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1.  Introduction 

Today, scientific research faces many challenges that prevent researchers from working 

with big data efficiently and effectively. Computer science is highly recognized for relieving 

such challenges in genetic research. As a result of its developed importance in the research 

world, there is an increased demand for suitable software solutions to attend scientist’s needs. 

However, the cost of storing, processing and moving data, generated by next generation 

sequencing (NGS), limits scientists analyzing it on a current computer in the lab. Due to the 

dramatic downfall in costs of NGS data generation, the growth of such ’big data’ results in a 

much longer run-time for available programs, which often can’t even run due to the lack of 

computer resources. This increased demand of resources pushes computer scientists to further 

develop new methods to circumvent these limitations in today’s programs. 

The Apache Software Foundation’s framework Hadoop is one approach based on 

Google’s MapReduce paradigm to provide the needed computing power, allowing the 

development of reliable, expandable and parallel computing. The framework allows the 

processing of large scale data among a cluster of computers. Hadoop is becoming constantly 

more popular in Bioinformatics for processing and analyzing an extensive amount of data. For 

example, Hadoop is used in mapping NGS data to the human genome as well as matching strings 

in a large genotype file which would normally take a significant amount of time on a single 

computer. For example, the software system Cloudgene [7], which has been developed at my 

visiting institute (Innsbruck Medical University, IMU) in cooperation with the Institute of 

Computer Science, Research group Databases and Information Systems at the University of 

Innsbruck, uses the Hadoop framework to execute MapReduce workflows graphically and 

simplify the data management with the distributed file system HDFS. One important feature of 

this system is that new use cases can be integrated easily. 

One of the goals of my project was to recognize why Hadoop can be important in 

Genetics and get familiar with its overall architecture. As a first use case, the so called “Inverted 

Index” was adapted to the MapReduce programming model and was executed on command line. 

In a next step, this use case was integrated into Cloudgene. The second task of this project was 

then to implement a genetic use case to create statistics using NGS data based on Hadoop 

MapReduce. This has been first developed together with the researchers from the University of 

Innsbruck and has been then integrated into Cloudgene. The genetic application generates 
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statistics on NGS data in a massive parallel way. This work starts with an introduction into Big 

Data and MapReduce. Moreover, it describes the implementation details of the inverted index 

and shows the produced NGS statistics.  

 

2. Big Data and MapReduce 
Big data centers like Google demonstrated successfully that for data-intensive applications based 

on MapReduce a large number of commodity hardware is sufficient in order to achieve 

equivalent results. Such a low budget cluster consists of hundreds and even thousands of 

machines, which are used to solve the problem in parallel. This section gives an overview on 

MapReduce and describes the idea behind this parallel programming model. 

2.1. What is Big Data? 

It is generally understood by most people that ‘Big Data’ is composed of large datasets that could 

be no longer managed by standard processing methods. As a matter of fact, big data is defined as 

data sets too large and complex to be operated by any standard method or apparatus. Big data is 

not only limited to numerical values. It also consists of informational research such as records 

obtained in human genetics. Vivien Marx, a technology editor, states that the European 

Molecular Biology Laboratory in Hinxton, United Kingdom holds one of the largest biological-

data repositories currently storing 20 petabytes of data and backups about genes, proteins, and 

small molecules [5]. Genomic data, which includes recombinant DNA and DNA sequence 

methods, already utilizes two of the twenty petabytes and doubles every year as shown in Figure 

2.1 [5]: 
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Figure 2.1: Data Explosion [5]: This figure shows the exponential growth in data use and the 

increased demand for various alternatives of storing big data in most institutions. 
 

Currently, Marx emphasizes that novel research gives particular importance and dependence on 

data manipulation in order to push it forward. Many researchers are starting to explore and 

handle big datasets, however, they encounter many difficulties in processing and moving such 

information. Ewan Birney, an associate director at the European Bioinformatics Institute, (EBI) 

stated that “biology data mining has challenges of its own” and most biologists would agree that 

this is a valid statement to make. Biological data has the ability to encompass a wide range of 

experiments that divide out into many types of information including but not limited to genetic 

sequences, the interactions of proteins, or simply finding medical information [5].  

 

For analyzing data, two aspects are crucial in the area of bioinformatics: (1) Parallelization of 

data and (2) the usability of developed applications for domain experts. Especially due to the 

huge amount of data, a scalable approach on analyzing this data is necessary. For that, the focus 

has been set on Hadoop MapReduce. To improve the usability of implemented use cases, the 

novel workflow system Cloudgene (http://cloudgene.uibk.ac.at) has been developed at IMU. 
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Figure .2.2: Cost per Genome [8] 

 

Figure 2.2 [8]: shows a simple relationship between the costs of generating genome sequences 

from 2001 until now and the development of computing hardware (Moore’s law). As one could 

tell by the graph, costs for sequencing genomes are falling exponentially, compared to Moore’s 

law, showing here that transistor costs halves approximately every two years. If the cost 

diminishes, this essentially means that more Institutes will be able to afford the sequencing of 

human genomes. This essentially means the amount of data is growing exponentially and the 

need of managing and analyzing this data is crucial. 
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2.2. What is MapReduce? 

MapReduce is generally defined as a programming model for processing and generating large 

sets of data [2]. The user specifies a map function that takes a so called key/value pair as an input 

to generate a set of intermediate key/value-pairs (see Figure 2.3). Then, the reducer function 

merges all of the intermediate values associated with the same intermediate key [2]. 

 

In detail, input data can be given by a list of records or words that are represented by (key, value) 

pairs, as shown in Figure 2.3. There are two phases in MapReduce, the “Map” phase and the 

“Reduce” phase. First, the data is distributed and processed independently from other data items 

between different nodes called, “mappers.” These mappers are represented by the rectangular 

figures under the “Map” column. Next, the mapper outputs intermediate (key, value) pairs which 

then enter the “Reduce” phase, represent by the “Reduce” column. The data having the same key 

(word) are bundled together and processed into the same node which is done by the “reducer.” 

The reducer then combines different values with the same key into nodes and sums up the 

intermediate results from the mapper. The results are then put into the distributed file system. 

 

The programs written using this model are automatically parallelized, since the mapper- and 

reducer-functions can be executed in parallel among a cluster of machines [2]. It functions 

primarily on the principle that large problems can be divided into smaller ones. To explain the 

functionality of MapReduce in richer detail, a tutorial how to create an inverted index will be 

introduced (see section 3.1). 
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Figure 2.3, MapReduce Overview Diagram [3]   

 

2.3. Apache Hadoop 

Apache Hadoop is a popular open-source framework used to process large sets of data that are 

sent across a cluster of computers using the MapReduce programming model [1]. The framework 

of Hadoop is designed to work on thousands of machines and provides high availability. 

Depending on the number of machines, the more machines there are in a cluster, it is more likely 

a machine node in the cluster would fail. Thus, the library itself is designed to monitor and 

handle failures at the application layer. Delivering a highly available service on top of a cluster 

of computers may be more prone to failures [1]. The architecture of Apache Hadoop consists of 

two core components, which are needed to implement a MapReduce use case: 

2.3.1. Hadoop Distributed File System (HDFS)  
The ‘Hadoop HDFS’ is a distributed file system, which is used to store datasets among all nodes 

in a cluster. This is absolutely necessary when trying to run a MapReduce program. The design 

of HDFS was meant to perform on commodity hardware, having much higher fault rate 
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compared to expensive server systems [1]. Something amazing about HDFS is being very 

reliable by providing the needed fault-tolerance, which means being able to operate during a 

failure of a machine. Moreover, the design of HDFS therefore enables itself to operate on such 

low-cost hardware and provides high throughput access for applications that process large data 

sets. 

2.3.2. Hadoop MapReduce (MRv1) or YARN (MRv2) 

Since the introduction of YARN, in MapReduce 2.0, further processing libraries (e.g. for 

streaming data) are included as well in the Hadoop framework. In this project, the focus lies on 

the MapReduce library (MRv1), which builds an ideal candidate to process data from the 

inverted index and NGS data.  

2.4 Limitations of MapReduce 

The MapReduce library is an ideal candidate for batch processing large amount of data. For 

interactive analysis or working with graph data, MapReduce is not a natural fit. Therefore, 

Hadoop provides with YARN a way to separate the processing engine and resource manager and 

integrates different processing engines. For example it includes the graph processing engine for 

graph data or Spark for in-memory processing. 

 

3. Inverted Index 
A first use case that utilizes and incorporates the functionality of MapReduce is the Inverted 

Index. An Inverted Index is a structure most commonly used by search engines and databases to 

research terms from files or documents [4]. A fully inverted index will let you know not only 

what documents the term is included in, but also the location of the file itself [4]. The next 

section displays the basic steps on how to implement the inverted index with Java using the 

Hadoop MapReduce framework.  

3.1. Implementation 

The certain use case I am using for this tutorial on how to use MapReduce is an ‘Inverted Index’. 

The inverted index is a structure that mapped out contents such as words or numbers to its 

location in the database file or in a document or set of documents. The inverted index was 

modified to simply keep count of repeating words and assign its appropriate quantitative number 
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to the word. To understand how the implementation of the Inverted Index works, I will explain in 

the detail the mapper and reducer class. 

 

Mapper 
The Mapper class of the Inverted Index (TokenizerMapper) receives as an input a key value pair 

(Object key, Text value). Here, the value includes one input line of the overall HDFS input. This 

can be for example a line of a log file of a search engine. For each line, new key/value pairs are 

generated. This is achieved by splitting the line after each token. The token describes a word and 

defines the new value. As a key (the split level), the document name is used. The interface to the 

MapReduce library is established with a context.write call. 

 

 
 

Reducer 
As an input to the reducer (“IntSumReducer”), all values (all words) for a specific document are 

provided. The goal of the Inverted Index is to provide a list of terms with all documents, which 

they are appearing in. For that, we define a new list, iterate over all values and add all values to 

this list. Again, as a final output, the keys (terms) and the lists are written to the HDFS 

(context.write). 
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3.2. Executing the Inverted Index via the command line 

First, I made two text files to use as data in the program.  
 

Next, I put the two local text files into the HDFS file system like shown: 
 

 
 

Throughout all of the commands having to be executed, next the MapReduce Program is 

executed: 

 

 
 

Now the processing with MapReduce starts. For that, the input is automatically distributed on all 

available cluster nodes and the map and reduce function is executed.  

 

Finally, once the Inverted Index processed the data, the last step is to export the data to the local 

file system: 
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(calc = HDFS folder / calculations = New local folder)  
 

The output of the inverted index includes the term and the documents in which this term is 

included: 

 

For example the output line “innsbruck - innsbruck.ac.at, austria.gov, cloudgene.uibk.ac.at” 

means that the term Innsbruck is included in three different websites.  

3.3. Evaluation 

Executing a MapReduce program for researchers in Genetics can be quite complicated. For 

them, tasks are very redundant, tedious, and complicated. For example, the user has to (1) 

connect to a Hadoop MapReduce cluster, (2) import data into the HDFS (in our case log data), 

(3) executing the use case on the command line and (4) download data to the local workstation. 

The knowledge the user needs in order to execute such a program would have to be fairly 

advanced in computer science, thus preventing scientists from using currently available and 

useful software solutions based on MapReduce [2]. However, computer scientists have realized a 

more user friendly method of executing programs graphically. 

 

4. Integration of the inverted index into Cloudgene 

As mentioned before, executing MapReduce programs on the command-line could be very hard 

for biologist without deeper knowledge in computer science. One possible solution to overcome 

this issue is Cloudgene. Cloudgene has been implemented at Innsbruck Medical University. The 

upcoming idea was to integrate the Inverted Index into Cloudgene to benefit from the graphical 

execution possibilities. Thus, the next sections give an overview about Cloudgene and describe 

the integration of the inverted index example into this system. 

4.1. Cloudgene 

Cloudgene is a free open-source platform to improve the adaptively of MapReduce programs in 

bioinformatics by providing graphical interfaces for the execution, import and export of data, and 

the reproducibility of workflows on private and public clouds [7]. The aim of Cloudgene is to 

construct automatically a graphical environment for the available and future MapReduce 

programs. One of the functionalities enables execution on private clusters, which means that 
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delicate datasets can be kept privately while data transfers are limited [7]. For a basic overview 

of the Cloudgene MapReduce interface, the window structure has a top toolbar containing 

buttons to submit a job (run the program) and importing big datasets automatically to the HDFS 

[7]. Other very useful features include account details and cluster information that tells you about 

how many nodes are being used [7]. Users could also notice on the upper panel the running and 

finalized jobs, which are presented with the name, progress and execution time [7]. Finally the 

lower panel shows the job-specific information that includes input/output parameters, and 

execution time and results [7]. Before you can run a program you must have data in the HDFS 

therefore the data source has to be selected [7]. Cloudgene can handle big data imports from 

HTTP, Amazon S3 buckets or even direct file imports from your local computer [7]. Right after 

running the program the process can be monitored and reviewed for viewing and/or downloaded. 

Figure 4.1 displays a comparison of the amount of steps it takes to run a MapReduce program the 

traditional way via the command-line versus Cloudgene. 
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Figure 4.1: Comparison of Approaches  

 

4.2. Integration into Cloudgene 

To integrate a running command line program into Cloudgene, a YAML configuration file has 

to be specified. This configuration file, defines all necessary information to execute the program 

on a public and private cloud (cluster part) additionally, metadata and input/output parameters 

are included as well (mapred part). After starting Cloudgene, the new use case can be selected 

and a simplified way to execute MapReduce jobs has been generated from the YAML file 

automatically. Listing 1 shows the developed YAML configuration file to run the Inverted Index 

within Cloudgene.  
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name: Inverted Index 
category: Hadoop Examples 
version: 1.0 
author: Angelo 
 

cluster: 
image: us-east-1/ami-da0cf8b3 
type: m1.large,m1.xlarge 
ports: 80,50030,50070 
service: hadoop 
installMapred: true 
 

mapred: 
jar: Examples-0.0.1-SNAPSHOT.jarinverted-index.jar 
params: index.Index invertedIndex $input_folder $output 

 
inputs: 
- id: input_folder 
description: Input Folder 
type: hdfs-folder 
 

outputs: 
- id: output 
description: Output File 
type: hdfs-folder 
mergeOutput: true 
download: true 

Listing 1: cloudgene.yaml file for the inverted index 
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Figure 4.2.: MapReduce Interface: This is a screenshot of the MapReduce interface in 

Cloudgene. You can view the specific job being processed, along with a progress bar keeping 

track of the amount of time it takes, distinguishing between the Map and Reduce phase. Below 

that is another window that displays the details of the job along with its results.   
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5. NGS Data Quality Control 
The second use case is an analysis tool to check and validate FASTQ files using MapReduce. 

This application was published in [7] and the aim of this task was to integrate it into Cloudgene.   

5.1. Input Data 

FASTQ data is simply a sequence of multi-line records. The records go in the order of the name, 

the DNA sequence (usually nucleotides), a separator line for optional comments, and a set of per 

base quality scores, see Listing 2. Each of the base quality scores actually measure the margin of 

error at each of the ordered bases. The errors are measured within a single character which could 

be interpreted on an ASCII table, and from that the base quality code can be interpreted. By 

finding the base code and subtracting 33 (Sanger format) from the base value you can evaluate 

the base quality.  

 

@READNAME 
GATCAGTGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGCC 
+ 
!''*((((***+))%+%++)(%+%%).1***-+*''))**56CCF>>>>>>CCCCCCC63 
 

Listing 2: Example of 1 read as an entry in a Fastq file 

5.2. Implementation 

My mentors already implemented a MapReduce pipeline for FASTQ pre-processing to check the 

quality of large NGS datasets, in which statistics like the sequence quality, base quality, length 

distribution, and sequence duplication levels are calculated. After processing all sequences, a 

consecutive program transforms the results into meaningful plots and can finally be downloaded 

as pdf-files [6].  

5.3. Integration into Cloudgene 

To integrate this program into Cloudgene, a YAML configuration file had to be specified. This 

configuration file, defines all necessary information to execute the program on a public (cluster 

part) and private cloud (mapred part). Additionally, metadata and input/output parameters are 

included as well. Listing 3 shows the developed YAML configuration file to integrate this 

program (called exome.jar) into Cloudgene. 
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name: Fastq Preprocessing 
description: Quality Control for high throughput sequence data in fastq 
format. 
version: 1.0.0 
category: NGS 
author: Sebastian Schoenherr and Lukas Forer 
mapred: 
 

 steps: 
 

 - name: Calculating Base Quality 
   jar: exome.jar 
   params: -step base -input $input -encoding $encoding -baseJob 
$baseQual -outputLocal $output_local -outputHDFS $hdfs_tmp 
 

  - name: Generate graphs 
   jar: exome.jar 
   params: -step export -outputLocal $output_local -baseJob $baseQual -
duplJob $seqDupl -lengthJob $lengthDist -seqJob $seqQual 
 

 inputs: 
   - id: input 
     description: Fastq Folder 
     type: hdfs-folder 
 

   - id: encoding 
     description: Encoding 
     type: list 
     values: 
       0: Sanger/Illumina1.8+ 
       1: Illumina1.8- 
       2: Solexa 
        
 outputs: 
   - id: output_local 
     description: Output Folder Local 
     type: local-folder 
     download: true 

Listing 3: cloudgene.yaml file for the NGS use case 
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6. Discussion and Conclusion 
The idea of this project was to analyze big data by developing several use cases based on 

MapReduce and integrating them into Cloudgene. For that, several prerequisites needed to be 

fulfilled. First I had to learn several new technologies such as Hadoop MapReduce and the basics 

behind the Unix file system. After that, it was essential for me to learn Cloudgene’s features and 

functionalities, developed at IMU.  

 

Afterwards, having to comprehend the importance of Hadoop in genetics, I implemented my first 

use case, the “Inverted Index”. The limitations of a command line execution have been analyzed 

and the advantages of a graphical execution with Cloudgene discovered. I was able to integrate 

the MapReduce program into Cloudgene. The benefit of Cloudgene is that it guides the user 

whether he or she has a computer science background or not and improves the usability of 

MapReduce programs in Bioinformatics. The last part of my project was to design a new genetic 

use case with the help of my mentors to process FASTQ data from next generation sequencing 

(NGS). 

 

Prior to being given the opportunity to come to Austria, I had no experience regarding 

how I could use my computer science knowledge in a real life application. I was fortunate 

enough to have worked under Dr. Sebastian Schönherr who showed me how Hadoop could be 

used in genetics. The knowledge and experience that I gained from my stay in Innsbruck was 

truly enriching. First, I specifically learned the overall architecture and design of Hadoop in 

order to familiarize myself with the system, develop new skills and eventually make a 

connection between how Hadoop benefits genetics. Second, I learned how to adapt such a 

program like the Inverted Index to the MapReduce programming model and ultimately execute it 

on the terminal line as well as integrating it into Cloudgene. Lastly, I found that the opportunity 

fulfilling yet challenging to learn handling massive amounts of data and producing statistical 

output in under a few minutes. 
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