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Abstract

The excitation properties of small sodium clusters are investigated
in the spherical jellium model. For sufficiently long wavelength and
not too small clusters the excitations are governed by collective modes
to a significant extent. In an intensive cooperation with Prof. Dr. Eric
Suraud (Toulouse), who was at a research stay at the University at
Buffalo, the importance of different finite size effects for the collective
modes was investigated. Especially the fragmentation of the collective
modes can be assigned to three different effects: the contribution of
unbound states, the lack of a well-defined wavenumber for the excita-
tions, and interactions with unperturbed particle hole states. The first
effect is not present for highly charged clusters, the last two can be
separated by a bosonic approximation to the RPA equation, which has
no more particle hole states. This approximation ignores the Fermi
statistics, but it turns out to describe the main excitation properties
at long wavelength quite well.

1 Preface

Most of the results of my investigations are published in chapter 5 of my PhD
thesis[4]. Some parts of this report are included there, and a more complete
collection of results can be found there as well.

2 Introduction

Systems consisting of a collection of a small number of atoms very often
exhibit properties that are very different from the properties of single atoms
and differ at the same time significantly from properties of the bulk material.
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Bulk properties appear normally only for large numbers of particles, but
special features like “magic numbers” appear in systems consisting of a small
number of atoms and are caused by the finite size of the system. These
properties offer new possibilities in the field of designing new materials. For
this purpose detailed understanding of the properties of such systems is of
course necessary.

Density Functional Theory (DFT) is a very popular method for describing
such collections of atoms in their ground state. The main advantage of DFT
is that it is relatively simple, both conceptually and numerically. For these
reasons DFT can also be applied to systems of moderate size, where more
advanced methods (like FHNC for example) are too complicated, or require
to much computer resources. Only ground-state properties are accessible
directly via DFT, but one can obtain information on excitation properties
from linear response theory building onto the ground-state results. There is
also a modified approach to DFT called Time Dependent Density Functional
Theory (TDDFT), which is capable of addressing excitations more directly.
While it is possible to calculate the ground-state properties of fully symme-
try broken sodium clusters in reasonable time, the excitation properties are
more complicated. For this reason the spherical jellium model was used for
the sodium clusters. Due to the strong electron delocalization in sodium
clusters, the jellium approximation is not too crude. The approximation for
the clusters to be spherical is only fulfilled for certain “magic” numbers of
electrons, therefore only these special sizes were considered for that purpose.

The original intention to introduce effective potentials from FHNC cal-
culations to describe many-particle effects for the excitations could not be
executed, because it turned out on short notice, that these potentials are not
available. Instead of this, some investigations regarding the behavior and
importance of collective modes were performed. The important collective
modes of jellium clusters, the surface (Mie) and the plasmon resonance, are
only weakly dependent on the Fermi statistics at long wavelength. Neglect-
ing Fermi statistics yields a type of Bogoljubov equation, that can be solved
much easier.

3 RPA in Jellium clustern

Linear response theory is used to describe the response of a system in a
stationary state (usually the ground-state) when a small external perturba-
tion is applied. Thus in principle one is interested in the solution of the
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time-dependent Schroedinger equation:

(Ĥ + δv(~r, t))|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉, (1)

where it is assumed, that the perturbation δv is the only time-dependent
term. It has to be time-dependent because it has to be turned on at some
finite time, and it should also be able to describe for example a laser pulse.

3.1 Time-Dependent-Hartree-Fock

Let us assume, that the unperturbed Hartree-Fock solution is known. That
means we have orbitals ψi fulfilling the Hartree-Fock equation:

ĤHFψi(~r) = εiψi(~r) (2)

and the Slater determinant |ψ0〉 of the N lowest eigenstates of this equation
solves (1) with δv = 0. For small perturbation one can make the ansatz:

|ψ〉 = exp

∑
ph

cph(t)a
†
pah

 |ψ0〉. (3)

Here and in the following it is assumed that the index p (p′, ...) always runs
over all unoccupied Hartree-Fock states, and h (h′, ...) over all occupied
ones (

∑
p =

∑∞
p=N+1 and

∑
h =

∑N
h=1). This ansatz actually means, that

the solution of the disturbed problem (1) can be written as a Slater deter-
minant of states, that are themselves linear combinations of the Hartee-Fock
eigenstates. The assumption for the solution to be a Slater determinant is
an approximation, for the disturbed as well as the undisturbed system, but
the second condition is always fulfilled, because the eigenstates of equation
(2) form an orthogonal basis to the entire Hilbert space. The fact that only
products of an unoccupied (called particle) and an occupied (called hole)
state appear in ansatz (3) is justified, because a combination within the oc-
cupied states only does not change the many particle ground-state, since it
drops out in the Slater determinant (see for example [5]). We will need the
density change for this ansatz later on:

ρ(~r, t) = 〈ψ|ρ̂|ψ〉 = 〈ψ0|ρ̂|ψ〉+ 〈ψ|ρ̂|ψ0〉+O(c2)

ρ̂ =
∑
ij

ψi(~r)ψ
∗
j (~r)a

†
jai

δρ(~r, t) =
∑
ihph

ψi(~r)ψ
∗
j (~r) 〈ψ0|a†jaia†pah|ψ0〉︸ ︷︷ ︸

=δipδjh

+c.c.+O(c2)

=
∑
ph

cphψp(~r)ψ
∗
h(~r) + c.c.+O(c2) (4)
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The lagrangian density which leads to (1) is:

L = 〈ψ|ih̄ ∂
∂t
− Ĥ|ψ〉 (5)

Inserting the ansatz (3) into the lagrangian density and expanding it up to
second order in the amplitudes cph(t) yields:

L({cph}, {c∗ph}) =
∑
ph

|cph(t)|2(εp − εh) +
∑
ph

(c∗ph(t)〈p|δv|h〉+ c.c.)

− i
h̄

2

∑
ph

ċph(t)c
∗
ph(t)− cph(t)ċ∗ph(t)

+
1

2

∑
php′h′

(
cph(t)cp′h′(t)〈pp′|V |h′h〉+ cph(t)c

∗
p′h′(t)〈ph′|V |p′h〉

+ c∗ph(t)cp′h′(t)〈hp′|V |h′p〉+ c∗ph(t)c
∗
p′h′(t)〈hh′|V |p′p〉

)
Now one can formulate the Euler-Lagrange equations, of which only one is
needed, the other is the complex conjugate:

d

dt

∂L

∂ċph
− ∂L

∂cph
= 0. (6)

The zeroth order term of the resulting equations is just the Hatree-Fock
equation (thus it contributes nothing), and the first order terms give the well
known TDHF(Time-Dependent-Hartree-Fock) equations, which are most con-
veniently fourier-transformed into frequency domain and written in a block-
matrix form: (

A B
B∗ A∗

)(
cph(ω)
c∗ph(−ω)

)
=

(
δvph(ω)
−δvph(−ω)

)
(7)

where the matrices are defined as:

Aph,p′h′ = (εp − εh)δph,p′h′ + 〈ph|V |p′h′〉a (8)

Bph,p′h′ = 〈pp′|V |hh′〉a

At this point it is about time to return to the actual situation of this work.
Up to now the derivation assumed, that the solutions to the Hartree-Fock
equation were known. However this work does not use the Hartree-Fock,
but the DFT method. One can alos use these equations for eigenstates and
energies obtained from DFT calculations, but one has to replace the explicit
exchange terms (denoted by |hh′〉a in equation (8) ) by the exchange corre-
lation potential used in DFT. It is actually necessary to do the same thing
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already in the zeroth-order terms, because the orbitals do fulfill the Kohn-
Sham equation, not the Hartree-Fock equation. This makes the equation
simpler, because using the additional assumption that all orbitals are real
(they can be chosen this way in DFT) the off-diagonal parts of the matrices
A and B become equal now and one can simplify the equations. By taking
the sum and the difference of these equations, the difference equation be-
comes diagonal, and inserting its solution into the other one gives a system
of equations with only half the size:

(D + 2M −D−1h̄2ω2)δρ = −2δv (9)

where:

Dph,p′h′ = A−B = (εp − εh)δph,p′h′ (10)

Mph,p′h′ = 〈ph|VC + fxc|p′h′〉 (11)

δρph = cph(ω) + c∗ph(−ω) (12)

δvph = 〈p|δv|h〉 (13)

and the density change is given by δρ(~r, ω) =
∑
ph δρph(ω)ψp(~r)ψh(~r) (fourier

transform equation (4) ). The same equation can also be derived completely
within the framework of DFT, which avoids the need to replace exchange
terms intuitively, see for example [3]. It is possible to solve equation (9)
directly as a matrix equation with a finite cutoff for the p range, or one can
reformulate it into coordinate space to obtain the well-known RPA equation.
For this purpose multiply the equations (9) by εp−εh

(εp−εh)2−ω2ψp(~r)ψh(~r) and take

the sum over all ph pairs.

0 =
∑
ph

εp − εh
(εp − εh)2 − ω2

ψp(~r)ψh(~r)

(
εp − εh −

h̄2ω2

εp − εh

)
δρph

+ 2
∑
ph

εp − εh
(εp − εh)2 − ω2

ψp(~r)ψh(~r)
∑
p′h′
〈ph|V |p′h′〉δρp′h′

+ 2
∑
ph

εp − εh
(εp − εh)2 − ω2

ψp(~r)ψh(~r)〈p|δv|h〉

=
∑
ph

εp − εh
(εp − εh)2 − ω2

(
εp − εh −

h̄2ω2

εp − εh

)
︸ ︷︷ ︸

=1

δρphψp(~r)ψh(~r)︸ ︷︷ ︸
→δρ(~r,ω)

+
∫

2
∑
ph

ph
εp − εh

(εp − εh)2 − ω2
ψp(~r)ψh(~r)ψp(~r

′)ψh(~r
′)

︸ ︷︷ ︸
=−χ0(~r,~r′,ω)

V (~r′, ~r′′)
∑
p′h′

ψp′(~r)ψh′(~r
′′)δρp′h′︸ ︷︷ ︸

=δρ(~r′′,ω)

d~r′d~r′′
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+
∫

2
∑
ph

εp − εh
(εp − εh)2 − ω2

ψp(~r)ψh(~r)ψp(~r
′)ψh(~r

′)

︸ ︷︷ ︸
=−χ0(~r,~r′,ω)

δv(~r′)d~r′

= δρ− χ0V δρ− χ0δv

This is just a different notation for the usual formula

χ =
χ0

1− V χ0

. (14)

If one does not want to calculate χ directly, but only searches for its resonance
modes, that is energies ωi and functions fi(~r) such that χ(ωi)fi = +∞, it is
sufficient to search zeros of the denominator:

χ0V f = f (15)

This gives the correct resonance energies, for the resonance modes one has to
be careful how to normalize them, since (15) corresponds to finding an eigen-
value equal to 1 for a non-symmetric matrix in dependence of the parameter
ω.

3.2 Structure factor

The static structure factor is defined via the fourier-transform of the pair
density as:

S(~k) = 1 +
1

N

∫
(ρ2(~r, ~r′)− ρ(~r)ρ(~r′)) ei

~k(~r1−~r2)d~r1d~r2 (16)

Alternatively it can be obtained by integrating the dynamic structure factor
over all positive energies, where the latter is defined by:

S(~k, w) =
−1

Nπ

∫
Im(χ(~r, ~r′, ω))ei

~k(~r1−~r2)d~r1d~r2 (17)

It is also possible to express it directly from the resonance modes and energies,
but one has to take care for the proper normalization. The result is:

S(~k, ω) =
1

N

∑
i

∣∣∣∣∫ fi(~r)e
i~k~rd~r

∣∣∣∣2 δ(ω − ωi) (18)

The dynamic structure factor is found to fulfill several non-trivial condi-
tions, called (energy weighted) sumrules, which are expressed by moments of
the distribution (with respect to ω):

S(i) =
∫ ∞

0
ωiS(~k, ω)dω. (19)
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The most important ones are probably the case i = 1 and i = 0. In the
case i = 1 the left side of the condition can be calculated analytically and
yields just k2, the case i = 0 can be understood as being the connection
between equation (16) and (17). The ω0 sumrule is fulfilled for the Kohn-
Sham states (that is χ0), for RPA it is the definition of S(k) because there
is no new pair density defined. It can be used as a measure for the qual-
ity of the RPA approximation, if S(k) is known for the interacting system
from experiments, or better ground-state methods (like Monte Carlo), where
realistic pair distributions can be obtained. The ω1 sumrule can easily be
proved, by considering the expectation value of a double commutator in the
many-particle ground-state:

〈0|[Q, [H,Q†]]|0〉 = 〈0|QHQ† −HQ†Q−QQ†H +Q†HQ|0〉 (20)

=
∑
i

(
〈0|Q|i〉〈i|HQ†|0〉 − 〈0|HQ†|i〉〈i|Q|0〉 (21)

− 〈0|Q|i〉〈i|Q†H〉+ 〈0|Q†|i〉〈i|HQ|0〉
)

(22)

= 2
∑
i

(Ei − E0) |〈0|Q|i〉|2 , (23)

where a complete set of eigenstates of H was inserted in the second step. On
the other hand, for local operators Q only the kinetic energy does contribute
to the commutator and thus we have:

[Q, [∇2, Q†]] = Q∇2Q† −∇2QQ† −QQ†∇2 +Q†∇2Q (24)

Q∇2Q† = Q(∇2Q†)︸ ︷︷ ︸
A

+QQ†∇2︸ ︷︷ ︸
B

+ 2Q(∇Q†)∇︸ ︷︷ ︸
C

(25)

Q†∇2Q = A† +B + C† (26)

−∇2QQ† = −(∇2Q†)Q︸ ︷︷ ︸
−A

−(∇2Q)Q†︸ ︷︷ ︸
−A†

−QQ†∇2︸ ︷︷ ︸
−B

(27)

− 2(∇Q)(∇Q†)︸ ︷︷ ︸
D

−2Q†(∇Q)∇︸ ︷︷ ︸
−C†

−2Q(∇Q†)∇︸ ︷︷ ︸
−C

(28)

−QQ†∇2 = −B (29)[
Q,
[
∇2, Q†

]]
= −2|∇Q|2 (30)

(31)

Combination of both results yields:〈
0

∣∣∣∣∣ h̄
2

2m
|∇Q|2

∣∣∣∣∣ 0
〉

=
∑
i

(Ei − E0)|〈0|Q|i〉|2, (32)

7



and if one choses Q as a simple plane wave Q = ei
~k~r, one obtains:

h̄2k2

2m
N =

∑
i

ωi
∣∣∣〈0|ei~k~r|i〉∣∣∣2 (33)

The right side is the dynamic structure factor, but it is defined with 1
N

in

equation (17), and the factor h̄2

2m
is conveniently used to define the energy

unit, leaving k2 as the result for this sumrule.

3.3 Symmetry and analytical properties

One can obtain some understanding of important features of the response
function and the structure factor, by inspecting highly symmetric cases,
where analytical results can be obtained. The strongest possible symme-
try is the total translation invariance of the homogeneous electron gas. In
this case the response function in RPA can be written down analytically. The
results for this case are well-known, and are not the interest of this work, but
it will be useful to recall some of them. From simple energy and momentum
conservation it follows, that the entire weight in the noninteracting dynamic
structure factor must lie in an area defined by h̄2

2m
(k2 − 2k · kF ) ≤ h̄ω ≤

h̄2

2m
(k2 + 2k · kF ). In the interacting case one additional excitation appears,

which has a finite energy for k = 0. This excitation is called the plasmon, and
although resulting from a quantum theory it resembles classical oscillations

within a homogeneous plasma at the frequency ωp =
√

4πρe2

me
. One possibility

to obtain the plasmon is to search for a solution of equation (15) with the
property, that ω � εp − εh for all p and h that contribute to this mode. (In
the homogeneous system this condition is easily met in k-space.) We will do
this approximation for a general system at first:

χ0(~r, ~r′, ω) =
∑
ph

2(εp − εh)
ω2

ϕp(~r)ϕh(~r)ϕp(~r
′)ϕh(~r

′)

=
2

ω2

(∑
p

ϕp(~r)εpϕp(~r
′)
∑
h

ϕh(~r)ϕh(~r
′)−

∑
p

ϕp(~r)ϕp(~r
′)
∑
h

ϕh(~r)εhϕh(~r
′)

)

Now we can use the completeness relation
∑
i ϕi(~r)ϕi(~r

′) = δ(~r − ~r′) for the
second p sum. The rest term then extends the first p sum to a sum over all
states. Furthermore the ϕi are eigenstates of the KS Hamiltonian, whose only
nonlocal term is the kinetic energy. The local contributions are cancelled out
between the two terms. Then we have:

χ0(~r, ~r′, ω) =
2

ω2

(∑
h

ϕh(~r)ϕh(~r
′)
∑
p

ϕi(~r
′)Ĥϕi(~r)− δ(~r − ~r′)

∑
h

ϕh(~r
′)Ĥϕh(~r)

)

8



=
−h̄2

mh̄2ω2

(∑
h

ϕh(~r)ϕh(~r
′)∇2δ(~r − ~r′)− δ(~r − ~r′)

∑
h

ϕh(~r
′)∇2ϕh(~r)

)

=
−1

mω2
~∇ρ~∇

In the last step χ0 was transformed from an integral operator into a differ-
ential one, the easiest way to verify this is to apply both to some arbitrary
function f :

∫
χ0(~r, ~r′, ω)f(~r′)d~r′ =

−1

mω2

(∑
h

ϕh(~r)
∫
ϕh(~r

′)f(~r′)∇′2δ(~r − ~r′)d~r′

−
∑
h

ϕh(~r)f(~r)∇2ϕh(~r)

)

=
∑
h

−1

mω2

(∑
h

ϕh(~r)∇2(ϕh(~r)f(~r))−
∑
h

(~r)f(~r)∇2ϕh(~r)

)

=
∑
h

−1

mω2

∑
h

ϕh(~r)
(
ϕh(~r)∇2f(~r) + 2~∇ϕh(~r)~∇f(~r)

)
=

−1

mω2

(
ρ∇2f(~r) + ~∇ρ(~r)~∇f(~r)

)
=
−1

mω2
(~∇ρ~∇)f(~r)

We insert this approximation of χ0 into the adjoint equation to (15),
which will yield the same resonance energies, but a different normalization
for the modes:

−1

mω2

∫
V (~r, ~r′)~∇′ρ(~r′)~∇′f(~r′)d~r′ = f(~r) (34)

To obtain the plasmon in the homogeneous electron gas, we set ρ constant
and fourier-transform the equation, using the convolution property and the
known fourier-transform of the Coulomb potential. The exchange correlation
correction from DFT is constant with respect to k and does not contribute
to the limit k → 0.

ω2f(~k) =
−ρ
m

4πe2

k2
(−k2)f(~k) = ω2

pf(~k) (35)

Equation (34) can also be used to determine collective modes for a spherical
system with homogeneous density inside, that is ρ(~r) = ρ0θ(R − |~r|). For
this purpose we need to insert the partial waves expansion of the Coulomb
potential V (|~r − ~r′|) =

∑∞
l=0 Vl(r, r

′)Pl(cos(θ)), where θ is the angle between

the vectors ~r and ~r′ and Vl(r, r
′) = min(r,r′)l

max(r,r′)l+1 , and make the ansatz that f is
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proportional to a spherical harmonic. Then we get:

ω2Ylm(Ω)f(r) =
∫ ∑

l′

4π

2l′ + 1
Vl′(r, r

′)Yl′m′(Ω)Y ∗l′m′(Ω
′)r′2 (36)

×
(
dρ

dr′
df

dr′
Ylm(Ω′) + ρ(r′)∇2Ylm(Ω′)f(r′)

)
dΩ′dr′

The laplacian operator applied on the spherical harmonic yields: 1
r
∂2

∂r2
(rf(r))+

l(l+1)
r2

f(r) and then the Ω′ integration disappears by orthonormality of the
Ylm. This gives the equation:

ω2f(r) =
∫ 4π

2l + 1
Vl(r, r

′)r′2
(
dρ

dr′
d

dr′
+
ρ(r′)

r′
d2

dr′2
r′ + ρ(r′)

l(l + 1)

r′2

)
f(r′)dr′

(37)
In the case of the Coulomb potential and a pure step-function density, this
equation has the analytical solution:

f(r) =

{
rl

Rl
r < R

Rl+1

rl+1 r > R
(38)

together with the resonance energy ω2 = l
2l+1

ω2
p. In the case l = 1 this is

called the Mie resonance. The Mie energy ωMie can also be derived in other
ways, either by constructing ratios of sumrules, or classically for dielectric
spheres. It is therefore reasonable (and in agreement with lots of experiments)
to assume, that this type of mode does appear in real clusters despite the fact,
that no real cluster can have a step-function like electron density, because any
solution to the Schroedinger equation is always continuous (and continuously
differentiable for any potential without δ(~r) like contributions). Furthermore
it seems reasonable, that in a cluster of sufficient size also the plasmon should
appear in some form, because the interior is quite homogeneous and the
surface becomes less important with size. Equation (35) does only yield the
plasmon for arbitrary k value, as long as the particle-hole band energies are
negligible. It turns out, that the plasmon has a weak k2 dispersion, the
details can be found for example in [2], the result is:

ω(k) = ωp(1 +
0.9

0.66rsk2
F

k2 +O(k4)) (39)

The dispersion behavior is important, because in a finite system it is impos-
sible to have an excitation with a wavelength above the system size, thus
k > 2π

R
. One could argue that one should use the diameter or maybe the cir-

cumference rather than the radius, but this gives a factor 2π at most. Thus
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it does not make sense to consider the k = 0 case for any excitation (col-
lective or not). If the behavior at small k is of interest, one has to consider

limk→0

(
1
k2
S(k)

)
.

4 First results

In figure 1 the dipole contribution to the dynamic structure factor is shown
for a cluster consisting of 92 sodium atoms. The Mie resonance is visible
clearly, and there is also some signal from the volume plasmon, but it ap-
pears only at higher k and strongly fragmented. The Mie resonance is quite
well-defined, but there is a broad range of excitations in between the Mie

Figure 1: Dynamic structure factor (dipole only) for the cluster Na92. The
bulk plasmon, the Mie energy and the particle hole band are shown by red
lines.
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Figure 2: Dynamic structure factor (dipole only) for the cluster Na6+
98 . The

bulk plasmon, the Mie energy and the particle hole band are shown by red
lines.

resonance (or surface plasmon) and the volume plasmon. This is a contin-
uum effect, because the ionization potential of these clusters (within DFT,
which may not be very accurate) is only 2.4eV. In order to understand the
nature of this behavior better, a highly charged version of the same cluster
was considered. Due to the charge, the ionization potential is increased, and
the collective excitations are bound now. In figure 2 the broad area of ex-
citations between the collective modes is collapsed into a single mode, and
the Mie resonance is very sharp, but the plasmon is not. For qualitative
statements it is advantageous to consider cuts at fixed k values through the
dynamic structure factor. There was also an alternative way to calculate the
exciations by Time-Dependent Density Functional Theory (TDDFT), which
was provided by Prof. Eric Suraud. The comparison for both methods in
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Figure 3: Vertical cuts through the dynamic structure factor for the clusters
Na92 (left) and Na6+

98 (right) at different k values. The red line (LDA) shows
the same data as in figures 1 and 2, the blue line (TDLDA) is a comparison
provided by Prof. Eric Suraud.

figure 3 works quite well, therefore the fragmentation found for the volume
plasmon seems to be more than just a method problem.

As a next step the collective approximation (37) was applied to identify
the reason for the fragmentation in the plasmon. However for numeric appli-
cations this equation is not optimal, because it has a lot of additional (but
uninteresting) solutions in the energy range of interest, and it is thus difficult
to properly identify the collective modes. Instead of this an approximation
by charged bosons was attempted.

5 Boson approximation

The difficulties in solving the RPA equation directly can be accounted to the
fermionic nature of electrons. In the case, that effects of Fermi statistics are
negligible, this equation can be put into a much simpler form. Of course one
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can hardly judge whether the Fermi statistics are important for certain prop-
erties of a system, or not, beforehand, but one can use a simple system (like
a spherical cluster for example) as a test case and hope, that the importance
of Fermi statistics will not increase too much, when geometric symmetry is
reduced. Consider the non-interacting response function:

χ0(~r, ~r′, ω) =
∑
ph

−2(εp − εh)
(εp − εh)2 − ω2

ϕp(~r)ϕh(~r)ϕp(~r
′)ϕh(~r

′) (40)

and assume, that the system is in a bosonic state, that is only one occupied
state exists. Then one can either eliminate the sum over h in favor of a factor
N , or just assume that εh = ε0 is independent of h. The same argument
applied to ϕh, gives for the density ρ(~r) =

∑
h |ϕh(~r)|2 and thus ϕ0(~r) =√

ρ(~r)/N . Then we have for the response function:

χ0(~r, ~r′, ω) = −2
∑
p

(εp − ε0)

(εp − ε0)2 − ω2
ϕp(~r)ϕp(~r

′)︸ ︷︷ ︸
=

Ĥ−ε0
(Ĥ−ε0)2−ω2

(~r,~r′)

∑
h

ϕh(~r)ϕh(~r
′)︸ ︷︷ ︸

=
√
ρ(~r)ρ(~r′)

(41)

The first replacement is obtained from the spectral representation of the
operator Ĥ− ε0, because the ϕi are the eigenstates of the Hamiltonian Ĥ (in
the current setting the KS Hamiltonian, but this is not important) and form
an orthogonal basis. The contribution of the first (i.e. the only occupied)
state is missing in (41), but it is zero anyway. The second replacement is a
direct consequence of inserting the density, note that this also absorbs the
factor N due to the different normalization of ρ.

For the next step it is convenient to get rid of the potential terms in Ĥ
in favor of the density.

Ĥϕi = (T̂ + V )ϕi = εiϕi (42)

where T̂ is the kinetic energy, and V includes both external and Hartree
potential (and exchange correlation for DFT). From the equation for the
first state (i = 0) we have:

V =
1

ϕ0

(ε0 − T̂ )ϕ0 (43)

Inserting this into the operator we need, Ĥ − ε0, yields a very simple form:

Ĥ ′ = Ĥ − ε0 = T̂ −
T̂
√
ρ

√
ρ

(44)
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Now consider equation (15) with χ0 from (41) and Ĥ ′:

−2
√
ρ

Ĥ ′

Ĥ ′2 − ω2

√
ρV f = f (45)

We need to apply the operator (Ĥ ′2 − ω2) 1√
ρ

from the left to get rid of the

inverse operator, then we insert f =
√
ρg:

−2Ĥ ′
√
ρV f = (Ĥ ′2 − ω2)

1
√
ρ
f

−2Ĥ ′
√
ρV
√
ρ︸ ︷︷ ︸

=V ′

g − Ĥ ′2g = −ω2g

Ĥ ′(Ĥ ′ + 2V ′)g = ω2g

This leads to the equation:

Ĥ ′(Ĥ ′ + 2V ′)g = h̄2ω2g (46)

This equation has been used to investigate excitations in bosonic quantum
systems, for example in [1]. In the case of fermions it can be considered a
weaker approximation, than the collective approximation (37), because one
can still get (37) from (46) by neglecting the Ĥ2-term. Thus it is not sur-
prising, that the Bose equation does yield the same plasmon as the collective
one, however the dispersion relation at finite k is different:

ω(k) =
√
ω2
p + k4. (47)

This can be proved easily by fourier transforming equation (46), whereas the
dispersion relation of a homogeneous (electron) system is indeed dependent
on the Fermi statistics[2] and more complicated to find.

6 Boson Results

The solution of the bosonic approximation tho the RPA equation offers two
possible benefits. First it gives some insight into the origin of the fragmen-
tation seen in the plasmon excitation. Second the results suggest, that the
bosonic approximation gives a reasonable description of the main features of
the dynamic structure factor at long wavelength. However (46) is numeri-
cally much simpler than (14), and could also be applied to clusters beyond
the jellium model in the future.
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Figure 4: Dynamic structure factor for the cluster Na92. Both the dipole
channel (top) and the angular momentum sum (bottom) are displayed for
the RPA equation (left) and the bosonic approximation (right). The blue
lines show the particle hole band boundaries, the red ones the collective
excitations.

The results for the bosonic approximation and the RPA equation are
shown in figures 4 and 5 for the same cluster as before, but now the sum
over all angular momenta is also included. The long wavelength limit is
described well by the dipole channel alone, but for finite wavelength more
angular momenta are needed. Figure 6 shows again some vertical cuts for
the dynamic structure factor at different k values, now making a comparison
between the Bose approximation and the RPA. The same data for a broader
range of sizes can be found in my PhD thesis[4].
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Figure 5: Dynamic structure factor for the cluster Na6+
98 . Both the dipole

channel (top) and the angular momentum sum (bottom) are displayed for
the RPA equation (left) and the bosonic approximation (right). The blue
lines show the particle hole band boundaries, the red ones the collective
excitations.

The Bose approximation reveals, that at least a certain part of the frag-
mentation seen in the collective modes is a discrete dispersion effect. Due
to the finite size of the cluster, all resonance modes have a certain width in
the k direction, and then modes with their maximum at different k do over-
lap. This causes the impression of a mode splitting, when they have different
energies. The detailed effects and their size dependence can again be found
in [4]. The RPA does have a stronger dispersion, which makes the splitting
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Figure 6: Cuts through dynamic structure factor for the neutral cluster Na92

(above) and the charged version Na6+
98 (below). Theoretical values for collec-

tive excitations are shown by vertical lines.
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more prominent. Furthermore the plasmon is disturbed upon entering the
particle hole band, which is no surprise, since it happens in the homogeneous
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system as well, but contributes to the fragmentation as well.

7 Conclusion

In principle the classical collective excitations of a homogeneous sphere can be
found in sodium clusters (within the jellium model). The volume excitation
is not present for very small clusters and subject to strong fragmentation,
which has several sources. The plasmon energy is much higher than the
ionization potential, thus there are a lot of unbound states contributing to
the plasmon. Furthermore the finite size of the clusters leads to a broad shape
of all modes in k space, which causes some broadening in combination with
the dispersion behavior. And at last the plasmon as well as the Mie resonance
appear quite close to the particle hole band, which introduces some splitting
due to the unperturbed ph states. To separate the last two effects a bosonic
approximation to the RPA equation was used, which has no particle hole
band, but a dispersion relation. This approximation turns out to describe
the long wavelength excitations of these clusters quite accurate (up to about
k = 0.3a−1

B ), except for a small energy shift, which seems to be exactly
the difference in the plasmon dispersion behavior and can be compensated
easily. For this reason it may be interesting to apply this Bose equation to
fully symmetry broken cluster models in the future.
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