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Abstract

This final report is a shortened version of the master's thesis User-Centric Simula-

tion of Demand Response Optimization1 [14], which was written during the research

stay at Bowling Green State University in 2014. Demand response (DR) is a crucial

and necessary aspect of the smart grid, particularly when considering the optimiza-

tion of both, power consumption and generation. This report simulates various use

cases with Okeanos, a fundamental, game theoretic, Java-based, multi-agent software

framework for DR simulation that is capable of investigating the effect of optimizing

multiple electric appliances by utilizing game theoretic algorithms. Results show that

by shifting the switch-on time of three household appliances, savings of up to 6% can

be reached. Further evaluation involving plug in electric vehicles (PEVs) demonstrates

that with an increasing penetration of PEVs and feed-in tariffs the costs per household

per month decrease.

1Parts of this master's thesis and, thus, this report, were submitted as a conference paper to IEEE
Innovative Smart Grid Technologies 2015 and as a journal paper to Elsevier International Journal of
Electrical Power & Energy Systems.
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CHAPTER1
Introduction

During the last century, the United States quietly underwent a change with

profound implications. Electricity went from a novelty to a convenience to

an advantage to an absolute necessity. Despite the headlines about our

addiction to oil, we are even more dependent on electricity. We need it

every day, all day. We need it for our most important functions. And we

need more and more and more of it, with no end in sight.

Berst et al. [11, p. 12]

After the nuclear catastrophe of Fukushima Daiichi in 2011, people began to change

their mind about nuclear energy. As the long proclaimed safety of nuclear energy was

not taken for granted anymore, renewable energy steadily began to gain popularity

among the man on the street. With Germany declaring phasing out nuclear energy by

2022, the topic gained additional momentum. It was also at that time that the author

of this report got interested in what he could do to help working towards that change.

However, with the increasing pervasiveness of renewable energy, new challenges have

arisen: Energy is no longer exclusively produced in large power plants, but also in the

homes of ordinary people. Eventually, this development leads to a paradigm shift.

That is, away from the traditional hierarchical top-down oriented system with a lim-

ited number of large scale power plants, to amore decentralized structure with volatile

renewable energy sources, such as wind turbines, photovoltaic cells and plug in elec-

tric vehicles (PEV) [3], [8].

This new development offers immense possibilities, as an example, the peak-period

demand could be met with this energy. Additionally, coordinating household appli-

ances or charging electric vehicles off-peak could result in cheaper electricity prices.

With respect to coordination, demand response management could pose an ideal solu-

tion to this problem [1], [6], [7].
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Demand response management (DRM) refers to ``changes in electric usage by end-

use customers from their normal consumption patterns in response to changes in

the price of electricity over time, or to incentive payments designed to induce lower

electricity use at times of high wholesale market prices or when system reliability is

jeopardized'' [13, p. 21].

Chen and authors describe two fundamental strategies for DRM in [5]: Match the sup-

ply in case the power supply is inelastic or shape the demand where the power supply

is elastic. In essence, the aim is to reach optimum usage for the local distribution sys-

tem. This is especially hard if supply and demand characteristics show high volatility,

e.g., if both, photovoltaic and e-mobility, are used by a large number of users in the lo-

cal distribution system. As the large number of publications in this area show, taking

into account all of these factors is a complex endeavor and there is currently no silver

bullet to cope with this complexity [6].

Therefore, this report simulates various use cases withOkeanos, a fundamental, game

theoretic, Java-based, multi-agent software framework for DR simulation that is capa-

ble of investigating the effect of optimizing multiple electric appliances to bring more

insight into this complexity.

The following results are based on the devices listed in Table 1.1. The data for im-

plementing drivers for clothes washer, clothes dryer and dishwasher is taken from [4].

The data for the PEV is based on the specifications of the Tesla Model S [10]. Addition-

ally, a household load profile is used, which is based on the H0 load profile provided

by the Bundesverband der Energie- und Wasserwirtschaft (Federal Association of the

Energy and Water Industry) [12]. This H0 load profile is a standardized profile used

to approximate the consumption of customers that cannot be measured otherwise.

Finally, the real-time pricing costs are taken from [15].

In order to draw a sound conclusion, all the consecutively mentioned experiments

were repeated at least 100 times and reported results are average values. A single

household with a 30 kWh load profile is used as a base case.

The rest of the report is structured as follows.

Chapter 2: Simulation of Single Load-shifting Device

Okeanos' optimization algorithm is checked for proper operation with a funda-

mental proof of concept that only comprises one dishwasher in Chapter 2.

Chapter 3: Simulation of Load-shifting Devices of One Household

Gradually increasing complexity, Chapter 3 deals with the simulation of one
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Appliance Model Rating

Household Standard load profile Scaled to 25-35kWh

Clothes washer LG WM2016CW 120V, 60Hz, 5A

Clothes dryer LG DLE2516W 120/240V, 60Hz, 26A

Dishwasher Kenmore 665.13242K900 120V, 60Hz, 9.6A

PEV Tesla Model S 120/240V, 85kW

Table 1.1: Overview of drivers used for evaluation. Data from [12], [4], [10].

household with three different load shifting devices, a dishwasher, a washing

machine and a clothes dryer.

Chapter 4: Simulation of Multiple Households with Load-shifting Devices

In Chapter 4, the interaction of multiple households and their load-shifting de-

vices is investigated. Therefore, the load profile and costs per household per

month for a different number of households are compared.

Chapter 5: Evaluation of Okeanos with Plug In Electric Vehicles

The penultimate chapter analyzes the impact of plug in electric vehicles on the

costs per household. Use cases in this chapter are based on PEVs that can ex-

clusively be used by Okeanos to lower the costs.

Chapter 6: Conclusion

Finally, a summary of the report is given, the outcome described and possible

future directions outlined.





CHAPTER2
Simulation of Single Load-shifting Device

To prove that Okeanos and particularly the optimization algorithm are working cor-

rectly, a fundamental use case is constructed: only one dishwasher in thewhole system

is optimized.

Naturally, the best position for starting the dishwasher is where the price is lowest

during the day. Indeed, this is exactly what Okeanos does. Figure 2.1 shows that the

dishwasher is started during the low price periods of the day.

While, the length between the start and end is too long for one run, the results are

valid, as aforementioned, the chart is the result of several runs. This means that on

average the dishwasher will run during those times with the denoted consumption.

Since one device within a whole system is not really near any real world use cases, the

following sections will gradually improve this scenario.
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Figure 2.1: Optimizing the schedule of one dishwasher results in it being scheduled at the point in time

with the cheapest price.



CHAPTER3
Simulation of Load-shifting Devices of

One Household

As a starting point, multiple devices within a single household are simulated and the

interaction between the devices is tested. The devices run on each simulated day with

a 33% probability. To make the simulation more realistic and to take the consumption

patterns of different households into account, the H0 load profile is shifted 0, ±1h

or ±3h. Similar to the previous use case, devices search for the point in time which

minimizes the electricity costs for that device.

The impact of shifting the load profile of a household is depicted in Figure 3.1 and 3.2.

The major result of this simulation is that the more the regular households differ in

their consumption patterns, the more the total load curve evens out. With all house-

holds using the standardized H0 load profile, several peaks are present, most notably

those at 1 p.m. and 8 p.m. Considering the price per kWh, it is preferable, especially,

at those hours to reduce the energy consumption.

The major difference between Figure 3.1 and 3.2 is the peak in the morning, when all

the load shifting devices are switched on. This difference is due to the fact that the

devices run only with a 33% probability for every day and, therefore, on average, the

consumption at that point should be one third of that when they are switched on every

day.

It can be seen in Table 3.1 that the effect of varying the load profile of households is

negligible. This is valid throughout all compared categories.

Actual savings, according to the outcomes (see Table 3.1), can be noticed between a

regular 30kWh household and when load shifting is in place. The average savings

is around 4.1%, if load shifting with the dishwasher, the washing machine and the

clothes dryer is in place.
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CHAPTER 3. SIMULATION OF LOAD-SHIFTING DEVICES OF ONE

HOUSEHOLD
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Figure 3.1: Optimizing the schedule of one 28kWh/day household with dishwasher, washing machine

and clothes washer running. Devices run every day. Comparison between 0h, ±1h and ±3h

shifting of the household's load profile.

Regular 30kWh Household
28kWh household with 2kWh load shifted devices

Run daily Run with a 33% chance

0h shifting $85.80 $82.25 (4.14%) $80.71 (5.93%)

±1h shifting $85.72 $82.17 (4.14%) $80.66 (5.90%)

±3h shifting $85.10 $81.60 (4.11%) $80.11 (5.86%)

Table 3.1: Comparison of costs with load shifting in relation to shifted household load profiles. The

costs per month per household with the savings for using load shifting compared to a regular

30kWh household is given.
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Figure 3.2: Optimizing the schedule of one 28kWh/day household with dishwasher, washing machine

and clothes washer running. Devices run with a 33% chance. Comparison between 0h, ±1h

and ±3h shifting of the household's load profile.
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CHAPTER 3. SIMULATION OF LOAD-SHIFTING DEVICES OF ONE

HOUSEHOLD

Naturally, the savings of a household with its devices running only with a 33% chance

needs to be higher compared to a household with devices running every day. The

savings compared to a regular household with no load shifting is 5.9%.



CHAPTER4
Simulation of Multiple Households with

Load-shifting Devices

The next logical step is to increase the number of households involved. That is, this

section studies the impact of a rising number of households on the costs per house-

hold per month.

Not every household is alike, therefore, the load profile for every household is ran-

domly scaled to either 25, 28, 30, 33 or 35kWh per day. Additionally, it is randomly

shifted between ±1h of its regular time. Finally, dishwashers, washing machines and

clothes dryers run with a 33% chance again. This configuration is chosen to account

for different habits and usage patterns of customers.

As illustrated in Table 4.1 and Figure 4.1, altering the number of households does not

change the outcome. It, however, can be seen that the peaks are getting more extreme

the more households are involved.

At least two explanations should be considered when interpreting this results. On

the one hand, there are too few devices that can be shifted. Due to this and because

the load profiles of households have a minimum at the point in time when energy is

cheapest, devices hardly have any other choice but to be switched on at that time. Fur-

ther, because the average consumption of households is mostly the same, the energy

consumption keeps stacking up and, as aforementioned, load shifting devices cannot

smoothen the peaks.

On the other hand, the convex cost function at every point in time could need its

parameters readjusted. This, however, is not very likely, as the devices that respond to

costs, already run at the cheapest points in time. Households, however, do not react

to different costs, which explains the peaks and the stacking of load profiles.
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CHAPTER 4. SIMULATION OF MULTIPLE HOUSEHOLDS WITH

LOAD-SHIFTING DEVICES
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Figure 4.1: Comparison between the impact of a varying number of households on the load profile.

Each household comprises one dishwasher, one washing machine and one clothes washer

that run with a 33% chance. Households' load profiles are shifted ±1h.

10 Households 20 Households 50 Households

Costs per month per household $88.57 $86.84 $90.23

Table 4.1: Comparison of costs per household per month with an increasing number of households.
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According to Table 4.1, the costs per household per month do not show a significant

difference when the number of participating households is increased. The reason for

this is the same as described before: The load profiles are stacked.





CHAPTER5
Evaluation of Okeanos with Plug In

Electric Vehicles

Finally, the last use case is the integration of electric vehicles in the previous use

cases. As electric vehicles are all about storing energy, this is an extension to the

implemented game theoretic algorithm [2], which proposes an energy consumption

scheduling game. The original game was never designed for storage.

The micro-storage management game described in [9] is contrary to that, it only pro-

poses storage devices and does not do any load shifting.

Although, Okeanos does not give a proof, unlike the aforementioned games, this con-

tribution, nevertheless, can be considered valid as the results make sense. However,

due to the use of PSO and the fact that PSO is a meta-heuristic, an optimal solution

can not be guaranteed.

5.1 Impact of Penetration of Plug In Electric Vehicles on

Costs Per Household

The first use case in the category of PEVs is the impact of different penetrations of PEV

on the total consumption. This simulation is based on 20 households, with either 0,

25, 50, 75 or 100% of them owning one PEV. Owning really means having it standing

around and not actively using it for transportation as for what it is made. In this

configuration it acts like a rechargeable battery.

Furthermore, it uses a feed-in tariff of 50%. This means that if any device sells back

energy to the grid, it will get 50% of themoney it would cost the device to buy the same

amount of energy. Additionally, as in the previous sections, load shifting devices are

switched on with a 33% chance.
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Figure 5.1: Comparison between the impact of different penetrations of households with PEVs on the

optimized schedule of 20 households. Each household comprises one dishwasher, one

washing machine and one clothes washer that run with a 33% chance, as well as one PEV.

Households' load profiles are shifted ±1h.
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Penetration of PEVs

0% 25% 50% 75% 100%

Costs per month per household $88.20 $65.98 $52.27 $40.36 $27.50

Table 5.1: Comparison of costs per household per month with an increasing number of households

owning PEVs with a 50% feed-in tariff.

As Figure 5.1 shows, if only five of the 20 households, i.e., 25%, have a PEV, they

completely change the load profile of households, overriding it with their own con-

sumption pattern. This pattern, ultimately, is derived from the price function. As

can be seen, PEVs charge themselves at the beginning of the day where the price for

energy is cheap and use this energy later in the day to prevent the household from

having to pay the peak price.

An interesting phenomenon can be noticed at the end of the day at around 11 p.m.

Devices start to discharge their remaining energy. This is due to the limited planing

horizon, which currently is 24h. Because devices cannot plan more than that, they

want to sell the remaining energy to get the most out of the day.

The change of the load profile can be either wanted or unwanted. Even with a 25%

penetration of PEVs, the peak consumption is nearly at 40kW, compared to roughly

30kW if there are no PEVs present. For higher penetrations, there is an even higher

peak at the low-cost periods. This could be another unwanted peak as the grid needs to

be prepared for that. If the grid is capable of transporting that amount of energy, this

could be valuable to the utility company, because it sells cheap energy to customers

and gets expensive energy for a cheap price, e.g., with a 50% feed-in tariff, which can

be sold to other utility companies. Customers, despite the low feed-in tariff, still profit

from selling energy back.

If the grid is not capable of handling that amount of energy, a possible countermea-

sure would be to adjust the cost function. The base price could either be changed or

the factor, the costs per kWh at a point in time rise, could be adjusted as well. The

latter countermeasure potentially has higher prospects of success, as it particularly

penalizes high uses of energy, which, eventually, leads to a flatter load profile.

Table 5.1 compares the average costs per month for a household for a different pene-

tration of PEVs with a 50% feed-in tariff. Most notably, themore households use PEVs

the cheaper the average price for all households. Finally, when all households own a

PEV and do not use it for anything else beside from participating in load scheduling,
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5.2 Cross Comparison of Impact of Feed-in Tariff and Penetration of Plug In Electric

Vehicles on Costs Per Household

households can cut down electricity costs to approximately one fourth compared to

not using PEVs at all.

This, however, is very unlikely to happen outside of simulation, as the simulation does

not take a wide range of factors into account. Especially, (i) households own PEVs to

use them and not let it them stand in the garage at the charging station and (ii) the

wear of batteries, etc. is not taken into account.

The simulation, though, respects the maximum capacity, the minimum capacity, the

maximum charge at a time and is also capable of ``unplugging'' a PEV, which means

that the vehicle is currently in use and cannot be used for load scheduling. Further-

more, if a PEV is used, it also loses some charge, which can be expressed by the soft-

ware as well.

5.2 Cross Comparison of Impact of Feed-in Tariff and

Penetration of Plug In Electric Vehicles on Costs Per

Household

This use case is based on the previous use case, however, greatly expands the changed

parameters. A parameter study of the feed-in tariff and the penetration with PEVs is

done, unlike the previous use case that assumed a fixed feed-in tariff of 50%.

Figure 5.2 illustrates the load profile when changing the feed-in tariffs. It clearly shows

that the higher the incentive, i.e., the higher the feed-in tariff, the higher the likeli-

hood that PEVs will charge during low-cost periods and discharge at high cost periods.

Again, this is very similar to previous findings and is the result of trying to minimize

the occurring costs for each device.

More interesting, however, is Table 5.2 and Figure 5.3, which illustrates, respectively

gives the exact numbers of the costs per household per month depending on the feed-

in tariffs and the penetration with PEVs.

As previously pointed out, the costs per household permonth decrease themore incen-

tive is given (=a higher feed-in tariff) or the more PEVs are available in the simulation.

This effect results in households earning money at the end of the month when there

are both, a high incentive and a high number of PEVs available.

The reason that the costs are decreasing with an increasing number of PEVs even with

a 0% feed-in tariff is that the PEVs in that case are not actually selling the energy back
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Figure 5.2: Comparison between the impact of different feed-in tariffs on the optimized schedule of

20 households. Each household comprises one dishwasher, one washing machine and one

clothes washer that run with a 33% chance, as well as one PEV. Households' load profiles

are shifted ±1h.
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5.2 Cross Comparison of Impact of Feed-in Tariff and Penetration of Plug In Electric

Vehicles on Costs Per Household
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Figure 5.3: Cross comparison on the impact of different feed-in tariffs and penetration of PEVs on the

costs per household per month.
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s

0% 25% 50% 75% 100%

0% $87.01 $86.41 $88.20 $86.78 $87.24

25% $69.25 $68.70 $65.98 $63.77 $64.37

50% $64.21 $61.55 $52.27 $38.81 $35.36

75% $66.65 $58.73 $40.36 $17.47 $9.05

100% $67.52 $56.01 $27.50 -$9.50 -$14.98

Table 5.2: Comparison of costs per household per month with different feed-in tariffs and a different

penetration of PEVs.
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to the grid, but provide it to other devices. Obviously, in total, this leads to a lower

price, as PEVs provide energy during the high-cost periods.

However, earning money through the use of PEVs seems unlikely as [9] simulated the

impact of storage devices as well, with the result that in the UK 38% is ideal number

of households owning a 4kWh storage device, when the savings of up to 13% is at its

maximum. These savings, definitely, do not result in the households earning money

at the end of the month. What can be done to make it more realistic is to adjust the

aforementioned factor by which the costs per kWh rises.

Further, it can be noted that increasing the feed-in tariff from 75% to 100% has a

significantly smaller impact than increasing it from 50% to 75%. One reason could

be that the PEVs already use their whole available capacity when the 75% feed-in tariff

is offered. Similarly, increasing the percentage of PEVs from 75% to 100% does only

have a big impact with high feed-in tariffs.

There does not seem to be a particular parameter combination that is ideal for every

case. The decision on the feed-in tariff has to be made by the utility company for

every specific situation. Obviously, the number of PEVs in a grid need to be taken into

account for that decision.





CHAPTER6
Conclusion

In the course of this report real-world use cases were evaluated and simulated. A

detailed description of Okeanos, the simulation platform used to simulate the afore-

mentioned use cases, is given in themaster's thesisUser-Centric Simulation of Demand

Response Optimization [14].

Beginning with validating Okeanos with easy to understand use cases, more elaborate

use cases were simulated step-by-step. The first scenario is a proof of concept that only

comprised one dishwasher to check for proper operation of the platform. Gradually

increasing complexity, the dishwasher was complemented by a washing machine and

clothes dryer to comprise a complete household. Table 3.1 summarizes the findings

that Okeanos is capable of saving 4% if devices are switched on daily, 5.9%, respec-

tively, if devices are switched on with a 33% chance, on energy costs for a single house-

hold.

The next step was to simulate the interaction of multiple households and their load-

shifting devices. Therefore, the load profile and costs per household per month for

a different number of households were compared. It turned out that increasing the

number of households has no significant impact on the costs per household, mainly

due to the small number of shiftable devices.

Further, the impact of plug in electric vehicles on the costs per household was inves-

tigated. It turned out that the more PEVs in a simulation, the cheaper it gets for every

household. Starting with $88.20 per household per month, the costs decreased down

to $27.50 per household per month. The last value, however, will most likely never

be reached in a real world environment due to different parameters, such as battery

wear, not taken into account.

As there are more parameters than just the number of households owning PEVs, a

comparison evaluating the impact of different feed-in tariffs and different numbers

of households owning PEVs on the costs per household was carried out. The general
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outcome was that the more PEVs in use and the higher the feed-in tariff, the smaller

the costs per household. Further, there is no ``best'' combination, the decision, which

feed-in tariff to use, always needs to be made for every situation again.

Finally, as this report shows, the combination of existing game theoretic concepts and

agent-based simulation can adequately reproduce user behavior in demand response

scenarios and help working towards the future smart grid. That is, Okeanos can re-

produce existing physical systems and carry out simulations, which allow for a more

detailed understanding of the involved components. Conclusions drawn from these

results can lead to improvements to the simulated system.

Future Developments

Okeanos is only a proof of concept and, therefore, there are countless ways to improve

the software. Beginning with a greater number of drivers allowing for amore accurate

simulation of households, future developments could also focus on aspects like com-

paring the performance of different game theoretic algorithms. Other areas of interest

also include the evaluation ofmore optimization algorithms other than PSO and adapt

interfaces to allow for a more fine-grained control over devices, e.g., by considering

more constraints.

In the future, additional input data like the weather can be integrated as well. This

helps improve forecast and, thus, leads to a better and more precise planning.

Furthermore, a graphical user interface that gives an overview of all important in-

formation, as well as easily allows for changing of simulation parameters, add and

remove agents and devices from the currently running simulation, thus, managing

simulation without having to recompile a module is another way to improve the soft-

ware.

Moreover, an innovative extension would be the integration of locational data into

the system. That way, it would be possible to visualize households, visualize the in-

teraction and flow of energy between households and comfortably group households

among many other things.

Finally, Okeanos currently lacks a real-time component. That is, the current status,

i.e., charge and estimated consumption or production, cannot be retrieved. This is,

however, not necessary for the purpose Okeanos was originally developed, which is to

optimize the schedule in advance. In the future, though, Okeanos could also be used

to react to deviations from the planned schedule.
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