
Marshall Plan Scholarship Report

Incorporation of the Superiorization Methodology
into Biomedical Imaging Software

submitted by:

Oliver Langthaler, BSc

Supervisor FHS:

FH-Prof. Univ.-Doz. Mag. Dr. Stefan Wegenkittl

Supervisor CUNY:

Distinguished Professor Gabor T. Herman, Ph.D.

Salzburg, September 2014

Acknowledgement

I would like to express my sincere gratitude to my supervisor at the Graduate Center of the

City University of New York, Distinguished Professor Gabor T. Herman, Ph.D., for providing

his expertise and invaluable advice, as well as a pleasant working environment. Furthermore,

I would like to thank my supervisor at the Salzburg University of Applied Sciences, FH-Prof.

Univ.-Doz. Mag. Dr. Stefan Wegenkittl, for providing his expertise and invaluable advice.

Lastly, I would like to thank the Austrian Marshall Plan Foundation and its members for

their kind cooperation and generous funding, without which it would not have been possible

for me to conduct this research in New York City.

Abstract

Imaging software often relies on iterative algorithms for the reconstruction of images from

projections, such as ART1, SART2 or MLEM3. However, many of these algorithms only

optimize a single criterion and some of them exhibit certain drawbacks, such as MLEM,

which is prone to noise overfitting at higher iteration numbers. In order to improve results,

it is thus often advantageous to introduce an additional optimization criterion, such as the

extent to which certain properties of a reconstruction match expected values or how well it

matches data from an additional data source. Developing such a modified algorithm can be

a mathematically challenging task which may take considerable time to develop.

Superiorization is a newly developed heuristic for constrained optimization problems and

provides a generic answer to these challenges. While, unlike their exact counterparts, heuris-

tic approaches may not always produce an output which tends toward the optimum of a

given criterion, they provide a nearly immediate solution and are nonetheless capable of pro-

ducing feasible results. Additionally, they tend to require considerably fewer computational

resources, which is why they have often been found useful in optimization applications.

The aim of the underlying work is the incorporation of Superiorization into SNARK09, re-

sulting in a new version, SNARK14. SNARK is a programming system for the reconstruction

of images from projections (such as CT and PET scans) and is intended to help researchers

interested in developing and evaluating reconstruction algorithms. Upon a thorough eval-

uation of its code structure, a new module, named Superiorization, is introduced into the

SNARK package. The main focus is to design this module to be as flexible as possible for

various iterative algorithms and optimization criteria.

1Algebraic Reconstruction Technique
2Simultaneous Algebraic Reconstruction Technique
3Maximum Likelihood Expectation Maximization

Contents

Nomenclature iii

1. Introduction 1

2. Superiorization 3
2.1. The Idea of Superiorization . 3

2.2. Constrained Optimization . 4

2.3. Constrained Optimization vs. Superiorization 5

2.4. Problem Sets, Proximity Function and ε-compatibility 5

2.5. Algorithms and Output . 6

2.6. Bounded Perturbation Resilience . 7

2.7. Secondary Optimization Criteria . 8

2.8. Non-ascending Vectors . 9

2.9. Superiorized Version of an Algorithm . 9

2.10. Non-ascending Vector Length Variation . 11

3. Target Software / Environment 15
3.1. SNARK . 15

3.1.1. Purpose and History of SNARK . 16

3.1.2. The SNARK Framework . 16

3.1.3. Information Flow . 16

3.1.4. Commands . 17

3.1.5. Input and Output . 18

3.1.5.1. snarkInput . 18

3.1.5.2. snarkDisplay . 19

3.1.6. Reconstruction Algorithms . 20

3.1.7. User-Defined Extensions . 20

3.1.8. The SNARK Experimenter . 21

3.2. Development Environment . 21

3.2.1. Version Control / Collaboration . 22

3.2.2. Integrated Development Environment 22

3.2.3. CentOS VirtualBox Virtual Machine 23

4. Implementation 24
4.1. Variable and Non-Variable Superiorization Constituents 24

i

4.2. Adaptations for Implementation . 25

4.3. Ideal Approach . 27

4.4. Implementation in SNARK . 30

4.4.1. Command SUPERIORIZE . 30

4.4.2. Secondary Optimization Criteria . 31

4.4.2.1. Total Variation (Option TVAR) 31

4.4.2.2. Smoothness (Option SMOO) 32

4.4.2.3. User-Defined Criteria (Options SCR3, SCR4, SCR5) 32

4.4.3. Non-Ascending Vectors . 33

4.4.3.1. Gradient for Total Variation 33

4.4.3.2. Gradient for Smoothness . 34

4.4.4. Event Space for Superiorization . 35

4.4.5. Alternative Handling of the Variable l 35

4.4.6. New Termination Criteria . 36

4.4.6.1. Kullback-Leibler Distance (Option KLDS) 37

4.4.6.2. Residual (Option RESI) . 37

4.4.6.3. Weighted Squared Distance (Option WSQD) 38

4.4.6.4. MLEM-STOP (Option MLST) 38

4.4.7. New Figures of Merit . 38

4.4.7.1. Kullback-Leibler Distance (Option KLDS) 39

4.4.7.2. Weighted Squared Distance (Option WSQD) 39

4.4.8. The Class Superior . 40

4.4.9. Verbosity Options . 41

5. Verification and Application 42
5.1. Recreating Previous Results . 42

5.2. Superiorization of ART and SART . 45

6. Conclusion and Outlook 49

Bibliography vi

A. Appendix vii
A.1. SUPERIORIZE Command in EBNF . vii

A.2. STOP Command in EBNF . vii

A.3. SNARK14 Superiorization Input File . viii

A.4. SNARK14 Superiorization Output File . x

A.5. SNARK14 Superiorization Reporting Output File xxiii

A.6. SNARK14 KLDS Reporting Output File . xxiii

A.7. SNARK14 MLEM-STOP Reporting Output File xxiv

ii

Nomenclature

ART Algebraic Reconstruction Technique

CentOS Community Enterprise Operating System

CT (X-ray) Computed Tomography

CVS Concurrent Versions System

DIG Discrete Imaging and Graphics Group

EBNF Extended Backus-Naur Form

FOM Figure of Merit

FORTRAN derived from Formula Translating System

FOSS Free and Open-Source Software

GUI Graphical User Interface

IDE Integrated Development Environment

IROI Image-wise Region of Interest

KL Kullback-Leibler

LOR line of response

MLEM Maximum Likelihood Expectation Maximization

PET Positron Emission Tomography

RHEL Red Hat Enterprise Linux

SART Simultaneous Algebraic Reconstruction Technique

SIRT Simultaneous Iterative Reconstruction Technique

SVN (Apache) Subversion

tarball files distributed as a tar archive

TV Total Variation

VM Virtual Machine

iii

1 Chapter 1

Introduction

Superiorization is the term for a newly developed and innovative heuristic for constrained

optimization problems. As numerous other discoveries throughout history, it was made by

chance, when then-postgraduate Ran Davidi worked on the recreation of an algorithm de-

scribed in [7]. His results were encouraging, however, when he discussed his implementation

with Combettes and Luo, its original authors, the discovery was made that he had in fact

implemented a variant of the algorithm which introduced a higher amount of perturbations

than intended by the authors. A corresponding adjustment was made but the output of the

corrected algorithm turned out to produce inferior results when compared to the implemen-

tation which introduced the higher amount of perturbations.

Subsequently, research was conducted to determine the reasons for this unexpected behav-

ior. It was discovered that the cause for the superior output was the fact that directed and

advantageous bounded perturbations had been introduced into an iterative algorithm which

was resilient to these perturbations. These findings culminated in the publication of [4], in

which bounded perturbations were used to steer an ART-based image reconstruction process

towards producing a more desirable output. In the years following, research on the topic

continued and it became obvious that the basic scheme was applicable in a much broader

sense, coining the term Superiorization to describe the basic methodology and resulting in

several further publications such as [5, 6, 10, 12, 15], which aimed at generalizing and refining

the process, at exploring the limits of the mathematical conditions which are required for

successful application as well as at comparing Superiorization to similar methods.

Even though considerable research has been done on the subject, the methodology is still

in a relatively early stage of dissemination and as of early 2014, no software package was

available yet which allowed Superiorization to be applied in an automated fashion to a series of

algorithms. The availability of such software would however serve to significantly facilitate the

process of finding applications for which Superiorization can provide benefits, which is why the

1

1. Introduction

incorporation of the methodology into SNARK09 has been chosen as a topic. Furthermore, as

Superiorization has only recently been discovered, its mathematical exploration is an ongoing

process and new discoveries regarding its prerequisites, or variations of the methodology, may

still be made.

Chapter 2 provides insight into the mathematical aspects of the Superiorization method-

ology, while Chapter 3 deals with the target software and the environment which was estab-

lished in order to ensure efficient development. Chapter 4 contains considerations regarding

an optimal solution which were made prior to the implementation as well as detailed informa-

tion about the implementation process itself. In Chapter 5, the correctness of the resulting

updated SNARK package is verified by recreating previous results published in [12] and by

conducting a comparison of superiorized and unsuperiorized versions of ART and SART.

2

2 Chapter 2

Superiorization

The Superiorization methodology represents a heuristic and generic approach towards con-

strained optimization problems and is applicable for perturbation resilient iterative algo-

rithms. Due to its generic nature, it may in principle be applied to any iterative algorithm

which meets the requirement of being resilient to bounded perturbations. It is capable of

automatically converting the selected base algorithm into a superiorized version, providing

improved results regarding a secondary optimization criterion which may be freely defined

while retaining the original constraint compatibility. This chapter is intended to cover the

relevant terminology and to provide information about the nature, scope and purpose of

Superiorization. With the exception of Section 2.10, its contents are derived from [15].

2.1. The Idea of Superiorization

The main concept behind Superiorization is to utilize the fact that certain iterative algo-

rithms are resilient to bounded perturbations. Directed disturbances are introduced between

each algorithmic step in order to steer the optimization process towards a solution which is

superior regarding a secondary optimization criterion. The original constraint compatibility

is maintained by ensuring that the last step in each iteration is the application of the original

algorithm. In [10], an experiment has also been conducted using a dual perturbation scheme.

The idea of designing algorithms that use interlacing steps of two different kinds (in this

case, one kind of steps aim at constraints-compatibility and the other kind of steps aim

at improvement of the optimization criterion) is well-established and, in fact, made use of

in many approaches that have been proposed with exact constrained optimization in mind.

See, for example, the works of Helou Neto and De Pierro [20, 21], of Nurminski [22], of

Combettes and coworkers [7, 8], of Sidky and Pan and coworkers [28, 27, 2] and of Defrise

and coworkers [11]. However, none of these approaches are capable of doing what can be

3

2. Superiorization 2.2. Constrained Optimization

done by the innovative approach of Superiorization, namely the automatic production of

a heuristic constrained optimization algorithm from an iterative algorithm for constraints-

compatibility. For example, in [20] it is assumed (just as in the theory presented in [5]) that

all the constraints can be satisfied simultaneously.

2.2. Constrained Optimization

Constrained optimization is used by numerous applications and describes the process of

optimizing an objective function with respect to some of its variables while adhering to certain

limitations regarding the values of one or more of those variables. Depending on the specific

application, the function may either need to be minimized or maximized and the constraints

may either exist in the form of a penalty function whose value should be minimal or as fixed

numerical bounds.

Specifically, Superiorization deals with minimization problems of the form


minimize φ(x)

subject to x ∈ Ω

(2.1)

where φ (x) is the objective function and Ω ⊆ Rn is a non-empty, convex and closed

constraint set.

In the case of image reconstruction from projections obtained through CT, the constraints

are derived from the measurements provided by the CT scanner. They may further be

derived from known physical properties of the object of interest, such as piece-wise constant

attenuation in machined parts and tissues or from any other additional information such as

known outer dimensions or data obtained through a secondary method of measurement. The

latter has, for instance, been the case in [25].

Due to factors such as noisy data, the exact nature of the constraints may be uncer-

tain, resulting in a large number of solutions which may be considered acceptable regarding

constraints-compatibility. Hence, an optimization criterion in the form of a proximity func-

tion is introduced to provide a means of evaluating the quality of a reconstruction. This

proximity function may, for example, favor images that are piecewise homogeneous.

4

2. Superiorization 2.3. Constrained Optimization vs. Superiorization

2.3. Constrained Optimization vs. Superiorization

The approach taken in Superiorization significantly differs from that of classical constrained

optimization. Both in Superiorization and in classical constrained optimization, the existence

of a domain Ω and an optimization criterion that is specified by a function φ that maps Ω

into R is assumed. In classical optimization it is further assumed that there is a constraints

set C and the task is to find an x ∈ C for which φ (x) is minimal.

There are, however, some problems with this approach: Firstly, the constraints may not be

consistent, resulting in an empty C. In this case, the optimization task as stated would not

have a solution. Secondly, iterative methods of classical constrained optimization typically

converge to a solution only in the limit. In practice, some stopping rule needs to be applied

to terminate the process. The actual output at that time may, however, not be in C and,

even if it is in C, it is not likely to be a minimizer of φ over C.

Both problems are handled in the Superiorization approach by replacing the constraints set

C with a nonnegative real-valued function Pr that serves as an indicator of how incompatible

a given x ∈ Ω is with the constraints. Subsequently, the merit of an actual output of an

algorithm is given by the size of the two numbers Pr (x) and φ (x). If an iterative algorithm

produces an output x, then its superiorized version will produce an output x′ for which Pr (x′)

is not larger than Pr (x), but φ (x′) is, typically, much smaller than φ (x)[15].

2.4. Problem Sets, Proximity Function and ε-compatibility

In medical physics, optimization is usually performed in Euclidian space RJ . In practice,

the solution space is further restricted to be an nonempty subset Ω of RJ . In the field of

image reconstruction, the result of an optimization is the image vector x. As images usually

only contain positive values, Ω may be further restricted to RJ+.

Definition 1. The problem set T is the set of all problems T ∈ T where each T is the

description of the constraints of one particular problem.

In CT, each T represents the problem of reconstructing the picture that is associated with

the measurements obtained frome one particular scan. T represents the set of all possible

measurements.

Definition 2. The proximity function Pr on the problem set T is defined as function

5

2. Superiorization 2.5. Algorithms and Output

from the solution space into the positive real numbers PrT (x) : Ω 7→ R+. It indicates how

incompatible the solution x is with the given constraints of T ∈ T. If PrT (x) = 0, x is said

to be perfectly constraint compatible with the problem T .

When reconstructing CT images, PrT (x) could be the norm-distance ‖y −Rx‖ of the

reconstruction problem y = Rx + e, where y is the measurement vector of the CT scan, R

is the projection matrix, x is the image vector and e is the error. Other candidates for the

proximity function are the Kullback-Leibler distance which is described in Chapter 4.4.6.1 or

the weighted squared distance which is described in Chapter 4.4.6.3.

Definition 3. A problem structure 〈T,Pr〉 is defined as the combination of a nonempty

problem set T and a proximity function Pr.

Definition 4. The solution x ∈ Ω for a problem T ∈ T is ε-compatible regarding a problem

structure 〈T,Pr〉 when PrT (x) < ε, where ε is a non-negative number.

The ε-compatibility is needed, as in practical applications all measurements are noisy. It

is therefore unlikely that a perfect reconstruction x for the problem T ∈ T exists. ε is the

threshold for the proximity function Pr below which a reconstructed image x is acceptable

(PrT (x) < ε). The proximity function can thus be used as a stopping criterion of an iterative

algorithm.

2.5. Algorithms and Output

The concept of algorithms is defined in the general context of problem structures. For

technical reasons which are covered in Section 2.8, an additional set ∆ is introduced such

that Ω ⊆ ∆ ⊆ RJ . Both Ω and ∆ are assumed to be known and fixed for any particular

problem structure 〈T,Pr〉.

Definition 5. An algorithm P assigns to each problem T ∈ T an operator PT : ∆ 7→ Ω.

Definition 6. An iterative algorithm produces an infinite sequence

(
(PT)k (x)

)∞
k=0

= x, PT (x) , PT (PT (x)) , . . . (2.2)

where x is any initial point x ∈ Ω and PT is an algorithm as described in Definition 5.

6

2. Superiorization 2.6. Bounded Perturbation Resilience

The two reconstruction algorithms ART and SART, which are relevant to the comparison

of superiorized and unsuperiorized algorithms in Chapter 5.2, fall within the classification of

iterative processes as defined above. A single iteration corresponds to P and its repeated

execution defines the iterative process.

Definition 7. For a problem structure 〈T,Pr〉, a T ∈ T, an ε ∈ R+ and a sequence

RS =
(
xk
)∞
k=0

, the output O (T, ε,RS) is used to denote the x ∈ Ω that has the follow-

ing properties:

i. PrT (x) ≤ ε

ii. there is a non-negative integer K such that x = xK , xK ∈ RS and

iii. for all non-negative integers k < K, PrT (x) > ε

If there exists such an x, then O (T, ε,RS) is defined, otherwise it is undefined.

If RS is a sequence of points produced by an algorithm that solves the problem T without

termination criterion, then O (T, ε,RS) is the output produced by that algorithm when the

termination criterion PrT (x) ≤ ε is added to it. The point x denotes the first ε-compatible

point within the sequence RS, which was reached after K iterations [15].

2.6. Bounded Perturbation Resilience

An iterative algorithm P is resilient to bounded perturbations for a problem structure

〈T,Pr〉 if, irrespective of the starting point, the sequence
(

(PT)k
)∞
k=0

generated by it still

converges even if the result of every step is perturbed. For real applications, bounded per-

turbation resilience is not sufficient as it can only be used for problems T ∈ T for which a

perfectly constraint compatible solution x where PrT (x) = 0 exists. Since the data of most

practical applications contains noise, this is usually not the case. Therefore, the concept of

bounded perturbation resilience needs to be extended to strong perturbation resilience.

Definition 8. An algorithm P for a problem structure 〈T,Pr〉 is considered strongly per-

turbation resilient if, for all T ∈ T,

i. there exists an ε ∈ R+ such that O
(
T, ε,

(
(PT)k x

))∞
k=0

is defined for every x ∈ Ω and

7

2. Superiorization 2.7. Secondary Optimization Criteria

ii. for all ε ∈ R+, such that O
(
T, ε,

(
(PT)k x

))∞
k=0

is defined for every x ∈ Ω, we also

have that O (T, ε′, R) is defined for every ε′ > ε and for every sequence RS =
(
xk
)∞
k=0

of points in Ω generated by

xk+1 = PT

(
xk + βkυ

k
)

for all k ≥ 0 (2.3)

where βkυ
k are bounded perturbations, meaning that the sequence (βk)

∞
k=0 of non-

negative real numbers is summable (that is,
∑∞

k=0 βk < ∞), the sequence
(
υk
)∞
k=0

of vectors in RJ is bounded and, for all k > 0, xk + βkυ
k ∈ ∆.

The properties of this definition state that all perturbed sequences contain an ε′-compatible

point if for every problem T and any non-negative number ε, there exists an ε-compatible

solution for every initial point x ∈ Ω (and ε′ > ε). This means that the perturbed version of

the algorithm produces an ε′-compatible output O (T, ε′, RS). [5, 15]

2.7. Secondary Optimization Criteria

In addition to the constrained optimization previously discussed, it is in some cases ad-

vantageous to introduce an additional optimization criterion, denoted as φ, towards which to

improve the reconstruction output. This criterion may be based on properties which are ex-

pected to produce superior results, or on additional information obtained through a secondary

measurement device.

Definition 9. A secondary optimization criterion φ is a function φ : ∆ 7→ R which

indicates how good a point x ∈ ∆ fulfills the desired properties. A point x1 ∈ ∆ is considered

superior to another point x2 ∈ ∆ if φ (x1) < φ (x2).

Two examples of secondary optimization criteria are given in Chapter 4.4.2.

The main idea behind Superiorization is to utilize the perturbations in (2.3) to steer a

strongly perturbation resilient algorithm which produces constraints-compatible solutions

towards generating output which exhibits a lower value regarding the secondary optimization

criterion, essentially converting it into a new, superiorized algorithm. This new algorithm is

subsequently not only as constraints-compatible as its original version, but it is also superior

regarding the secondary optimization criterion. This is achieved by adding the bounded

perturbations βkυ
k to the solution vector xk between each iteration.

8

2. Superiorization 2.8. Non-ascending Vectors

2.8. Non-ascending Vectors

In order to achieve the desired behavior of φ
(
x+ βkυ

k
)
≤ φ (x), υk must be a non-

ascending vector.

Definition 10. A vector d ∈ RJ for a given function φ : ∆ 7→ R and a point x ∈ ∆ is called

a non-ascending vector for φ at x if ||d|| ≤ 1 and there exists a δ > 0 such that, for all

λ ∈ [0, δ], (x+ λd) ∈ ∆ and φ (x+ λd) ≤ φ (x).

As (x+ λd) ∈ ∆ may be outside of Ω, it is important that the algorithm P is defined as

P : ∆ 7→ Ω. This ensures that the final output of the superiorized version of the algorithm is

still within the defined solution space Ω.

Note that irrespective of the secondary optimization criterion φ and the point x, the zero-

vector is always a non-ascending vector. While this circumstance is useful for proving the

convergence of the algorithm, in practice, the vector d should have the property φ (x+ λd) <

φ (x) rather than φ (x+ λd) ≤ φ (x) in order to result in an improvement of the secondary

optimization criterion [15].

2.9. Superiorized Version of an Algorithm

This section illustrates how an iterative algorithm P can automatically be converted into

its superiorized version.

Theorem 11. Let Ω and ∆ be the underlying sets for a problem structure 〈T,Pr〉, where

Ω ⊆ ∆ ⊆ RJ , P : ∆ 7→ Ω is an iterative, strongly perturbation resilient algorithm for

〈T,Pr〉 and φ : Ω 7→ R. Algorithm 2.1 represents the superiorized version of the algorithm

P . It produces for any problem T ∈ T and any point x ∈ Ω a sequence RS =
(
xk
)∞
k=0

.

The resulting sequence RS of the superiorized algorithm is ε-compatible and expected to be

superior to the original algorithm P with regard to the secondary optimization criterion φ.

The proof of this theorem can be found in [15].

The superiorized algorithm depicted in Listing 2.1 depends on a specified initial point x ∈ Ω,

a positive integer N and requires a summable sequence (γl)
∞
l=0 of positive real numbers. One

example of such a sequence is γl = al where 0 < a < 1.

In lines 1-3, the required variables are initialized. k represents the number of the current

iteration, l is the integer sequence used to generate values for (γl)
∞
l=0, and x0 is the initial

9

2. Superiorization 2.9. Superiorized Version of an Algorithm

Algorithm 2.1 Superiorized Version of Algorithm P [15].

1: set k = 0

2: set xk = x

3: set l = −1

4: while true do

5: set n = 0

6: set xk,n = xk

7: while n < N do

8: set υk,n to be a non-ascending vector for φ at xk,n

9: set loop = true

10: while loop do

11: set l = l + 1

12: set βk,n = γl

13: set z = xk,n + βk,nυ
k,n

14: if z ∈ ∆ and φ(z) ≤ φ(xk) then

15: set n = n+ 1

16: set xk,n = z

17: set loop = false

18: end if

19: end while

20: end while

21: set xk+1 = PTx
k,N

22: set k = k + 1

23: end while

10

2. Superiorization 2.10. Non-ascending Vector Length Variation

value of the output vector. Every execution of the loop starting in line 4 corresponds to one

iteration of the superiorized algorithm. During each iterative step, there are N executions of

the inner loop (lines 7-20) where Superiorization is performed by calculating and applying a

non-ascending vector after which the original algorithm PT is applied once.

n represents the counter variable for the inner Superiorization loop (lines 10-19), whereas

xk,n is the current solution, υk,n is the nonascending vector and βk,n is a positive real number

picked from (γl)
∞
l=0 (l is incremented during every iteration of the Superiorization loop). In

this innermost loop, progressively smaller perturbations are added to the previous solution

until z ∈ ∆ and φ(z) ≤ φ(xk), where xk is the output of the previous iteration.

After N Superiorization steps have been performed, the original algorithm PT is applied

to xk,N in order to produce an output that is constraints-compatible and, typically, superior

regarding the secondary optimization criterion
(
φ(xk,N) ≤ φ(xk)

)
.

2.10. Non-ascending Vector Length Variation

Algorithm 2.1 is a general approach to improve any iterative algorithm by introducing

directed perturbations in the form of xk,n+1 = xk,n + βk,nυ
k,n between each iteration. As

long as the perturbation term βk,nυ
k,n does not lower the value of the secondary optimization

criterion, the inner loop (10-19) is repeated and the variable l, which is used to generate the

values in βk,n, will be increased. As l increases, βk decreases. Subsequently, the magnitude of

the perturbations βk,nυ
k,n also decreases, until they either lower the value of the secondary

optimization criterion or until the length of the non-ascending vector becomes so short that

it does not have an impact on the reconstruction anymore.

As tests have shown, the value of l may sometimes increase greatly during single itera-

tions, which may result in an undesirably short non-ascending vector. In order to avoid this

behavior, it would be advantageous to reset the value of l after each iteration. However, for

the mathematical proof, Superiorization requires that (βk)
∞
k=0 is a summable sequence, which

in [15] is only the case if (βk)
∞
k=0 is a subsequence of (γl)

∞
l=0. It is thus not mathematically

justifiable to simply reset l.

The variation of the Superiorization algorithm given in Algorithm 2.2 offers a solution

to this issue, as it is able to lower the value of l between iterations while maintaining all

mathematical conditions for its convergence.

Line 5 represents the major change: the integer l for calculating the next element from the

11

2. Superiorization 2.10. Non-ascending Vector Length Variation

sequence (γl)
∞
l=0 is set to k, where k is the index of the current iteration. Furthermore, the

incrementation of l is moved to line 18 in order to improve comprehensibility and performance

(otherwise, l would need to be set to k − 1).

Algorithm 2.2 Variation of Superiorization

1: set k = 0

2: set xk = x

3: while true do

4: set n = 0

5: set l = k

6: set xk,n = xk

7: while n < N do

8: set υk,n to be a non-ascending vector for φ at xk,n

9: set loop = true

10: while loop do

11: set βk,n = γl

12: set z = xk,n + βk,nυ
k,n

13: if z ∈ ∆ and φ(z) ≤ φ(xk) then

14: set n = n+ 1

15: set xk,n = z

16: set loop = false

17: end if

18: set l = l + 1

19: end while

20: end while

21: set xk+1 = PTx
k,N

22: set k = k + 1

23: end while

According to [15], in order to prove that Algorithm 2.2 fulfills Theorem 11 and still con-

verges, it is sufficient to show that xk+1 of every iteration can be written in the form

xk+1 = xk+βkυ
k where (βk)

∞
k=0 is a summable sequence of positive real numbers and

(
υk
)∞
k=0

is bounded.

Proof. In addition to the proof of the existing algorithm in [15], the proposed algorithm

12

2. Superiorization 2.10. Non-ascending Vector Length Variation

requires a sequence (γl)
∞
l=0 of positive real numbers which is not only summable but also

monotonously decreasing. Although this may be considered a more severe restriction, it does

not have any practical impact as the most commonly used and originally proposed sequence

γl = al with 0 < a < 1 already fulfills this condition.

The results of the Superiorization steps of each iteration (loop in line 7-20) can be written

as

xk,1 = xk + βk,0υ
k,0

xk,2 = xk,1 + βk,1υ
k,1

...
...

...

xk,N = xk,N−1 + βk,N−1υ
k,N−1

(2.4)

which can be formulated to

xk,N = xk +

N−1∑
n=0

βk,nυ
k,n . (2.5)

If βk is defined as

βk = βk,0 = γk (2.6)

this results in the required monotonously decreasing summable sequence (βk)
∞
k=0 of positive

real numbers by the definition of (γl)
∞
l=0.

By using βk as defined in (2.6), the iterative step of (2.5) can be reformulated to:

xk+1 = xk,N = xk +
N−1∑
n=0

βk,nυ
k,n

= xk +
N−1∑
n=0

βk
βk
βk,nυ

k,n

= xk + βk

N−1∑
n=0

βk,n
βk

υk,n

(2.7)

As a result,

υk =
N−1∑
n=0

βk,n
βk

υk,n . (2.8)

As l is increased whenever the algorithm reaches line 18 it is obvious, that βk,n ≤ βk for

every 0 < n < N and therefore,
βk,n
βk
≤ 1. By the definition of the nonascending vector,

each
∥∥υk,n∥∥ ≤ 1. As a result of these two limitations,

∥∥υk∥∥ ≤ N and therefore, the sequence(
υk
)∞
k=0

is bounded.

13

2. Superiorization 2.10. Non-ascending Vector Length Variation

It is important to note that the variation of Superiorization presented in Algorithm 2.2

may not necessarily be considered an improvement of the existing version, but should rather

be considered an additional option. As Superiorization is a general approach which may be

applied to any P and φ, it is not possible to make a general statement as to which of the two

algorithms is superior. The proposed variation merely emphasizes the directed disturbances

- which might be advantageous in certain circumstances - and prevents the non-ascending

vector from becoming undesirably short. In turn, it tends to require more processing time,

which is why the choice of the more suitable variation ultimately depends on the specific

application.

As a compromise, l may be set to a random number ranging from the current iteration

number k to the value of l of the previous iteration. This results in reduced execution time

compared to the proposed variation while retaining the intended vector shortness avoidance

and maintaining the effect of Superiorization for a higher amount of iterations compared to

Algorithm 2.1. The previously given proof is also applicable to this variation.

14

3 Chapter 3

Target Software / Environment

This chapter provides a description of the software into which Superiorization has been in-

corporated and outlines the development environment which was established prior to the

implementation. It also discusses the benefits for the Discrete Imaging and Graphics Group

(DIG)1 and the users of SNARK which resulted from the new development environment.

In order to ensure efficient software development and unobstructed collaboration between

all members and visitors of the DIG, prior to any actual software development, an appropriate

environment needed to be created. Previous work on SNARK had been performed predom-

inantly in a sequential manner, although there had been periods of parallel development

during which CVS2 was used as a version control system.

However, in addition to the latest version of CVS being more than 6 years old and CVS

currently not being actively developed, the corresponding server setup and repository at

the DIG had been lost during a server migration, after which the previous system of man-

ually exchanging tarballs had been reestablished. Furthermore, SNARK development was

traditionally only conducted using plain text editors, foregoing the numerous advantages of

modern IDEs.

3.1. SNARK

SNARK represents the flagship application of the DIG and lies at the center of its efforts

to improve the reconstruction of images from projections. It has been developed for several

decades and continues to be utilized in the creation of numerous publications. The resulting

degree of complexity is considerable, which is also reflected in the SNARK manual spanning

more than 250 pages. This section will hence only provide a general overview and focus on

the aspects of SNARK which are relevant to the underlying work.

1http://dig.cs.gc.cuny.edu
2http://savannah.nongnu.org/projects/cvs

15

3. Target Software / Environment 3.1. SNARK

3.1.1. Purpose and History of SNARK

SNARK is a programming system for algorithms which are aimed at solving reconstruction

problems, specifically the reconstruction of images from projections such as CT and PET

scans. It has been created to help researchers interested in developing and evaluating such

reconstruction algorithms. The first version of SNARK was created by Richard Gordon

in 1970 and written in FORTRAN. Between 1970 and 2014, 7 major releases (SNARK,

SNARK77, SNARK89, SNARK93, SNARK95, SNARK05 and SNARK09) have been made

available, gradually increasing its functionality and migrating to C++ in 2005. The recent

additions, which are described in detail in Chapter 4 have been deemed sufficiently significant

to warrant an incrementation of the version number to SNARK14.

3.1.2. The SNARK Framework

SNARK is based on a multi-tier architecture which comprises four main stages: phantom

generation, simulation, reconstruction and analysis. During the first two stages, a digital

phantom is produced and a measurement process (specifically, a CT or PET scan) is simu-

lated. The resulting data is saved both in the form of the properties of the phantom and in

the form of projections and raysums. This measurement process is highly configurable: It

allows not only a significant amount of freedom when generating the phantom (e.g. geometric

shapes, attenuation coefficients and inhomogeneity), but also regarding the properties and

capabilities of the measurement device (e.g. detector geometry, number of projections/rays,

noise levels and mono- or polychromatic beams).

In the reconstruction stage, which is the stage into which Superiorization is to be in-

troduced, various built-in reconstruction algorithms such has EMAP or ART, which are

described in Chapter 3.1.6 may be executed.

During the analysis stage, various metrics regarding the phantom and/or the reconstruc-

tions are calculated based on the information in the reconstruction file. Statistical analysis of

the results as well as comparisons of the reconstructions to the phantom may also be carried

out [9].

3.1.3. Information Flow

The generation and flow of information within SNARK can roughly be described as follows:

Input is provided via a text file which contains a list of commands. These commands trigger

16

3. Target Software / Environment 3.1. SNARK

Input File

Data Generation
Commands

Reconstruction
Commands

Analysis
Commands

Phantom
Generation

Simulation

Reconstruction

Analysis

Phantom File

Projection File

Reconstruction File

Evaluation File

Input Processing Output

Figure 3.1.: SNARK Information Flow

the various functions within SNARK and need to be provided in a sequence which corresponds

to the different stages mentioned in Chapter 3.1.2. Each stage produces according output

files, which are required by subsequent stages. Output from previous SNARK executions may

however be re-used. It is, for example, possible to access previously generated projection data,

skipping the data generation stage. It is also possible to perform multiple reconstructions

of the same projection using different reconstruction algorithms within a single SNARK

execution. Figure 3.1 illustrates the generation and flow of information within SNARK, as

well as the required input and the generated output files.

3.1.4. Commands

This subsection is intended to give a brief overview of the most important commands of

each of the different SNARK stages.

During the phantom generation stage, the command CREATE is used to generate phantoms

constructed out of various geometric shapes such as ellipses, rectangles or triangles.

In the simulation stage, the command PROJECTION is used to generate a binary projec-

tion file which contains information needed during the subsequent reconstruction and analysis

17

3. Target Software / Environment 3.1. SNARK

stages.

During the reconstruction stage, three commands are of specific interest: STOP, EXE-

CUTE and the newly added SUPERIORIZE. STOP, which is explained in greater detail in

Chapter 4.4.6, is required to define the stopping criterion for the reconstruction algorithm

while EXECUTE is used to select the desired algorithm as well as to trigger its execution.

Lastly, the newly introduced command SUPERIORIZE, which is described in Chapter 4.4.1,

may be issued prior to the execution of an algorithm in order to automatically superiorize

said algorithm.

The most important command during the analysis stage is EVALUATE. It is used to

generate several quantitative measures regarding the difference of the phantom image and

the various reconstructions.

3.1.5. Input and Output

As mentioned in Chapter 3.1.3, Input is basically provided via a single text file containing

a sequence of commands. This file needs to be passed as an argument when calling SNARK

from the command line. The generated output essentially consists of four files:

i. “file11”, which contains the geometry and properties of the phantom that has been

generated during the phantom generation stage

ii. “prjfil”, which contains the physical measurements that have been obtained during the

simulation stage

iii. “recfil”, which contains the images that have been reconstructed by the various algo-

rithms during the reconstruction stage

iv. “eval”, which contains various metrics that have been calculated to quantify the quality

of the reconstruction

In an effort to increase user friendliness, two additional programs have been developed to

aid users generate an appropriate input file as well as to visualize the data contained in the

output files: snarkInput and snarkDisplay.

3.1.5.1. snarkInput

snarkInput is a simple Qt-based3 GUI which allows its user to generate or edit an input file

for a SNARK execution. Each command can be built using a separate window which aids in

3http://qt-project.org

18

3. Target Software / Environment 3.1. SNARK

Figure 3.2.: snark14Input

the creation process and performs basic checks regarding the validity of the selected options

and values. Upon completion of the process, it offers the possibility of triggering a SNARK

execution using the created file as input. Figure 3.2 shows an updated version of snarkInput

which already contains the new command SUPERIORIZE.

3.1.5.2. snarkDisplay

snarkDisplay represents the second Qt-based GUI of the SNARK package. Its main purpose

is to visualize output which has been generated by SNARK, for which it provides a rich

feature set. Besides displaying the reconstructed image and enabling comparisons between

different reconstructions, it also offers various functions to create graphs based not only on

the reconstructed images, but also on the data contained in the evaluation file, making it an

indispensable tool in the assessment of the quality of the output of the various reconstruction

algorithms. Figure 3.3 shows snarkDisplay being used to perform thresholding and contrast

stretching on an image of a brain phantom containing a series of simulated tumors.

19

3. Target Software / Environment 3.1. SNARK

Figure 3.3.: snark14Display

3.1.6. Reconstruction Algorithms

Since the main purpose of SNARK is to aid in the development and evaluation of recon-

struction algorithms, a considerable number of such algorithms has already been integrated

into the SNARK package. They include several backprojection variants, the rho filtered lay-

ergram which is described in [24], the Fourier method, several variants of ART, the quadratic

optimization techniques described in [16, 1], the simultaneous iterative reconstruction tech-

nique (SIRT) of [13], the linogram method as well as EMAP. EMAP and the ART-variant

SART are of specific interest to the underlying work, as they are utilized during the verifica-

tion process of the implementation of Superiorization.

EMAP is a general implementation of a maximum a posteriori probability (MAP) algorithm

for PET based on a modified expectation-maximization (EM) algorithm [26, 17], whereas

ART is a general implementation of the additive Algebraic Reconstruction Techniques [9].

SART is an abbreviation for Simultaneous Algebraic Reconstruction Technique and represents

the most recent algorithmic addition to the SNARK feature set.

3.1.7. User-Defined Extensions

To facilitate the process of integrating experimental algorithms, the SNARK package sup-

ports user-defined builds which allow the introduction not only of new algorithms, but also

of additional stopping criteria and figures of merit (FOM). The addition of Superiorization

expands this functionality to include user-defined secondary optimization criteria as well as

20

3. Target Software / Environment 3.2. Development Environment

the according non-ascending vectors.

Technically, user-defined builds are implemented as a series of placeholder files which are

addressable within SNARK, into which user-defined code can be integrated. While more

modern solutions may have become available since the introduction of this functionality into

SNARK, it still represents a very simple solution which may quickly be adopted even by

developers with little or no prior knowledge of the SNARK framework.

3.1.8. The SNARK Experimenter

The experimenter is a sub-function of SNARK which serves to automate its execution

process in order to compare the output of different reconstruction algorithms by means of

statistical hypothesis testing. It is capable of automatically generating a series of randomized

phantoms, performing the according simulated measurements, executing the desired recon-

struction algorithms and obtaining the specified figures of merit from the reconstructions.

At the end of the experimentation process, the collected figures of merit are compared

statistically, resulting in a p-value. In conjunction with a predetermined significance level,

this p-value may be used to either accept or reject the null hypothesis that the output of one

algorithm is superior to the other with respect to the selected FOM.

The SNARK experimenter is utilized in the process of verifying the functionality of the

implementation of Superiorization by performing a comparison of superiorized and unsupe-

riorized ART and SART which is described in Chapter 5.2.

3.2. Development Environment

Due to the fact that during the time of the integration of Superiorization into SNARK, up to

4 people were scheduled to work on the SNARK package simultaneously, the re-introduction

of a version control system was imperative. Especially in combination with the introduction

of an appropriate IDE, the likelihood that the initial effort required for the improvement

of the development environment would be offset by subsequent time savings was deemed

sufficiently high to warrant an endeavor to that effect. Time savings were primarily expected

as a result of an accelerated development process, reduced communication overhead and a

more efficient way of code distribution. In order to avoid costs, only free and open-source

software (FOSS) was considered in the selection process.

21

3. Target Software / Environment 3.2. Development Environment

3.2.1. Version Control / Collaboration

The first step towards setting up an efficient working environment at the DIG was the

reintroduction of a version control system. Since 2 out of 4 DIG members were already

familiar with Apache Subversion4 (SVN) and the remaining 2 members had not previously

used any version control system, SVN was determined to be the system of choice. Its selection

made possible a reduction of the time required for familiarization and provided a well-known

list of features, enabling the DIG members which were familiar with SVN to provide advice

as well as allowing the automatization of certain tasks which had previously been performed

manually, e.g. updating source code file header information.

The installation of the server component was performed on the DIG’s existing web server,

running Red Hat Enterprise Linux (RHEL) 6.3. Considerable effort was made to install not

the default version of SVN for this system, which is 1.6.21, but to install version 1.8.9 instead,

which supports custom keyword substitution, enabling the aforementioned source file header

to be generated in an entirely automated manner. On Windows clients, TortoiseSVN5 1.8.7

was used while on Linux clients, RapidSVN6 0.12.1 and Apache’s command line client 1.8.9

was used.

3.2.2. Integrated Development Environment

In order to further streamline the development process, Eclipse7 Kepler SR2 was introduced

a the DIG as the standard IDE to be used for SNARK development. It was chosen not only

because it is Open Source, but also because the same circumstances as with SVN applied, with

2 out of 4 DIG members already being familiar with it. Additionally, it is widely used and

well-known among software developers, is available on all major operating systems, supports

all three programming languages currently used at the DIG and is able to directly connect to

an SVN server, further simplifying the collaboration aspect. Owing to its complex structure

and dependencies, the process of importing the SNARK source code into an Eclipse project

proved to be more challenging and time consuming than expected, but the time required was

easily outweighed by the resulting advantages such as debugging, code completion and syntax

highlighting.

4http://subversion.apache.org
5http://tortoisesvn.net
6http://www.rapidsvn.org
7http://www.eclipse.org

22

3. Target Software / Environment 3.2. Development Environment

3.2.3. CentOS VirtualBox Virtual Machine

In addition to the introduction of SVN and Eclipse, a virtual machine (VM) running the

RHEL-derived Linux distribution CentOS8 6.5 was created using Oracle VM VirtualBox9

4.3.10 as virtualization software. This virtualized environment, into which SNARK, SVN and

Eclipse were subsequently installed, offers several benefits: Firstly, enhanced cross-platform

capabilities, allowing SNARK to be invoked on any system capable of running VirtualBox.

Secondly, a unified environment, which can easily be distributed to all DIG members partici-

pating in SNARK development. Thirdly, a new, additional means of distributing SNARK to

end-users in a considerably more user-friendly, pre-packaged manner which includes read-only

SVN access for SNARK updates as well as Eclipse for the creation of user-defined builds.

8http://www.centos.org
9http://www.virtualbox.org

23

4 Chapter 4

Implementation

This chapter outlines the implementation process as well as findings and advancements which

have been made during implementaion. Following theoretical considerations regarding an

ideal realization, the concrete implementation in SNARK, including secondary aspects which

were required to ensure usefulness of the new functions, is covered.

As previously stated, the main focus of the underlying work is the integration of Supe-

riorization into SNARK in a manner which is as flexible as possible to both pre-existing

and future algorithms and secondary optimization criteria. This necessitates a breakdown

of the methodology into its variable and non-variable components as well as considerations

regarding possible prerequisites.

A distinction needs to be made between an ideal approach, which may be pursued when

developing entirely new software, and approaches which can be applied to pre-existing code,

taking into consideration given limitations. These limitations may stem from the fact that

the underlying software and its data flow was not initially designed to be adaptive to changes

of this nature and that, for the sake of consistency, any additions to the code should follow

pre-established patterns. In SNARK09, for which the addition of Superiorization represents

the transition to SNARK14 as discussed in Chapter 3.1.1, only the latter is the case.

4.1. Variable and Non-Variable Superiorization Constituents

The first step towards an implementation is a structural analysis of the algorithm and its

input parameters, breaking it down into its variable and non-variable parts. The following

constituents to the Superiorization methodology represent elements which may differ accord-

ing to the specific application and thus need to be implemented in a way so that they may

be freely defined by the user. The variable components are comprised of:

i. Variables N and γ: N defines how many times a non-ascending vector is to be applied

24

4. Implementation 4.2. Adaptations for Implementation

while γ defines how quickly the step-size is reduced.

ii. φ function: The φ function defines the secondary optimization criterion.

iii. Non-ascending vector: The non-ascending vector is closely tied to the φ function.

iv. ∆: In all currently considered applications, ∆ may either be defined as RJ or RJ+

v. Base algorithm: The initial, unsuperiorized iterative algorithm.

While some of the remaining constituents to the Superiorization methodology are variable

in the sense that they change their value during the process of Superiorization, they follow

a pre-defined pattern and do not need to be read externally. They can thus be hard-coded

without adversely effecting the resulting program’s flexibility and are comprised of:

i. Variables k, l, n. These are merely control variables which are incremented by one

during various loop iterations.

ii. Inner, middle and outer loop. The loops do not vary depending on any conditions but

always follow the exact same pattern. Multi-stage perturbation schemes as described

in [10] are beyond the scope of this document.

4.2. Adaptations for Implementation

In Chapter 2, the Superiorization algorithm has been described strictly from a mathemat-

ical point of view. Note that Algorithm 2.1 produces an endless sequence of reconstructed

images and thus requires the addition of a stopping criterion. Additionally, in order to achieve

optimal results, considerations regarding code simplicity, programming efficiency and resource

consumption may be taken into account prior to its actual implementation.

In practice, this amounts to several changes. Variables only need to store information

regarding the current iteration, minimizing the amount of memory required. Furthermore,

the variables k, loop, xk and βk,n may be omitted and their values instead be assigned directly,

resulting in minor memory and processing time savings. Lastly, an additional variable b is

introduced. b is multiplied with a in order to increase flexibility regarding the step size of

the non-ascending vector. Otherwise, the first multiplying factor of the non-ascending vector

would always be 1, which may not be desirable in certain cases. Algorithm 4.1 represents the

resulting adapted Superiorization algorithm.

25

4. Implementation 4.2. Adaptations for Implementation

Algorithm 4.1 Superiorization, adapted for implementation

1: set l = −1

2: while Pr(x) > ε do

3: set n = 0

4: set x = x

5: while n < N do

6: set v to be a non-ascending vector for φ at x

7: while true do

8: set l = l + 1

9: set z = x+ b · al · v

10: if z ∈ ∆ and φ(z) ≤ φ(x) then

11: set n = n+ 1

12: set x = z

break

13: end if

14: end while

15: end while

16: set x = PTx

17: end while

26

4. Implementation 4.3. Ideal Approach

4.3. Ideal Approach

Following the aforementioned notion of an ideal, state of the art implementation of Su-

periorization into new software using an object-oriented programming language, there is a

series of conditions which need to be met. Firstly, all variable constituents listed in Chapter

4.1 need to be freely configurable. Secondly, the dynamic and unlimited addition of non-

ascending vectors, φ functions and base algorithms needs to be possible. Thirdly, in the case

of the execution of multiple algorithms in succession, it must be possible to define specific

Superiorization parameters for each algorithm. The the first and third objectives are matters

of software design, while the means by which the second condition is met may vary depending

on the underlying programming language. For example, in Java, reflection may be used to

dynamically load an unlimited number of new classes which implement φ functions based on

an Interface. In languages which do not offer this functionality, a more static approach based

on inheritance may be employed.

Figure 4.1 shows an example of how software which supports Superiorization as an option

may be designed. A class Main may be used to repeat executing iterations the selected

reconstruction algorithm and terminate once the specified termination criterion is met. The

pseudocode depicted in Algorithm 4.1 would be implemented in a class Superiorization,

which is also called by the class Main between each iteration of the original algorithm in case

Superiorization is enabled. This Superiorization class would in turn rely on separate

classes to perform the calculations necessary to generate the appropriate non-ascending vec-

tors and the values related to the secondary optimization criteria. In order to provide the

aforementioned flexibility regarding new optimization criteria and non-ascending vectors, the

corresponding classes would need to be derived from an interface class, the same of which is

the case for reconstruction algorithms and termination criteria.

The basic sequence of events is shown in Figures 4.2 and 4.3, with Figure 4.2 depicting the

Superiorization-related logic within the Main class and Figure 4.3 illustrating one Superior-

ization step within the class Superiorization. Apart from minor adjustments which were

necessary due to the given SNARK code structure, these figures are an accurate representa-

tion of the logic which has been incorporated into the files exalg.cpp and superior.cpp

of the SNARK package.

27

4. Implementation 4.3. Ideal Approach

Figure 4.1.: Sample Class Diagram

perform algorithmic step

Superiorization
enabled?

Start

End

perform Superiorization stepyes

no

Termination
criterion met?

yes

no

Figure 4.2.: Main Class Flow Diagram

28

4. Implementation 4.3. Ideal Approach

Start

access
reconstruction

calculate non-
ascending vector

Number of
iterations met?

image in Δ and
ɸ met?

save resultyes

End

set length of non-
ascending vector

calculate resulting
image

reduce length of
non-ascending

vector

no

yes

no

Figure 4.3.: Superiorization Class Flow Diagram

29

4. Implementation 4.4. Implementation in SNARK

4.4. Implementation in SNARK

Despite the fact that SNARK09 is a descendant of earlier releases of SNARK and as a re-

sult, its code architecture dates back several decades, the implementation of Superiorization

could be performed in a manner which not only closely resembles the ideal implementa-

tion outlined in Chapter 4.3 and provides a high amount of flexibility but also adheres to

the pre-exissting code structure. Barring some remnant architectural elements which are

representing concessions to its FORTRAN heritage, SNARK essentially already provides a

suitable environment for the implementation of Superiorization. The point of entry is the

function exalg(), which repeatedly executes the various reconstruction algorithms and may

be upgraded to perform Superiorization between each algorithmic step. It also makes use of

interface classes for algorithms (alg_class) and termination criteria (termtest_class).

Due to the fact that SNARK was created with limited extensibility in terms of recon-

struction algorithms, termination criteria and figures of merit in mind, it already provides

functionality for the addition of algorithms which are not part of the original software pack-

age. This ability of creating user-defined builds merely needs to be extended to include

user-defined secondary optimization criteria and non-ascending vectors. Furthermore, the

pre-existing structure of input commands allows Superiorization to be integrated simply as

a new command which may be issued prior to the execution of a reconstruction algorithm,

indicating the desire to superiorize the subsequent algorithm. This was achieved by an ad-

dition to snark.cpp (which passes the various commands to the respective software parts)

and the incorporation of the command parsing logic into the Superiorization class.

4.4.1. Command SUPERIORIZE

Upon close inspection of the underlying code and the way the execution of an algorithm is

triggered, the introduction of a new command named SUPERIORIZE was found to be an ideal

approach because it could not only be implemented with relative ease, but it also provides a

maximum amount of flexibility. It can be issued prior to the execution of an algorithm and,

in the case of the execution of multiple algorithms in succession, may be issued repeatedly

to define specific settings for each algorithm. This way of handling Superiorization input

integrates seamlessly and without adverse effects into the pre-existing SNARK architecture,

as other commands operate in exactly the same way and remain valid until re-issued with

different settings.

30

4. Implementation 4.4. Implementation in SNARK

The initial version of the command included the separate specification of the secondary

optimization criterion and the method of calculating the non-ascending vector. However, due

to the fact that in practice, secondary optimization criteria are not expected to have more

than one suitable non-ascending vector, the specification of the non-ascending vector has

been dropped in favor of simplicity and has instead been pre-set for each built-in secondary

optimization criterion. Since the opposite might not always be the case though and one

method of calculating a non-ascending vector might theoretically be determined to be suitable

for additional or modified secondary optimization criteria, non-ascending vectors are still

handled separately within the source code and can be reused and reassigned with ease.

The final version of the command with all input variables and options is given below. For

a detailed description of the syntax in Extended Backus-Naur Form (EBNF), please refer to

Appendix A.1.

SUPERIORIZE N a b



TVAR

SMOO

SCR3

SCR4

SCR5


[POSI]

 ATL1

ATL2

 [RPRT [n]]

Regarding the input variables, N, a and b have been explained in Chapter 4.1 and Chapter

4.2. The remaining options and variables are described in detail below.

4.4.2. Secondary Optimization Criteria

In the scope of the underlying research, two secondary optimization criteria have been

integrated into SNARK: total variation and smoothness, both of which are based on [12],

where they have previously been successfully used for Superiorization.

4.4.2.1. Total Variation (Option TVAR)

Total variation (TV) has been chosen as a secondary optimization criterion due to the fact

that it has recently been popular in medical imaging. For a reconstructed image vector x,

consisting of gray values, the TV is defined as:

TV (x) =
∑
c∈C

√(
xc − xρ(c)

)2
+
(
xc − xξ(c)

)2
, TV (x) ∈ R (4.1)

31

4. Implementation 4.4. Implementation in SNARK

xc xρ(c)

xξ(c)

Figure 4.4.: Total Variation Function Kernel

xr

xl xl xl

xlxl

xl xl xl

Figure 4.5.: Smoothness Function Kernel

where C is the set of all indices of pixels (numbered serially and line-by-line) that are not

in the rightmost column or the bottom row of the pixel array. For any single pixel x with

index c in C, ρ(c) and ξ(c) are the indices of the pixels to its right and below it. A graphic

representation of the function’s kernel is given in Figure 4.4.

4.4.2.2. Smoothness (Option SMOO)

Smoothness is an implementation of the penalty function ψ recommended in [19] and is

defined as:

ψ (x) =
∑
r∈M

xr − 1

8

∑
l∈Mr

xl

2

, ψ (x) ∈ R (4.2)

where again, x is a reconstructed image, M is the set of indices r such that the rth pixel

is not on the border of the image region and Mr, for r ∈ M , is the set of indices associated

with the eight pixels neighboring the rth pixel. Figure 4.5 depicts the kernel of the function.

4.4.2.3. User-Defined Criteria (Options SCR3, SCR4, SCR5)

The options SCR3, SCR4 and SCR5 represent placeholders for the addition of user-defined

secondary optimization criteria. As with other user-defined additions (such as algorithms or

figures of merit), SNARK already provides the necessary infrastructure, meaning that the

required classes already exist and the command option is available. The user merely needs

to add the own code to the corresponding method of the corresponding class.

32

4. Implementation 4.4. Implementation in SNARK

4.4.3. Non-Ascending Vectors

As non-ascending vector for a given secondary optimization criterion (see Chapters 2.8 and

2.7, respectively), the inverse gradient of the objective function, whose length is modified by

the scaling factor γl is used. The results of the calculations which are required to determine

each gradient are given below.

4.4.3.1. Gradient for Total Variation

In the case of TV, up to three pixels are involved in the calculation of each element of the

gradient, resulting in up to three partial derivatives which need to be summed up:

gj =
∂τ

∂xj
(x) =

2∑
t=0

∂τt
∂xj

(x) [12] (4.3)

As not all three terms are applicable for every pixel, two additonal sets of indices need to

be introduced: C1, which is a set of indices of pixels that are not on the left border of the

reconstruction region and C2, which is a set of indices of pixels that are not on the bottom

border of the reconstruction region. This allows the partial derivatives to be expressed as

follows:

τ0 (xc) =


√(

xc − xρ(c)
)2

+
(
xc − xξ(c)

)2
0

if c ∈ C

otherwise

(4.4)

τ1 (xc) =


√(

xθ(c) − xc
)2

+
(
xθ(c) − xξ(θ(c))

)2
0

if c ∈ C1

otherwise

(4.5)

τ2 (xc) =


√(

xα(c) − xρ(α(c))
)2

+
(
xα(c) − xc

)2
0

if c ∈ C2

otherwise

(4.6)

where θ (c) is the index of the pixel to the left and α (c) is the index of the pixel above.

The resulting derivatives, which are required for producing the corresponding source code,

are:

τ ′0 (xc) =
2xc − xρ(c) − xξ(c)√(

xc − xρ(c)
)2

+
(
xc − xξ(c)

)2 (4.7)

33

4. Implementation 4.4. Implementation in SNARK

terms applicable

3

2

1

0

Figure 4.6.: Total Variation Gradient Calculation Scheme

τ ′1 (xc) =
xc − xθ(c)√(

xθ(c) − xc
)2

+
(
xθ(c) − xξ(θ(c))

)2 (4.8)

τ ′2 (xc) =
xc − xα(c)√(

xα(c) − xρ(α(c))
)2

+
(
xα(c) − xc

)2 (4.9)

In less formal terms, due to the layout of the 2x2 kernel depicted in Figure 4.4, an element

of the gradient may either be considered top left, top right or bottom left. For elements inside

M , all three terms are applicable, whereas the border region needs to be handled separately.

In the case of the top left element, only the first term is applicable. For the remainder of the

top border, terms 1 and 2 are applicable and for the remainder of the left border, terms 1

and 3 are applicable. For the right and bottom borders, none of the terms apply, resulting

in zero values. Figure 4.6 illustrates the calculation scheme.

4.4.3.2. Gradient for Smoothness

Due to the 3x3 kernel of the smoothness penalty function which is shown in Figure 4.5, up

to 9 pixels need to be considered in the calculation of each element of the gradient: a center

pixel and up to eight surrounding pixels. The term to calculate gradient elements which are

not on the border is:

gj =
∂ψ

∂xj
(x) = 2

xj − 1

8

∑
l∈Mj

xl

− 1

4

∑
r∈Mj∩M

xr − 1

8

∑
l∈Mr

xl

 [12] (4.10)

In this term, j is the index for all pixels in the reconstruction and Mj and Mr indicate the

sets of the indices l of the eight neighboring pixels.

As is the case for TV, the border region of the gradient needs to be handled separately,

accounting for the reduced number of surrounding pixels. A distinction needs to be made

specifically between the four corner pixels, the eight pixels adjoining the corner pixels and

34

4. Implementation 4.4. Implementation in SNARK

1

2

9

preprocessed
terms used

Figure 4.7.: Smoothness Gradient Calculation Scheme

the remainder of the border region.

The symmetry of this kernel, combined with the fact that SNARK exclusively handles

rectangular images, allows the resulting code to be optimized considerably: the bracketed

expressions are algorithmically equivalent and can be pre-processed for each pixel, after which

the pre-processed values merely need to be summated accordingly to determine the gradient,

resulting in an approximately ninefold reduction in processing time compared to a per-element

calculation. Furthermore, if the pre-processed values are stored in an array which is similar

in layout and size to the original reconstruction and its border region is initialized to zero,

all gradient elements which are not on the border may be calculated using the same logic,

reducing code complexity. The calculation scheme is graphically depicted in Figure 4.7.

4.4.4. Event Space for Superiorization

The valid event space ∆ for Superiorization is defined via the option POSI. If it is specified,

z ∈ RJ+ is required for the inner loop to be terminated, otherwise this check is omitted and

z ∈ RJ is accepted.

4.4.5. Alternative Handling of the Variable l

During early testing of the implementation of Superiorization, it has been observed by

the author that in some cases, the value of the variable l was incremented greatly during a

single Superiorization step. This results in a severely shortened non-ascending vector in all

subsequent steps and attenuates the effect of Superiorization to a degree where it essentially

becomes ineffective, especially in cases where this phenomenon occurs at an early stage.

It has thus been proposed to reset l to the value of the iteration number k for each iteration,

which has been discussed in Chapter 2.10 and would provide a solution to this undesired

behavior while retaining the requirement that the sequence βk is summable, which is necessary

for the introduced perturbations to remain bounded. This alternative handling of the variable

35

4. Implementation 4.4. Implementation in SNARK

l is referred to as ATL1 in SNARK. Further considerations resulted in an additional variant

of handling l, specifically, to randomize its value to range from k to the value at the end of the

previous iteration, which has also been implemented and is referred to as ATL2 in SNARK.

As mentioned in Chapter 2.10, the latter basically represents a hybrid of the original handling

and the first proposed variant, providing faster computation and reducing the likelihood of

applying an inappropriately long non-ascending vector while essentially retaining the intended

phenomenon avoidance capability. A thorough mathematical analysis of this strategy is

currently outstanding but first experimental evidence, as is given in Chapter 5.1 appears to

confirm that ATL1 and ATL2 achieve their intended effect.

4.4.6. New Termination Criteria

The integration of Superiorization also necessitated the integration of several new stopping

criteria. The resulting new stopping command including new and existing options is given

below as well as in EBNF in Appendix A.2. It is followed by a detailed explanation of only

the newly introduced criteria (ITERATION simply stops after a given number of iterations

while VARIANCE has previously been introduced into SNARK and TRM1/TRM2 represent

placeholders for user-defined stopping criteria).

STOP



ITERATION iter

TERMINATION



VARIANCE ε

KLDS ε [RPRT [n]]

RESI ε [RPRT [n]]

WSQD ε [RPRT [n]]

MLST [RPRT [n]]

TRM1

TRM2




For the following termination criteria and figures of merit, it is necessary to first perform

a series of definitions:

i. a line of response (LOR) is the line between detectors, along which events have been

measured

ii. x denotes a reconstructed image vector

iii. y denotes the corresponding phantom image vector

36

4. Implementation 4.4. Implementation in SNARK

iv. I denotes number of lines of response of the underlying set of emission tomography

measurements

v. J denotes the number of pixels for which the activity needs to be determined by the

reconstruction process

vi. aij is defined as the length of intersection of the ith line with jth pixel, which is equivalent

to the probability of counting an event generated in the jth pixel for the ith LOR

vii. bi is defined as the count of events in the ith LOR

4.4.6.1. Kullback-Leibler Distance (Option KLDS)

The Kullback-Leibler (KL) distance is a proximity value defined as:

Pr (x, y) =
I∑
i=1

bi ln
bi∑J

j=1 aijxj
+

J∑
j=1

aijxj − bi

 , P r (x, y) ∈ R [12] (4.11)

It is a measure, how well a given reconstruction matches the readings obtained during the

simulation process. If KLDS is specified, the iterative process is terminated as soon as the

value of the Kullback-Leibler distance of the reconstructed image is less than or equal to the

specified value of ε.

4.4.6.2. Residual (Option RESI)

In an effort to further extend the termination capabilities of SNARK towards providing

more criteria which may be suitable for superiorized algorithms, the residual - which had

previously only been available as a figure of merit - was implemented as a stopping criterion.

It is defined as:

Pr (x, y) =

√√√√√ I∑
i=1

bi − J∑
j=1

aijxj

2

, P r (x, y) ∈ R (4.12)

Similar to (4.11), the reconstruction process is terminated once the value of this function

is lower than the specified ε.

37

4. Implementation 4.4. Implementation in SNARK

4.4.6.3. Weighted Squared Distance (Option WSQD)

Basically, the weighted squared distance represents a weighted variant of the residual. Its

implementation has been performed by Bernhard Prommegger in the scope of [23]. It was

required in order to provide a suitable stopping condition for the experiments involving SART

since in [18] it was shown, that SART is a minimizer of this measure. Like the Kullback-

Leibler distance and the residual, it is a proximity value and defined as:

Pr (x, y) =
I∑
i=1


(
bi −

∑J
j=1 aijxj

)2
∑J

j=1 aij

 , P r (x, y) ∈ R (4.13)

It is assumed that
∑J

j=1 aij > 0. Similar to (4.11) and (4.12), the reconstruction process

is terminated once the value of this function drops below the specified ε.

4.4.6.4. MLEM-STOP (Option MLST)

MLEM-STOP is an implementation of the indicator function J(x), which is advocated to

be used for MLEM in [3]. When MLST is specified, the reconstruction process is terminated

after the first iteration at which the value of J(x) is less than or equal to 1. It is defined as:

J(x, y) =

∑I
i=1

(
bi −

∑J
j=1 aijxj

)2
∑I

i=1

∑J
j=1 (aijxj)

, J (x, y) ∈ R (4.14)

Although MLST does not constitute a viable stopping criterion for superiorized algorithms,

its implementation is useful when comparing Superiorization to MLEM-STOP, as it has re-

cently been done in [12]. It is also helpful in order to verify the correctness of the implemen-

tation by making it possible to recreate the results given in the paper.

4.4.7. New Figures of Merit

In order to provide enhanced overall functionality in parts of SNARK which are related to

Superiorization, as well as for verification purposes and for the comparison of superiorized

and unsuperiorized ART and SART, two new figures of merit have been added to the func-

tionality set of SNARK: The Kullback-Leibler distance and the weighted squared distance,

the mathematical aspects of both of which have already been described in Chapter 4.4.6 in

the context of algorithm termination.

As explained in Chapter 3.1.8, figures of merit are calculated during the analysis stage and

38

4. Implementation 4.4. Implementation in SNARK

Figure 4.8.: KLDS plot generatd by snark14Display

then written to the evaluation file. They may subsequently be processed by snarkDisplay

to generate graphs as well as by the SNARK experimenter in order to perform statistical

hypothesis testing. In case of a complete integration, the addition of a FOM therefore involves

considerable effort, as it necessitates the modification of several parts of the SNARK package.

4.4.7.1. Kullback-Leibler Distance (Option KLDS)

Besides the application as a termination criterion, the Kullback-Leibler distance may also

be considered a figure of merit. While it was not directly used as a FOM in the context of

the underlying work, it is expected to be useful in the near future, which is why it has been

fully included in SNARK as well as in snarkDisplay. Figure 4.8 shows a plot of the new FOM

which was generated by the updated version of snarkDisplay, snark14Display.

4.4.7.2. Weighted Squared Distance (Option WSQD)

As is the case with the corresponding termination criterion, the weighted squared distance

has been implemented to be included in the evaluation file by Bernhard Prommegger in the

scope of [23].

39

4. Implementation 4.4. Implementation in SNARK

4.4.8. The Class Superior

Adhering to both the prior considerations and to the methodology with which other com-

mands have been implemented in SNARK, the implementation has been carried out by intro-

ducing a new class Superior. It essentially contains 2 methods: initSuperiorization(),

which is invoked by snark.cpp to parse and store the SUPERIORIZE command and

executeSuperiorization(), which is repeatedly called from within exalg.cpp and

houses the core of the Superiorization algorithm. The code which corresponds to one itera-

tion of the adapted version of Superiorization shown in Algorithm 4.1 is depicted in Listing

4.1.

1 int l;

2 if (count==1) SuperSet.l = l = -1;

3 else if (SuperSet.altL==0) l = SuperSet.l;

4 else if (SuperSet.altL==1) l = count-2;

5 else if (SuperSet.altL==2) l = (int)round(Rand()*(SuperSet.l-count)) + count - 1;

6 int n = 0;

7 memcpy(xkn, recon, area * sizeof(double));

8 double phixk=secCrit->Run(recon);

9 while (n < N) {

10 naV->Run(xkn, vkn);

11 while (true) {

12 l++;

13 REAL betakn = b*pow(a, l);

14 if (betakn<min) betakn=0;

15 for (int i = 0; i < area; i++) z[i] = xkn[i] + (betakn * vkn[i]);

16 bool inDelta = true;

17 if (SuperSet.posZ) for (int i = 0; i < area; i++) if (z[i] < 0) inDelta=false;

18 if (inDelta && secCrit->Run(z) <= phixk) {

19 n++;

20 memcpy(xkn, z, area * sizeof(double));

21 break;

22 }

23 }

24 }

25 memcpy(recon, xkn, area * sizeof(double));

26 SuperSet.l = l;

27 return algorithm->Run(recon, list, weight, count);

Listing 4.1: Superiorization Routine in SNARK

40

4. Implementation 4.4. Implementation in SNARK

4.4.9. Verbosity Options

In order to improve analysis and troubleshooting functionality, all new commands and

options support the output of their most important internal variable values during each

iteration by specifying the option RPRT flag at the end. Specifying an additional value for

n will cause them to only report on the first, last and n-th iteration.

Output is provided both on the command line as well as in tabular form in separate text

files. In the case of SUPERIORIZE, this functionality is especially useful when observing the

“conflict of interest” between the original algorithm and the secondary optimization criterion,

which typically converge towards different points. Note that Superiorization may theoretically

also be used to accelerate a reconstruction process if the secondary optimiztion criterion

converges towards the same point. It was through this additional output that the phenomenon

of the high incrementation of the variable l during some itreations was observed. In the case

of proximity function based stopping criteria, the verbosity option may further be used to

estimate the remaining amount of iterations or to assess whether a SNARK run is likely to

terminate at all, given a certain ε.

41

5 Chapter 5

Verification and Application

This chapter covers the verification process which followed the implementation. Confirmation

of the correctness of the implementation was achieved in two ways: Firstly, by an extended

re-creation of the experiments performed in [12] and secondly by using the SNARK experi-

menter to conduct a comprehensive comparison of unsuperiorized and superiorized ART and

SART by means of statistical hypothesis testing. The latter was performed by Bernhard

Prommegger in the scope of [23].

5.1. Recreating Previous Results

Since [12] represents the basis of some of the new functionality which has been integrated

into SNARK14, a logical approach towards verifying the correctness of the implementation

was to perform similar experiments and to compare the results. First, using the same brain

phantom - which is part of the SNARK package - baseline values for the Kullback-Leibler

distance as well as the φ values for total variation and smoothness were generated using

MLEM as base algorithm and MLEM-STOP as a stopping criterion. The resuls are given in

Table 5.1. Subsequently, the calculated value of the Kullback-Leibler distance was used as

stopping criterion for the superiorized versions of the MLEM algorithm. As in the original

paper, TVAR and SMOO were used as secondary optimization criteria and the values of N

and a were set to 8/16/32 and 0.99/0.995/0.999, respectively. The results, which are listed

in the columns “Standard” of Table 5.2 differ less than 2h from those given in [12], which

may be considered limited proof for the correctness of the implementation.

The reason for the slightly different results compared to the original experiment is the fact

that the experiments were performed on different operating systems. SNARK is known to

produce slightly different results in different environments, a circumstance which is attributed

to different random number sequences, different precision levels and/or different third-party

42

5. Verification and Application 5.1. Recreating Previous Results

KLDS 22317.9

φ (TVAR) 21268.5

φ (SMOO) 946.3

Table 5.1.: Baseline Values Generated Using MLEM-STOP

φ
TVAR SMOO

N a b Standard ATL1 ATL2 Standard ATL1 ATL2

8 0.99 1 6179.64 4679.49 4890.5 19.5956 16.3508 15.5324

16 0.99 1 5085.82 3735.94 3786.78 14.2321 14.9397 12.1796

32 0.99 1 6116.71 3487.09 3550.03 35.0211 14.3115 13.0677

8 0.995 1 5154.46 4565.17 4657.59 15.6031 15.9682 16.6274

16 0.995 1 4001.11 3712.95 3742.29 12.6077 15.1203 15.2137

32 0.995 1 3823.17 3481.67 3505.17 13.2456 14.4345 14.3887

8 0.999 1 4574.98 4481.56 4498.39 16.5771 16.3362 16.1981

16 0.999 1 3741.21 3698.98 3703.54 14.9158 15.0372 15.1018

32 0.999 1 3517.54 3484.77 3487.68 13.2815 14.3964 14.437

Table 5.2.: Numerical Output of the Superiorized MLEM Algorithm

libraries.

Although the given results are merely exemplary and a statistical analysis would need to

be performed in order to make a well-founded statement, it may be pointed out that at least

for the given experiment, ATL1 (and to almost the same extent, ATL2) appears to produce

considerably better and more consistent results for TV. For the most noteworthy case of TV

Superiorization with N=32 and a=0.99, a plot of the φ values across iterations is given in

Figure 5.4. Furthermore, both ATL versions appear to eliminate the outliers present in the

smoothness results. It may thus be concluded that in some cases, the alternative l handling

does indeed appear to provide advantages beyond the prevention of an undesirably short

non-ascending vector.

To provide a visual example of the output, one set of images generated in the experiment

is shown in Figures 5.1, 5.2 and 5.3. Figure 5.1 shows the phantom image, while Figure 5.2

shows the algorithm output after the last iteration of MLEM-STOP and superiorized MLEM

(N=32, a=0.995, ATL1), respectively. Figure 5.3 shows the same images as in Figure 5.2

after they have been thresholded and contrast stretched to display values below 0.55 as black

and values above 0.95 as white.

43

5. Verification and Application 5.1. Recreating Previous Results

Figure 5.1.: Brain Phantom

Figure 5.2.: MLEM-STOP vs. Superiorized MLEM

Figure 5.3.: MLEM-STOP vs. Superiorized MLEM, thresholded

44

5. Verification and Application 5.2. Superiorization of ART and SART

Figure 5.4.: Comparison of φ Values Across Iterations

The SNARK input file which was used to perform the corresponding SNARK run is given

in Appendix A.3 and the command line output is given in Appendix A.4. The reporting

output files are given in Appendix A.5, A.6 and A.7.

5.2. Superiorization of ART and SART

In [23], the new command SUPERIORIZE has been used in conjunction with the SNARK

experimenter to conduct a comprehensive comparison of unsuperiorized and TV superiorized

ART and SART by means of statistical hypothesis testing, using the FOM image-wise region

of interest (IROI). In short, statistical hypothesis testing, which is described in greater detail

in [14], calculates a significance level based on which the null hypothesis, which is that

the observed difference in average values of two reconstruction methods across a series of

experiments (in the given case, 30) is a random occurrence, can be accepted or rejected.

In this context, the FOM IROI, which is defined in [14] is used to automatically assess the

detectability of small, low-contrast tumors in a reconstruction of a cross-section of the human

brain, which have been placed randomly across the 30 experiments. Figure 5.5 shows one of

the phantoms which have been generated during the experiments.

Prior to a discussion of the results, it is important to point out that the layout of this

experiment is fundamentally different from the one described in 5.1. For example, the fea-

tures in this experiment are much smaller in size (4-9 pixels vs. 350-6000 pixels), which is

relevant when applying TV Superiorization, as it results in a smoothing of the reconstruction.

Furthermore, the experiment has been performed in a way which aimed at maximizing the

45

5. Verification and Application 5.2. Superiorization of ART and SART

Figure 5.5.: Brain Phantom with Randomly Placed Tumors [23]

IROI rather than minimizing TV, although it is generally based on the assumption that - up

to a certain point - lower TV will result in an improved IROI.

Table 5.3 shows the the average values obtained from the 30 experiments, comparing the

output of the original ART and SART algorithms on the left side with their 3 superiorized

variants on the right side. The last column contains the significance level which indicates

whether the observed differences are a random occurrence.

Base Algorithm Superiorized Version Significance
LevelName IROI φ (TV) Variant IROI φ (TV)

ART 0.15406 497.495
Standard 0.15532 486.841 8.872e-06

ATL1 0.15362 451.211 0.16163
ATL2 0.15615 467.743 1.728e-05

SART 0.17542 468.527
Standard 0.17509 466.536 0.02714

ATL1 0.17449 462.711 3.941e-05
ATL2 0.17464 463.357 0.00023

Table 5.3.: Comparison of Superiorized and Unsuperiorized ART and SART [23]

The values for N, a and b have been set to 3, 0.4 and 1 for ART and 2, 0.6 and 1 for SART.

These relatively low values have been determined to produce the best results for the given

setup during preliminary testing, with higher values resulting excessive smoothing, effectively

eliminating the low-contrast tumors due to their small size. Figures 5.6 and 5.7 show the

output of the original ART algorithm as well as its three superiorized counterparts. Due to the

chosen values for N and a, the effect of Superiorization is highly limited, the most noticeable

visual difference exists between the unsuperiorized and the ATL1 superiorized image.

To provide an additional method of visualizing the results, a plot of the intensity values

46

5. Verification and Application 5.2. Superiorization of ART and SART

Figure 5.6.: ART vs. Superiorized ART [23]

Figure 5.7.: ATL1 vs. ATL2 Superiorized ART [23]

47

5. Verification and Application 5.2. Superiorization of ART and SART

Figure 5.8.: Evaluated Column [23]

0 20 40 60 80 100 120 140 160 180 200 220 240
0.204

0.206

0.208

0.21

0.212

0.214

0.216

0.218

Line diagram ART superiorized (ATL2) and unsuperiorized vs Phantom :: Column 131

Rows

P
ix

el
 V

al
ue

s

Phantom
ART with pixel unsuperiorized
ART with pixel superiorized (ATL2)

Figure 5.9.: Graph of Column 131 [23]

along column 131 of the reconstructed image is given in Figure 5.9. Figure 5.8 shows its

location within the reconstruction as well as the features with which it intersects.

Although TV Superiorization does appear to remove the disturbance patterns which are a

result of the geometry of the simulated CT scan, it also tends to decrease the visibility of the

desired features. It may thus be concluded that the implementation of the command SUPE-

RIORIZE appears to be functional for ART and SART, as it generally results in smoother

output with lower TV. However, for the given setup, with only 2 out of 6 superiorized al-

gorithm variants showing an improved IROI (higher is better) and the best result being

produced by the unsuperiorized SART algorithm, TV Superiorization does not appear to

contribute towards an improvement in overall visual reconstruction quality.

48

6 Chapter 6

Conclusion and Outlook

In the scope of this document, it has been shown how the new and innovative methodol-

ogy of Superiorization has successfully been incorporated into the SNARK software package,

which is a testbed for medical image reconstruction algorithms. Following a discussion of

the mathematical concept of Superiorization, the underlying software as well as the estab-

lished development environment has been outlined. Thereafter, the process of adaptation

and implementation, including the implications regarding secondary aspects such as stopping

criteria and figures of merit has been presented. Lastly, the correctness of the implementation

was demonstrated by recreating a previous experiment as well as by discussing the results of

a comparison of superiorized and unsuperiorized ART and SART.

The description of the implementation process was written with the intention to make it

possible for the reader to gain an impression of how the initially declared goal of implement-

ing Superiorization in a flexible way which can accomodate new algorithms and secondary

optimization criteria could be achieved to full extent. In addition, the implementation could

be performed in a manner which is consistent with the remainder of the SNARK package,

maintaining simplicity and facilitating the use of the new functionality. The intent of encour-

aging and promoting further research involving Superiorization was also met with success:

the usefulness and relevance of the conducted work could already be demonstrated by its

subsequent application in performing a comparison between unsuperiorized and superiorized

algorithms, the results of which not only provide the basis for a master’s thesis, but may

further result in the publication of a paper on this topic.

As a side benefit of a careful and observant approach towards the process of implementation,

it was possible to refine the underlying mathematical aspect by introducing additional variants

of defining the length of the non-ascending vector. Although a general statement towards

the usefulness of these variants beyond the avoidance of an undesirably short non-ascending

vector may not be made at this point, first results suggest that they may also serve to improve

49

6. Conclusion and Outlook

results in certain applications. This functionality may therefore be considered an additional

option when gearing Superiorization towards a specific application.

Further work involving Superiorization may be performed in numerous areas. To name

just two examples, research is currently being conducted towards a possible application of

Superiorization in 3D electron microscopy and which advantages Superiorization may offer for

applications which use shearlets as basis functions. Regarding further software packages into

which Superiorization may be incorporated, jSNARK1 and XMIPP2 are possible candidates.

1http://jsnark.sourceforge.net
2http://xmipp.cnb.csic.es

50

Bibliography

[1] Artzy, E., Elfving, T., and Herman, G. T.: Quadratic optimization for image reconstruc-

tion ii. Computer Graphics and Image Processing, 11:242–261, 1979.

[2] Bian, J., Siewerdsen, J. H., Han, X., Sidky, E. Y., Prince, J. L, Pelizzari, C. A., and

Pan, X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT.

Physics in Medicine and Biology, 55:6575–6599, 2010.

[3] Bouallègue, F. B., Crouzet, J. F., and Mariano-Goulart, D.: A heuristic statistical

stopping rule for iterative reconstruction in emission tomography. Annals of Nuclear

Medicine, 27:84–95, 2013.

[4] Butnariu, D., Davidi, R., Herman, G. T., and G.Kazantsev, I.: Stable convergence behav-

ior under summable perturbations of a class of projection methods for convex feasibility

and optimization problems. IEEE Journal of Selected Topics in Signal Processing, 1:540–

547, 2007.

[5] Censor, Y., Davidi, R., and Herman, G. T.: Perturbation resilience and superiorization

of iterative algorithms. Inverse Problems, 26, 065008, 2010.

[6] Censor, Y., Davidi, R., Herman, G. T., Schulte, R. W., and Tetruashvili, L.: Projected

subgradient minimization versus superiorization. Journal of Optimization Theory and

Applications, 160:730–747, 2014.

[7] Combettes, P. L. and Luo, J.: An adaptive level set method for nondifferentiable con-

strained image recovery. IEEE Transactions on Image Processing, 11:1295–1304, 2002.

[8] Combettes, P. L. and Pesquet, J. C.: Image restoration subject to a total variation con-

straint. IEEE Transactions on Image Processing, 13:1213–1222, 2004.

[9] Davidi, R., Herman, G. T., Klukowska, J., Langthaler, O., and Prommegger, B.:

SNARK14: A Programming System for the Reconstruction of 2D Images from 1D Pro-

jections, 2014.

iv

Bibliography Bibliography

[10] Davidi, R., Schulte, R. W., Censor, Y., and Xing, L.: Fast superiorization using a dual

perturbation scheme for proton computed tomography. Transactions of the American

Nuclear Society, 106:73–76, 2012.

[11] Defrise, M., Vanhove, C., and Liu, X.: An algorithm for total variation regularization in

high dimensional linear problems. Inverse Problems, 27, 065002, 2011.

[12] Garduño, E. and Herman, G. T.: Superiorization of the ML-EM algorithm. IEEE Trans-

actions on Nuclear Science, 61(1):162–172, 2014.

[13] Gilbert, P.: Iterative methods for three-dimensional reconstruction of an object from pro-

jections. Journal of Theoretical Biology, 36:105–117, 1972.

[14] Herman, G. T.: Fundamentals of Computerized Tomography: Image Reconstruction from

Projections. Springer, 2nd edition, 2009.

[15] Herman, G. T., Garduño, E., Davidi, R., and Censor, Y.: Superiorization: An optimiza-

tion heuristic for medical physics. Medical Physics, 39(9):5532–5546, 2012.

[16] Herman, G. T. and Lent, A.: Quadratic optimization for image reconstruction part i.

Computer Graphics and Image Processing, 5:319–332, 1976.

[17] Herman, G. T., Pierro, A. R. De, and Gai, N.: On methods for maximum a posteriori

image reconstruction with a normal prior. Journal of Visual Communication and Image

Representation, 3:316–324, 1992.

[18] Jiang, M. and Wang, G.: Convergence of the simultaneous algebraic reconstruction tech-

nique (SART). IEEE Transactions on Image Processing, 12:957–961, 2003.

[19] Levitan, E. and Herman, G. T.: A maximum a posteriori probability expectation maxi-

mization algorithm for image reconstruction in emission tomography. IEEE Transactions

on Medical Imaging, 6:185–192, 1987.

[20] Neto, E. S. Helou and Pierro, Á. R. De: Incremental subgradients for constrained convex

optimization: A unified framework and new methods. SIAM Journal on Optimization,

20(3):1547–1572, 2009.

[21] Neto, E. S. Helou and Pierro, Á. R. De: On perturbed steepest descent methods with

inexact line search for bilevel convex optimization. Optimization, 60(8-9):991–1008, 2011.

v

Bibliography Bibliography

[22] Nurminski, E. A.: Envelope stepsize control for iterative algorithms based on fejer pro-

cesses with attractants. Optimization Methods and Software, 25:97–108, 2010.

[23] Prommegger, B.: Comparison of iterative algorithms with and without superiorization for

image reconstruction from projections. Master’s thesis, University of Applied Sciences

Salzburg, 2014.

[24] Rowland, S. W.: Image Reconstruction from Projections: Implementation and Appli-

cations, volume 32 of Topics in applied physics, chapter Computer implementation of

image reconstruction formulas, pages 9–79. Springer-Verlag, Berlin, 1979.

[25] Schrapp, M. J. and Herman, G. T.: Data fusion in x-ray computed tomography using a

superiorization approach. Technical Report 85, 053701, Review of Scientific Instruments,

2014.

[26] Shepp, L. A. and Vardi, Y.: Maximum likelihood reconstruction in positron emission

tomography. IEEE Transactions on Medical Imaging, 1:113–122, 1982.

[27] Sidky, E. Y., Duchin, Y., Pan, X., and Ullberg, C.: A constrained, total-variation mini-

mization algorithm for low-intensity x-ray CT. Medical Physics, 38:5117–5125, 2011.

[28] Sidky, E. Y. and Pan, X.: Image reconstruction in circular cone-beam computed tomog-

raphy by constrained, total-variation minimization. Physics in Medicine and Biology,

53:4777–4807, 2008.

vi

A Appendix A

Appendix

A.1. SUPERIORIZE Command in EBNF

1 command = "SUPERIORIZE ", N, " ", a, " ", b , " ", sec_opt_criterion, options;

2

3 N = positive_integer;

4 a = positive_float_less_than_one;

5 b = positive_float;

6 sec_opt_criterion = "TVAR" | "SMOO" | "SCR3" | "SCR4" | "SCR5";

7 options = [" POSI"], [" ", l_handling], [" RPRT", [" ", n]];

8 l_handling = "ATL1" | "ATL2";

9 n = positive_integer;

10 positive_float = positive_float_less_than_one | "1" | float_greater_than_one;

11 float_greater_than_one = [{digit}], non-zero_digit, [{digit}], ["."], [{digit}];

12 positive_float_less_than_one = "0.", positive_integer;

13 positive_integer = [{digit}], non-zero_digit, [{digit}];

14 digit = "0" | non-zero_digit;

15 non-zero_digit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

Listing A.1: SUPERIORIZE Command in EBNF

A.2. STOP Command in EBNF

1 command = "STOP ", criterion;

2

3 criterion = "ITERATION ", iter | "TERMINATION ", condition;

4 iter = positive_integer;

5 condition = "VARIANCE ", epsilon |

6 "KLDS ", epsilon, [" RPRT", [" ", n]] |

7 "RESI ", epsilon, [" RPRT", [" ", n]] |

8 "WSQD ", epsilon, [" RPRT", [" ", n]] |

vii

A. Appendix A.3. SNARK14 Superiorization Input File

9 "MLST", [" RPRT", [" ", n]] |

10 "TRM1", [" ", custom_text] | "TRM2", [" ", custom_text];

11 epsilon = positive_float;

12 n = positive_integer;

13 positive_float = non-zero_digit, [{digit}], ["."], [{digit}] | "0.", positive_integer;

14 positive_integer = [{digit}], non-zero_digit, [{digit}];

15 custom_text = [{character}];

16 character = letter | digit | special_character;

17 digit = "0" | non-zero_digit;

18 non-zero_digit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

19 letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" |"M" |

20 "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z";

21 special_character = " " | "-" | "_" | "." | ",";

Listing A.2: STOP Command in EBNF

A.3. SNARK14 Superiorization Input File

1 * SUPERIORIZED MAPEM ALGORITHM FOR PET. RECONSTRUCTION OF A

2 * BRAIN SIMULATING PET GEOMETRY WITH A RING OF 300 DETECTORS

3 * WITH EACH DETECTOR IN COINCIDENCE WITH 101 DETECTORS

4 *

5 CREATE

6 PET Brain Phantom

7 SPECTRUM MONOCHROMATIC 511

8 OBJECTS

9 1 elip -7.0 46.0 3.0 6.0 17.0 0.95 1.0

10 2 elip 7.0 46.0 3.0 6.0 -17.0 1.0 0.95

11 3 rect -12.0 64.0 7.5 4.5 5.0 1.0 1.0

12 4 rect 12.0 64.0 7.5 4.5 -5.0 0.95 0.95

13 5 rect -38.0 51.0 3.5 13.0 -39.0 0.95 1.0

14 6 rect 38.0 51.0 3.5 13.0 39.0 1.0 0.95

15 7 rect -46.0 24.0 6.5 6.0 -18.0 0.95 1.0

16 8 rect 46.0 24.0 6.5 6.0 18.0 1.0 0.95

17 9 rect -49.0 6.0 2.5 10.0 63.0 1.0 1.0

18 10 rect 49.0 6.0 2.5 10.0 -63.0 0.95 0.95

19 11 rect -52.0 -14.0 9.0 7.0 -14.0 0.95 1.0

20 12 rect 52.0 -14.0 9.0 7.0 14.0 1.0 0.95

21 13 rect -10.0 -56.0 5.5 10.0 -1.0 0.95 1.0

22 14 rect 10.0 -56.0 5.5 10.0 1.0 1.0 0.95

23 15 elip -40.0 -47.0 9.0 22.5 48.0 1.0 1.0

viii

A. Appendix A.3. SNARK14 Superiorization Input File

24 16 elip 40.0 -47.0 9.0 22.5 -48.0 0.95 0.95

25 17 elip -8.0 -22.0 3.5 15.5 -9.0 1.0 1.0

26 18 elip 8.0 -22.0 3.5 15.5 9.0 0.95 0.95

27 19 elip -27.0 -6.0 5.5 23.5 -5.0 0.95 1.0

28 20 elip 27.0 -6.0 5.5 23.5 5.0 1.0 0.95

29 21 elip -25.0 38.0 6.5 10.5 -14.0 1.0 1.0

30 22 elip 25.0 38.0 6.5 10.5 14.0 0.95 0.95

31 23 rect -8.0 32.0 1.5 6.5 38.0 1.0 1.0

32 24 rect 8.0 32.0 1.5 6.5 -38.0 0.95 0.95

33 25 rect -8.0 3.0 1.0 9.0 -33.0 0.95 1.0

34 26 rect 8.0 3.0 1.0 9.0 33.0 1.0 0.95

35 27 elip 0.0 0.0 66.5 74.0 0.0 1.0 1.0

36 LAST .51 1 0.01

37 PHANTOM AVERAGE 11

38 475 PIXELS OF SIZE 0.32

39 RAYSUM AVERAGE 11

40 1 1 1 1 1 1 1 1 1 1 1

41 GEOMETRY

42 divergent arc 153 306

43 RAYS USER 101 DETECTOR SPACING 3.2

44 ANGLES 300 EQUAL SPACING

45 0.0 358.8

46 MEASUREMENT NOISY

47 QUANTUM 1.0 1.0 CALIBRATION 4

48 SEED 0

49 BACKGROUND 0.0

50 RUN

51 *

52 PICTURE TEST

53 PROJECTION REAL

54 *

55 STOP TERMINATION MLST RPRT

56 EXECUTE AVERAGE EMAP

57 MLEM-STOP

58 gamma is 0

59 *

60 STOP TERMINATION KLDS 22317.9 RPRT

61 SUPERIORIZE 32 0.995 1 TVAR ATL1 RPRT

62 EXECUTE AVERAGE EMAP

63 Superiorized MLEM

64 gamma is 0

ix

A. Appendix A.4. SNARK14 Superiorization Output File

65 END

Listing A.3: SNARK14 Superiorization Sample Input file

A.4. SNARK14 Superiorization Output File

Listing A.4 shows the SNARK14 output which corresponds to the input file given in Listing

A.3.

1 snark14.s140730 - A PICTURE RECONSTRUCTION PROGRAM

2

3

4 <*> SUPERIORIZED MAPEM ALGORITHM FOR PET. RECONSTRUCTION OF A

5

6 <*> BRAIN SIMULATING PET GEOMETRY WITH A RING OF 300 DETECTORS

7

8 <*> WITH EACH DETECTOR IN COINCIDENCE WITH 101 DETECTORS

9

10 <*>

11

12 <#> CREATE

13

14 PET Brain Phantom

15

16

17 <#> SPECTRUM MONOCHROMATIC 511

18 energy spectrum is monochromatic at energy level 511

19

20

21 <#> OBJECTS

22 description of objects

23 density at levels

24 numb type x-coord y-coord x-length y-length angle av dens 511

25

26 1 elip -7.0000 46.0000 3.0000 6.0000 17.0000 0.9500 0.9500

27 2 elip 7.0000 46.0000 3.0000 6.0000 -17.0000 1.0000 1.0000

28 3 rect -12.0000 64.0000 7.5000 4.5000 5.0000 1.0000 1.0000

29 4 rect 12.0000 64.0000 7.5000 4.5000 -5.0000 0.9500 0.9500

30 5 rect -38.0000 51.0000 3.5000 13.0000 -39.0000 0.9500 0.9500

31 6 rect 38.0000 51.0000 3.5000 13.0000 39.0000 1.0000 1.0000

32 7 rect -46.0000 24.0000 6.5000 6.0000 -18.0000 0.9500 0.9500

x

A. Appendix A.4. SNARK14 Superiorization Output File

33 8 rect 46.0000 24.0000 6.5000 6.0000 18.0000 1.0000 1.0000

34 9 rect -49.0000 6.0000 2.5000 10.0000 63.0000 1.0000 1.0000

35 10 rect 49.0000 6.0000 2.5000 10.0000 -63.0000 0.9500 0.9500

36 11 rect -52.0000 -14.0000 9.0000 7.0000 -14.0000 0.9500 0.9500

37 12 rect 52.0000 -14.0000 9.0000 7.0000 14.0000 1.0000 1.0000

38 13 rect -10.0000 -56.0000 5.5000 10.0000 -1.0000 0.9500 0.9500

39 14 rect 10.0000 -56.0000 5.5000 10.0000 1.0000 1.0000 1.0000

40 15 elip -40.0000 -47.0000 9.0000 22.5000 48.0000 1.0000 1.0000

41 16 elip 40.0000 -47.0000 9.0000 22.5000 -48.0000 0.9500 0.9500

42 17 elip -8.0000 -22.0000 3.5000 15.5000 -9.0000 1.0000 1.0000

43 18 elip 8.0000 -22.0000 3.5000 15.5000 9.0000 0.9500 0.9500

44 19 elip -27.0000 -6.0000 5.5000 23.5000 -5.0000 0.9500 0.9500

45 20 elip 27.0000 -6.0000 5.5000 23.5000 5.0000 1.0000 1.0000

46 21 elip -25.0000 38.0000 6.5000 10.5000 -14.0000 1.0000 1.0000

47 22 elip 25.0000 38.0000 6.5000 10.5000 14.0000 0.9500 0.9500

48 23 rect -8.0000 32.0000 1.5000 6.5000 38.0000 1.0000 1.0000

49 24 rect 8.0000 32.0000 1.5000 6.5000 -38.0000 0.9500 0.9500

50 25 rect -8.0000 3.0000 1.0000 9.0000 -33.0000 0.9500 0.9500

51 26 rect 8.0000 3.0000 1.0000 9.0000 33.0000 1.0000 1.0000

52 27 elip 0.0000 0.0000 66.5000 74.0000 0.0000 1.0000 1.0000

53

54 scale factor multiplying object densities 0.5100

55

56 seed set to 1

57 inhomogeneity set to 0.0100

58

59 <#> PHANTOM AVERAGE 11

60

61 this run will generate a phantom

62 density in each pixel is obtained as the average of 11 x 11 points

63

64

65 <#> 475 PIXELS OF SIZE 0.32

66 picture size 475 x 475, pixel size 0.3200

67

68

69 <#> RAYSUM AVERAGE 11

70

71 this run will generate projection data

72 projection data are calculated by dividing each ray interval into 11 substrips

73

xi

A. Appendix A.4. SNARK14 Superiorization Output File

74 with aperture (substrip) weights 1 1 1 1 1 1 1 1 1 1 1

75

76

77 <#> GEOMETRY

78

79

80 <#> divergent arc 153 306

81 rays are divergent from point sources

82 source to origin distance 153.0000

83 the detectors lie on an arc with source to detector distance = 306.0000

84

85

86 <#> RAYS USER 101 DETECTOR SPACING 3.2

87 number of rays per projection 101

88 at detector spacing 3.2000

89

90

91 <#> ANGLES 300 EQUAL SPACING

92 total number of projections 300

93

94 projection angles

95 0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8

96 12.0 13.2 14.4 15.6 16.8 18.0 19.2 20.4 21.6 22.8

97 24.0 25.2 26.4 27.6 28.8 30.0 31.2 32.4 33.6 34.8

98 36.0 37.2 38.4 39.6 40.8 42.0 43.2 44.4 45.6 46.8

99 48.0 49.2 50.4 51.6 52.8 54.0 55.2 56.4 57.6 58.8

100 60.0 61.2 62.4 63.6 64.8 66.0 67.2 68.4 69.6 70.8

101 72.0 73.2 74.4 75.6 76.8 78.0 79.2 80.4 81.6 82.8

102 84.0 85.2 86.4 87.6 88.8 90.0 91.2 92.4 93.6 94.8

103 96.0 97.2 98.4 99.6 100.8 102.0 103.2 104.4 105.6 106.8

104 108.0 109.2 110.4 111.6 112.8 114.0 115.2 116.4 117.6 118.8

105 120.0 121.2 122.4 123.6 124.8 126.0 127.2 128.4 129.6 130.8

106 132.0 133.2 134.4 135.6 136.8 138.0 139.2 140.4 141.6 142.8

107 144.0 145.2 146.4 147.6 148.8 150.0 151.2 152.4 153.6 154.8

108 156.0 157.2 158.4 159.6 160.8 162.0 163.2 164.4 165.6 166.8

109 168.0 169.2 170.4 171.6 172.8 174.0 175.2 176.4 177.6 178.8

110 180.0 181.2 182.4 183.6 184.8 186.0 187.2 188.4 189.6 190.8

111 192.0 193.2 194.4 195.6 196.8 198.0 199.2 200.4 201.6 202.8

112 204.0 205.2 206.4 207.6 208.8 210.0 211.2 212.4 213.6 214.8

113 216.0 217.2 218.4 219.6 220.8 222.0 223.2 224.4 225.6 226.8

114 228.0 229.2 230.4 231.6 232.8 234.0 235.2 236.4 237.6 238.8

xii

A. Appendix A.4. SNARK14 Superiorization Output File

115 240.0 241.2 242.4 243.6 244.8 246.0 247.2 248.4 249.6 250.8

116 252.0 253.2 254.4 255.6 256.8 258.0 259.2 260.4 261.6 262.8

117 264.0 265.2 266.4 267.6 268.8 270.0 271.2 272.4 273.6 274.8

118 276.0 277.2 278.4 279.6 280.8 282.0 283.2 284.4 285.6 286.8

119 288.0 289.2 290.4 291.6 292.8 294.0 295.2 296.4 297.6 298.8

120 300.0 301.2 302.4 303.6 304.8 306.0 307.2 308.4 309.6 310.8

121 312.0 313.2 314.4 315.6 316.8 318.0 319.2 320.4 321.6 322.8

122 324.0 325.2 326.4 327.6 328.8 330.0 331.2 332.4 333.6 334.8

123 336.0 337.2 338.4 339.6 340.8 342.0 343.2 344.4 345.6 346.8

124 348.0 349.2 350.4 351.6 352.8 354.0 355.2 356.4 357.6 358.8

125

126

127 <#> MEASUREMENT NOISY

128 noise characteristics of projection data follow

129 nature characteristics

130

131 <#> QUANTUM 1.0 1.0 CALIBRATION 4

132 Emission tomography

133

134 <#> SEED 0

135 seed for random number generator is 0

136

137

138 <#> BACKGROUND 0.0

139 at levels

140 511

141 background absorption 0.0000

142

143

144 <#> RUN

145 1.374 seconds phantom creation

146 2.772 seconds projection data creation

147 4.145 seconds used for processing command crea

148

149

150 <*>

151

152 <#> PICTURE TEST

153

154 PET Brain Phantom

155

xiii

A. Appendix A.4. SNARK14 Superiorization Output File

156

157 <#> spec mono 511

158 energy spectrum is monochromatic at energy level 511

159

160

161 <#> obje

162 description of objects

163 density at levels

164 numb type x-coord y-coord x-length y-length angle av dens 511

165

166 1 elip -7.0000 46.0000 3.0000 6.0000 17.0000 0.4845 0.4845

167 2 elip 7.0000 46.0000 3.0000 6.0000 -17.0000 0.5100 0.5100

168 3 rect -12.0000 64.0000 7.5000 4.5000 5.0000 0.5100 0.5100

169 4 rect 12.0000 64.0000 7.5000 4.5000 -5.0000 0.4845 0.4845

170 5 rect -38.0000 51.0000 3.5000 13.0000 -39.0000 0.4845 0.4845

171 6 rect 38.0000 51.0000 3.5000 13.0000 39.0000 0.5100 0.5100

172 7 rect -46.0000 24.0000 6.5000 6.0000 -18.0000 0.4845 0.4845

173 8 rect 46.0000 24.0000 6.5000 6.0000 18.0000 0.5100 0.5100

174 9 rect -49.0000 6.0000 2.5000 10.0000 63.0000 0.5100 0.5100

175 10 rect 49.0000 6.0000 2.5000 10.0000 -63.0000 0.4845 0.4845

176 11 rect -52.0000 -14.0000 9.0000 7.0000 -14.0000 0.4845 0.4845

177 12 rect 52.0000 -14.0000 9.0000 7.0000 14.0000 0.5100 0.5100

178 13 rect -10.0000 -56.0000 5.5000 10.0000 -1.0000 0.4845 0.4845

179 14 rect 10.0000 -56.0000 5.5000 10.0000 1.0000 0.5100 0.5100

180 15 elip -40.0000 -47.0000 9.0000 22.5000 48.0000 0.5100 0.5100

181 16 elip 40.0000 -47.0000 9.0000 22.5000 -48.0000 0.4845 0.4845

182 17 elip -8.0000 -22.0000 3.5000 15.5000 -9.0000 0.5100 0.5100

183 18 elip 8.0000 -22.0000 3.5000 15.5000 9.0000 0.4845 0.4845

184 19 elip -27.0000 -6.0000 5.5000 23.5000 -5.0000 0.4845 0.4845

185 20 elip 27.0000 -6.0000 5.5000 23.5000 5.0000 0.5100 0.5100

186 21 elip -25.0000 38.0000 6.5000 10.5000 -14.0000 0.5100 0.5100

187 22 elip 25.0000 38.0000 6.5000 10.5000 14.0000 0.4845 0.4845

188 23 rect -8.0000 32.0000 1.5000 6.5000 38.0000 0.5100 0.5100

189 24 rect 8.0000 32.0000 1.5000 6.5000 -38.0000 0.4845 0.4845

190 25 rect -8.0000 3.0000 1.0000 9.0000 -33.0000 0.4845 0.4845

191 26 rect 8.0000 3.0000 1.0000 9.0000 33.0000 0.5100 0.5100

192 27 elip 0.0000 0.0000 66.5000 74.0000 0.0000 0.5100 0.5100

193

194 scale factor multiplying object densities 0.5100

195

196 seed set to 1

xiv

A. Appendix A.4. SNARK14 Superiorization Output File

197 inhomogeneity set to 0.0100

198

199 <#> phan aver 11

200

201 density in each pixel is obtained as the average of 11 x 11 points

202

203

204 <#> pixe 475 size 0.3200

205 picture size 475 x 475, pixel size 0.3200

206

207 test picture read

208 PET Brain Phantom

209 0.064 seconds used for processing command pict

210

211

212 <#> PROJECTION REAL

213

214 PET Brain Phantom

215

216

217 <#> spec mono 511

218 energy spectrum is monochromatic at energy level 511

219

220

221 <#> obje

222 description of objects

223 density at levels

224 numb type x-coord y-coord x-length y-length angle av dens 511

225

226 1 elip -7.0000 46.0000 3.0000 6.0000 17.0000 0.4845 0.4845

227 2 elip 7.0000 46.0000 3.0000 6.0000 -17.0000 0.5100 0.5100

228 3 rect -12.0000 64.0000 7.5000 4.5000 5.0000 0.5100 0.5100

229 4 rect 12.0000 64.0000 7.5000 4.5000 -5.0000 0.4845 0.4845

230 5 rect -38.0000 51.0000 3.5000 13.0000 -39.0000 0.4845 0.4845

231 6 rect 38.0000 51.0000 3.5000 13.0000 39.0000 0.5100 0.5100

232 7 rect -46.0000 24.0000 6.5000 6.0000 -18.0000 0.4845 0.4845

233 8 rect 46.0000 24.0000 6.5000 6.0000 18.0000 0.5100 0.5100

234 9 rect -49.0000 6.0000 2.5000 10.0000 63.0000 0.5100 0.5100

235 10 rect 49.0000 6.0000 2.5000 10.0000 -63.0000 0.4845 0.4845

236 11 rect -52.0000 -14.0000 9.0000 7.0000 -14.0000 0.4845 0.4845

237 12 rect 52.0000 -14.0000 9.0000 7.0000 14.0000 0.5100 0.5100

xv

A. Appendix A.4. SNARK14 Superiorization Output File

238 13 rect -10.0000 -56.0000 5.5000 10.0000 -1.0000 0.4845 0.4845

239 14 rect 10.0000 -56.0000 5.5000 10.0000 1.0000 0.5100 0.5100

240 15 elip -40.0000 -47.0000 9.0000 22.5000 48.0000 0.5100 0.5100

241 16 elip 40.0000 -47.0000 9.0000 22.5000 -48.0000 0.4845 0.4845

242 17 elip -8.0000 -22.0000 3.5000 15.5000 -9.0000 0.5100 0.5100

243 18 elip 8.0000 -22.0000 3.5000 15.5000 9.0000 0.4845 0.4845

244 19 elip -27.0000 -6.0000 5.5000 23.5000 -5.0000 0.4845 0.4845

245 20 elip 27.0000 -6.0000 5.5000 23.5000 5.0000 0.5100 0.5100

246 21 elip -25.0000 38.0000 6.5000 10.5000 -14.0000 0.5100 0.5100

247 22 elip 25.0000 38.0000 6.5000 10.5000 14.0000 0.4845 0.4845

248 23 rect -8.0000 32.0000 1.5000 6.5000 38.0000 0.5100 0.5100

249 24 rect 8.0000 32.0000 1.5000 6.5000 -38.0000 0.4845 0.4845

250 25 rect -8.0000 3.0000 1.0000 9.0000 -33.0000 0.4845 0.4845

251 26 rect 8.0000 3.0000 1.0000 9.0000 33.0000 0.5100 0.5100

252 27 elip 0.0000 0.0000 66.5000 74.0000 0.0000 0.5100 0.5100

253

254 scale factor multiplying object densities 0.5100

255

256 seed set to 1

257 inhomogeneity set to 0.0100

258

259 <#> rays aver 11

260

261 projection data are calculated by dividing each ray interval into 11 substrips

262

263 with aperture (substrip) weights 1 1 1 1 1 1 1 1 1 1 1

264

265

266 <#> geom

267

268

269 <#> dive arc source at 153.0000 det dist 306.0000

270 rays are divergent from point sources

271 source to origin distance 153.0000

272 the detectors lie on an arc with source to detector distance = 306.0000

273

274

275 <#> rays user 101 spacing 3.2000

276 number of rays per projection 101

277 snark computed number of rays 151

278 at detector spacing 3.2000

xvi

A. Appendix A.4. SNARK14 Superiorization Output File

279

280

281 <#> angl 300

282 total number of projections 300

283

284

285 projection angles

286 0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8

287 12.0 13.2 14.4 15.6 16.8 18.0 19.2 20.4 21.6 22.8

288 24.0 25.2 26.4 27.6 28.8 30.0 31.2 32.4 33.6 34.8

289 36.0 37.2 38.4 39.6 40.8 42.0 43.2 44.4 45.6 46.8

290 48.0 49.2 50.4 51.6 52.8 54.0 55.2 56.4 57.6 58.8

291 60.0 61.2 62.4 63.6 64.8 66.0 67.2 68.4 69.6 70.8

292 72.0 73.2 74.4 75.6 76.8 78.0 79.2 80.4 81.6 82.8

293 84.0 85.2 86.4 87.6 88.8 90.0 91.2 92.4 93.6 94.8

294 96.0 97.2 98.4 99.6 100.8 102.0 103.2 104.4 105.6 106.8

295 108.0 109.2 110.4 111.6 112.8 114.0 115.2 116.4 117.6 118.8

296 120.0 121.2 122.4 123.6 124.8 126.0 127.2 128.4 129.6 130.8

297 132.0 133.2 134.4 135.6 136.8 138.0 139.2 140.4 141.6 142.8

298 144.0 145.2 146.4 147.6 148.8 150.0 151.2 152.4 153.6 154.8

299 156.0 157.2 158.4 159.6 160.8 162.0 163.2 164.4 165.6 166.8

300 168.0 169.2 170.4 171.6 172.8 174.0 175.2 176.4 177.6 178.8

301 180.0 181.2 182.4 183.6 184.8 186.0 187.2 188.4 189.6 190.8

302 192.0 193.2 194.4 195.6 196.8 198.0 199.2 200.4 201.6 202.8

303 204.0 205.2 206.4 207.6 208.8 210.0 211.2 212.4 213.6 214.8

304 216.0 217.2 218.4 219.6 220.8 222.0 223.2 224.4 225.6 226.8

305 228.0 229.2 230.4 231.6 232.8 234.0 235.2 236.4 237.6 238.8

306 240.0 241.2 242.4 243.6 244.8 246.0 247.2 248.4 249.6 250.8

307 252.0 253.2 254.4 255.6 256.8 258.0 259.2 260.4 261.6 262.8

308 264.0 265.2 266.4 267.6 268.8 270.0 271.2 272.4 273.6 274.8

309 276.0 277.2 278.4 279.6 280.8 282.0 283.2 284.4 285.6 286.8

310 288.0 289.2 290.4 291.6 292.8 294.0 295.2 296.4 297.6 298.8

311 300.0 301.2 302.4 303.6 304.8 306.0 307.2 308.4 309.6 310.8

312 312.0 313.2 314.4 315.6 316.8 318.0 319.2 320.4 321.6 322.8

313 324.0 325.2 326.4 327.6 328.8 330.0 331.2 332.4 333.6 334.8

314 336.0 337.2 338.4 339.6 340.8 342.0 343.2 344.4 345.6 346.8

315 348.0 349.2 350.4 351.6 352.8 354.0 355.2 356.4 357.6 358.8

316

317 <#> meas nois

318 noise characteristics of projection data follow

319 nature characteristics

xvii

A. Appendix A.4. SNARK14 Superiorization Output File

320

321 <#> quan 1.0000 1.0000 cali 4

322 Emission tomography

323

324 <#> seed 0

325 seed for random number generator is 0

326

327

328 <#> back 0.0000

329 at levels

330 511

331 background absorption 0.0000

332

333 estimate of totlen = 4263169.769963

334 estimate of totden = 2022892.000000

335 estimate of average density = 0.4745

336 projection data read

337 PET Brain Phantom

338 0.012 seconds used for processing command proj

339

340

341 <*>

342

343 <#> STOP TERMINATION MLST RPRT

344 termination test mlst

345 reporting is enabled

346 reporting file: RPRTmlst

347 reporting on every iteration

348 0.000 seconds used for processing command stop

349

350

351 <#> EXECUTE AVERAGE EMAP

352

353 MLEM-STOP

354

355 <#> gamma is 0

356

357 ---

358

359 maximum a-posteriori probability expectation maximization

360

xviii

A. Appendix A.4. SNARK14 Superiorization Output File

361 gamma: 0.000

362 evaluation flag is not set

363

364 ---

365

366 algorithm executed in iteration 1

367 0.671 seconds for the execution of the algorithm

368 MLEM-STOP indicator function I(x)=3.89397

369 iteration 1 completed

370 1.308 seconds for this iteration

371 algorithm executed in iteration 2

372 0.402 seconds for the execution of the algorithm

373 MLEM-STOP indicator function I(x)=2.34063

374 iteration 2 completed

375 0.906 seconds for this iteration

376 algorithm executed in iteration 3

377 0.398 seconds for the execution of the algorithm

378 MLEM-STOP indicator function I(x)=1.69124

379 iteration 3 completed

380 0.869 seconds for this iteration

381 algorithm executed in iteration 4

382 0.400 seconds for the execution of the algorithm

383 MLEM-STOP indicator function I(x)=1.37882

384 iteration 4 completed

385 0.906 seconds for this iteration

386 algorithm executed in iteration 5

387 0.398 seconds for the execution of the algorithm

388 MLEM-STOP indicator function I(x)=1.20302

389 iteration 5 completed

390 0.869 seconds for this iteration

391 algorithm executed in iteration 6

392 0.401 seconds for the execution of the algorithm

393 MLEM-STOP indicator function I(x)=1.09042

394 iteration 6 completed

395 0.876 seconds for this iteration

396 algorithm executed in iteration 7

397 0.409 seconds for the execution of the algorithm

398 MLEM-STOP indicator function I(x)=1.01143

399 iteration 7 completed

400 0.913 seconds for this iteration

401 algorithm executed in iteration 8

xix

A. Appendix A.4. SNARK14 Superiorization Output File

402 0.394 seconds for the execution of the algorithm

403 MLEM-STOP indicator function I(x)=0.952455

404 reconstruction completed after iteration 8

405 0.911 seconds for this iteration

406 7.557 seconds for all iterations

407 7.615 seconds used for processing command exec

408

409

410 <*>

411

412 <#> STOP TERMINATION KLDS 22317.9 RPRT

413 termination test klds

414 reporting is enabled

415 reporting file: RPRTklds

416 reporting on every iteration

417 epsilon = 22317.9

418 0.000 seconds used for processing command stop

419

420

421 <#> SUPERIORIZE 32 0.995 1 TVAR ATL1 RPRT

422 Superiorization is enabled

423 N = 32

424 a = 0.995

425 b = 1

426 secondary criterion: tvar

427 alternative l handling 1 is enabled

428 reporting is enabled

429 reporting file: RPRTsuperiorization

430 reporting on every iteration

431 0.000 seconds used for processing command supe

432

433

434 <#> EXECUTE AVERAGE EMAP

435

436 Superiorized MLEM

437

438 <#> gamma is 0

439

440 ---

441

442 maximum a-posteriori probability expectation maximization

xx

A. Appendix A.4. SNARK14 Superiorization Output File

443

444 gamma: 0.000

445 evaluation flag is not set

446

447 ---

448

449 value of l: 31

450 value of phi before algorithm operator: 0

451 value of phi after algorithm operator: 6707.18

452 algorithm executed in iteration 1

453 1.149 seconds for the execution of the algorithm

454 current epsilon (KL distance) = 114652

455 iteration 1 completed

456 1.710 seconds for this iteration

457 value of l: 32

458 value of phi before algorithm operator: 749.921

459 value of phi after algorithm operator: 5151.06

460 algorithm executed in iteration 2

461 1.992 seconds for the execution of the algorithm

462 current epsilon (KL distance) = 80776.6

463 iteration 2 completed

464 2.557 seconds for this iteration

465 value of l: 33

466 value of phi before algorithm operator: 989.063

467 value of phi after algorithm operator: 4360.99

468 algorithm executed in iteration 3

469 2.001 seconds for the execution of the algorithm

470 current epsilon (KL distance) = 60523.2

471 iteration 3 completed

472 2.614 seconds for this iteration

473 value of l: 34

474 value of phi before algorithm operator: 1187.72

475 value of phi after algorithm operator: 3945.32

476 algorithm executed in iteration 4

477 1.994 seconds for the execution of the algorithm

478 current epsilon (KL distance) = 47545.2

479 iteration 4 completed

480 2.551 seconds for this iteration

481 value of l: 35

482 value of phi before algorithm operator: 1355.11

483 value of phi after algorithm operator: 3713.48

xxi

A. Appendix A.4. SNARK14 Superiorization Output File

484 algorithm executed in iteration 5

485 1.996 seconds for the execution of the algorithm

486 current epsilon (KL distance) = 38802.6

487 iteration 5 completed

488 2.584 seconds for this iteration

489 value of l: 36

490 value of phi before algorithm operator: 1499.08

491 value of phi after algorithm operator: 3590.35

492 algorithm executed in iteration 6

493 1.993 seconds for the execution of the algorithm

494 current epsilon (KL distance) = 32710.3

495 iteration 6 completed

496 2.573 seconds for this iteration

497 value of l: 37

498 value of phi before algorithm operator: 1619.26

499 value of phi after algorithm operator: 3522.23

500 algorithm executed in iteration 7

501 2.027 seconds for the execution of the algorithm

502 current epsilon (KL distance) = 28362.8

503 iteration 7 completed

504 2.599 seconds for this iteration

505 value of l: 38

506 value of phi before algorithm operator: 1715.84

507 value of phi after algorithm operator: 3489.84

508 algorithm executed in iteration 8

509 2.008 seconds for the execution of the algorithm

510 current epsilon (KL distance) = 25202.8

511 iteration 8 completed

512 2.567 seconds for this iteration

513 value of l: 39

514 value of phi before algorithm operator: 1798.18

515 value of phi after algorithm operator: 3477.95

516 algorithm executed in iteration 9

517 1.992 seconds for the execution of the algorithm

518 current epsilon (KL distance) = 22867.8

519 iteration 9 completed

520 2.555 seconds for this iteration

521 value of l: 40

522 value of phi before algorithm operator: 1869.26

523 value of phi after algorithm operator: 3481.67

524 algorithm executed in iteration 10

xxii

A. Appendix A.5. SNARK14 Superiorization Reporting Output File

525 2.009 seconds for the execution of the algorithm

526 current epsilon (KL distance) = 21115.4

527 reconstruction completed after iteration 10

528 2.539 seconds for this iteration

529 24.845 seconds for all iterations

530 24.904 seconds used for processing command exec

531

532 <#> END

Listing A.4: SNARK14 Superiorization Sample Output file

A.5. SNARK14 Superiorization Reporting Output File

1 Superiorization reporting output

2

3 iter l phi pre-algorithm phi post-algorithm

4 1 31 0.000000000 6707.180789787

5 2 32 749.921260409 5151.059263269

6 3 33 989.063049185 4360.991349264

7 4 34 1187.716484199 3945.318334612

8 5 35 1355.105774700 3713.484551323

9 6 36 1499.080846424 3590.349413698

10 7 37 1619.263389894 3522.231783623

11 8 38 1715.843384092 3489.841097489

12 9 39 1798.175901313 3477.946030854

13 10 40 1869.264190230 3481.667929164

Listing A.5: SNARK14 Superiorization Sample Reporting Output File

A.6. SNARK14 KLDS Reporting Output File

1 Kullback-Leibler distance stopping criterion reporting output

2

3 iter Kullback-Leibler distance

4 1 114652.268956247

5 2 80776.630516494

6 3 60523.230635785

7 4 47545.157451798

8 5 38802.595194905

xxiii

A. Appendix A.7. SNARK14 MLEM-STOP Reporting Output File

9 6 32710.322011602

10 7 28362.835216531

11 8 25202.838403171

12 9 22867.816715075

13 10 21115.387590195

Listing A.6: SNARK14 Sample KLDS Reporting Output File

A.7. SNARK14 MLEM-STOP Reporting Output File

1 MLEM-STOP indicator function I(x) reporting output

2

3 iter I(x)

4 1 3.893969199

5 2 2.340634531

6 3 1.691244617

7 4 1.378815104

8 5 1.203017996

9 6 1.090418350

10 7 1.011430281

11 8 0.952454964

Listing A.7: SNARK14 Sample MLEM-STOP Reporting Output File

xxiv

	Nomenclature
	Introduction
	Superiorization
	The Idea of Superiorization
	Constrained Optimization
	Constrained Optimization vs. Superiorization
	Problem Sets, Proximity Function and -compatibility
	Algorithms and Output
	Bounded Perturbation Resilience
	Secondary Optimization Criteria
	Non-ascending Vectors
	Superiorized Version of an Algorithm
	Non-ascending Vector Length Variation

	Target Software / Environment
	SNARK
	Purpose and History of SNARK
	The SNARK Framework
	Information Flow
	Commands
	Input and Output
	snarkInput
	snarkDisplay

	Reconstruction Algorithms
	User-Defined Extensions
	The SNARK Experimenter

	Development Environment
	Version Control / Collaboration
	Integrated Development Environment
	CentOS VirtualBox Virtual Machine

	Implementation
	Variable and Non-Variable Superiorization Constituents
	Adaptations for Implementation
	Ideal Approach
	Implementation in SNARK
	Command SUPERIORIZE
	Secondary Optimization Criteria
	Total Variation (Option TVAR)
	Smoothness (Option SMOO)
	User-Defined Criteria (Options SCR3, SCR4, SCR5)

	Non-Ascending Vectors
	Gradient for Total Variation
	Gradient for Smoothness

	Event Space for Superiorization
	Alternative Handling of the Variable l
	New Termination Criteria
	Kullback-Leibler Distance (Option KLDS)
	Residual (Option RESI)
	Weighted Squared Distance (Option WSQD)
	MLEM-STOP (Option MLST)

	New Figures of Merit
	Kullback-Leibler Distance (Option KLDS)
	Weighted Squared Distance (Option WSQD)

	The Class Superior
	Verbosity Options

	Verification and Application
	Recreating Previous Results
	Superiorization of ART and SART

	Conclusion and Outlook
	Bibliography
	Appendix
	SUPERIORIZE Command in EBNF
	STOP Command in EBNF
	SNARK14 Superiorization Input File
	SNARK14 Superiorization Output File
	SNARK14 Superiorization Reporting Output File
	SNARK14 KLDS Reporting Output File
	SNARK14 MLEM-STOP Reporting Output File

