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Abstract

This thesis deals with the conceptualization and implementation of a recommendation engine

for the Integrated Clinical Portal/ePortal for Anesthesia Learning (ICP/ePAL) at the Brigham

and Women's hospital (BWH) in Boston, Massachusetts. This portal records a high number

of parameters and parameter types on which recommendation can be based. Also in an

initial phase the search space of the recommendation engine is typically sparsely populated.

A solution had to be found for these two issues. The very di�erent use of the portal by

every anaesthesiologist was also a complication that needed to be focused. The research led

to a multi-part-recommender that scales with the usage of the system and the information

the users provides. Therefore several frameworks, recommendation algorithms and similarity

metrics were compared to match the requirements of the BWH. After the implementation

several tests for computation time and response of the recommender were performed and

interpreted.
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1 Introduction

This chapter provides knowledge about the general problem of joining information of di�er-

ent sources. Furthermore the administrative di�culties of an anaesthesia department with

reference to the research environment is elucidated and general information about the clinic

presented.

1.1 Handling Distributed Information

The wealth of information is a blessing and a curse at the same time. The piece of information

that someone needs is always available somewhere, the problem is to �nd it in the abundance.

The pooling of resources, in case of this thesis involving scienti�c articles, papers, videos and

sound recordings, is therefore indispensable. As a result the �ltering of knowledge on a users

profession, interests and other speci�cations is feasible. Since a straightforward approach can

provide relevant information based on users metadata and the content of articles, the result

is not always the best match. With heterogeneous data, this approach is obsolete since the

data is not comparable. Therefore other indicators that represent the users taste must be

considered to increase the relevance of predictions. Another problem is the consolidation of

interfaces, which is di�cult to overcome with proprietary software. Without proper access to

the needed data, an information merge, specially in real time, is hard to ful�ll [4].

1.2 Aim and Purpose

The aim of this thesis is the advancement of health management information systems through

the integration of a recommendation service. The clinical information portal of the anaesthesia

department at the Brigham and Women's hospital (BWH) serves as an example.

Given the fact that every department in a hospital has its own individual �nances, also the

decision for the information systems is independent. The speciality about the anaesthesia is

that they work close together with several other departments and need to coordinate their

work with them. This is not an easy task, since in most cases the di�erent information

systems cannot interact. Therefore, the sta� has to take a look at several di�erent portals

and schedules to get the information about their next cases.

ICP/ePAL was designed to avoid these problems by joining all needed intelligence and also by

integrating an information and learning portal, that meets the requirements of the anaesthesia

department to save time for the high quality medical sta�. To not only make this system
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unique for the department but even more for the individual users, an anaesthesia speci�c

recommendation engine is conceptualized, implemented and integrated into ICP/ePAL.

1.3 The Brighman and Women's Hospital

The Brigham and Women's hospital arose in 1980 out of the merger of three of the most

prestigious Harvard Medical School teaching hospitals - the Robert Breck Brigham Hospital,

the Peter Bent Brigham Hospital and the Boston Hospital for Women. With its 793 beds

it is the biggest hospital in the Longwood Medical and Academic Area (LMA) in Boston,

Massachusetts. It is internationally leading in almost every medical area and is a pioneer

in methodology and complex cases. Therefore it is interstitially known and ranked ninth

in the 2013 U.S. News & World Report List of Top Hospitals out of nearly 5,000 hospitals

nationwide, - not to mention the performance of the �rst full face transplant in the United

States in 2011 and the accomplishment of �ve lung transplants in only 36 hours in 2004.

Beside health care the BWH Biomedical Research Institute (BRI) with its funding from over

$640 million and over 1,000 principal investigators is one of the world's largest institute in its

profession[5].
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2 Fundamentals

Since the middle of the 1990s, where the �rst papers about Collaborative Filtering (CF) have

been published, recommendation systems became an important research area [32] [11]. At

that time also the �rst reports about how Content-Based methods can guide users through the

�ood of information that the internet provides were published [18]. Over the last decade the

academic area as well as the industry have done a lot of work in �nding new approaches and

algorithms that improve predictions and recommendations. A well-known company for using

Collaborative Filtering is MovieLense, a recommendation platform for movies, that provides

a big dataset that is mentioned and used in many publications [22]. Amazon published their

approaches in extending classical CF-methode to meet their expenses as well [19].

Further approaches applied other techniques like clustering, Bayesian networks and Boltz-

mann machines to recommendation systems. Clustering techniques are fast after the pre-

calculation, but usually produce less personal predictions than other methods. Beside that it

was found out, that in some cases recommendations can be less accurate than nearest neigh-

bour algorithms [14]. Asela Gunawardana and Christopher Meek from Microsoft research

applied Boltzmann machines for the special case of the in section 4.5 elucidated cold-start

problem, where it outperformed an expectation-maximization algorithm in all concerns [2].

Tong Zhang and Vijay S. Iyengar from the IBM Research Division proved in their work with

Bayesian networks that the accuracy is always better than with memory-based collaborative

�ltering approaches [37]. But network based classi�ers systems also have their drawbacks.

Beside the potential problem of over�tting, a large training dataset is required, which in some

cases takes hours to days to process. This means also, that the system is not suitable for

rapidly or frequently changing environments [17].

There are also several studies that compare di�erent hybrid approaches to improve the pre-

cision of recommendation systems. Nathaniel Good and his team tested a variety of di�erent

hybrids that included collabortive �ltering, content-based algorithms and knowledge-based

techniques in the �eld of movie recommendation. Their study proved, that hybrid systems

performed better than single-algorithem based recommenders. Beside that they engaged test-

ing of multi-part-hybrid systems, which they considered a success [10].

This thesis engages such a multi-part-hybrid system and expounds the scienti�c process of

planing and implementation on the example of the anaesthesia department of the Brigham

and Women's hospital.
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3 Health Management Information Systems

This chapter will give a basic overview of how Health Management Information Systems

(HMIS) can be applied to medical environments, which advantages they bring and which

barriers are associated. HMIS are essential for health care organizations since they are the

base for tactical and informational planning, administration and evaluation. They suppose

to improve and enhance the processes that are necessary in a clinical environment for making

products and services more a�ordable, available and accountable. The optimization of pro-

cesses is conceived to gain a temporal relief for high quality sta� in the medical area. Faster

access to patient and case information and a better scheduling are the keys to increasing the

e�ciency of a medical organisation [16].

3.1 HMIS Components

An integrated HMIS system consists of �ve major components

• Data/information/knowledge component

• Hardware/software/network component

• Process/task/system component

• Integration/interoperability component

• User/administration/management component

The core of the HMIS system is built by the data/information/knowledge component. It

includes the speci�cation, organisation and interrelationships between data, information and

knowledge elements that an integrated IMHS requires. The combination of all these di�er-

ent parts is made by intelligent data-mining algorithms, rule engines and online analytical

processes (OLAP). From the storage and computation of raw data, this leads to the transfor-

mation into information to serve an output for HMIS end-users, in order to make informed

and intelligent decisions. This feedback process is illustrated in �gure 3.1.

The hardware/software/network is the basis for every information system. It plays a promi-

nent role as it brings the choice of various information storing, handling and computing

technologies to support HMIS applications and usage. This component connects the com-

munication infrastructure with various hardware, user interfaces, associated devices and ap-

plications to achieve e�ective and e�cient information services. Therefore it is important

that all devices can access and communicate with the HMIS application. This is necessary
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Figure 3.1: Overview over a Data/Information/Knowledge System

to support the people in a technology-driven environment, so they can bene�t from increased

performance in accomplishing their tasks.

The process/task/system component illustrates the routines of the HMIS. A connection and

interaction between all applications, processes and tasks, is the goal of this component. There-

fore all clinical-based HMIS as well as administrative applications, such as information systems

for human resources and �nance as well as scheduling systems and facility utilization, must

be conceptualized to collect relevant information. This is needed to optimise task-processing

as well as decision-making activities. If every activity is organized into a �xed task-procedure,

it can easily be changed or adjusted to new practices since methods are constantly changing.

To achieve an optimal functionality between the various applications and task processes a

systematic survey is absolute.

For the enterprise point of view the integration/interoperability component is the key to

determine the outcome. To position health care services on the market, the interoperability

of health care information services with the external environment is often the key to achieve

success. It provides an edge over the competitors, if external organizational frameworks can

be integrated to achieve e�cient, e�ective and excellent delivery of healthcare services. This

requires, beside the understanding of evolving technologies and the changes in organizational

task processes, also a broad knowledge about the health care service industry, the market

structure and changing characteristics. With this knowledge HMIS applications, which �t not

only the current industrial standards but also future requirements, can be designed.

The �nal and most critical part is the user. The user/administration/management combines

and coordinates all other components of the HMIS system. Every user in the system has their

particular tasks and activities in the overall system to ful�ll the goals of the organization -
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provide service to the clients in the most e�ective, productive and e�cient way. Through the

interaction with all other components this creates a holistic approach that controls and steers

the perceptions and interdependencies of the organization [35] [33] [16].

3.2 Advantages

Health management information systems help clinics to improve the quality and e�ciency,

while lowering the costs. It can take away administrative burden on high quality medical sta�

and create a temporal relief. De�ned processes, standard practices and treatment guidelines

increase the patient's safety, because the space for errors is minimized. This also simpli�es the

replacement not only of procedures but also of sta�. Documentation can be directly integrated

in the schedule, which makes it possible to identify mistakes or con�rm correct execution in

case of complications or litigations. The shown feedback process in �gure �gure 3.1 helps to

improve the treatment methods for one particular person, but also helps other patients since

the recorded data can be used for studies and research [13].

3.3 Drawbacks

Since information technologies in medical areas led to easy access of a huge amount of critical

data, the protection of patient information is one of the most critical points. Where, in

former times only rooms or containers needed to be locked to ensure sensible data to be safe,

nowadays this is a much harder task. In most cases the data needs to be protected in several

levels. What is the use of an information system that logs every access to patient records, if

the data can undetectably be accessed in the database? This requires an ingenious security

system that has logs, restriction and policies for all layers. Beside security concerns, medical

information systems are expensive. Not only the software itself, but also the infrastructure,

maintenance and people needed to keep the system running. Also training of the medical sta�

is required, an additional expense if the system is not easy to use [16].
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4 Recommendation Engines

This chapter provides at �rst basic information about Recommendation Engines before it gets

more detailed with the explanation of di�erent algorithms. Finally it explains how to handle

the common problems of unknown users and sparsed data.

4.1 Introduction

Recommending is one of the key parts of machine learning techniques. It is the most recog-

nizable technique, since many websites use it for some reason. On the one hand, nearly every

webshop has implemented a recommending system, showing you articles you are most likely

to buy on your behavior or prior purchases. On the other hand there are social websites and

dating pages which guide you to people you may know or like. There are some prominent

examples for recommendation engines.

4.2 Basic Approaches

The �rst thing that is essential, is information about the user, needed for recommendation to

same and data about the item, user, etc., which should be recommended. This section will

explain three common ways for recommending.

4.2.1 Content-based Filtering

Every user and item have speci�c metadata. Information that lets us identify who he/she/it

is and that makes it similar or unlike to another. This can be very di�erent information,

depending on the matter. There are basically two ways in which this data is can be collected.

• A user's preferences, which represents his interests, are stored in his pro�le. Which

mostly happens while registering. Based on this data a prediction if a user likes or

dislikes an item can be computed.

• A history of the user's activities is stored in the recommendation system. This can be

for example purchases and views of items. Based on this information a user pro�le is

created, on which a prediction for items can be calculated [27].

An extract of the User-/Item-Metadata that is relevant for recommendation of movies:

• User-Information:

• Age

• Language
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• Preferred genre

• Preferred actors

• Film-Information:

• Genre

• Actors

• Director

• Age rating

Based on this information it can be predicted, which movie a user is most likely to watch.

Either with a direct matching from user to items via decision algorithms or with a cluster-

ing algorithm to group similar items or users. The problem with recommendation only on

metadata is, that subjective factors are not considered. Not every movie with one particular

actor must be good, and one genre can cover a huge variety of di�erent types. Also only the

purchase of a movie does not mean the user likes the movie. So recommending only relying on

metadata can be a complete �op. To solve this problem user ratings need to be considered.

4.2.2 Collaborative Filtering

As a user rates di�erent items, regardless of which scale, there is a lot more information

about taste available than that only from metadata. As it is possible to �nd other users with

a similar taste, at best on many di�erent items, it is possible to predict how likely it is, that

the user also likes another item. Therefore it is �rst calculated how similar a user is to others

before the predicted rating for other articles can be computed.

This process is illustrated in �gure 4.1. The input is the table with ratings. Based on the

circled items, where both users have rated, a similarity is calculated. This is done for user i to

all others users from 1 to n. The CF-Algorithm than picks the most similar users to i, based

on a �xed value or similarity threshold. Afterwards it computes a prediction for all articles,

that the most similar users have read and i not. The top n predictions are then represented

to the user as recommended. The algorithms to do so are explained in the next section.

4.2.3 Usage-Based Filtering

A Usage-Based recommendation system can use a huge variety of di�erent data. It depends

on which data is recorded and how this data can be combined. Most systems put the browser

history into count and predict, based on this data, which sites the user is most likely to visit

in the future.
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Figure 4.1: Overview over the Collaborative Filtering process

For example a user is searching for di�erent cities in the United States of America and looks

them up on a travel guide. The �rst section he is always heading to is "places of interests"

and opens the photos. If he likes the pictures, he goes back to the search engine, looking up

the place on the route planner and calculating the distance to an other destination.

If every site is separated from each other, everybody just has a little information.

• The search engine knows, the user is searching for cities in America

• The travel guide knows, that the user is opening photos of di�erent sights in America

• The route planer knows, which cities the user is searching for and which way he will

take.

Would all this information now be put together, a speci�c pattern could be recognized and

provide recommendation for hotels on the way, cheap �ights and other sites that are interesting

for people who travel to the US. Since the patterns are very focused, an integration into a

topic speci�c portal, in that case for travelling, is suggestive.

A much simpler example would be to log search terms on an e-commerce platform and measure

the time a user stays on one particular item. This simple data can be used to draw a conclusion

if a user liked an article, since he would have continued, if it would not have been the article

he was searching for. So the platform shows the customer articles that are similar to the

article they have watched for a long time [24].
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4.3 CF Algorithm

Algorithms in Collaborative Filtering have the duty to �nd items that best match the users

information. Therefore a similarity between users is calculated and out of it a prediction

created. Listing 4.1 represents the pseudo code for the recommendation process.

for every item i that u has no preference for yet

for every other user v that has a preference for i

compute a similarity s between u and v

incorporate v’s preference for i, weighted by s, into a running average

return the top items, ranked by weighted average

Listing 4.1: Pseudo code for recommending process

The outer loop nominates every item, for which the user has no preference yet, as a potential

candidate for recommendation. The inner loop takes every user who expressed a preference

for this candidate and computes a similarity between the two users. In the end a weighted

average based on the value and weight from every user is calculated. Since processing of all

items with all users would take a very long time, a neighbourhood with the most similar users

is computed �rst. Only these users are then taken into account when a prediction for the

items is calculated.

The weighted average user in CF is calculated as followed:

px,u = r̄x +

∑n
i=1(ri,u − r̄i) ∗ wx,i∑n

i=1wx,i
(4.1)

px,u is the prediction for the user x to the item u. n represents the number of neighbours and

wx,i the weight between the user and its current neighbour u. The more similar the users,

the stronger the in�uence on the result. The calculation of the weight is shown in the next

section.

4.4 Similarity Metrics

One of the most important parts of item- and user-based recommendation is to determine

the similarity. Knowledge of the most similar items or users is needed for further calculation,

since only the top n are into consideration.

4.4.1 Pearson Similarity

The Pearson similarity is one of the most common algorithms in collaborative �ltering system.

It measures how similar two series of numbers, paired one-to-one, are to each other. The result
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of the calculation is a value between -1 and 1 and represents how similar two datasets are.

Values near 1 mean that the two people are very similar, since 1 would indicate a perfect

match. A little relationship is indicated with a value around 0, while -1 indicates an opposing

relationship.

After isolating the items that both users, i and j, have rated, the Pearson Similarity is calcu-

lated as followed:

sim(x, y) =

∑
i∈I(rx,i − r̄x)(ry,i − r̄y)√∑

i∈I(rx,i − r̄x)2
√∑

i∈I(ry,i − r̄y)2
(4.2)

In �gure 4.2 three di�erent datasets are computed with Pearson similarity. The result of the

left statistical series is 1.0, since both persons have given the same rating for every item.

The opinions in the middle plot di�er crucially, still there is an overlap as the result of the

calculation is 0.0. The last �gure shows two people with a very opposing position. The

computation results in a value of -0.59. For visualization of the data trend, a linear stripline

was inserted, which lets suggest the result value.

Figure 4.2: Pearson Correlation Demonstration

One problem of Pearson Similarity is, that it can only take items into count that both users

have rated. The second problem is, that the correlation cannot be computed, if the users only

overlap in one item rating. This is an issue for sparse datasets, where only a little amount of

users are overlapping. The last issue is that if a user is rating all of the items with the same

value, the Pearson correlation in unde�ned [31][34].

4.4.2 Spearman Correlation

The Spearman correlation is a variant of the Pearson similarity that is calculated the same,

but the data is �rst brought into relative rank. This means that the least-preferred item

gets a value of 1. The next-least-preferred item gets a 2 and so on. Through this process

information is lost, but the essence is kept and the user pro�les get more harmonized to each
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other, since it is irrelevant if a user rates all items between 1 to 4 or 3 to 5. [31].

4.4.3 Euclidean Distance

sim(x, y) =
1

1 +
√∑n

i=1(xi − yi)2
(4.3)

The idea is to see a user as a point in a n-dimensional space. The number of dimensions

is de�ned by the quantity of items, and the coordinates by its preference values. To de�ne

how similar two users are, the euclidean distance between these user points is computed. The

smaller the number, the more similarity is there between the two users. Since in that calcu-

lation a larger number would mean less similar, the result needs to be inverted by 1/(1+d).

The outcome is always a positive number with a value between 0 and 1 [31][34].

Figure 4.3: 2D Euclidean Distance Demonstration

Figure 4.3 illustrates the calculation of a two dimensional euclidean distance. Every further

dimension is only an addition of an other variable
√

(x1 − y1)2 + (x2 − y2)2 + . . . (xn − yn)2,

which makes the computation very inexpensive for high dimensional matrices.

4.4.4 Cosine Measure

sim(x, y) = cos(
→
x,

→
y ) =

→
x ∗→

y

‖→x‖2 ∗ ‖
→
y ‖2

(4.4)

Like the Euclidean distance, also the Cosine measure treats users as points in an n-dimensional

space. But in contrast to a distance an angle between the two points is calculated. The smaller

the angle between the two users measured from the origin, point(0,0,....0), the more similar
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they are. Since the cosine of a small angle approaches 1 and a 180 degree angle has a value

of -1 no conversion is needed. [31][34].

Figure 4.4: Cosine Measure Demonstration

Figure 4.4 illustrates three di�erent two dimensional Cosine models. The angle of the left

graph amounts to 12 degrees which indicates a similarity value of 0.978. With a right angle

the cosine is zero shows a medium similarity between the two datasets. The right angle is

close to 180 degrees which refers to a value close to -1.

4.4.5 Tanimoto Coe�cient

sim(x, y) =

∑n
i=1 xdixdj∑n

i=1(xdi)
2 +

∑n
i=1(xdj)

2 −
∑n

i=1(xdi)(xdj)
(4.5)

As it can be seen in �gure 4.5 result of the Tanimoto coe�cient, also called Jaccard coe�cent,

represents the overlap between two data samples. The two circles represent the rated articles

of the users. The ratio between the overlapping area (intersect) to the whole area (union) is

the measure of the similarity. The Tanimoto coe�cient does not take the value of the rating

into count. It just takes all items, for which the user expressed an opinion. The result varies

between 0 and 1, where 1 indicates that both circles are completely overlapping and 0 if they

have nothing in common. The big di�erence to most other similarity models is, that items

that not both of the users have rated are taken into count. Most likely this similarity metric

is used when only boolean preferences are available.

Figure 4.5: Tanimoto coe�cent result representation[31]
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4.5 Challenges and Limitations

This section shows the challenges and limitations of recommendation systems and how they

can be handled. In some points it creates connection to ICP/ePAL.

4.5.1 Scalability

Time is a major factor for recommendation, since it is most likely done in real time. Therefore

the algorithm should be �tted to the requirements for time and be appropriate to the size

of the dataset. For example: If a dataset only has a small amount of users compared to the

items it is most likely to base the similarity model on the user, since the calculation with less

variables is faster. Beside the code optimization another solution is to use a framework that

can work on a cluster and can be extended when needed. In general there are �ve questions

that should be answered before a system is chosen.

• How many training examples are there?

• What is the batch size for classi�cation?

• What is the required response time for classi�cation batches?

• How many classi�cations per second, in total, need to be done?

• What is the expected peak load for the system?

The answers to these questions give a basic overview of the requirements the system needs to

meet and which algorithms are possible. While some points can be handled with upgrade of

the hardware, others cannot be treated that easily [31].

4.5.2 Sparsity Problem

In collaborative �ltering systems the user is represented by a matrix of data that is known

about the user. This data typically represents ratings, purchases or viewed articles. In most

applications the number of items as well as users is fairly large and a user expresses an opinion

for only very few items. This means most of the space stays untouched and is represented by

zeros. This empty space has a signi�cant negative in�uence on the quality and e�ectiveness

of collaborative �ltering. The less data available, the more decreases the probability to �nd

a neighbourhood of people with similar ratings. The sparsity most likely leads to a result

of zero, if any calculation is possible. CF systems do rely on that neighbourhood to predict

which articles a user likes. This problem occurs most likely in new systems and if there is

a high item-to-user ratio. To counter this problem, domain speci�c knowledge can be taken

into account. [28][6].
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4.5.3 Cold-start Problem

One of the most signi�cant challenges for a recommendation system are new users and items.

It can be seen as a special case of the sparsity problem, where only one row or line is sparsely

�lled.

Collaborative Filtering systems are not able to generate useful recommendations to a user

about whom they have no information. Therefore some sites request new users to rate some

basic articles directly after the registration procedure. The other problem occurs with new

items. As long as nobody has rated them, no neighbourhood would refer to this new prod-

uct. Therefore a content-based approach can be integrated, since it takes the attributes into

account and does not rely on ratings in the same way a collaborative �ltering approach does

[28][6].
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5 Analysis and Conceptualization

This chapter will deal with the planning of the implementation. Therefore all the available

data will be analysed, proper algorithms de�ned and potential problems handled. Beside that

the framework and programming language will be determined.

5.1 Data Analysis

This section will give an overview over the data that is available for processing. The metadata

and usage data has only a unique numeric ID in its individual database table, as with the

ItemID. By contrast the UserID is alphanumeric and unique, since it is used for identi�cation

in all information systems.

5.1.1 Item Metadata

The item metadata that is relevant for the recommendation engine is de�ned by the categories,

topics and tags that are associated with it. They can be de�ned during the upload of the

article or added and modi�ed in the abstract view. Beside that also the title, source, origin

category and author are stored as far as they are available.

5.1.2 User Metadata

The relevant user Metadata contains the level of training, the current rotation and the interests

of the anaesthesiologist. The interests are prede�ned by the categories, topics and tags so

they can be directly matched.

5.1.3 Usage Data

The system records several data while a user is using the system. Some they are aware of,

some they are not. The logged data is viewed and described in table 5.1.

Since there is a huge amount of usage data stored, one needs to de�ne which data should be

used for collaborative �ltering and which should not. Rating and Like/Dislike has the same

background and is therefore almost a redundant data. The problem is that one is a boolean

value, the other on a scale from 1 to 5 and so they can not be directly merged. Favourite

also gives a strong statement if a user likes an item, while bookmark only indicates if a user

wants to read the article later.

A very interesting usage data is the "article read". Since a user does not have to explicitly

select something, even the users who do not rate, share, bookmark, etc., they give information
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Rating User rating on articles in a scale from 1 to 5.

Like/Dislike Like and dislike both stored a boolean value.

Bookmark Bookmark for articles the user wants to read

later or again.

Share Sharing of an article with an other user.

Favourite Marks the item as favorite so that the user can

see it in his favorite-list.

Article Read Stores if a user has viewed an abstract, or if he

has viewed or downloaded the whole article.

Table 5.1: Overview stored Usage Data

on which articles they prefer. It is even better that one can di�er if the user has only viewed

the abstract or if they have read or downloaded the whole article.

5.2 Cold-start and Sparsity Problems

Since the system was introduced in march 2014 there has not been a lot of available data. This

leads necessarily to a cold-start and sparsity problem, explained in section 4.5. Nevertheless,

at least there is no anonymous user in the system. They are very basically de�ned by their

metadata that allow an initial prediction for items the user may like.

5.3 The �ve scalability Questions

As mentioned in section 4.5, there are �ve questions to answer to give a general basis for all

further deliberations. These questions are answered in this section.

5.3.1 How many training examples are there?

At the start of the project there was only very little data, most likely from test scenarios.

Until the �rst of March 215 users have accessed the system, which does not re�ect the numbers

logged from the portal. Beside the data, that was inserted by a single user, there were only

nine ratings from �ve di�erent users and 79 article views from 27 di�erent users available.

Only four persons uploaded 290 items, which represented 94% of data content. The meta data

about the users was very limited. Only the core data from the management such as name,

birthday, position was accessible. The �rst article read was logged at the 17th of March.

Because of a serious misplanning countless information gets lost in the system. All data that

is gathered in the resource section is only saved if the user pushes the back-button after they
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have viewed, downloaded, rated, etc. an article. Otherwise the information is lost, which,

according to the report of users, happens often.

5.3.2 What is the batch size for classi�cation?

The batch size was de�ned to be ten. After the recommendation a prede�ned selection of

articles will be shown to the user. This list will also compensate the case that a user has not

�lled out their user pro�le yet, which should not occur. Beside that, the user, as far as he is

a resident, will also receive questions and answers out of an exam dictionary according to the

constant review tests.

5.3.3 What is the required response time for classi�cation batches?

The response time should be as low a possible. Since the last question, which deals with the

awaited peak, is related to the needed response time, they were treated in combination. In

agreement with the department an expected response time from under 300 ms quali�es as a

success. This time only de�nes the response of the recommender, the time of the �ow through

the middleware and database query is not included.

5.3.4 How many classi�cations per second, in total, need to be done?

Based on the speci�ed response time a maximum of three recommendations per second need

to be made. This number will of course be much lower on average expected throughout the

day, but at the peak times, this value will be achieved entirely.

5.3.5 What is the expected peak load for the system?

The highest peak of ICP/ePAL was awaited in the morning and during the lunch hour. Since

the cases of the anaesthesiologist do not start at the same time and the lunch breaks are

depending on cases, there is no particular peak time. The use of the portal does not mean

a load for the recommender, since it is only related to one particular part to the resource

module. This theory was re�ected in the further course through logs of the read articles. The

access is distributed irregularly over the whole day and also night.

5.4 De�ning the Recommender

The huge amount of di�erent usage data, the availability of item and user metadata and the

Cold-start and Sparsity Problems led to a hybrid recommendation system.

Most of the hybrid system contain two di�erent prediction systems, but in this case it used to

be three. The reason for that is that all the recorded data can be divided into three categories.
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• Attentive Usage

• Unconscious Usage

• Metadata

The thought behind that is that after speaking to several people of the anaesthesia department,

it turned out that some use the system and read articles, but do not want to do anything

else like rating, tagging, bookmarking, sharing etc. To provide recommendations on their

preference as well, it is possible to take the "article reads" into account.

Figure 5.1 illustrates the three steps from a basic recommendation on Metadata to a recom-

mendation based on the users taste. Therefore we will now talk about a 3-Step-Recommender.

Figure 5.1: Three Steps Recommendation

The more data available about the user, the more speci�c the recommendation will be.

5.5 De�ning the Algorithms

This section shows which algorithms for the three steps are used based on the information

that is provided.

5.5.1 First Step: Metadata

Filtering based on Metadata is usually handled by machine learning techniques such as

Bayesian Classi�ers, decision trees or neural networks. However, therefore information about

the taste for at least one item is again necessary. Since this step should handle the Cold-

Start- and Sparsity-Problem it has to recommend without any further knowledge than the

basic user pro�le. As users share the same property as the items in the system, they both

will be treated equally. The User-Pro�le contains the current rotation, quali�cation and up

to three interests, which are the same as the categories of the articles. In addition, there are
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topics and tags which further describe an article. The best �tting algorithm for this similarity

computation is the Tanimoto coe�cient, described in subsection 4.4.5. The reasons why this

similarity metric was chosen are:

• The data is only boolean

• Can always compute, even if no property matches

• Each user and item is compared with all its information, not only with information they

both share.

A clustering algorithm would also have been able to handle this step, but because of the fact

that a whole new computation is necessary when an article is added, this option needed to

be eliminated.

The third reason and its underlying fact guards against the problem, that a user would be

perfectly matched to an item, just because an item has a huge amount of tags. This problem

would occur with every algorithm that just computes on matching preferences.

5.5.2 Second Step: Article Reads

The second step will be handled by a Collaborative Filtering algorithm. The available infor-

mation, abstract show or article viewed/downloaded, will be represented as values one and

two. That means algorithms which are most likely to handle boolean data can already be

omitted. Also the Spearman correlation is not suitable since a relative rank on a value di�er-

ence of two is meaningless. That means the candidates for this step's similarity computation

are

• Pearson similarity,

• Euclidean distance and

• Cosine measure.

All three algorithms will be integrated and evaluated to �nd out which one �ts best.

5.5.3 Third Step: Ratings and Flags

As in the second step also the third step is processed by CF. But since there are �ve parame-

ters left, it needs to be decided which ones are used and how they contribute. The facts that

are stored are shown and explained in the subsection 5.1.3. The two parameters that abso-

lutely need to be used are rating and like/dislike. As a third parameter favorite was chosen.

Bookmark and share have no real statement about if a user likes or dislikes an article. This

information is more or less already covered with the second step. The various information is
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merged before the recommendation process. The rating is the �rst information that is taken

with its original rating. Afterwards like/dislike is merged, with a �ve for like and a one for

dislike, for the articles that do not have a rating already from the same user. At least the list

of favorite items is taken and added with a rating of �ve. The algorithms which are used to

process this data are

• Pearson similarity,

• Spearman correlation,

• Euclidean distance and

• Cosine measure.

5.6 Merging of the three Steps

The merging of the three steps will be implemented and evaluated in four di�erent ways. First

of all, each step calculates its recommendation for the particular user. This list will contain,

as far as it is possible, double the amount of items that need to be recommended.

5.6.1 Weighted Merge

For a weighted merge all results have to be scaled in the same range �rst. Since ratings have

the highest range, the other two recommendations will be scaled from zero to �ve. The next

step is the de�nition of the weighting coe�cients. For a hybrid system with two di�erent

algorithms several papers and books with advices for weighting percentages can be found.

However, also these references di�er for every use-case and algorithms used. As an initial

weight 50%/30%/20% will be used for step three, two and one. If a recommender has no

prediction on an article, it is assumed to be neutral and a value of three is assigned.

Step1_rank(3)×Weight1(0.2) + Step2_rank(4)×Weight2(0.3)+

Strep3_rank(4)×Weight3(0.5) = Weighted_rank(3.8)
(5.1)

5.6.2 Mixed Merge

Also for this merge technique the ratings of the di�erent steps will be scaled to a range from

zero to �ve. Afterwards the lists are merged together through an addition of the recommen-

dation scores of the three steps.

Step1_rank(3) + Step2_rank(4) + Strep3_rank(4) = Mixed_rank(11) (5.2)
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Step3_pos(1)

Step2_pos(1)

Step1_pos(1)

Step3_pos(2)

Step2_pos(2)

Step1_pos(2)

Step3_pos(3)

Step2_pos(3)

...........

Step1_pos(n)

Table 5.2: Recommendation after Top-n Merge

5.6.3 Top-n Merge

This merge technique takes a �xed amount of recommendations from each step into account,

which are put together in a round in one list depending on their prior position as shown in

table 5.2

5.6.4 Occurrence Merge

After calculating twice as many predictions than recommendations are needed, it is looked

up if one item occurs in more than one step. Starting from the highest step it is compared if

an item occurs more than once and is written with its occurrence value on the merge table.

If the next item now has a higher occurrence it is pinned over the �rst item with lower value.

If it has a lower value it is pinned at the end. This procedure is illustrated in �gure 5.2.

Figure 5.2: Imaging of Occurrence Merging
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6 Implementation

This chapter illustrates the implementation of the recommendation system conceptualized in

chapter 5. First of all it treats the setup of the development environment of Apache Mahout,

followed by the implementation of the recommender and webservice and �nally the integration

into the ColdFusion server.

6.1 UserID Conversion

As mentioned in section 5.1, the UserID contains numbers and letter. Since the Mahout

Engine can only work with Long-Numbers, they needed to be converted �rst. Therefore the

Mahout MemoryIDMigrator class was used. To translate the LongID back to the original

UserID a mapping would be necessary. Since such a back conversion is not needed, this point

is skipped. Here are two examples for a converted ID.

• ap291 : -6324286982661262164

• ze136 : 3936981354976206448

The fact, that all IDs are translated to a 19 digit positive or negative number, makes it easy

to di�er, which of the return results of step one are users and which ones are items.

6.2 Business Data

To minimize the data transfer between the recommender and the database, all in section

5.1 listed business data is downloaded to comma separated �les in the format needed for

Mahout`s FileDataModel. The data that is called to separate �les from the database includes

the following information:

1. UserID, ItemID, Rating

2. UserID, ItemID, Liked/Disliked

3. UserID, ItemID, Favourite

4. UserID, ItemID, Bookmark

5. UserID, ItemID, Shared

6. UserID, ItemID, ArticleRead

7. UserID/ItemID, TagID/TopicID, 1



6. Implementation 31

The �rst three data�les are used for the collaborative �ltering of step three. Number four and

�ve only give a very little statement if a user has a preference for the item. This information

will be used during the evaluation process or later advancements to gain more intelligence.

The sixth data�le contains the information needed for the CF of the second step. This data

contains the "read" of an abstract as a one and the view/download of the article as a two.

The last �le contains all users and items and their tags and topics for the similarity measure

of the �rst basic step. The class diagram for dbDataDownload is illustrated in �gure 6.1.

Figure 6.1: Class Diagram of dbDataDownload

The data frequently updates through a http-call update. Mahout reorganizes its data auto-

matically as soon as it determines a change in the data-�le.

6.3 General program structure

The general structure of the recommender is kept as modular as possible. The class recommend

is implemented as a singleton and represents the controller. It manages the programme �ow

and serves the recommenderServlets class, which in this case is the view.

The full class diagram can be seen in the appendix in �gure 9.1.

6.4 Implementation of the three Steps

This section gives an overview of the implementation of the three steps, as de�ned in section

5.5. Every step was implemented in a separate class, that reads its con�guration from the �le

while constructed. The class diagrams of the three recommenders can be seen in �gure 6.2.

Since the Recommender Class was implemented for easier handling, several unused functions
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Figure 6.2: Class Diagram of the three recommenders

are present. These untapped functions are refresh, estimatePreference, setPreference

and removePreference. The underlying datasets that are used by the di�erent recom-

menders were explained in the planning phase in section 5.5.

6.4.1 Realization of the �rst Step

Step one has a very simple implementation because of the Apache Mahout framework. After

generation the FileDataModel and handing it over to the TanimotoCoefficientSimilarity

only the neighbourhood needs to be de�ned. Since after the computation a �ltering of the

return values is necessary a neighbourhood of 100 was chosen. After deleting the other users

in the Long-Array and the rescore to a range between zero and �ve, the predictions are ready

for the merge process.

6.4.2 Realization of the second Step

In its �rst part step two is very similar to the �rst step, but here it is only a precomputation

for the Collaborative Filtering process. All similarity metrics mentioned in subsection 4.4 were

implemented and can be selected through the con�guration �le. The outcome of this step is a

value between zero and two, since the input data is in the same range. The recommenders are

created from a factory method, that produces a recommender by its given parameters. This

way also temporary recommenders for evaluation can be created, which is necessary for testing

and evaluation beside the productive use of the system. For the actual use of the system, the

con�guration is loaded from the con�g �le. For the rescore of this step a IDRescorer class,

that can be seen in �gure 6.3, was created to recomputes the predicted value. Therefore the

rescore function, that in some cases can be very complex, is called to return the new value.
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Figure 6.3: Class Diagram of stepTwoRecommenderRescore

6.4.3 Realization of the third Step

The third step only uses the basic recommender without rescore, since the predictions are

already in the de�ned range. Like in step two, also in three, all similarity metrics mentioned

in subsection 4.4 can be selected through the con�guration �le. The creation of the recom-

mender is done by the in �gure 6.3 shown stepTwoRecommenderRescore class. Therefore

the getNewRecommender function is fed with

• basedOn - user or item,

• similarityMetric - pearson, euclidean, spearman, tanimoto or cosine,

• neighborhoodQuantity - neighborhood quantity of similar users and

• DataModel - �leDataModel the recommender recommends on.

Figure 6.4: Class Diagram of recommenderFactory

6.5 Merge of the three Steps

The merge algorithms that were described in section 5.6 are implemented in a separate class.

The class diagram is shown in �gure 6.5.

Figure 6.5: Class Diagram of recommendationMerge
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Beside the di�erent merge algorithms, also three helping functions were integrated. For easier

handling, recommendationsToHashMap converts the list of RecommendedItem to a HashMap

so that every item can be called by its ID. As the name generateItemsToProcessList

suggests, this function is generating a HashMap with all items to process out of the three steps.

This is needed since one item can occur up to three times, but only should be processed once.

The last helping function is sortMergedListAndCut, which sorts RecommendedItem based

on their value and cuts the ArrayList afterwards to the length de�ned by howMany. For the

sorting a class that implements Comparator was generated, which compares the value of the

recommended items for java.util.Collections.sort().
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7 Results

This chapter shows the results of the recommendation engine. First the available data will

be analysed, before the execution is explained and the data shown. The last section of this

chapter then deals with the interpretation of the results.

7.1 Available Data

During the answering of the �ve questions for a basic vision of the recommendation system in

section 5.3, the data was collected for the �rst time. After almost four months the collected

data grew to the following values:

• 48 ratings by 20 di�erent users

• 25 likes and 12 dislikes by 24 di�erent users

• 2 favorites by 2 di�erent users

• 396 article reads by 56 di�erent users

Beside these values the number of categories raised to 14 with a total of 166 subcategories.

The quantity of tags grew to 77. On the basis of data that is associated with the third step

no evaluation is possible. Also the data from article reads is very limited since more than a

third of the reads are from one user. 14 of the users only have read one article, only seven

users have read more than ten articles and are likely to get predictions. After computing

all users that have more than �ve article reads, only user ps939 got two predictions. At the

moment an evaluation of the whole system is therefore not possible. The adjustment of the

CF algorithms for step two and three is no doable due to the same cause. For this reason

this chapter will deal with the analysis of the �rst step and the peculiarities of the tanimoto

similarity.

7.2 Test Setup and System

To understand the behavior of the tanimoto coe�cient similarity for a basic recommendation

�ve datasets with two to ten matches are generated and computed. Afterwards the response

will be analysed by adding mismatches to several already matching items. Finally we will

take a look at the computation time of datasets with di�erent sizes and number of attributes.

All tests are performed on a notebook with an i7-3687U, a two core 2.1 GHz CPU with

Hyper-threading, and 8 Gb of memory. The host as well as the virtual system are running

on a 64 bit architecture. The testdata that is used for the performance test of the �rst step



7. Results 36

is self-generated and contains between two and twelve preferences per user and item.

7.3 Results and Interpretation

Figure 7.1 illustrates the response of the tanimoto coe�cent similarity on various quantities

of matches. Each line, standing for a di�erent amount of attributes an items has, proceeds

linearly when overlapping with a user property.

Figure 7.1: Response of tanimoto coe�cent similarity on match

Figure 7.2, by contrast, shows a non-linear response on the mismatch of an item. Every line

stands for a count of matching articles. The trend shows then the return value, which accrues

when attributes that do not concur are added.

Figure 7.2: Response of tanimoto coe�cent similarity on mismatch

It is shown that the return value rises quickly on a match with an article with a small

amount of attributes. By contrast, overloading of an item leads to a lower response as desired,
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since the speci�city drops. As expected the tanimoto coe�cent similarity meets exactly the

requirements for the basic recommendation on the �rst step. This behavior is also wanted for

the match of cases with the user's attributes to articles, videos and voice records.

The self generated data sets have a size of 20.000, 100.000 and 1.000.000 entries that are

distributed as mentioned in section 7.2. It was found out that the computation time is

independent from the size of the dataset. Figure 7.3 illustrates the duration of the calculation

for two to 24 parameters. How these parameters are distributed between items and users does

not matter. From the 300 ms that were de�ned as a success this step does not even take 10

% of the maximum computation time.

Figure 7.3: Computation time of tanimoto coe�cent similarity
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8 Summary

This thesis illustrates the usage of a multi-part-hybrid recommendation system on the basis

of the business data and specialities of the Brigham and Women's hospital. It has been

shown that through structured breakdown of the available information, recommendations to

a variety of di�erent users is possible, as well as the bypass of an existing cold-start and sparsity

problem. Since there are many di�erent programmes and frameworks that are suitable for this

task, external circumstances determine the �tting to a large extent. The algorithms behind

the various stages can be varied according to each information type and easily adjusted with

the appropriate framework. Therefore it is useful to �rst optimize the individual steps, before

the merge takes place in an overall system. Mahout proved to be very e�cient due to it's

modular structure and because of its already implemented parts. This resulted in a rapid

prototype, which was further developed step by step to the �nal system.

8.1 Conclusion

The analysis of the available data, over the evaluation of several di�erent frameworks and rec-

ommendation algorithms led to the implementation of a solution, that �ts the requirements of

the anaesthesia department of the Brigham and Women's hospital. The several peculiarities

this department has brought with it, could be considered and used for a scalable recommen-

dation system. Unfortunately it was not possible to test the system in all its complexity due

to the lack of data. The use of the tanimoto similarity metric for the recommendation on

metadata however seems to be a complete success. For later evaluation and con�guration

various precautions have been taken to make this work as easy as possible. It was also made

sure, that functions and classes in the future can take over other tasks that they were not

speci�cally designed for. Because of its modular implementation the system additionally of-

fers several possibilities for extension and alternations to also �t future requirements of the

department.

8.2 Outlook

First of all the acquisition of data will be the main focus before any further work can be done.

The evaluation and con�guration of the similarity metrics for the collaborative �ltering is the

primary goal. Therefore a concept for a rewarding system exists, as well as the code for the

computation on the ColdFusion server. Only the integration at the front end and publication
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needs to be done, of which an improvement in the willingness of reviews is expected. After-

wards the di�erent merge algorithms can be tested on their performance and results. It is also

planned that the third set of the recommendation system will be split up in three di�erent

independent computations for the parameters rating, like/dislike and favorite. The

merge algorithms will be reused for this enhancement. For the extension of ICP/ePAL it is

planned that users can directly jump to recommended items from cases they are working on.

Therefore an additional call of the recommendation system will be implemented, which adds

a temporary user, based on case and user data, to �nd matching articles. Since a database

with exam questions and answers will be integrated into the portal, this would also be a pos-

sibility to recommend questions on the current rotation and therefore the focus of the test. A

documentation of the answers can furthermore help the improvement by repeating questions

that were answered incorrectly. This would be a useful addition to a learning portal.
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9 Appendix

9.1 Class Diagram of the whole Recommender

Figure 9.1: Class diagram of the whole recommender
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