization steps will be

executed, and therefor the effect of superiorization is higher.

a and b are the parameters of the sequence γl = b·al. As βk is picked from γl, the length

of the non-ascending vector βkυk is controlled by γl. The closer a is to its supremum

1, the slower γl decreases and therefore also the length of the non-ascending vector∥∥∥βkυk∥∥∥ decreases slower. This increases the impact of each superiorization step. The

influence of b has not been studied in this work.

The behavior described above has been verified in tests using all possible combinations

of the following parameter values:

• N = {2, 3, 4, 6, 8, 10, 15}

• a = {0.400, 0.600, 0.800, 0.950}

• b = 1

As an example the results for parameters N = 6, a = {0.400, 0.600, 0.800, 0.950} and

b = 1 are shown in Figure 7.5. The left chart shows the IROI values relative to the

result for ART with blobs, the right one shows the total variation relative to the value

of the phantom. Higher values of a result in more optimization regarding to TV but
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Figure 7.5.: Relative IROI and TV values for N = 6

also in a decrease of the IROI performance. This is especially evident for superiorized

SART using ATL1 and ATL2. The fluctuations in the curves for the unsuperiorized

algorithms arise from the fact that for each parameter combination new phantoms are

generated. This changes the distribution of the randomly-generated tumors, and thus

the projection data. Due to the changing input data, the reconstruction performance

varies slightly as well.

In Figure 7.6 the reconstruction results for superiorized SART using ATL1 and N = 6

are displayed. The higher the parameter a is chosen, the higher is the impact of TV

superiorization. A more dominant superiorization results in more uniform reconstruc-

tions images. This is especially noticeable in a very blurry image for a = 0.950.

(a) a = 0.400 (b) a = 0.600 (c) a = 0.800 (d) a = 0.950

Figure 7.6.: Reconstruction results for superiorized SART using ATL1, N = 6

Figure 7.7 is a visualization of the reconstruction results shown in Table 7.4 using the
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parameters specified in Section 7.7.2. As stated above, superiorization slightly improves

the IROI performance and TV is decreased noticeable. Although the improvement of

IROI is only two percent, it may very well have a positive effect on medical diagnoses

(as mentioned in Section 7.3, the image-wise region of interest correlates well with the

perception of human observers). The assessment on how significant the improvement

of the IROI with regards to medical diagnoses is, is not subject of this work.
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Figure 7.7.: Relative IROI and TV values

For a visual comparison of the reconstruction results, Figure 7.8 shows the recon-

structed image of all algorithms after the last iteration. In order to clearly see the

features in the interior of the skull, all values below 0.204 are represented as black and

all values above 0.21675 are represented as white. The remaining values are contrast

stretched on the interval [0, 1].

Sub-image 7.8a shows the basis phantom with the randomly placed tumors and local

inhomogeneities. Sub-image 7.8d shows the same phantom with the highlighted 131st

column which is used for creating all following line graphs. The pixel values in the line

diagrams are the gray levels along this column. The pixel values represent the density

values of the different tissues. All other sub-images are results of the reconstruction of

the different reconstruction algorithms.

In general, the visual evaluation of the reconstructions is difficult. All reconstructions

have in common that the tumors are difficult to detect. Also some introduced artifacts

are visible. Clearly noticeable is the quality difference between the reconstructions
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(a) Phantom (b) ART with blobs (c) SART with blobs

(d) Evaluation Column 131 (e) ART unsuperiorized (f) SART unsuperiorized

(g) ART superiorized (h) ART - ATL1 (i) ART - ATL2

(j) SART superiorized (k) SART - ATL1 (l) SART - ATL2

Figure 7.8.: Reconstruction results for all algorithms
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using blobs and those using pixel basis functions. The reconstructions using blobs

contain fewer artifacts and the tumors are more visible. For reconstructions using

pixel basis functions, the superiorized versions are much smoother. This can be seen

particularly when comparing the unsuperiorized version of ART (sub-image 7.8e) with

the superiorized ART - ATL1 reconstruction (sub-image 7.8h).

7.9.1 ART with BLOB against all other algorithms

Table 7.6 shows the results of the algorithm comparison of ART with blobs against all

other algorithms. As already demonstrated in the experiments in [6] the performance

of ART with blobs is promising. Only the reconstruction using SART with blobs shows

statistically better result. For all algorithms using pixel basis functions the results are

worse. The values of this comparison are visualized in Figure 7.7.

Algorithm 1 Algorithm 2 SignificanceName IROI φ (TV) Name IROI φ (TV)
ART blobs 0.18067 525.746 SART blobs 0.18446 432.626 1.577e-06
ART blobs 0.18067 525.746 ART 0.15406 497.495 1.021e-05
ART blobs 0.18067 525.746 ART sup. 0.15532 486.841 1.802e-05
ART blobs 0.18067 525.746 ART ATL1 0.15362 451.211 7.569e-06
ART blobs 0.18067 525.746 ART ATL2 0.15615 467.743 2.650e-05
ART blobs 0.18067 525.746 SART 0.17542 468.527 0.00014
ART blobs 0.18067 525.746 SART sup. 0.17509 466.536 8.709e-05
ART blobs 0.18067 525.746 SART ATL1 0.17449 462.711 3.343e-05
ART blobs 0.18067 525.746 SART ATL2 0.17464 463.357 4.121e-05

Table 7.6.: Comparison of ART with blobs against all other algorithms

The line diagram of column 131 (see sub-image 7.8d for the location of column 131) in

Figure 7.9 compares the gray levels of the phantom with ART and SART using blobs.

The small spikes at lines 27, 45, 176, 195 and 217 of the phantom curve are tumor

sites. Both algorithms also show peaks at these sites which indicates that the tumors

can be recognized in the reconstructed images. The deviations at the boarders of the

phantom result from beam hardening (see Section 2.1.2). Although SNARK supports

beam hardening correction, the effect can never be completely eliminated.
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Figure 7.9.: Line Diagram: Phantom vs ART with blobs vs SART with blobs

7.9.2 ART vs SART

As Table 7.7 states, all SART algorithms have a better performance than their ART

counterparts. The difference of the IROI value is larger for algorithms which uses pixel

basis functions. Figure 7.10 shows the line diagram of unsuperiorized ART and SART.

Generally, the reconstructions are noisier than with blobs. The peaks at the tumor

spots (rows 27, 45, 176, 195 and 217) are surrounded with other peaks which make a

(visual) detection more difficult.

Algorithm 1 Algorithm 2 SignificanceName IROI φ (TV) Name IROI φ (TV)
ART blobs 0.18067 525.746 SART blobs 0.18446 432.626 1.577e-06
ART 0.15406 497.495 SART 0.17542 468.527 2.698e-05
ART sup. 0.15532 486.841 SART sup. 0.17509 466.536 6.442e-05
ART ATL1 0.15362 451.211 SART ATL1 0.17449 462.711 3.177e-05
ART ATL2 0.15615 467.743 SART ATL2 0.17464 463.357 0.00014

Table 7.7.: Comparison of ART vs SART
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Figure 7.10.: Line Diagram: Phantom vs unsuperiorized ART/SART with pixel basis functions

7.9.3 Superiorized vs. Unsuperiorized Algorithms

When comparing the superiorized and unsuperiorized versions of the same algorithm,

the values are much closer than in the previous comparisons. Table 7.8 holds the results

of the comparison. Also the difference in the line diagram 7.11 is smaller. Due to the

TV optimization, the superiorized reconstruction is smoother but the overall result is

very similar.

Algorithm 1 Algorithm 2 SignificanceName IROI φ (TV) Name IROI φ (TV)
ART 0.15406 497.495 ART sup. 0.15532 486.841 8.872e-06
ART 0.15406 497.495 ART ATL1 0.15362 451.211 0.16163
ART 0.15406 497.495 ART ATL2 0.15615 467.743 1.728e-05
SART 0.17542 468.527 SART sup. 0.17509 466.536 0.02714
SART 0.17542 468.527 SART ATL1 0.17449 462.711 3.941e-05
SART 0.17542 468.527 SART ATL2 0.17464 463.357 0.00023

Table 7.8.: Comparison of unsuperiorized vs superiorized Algorithms



7. Comparison of ART and SART 59

0 20 40 60 80 100 120 140 160 180 200 220 240
0.204

0.206

0.208

0.21

0.212

0.214

0.216

0.218

Line diagram ART superiorized (ATL2) and unsuperiorized vs Phantom :: Column 131

Rows

P
ix

el
 V

al
ue

s

 

 

Phantom
ART with pixel unsuperiorized
ART with pixel superiorized (ATL2)

Figure 7.11.: Line Diagram: Phantom vs superiorized and unsuperiorized ART

Figure 7.12 and 7.13 show the difference of the unsuperiorized reconstruction to the

three superiorized versions of ART and SART respectively. Since the reconstructions

are very similar, the differences between the difference images are visually almost un-

recognizable. The sub-images (a)-(d) show the reconstruction results, sub-image (e)

shows the difference of the unsuperiorized version and the phantom and the sub-images

(f)-(h) show the difference of the superiorized algorithms to the unsuperiorized version.
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(a) ART unsuperiorized (b) ART superiorized (c) ART - ATL1 (d) ART - ATL2

(e) Difference of ART
unsuperiorized to the
phantom

(f) Difference of ART
superiorized to ART
unsuperiorized

(g) Difference of ART -
ATL1 to ART
unsuperiorized

(h) Difference of ART -
ATL2 to ART
unsuperiorized

Figure 7.12.: Reconstruction results ART with pixels

(a) SART unsuperiorized (b) SART superiorized (c) SART - ATL1 (d) SART - ATL2

(e) Difference of SART
unsuperiorized to the
phantom

(f) Difference of SART
superiorized to SART
unsuperiorized

(g) Difference of SART -
ATL1 to SART
unsuperiorized

(h) Difference of SART -
ATL2 to SART
unsuperiorized

Figure 7.13.: Reconstruction results SART with pixels
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7.9.4 Superiorized vs. Superiorized Algorithms

Finally Table 7.9 shows the comparison of the different superiorization algorithms.

They only differ in the handling of l (see Section 5.6 for further details). It is not

clearly obvious which version of the l handling is the best. In case of SART there is no

big difference between all three versions, whereas for ART, ATL2 seems to deliver the

best results. Please note that the statement just made is not statistically proven and

only reflects a trend that was observed during the executed experiments. Therefore

this statement is only valid for this particular experiment with the specific parameters

used.

Algorithm 1 Algorithm 2 SignificanceName IROI φ (TV) Name IROI φ (TV)
ART sup. 0.15532 486.841 ART ATL1 0.15362 451.211 0.00106
ART sup. 0.15532 486.841 ART ATL2 0.15615 467.743 0.00067
ART ATL1 0.15362 451.211 ART ATL2 0.15615 467.743 2.119e-05
SART sup. 0.17509 466.536 SART ATL1 0.17449 462.711 4.738e-05
SART sup. 0.17509 466.536 SART ATL2 0.17464 463.357 0.00062
SART ATL1 0.17449 462.711 SART ATL2 0.17464 463.357 0.01186

Table 7.9.: Comparison of superiorized vs superiorized Algorithms
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8 Conclusion

Generally speaking, the experiments performed for this thesis showed that the recon-

struction performance (with respect to the image-wise region of interest figure of merit)

of SART is better than the one for ART. The drawbacks of SART are more iterations

and longer execution times (factor approximately 17).

The impact of superiorization was different for the two algorithms. For ART, supe-

riorization had a positive effect. Not only that the TV could be decreased, also the

reconstruction quality with respect to the IROI was increased. SART did not show

that behavior. There superiorization had only a minor impact.

The main aim of the comparison in this thesis was not the minimization of the total

variation of the reconstructed image, but a good performance with respect to the

image-wise region of interest. For other parameters than the ones chosen in Table 7.2,

the influence of superiorization could have easily been increased, but this resulted in a

worse performance with respect to the image-wise region of interest (see Figure 7.6).

This shows that the choice of the superiorization parameter is crucial for the quality

the reconstruction results. Incorrect selected parameters can lead to poor results.

It is important to state that there is no general rule on how the parameters should be

selected. The choice depends on the particular problem. The results of the algorithm

comparison demonstrated that an overly intense optimization regarding the secondary

optimization criterion can lead to worse results for other FOMs.

It can be discussed whether the choice of TV was a good decision for this particular

experiment. An optimization with respect to total variation results in smoothing of

the reconstructed image. Thus, the recognition of the small and already difficult to

detect tumors gets even more difficult, and as a result of this the IROI performance

drops.

An open task for further work is the evaluation of the different handlings of l. l controls

the selection of βk,n which itself controls the length of the non-ascending vector υk,n

and therefore the impact of every superiorization step.



List of Figures i

List of Figures

2.1 Typical CT image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 CT data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Projection and backprojection of CT images . . . . . . . . . . . . . . . 3

2.4 CT data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Definition of an Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Relationship (part I) between (r, φ) and (l, θ) space . . . . . . . . . . . 11

3.3 Relationship (part II) between (r, φ) and (l, θ) space . . . . . . . . . . . 12

3.4 Equivalents of the Radon transform . . . . . . . . . . . . . . . . . . . . 13

3.5 Location of points in the (l, θ) space . . . . . . . . . . . . . . . . . . . . 14

3.6 Numbering of the components of the image vector . . . . . . . . . . . . 18

4.1 Kaczmarz method of solving algebraic equations . . . . . . . . . . . . . 22

4.2 Update step for ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Impact of the relaxation parameter . . . . . . . . . . . . . . . . . . . . 26

4.4 Update step for SART . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.1 A head phantom and its density distribution at a specified column CT

images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Test images for a task-oriented comparison of algorithm performance

using IROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3 Selection of Pixel for TV evaluation . . . . . . . . . . . . . . . . . . . . 45

7.4 Standard (divergent) projection geometry . . . . . . . . . . . . . . . . . 48

7.5 Relative IROI and TV values for N = 6 . . . . . . . . . . . . . . . . . . 53

7.6 Reconstruction results for superiorized SART using ATL1, N = 6 . . . 53

7.7 Relative IROI and TV values . . . . . . . . . . . . . . . . . . . . . . . 54

7.8 Reconstruction results for all algorithms . . . . . . . . . . . . . . . . . 55

7.9 Line Diagram: Phantom vs ART with blobs vs SART with blobs . . . . 57



List of Figures ii

7.10 Line Diagram: Phantom vs unsuperiorized ART/SART with pixel basis

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.11 Line Diagram: Phantom vs superiorized and unsuperiorized ART . . . 59

7.12 Reconstruction results ART with pixels . . . . . . . . . . . . . . . . . . 60

7.13 Reconstruction results SART with pixels . . . . . . . . . . . . . . . . . 60



List of Tables iii

List of Tables

4.1 Influence of the relaxation parameter λ(k) . . . . . . . . . . . . . . . . . 25

7.1 Possible handlings of l . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Superiorization parameter used in experiment . . . . . . . . . . . . . . 49

7.3 Execution System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Reconstruction Results for all Algorithms . . . . . . . . . . . . . . . . . 51

7.5 Comparison of runtimes: ART vs SART . . . . . . . . . . . . . . . . . 52

7.6 Comparison of ART with blobs against all other algorithms . . . . . . . 56

7.7 Comparison of ART vs SART . . . . . . . . . . . . . . . . . . . . . . . 57

7.8 Comparison of unsuperiorized vs superiorized Algorithms . . . . . . . . 58

7.9 Comparison of superiorized vs superiorized Algorithms . . . . . . . . . 61



Acronyms iv

Acronyms

AISP Applied Image and Signal Processing.

ART algebraic reconstruction technique.

ATL1 alternative handling of l (lk = k).

ATL2 alternative handling of l (lk = rand(k, lk−1)).

blobs generalized Kaiser-Bessel window functions.

CT computerized tomography.

CUNY The City University of New York.

FOM figure of merit.

HU Hounsfield unit.

IROI image-wise region of interest.

pixel picture element.

SART simultaneous algebraic reconstruction technique.

SHT statistical hypothesis testing.

SUAS Salzburg University of Applied Sciences.

TV total variation.

voxel volume element.

WSQD weighted squared distance.



Bibliography v

Bibliography

[1] Andersen, A. H. and A. C. Kak: Simultaneous Algebraic Reconstruction Technique

(SART) - A Superior Implementation Of The ART Algorithm. Ultrasonic Imaging,

Vol. 6:81–94, 1984.

[2] Bates, R.H.T., Kathryn L. Garden, and Terrence M. Peters: Overview of Com-

puterized Tomography with Emphasis on Future Developments. Proceedings of the

IEEE, Vol. 71, No. 3:356–372, 1983.

[3] Censor, Yair, Ran Davidi, and Gabor T. Herman: Perturbation Resilience and

Superiorization of Iterative Algorithms. Inverse Problems, Vol 26, 2010. http:

//arxiv.org/abs/1005.0069.

[4] Davidi, Ran, Gabor T. Herman, and Joanna Klukowska: SNARK09: A Program-

ming System for the Reconstruction of 2D IImage from 1D projections. Discrete

Imaging and Graphics Group - The City University of New York, November 2012.

http://www.dig.cs.gc.cuny.edu/software/snark09/SNARK09.pdf, User Manual.

[5] Gordon, Richard, Robert Bender, and Gabor T. Herman: Algebraic Reconstruction

Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photog-

raphy. Journal of Theoretical Biology, Vol. 29:471–481, 1970.

[6] Herman, Gabor T.: Fundamentals of Computerized Tomography: Image Recon-

struction from Projections. Springer, 2009. http://link.springer.com/book/10.1007%

2F978-1-84628-723-7.

[7] Herman, Gabor T., Edgar Garduno, Ran Davidi, and Yair Censor: Superiorization:

An optimization heuristic for medical physics. Medical Physics, Vol. 39:5532–5546,

2012.

[8] Jiang, Ming and Ge Wang: Convergence of the Simultaneous Algebraic Recon-

struction Technique (SART). IEEE Transactions on Image Processing, Vol. 12,

No. 8:957–961, 2003.

[9] Kak, Avinash C. and Malcolm Slaney: Principles of Computerized Tomographic

Imaging. IEEE Press, New York, 1999. https://engineering.purdue.edu/~malcolm/pct/.

http://arxiv.org/abs/1005.0069
http://arxiv.org/abs/1005.0069
http://www.dig.cs.gc.cuny.edu/software/snark09/SNARK09.pdf
http://link.springer.com/book/10.1007%2F978-1-84628-723-7
http://link.springer.com/book/10.1007%2F978-1-84628-723-7
https://engineering.purdue.edu/~malcolm/pct/


Bibliography vi

[10] Klukowska, Joanna, Ran Davidi, and Gabor T. Herman: SNARK09: A software

package for reconstruction of 2D images from 1D projections. Computer Methods

and Programs in Biomedicine, Vol. 110 Nr. 3:424–440, 2011.

[11] Langthaler, Oliver: Incorporation of the Superiorization Methodology into Biomed-

ical Imaging Software. Master’s thesis, Fachhochschule Salzburg, 2014.

[12] Marabini, Roberto, Gabor T. Herman, and José M. Carazo: 3D reconstruction

in electron microscopy using ART with smooth spherically symmetric volume ele-

ments (blobs). Ultramicroscopy, Vol. 72:53–65, 1998.

[13] Nikazad, Touraj, Ran Davidi, and Gabor T. Herman: Accelerated perturbation-

resilient block-iterative projection methods with application to image reconstruc-

tion. Inverse Problems, Vol. 28, 2012. http://iopscience.iop.org/0266-5611/28/3/

035005/.

[14] Radon, Johann: Über die Bestimmung von Funktionen durch ihre Integralwerte

längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich-

Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische

Klasse., Band 69:262–277, 1917. people.csail.mit.edu/bkph/courses/papers/Exact_

Conebeam/Radon_Deutsch_1917.pdf.

[15] Radon, Johann: On the determination of functions from their integral values along

certain manifolds. IEEE Transactions on Medical Imaging, Volume: 5 Issue:

4:170–176, 1986. http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=4307775.

[16] Rudin, Leonid I., Stanley Osher, and Emad Fatemi: Nonlinear total variation based

noise removal algorithms. Physica D, Vol. 60:259–268, 1992. http://www.math-info.

univ-paris5.fr/~lomn/Cours/ECE/PhysicaRudinOsher.pdf.

[17] Schrapp, Michael J. and Gabor T. Herman: Data fusion in X-ray computed to-

mography using a superiorization approach. Review of Scientific Instruments, Vol.

85:10, 2014. http://scitation.aip.org/content/aip/journal/rsi/85/5/10.1063/1.4872378.

[18] Smith, StevenW.: The Scientist and Engineer’s Guide to Digital Signal Processing.

California Technical Publishing, San Diago, 1997.

[19] Tanabe, Kunio: Projection Method for Solving a Singular System of Linear Equa-

tions and its Applications. Numerische Mathematik, Vol. 17:203–214, 1971.

http://iopscience.iop.org/0266-5611/28/3/035005/
http://iopscience.iop.org/0266-5611/28/3/035005/
people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf
people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=4307775
http://www.math-info.univ-paris5.fr/~lomn/Cours/ECE/PhysicaRudinOsher.pdf
http://www.math-info.univ-paris5.fr/~lomn/Cours/ECE/PhysicaRudinOsher.pdf
http://scitation.aip.org/content/aip/journal/rsi/85/5/10.1063/1.4872378


Bibliography vii

http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN001169653.

http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN001169653


A. SNARK Input Files viii

A SNARK Input Files

A.1 experiment_ART_vs_SART.in

ENSEMBLE brain.ens
EXPERIMENT 1 0 243 0.0752 11 1 30
DATA ART_vs_SART_projection.ss
RECONSTRUCTION ART_vs_SART_recon.ss
ANALYSIS ART_vs_SART_compare.ss
END

A.2 ART_vs_SART_projection.ss

RAYSUM AVERAGE 11
1 1 1 1 1 1 1 1 1 1 1

*
GEOMETRY
divergent arc 78 110.735
RAYS user 345 detector spacing 0.10668
ANGLES 720 EQUAL SPACING
0.0 359.5
MEASUREMENT NOISY
QUANTUM 1000000 720 CALIBRATION 2
SCATTER 0.012 0.4445
SEED
BACKGROUND 0.0
RUN

*
PICTURE TEST

*
PROJECTION REAL BEAM HARDENING CORRECTION
NITERS = 2 polynomial degree = 1
polynomial coefficients 0.0 1.028
nergy = 5
number of points = 2

*41KeV
0.210 0.265
0.416 0.999

*52KeV
0.210 0.226
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0.416 0.595

*84KeV
0.210 0.183
0.416 0.265

*100KeV
0.210 0.174
0.416 0.208

A.3 ART_vs_SART_recon.ss

STOP TERMINATION WSQD 2.24496 RPRT

BASIS BLOBS

EXECUTE AVERAGE ART
artb: ART 0.05 efficient blobs
ART3 relaxation constant 0.05
constraint bound

EXECUTE AVERAGE SART
sarb: SART 1.80 blobs
relaxation constant 1.8

BASIS PIXEL
MODE LOWER 0

EXECUTE AVERAGE ART
art1: nonnegative ART 0.05 pixel
ART3 relaxation constant 0.05
constraint bound

EXECUTE AVERAGE SART
sar1: SART 1.80 pixel
relaxation constant 1.8

SUPERIORIZE 3 0.4 1 TVAR RPRT
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EXECUTE AVERAGE ART
art2: TV STD nonnegative ART 0.05 pixel
ART3 relaxation constant 0.05
constraint bound

SUPERIORIZE 2 0.6 1 TVAR RPRT

EXECUTE AVERAGE SART
sar2: TV STD SART 1.80 pixel
relaxation constant 1.8

SUPERIORIZE 3 0.4 1 TVAR ATL1 RPRT

EXECUTE AVERAGE ART
art3: TV ATL1 nonnegative ART 0.05 pixel
ART3 relaxation constant 0.05
constraint bound

SUPERIORIZE 2 0.6 1 TVAR ATL1 RPRT

EXECUTE AVERAGE SART
sar3: TV ATL1 SART 1.80 pixel
relaxation constant 1.8

SUPERIORIZE 3 0.4 1 TVAR ATL2 RPRT

EXECUTE AVERAGE ART
art4: TV ATL2 nonnegative ART 0.05 pixel
ART3 relaxation constant 0.05
constraint bound

SUPERIORIZE 2 0.6 1 TVAR ATL2 RPRT

EXECUTE AVERAGE SART
sar4: TV ATL2 SART 1.80 pixel
relaxation constant 1.8

MODE
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A.4 ART_vs_SART_compare.ss

results_ART_vs_SART

COMPARE artb artb IROI WSQD
0 0

COMPARE artb art1 IROI WSQD
0 0
COMPARE artb art2 IROI WSQD
0 0
COMPARE artb art3 IROI WSQD
0 0
COMPARE artb art4 IROI WSQD
0 0
COMPARE artb sar1 IROI WSQD
0 0
COMPARE artb sar2 IROI WSQD
0 0
COMPARE artb sar3 IROI WSQD
0 0
COMPARE artb sar4 IROI WSQD
0 0

COMPARE art1 sar1 IROI WSQD
0 0
COMPARE art2 sar2 IROI WSQD
0 0
COMPARE art3 sar3 IROI WSQD
0 0
COMPARE art4 sar4 IROI WSQD
0 0

COMPARE art1 art1 IROI WSQD
0 0
COMPARE art1 art2 IROI WSQD
0 0
COMPARE art1 art3 IROI WSQD
0 0
COMPARE art1 art4 IROI WSQD
0 0

COMPARE art2 art2 IROI WSQD
0 0
COMPARE art2 art3 IROI WSQD
0 0
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COMPARE art2 art4 IROI WSQD
0 0

COMPARE art3 art4 IROI WSQD
0 0

COMPARE sar1 sar1 IROI WSQD
0 0
COMPARE sar1 sar2 IROI WSQD
0 0
COMPARE sar1 sar3 IROI WSQD
0 0
COMPARE sar1 sar4 IROI WSQD
0 0

COMPARE sar2 sar2 IROI WSQD
0 0
COMPARE sar2 sar3 IROI WSQD
0 0
COMPARE sar2 sar4 IROI WSQD
0 0

COMPARE sar3 sar4 IROI WSQD
0 0

COMPARE artb sarb IROI WSQD
0 0

END
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B Mathematical Details

B.1 Proof of Theorem 2

The following proof has been taken from [7, p. 261ff].

It is assumed that the picture function f is continuous and bounded and that f(r, φ) = 0

if r > E.

For any point (r, φ) in the picture region (in particular, |r| ≤ E), the function F (r,φ) of

one variable is defined as

F (r,φ)(q) = 1
2π

∫ 2π

0
Rf (r cos (θ − φ) + q, θ) dθ (B.1)

Since Rf(l, θ) = 0, if |l| ≥ E, it is ensured that, for |r| ≤ E,

F (r,φ)(q) = 0, if q ≥ 2E. (B.2)

Radon proved in [14] that

f(r, φ) = 1
π

lim
ε→0

(
1
ε
F (r,φ)(ε)−

∫ ∞
ε

1
q2F (r,φ)(q) dq

)
. (B.3)

Proof of Theorem 2. The next steps show that (2.7) can be derived from (B.3). For

this, the additional assumption that Rf has a continuous first derivate; i.e., that DY Rf

exists and is continuous in its first variable. DY has been defined in (3.11).

∫ ∞
ε

1
q2F (r,φ)(q) dq =

∫ 2E

ε

1
q2

[ 1
2π

∫ 2π

0
Rf (r cos (θ − φ) + q, θ) dθ

]
dq

= 1
2π

∫ 2π

0

[∫ 2E

ε

1
q2 Rf (r cos (θ − φ) + q, θ) dq

]
dθ

(B.4)

Using integration by parts, we get

Rf (r cos (θ − φ) + q, θ) dq =
[
−1
q

Rf (r cos (θ − φ) + q, θ)
]q=2E

q=ε

−
∫ 2E

ε
−1
q

DY Rf (r cos (θ − φ) + q, θ) dq.
(B.5)
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Substituting this into (B.4) results in

∫ ∞
ε

1
q2F (r,φ)(q) dq =1

ε
F (r,φ)(ε)

+ 1
2π

∫ 2π

0

[∫ 2E

ε
−1
q

DY Rf (r cos (θ − φ) + q, θ) dq
]
dθ

(B.6)

Changing the order of integration in the second term and substituting into (B.3) results

in

f(r, φ) = − 1
2π2 lim

ε→0

∫ ∞
ε

1
q

∫ 2π

0
DY Rf (r cos (θ − φ) + q, θ) dθ dq , (B.7)

which is (2.7). �
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